
Polynomial Timed Reductions to Solve
Computer Security Problems in Access
Control, Ethereum Smart Contract,
Cloud VM Scheduling, and Logic

Locking.

by

Jonathan Shahen

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Jonathan Shahen 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Adam Lee
Assoc. Dean, School of Computing and Information,
Associate Professor, Department of Computer Science,
University of Pittsburgh

Supervisor: Mahesh Tripunitara
Professor, Dept. of Computer Engineering,
University of Waterloo

Internal Member: Wojciech Golab
Assoc. Professor, Dept. of Computer Engineering,
University of Waterloo

Internal Member: Hiren Patel
Assoc. Professor, Dept. of Computer Engineering,
University of Waterloo

Internal-External Member: Florian Kerschbaum
Assoc. Professor, Dept. of Computer Science,
University of Waterloo

ii

Author's Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The Declaration of Contributions, at the start of each chapter includes a detailed list of
all content that is co-authored within that chapter.

I am the sole author of chapters 1, 2, 4, and 6.

Chapter 3 is a modi�ed version of the paper [116], which was authored by: Jonathan Sha-
hen, Jianwei Niu, and Mahesh Tripunitara. The contributions of the chapter are my own,
but some paragraphs were written by my coauthors. I am the sole author for Chapter 5,
but some of the empirical implementations were performed by Alireza Takami. Chapter 7
is based o� the paper [60], written by: Nahid Juma, Jonathan Shahen, Khalid Bijon, and
Mahesh Tripunitara. The contributions of the chapter are my own, but some paragraphs
were written by my coauthors. Chapter 8 contains research which was performed with
the collaboration of Nahid Juma, Mahesh Tripunitara, and later on Mohamed El Massad.
Section 8.1.1 is shared work with the above co-authors.

iv

Abstract

This thesis addresses computer security problems in: Access Control, Ethereum Smart
Contracts, Cloud VM Scheduling, and Logic Locking. These problems are solved using
polynomially timed reductions to 2 complexity classes: PSPACE-complete andNP-complete.
This thesis is divided into 2 parts, problems reduced to: Model Checking (PSPACE-
complete) and Integer Linear Programming (ILP) (NP-complete). ThePSPACE-complete
problems are: Safety Analysis of Administrative Temporal Role Based Access Control
(ATRBAC) Policies, and Safety Analysis of Ethereum Smart Contracts. TheNP-complete
problems are: Minimizing Information Leakage in Virtual Machine (VM) Cloud Environ-
ments using VM Migrations, and Attacking Logic Locked Circuits using a Reduction to
Integer Linear Programming (ILP).

In Chapter 3, I create the Cree Administrative Temporal Role Based Access Control
(ATRBAC)-Safety solver. Which is a reduction from ATRBAC-Safety to Model Checking.
I create 4 general performance techniques which can be utilized in any ATRBAC-Safety
solver.

1. Polynomial Time Solving, which is able to solve speci�c archetypes of ATRBAC-Safety
policies using a polynomial timed algorithm.

2. Static Pruning, which includes 2 methods for reducing the size of the policy without
e�ecting the result of the safety query.

3. Abstraction Re�nement, which can increase the speed for reachable safety queries by
only solving a subset of the original policy.

4. Bound Estimation, which creates a bound on the number of steps from the initial state,
where a satisfying state must exist. This is directly used by the model checker's bounded
model checking mode, but can be utilized by any solver with a bound limiting parameter.

In Chapter 4, I analyze ATRBAC-Safety policies to identify some of the �sources of
complexity� which make solving ATRBAC-Safety policies di�cult. I provide analysis of
the sources of complexity that exists in the previously published datasets [133, 93, 56].
I perform analysis of Cree's performance techniques on the previous datasets. I create 2
new datasets, which are shown to be hard instances of ATRBAC-Safety. I analyze the new
datasets to show how they achieve this hardness and how they di�er from each other and
the previous datasets.

In Chapter 5, I create a novel reduction from a Reduced-Solidity Smart Contract, subset
of available Solidity features, to Model Checking. This reduction reduces Reduced-Solidity
Smart Contract into a Finite State Machine and then reduces to an instance of a Model
Checking problem. This provides the ability to test smart contracts published on the

v

Ethereum blockchain and test if there exists bugs or malicious code. I perform empirical
analysis on select Smart contracts.

In Chapter 6, I create 2 methods for generating instances of ATRBAC policies into
Solidity Smart Contracts. The �rst method is the Generic ATRBAC Smart Contract. This
method requires no modi�cation before deployment. After deployed the owner is able to
create, and maintain, the policy using special access functions. The special action functions
are automated with code that converts an ATRBAC policy into a series of transactions the
owner can run. The second method is the Baked ATRBAC Smart Contract. This method
takes an ATRBAC policy and reduces it to a Smart Contract instance with no special
access functions. The smart contract can then be deployed by anyone, and that person
will have no special access. I perform an empirical analysis on the setup costs, transaction
costs, and security each provides.

In Chapter 7, I create a new reduction from Minimizing Information Leakage via Virtual
Machine (VM) Migrations to Integer Linear Programming (ILP). I compare a polynomial
algorithm by Moon et al. [73], my ILP reduction, and a reduction to CNF-SAT that is not
included in this thesis. The polynomial method is faster, but the problem is NP-complete
thus that solution must have sacri�ced something to obtain the polynomial time speed
(unless P = NP). I show instances in which the polynomial time algorithm does not produce
the minimum total information leakage, but the ILP and CNF-SAT reductions are able to.
In addition to this, I show that Total Information Leakage also has a security vulnerability
for non-zero information leakage using the 〈R,C〉 model. I propose an alternative method
to Total Information Leakage, called Max Client-to-Client Information Leakage, which
removes the vulnerability at the cost of increased total information leakage.

In Chapter 8, I create a reduction from the Key Recovery Attack on Logic Locked Cir-
cuits to Integer Linear Programming (ILP). This is a recreation of the �SAT Attack� using
ILP. I provide an empirical analysis of the ILP attack and compare it to the SAT-Attack.
I show that �ILP Attack� is a viable attack, thus future claims of �SAT-Attack Resis-
tant Logic Locking Techniques� need to also show resistance to all potential NP-complete
attacks.

vi

Acknowledgements

I would like to express my gratitude to my supervisor Mahesh Tripunitara. I �rst
studied under you in Spring 2013 (ECE 458). Then we worked together brie�y in Winter
2014 (ECE 499). After that you accepted me as your MASc student in Fall 2014, which
I graduated in Spring 2016. We then continued on to PhD in Fall 2016 and now I have
graduated in Spring 2020. The years working together have been interesting, enjoyable,
involved, and very formative. Thank you.

I would like to thank Nahid Juma, who was a PhD student under Mahesh. We worked
together on the VM Scheduling and Logic Locking papers. Working together on those
projects was very interesting and enjoyable.

Without my friends I would not have had such an enjoyable time working on my
masters and then my PhD. I name my friends by year we met: Kesigun Pillai, Johnny Yee,
Anthony Silvio, Dan Grimmer, Denis Melanson, Michael Noden, and Kaylin Epp. Thank
you Michael for helping me practice for my defence. Jessica Hall, my sister, graduated
soon after I started my degree, but she has been rooting for me the entire way. Rick and
Sue Storie have been my family since I was young, they helped me move to Waterloo and
have been a constant support.

Angela Holmes, we met in Spring 2019 and since then you have become one of the most
important people in my life. Thank you for all the love and support.

vii

Table of Contents

List of Figures xiv

List of Tables xix

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Motivation . 2

1.3 Contributions and Outline . 3

2 Background 5

2.1 Problems Reduced To . 5

2.1.1 PSPACE-Complete � Model Checking 6

2.1.2 NP-Complete � Integer Linear Programming (ILP) 7

2.2 Access Control . 8

2.2.1 RBAC, ARBAC, and ARBAC-Safety 8

2.2.2 TRBAC, ATRBAC, and ATRBAC-Safety 10

2.3 Ethereum Blockchain . 17

2.3.1 DApps and Smart Contracts . 17

2.3.2 Currencies . 18

2.3.3 Tools for Interacting with the Ethereum Network 19

2.3.4 Solidity and Vyper . 21

viii

2.3.5 Ethereum Virtual Machine (EVM) 21

2.3.6 Message Calls, Delegate Calls, and Call Code 24

2.3.7 The Halting Problem . 25

2.4 Logic Locking . 25

2.4.1 Circuit Representations . 26

2.4.2 Locking Techniques . 27

I Problems Reduced to Model Checking 29

3 Cree: a Performant Tool for Safety Analysis of Administrative Temporal
Role-Based Access Control (ATRBAC) Policies 30

3.1 Introduction . 31

3.2 ATRBAC-Safety Background . 33

3.3 Prior work . 34

3.4 Our work . 35

3.5 Cree . 37

3.5.1 Polynomial Time Solving when possible for ATRBAC-Safety 38

3.5.2 Static Slicing . 39

3.5.3 Abstraction Re�nement . 41

3.5.4 Bound Estimation . 44

3.5.5 Reduction to Model Checking . 48

3.5.6 Performance Considerations . 52

3.6 Empirical Assessment . 53

3.7 Conclusions . 56

4 Generating Hard Instances of ATRBAC-Safety 58

4.1 Introduction . 59

4.2 ATRBAC-Safety Background . 60

ix

4.3 ATRBAC-Safety Sources of Complexity . 60

4.3.1 Solver Sources of Complexity . 60

4.3.2 Dataset Sources of Complexity . 61

4.4 Analysis of ATRBAC-Safety Datasets . 63

4.4.1 Measuring Size of a Policy . 65

4.4.2 Rule Types and Properties . 66

4.4.3 Precondition and Timeslot Array Lengths 68

4.4.4 Role Types . 69

4.4.5 Path Length of Reachable Policies 70

4.5 Performance Techniques for ATRBAC-Safety 71

4.5.1 Static Slicing . 71

4.5.2 Abstraction Re�nement . 72

4.5.3 Polynomial Time Safety Solver (Quick Decisions) 74

4.5.4 Bounded Search of State Space . 75

4.6 Generating New Hard ATRBAC Instances 77

4.7 Empirical Analysis . 78

4.8 Future Work . 81

4.9 Conclusions . 81

5 Safety Analysis for Ethereum Smart Contracts 83

5.1 Introduction . 84

5.1.1 Prior Work . 84

5.2 Ethereum Blockchain Background . 86

5.3 Reduced-Solidity . 86

5.4 Reduced-Solidity Safety Problem . 88

5.5 Reduction to Model Checking . 90

5.5.1 Experimental Reduced Solidity Features 90

5.5.2 Finite State Machine . 91

x

5.5.3 Available Queries . 93

5.5.4 Model Checking Speci�cs . 93

5.5.5 Known Issue . 97

5.5.6 Parameters . 98

5.6 Experimental Results . 100

5.7 Future Work . 102

5.8 Conclusions . 102

6 Converting Administrative Temporal Role Based Access Control (ATR-
BAC) Policies to Ethereum Smart Contracts 104

6.1 Introduction . 105

6.2 Background . 105

6.3 Generic ATRBAC Smart Contract . 105

6.4 Baked ATRBAC Smart Contract . 108

6.4.1 State and Modi�ers . 109

6.4.2 Convert Rules . 110

6.4.3 Convert Safety Query . 110

6.5 Costs . 111

6.6 EIP 170 - Contract Code Size Limit . 112

6.7 Conclusions . 113

II Problems Reduced to Integer Linear Programming 115

7 Vagabond: Using VM Scheduling to Combat Side-Channels in Cloud
Systems 116

7.1 Introduction . 117

7.1.1 Related Work . 118

7.1.2 Summary of Conference Paper Contributions 121

xi

7.1.3 Contributions . 121

7.2 Minimizing Information Leakage . 122

7.3 Reductions to ILP . 127

7.4 Empirical Assessment . 129

7.4.1 Tests . 129

7.4.2 Results . 131

7.5 Minimum Total Information Leakage Attack 134

7.5.1 Max Client-to-Client Information Leakage 135

7.6 Future Work . 137

7.7 Conclusions . 137

8 ILP Attack on Logic-Locked Circuits 139

8.1 Introduction . 140

8.1.1 Related Works . 141

8.2 Background . 142

8.3 The Logic Locking Problem . 143

8.4 Brute Force Attack . 144

8.5 The SAT-Attack . 144

8.6 Reduction To ILP . 145

8.6.1 Simulating Circuits in ILP . 146

8.6.2 Di�erence Circuit . 147

8.6.3 Preloading Distinguishing Inputs 148

8.6.4 Equal Circuit . 149

8.6.5 Simplifying Equals Circuits . 150

8.7 Experiments . 150

8.8 Results . 152

8.9 Future Work . 153

8.10 Conclusions . 153

xii

III Conclusions 154

9 Conclusions 155

References 157

A Summary of Software and Solvers 174

APPENDICES 174

B NuSMV Supported Speci�cations 175

C Cree Pruning and Bound Estimation 178

D Cree Empirical Results without Mohawk+T 183

E Analysis of the New Datasets Created in Chapter 4 185

F Generic ATRBAC Smart Contract 190

G Web3 Commands for Converting ATRBAC Policy to Generic ATRBAC
Smart Contract 200

H Example Smart Contracts 201

I Vagabond CPLEX OPL Code 204

J Boolean Circuit Reductions to ILP 206

xiii

List of Figures

2.1 Example turnstile �nite state machine and corresponding Model Checking
problem formatted for NuSMV. 6

2.2 Example Knapsack ILP problem. 7

2.3 Example ATRBAC policy, contains: TUA, RS, and rule set. 11

2.4 An example ATRBAC safety query for the policy in Figure 2.3. 14

2.5 Simple example of a Solidity Smart Contract. 21

2.6 Example Circuit Netlist and Diagram. 26

2.7 Simple example of XOR/XNOR locked circuit. 28

2.8 Simple example of MUX locked circuit. 28

3.1 Flow diagram for the reduction from ATRBAC-Safety to Model Checking. 37

3.2 Example ATRBAC-Safety policy which highlights the rules that can be re-
moved without changing the safety analysis. 40

3.3 Tightening 2 for Cree's Bound Estimation. 46

3.4 Tightening 3 for Cree's Bound Estimation. 47

3.5 Diagram and Model Checking code after a reduction to Model Checking. . 50

3.6 Results from all tools for Benchmark Class (a) (Uzun et al. [133]). 53

3.7 Results from all tools for Benchmark Class (b) (Ranise et al. [93]). 54

3.8 Results from all tools for converted Mohawk policies (Jayaraman et al. [56]). 56

4.1 Side-by-side comparison of rule/role/timeslot measuring and new minimum
simple path policy size. 65

xiv

4.2 The percentage of rules by type. 66

4.3 Number of rules which are: Truly Startable, Startable, Invokable, and
Unassignable Precondition. 67

4.4 Average number of roles in the precondition and average number of time
slots in the target time slot array. Maximum number in Table 4.1. 68

4.5 The number of unique roles that appear for each role type. 69

4.6 Length of Counter Example for all Reachable Policies. 70

4.7 The Policy Size of each policy after applying static slicing techniques. . . . 71

4.8 The number of required abstraction re�nement steps used to solve each
policy from the prior datasets. 73

4.9 Number of policies solved using the Cree's polynomial time algorithm. . . . 74

4.10 Overall fastest model checker option and comparing the durations of Esti-
mated Bound (baseline) and �xed bound of 6 steps. 76

4.11 Cree's Bound Estimation for all previous datasets. 77

5.1 Example Smart Contract, using Reduced Solidity and included embedded
Safety Queries. 87

5.2 Reduction from Solidity Smart Contract Safety to Model Checking. 90

5.3 Diagram of the Finite State Machine that is created from a single DApp. . 91

5.4 Expanded view of a single function from Figure 5.3. The � . . .� state contains
many states that represent the actual logic of the function. 92

5.5 Outline of the Main module for the model checking reduction. 95

5.6 Outline of the Smart Contract module for the model checking reduction. . 96

5.7 Reduction for Safety Queries on lines 8 and 22 of Figure 5.1. 97

5.8 Reduction showing Require Statements and State Rollback. 98

5.9 Non-obvious simple Smart Contract. 100

5.10 Converting Smart Contract from Section H.2 to current supported features. 101

6.1 All actors and actions which can be used with the Generic ATRBAC Smart
Contract. 106

xv

6.2 Outline of the User available data and functions from the ATRBAC Smart
Contract. Full code in Appendix F and [110]. 107

6.3 Example ATRBAC Policy where the Safety Query is Reachable. 108

6.4 The state variables and function modi�ers used in Baked ATRBAC Smart
Contracts. 109

6.5 Converting rules for Baked ATRBAC Smart Contracts. 110

6.6 Converting the Safety Query into a Bug Bounty for Baked ATRBAC Smart
Contracts. 111

7.1 Scheduling actions that can reduce information leakage. 118

7.2 Example showing how client-to-client leakage is calculated under all four
models. 126

7.3 Example where Nomad is unable to reduce the Total Information Leakage. 127

7.4 Reduction to ILP for the 〈R,C〉 model for total information leakage. . . . 128

7.5 Scalability of Nomad, ILP, and CNF-SAT using the testing parameters pre-
sented in Moon et al. [73]. 130

7.6 Information leakage for all three approaches when run for 10 epochs on the
placement map shown in Figure 7.3. 131

7.7 Total Information leakage for 1 epoch and 10 random initial placements. . 132

7.8 Information leakage over 10 epochs and 3 di�erent migration budgets. . . . 133

7.9 Computation time to compute single epoch given 2 di�erent initial placements.133

7.10 Comparison of the placement maps for the Original ILP method and the
New ILP method. 134

7.11 Comparison of the Total Information Leakage and the Max Client-to-Client
Information Leakage across the original and new ILP reductions. 135

7.12 New ILP problem for the 〈R,C〉 model for Max Client-to-Client Information
Leakage. 136

8.1 The Logic Locking Key Recovery Problem. 143

8.2 SAT-Attack Algorithm from Subramanyan et al.[127] 144

8.3 Flow diagram for the ILP Attack. 145

xvi

8.4 Circuit and ILP equivalent, of a constraint to force the output of 2 circuits
to not equal. 148

8.5 Circuit and ILP equivalent of the constraints used to force the output of a
circuit to equal a set of bits. 148

8.6 Simplifying each Equal Circuit by propagating the known Distinguishing
Inputs through them. 149

8.7 Ranking the best ILP Solver and Reduction, and the duration the best took
to solve all benchmarks. 151

B.1 Figure showing a representation of the CTL Speci�cations. 175

C.1 Copy of Figure 3.2. 180

D.1 Results from all tools for Benchmark Class (a) (Uzun et al. [133]). Mo-
hawk+T has been removed. 183

D.2 Results from all tools for Benchmark Class (b) (Ranise et al. [93]). Mo-
hawk+T has been removed. 184

D.3 Results from all tools for converted Mohawk policies (Jayaraman et al. [56]).
Mohawk+T has been removed. 184

E.1 Policy size, using rule/roles/timeslots and minimum simple path, for the
new datasets. 185

E.2 The distribution of rules by type: Can Assign, Can Revoke, Can Enable,
Can Disable. 186

E.3 Number of rules which are: Truly Startable, Startable, Invokable, and
Unassignable Precondition. 186

E.4 Average number of roles in the precondition and average number of time
slots in the target time slot array. 186

E.5 The number of unique roles that appear for each role type. 187

E.6 The expected path length required to reach a satis�able state. This is shown
with a log vertical scale. Black line is x2, where the x is the input policy size. 187

E.7 The measured minimum size of each policy �le after each pruning technique
is performed. 187

xvii

E.8 The number of required abstraction re�nement steps used to solve each
policy from the new datasets. 188

E.9 Number of policies solved using the Cree's polynomial time algorithm. . . . 188

E.10 Cree's Bound Estimation for new datasets. 188

E.11 Duration for Cree to solve the new datasets given 1hr time limit. 189

xviii

List of Tables

2.1 Shortlist of the denominations of Ether. 18

3.1 Example Abstraction Re�nement steps using Algorithm 1 for step 0 and
Algorithm 2 for steps 1 and 2. 43

4.1 Summary of Previous ATRBAC-Safety Datasets. 64

6.1 Costs for Converting Ranise et al. [93] �University� ATRBAC policies to
Generic and Baked Smart Contracts. 112

7.1 Symbols used for calculating Total Information Leakage. 124

8.1 Reduction from speci�c logic/circuit gate to ILP constraint. 147

8.2 Benchmark circuits used to test the ILP Attack. 150

8.3 Number of Circuits Solved with the ILP-Attack. Tests stopped after 10hrs. 152

A.1 Summary of Software Projects created by the author and used in this thesis. 174

A.2 List of publically available solvers used in this thesis. 174

J.1 Summary of the �From CNF SAT� reductions to ILP. 207

xix

Chapter 1

Introduction

This thesis addresses computer security problems in: Safety Analysis of Administrative
Temporal Role Based Access Control (ATRBAC) Policies, Safety Analysis of Ethereum
Smart Contracts, Minimizing Information Leakage in Virtual Machine (VM) Cloud Envi-
ronments, and Attacking Logic Locked Circuits. This thesis uses polynomial time reduc-
tions to Model Checking and Integer Linear Programming, where the decision problems
which are PSPACE-complete and NP-complete.

1.1 Thesis Statement

My thesis is a conjunction of the following:

(A) Safety analysis of ATRBAC can be performed e�ectively and e�ciently in practice via
a direct reduction to model-checking, and then use of an o�-the-shelf model checker.

(B) There exists �harder� instances of ATRBAC-Safety which take signi�cantly longer
to solve, compared to prior published datasets [133, 93, 116] of comparable sizes.
The class of ATRBAC-Safety instances which require many rule �rings to satisfy the
ATRBAC safety query, is one of these �harder� instances.

(C) Safety analysis of Ethereum's Smart Contracts can be performed e�ectively on smart
contracts written in the Solidity language using a reduction to model-checking and
then the use of an o�-the-shelf model checker.

(D) There exists an e�cient reduction to minimize the Total Information Leakage in a
cloud environment via VM Migrations using integer linear programming (ILP).

(E) There exists an ILP-attack against logic locking to protect digital Integrated Circuits
(ICs) that is as e�ective as the well-researched and cited SAT-attack [127].

1

My approach to proving my thesis is by construction. For (A), I create a tool to
perform the direct reduction from ATRBAC-Safety to model-checking. The e�ectiveness
of this tool is measured against the prior work tools from Uzun et. al. [133] and Ranise
et. al., using the published ATRBAC-Safety datasets from [133, 93, 116]. For (B), I
analyze the �sources of complexity�, similar to the work in [56], to identify which features
of an ATRBAC-Safety policy require more computational resources. From this analysis I
will create 2 new datasets, where the sizes of the individual test cases are similar to the
test cases from [133, 93, 116]. I will test the new datasets against the best performing
tool from the analysis performed in (A), to show that they are indeed �hard� instances
of ATRBAC-Safety. For (C), I create a tool to perform a direct reduction from safety
analysis of Ethereum Smart Contract to model-checking. This research is ongoing, and
my contribution to this project is the initial development of the direct reduction which
supports a subset of features from the Solidity language. The e�ectiveness of this tool will
be the ability to solve safety queries for all features of Solidity it supports. For (D), I create
a new reduction to ILP and compare the e�ectiveness of this implementation with the ILP
implementation from Moon et. al [73] as well as their greedy algorithm Nomad. The
e�ectiveness of each implementation will be on the ability to reduce the total information
leakage and the time required to solve each epoch. For (E), I create a key recovery attack
which utilizes an o�-the-shelf ILP solver. The e�ectiveness of the ILP-attack is compared
to the SAT-attack using the completion time and number of solved circuits under 10 hrs.

1.2 Motivation

This thesis is motivated by the existence of many custom-made tools which solve computer
security problems (lists of these tools is provided in each chapter's �Prior Work� section).
We utilize the following motivations to justify the use of reductions instead of programming
a custom solution for each problem.

1. Reduces the technical debt that is accumulated when creating an empirical solution
from scratch.

2. Leverages the optimizations, and variety of optimization parameters, available from
mature solvers in the same complexity class.

3. Provides a baseline of performance that a dedicated solver should achieve.

4. Reduces the time for a viable solver to be created.

2

5. Can make the problem, and solution, easier to understand when reduced into a well
known problem space.

1.3 Contributions and Outline

I provide an outline the contents contained in this thesis and list the contributions made in
each chapter. At the beginning of each chapter, a Declaration of Contributions is included
which states any shared contributions within the chapters.

� Chapter 2 � All background information is grouped in this chapter.

� Chapter 3 � Introduces the Cree ATRBAC-Safety solver, which is a reduction from
ATRBAC-Safety to Model checking. Creates 4 performance techniques which can be
used for any ATRBAC-Safety solver.

� Chapter 4 � Analysis of ATRBAC-Safety policies. Identi�es some of the �sources of
complexity� which make solving ATRBAC-Safety policies di�cult. Provides an analysis
of the sources of complexity that exists in the previously published datasets. Analysis of
the Cree's performance techniques on the previous datasets. Creation of 2 new datasets,
which are shown to be hard instances of ATRBAC-Safety. Analysis on the new datasets
to show how they achieve this hardness and how they di�er from each other.

� Chapter 5 � Safety Analysis on Ethereum/Solidity Smart Contracts. Created a novel
reduction from a subset of Solidity Smart Contracts to Model Checking. Show that this
subset language is PSPACE-complete. Reduces Solidity Smart Contract into a Java
Finite State Machine and then converts to an instance of a Model Checking problem.

� Chapter 6 � Created 2 methods for creating instances of ATRBAC policies as Smart
Contracts. The Generic ATRBAC Smart Contract requires no modi�cation before de-
ployment. A super user creates and maintains the policy using special access functions
once the smart contract is deployed. The creation process is automatic through the use
of web3 commands. The Baked ATRBAC Smart Contract takes an ATRBAC policy
and reduces it to a Smart Contract with no super user access. An empirical analysis is
provided.

� Chapter 7 � Create an e�cient reduction from Minimizing Information Leakage via VM
Migrations to Integer Linear Programming (ILP). Compares polynomial algorithm by
Moon et al. [73], the new ILP reduction, and a reduction to CNF-SAT that was not

3

included in this thesis. We show instances in which the polynomial time algorithm does
not produce the minimum total information leakage, but the ILP and SAT reductions
are able to. In addition to this, we show that Total Information Leakage has a security
vulnerability for non-zero information leakage using the 〈R,C〉 model.

� Chapter 8 � Reduction of a Logic Locked Attack to Integer Linear Programming (ILP).
Recreation of the �SAT Attack� [33, 127] using ILP. Create 4 reductions from logic gates
to ILP constraints. Provides an empirical analysis of the ILP attack. Able to show
that this is a viable attack, thus future claims of �SAT Attack Resistant Logic Locking
Techniques� must also show resistance to all potential NP-complete attacks.

4

Chapter 2

Background

Contents
2.1 Problems Reduced To . 5

2.2 Access Control . 8

2.3 Ethereum Blockchain . 17

2.4 Logic Locking . 25

This chapter contains the shared background for all chapters in this thesis. Section 2.1.1
describes Model Checking and is used by all chapters in Part I. Section 2.1.2 describes
Integer Linear Programming (ILP) and is used by all chapters in Part II. Besides Sec-
tion 2.2, each chapter will reference to the particular background sections required for that
chapter.

2.1 Problems Reduced To

This section describes the problems that are reduced to in this thesis. Knowledge of
Cook/Turing reductions is assumed by the reader. A well posed description of Cook/Turing
reduction can be found from the book �Algorithm Design� (chapter 8) by Kleinberg et.
al. [64] and from the book �Computational Complex: A Modern Approach� (chapter 2) by
Arora et. al. [6].

5

MODULE main

VAR

State : {Locked ,Unlocked };

IVAR

Action : {Push ,Coin};

ASSIGN

init(State) := Locked;

next(State) := case

Action = Push & State = Unlocked : Locked;

Action = Coin & State = Locked : Unlocked;

TRUE: State;

esac;

Lockedstart

Unlocked

Action=Coin Action=Push

Action=Push

Action=Coin

Figure 2.1: Example turnstile �nite state machine and corresponding Model Checking
problem formatted for NuSMV.

2.1.1 PSPACE-Complete � Model Checking

Model checking is becoming a mature �eld in computing. Multiple contests are performed
annually to compete the newest optimizations in the �eld of model checking against a va-
riety of problems. The two main contests are: Model Checking Contest [65] and Hardware
Model Checkers Competition [17].

Model checking has been developed for the many decades since its inception in [26, 86].
The decision problem for model checking is thus: Given a �nite state machine and a tempo-
ral logic speci�cation, is the speci�cation true for the given machine? This decision problem
has been shown to be PSPACE-complete. PSPACE is the set of decision problems where
a Turing Machine can decide the problem given work tapes whose size is polynomial to the
size of the input.

An example model checking problem is shown in Figure 2.1. This models a coin oper-
ated turnstile, to allow a single user through and onto the train platform. The turnstile
starts in the Locked position, and is unable to be pushed open. When a coin in inserted,
the turnstile unlocks and allows someone to push it open. After a push, the turnstile re-
turns to being locked. From this diagram and corresponding NuSMV code, we can perform
analysis to determine if certain properties always hold for the model.

Many techniques to optimize the running time and to mitigate the state explosion
have been explored. In this thesis 2 methods are utilized: Bounded Model Checking and
Symbolic Model Checking. These methods can be found in many commercial and free
model checkers.

Symbolic Model Checking, is a technique for solving instances of Model Checking and

6

Maximize

N∑
k=1

valuek ∗ xk

Subject To

N∑
k=1

weightk ∗ xk ≤ capacity

weight1
value1

weight2
value2

weight3
value3

weightk
valuek

. . .

. . .

weightN
valueN

x1

x2

x3

xk

xN

Figure 2.2: Example ILP problem. Given a knapsack with �xed weight capacity, �nd
the maximum value the bag can hold without exceeding the bag's capacity. There are N
items, each with a speci�c weight (weightk) and value (valuek). xk is a Boolean variable
to which indicates if the item is in the knapsack.

was �rst described in [26, 86]. This was not very e�cient, but the introduction of the
Binary Decision Diagram (BBD) was able to achieve much better performance for large
state spaces [21]. It allowed for �1030 states to be exhaustively searched in minutes�, in
1992. Performance of symbolic model checking has greatly improved from better hardware,
to better optimization techniques used in modern solvers.

Bounded Model Checking is an alternative to Symbolic Model Checking which doesn't
use BBDs [16]. Bounded model checking allows for converting the model checking problem
to a SAT problem. In some cases this can be faster and lower memory than symbolic model
checking using BBDs.

See Appendix B for a detailed look at the speci�cation format supported by NuSMV.
This thesis uses only the Control Tree Logic (CTL) Speci�cations in Section B.1.

2.1.2 NP-Complete � Integer Linear Programming (ILP)

Integer Linear Programing (ILP), or Integer Programming, is an optimization problem with
an objective function and a set of constraints. If no objective function is given, then it is a
feasibility problem. In Chapter 7 we solve an optimization problem, and in Chapter 8 we
solve a feasibility problem. Integer linear programming optimization problem is NP-hard

7

and the feasibility problem is NP-complete. NP is the set of decision problems where
there exists a polynomially timed Turing Machine TM , called a veri�er, that can decide if
x is a solution to the problem given a polynomially sized certi�cate u. Such that, for all
valid solutions x, there exists polynomially sized u such that TM(x, u) = 1.

In Figure 2.2, we provide an example ILP problem. This is a variant of the knapsack
problem, where we are given a list of N valuable items. The objective is to �nd the
maximum value we can �t in the knapsack does not exceed the weight limitations. Each
item has a value and a weight associated with it. We utilize the Boolean variable xk to
indicate if the kth item is in the knapsack.

2.2 Access Control

In this section, we describe Administrative Temporal Role Based Access Control (ATR-
BAC), and then pose the ATRBAC-Safety problem. We do this in stages. We �rst in-
troduce Role Based Access Control (RBAC), Administrative Role Based Access Control
(ARBAC) and a version of ARBAC-safety that is relevant to ATRBAC-Safety. Then, we
describe Temporal Role Based Access Control (TRBAC), ATRBAC, and ATRBAC-Safety.

We then clarify that various versions of ATRBAC- and ARBAC-safety are addressed
in the literature, and discuss the choices we have made with regards to the various features
of the problem. Speci�cally, that we have chosen the most general of each feature.

2.2.1 RBAC, ARBAC, and ARBAC-Safety

ATRBAC addresses temporal extensions to RBAC and ARBAC. In this section we discuss
RBAC, ARBAC and the version of safety analysis in ARBAC that we call ARBAC-safety
that is relevant to our work on ATRBAC-Safety.

RBAC RBAC [37] is used to specify an authorization policy � who has access to what.
An RBAC policy, in the context of this work, is a set UA, the user�role assignment relation.
An instance of UA is a set of pairs of the form 〈u, r〉. A user u is authorized to the role r
if and only if 〈u, r〉 ∈ UA. RBAC has other constructs, such as role-permission assignment
and a role-hierarchy, that are not relevant to ATRBAC-Safety with which we deal in this
thesis. Indeed, a role-hierarchy can be �attened as a pre-processing step without a�ecting
the correctness or e�ciency of our techniques.

ARBAC ARBAC is a syntax for specifying the ways in which an RBAC policy may

8

change. As our work deals with the UA component of an RBAC policy only, by ARBAC
we mean its URA portion [99], via which users are authorized to and revoked from roles.

There are only two ways in which an instance of UA may change. One is the addition
of an entry 〈u, r〉 to UA, which is the authorization of u to r. The other is the removal of
an entry 〈u, r〉, which is the revocation of u's authorization to r. An instance of ARBAC
is a collection of rules, and addresses two issues with regards to such changes to UA: who
may carry out one of those operations, and under what conditions.

A set of can_assign rules control additions to UA, and a set of can_revoke rules control
removals from UA. A can_assign rule is of the form 〈a, C, t〉, where a, t are roles and C is
a precondition. The precondition C is a set in which each entry is either a role r, or its
negation, ¬r. The semantics of the can_assign rule 〈a, C, t〉 is that a member of the role
a may assign a user u to the role t provided u is already a member of every non-negated
role in C and is not a member of any negated role in C.

In a can_assign rule 〈a, C, t〉, the role a is called an administrative role and the role
t is called a target role. A can_revoke rule has the form 〈a, t〉 where both a and t are
roles. The semantics is that a member of the administrative role a is allowed to revoke
a user's authorization from the target role t. The reason that a can_revoke rule has no
precondition is that revocation is seen as an inherently safe operation [99].

ARBAC-safety We now discuss a version of safety analysis in ARBAC that is relevant
to our work. As our work deals with user-role authorization only, the version of ARBAC-
safety we talk about here refers to that aspect only. More general versions of safety analysis
for ARBAC have been considered in the literature [101], that reconcile not only the user-
role authorizations, but also role-role relationships. Nevertheless, all the versions of safety
analysis in ARBAC of which we are aware lie in the same complexity-class � they are all
PSPACE-complete.

ARBAC-safety is a state-reachability problem. It takes three inputs:

(1) A query, which is a pair 〈u, r〉, user u and role r.
(2) A current- or start-state, which is an instance of UA.
(3) A state-change speci�cation, which is an instance of ARBAC, i.e., instances of can_assign

and can_revoke rules.

The output of the ARBAC-safety instance is `FALSE,' if there exists a state that is reach-
able from the start-state in which the user u from the query is a member of the role r from
the query. Otherwise, the output is `TRUE.'

ARBAC-safety is known to be PSPACE-complete [57]. Several techniques have been
proposed to address instances that are likely to arise in practice. For example, Gofman et

9

al. [41] propose a tool called RBAC-PAT, and Jayaraman et al. [56] propose a tool called
Mohawk.

2.2.2 TRBAC, ATRBAC, and ATRBAC-Safety

We now discuss the temporal extensions to RBAC and ARBAC that give us TRBAC [12]
and ATRBAC respectively. We also the problem ATRBAC-Safety. We �rst present a
model and encoding of time that is the basis for the syntax for temporality in ATRBAC.
The version we adopt is the same as prior work [133].

Time An intuition for an instance in time, m, can be thought of as represented by a
real number. An example of real number time is the Unix timestamp, which is number
of seconds since 00:00:00 Jan. 1, 1970 [79]. A time-slot represents some duration of time,
and is represented as a non-negative integer. In an instance of ATRBAC-Safety, no two
distinct time-slots overlap in time. Given time-slots i, j where i < j, the time-slot j is
associated with a duration of time that occurs later than time-slot i. A time-instant m
falls within a time-slot.

We assume that the earliest time-slot with which an instance of ATRBAC-Safety is
associated is 0, and there is some integer, Tmax, such that Tmax − 1 is the latest time-slot
that pertains to the ATRBAC-Safety instance. We discuss how time progresses under
ATRBAC-Safety below.

A generalization of a time-slot is a time-interval. A time-interval is a pair of integers
〈i, j〉 where i ≤ j. It represents the set of time-slots {i, i + 1, . . . , j}. We say that a
time-instant m falls within a time-interval if m falls within one of the time-slots in that
time-interval.

The mindset that underlies the above notions for time is that each time-slot represents
some realistic, recurring, �xed time period, such as �9 AM � 10 AM.� Example timeslots
for Ti are: 9 AM to 5 PM (typical work day), Monday at 9 AM to Friday at 5 PM (typical
work week), Jan 1 to March 31 (�rst quarter of the �scal year). In ATRBAC, the current
instance of time dictates what permissions a user has and what rules an administrator can
execute. The particular, the actual time periods, to which time-slots in an instance of
ATRBAC-Safety map, are irrelevant to the analysis.

TRBAC From the standpoint of our work, TRBAC generalizes RBAC in two, temporal
ways. (1) The set UA is generalized to TUA, each of whose elements is a triple 〈u, r, lu,r〉,
where lu,r is a time-interval. The semantics is that u is a member of r during the time-
interval lu,r only. (2) Each role r that appears in TUA is annotated with a time-interval,

10

Alice Bob

Director (D) Surgeon (S)
Consulting

Physician (CP)
Physician (P)

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

8
a
m

-
5
p
m

Rule Type Rule

CanAssign 〈TRUE, 8am � 9am, TRUE, [t8−12], CP〉
CanAssign 〈D, 8am � 9am, CP ∧ ¬P, [t8−12], P〉
CanAssign 〈D, 8am � 9am, P, [t8−12], S〉
CanRevoke 〈D, 8am � 9am, TRUE, [t8−12], CP〉
CanEnable 〈TRUE, 6am � 8am, TRUE, [t8−12, t12−5], D〉
CanDisable 〈D, always, TRUE, [t8−12, t12−5], D〉

Figure 2.3: An example of the Start State component (referred to as TUA and RS) of
a TRBAC policy is the �gure on top. No roles are enabled. Example ATRBAC admin-
istrative rules are in the table. An ATRBAC policy contains: TUA, RS, and a rule set.
Figure 2.4 contains examples of safety queries.

lr. We say that lr is the time-interval during which the role r is enabled. The semantics is
that outside of the time-interval lr, no user can exercise a permission that she acquires via
the role r. The set of all pairs, 〈r, lr〉, is denoted RS.

Thus, a TRBAC policy, and therefore a state in the veri�cation problem we consider,
is a 3-tuple, 〈TUA,RS,m〉, where TUA and RS are as described above, and m is a time-
instant. A user u is authorized to a role r at the time-instant, m, if and only if there exists
an entry 〈u, r, lu,r〉 ∈ TUA such that m is within lu,r. The entries in RS matter when a
user attempts to make an administrative change, i.e., a change to the authorization state.
We discuss this under ATRBAC below.

ATRBAC ATRBAC generalizes ARBAC by providing rules for changes to TRBAC
policies. As we discuss under �Versions of the problem� below, the version we discuss
generalizes prior versions. Under ATRBAC, there are two ways in which a state, which is
a TRBAC policy, can change: (1) via an administrative action, or, (2) the passage of time.

Under (1), four kinds of administrative actions are possible to a TRBAC policy, 〈TUA,
RS, m〉. It is possible to add an entry to, and remove an entry from TUA, and it is possible
to add an entry to, and remove an entry from RS. The �rst two kinds of changes are called
assign and revoke administrative actions, and the next two are called role enabling and
disabling administrative actions. We have the corresponding sets of tuples t_can_assign,

11

t_can_revoke, t_can_enable, and t_can_disable. (As in Uzun et al. [133], we employ the
pre�x �t_� to distinguish clearly that these are rules for ATRBAC, rather than ARBAC.)

Each such set contains 5-tuples. Each tuple is of the form 〈Ca, La, Ct, Lt, t〉. The �rst
two components, Ca, La are conditions on the administrator that seeks to e�ect the action.
The next two components, Ct, Lt, are conditions on the user or role to which the rule
pertains. The last component, t, is the target-role; the role that is a�ected by the action.
Ca is either the mnemonic `true,' or a condition, i.e., a set of negated and non-negated
roles. La is a set of time-intervals. We specify their semantics below for each kind of
administrative rule. The entry t is the target role, i.e., the role that is a�ected by the
�ring of the rule. Ct is a role-condition similar to Ca above. There are some important
di�erences between Ca and Ct, however, and we discuss these below for each kind of rule.
Lt is a set of time-intervals, similar to La above. We discuss the semantics of Lt below for
each kind of rule as well.

Such a 5-tuple 〈Ca, La, Ct, Lt, t〉 applies when an administrator, say, Alice, attempts an
administrative action at a particular time-instant, m. Each administrative action takes
inputs, one of which is the administrator that attempts it, i.e., Alice, and others that we
discuss below. In Figure 2.3 we show an example ATRBAC policy and in Figure 2.4 we
show it in the context of a safety query. The example in Figure 2.3 is of 2 users that exist in
a hospital. There are 4 roles, where only the Director role is able to act under delegation.

Role enabling: the inputs are Alice, a target role t, and a set of time-intervals, L. Al-
ice succeeds in her attempt at enabling the role t if and only if there exists an entry
〈Ca, La, Ct, Lt, t〉 ∈ t_can_enable for which all of the following are true.

(1) The time-instant, m, at which Alice attempts the action falls within some time-in-
terval in La. (2) Alice and the current time-instant m together satisfy the administrative
condition, Ca. That is, if p is a non-negated role in Ca, then Alice is a member of p at
time-instant m in the current state, 〈TUA,RS,m〉, and p is enabled at the time-instant m.
If n is a negated role in Ca, then either Alice is not a member of n at time-instant m in the
current state, or the role n is not enabled, or both. If Ca is the mnemonic `true,' then the
rule may �re provided m is within some time-interval in La. (3) The set of time-intervals
L is contained within the set of time-intervals Lt. That is, for every time-interval l ∈ L,
there exists a time-interval lt ∈ Lt such that l is within lt. (4) The set of time-intervals L
satis�es the target condition Ct for every l ∈ L. That is, if p is a non-negated role in Ct,
then for every l ∈ L, p is enabled during the time-interval l, in the current-state, i.e., RS.
And if n is a negated role in Ct, then for every l ∈ L, n is not enabled during l, in the
current-state.

The e�ect of a successful role enabling by Alice is that the component RS of the current-

12

state is updated as follows to get a new state: RS← RS ∪ {〈t, l〉 : l ∈ L}.

Example: In Figure 2.3 Alice must �rst enable the role of �Director� so that she can later
be allowed to exercise rules where the �Director� role is required by the administrative
condition, Ca. Alice may exercise the t_can_enable rule during 6 am � 8 am as she
satis�es Ca during that time. Once she enables it, Alice must wait before she exercises the
t_can_revoke rule, where the �Director� role is required by t_can_revoke's Ca, until the
current time falls within 8 am � noon.

Role disabling: the inputs are Alice, a target role t, and a set of time-intervals, L. Alice
succeeds in disabling t via her action at time-instant m if and only if there exists an entry
〈Ca, La, Ct, Lt, t〉 ∈ t_can_disable for which all of the following are true.

(1) The current time-instant, m, falls within some time-interval in La. (2) Alice and
the current time-instant, m, together satisfy the administrative condition, Ca. (3) The
set of time-intervals, L, is contained within the set of time-intervals, Lt. (4) The set of
time-intervals L satis�es the target condition Ct for every l ∈ L.

The e�ect of a successful role disabling by Alice is that the component RS of the
current-state is updated as follows to get a new state: RS← RS \ {〈t, l〉 : l ∈ L}.

User-role assignment: the inputs are the administrator, Alice, a user u, a target role t to
which she seeks to assign u, and a set of time-intervals L. The assignment action that she
attempts at time-instant m succeeds if and only if there exists an entry 〈Ca, La, Ct, Lt, t〉 ∈
t_can_assign for which all of the following are true.

(1) The current time-instant, m, falls within some time-interval in La. (2) Alice and
the current time-instant, m, together satisfy the administrative condition, Ca. (3) The set
of time-intervals, L, is contained within the set of time-intervals, Lt. (4) The user u and
the set of time-intervals L satisfy the target condition Ct for every l ∈ L. That is, if p is
a non-negated role in Ct, then u is a member of p during every time-interval l ∈ L. If n
is a negated role in Ct, then u is not a member of n in any time-interval l ∈ L. If Ct is
the mnemonic `true,' then there are no constraints on the current role-memberships of the
user u.

The e�ect of a successful assignment by Alice is that the component TUA of the current-
state is updated as follows to get a new state: TUA← TUA ∪ {〈u, t, l〉 : l ∈ L}.

Example: The example in Figure 2.3 shows that Alice is able to assign the �Consulting
Physician� role to Bob during 8 am � noon. She is able to exercise this rule because Bob
has the role �Surgeon,� and does not have the role �Physician� during 8 am � noon, and

13

Alice Bob

Director Surgeon
Consulting
Physician

Physician

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

8
a
m

-
5
p
m

Alice Bob

Director Surgeon
Consulting
Physician

Physician

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

8
a
m

-
5
p
m

Alice Bob

Director Surgeon
Consulting
Physician

Physician

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

n
o
o
n
-
5
p
m

Alice enables Director
Alice revokes Bob from

Physician for 8 am - noon

. . .

Figure 2.4: An example ATRBAC safety query for the policy in Figure 2.3. We show
that the following safety query is true, provided we adopt a version of the problem that
does not require the target role to be enabled. Security Query: �Can Bob ever become
a member of the role Consulting Physician during 8 am to noon?� This safety query is
shown to be true if there exists a path from the initial TRBAC state to a TRBAC state
where Bob is a member of the Consulting Physician role for the timeslot representing 8
am to noon. There are many TRBAC states where this safety query is true, and many
paths exists to reach these states. Our example path above starts with Alice enabling the
Director role (shown shaded). This allows Alice to carry out administrative tasks. Alice
then exercises the t_can_revoke rule so Bob is revoked from the Physician role for 8 am
� noon. She then is able to assign him to the Consulting Physician role for 8 am � noon.
This last state-change is not shown in the �gure. �Can Bob ever become a member of the
role Consulting Physician during 1 pm to 5 pm?,� is an example of a safety query that is
not true because there exists no paths from the initial TRBAC state to a state where the
query is true.

Alice satis�es the administrative condition by having the role �Director.�

User-role revocation: the inputs are an administrator Alice, a user u that she seeks to
revoke from a role, a target role, t from which she seeks to revoke u, and a set of time-
intervals, L. The revocation action she attempts at some time-instant m succeeds if and
only if there exists an entry 〈Ca, La, Ct, Lt, t〉 ∈ t_can_revoke for which all of the following
are true.

(1) The current time-instant, m, falls within some time-interval in La. (2) Alice and
the current time-instant, m, together satisfy the administrative condition, Ca. (3) The set
of time-intervals, L, is contained within the set of time-intervals, Lt. (4) The user u and
the set of time-intervals L satisfy the target condition Ct for every l ∈ L.

The e�ect of a successful revocation by Alice is that the component TUA of the current-
state is updated as follows to get a new state: TUA← TUA \ {〈u, t, l〉 : l ∈ L}.

Time-change: Another way that a state, 〈TUA,RS,m〉, can change is in its time compo-

14

nent, m. The manner in which passage of time is modelled [93, 133] is simply by allowing
the m component to increase without any change to the other two components, TUA and
RS. That is, a possible state-change is from 〈TUA,RS,m〉 to a new state, 〈TUA,RS,m′〉,
where m′ > m.

An issue we clarify in this regard of passage of time is whether, once we reach the time-
slot Tmax − 1 to which an instance of ATRBAC-Safety pertains, the time-slot 0 recurs,
followed by time-slot 1 and so on, forever. The assumption in prior work [133] is that it
does. The reason regards the semantics of a time-slot � it maps to some realistic, recurring
period of time. We refer to this property as periodicity, and revisit it in the context of the
software tools.

Example: Time periodicity is what allows the rules in Figure 2.3 to be described by just
the time of day. The intention of the rules is that they are contained within a day. Thus
when a day ends and the next day begins, the rules should still apply to the new day.

ATRBAC-Safety The safety analysis problem for ATRBAC takes three inputs. (1)
A query, 〈u,C, L, t〉, user u, condition C (set of negated and non-negated roles), set of
time-intervals L, and t is some units of time. (2) A start-state, 〈TUA,RS,m〉, which is an
instance of TRBAC. (3) A state-change speci�cation, which is an instance of ATRBAC,
i.e., four sets of rules, t_can_assign, t_can_revoke, t_can_enable, and t_can_disable.

The output is `FALSE,' if there exists a TRBAC state 〈TUA′, RS′, m′〉 that is reachable
from the start-state in which: (i) the user u is a member of every non-negated role in C in
every time-interval in L, and is not a member of any negated role in C in any time-interval
in L, (ii) every non-negated role in C is enabled for every time-interval in L, and no negated
role in C is enabled in any time-interval in L, and, (iii) the time-instant m′ of this state is
within t time-units of the time-instant of the start-state. Otherwise, the output is `TRUE.'
We point out that it is possible to specify t that is large enough that the query pertains
to any time-slot.

In Figure 2.4 we discuss two ATRBAC safety questions: �could Bob become a member
of the role Consulting Physician between 8 am and noon?� and �could Bob become a
member of the role Consulting Physician between 1 pm and 5 pm?�. As the caption of
the �gure discusses, the former is true, provided we do not require the role Consulting
Physician to be enabled when Bob becomes a member of it. The latter question is not
true.

Versions of the problem Di�erent versions of ATRBAC-Safety appear in relevant prior
work. In [115], we created a general version from prior works of Uzun et al. [133], and

15

Ranise et al. [93]. We use this general version of the problem as input into our empirical
implementation, Cree.

We previously provided a Reduction Toolkit [115], which allows for this general version
to be reduced to previous version of ATRBAC-Safety and to a version of ARBAC-Safety.
Here we outline the input format of the general version of ATRBAC-Safety we support.

(1) Rule Types: t_can_assign, t_can_revoke, t_can_enable, and t_can_disable

(2) Rule Format: 〈Ra, T ia, Ct, T st, Rt〉; where:
� Administrator Condition Ra � single role or TRUE
� Admin Time Condition Tia � a time interval in the format of ta − tb where a, b ∈ Z
and 0 ≤ a ≤ b

� Precondition Ct � a list of positive and negative roles (eg: r1 ∧ ¬r2 ∧ r4)
� Target Timeslot Array Tst � a list of time slots (eg: t2, t3, t5, t6)
� Target Role Rt � single role

(3) Initial Condition: empty TUA and empty RS

(4) Security Query: 〈tg, Rg〉
� Goal Timeslot tg � single timeslot
� Goal Roles Rg � a list of goal roles

The example, revisited We now revisit the example from Figure 2.3 and Figure 2.4 to
illustrate the non-triviality of ATRBAC-Safety analysis for even such a small example. The
system has 6 rules only, and each rule is essential. For example, if the �rst t_can_assign
rule is removed, then no user can be assigned to the CP role except by a super-user who
operates outside the constraints that the ATRBAC rules impose, which is exactly the
scalability issue that such delegation schemes as ATRBAC address. Thus, even though
the removal of any rule, in this example, is su�cient to ensure that �could Bob become
a member of the role Consulting Physician between 8 am and noon?� is not true, such
removal is not a viable way to address the unsafety of the system. One way to ensure that
the system is safe for both the queries we discuss above is to change the �8 am � noon�
component of the t_can_revoke rule to �8 am � 5 pm.� Another way is to change the �8
am � noon� constraint in the t_can_assign rule to �8 am � 5 pm,� and also change the
current state so all surgeons, including Bob, are authorized to the Surgeon role during 8
am � 5 pm, rather than 8 am � noon only. We suggest that identifying that such a change
simultaneously renders the system safe for both queries, and also from any other queries

16

of interest, is not necessarily straightforward. We point out also that the above discussion
suggests that it is not straightforward to label a system as �under-� or �over-constrained.�
Changing the �8 am � noon� constraint in the t_can_assign rule to �8 am � 5 pm� can
be seen as easing a constraint. But the consequence of then precluding Bob from certain
privileges can be seen as further constraining the system.

2.3 Ethereum Blockchain

At the core of the Ethereum Network is a cryptocurrency, similar to Bitcoin, where a
distributed network of computers (called �miners�), compete to add the next block to an
immutable and public ledger of transactions (called a �blockchain�). When a miner �nishes
�mining� the next block, the miner broadcasts it to all miners in the network, they can
verify if the block is correct and if so they award that miner money for its e�orts and the
block is added to all the miner's ledgers. The methods used for mining, and proof-of-work
algorithm, are beyond the scope of this thesis.

2.3.1 DApps and Smart Contracts

The Ethereum Network adds the ability for Smart Contracts and Distributed Applica-
tions (DApps) to run within the distributed network of miners and interact and add to
the blockchain. This allows for the creation of new coins within the Ethereum network,
without the need to spend money on setting up the infrastructure required to run the
cryptocurrency.

A Distributed Application (DApp) is a set of Smart Contracts which can run on the
distributed network within the Ethereum Network. Smart contracts are immutable code
that is placed on in the blockchain ledger. They have an API style interface, where people
and other contracts can call functions within them. All data and code in Ethereum is
public, thus external services are required to keep secret data o� the public ledger.

Properly programmed Smart Contracts are able to act as trusted third parties in �-
nancial dealings. They can be trusted because their code is public and immutable and
they run on a distributed network where 51% of the miners would need to be compromised
in order to pass a fraudulent block. We have provided some example smart contracts in
Appendix H. Below we list some of the use cases for smart contracts:

� Escrow � The ability to hold assets from 2 or more parties and then exchange them
once all parties have provided the required assets for exchange.

17

Table 2.1: Shortlist of the denominations of Ether.

Unit Name Wei Value Description

Wei 1 wei Smallest denomination
Gwei 1× 109 wei Used for converting gas to wei
Ether (eth) 1× 1018 wei Biggest/Standard denomination

� Games � Some of the most popular games revolve around trading cards/assets. Other
games connect their in-game store to the Ethereum network to accept payments and
handle asset delivery.

� Initial Coin O�ering (ICO) � A way to raise funds for a new business where coin
shares can be given special meaning.

� Buy/Sell and Auctions � The ability to replace e-commerce websites by transferring
ether for access tokens or receipts of sale.

� Tokens/Gift Cards � The ability to exchange real money/ether for unique tokens
that have arbitrary meaning and worth. These tokens are restricted to only be used in
particular stores (gift card replacement).

� Access Control � Creating an Ethereum account is free, easy, and anonymous. Each
account has a strong identity, meaning it is hard to impersonate an account. In order to
impersonate an account/address in any Ethereum transaction, the transaction must be
correctly signed with a 256-bit Elliptic Curve Digital Signature Algorithm (ECDSA). A
secret 256-bit private key is stronger than most secret password based identities (based
on key size). Private keys can be AES encrypted with a password, thus increasing the
strength of identity. This can allow for more secure access control systems when relying
on the strength of identity.

2.3.2 Currencies

Table 2.1 provides a list of the denominations used within this thesis. The standard
currency that is traded is called Ether, this is similar to dollars in USD. Ether can be split
similar to normal currencies. We deal with di�erent denominations of Ether when dealing
with transactions and when dealing with Gas prices (discussed in detail in Section 2.3.5).
Under the hood all currencies are stored in Wei (similar to cents in USD), gas is calculated

18

using Gwei, and amounts to send to people/contracts are usually denoted in Ether. Using
these currencies in di�erent scenarios allows for smaller looking numbers; i.e. 1 ether vs
1× 1018 wei.

2.3.3 Tools for Interacting with the Ethereum Network

There are many tools for interacting with the Ethereum Network. We list a few below:

� MetaMask (https://metamask.io) is a browser extension that can facilitate all inter-
actions except for mining.

� TrustWallet (https://trustwallet.com) is a application that runs on smartphones and
can facilitate all interactions except for mining.

� Go-Ethereum (https://geth.ethereum.org) is a computer application that can facil-
itate all interactions except for GPU mining. Go Ethereum is built by Ethereum and
allows for simple to complex interactions with the Ethereum blockchain.

� Web3 (https://web3js.readthedocs.io) is an Ethereum Javascript API which acan
facilitate all interactions except mining.

� EthMiner (https://github.com/ethereum-mining/ethminer) is a OpenCL/CUDA Ethereum
GPU miner that is fast enough, given adequate hardware, to mine blocks on the main
network.

� Remix (https://remix.ethereum.org) is an online Smart Contract creation tool. It al-
lows for compiling, debugging, and deploying smart contracts to an Ethereum blockchain
running in your browser. Solidity and Vyper are supported.

Creating an Account

With Go Ethereum installed, the executable geth will be available, execute the following
command to create new accounts (as many as required).

$ geth account new

Your new account is locked with a password. Please give a password. Do not forget this password.

Passphrase:

Repeat Passphrase:

Address: {168bc315a2ee09042d83d7c5811b533620531f67}

19

https://metamask.io
https://trustwallet.com
https://geth.ethereum.org
https://web3js.readthedocs.io
https://github.com/ethereum-mining/ethminer
https://remix.ethereum.org

The program has created an account with the public address 168b. . ., and has saved
your private key somewhere on your system. The password you provided is used to encrypt
the private key and not your new Ethereum account. The only way to interact with the
Ethereum network is by using an account and signing each message with the private key.

Receiving/Buying/Mining Ether

Receiving Ether is a passive action on the part of the account holder. A contract or account
can send Ether and it will always be accepted.

Buying Ether requires interacting with an exchange, similar and often the same places
as currency exchanges. Anyone can visit an exchange (online or in person) and exchange
currency for Ether to be sent to an account of their choice.

Mining Ether is how new Ether is created. Mining is the process of adding a new
block to the block chain. Blocks contain a certain number of transactions, and the process
of mining is a computationally di�cult task. The reward to the miner who successfully
mines the next accepted block is 5 Ether, which is automatically transfered to the miner's
account.

Sending Ether

Using Go Ethereum and the included Javascript console (utilizes web3), we can use this
for sending transactions and interacting with the Ethereum Network in a more robust way
(compared to command line options). To send Ether, use the following steps to open the
console and then send money. You must have access to the from account via geth in order
to properly sign the transaction. Once the transaction is sent, you must wait for the next
block to be mined for your transaction to be added to the blockchain.

$ geth console

> eth.sendTransaction({from:168bc315a2ee09042d83d7c5811b533620531f67,

to:eth.accounts[1], value: web3.toWei(0.05, "ether")})

Please unlock account 168bc315a2ee09042d83d7c5811b533620531f67.

Passphrase:

Account is now unlocked for this session.

'0xeeb66b211e7d9be55232ed70c2ebb1bcc5d5fd9ed01d876fac5cff45b5bf8bf4'

Interacting with a Smart Contract

In order to interact with a Smart Contract you need to know the interface it is using, this
can be looked up on EtherScan or other websites. All Smart Contracts on the Ethereum

20

pragma sol idity ^0 . 6 . 0 ;

contract HelloWorld {
int count = 0 ; // Smart Contract state variable

// Counts the number of calls , and returns the string "Hello World"

function hel loWorld () external returns (string memory) {
count = count + 1 ;
return "Hello , World!" ;

}
}

Figure 2.5: Simple example of a Solidity Smart Contract.

Network have an Application Binary Interface (ABI) attached to them. This describes
all the functions available in the smart contract. Using the ABI, and the address of
the instance of the contract, the following code will call the greet function using Go-
Ethereum's Javascript console. Once the transaction is sent, you must wait for the next
block to be mined for your transaction to be added to the blockchain.

$ geth console

> var greeter = eth.contract([{constant:false,inputs:[],name:'kill',outputs:[],type:'function'},

{constant:true,inputs:[],name:'greet',outputs:[{name:'',type:'string'}],type:'function'},

{inputs:[{name:'_greeting',type:'string'}],type:'constructor'}]

).at('0xdaa24d02bad7e9d6a80106db164bad9399a0423e');

> var greet_name = greeter.greet();

2.3.4 Solidity and Vyper

Solidity (Java like) [34] and Vyper (Python like) [138] are two popular higher-level lan-
guages that smart contracts can be written in. Both languages compile their smart con-
tracts to EVM bytecode, which is the assembly language for the Ethereum Virtual Machine
(EVM). Solidity has been recognized as the o�cial language by Ethereum, but any lan-
guage which compiles correct EVM byte-code can be used to create a Smart Contract. The
website Etherscan (https://etherscan.io/), which tracks and reports on many aspects
of the main Ethereum network, has published veri�ed solidity and vyper smart contract
code for some of the contracts on the Ethereum network.

Figure 2.5 shows a simple Hello World Smart Contract written in the Solidity language.
This is the input language used in Chapter 5 and the output language used in Chapter 6.

2.3.5 Ethereum Virtual Machine (EVM)

The Ethereum Virtual Machine (EVM) is similar to the Java Virtual Machine, and is the
sandboxed runtime environment for smart contracts in Ethereum. The EVM is used when

21

https://etherscan.io/

a transaction is directed at a Smart Contract address. Execution in the EVM is very
limited, with no access to the network, �lesystem, or other processes. Smart contracts
even have limited access to other smart contracts and can only call functions with the
label public or external.

Accounts

There are two kinds of accounts in the Ethereum Network: External accounts which are
controlled by public-private key pairs (i.e. humans) and Smart Contract accounts which
are controlled by the code stored together with the account.

The address of an external account is determined from the public key while the address
of a contract is determined at the time the contract is created and deployed to the network
(derived from the creator address and the transaction nonce). Each account type is treated
equally by the EVM. Every account has a persistent key-value store mapping 256-bit words
to 256-bit words called storage. Both account types have an associated balance in Ether.

Transactions

A transaction is a message that is sent from one account to another account. It can include
binary data (called the �payload�) and Ether. If the target account contains code, that
code is executed and the payload is provided as input data.

If the target account is not set (the recipient is set to null), the transaction creates a
new contract. The payload of a contract creation transaction is taken to be EVM bytecode
and executed. The output data of this execution is permanently stored as the code of the
contract. To create a contract, you do not send the code of the contract, but code that
returns that code when executed.

A transaction, T , is a single cryptographically-signed instruction. Below we specify a
number of common �elds in transactions. More details of each transaction �elds are found
in [141].

� nonce: A scalar value equal to the number of transactions sent by the sender; formally
Tn.

� gasPrice: A scalar value equal to the number of Wei to be paid per unit of gas for all
computation costs incurred as a result of the execution of this transaction; formally Tp.

22

� gasLimit: A scalar value equal to the maximum amount of gas that should be used in
executing this transaction. This is paid up-front, before any computation is done and
may not be increased later; formally Tg.

� to: The 160-bit address of the message call's recipient or, for a contract creation trans-
action, ∅, used here to denote the only member of B0; formally Tt.

� value: A scalar value equal to the number of Wei to be transferred to the message call's
recipient or, in the case of contract creation, as an endowment to the newly created
account; formally Tv.

� v, r, s: Values corresponding to the signature of the transaction and used to determine
the sender of the transaction; formally Tw, Tr and Ts.

Gas

Each transaction provides a limit to the amount of gas the creator is willing to use to
execute the transaction. All statements executed by the EVM costs a speci�c amount of
gas. Gas is used to pay the miner who solved the previous block.

The gas price is a value set by the creator of the transaction, which is the conversion
rate from gas to wei that they are willing to use. The creator has to pay gas_price *

gasLimit up front from the sending account. The gas price allows miners to select which
transactions to add to the next block, higher gas prices mean the transaction is more likely
to be added to the next block.

The Gas Limit is too low If a transaction runs out of gas, then it is reverted back to
its original state. The creator of the transaction must still pay the miner the fee for their
computational costs; gas_price * gasLimit.

The Gas Limit is too high If an operation completes and there is leftover gas, the
gas will get refunded to the creator. The process for refunding is complicated due to gas
refunds when removing contracts and removing storage, which can lead to net gains in gas
refunds for a transaction. The involved process for gas refunds is out of the scope of this
thesis.

Block Gas Limit

The Block Gas Limit restricts the amount of gas that can be used for that block. The
current process for how the Block Gas Limit is updated, is a voting system between the
miners:

23

�Currently, due to a lack of clear information about how miners will behave in
reality, we are going with a fairly simple approach: a voting system. Miners
have the right to set the gas limit for the current block to be within 0.0975%
(1/1024) of the gas limit of the last block, and so the resulting gas limit should
be the median of miners' preferences.� [129]

Storage/Memory/Stack

There are three locations where data can be stored: Storage, Memory, and the Stack. In
Solidity, we use keywords to indicate where variables should be stored.

Each account has a data area called storage, which is persistent between function calls
and transactions. Storage is a key-value store that maps 256-bit words to 256-bit words.
Storage is comparatively costly to read, and even more to initialize and modify storage. A
contract cannot read or write to any storage apart from its own.

The memory data area is cleared for each message call. Memory is linear and can be
addressed at byte level. Memory is expanded by a word (256-bit), when accessing (either
reading or writing) a previously untouched memory word (i.e. any o�set within a word).
There is a cost of gas to expand the memory size. Memory is more costly the larger it
grows (it scales quadratically).

The EVM is a machine which utilizes the stack and has no registers. The stack data
area has a maximum size of 1024 elements and contains words of 256 bits. Access to the
stack is limited to the top end. It is possible to copy one of the topmost 16 elements to
the top of the stack or swap the topmost element with one of the 16 elements below it. All
other operations take the topmost two elements from the stack and push the result onto
the stack. It is not possible to access arbitrary elements deeper in the stack. It is possible
to move stack elements to storage or memory in order to get deeper access to the stack.

2.3.6 Message Calls, Delegate Calls, and Call Code

There are 4 EVM call instructions which allow for a contract to invoke another contract.

CALL Contract D calls a function E.f(), where E.f() runs in the context of contract
E, the storage is E's storage.

CALLCODE Contract D calls a function E.f(), where E.f() runs in the context of
contract D, the storage is D's storage. The values of msg.sender and msg.value in E are

24

not the same as in D.

DELEGATECALL Contract D calls a function E.f(), where E.f() runs in the context
of contract D, the storage is D's storage. The values of msg.sender and msg.value in E
are the same as in D. This gives contracts the ability to �update� contracts by changing
the address of functions that are using a delegate call.

STATICCALL Contract D calls a function E.f(), where E.f() runs in the context
of contract E, but any attempt at modifying the state results in an exception (this also
applies to any Calls made by E.f()).

2.3.7 The Halting Problem

In computing, the halting decision problem is: given a description of a program P and an
input I, return if P (I) will halt (�nish running) or continue running forever. The halting
problem is undecidable for Turing machines, and programming languages which are �Turing
complete� (can be used to simulate any Turing machine). Programming languages like C,
C++, Python, and Java are Turing complete (if we assume �nite memory is omitted) and
the halting problem is undecidable under each.

Smart contracts have strong programming abilities: branching statements, variable
storage, loops. The language contains all features required to be considered a Turing
complete language. Smart contracts would be Turing complete if it was run outside of the
EVM. The halting program is decidable for all smart contracts. Each transaction contains
the maximum amount of gas that transaction will consume, Gas Limit. Once a transaction
runs out of gas it automatically halts. The maximum gas a transaction can consume is
limited by the Block Gas Limit. The main Ethereum network has a gas limit ranging from
9,940,901 gas to 10,000,000 gas (as of May 2020).

Gas is calculated per EVM instruction. The gas limit ensures that all smart contract
functions halt. If a smart contract function reaches the gas limit, the function will fail and
rollback all changes it has made. Thus an in�nite loop is not possible within the EVM.

2.4 Logic Locking

Logic Locking is a �eld in Computer Security which allows technology companies to protect
their intellectual property (IP) when contracting circuit manufacturing. It protects the

25

circuits by incorporating an electronic key into the circuit, which will allow the circuit to
function normally. The locked circuit is provided to the manufactures, but the key is not.
This prevents the contractors from illegally over producing and selling the same product
under a di�erent name, and stealing the circuit description for use in another product.
This technology relies upon the protection of the electronic key in sold units, so that this
key cannot be stolen from a legitimately purchased product. Physically protecting the
electronic key, and the key delivery bus to the locked circuit, are beyond the scope of this
thesis.

2.4.1 Circuit Representations

key =110

also valid keys: 100, 010

INPUT(pi00)

INPUT(pi01)

INPUT(pi02)

INPUT(keyinput0)

INPUT(keyinput1)

INPUT(keyinput2)

OUTPUT(po0)

OUTPUT(po1)

OUTPUT(po2)

lo1 = or(pi00 ,pi01 ,pi02)

n01 = buf(pi02)

la1 = and(n01 ,pi01 ,pi02)

n02 = xor(keyinput0 ,lo1)

n03 = not(lo1)

n04 = xor(pi02 , pi01)

n05 = or(n02 ,keyinput1)

n06 = not(keyinput2)

n07 = and(n06 , n02)

n08 = not(pi00)

po0 = and(n07 , n03 , n05)

po1 = xnor(n06 , la1)

po2 = or(la1 , keyinput1 , n08 , n04)

Circuit Symbols

buf

not

and

nand

or

nor

xor

xnor

Circuit Diagram

lo1

n01

n04

n02

la1

n06

n05

n03

n07

n08

po0

po1

po2

pi00
pi01
pi02

pi01
pi02

pi00

pi02

pi01

pi02
keyinput2

keyinput0 keyinput1

keyinput1

Figure 2.6: Example Circuit Netlist and Diagram. The netlist declares all inputs/outputs,
followed by all logical gate de�nitions. This example has 3 keys which produce the correct
outputs.

In Figure 2.6, we show 2 circuit representations: Circuit Netlist and a Circuit Diagram.
These two equivalently represent the same circuit. The netlist is much easier for a computer
to read, and the circuit diagram is easier for humans to read. All benchmark circuits used
in this thesis are stored in netlist format.

The netlist format lists all inputs and outputs from the integrated circuit (IC) at the
top of the �le. Logic locked circuits can obfuscate which inputs are not inputs and which

26

inputs are key inputs. Protection methods are required for the key storage and the key
bus. These mechanisms are expensive and can be incompatible with normal IC connection,
thus it is assumed that the attacker is able to correctly identify the key inputs from the
normal inputs.

The circuit in Figure 2.6 has the correct key of 110, where keyinput0=1, keyinput1=1,
keyinput2=0. There is an additional comment below which states that the keys 100 and
010 are also valid. Certain logic locking techniques produce locked circuits with more than
1 valid key. This reduces the key space and work required by the attacker.

2.4.2 Locking Techniques

In this section we brie�y describe 2 methods used in logic locking a circuit. These methods
have be performed in many novel ways, we will only show the basics of how the XOR/XNOR
and the MUX gates can be e�ective methods for logic locking circuits.

XOR/XNOR Gates

In Figure 2.7, we show a simple circuit that has been randomly locked with XOR and
XNOR gates, this is similar to the EPIC method by Roy et al. [98]. As we can see, given
the same �xed input, but di�erent keys, the output is changed. This change might seem
small, but in circuit design, changing a single bit can have signi�cant rami�cations to the
functionality of the IC. Methods of modifying the circuit to incorporate the XOR and
XNOR gates are varied and can be very complex.

MUX Gates

The circuit shown in Figure 2.8 utilizes the multiplexer (MUX) gate to logic lock the circuit.
A MUX gate selects which input to pass through the gate via the control inputs. In the
�gure we use the key bits as the control bits (the top and bottom of the MUX gates).
When the control bit is 0, then the �rst input from the top is selected. If the control bit
is 1, then the second input from the top is selected. The number of control bits is not
restricted, but the number of inputs is exponentially bounded to the number of control
bits. Thus we can use a 4 by 2 MUX gate, where there are 4 inputs and 2 control bits. A
8 by 3 would be the next size up, followed by a 16 by 4. This technique is similar to the
one implemented in [89].

27

o1

o2

o3

k2

a

a

b

b
c

k1

Input Key Output
abc k1k2 o1o2o3

000 00 000
000 11 101
010 00 001
010 11 101
101 00 101
101 11 000
111 00 011
111 11 011

Figure 2.7: Simple example of XOR/XNOR locked circuit.

o1

o2

k2

a

a

b

c

b

k1

k2

Input Key Output
abc k1k2 o1o2

000 00 10
000 11 00
010 00 10
010 11 01
101 00 00
101 11 01
111 00 01
111 11 10

Figure 2.8: Simple example of MUX locked circuit.

28

Part I

Problems Reduced to Model Checking

29

Chapter 3

Cree: a Performant Tool for Safety
Analysis of Administrative Temporal
Role-Based Access Control (ATRBAC)
Policies

Contents
3.1 Introduction . 31

3.2 ATRBAC-Safety Background 33

3.3 Prior work . 34

3.4 Our work . 35

3.5 Cree . 37

3.6 Empirical Assessment . 53

3.7 Conclusions . 56

Declaration of Contributions

This chapter is a modi�ed version of the paper [116], which was authored by: Jonathan Sha-
hen (myself), Jianwei Niu, and Mahesh Tripunitara. The contributions contained within
this chapter are my own, but without the help of my co-authors, the work would not have

30

been published as it was. The paper [116], was originally a journal extension for [115]
(same authors), but during the review I rewrote the paper to completely focus on the Cree
tool and remove any contributions made in [115].

3.1 Introduction

Access control deals with whether a principal may exercise a privilege on a resource; e.g.
whether the user Alice is allowed to exercise the `read' privilege on a �le. It is an important
aspect of the security of a system. Whether an attempted access is permitted is customarily
speci�ed in an access control policy. Such a policy may change over time; for example,
Alice may, at some later time, lose the `read' privilege to a �le that she possesses.

E�ecting and intuiting the consequences of changes to an access control policy is called
administration. An aspect of administration is delegation, with which a trusted admin-
istrator empowers another principal to change the policy in limited ways. Delegation is
used so administrative e�ciency can scale with the size of an access control system. For
example, a trusted administrator may delegate to a user Bob the ability to add users within
his team, to a project Bob owns. Thus, Bob is able to control which members of his team
can access the resources of a particular project without requiring assistance from a trusted
administrator.

With delegation arises the need for safety analysis, which has been recognized as a
fundamental problem in access control since the work of Harrison et al. [49]. Safety analysis
asks, in the presence of delegation, whether some partially trusted users may e�ect changes
to the authorization policy in a manner that a desirable security property is violated.

Safety analysis has been addressed for various access control schemes in the literature.
Our focus is safety analysis in the context of Administrative Temporal Role-Based Access
Control (ATRBAC) [133]. ATRBAC is an administrative scheme for Temporal Role-Based
Access Control (TRBAC). TRBAC is Role-Based Access Control (RBAC) with temporal-
extensions. In RBAC, rather than assigning a user directly to a permission, we adopt the
indirection of a role. A user is authorized to a set of roles, and each role is authorized to a
set permissions. The temporal extensions that TRBAC adds to RBAC constrain the time
intervals that (i) a user may exercise a privilege, and, (ii) a role may be active. In addition,
ATRBAC constrains the time intervals that (iii) an administrative action can change the
authorization policy. (See Section 3.2 for more details.)

An instance of the safety analysis decision problem comprises the following three inputs.
A concrete example of the scheme we consider, ATRBAC, is in Section 3.2.

31

(1) Start State � an instance of an access control policy, i.e., roles currently assigned to
which users.

(2) State Change Rules � set of administrative rules by which a policy can change, e.g.,
rule: 〈Bob may grant users membership to Bob's Project if that user is a member of
Bob's team〉.

(3) Safety Query � a statement that can judge if the system is secure or insecure; typically
whether a particular user possesses a privilege. Examples: �Can Alice get write access
to Payroll�, �Can Bob adopt the role of Administrator�, and �Can any user obtain both:
read access to `New Project' and write access to `Public Repository'.�

An instance of safety analysis is `TRUE' if the safety query can never become true, i.e.,
the system is indeed safe, and `FALSE' otherwise. The utility of such analysis is that a
trusted administrator can assess whether the current, or a prospective, set of authorizations
and delegations may lead to a violation of a desirable security property. She can then
modify it if indeed such a violation may result.

ATRBAC-Safety is an important and non-trivial problem. We discuss this in the con-
text of a concrete example for ATRBAC in Section 3.2 after we have presented the details
of ATRBAC and safety-analysis in its context (paragraph titled, �The example, revisited�).
Here we provide a broader discussion.

Jones [59] discusses why safety analysis can be a technical challenge: it is in the dif-
ference in the manner in which administrative rules and safety properties are speci�ed.
Administrative rules are �phrased in a procedural form�, while safety properties are �for-
mulated as predicates.� �Though procedural de�nitions make individual system state tran-
sitions easy to understand and to implement, they combine to form a system that exhibits
complex behaviour. It is di�cult to intuit and to express the behaviour of a procedu-
rally de�ned system.�[59] As in the case of other access control schemes, safety queries in
ATRBAC-Safety are in predicate form and the rules are in procedural form.

In addition to this di�erence in the manner, there is the issue of scale. Access control
policies for enterprise can be large and thereby preclude manual safety analysis. For ex-
ample, prior work [56] discusses an ARBAC policy, i.e., without the additional features
of ATRBAC, of a �nancial company which comprises 1363 roles and 8885 rules. Such a
policy is likely too large for manual safety analysis. We seek an automated approach.

Given the above discussions on the technical challenges that underlie safety analysis in
general, one may ask what makes safety analysis in ATRBAC a particular challenge. That
is, what technical challenges does our work speci�cally address that prior work on safety
analysis, for example, in the context of ARBAC, does not? ATRBAC introduces new

32

syntactic constructs with associated semantics. We need safety analysis to �catch up� with
these new constructs. As an example from the literature, Harrison et al. [49] originally
proposed an administrative scheme for the access matrix model, and safety analysis results
for it. Their work establishes that for their scheme, safety is undecidable. Sandhu [100]
syntactically extends their work with the Monotonic Typed Access Matrix (MTAM) model.
Safety analysis for MTAM, as it turns out, is decidable. The new features in ATRBAC are:
(i) an administrative rule that speci�es time periods during which (a) an administrative
action may be e�ected, and, (b) a user is authorized to a role, and, (ii) two new kinds of
administrative rules that are used to enable and disable administrative roles. It is unclear
as to the manner in which these new features impact safety analysis. Our prior conference
paper [115] establishes that the problem remains in PSPACE, and proposes an approach
based on reduction to safety analysis in ARBAC. In this work, we reduce ATRBAC-
Safety directly to model-checking. As our work establishes (see Section 3.6), and as we
hypothesized at the start of this work, this approach is more e�cient in practice. There
are a number of technical innovations we have devised in carrying out this reduction,
and complementing it with optimizations (see Section 3.5). While these are inspired by
prior work, they are customized to ATRBAC-Safety. Nonetheless, our work in turn may
be directly useful to future schemes, or at the minimum, provide inspiration on general
directions as prior work has for this work.

Layout The remainder of this chapter is organized as follows. In the next section, we
formalize and discuss the problem that this work addresses, ATRBAC-Safety. In Sec-
tion 3.3, we discuss relevant prior work. In Section 3.4, we provide an overview of our work
and contributions. In Section 3.5, we introduce our tool Cree and discuss the reduction
to Model Checking and four optimizations that are inspired by, but di�erent from, prior
work: Polynomial Time Solving when possible, Static Slicing, Abstraction Re�nement, and
Bound Estimation. In Section 3.6, we discuss our empirical assessment and results across
Cree, and �ve other prior tools. We conclude with Section 3.7.

3.2 ATRBAC-Safety Background

The Access Control and ATRBAC-Safety background has been moved to Section 2.2.

33

3.3 Prior work

Prior work that is relevant to ours can be dichotomized into: (a) work on access control
models and schemes, such as RBAC and its variants, and, (b) work on safety and security
analysis in the context of such models and schemes. A comprehensive survey of these is
beyond the scope of this work. In this section, we discuss prior work from the standpoint
of safety analysis, (b).

The work of Harrison et al. [49], in the context of the HRU access matrix model, is,
to our knowledge, the �rst to pose and address safety analysis in the context of access
control. Since that work, there has been work on safety analysis for variants of the HRU
model [49], and other models such as those for trust management and negotiation [19, 66],
usage control models [91, 92], and schemes based on RBAC [37, 38], including ARBAC
[99, 126]. There has been work also in generalizing safety analysis to so-called security
analysis [68], and the use of safety and security analysis to characterize the expressive
power of authorization schemes [4, 130]. Extensions have been made with regards to
ATRBAC safety in [134], most notably the security properties: availability, liveness, and
mutual exclusion of privileges for TRBAC.

As for ATRBAC-Safety, the topic of this work, we are aware of the following prior
work. Our prior work, [115, 107], identi�es that safety analysis of ATRBAC is PSPACE-
complete. In addition, it proposes an approach for safety analysis of ATRBAC based on
reduction to ARBAC and then use of a prior solver for ARBAC-safety; we call this prior
approach Mohawk+T. Our approach in this work, Cree, was designed and created after
we gathered experience with Mohawk+T. Our experience with Mohawk+T suggested that
directly reducing to model-checking in conjunction with other improvements, such as static
slicing/abstraction re�nement/bound estimation, would yield better performance. Thus,
the work in this chapter is di�erent from our prior work [115] � the two propose di�erent
tools, with di�erent approaches to the problem.

The work of Uzun et al. [133] is, to our knowledge, the �rst work to propose ATRBAC
and pose the safety-analysis problem for it. In addition, that work discusses the design
of two software tools, TREDROLE and TREDRULE to address instances in practice. These
tools are part of our empirical assessment in Section 3.6. The work of Ranise et al. [93]
syntactically generalizes some aspects of the version of ATRBAC from Uzun et al. [133].
It then presents a result on the computational-complexity of ATRBAC-Safety � it proves
that the problem is decidable. It then discusses the design, construction and evaluation of
2 di�erent software tools, ASASPTIME-SA and ASASPTIME-NSA, to address problem instances
in practice. These tools are also part of our empirical assessment in Section 3.6.

34

Safety analysis has been applied to ATRBAC where role hierarchies are allowed in
[94, 131, 95]. Safety analysis with role hierarchy was also been applied to ARBAC in
[131]. This suggests a limitation in Cree � we do not directly address role hierarchy.
We hypothesize that an enhancement to our reduction is possible that incorporates role
hierarchy and still yields an e�cient approach in practice. We leave this for future work.

Techniques used in this chapter include static slicing, abstraction re�nement, and bound
estimation. For these techniques, we are inspired by prior work on ARBAC-Safety, but
with di�erent algorithms to address the new technical challenges posed by ATRBAC's
new features. Jha et al. [57] propose forward and backward pruning for ARBAC-safety.
This was augmented by Jayaraman et al. [56] with abstraction re�nement and bound es-
timation. In [38], Ferrara et al. provides methods of pruning and bound estimations for
ARBAC-Safety. Ferrara extends the forward- and backwards-pruning from Jha et al. [56].
They include more exclusion rules, to create a more aggressive static slicing method. Fer-
rara's bound estimation found an upper bound on the number of users to be the number of
administrative users plus 1. We implement our own versions of static slicing, abstraction re-
�nement, and bound estimation. This is due to the di�erence between ARBAC-Safety and
ATRBAC-Safety. ATRBAC-Safety includes timeslot/time-intervals within to can_assign
and can_revoke rules, and introduces 2 new rule types: t_can_enable and t_can_disable.

3.4 Our work

In our prior work [115], we propose a tool called Mohawk+T for ATRBAC-Safety. Mo-
hawk+T reduces ATRBAC-Safety to ARBAC-Safety, and then uses the solver, Mohawk
[56], that was built for ARBAC-Safety. Our empirical assessment of Mohawk+T suggests
that while it is superior to prior tools for some classes of inputs, there are other classes of
inputs where the other tools outperform it. This leads us to ask: is there a fundamentally
di�erent design we could adopt for ATRBAC-Safety that results in a tool that is more
performant? Our answer to this question is `yes,' and Cree, which we discuss in this work,
is such a tool.

In Cree, we reduce ATRBAC-Safety directly to model checking. Such a direct reduction
gives us performance gains. In addition, it gives us an avenue to design and implement
other performance improvements: Polynomial Time Solving when possible, forward- and
backward-pruning, abstraction re�nement, and bound estimation (see Section 3.5 for the
reduction to model checking, and these algorithms). Thus, Cree is a �from scratch,� new
tool for ATRBAC-Safety, and as our empirical results in Section 3.6 establish, it is superior
to both Mohawk+T and other prior tools for several classes of inputs, and no worse for

35

others. The format of ATRBAC-Safety that Cree supports is the same as the one Mo-
hawk+T formalized, and this version generalizes the tools from prior work [133, 93] (see
Table 1 in [115]).

Static slicing is a method of reducing the input access control policy by removing
rules/roles/timeslots from the policy, which has been shown to greatly improve perfor-
mance. Static slicing has been discussed for ARBAC in [57, 126, 56, 38], but ATRBAC
introduces not only time-intervals/timeslots to each can_assign and can_revoke rule, but
introduces 2 new rule types t_can_enable and t_can_disable. These additions require new
algorithms for static slicing. We outline our forward and backwards pruning techniques in
Section 3.5.2.

Abstraction re�nement is an optimization technique for solving problems by solving
sub-problems with positive one-sided error. Abstraction re�nement starts with the smallest
sub-problem, solves the problem and halts if we get a positive answer (the system is unsafe).
Otherwise we re�ne the sub-problem and make it bigger by adding rules and repeat until
we halt or have tested a policy equivalent to the original policy. The hope of abstraction
re�nement is that the solution to the original problem can be solved using only a small
percentage of the original problem. Abstraction re�nement allows parallel execution for
ATRBAC-Safety. We have provided our abstraction re�nement technique in Section 3.5.3.

Our static slicing and abstraction re�nement techniques have the ability to produce
low complexity ATRBAC-Safety problems. We leverage this by creating an optimiza-
tion technique called Polynomial Time Solving when possible. This technique is a set of
linear/low-order-polynomial timed algorithms that are able to quickly solve speci�c classes
of input of ATRBAC-Safety polices. The class of randomly generated inputs, created in
[133], is able to be solved almost exclusively using this technique. When this technique is
able to solve our policy, we are able to skip running the model checker, which has high
overhead cost. We discuss our Polynomial Time Solving algorithms in Section 3.5.1.

The previous 3 techniques can be used in conjunction with all ATRBAC-Safety solvers.
Our last technique can only be applied to solvers where maximum path length is taken
into consideration. Our last optimization technique is Bound Estimation. Where, given an
ATRBAC-Safety policy, we calculate an upper-bound on the path length for the smallest
path from initial state to goal state. The upper bound from Bound Estimation can be used
by the model checker NuSMV with no modi�cation. We discuss our Bound Estimation
upper bound calculation in Section 3.5.4.

Cree is written in Java and is able to run on all modern operating systems. We have
provided Cree's source code for public download [103].

36

Start
Static

Pruning
Abstraction
Refinement

Bound
Estimation

Reduce
to Model
Checking

Model
Checking Result

REACHABLE or
UNREACHABLE →

Quick Decision Making (Secure or Insecure)

Abstraction Refinment Loop

←UNREACHABLE

Figure 3.1: Flow diagram for the reduction from ATRBAC-Safety to Model Checking.
The Polynomial Time Solving are run at each of the white circles. We translate the Model
checking results as follows: REACHABLE inputs are UNSAFE; UNREACHABLE inputs
are SAFE. This diagram represents the tool Cree.

3.5 Cree

We now discuss our tool, Cree. Cree's ATRBAC-Safety input format is the same as that
of Mohawk+T [115] which in turn generalizes those of prior tools [133, 93]. Following is a
list of how the safety query and rules are formatted. The following de�nitions di�er from
the theoretical de�nition described in Section 2.2.2, as prior work tools do not support
all theoretical features of ATRBAC-Safety. The supported features of prior work tools
vary and I describe their di�erences in Section 2.2.2 under the paragraph �Versions of the
problem�.

Security Query The query is a tuple 〈sq, Rq〉, where sq is a timeslot and Rq is a set of
positive roles. The safety query is satis�ed if any user u is assigned to every role in Rq for
the time-slot sq.

Initial Conditions All ATRBAC-Safety instances have the same initial conditions.
These are: (1) The user�role assignment set, TUA, is empty, and (2) The role�enablement
set, RS, is empty.

Rules Every rule takes the format 〈a, La, Ct, St, t〉. (1) a is an administrative role or the
mnemonic `TRUE'. (2) La is a time-interval, ex: t1− t5, or the mnemonic 'Tall'. (3) Ct is
a set of positive and/or negative roles. (4) St is a set of time-slots. (5) t is a role that is to
be assigned/revoked/enabled/disabled. Please refer to Section 2.2.2 to compare formats of
the implemented and theoretical rules.

Cree solves instances of ATRBAC-Safety by reducing directly to Model Checking and
then running a state-of-the-art model checker, NuSMV [78]. This gives us more control
over, and insight into, input instances that are harder for our previous tool (Mohawk+T)
when compared to prior tools. In the next few sections, we present a number of techniques

37

that exploit this stronger control we have. Speci�cally, we are able to design and incor-
porate a number of complementary techniques into Cree that make it considerably more
scalable than without those techniques. How Cree operates is shown in Figure 3.1. The
following sub-sections discuss the constituent modules in Cree that are shown in the �gure.

3.5.1 Polynomial Time Solving when possible for ATRBAC-Safety

In practice there are many classes of input where the solution can be determined by us-
ing a polynomial timed algorithm. The choice to perform these quick solvers frequently
throughout Cree's operation provides many opportunities for increased performance by
identifying these classes and skipping labour intensive analysis. The quick solvers run
after each modi�cation to the ATRBAC-Safety policy.

The following Polynomial Time Solving are performed at each white bubble in Fig-
ure 3.1. The order of execution is important.

(1) Empty Query Role Array Such an input is unsafe when no roles are provided
in the query's role array. The result is true for all instances because all users satisfy the
condition, regardless of the roles they are members of. Run time of Θ(1).

(2) No Can Assign Rules for the Security Query's Role Array and Times-
lot Such an input is safe because the initial conditions have no users assigned to any
roles and with no t_can_assign rules to obtain the query's roles, for the query's timeslot,
it is impossible for a user to obtain the goal roles. Run time of Θ(|t_can_assign|).

(3) No �Truly-Startable� Can Assign Rules A �Truly-Startable� rule is one that
has Ct = TRUE and a = TRUE. This means that a Truly-Startable t_can_assign rule is
satis�ed in the initial conditions. If no Truly-Startable t_can_assign rules exists then the
initial user-role assignment TUA can never be changed. Thus, such an input is safe. Run
time of Θ(|t_can_assign|).

(4) Truly-Startable CanAssign Query Rules The safety query is reachable if there
exists a set of truly-startable rules that can satisfy the safety query. This has a run time
of Θ(|t_can_assign|) and can be combined with (2) and (3) for parallel iteration of the
same list.

38

3.5.2 Static Slicing

Static Slicing is a method of removing Rules, Roles, and Timeslots from an ATRBAC-
Safety policy that are irrelevant for safety analysis. Static slicing is one of the �rst steps
to be performed, because reducing policy size can increase performance and minimizes
memory usage for all operations following. Figure 3.2 shows an example of a policy that
can be made smaller without a�ecting the safety analysis. Speci�cally, the policy has
several rules (highlighted in red) that can be removed without impacting safety analysis.
We are able to remove these rules using a combination of forward and backwards pruning.
This, in turn, can improve performance by reducing the memory size required to store
each state, and by reducing the number of states needed to search. Static slicing has
been discussed in ARBAC [57, 126, 56, 38]. We have modi�ed the methods of forward
and backwards pruning, from [57, 126, 56], to update the algorithms for the introduction
of time into t_can_assign/t_can_revoke rules and to apply similar pruning methods to
t_can_enable/t_can_disable rules (which do not exists in ARBAC). Both pruning tech-
niques can be turned o� in Cree, but due to empirical evidence, both techniques were
turned on to obtain the best results in Section 3.6.

Forward Pruning is a technique which ignores the safety query and focuses on removing
rules that are unable to �re. It does this by looking at every rule in the policy and verifying
if the admin role is assignable and enable-able, and if each positive role in Ct is assignable.
If any of these are false then the rule cannot �re and we can safely remove the rule from
the policy. The previous assertion is only true if we start from an empty state, or if we
start from a state where every user has obtained their roles using the current set of rules.

ATRBAC forward pruning is in P, our algorithm has a run time of Θ(|rules|). Our
forward pruning algorithm di�ers from previous works by introducing the t_can_enable
t_can_disable pruning and adding the condition that administrator roles must also be
enable-able. The forward pruning algorithm is supplied in Section C.1.

Backward Pruning focuses on the safety query, 〈Rq, sq〉, to determine which rules it can
add to a new policy P ′′. Backward pruning collects all t_can_assign rules, 〈a, La, Ct, St, t〉,
where the target role t equals a role in the safety query's role set Rq and the timeslot array
St contains the safety query's timeslot sq. These initial t_can_assign rules is the set of
rules that is required to obtain each of the goal roles in the safety query. Not all of the rules
in this set are necessary to satisfying the safety query, but a subset of these t_can_assign
rules are required. From this initial set we extract all of the conditions that each rule
requires in order to �re: (1) all positive roles in Ct must be satis�ed for all timeslots in St,
(2) all negated roles in Ct, that also appear as a target role in some t_can_assign rule,

39

// Path : CE1(admin) → CE3(a) → CA6(a) → CA6(user) → CA4(u) → CR2(u) → CA2(u) → CA6(u)
Query : t2 , [r3 , r4]
CanAssign :

/*CA1*/ <TRUE, t1−t3 , TRUE, [t2 , t3] , r1>
/*CA2*/ <r3 , t1−t3 , r2 & NOT r3 , [t2 , t3] , r4>
/*CA3*/ <r1 , t1−t3 , r1 , [t2 , t3] , r5>
/*CA4*/ <r3 , t1−t3 , r3 , [t1] , r2>
/*CA5*/ <r1 , t1−t3 , r5 & NOT r3 , [t2 , t3] , r6>
/*CA6*/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r3>

CanRevoke :
/*CR1*/ <TRUE, t1−t3 , TRUE, [t1 , t2] , r1>
/*CR2*/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r3>
/*CR3*/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r2>

CanEnable :
/*CE1*/ <TRUE, t1−t2 , TRUE, [t1] , r1>
/*CE2*/ <TRUE, t1−t2 , TRUE, [t2] , r1>
/*CE3*/ <TRUE, t1−t2 , r1 & NOT r2 , [t1] , r3>
/*CE4*/ <TRUE, t1−t2 , r1 , [t1] , r2>

CanDisable :
/*CD1*/ <TRUE, t1−t2 , TRUE, [t1] , r1>
/*CD2*/ <TRUE, t1−t2 , TRUE, [t1] , r2>

Figure 3.2: Example ATRBAC-Safety policy which highlights the rules that can be re-
moved without changing the safety analysis. All lines highlighted in red are not required to
show that this policy is unsafe. Only the lines highlighted in green are required. Removing
all unnecessary rules/roles/timeslots with static slicing ensures: (1) the pruned policy's size
will be less than or equal to the input policy's size, and (2) the safety response remains
unchanged.

must be revocable (if possible), (3) all administrator roles a must be assigned (matching
t_can_assign rule(s)) and enabled (matching t_can_enable rule(s)). We generate the
�rst t_can_assign set, extract all conditions that the rules require to �re, and then �nd
all corresponding rules that can satisfy these conditions. We loop this process until all
conditions are possibly met; some policies have conditions that cannot be satis�ed because
no satisfying rule exists.

ATRBAC backward pruning is in P, our algorithm has a run time of Θ(|rules|2), in the
worst case. Our backward pruning algorithm di�ers from previous works by introducing
t_can_enable/t_can_disable rules, and the more di�cult addition of introducing time to
every satisfying condition. The algorithm for backward pruning is provided in Section C.1.

40

3.5.3 Abstraction Re�nement

Abstraction Re�nement is a technique that can increase performance of safety analysis for
insecure policies. It uses the assumption that only a small portion of an ATRBAC policy
is required to determine if a policy is insecure. Abstraction re�nement works by creating a
very small policy P0 from a policy P , then performing safety analysis. If the small policy
P0 is insecure, then we know P is insecure and can halt early. If P0 is secure, then we don't
know if P is secure or insecure and thus we create a slightly bigger policy P1 and repeat.
We repeat until we �nd a policy that is insecure or we do a safety analysis on the original
policy P .

In static slicing we removed rules that could not �re in any situation and rules not
relevant to the safety query, this ensures the security is unchanged due to pruning for all
instances of ATRBAC-Safety. Abstraction re�nement has 1-sided error, if a sub-policy Pi

is insecure, then the original policy is also insecure. For secure policies we must perform
security analysis on all sub-policies and the original in order to con�rm that the policy is
secure.

In this section we devise a strategy to produce a small sub-policy and then iteratively
increase the policy size by adding more rules from the original policy until the original
policy is reproduced without any irrelevant rules.

Abstraction Re�nement improves performance for instances where only a small subset
of rules are required to prove that a policy is insecure. In cases where a large set of rules is
required for an insecure result, or if the policy is secure, this option would have a negative
impact on the run-time. We can eliminate the negative performance impact by running
the original policy in parallel with the abstraction re�nement steps; halting as soon as one
�nishes. Abstraction Re�nement can be turned o� and is suggested if the ATRBAC-Safety
policy is assumed secure.

The aggressiveness of the initial policy and the iterative steps can e�ect performance.
More aggressive algorithms reduce the number of abstraction re�nement steps by allowing
more rules with each iteration, thus speeding up performance for secure policies. Less
aggressive algorithms reduce the load on the solver by producing smaller and easier to
solve sub-policies, thus speeding up performance for insecure policies. We have found a
balance that works for the empirical testing set we used. To have an apples-to-apples
comparison, Cree was run with abstraction re�nement turned on for all empirical results
reported in this chapter. All algorithms below run in polynomial time, and the number of
abstraction re�nement steps is bounded linearly by the number of rules. Thus Abstraction
Re�nement is in P.

41

ALGORITHM 1: Step 0 for Abstraction Re�nement

Input : P ← Cree Policy
Result: P0 ← Reduced Cree Policy (Size: |P0| ≤ |P |)
Func AbsRef_Step0(P)

P0 ← Empty Policy; P0.query← 〈sq, Rq〉 ← P .query;
R0 ← {P.Rq}; T0 ← {P.sq};
for r ∈ all rules in P do

if (r.t ∈ R0) ∧ (∃s|s ∈ r.St ∧ s ∈ T0) then P0 ← P0.rules ∪ r ;

Step 0: Initialization and Smallest Policy

Algorithm 1 shows how that initial abstraction re�nement step is performed and the
smallest sub-policy, P0, is created. P0 is a new empty policy, with the same safety query as
the policy. We �rst create 2 variables: R0 and T0. R0 = {all of the roles from the Query}.
T0 = {timeslot from the Query}. P0 contains the set of rules from the original policy P if
the rule satis�es the following conditions: the target role is in R0, and at least 1 time-slot
s in the target timeslot array must be in T0 (∃s|s ∈ r.St ∧ s ∈ T0).

Empirically we have found that this semi-aggressive algorithm performed best. Other
initial algorithms considered were: limiting rule selection to only CanAssign rules, removing
the timeslot restriction (using the ARBAC abstraction re�nement initial step in [56]), and
skipping the initial step and using the �rst re�nement iteration.

Step N: Iterative Re�nement

Algorithm 2 shows how iterative sub-policies are created from the previous sub-policy,
PN−1, and the original ATRBAC-Safety policy P . The initial abstraction re�nement step
uses the safety query to add all rules from P where t ∈ Rq and sq ∈ St. Each iterative step
after that increases the set of target roles to include all roles administrative a and roles in
precondition Ct from all rules in the previous abstraction re�nement step. Increasing the
target role set and the timeslot set increases the number of rules that can be added to the
new policy.

Algorithm 2 is a semi-aggressive algorithm and was chosen based on empirical evidence.
A less aggressive alternative is similar to Tightening 3 in Section 3.5.4, where RN is split
into 2 sets, roles that need to be assigned and roles that require enablement. A more
aggressive alternative would be the same as the ARBAC scheme in [56], where there is no
time constraint.

42

ALGORITHM 2: N th Step for Abstraction Re�nement

Input :

� P and PN−1 � Cree Policies
� RN−1 � Set of Roles from PN−1
� TN−1 � Set of Timeslots from PN−1

Result: PN - Reduced Policy (Size: |PN−1| ≤ |PN | ≤ |P |)
Func AbsRef_StepN(P, PN−1, RN−1, TN−1)

PN .query← PN−1.query; RN ← RN−1; TN ← TN−1;
for r ∈ all rules from PN−1 do

RN ← RN ∪ r.t ∪ r.Ct ∪ r.a;
TN ← TN ∪ r.St ∪ r.La;

for r′ ∈ all rules from P do

if (r′.t ∈ RN) ∧ (∃s|s ∈ r′.St ∧ s ∈ TN) then
PN ← PN .rules ∪ r′

Step i ∆Ri ∆Ti ∆ Rules

0 r3, r4 t2 CA2,CA6,CR2,CE3
1 r2, r1 t1, t3 CA1,CA4,CR1,CR3,CE1,

CE2,CE4,CD1,CD2
2 ∅ ∅ ∅

Table 3.1: Example Abstraction Re�nement steps using Algorithm 1 for step 0 and
Algorithm 2 for steps 1 and 2. Notice that the columns are showing the di�erence in sets
from the current step and the previous step. It should be noted that the policies below
will be reduced if static slicing is applied before step 0.

Step M: Termination The last re�nement step occurs when |PM−1.rules| = |PM .rules|.
This usually occurs when RM−1 ∩ RM = ∅ and TM−1 ∩ TM = ∅. Note that |PM .rules| ≤
|P.rules|. |PM .rules| < |P.rules| can occur when there exists rules in P that do not help
a user satisfy the safety query. These rules will not be added to PM . Table 3.1 shows the
abstraction re�nement steps when applied to the example policy in Figure 3.2. In that
example, the rules CA3 and CA5 are not in the last abstraction step. If we had performed
static slicing before abstraction re�nement we could have reduced the size of the last policy
by 5 rules (rules highlighted in red in Figure 3.2).

43

3.5.4 Bound Estimation

NuSMV has two modes of operation: Symbolic Model Checking (SMC) and Bounded
Model Checking (BMC). SMC mode combines states that share aspects in the state tree
and utilizes these groups to traverse the tree more e�ciently then using single step. BMC
mode uses single step to traverse the state tree, but limits the distance from the initial
state. In BMC mode, an additional integer input, called a bound, is required by NuSMV.
This bound changes the problem to whether an unsafe state can be reached within that
diameter from the start-state. To ensure we get a correct answer to our original safety
query, we require a bound signi�cantly large enough that if unsafe states exists, then at
minimum 1 unsafe state must exist within the state tree with our �xed bound. Tightening
this bound allows NuSMV to run more e�ciently in BMC mode.

Part of Cree is an algorithm for estimating this bound; we call this algorithm bound
estimation. It works by calculating an initial upper bound and then applying what we call
tightenings that reduce this upper-bound, while maintaining the invariant that the original
input is safe if, and only if, it is safe with our estimate for the bound. In practice, the
initial estimate tends to be loose upper bound, with the tightenings gradually decreasing
it.

Cree has the option to use SMC mode and forgo bound estimation; all results in Sec-
tion 3.6 were found using BMC mode and bound estimation. If we used only the initial
upper bound, we found that SMC was empirically quicker on average, but when utilizing
tightening 3 we found BMC mode to be on average the quicker mode.

Initial Upper Bound calculates the length of a simple path that visits every possible
state in an ATRBAC policy. In the context of ATRBAC, a state represents the user-
role assignments and the role-enablement status; i.e. which users are assigned to which
roles for which timeslots and which roles are enabled for which timeslots. We can repre-
sent this state as a binary string, where the length is equal to |User Role Assignments| +
|Role Enablement| = (|Users| · |Roles| · |Timeslots|) + (|Roles| · |Timeslots|). From this
we can calculate the maximum simple path to visit every state; the length of this simple
path is calculated using 2|Binary String|. If the User-Role Assignment or the Role Enablement
status had a more complex state than on/o�, then the above calculation for simple path
would not be accurate.

We require a Users variable to compute the initial upper bound. If there exists no
known limit to the number of users to a speci�c ATRBAC policy, then we can use the
worst case: in a single state we have 1 user able to represent every role for every single
timeslot at once (|Users| = |Roles| · |Timeslots|), thus we have the ability to solve every

44

possible administration condition in an ATRBAC policy.

User-Role-Timeslot Assignment:

u = |Users| · |Roles| · |Timeslots|
= (|Roles| · |Timeslots|) · |Roles| · |Timeslots|
Role-Timeslot Enablement:

r = |Roles| · |Timeslots|
Upper Bound:

d0 = 2u+r = 2(|Roles|2·|Timeslots|2)+(|Roles|·|Timeslots|)

Tightening 1: Required Number of Users The initial upper-bound uses the variable
Users, which is not de�ned in a standard ATRBAC policy, thus it uses a large value which
it knows will contain enough users. This tightening de�nes a tighter upper-bound by
reducing the number of users required. It is important to notice that in an ATRBAC
policy User A cannot e�ect User B's assignments unless User A acts as an administrator;
i.e. there is no condition in our CA/CR rule which checks which roles another user is
assigned to, we only have conditions checking the administrator and the target user. From
this observation we can limit the number of users that we need to satisfy in our simple
path to the number of administrative roles (1 user per role) and 1 user target user. To
intuit the proof, in the worst case we require that each administrator role be assigned to a
di�erent user (i.e. t_can_assign rules: 〈TRUE, tall,¬a1 ∧ ¬a2 ∧ . . . ∧ ¬am, [t0], a0〉 . . ., no
t_can_revoke rules). This means that we require the number of administrator users and 1
target user. We then calculate the length of a simple path to visit all states for all users, as
this ensures that if an unsafe state exists then it will exist within our bound. This result is
similar to that reported in [38], for the number of users required for analysis in an ARBAC
policy.

|Users| = |Admin Roles|+ 1

d1 = 2(|Admin Roles|+2)·|Roles|·|Timeslots|

Tightening 2: Leveraging Initial Conditions The initial conditions of an ATRBAC
policy is that every user is assigned with no roles and every role is disabled. We can infer
that the only rules that can change the initial condition is t_can_assign and t_can_enable
rules. To get an intuitive sense of how this is true, imagine every possible user to a system

45

User-Role-Timeslot Assignment:

|u2| =(|Admin-Roles|+ 1) · |CA-Target-Roles ∩ (CA-CR-Positive-Precondition ∪Admin-Roles
∪Goal-Roles)| · |CA-Target-Timeslots|

Role-Timeslot Enablement:

|r2| =|CE-Target-Roles ∩ (CE-CD-Positive-Precondition ∪Admin-Roles)| · |CE-Target-Timeslots|
Upper Bound:

d2 =2|u2|+|r2|

Figure 3.3: Tightening 2, reduces the required number of roles and timeslots required by
the Assignment and Enablement portions of the upper bound. By leveraging the initial
state of ATRBAC-Safety analysis, we can determine that unless a t_can_assign rule or
t_can_enable is executed, then all t_can_revoke or t_can_disable rules will not change
the state tree. This allows us to limit the number of roles to only the role that are required
to be assigned and required to be enabled. We further limit this by only including the
roles that are able to be assigned and able to be enabled. We limit the timeslots based on
just on the t_can_assign and t_can_enable rules.

as a 3 dimensional array: users×roles×time-slots 7→ {0, 1}, and imagine whether a role is
enabled or disabled as a 2 dimensional array: roles×time-slots 7→ {0, 1}. The �rst array,
a speci�c user u, role r, and timeslot t point to a binary variable stating whether user u is
a member of role r for the timeslot t. The second array is similar but indicating if a role
is enabled for a speci�c timeslot. The initial state sets all of these binary values to 0, thus
any call to any t_can_revoke or t_can_disable will not change the state (−−→

init
0 −−→

CR
0).

In order for t_can_revoke or t_can_disable to change state, a speci�c t_can_assign or
t_can_enable call must precede it (−−→

init
0 −−→

CA
1 −−→

CR
0). From this intuitive knowledge,

and by building on tightening 1, we obtain the upper bound in Figure 3.3.

From our observation, we can limit the number of roles and the number of time slots
required by tightening 1. For User-Role-Timeslot Assignment, we only require to visit roles
which we might need to obtain as a target user or as an administrator. The list of roles
can be found in the set (CA-CR-Positive-Precondition ∪ Admin-Roles ∪ Goal-Roles). We
can limit this set to only include roles which can actually be assigned using t_can_assign
rules in the ATRBAC policy (i.e. target roles of all t_can_assign rules). We can limit
the number of timeslots required to be the set of target timeslots which appear in all
t_can_assign rules. We then perform similar tightenings for the Role-Timeslot Enablement
path.

Tightening 3: Longest Simple Path to Goal State Tightening 3 uses the longest

46

Ugoal =

∣∣∣∣∣∣CA-Target-Roles
⋂ ⋃

g∈Goal-Roles

Get-Roles[LSPCA,CR(g)]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
g∈Goal-Roles

Get-Timeslots[LSPCA,CR(g)]

∣∣∣∣∣∣
Uadmins =

 ∑
a∈Admin-Roles

∣∣CA-Target-Roles ∩Get-Roles[LSPCA,CR(a)]
∣∣ · |Get-Timeslots[LSPCA,CR(a)]|

RE =

∣∣∣∣∣∣CE-Target-Roles
⋂ ⋃

a∈Admin-Roles

Get-Roles[LSPCE,CD(a)]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
a∈Admin-Roles

Get-Timeslots[LSPCE,CD(a)]

∣∣∣∣∣∣
d3 =2Ugoal+Uadmins+RE

Figure 3.4: Tightening 3, calculates a diameter for NuSMV by returning the longest
simple path for a user to be assigned the goal roles and for all required administrative
roles to be assigned and enabled. We calculate the possible simple paths by working
backwards from the goal roles and using rule preconditions to add rules to the simple
path. The function LSPx,y(r) returns a set of rules from the input ATRBAC policy's
t_can_assign/t_can_revoke (x, y = CA,CR) or t_can_enable/t_can_disable (x, y =
CE,CD) sections, that represents the longest simple path to the role r.

simple path from the initial state to the goal state as a means of measuring the maximum
number of role/timeslots required by the target user, each admin user, and for the role
enablement. Using these roles, we calculate our bound as the length of a simple path
which visits every state.

To understand the bound in Figure 3.4, we split the required state size into three
sections: (1) a target user obtaining the goal roles, (2) other users obtaining required
administrator roles, and (3) having each administer role enabled at the right time. The
longest simple path (LSP) is calculated by looking at all the rules that assign, or enable,
a speci�c state (i.e. role a for timeslot t3) and then working backwards, to collect all rules
that a target user require and returning the longest path. This is similar to backwards
pruning in Section 3.5.2. We identify rules that might be required based on the positive
preconditions. We do not consider the assignment or enablement of admin role in the LSP
algorithm, as they are speci�cally handled in Uadmin and RE.

The intuition behind tightening 3 is to minimize the number of role/timeslots variables
in our state representation for the upper bound on the minimum length path from initial to
goal state. Tightening 1 reduced the number of users required to solve all ATRBAC policies.
From tightening 2, we recognize that if there exists no t_can_assign/t_can_enable rule
for a particular role/timeslot, then we can remove it from our state regardless if there exists
a t_can_revoke t_can_disable rule. Tightening 3 utilizes these observations and applies
them based on the safety query.

47

We notice that to achieve our goal state, we must have a user contain all goal roles for
the goal timeslot. In order for this user to obtain the above, we must have administrator
users able to execute rules on the user. In order for an administrator user to �re a rule,
their administrative role must be enabled. This is how the three steps above were created.
For each step we determined the longest shortest path (LSP) from the initial conditions
to a state (i.e. user obtaining a single goal role for the goal timeslot, or an admin user
obtaining their admin role for a speci�c timeslot). We use the LSP algorithm to deter-
mine the maximum number of role/timeslots to keep for that particular user. The exact
roles/timeslots are not important, as we are only using this as a method of estimating the
minimum path length from the initial state to the goal state, and not actually changing
the underlining TRBAC state.

In the previous 2 tightenings, we assumed each administrator user required the same
number of states. In this tightening we calculate the required state size for each admin-
istrator user and add the sizes together (see Uadmins in Figure 3.4). In the worst case,
we �nd that all administrative users require the same of role/timeslots and thus see no
improvements from tightening 2. We modify the Role Enablement state size by limiting
the number of roles to those required to enable the admin roles.

From Figure 3.4, below we explain the functions used. Get-Roles() is a polynomial
time function that takes a set of rules and returns the set of roles that contains all target
roles and positive preconditions. Get-Timeslots() is a polynomial time function that takes
a set of rules and returns the set of timeslots that contains all target timeslots. LSP is
a polynomial time algorithm that can be used on the t_can_assign/t_can_revoke or the
t_can_enable/t_can_disable rulesets, it takes a target role l and returns the set of rules
which is associated with the longest shortest path. The LSP functions works backwards
from the state where a the role is assigned, or enabled (depends on the ruleset), starts with
the set of rules with target role equal to l, and uses the preconditions to build a set of rule
paths. Since we are dealing with rule sets, the set size is linearly limited by the number of
rules, and the number of rule sets is limited linearly by the number of rules.

We have provided a full example of calculating each tightening in Section C.2.

3.5.5 Reduction to Model Checking

A correct reduction from ATRBAC-Safety to Model Checking must ensure: (1) that every
state an ATRBAC policy can reach, is also reachable by the reduced model, and (2) every
state that our reduced model can reach must be reachable by the ATRBAC policy. We
chose to reduce to model checking because of the similarities between ATRBAC-Safety and

48

model checking, and to leverage the mature model checking community for their robust
and highly optimized software.

Model checkers have 2 variable types: state variables and control variables. The state
variables have controlled values, where state transitions dictate future values. Control
variables are left to the model checker to choose a value for. This allows the model checker
to perform optimizations to dictate which state transitions to pick when a choice is required.

Our reduced model has 2 state variables: (1) a |users| × |roles| × |timeslots| binary
array TUA that indicates if a user is assigned to a role in a speci�c timeslot, and (2)
a |roles| × |timeslots| binary array RS that indicates if a role is enabled for a speci�c
timeslot. The value for |roles| is extracted from the list of all roles in the ATRBAC policy,
|timeslots| is extracted using the polynomial reduction algorithm to convert time intervals
into non-overlapping timeslots (see Reduction 2 in [115]). We use tightening 1 to calculate
the value for |users|. Both TUA and RS are initialized to false (ATRBAC-Safety initial
conditions) and each variable has a state transition where the default case keeps the current
state. TUA and RS accurately represent the underlining TRBAC state in an ATRBAC
policy.

We have 3 control variables that we let the model checker control:

rule an enumerated integer that can take the value of any rule in the ATRBAC policy
(ex: rule : {CA01, CA02, . . ., CR01, . . ., CE01, . . ., CD01, . . .};),

user an integer between 1 and the maximum number of users (|Admin-Roles| + 1, see
Section 3.5.4), to represent a selected target user, and

admin which is modelled the same as user but is independently assigned a value, this
represents a selected admin user.

For each t_can_assign/t_can_revoke rule, we add a state transition to each a�ected TUA
variable if the admin and target user satisfy the rule's condition in the current state. The
model checker is able to change the state of TUA by assigning values to rule, user, and
admin such that:

1. the rule is a t_can_assign or t_can_revoke rule,
2. the user's values in TUA, in the current state, satisfy the rule's preconditions Ct,
3. the admin's values in TUA, in the current state, satisfy the rule's administration con-

dition, and
4. the rule's administration condition is enabled for at least 1 timeslot in RS, in the current

state.

49

s0start s1

s2 s3

s4 s5 s6

(a) Diagram Model

1 // Query : t2 , [r3 , r4]
2 LTLSPEC G ! (u [1] [3] [2] = TRUE & u [1] [1] [2] = TRUE)
3 // User 1 , Role 3 Assign/Revoke
4 next (u [1] [3] [1]) := FALSE;
5 next (u [1] [3] [2]) := case

6 user=1 & ru l e=CA1 & ((u [admin] [1] [1] & e [1] [1]) | (u [
admin] [1] [2] & e [1] [2]) | (u [admin] [1] [3] & e [1] [3])) &
(u [user] [2] [2] & u [user] [2] [3]) & ! (u [user] [1] [2] | u

[user] [1] [3]) : TRUE;
7 TRUE : u [1] [3] [2] ;
8 esac ;
9 next (u [1] [3] [3]) := case

10 user=1 & ru l e=CA1 & ((u [admin] [1] [1] & e [1] [1]) | (u [
admin] [1] [2] & e [1] [2]) | (u [admin] [1] [3] & e [1] [3])) &
(u [user] [2] [2] & u [user] [2] [3]) & ! (u [user] [1] [2] | u

[user] [1] [3]) : TRUE;
11 TRUE : u [1] [3] [3] ;
12 esac ;
13 // Role 1 Enable/Disable
14 next (e [1] [1]) := case

15 ru l e=CE2 & (e [4] [1]) & ! (e [2] [1]) : TRUE;
16 TRUE : e [1] [1] ;
17 esac ;
18 next (e [1] [2]) := FALSE;
19 next (e [1] [3]) := FALSE;

(b) SMV Code

Figure 3.5: Figure (a) depicts the diagram view of model checking, where s0 is the
initial ATRBAC state and each state transition is e�ecting a rule r with an admin and
target user that satisfy the rule's admin and target role conditions. States s5 and s6 are
the accepting states, where a user in TUA satis�es the safety query. Figure (b) shows a
version of (a) using a small snippet from the reduction of Figure 3.2 to NuSMV's model
checking language. The TRBAC state is encoded as such: TUA is de�ned by u and RS is
de�ned by e in out reduction above.

For each t_can_enable/t_can_disable rule, we add a state transition to each a�ected
RS variable if the admin and current state satisfy the rule's condition. The model checker
is able to change the state of RS by assigning values to rule, user, and admin such that:

1. the rule is a t_can_enable or t_can_disable rule,
2. the current state in RS, satisfy the rule's precondition,
3. the admin's values in TUA, in the current state, satisfy the rule's administration con-

dition, and
4. the rule's administration condition is enabled for at least 1 timeslot in RS, in the current

state.

We can intuit the correctness of the reduction by comparing state transitions to rule
�rings. In an ATRBAC policy, to �re a rule r the target and admin users must both
satisfy their conditions, and the admin role must be enabled for the current time of
day. If these conditions are true then the TRBAC instance is updated for the TUA

50

(t_can_assign/t_can_revoke) or the RS variable (t_can_enable/t_can_disable). The
reduced model checks all conditions except for the check if the admin role is enabled dur-
ing the current time. In Section 2.2.2, we de�ne timeslots to be periodic, in our reduced
model we utilize this to optimize the model by ignoring time. We are able to achieve this
because we can stay in the current state until the current time reaches one of the timeslots
required to enable the admin role. Without this optimization, we would require a time
state variable to keep track of the current timeslot and state transitions to increment, and
wrap, to the next timeslot.

In Figure 3.5, we show a small snippet of the reduction from Figure 3.2 to model
checking. The state variables user/admin/rule are de�ned as above. To save space, TUA
and RS were renamed to u and e respectively. We can understand u and e by their index
values: u[user][role][timeslot], e[role][timeslot]. Figure 3.5 does not show the variable
declaration or initialization, and hides most of the rules for user1 and all rules for user2.
The rules to dictate rule enablement are truncated.

The query on line 1 can be understood as: �Does the statement after G hold true for all
future time instances?�. We translate the query to model checking by negating the query
�can any user ever obtain the goal roles for the goal timeslot?�. An optimization to the
query is that we force user1 to be our target user, by limiting our query to �can u[1] ever
obtain the goal roles for the goal timeslot?�.

In Figure 3.5 each state variable must have a state transition statement (next or
case). Without these statements the model checker would be able to change the value
between states, thus obtaining states that are unreachable to the ATRBAC policy. For
role×timeslots that are not touched by a t_can_assign rule, we set the next value in u to
FALSE, for all users, as the value cannot change from the initial value FALSE. We do
the same with e and t_can_enable rules.

The format for state transitions for the TUA variable u are: (correct user) ∧ (correct
rule) ∧ (admin satis�es condition for any timeslot in interval) ∧ (user satis�es condition for
all timeslots) : TRUE. The format for state transitions for the RS variable e are: (correct
rule) ∧ (admin satis�es condition for any timeslot in interval) ∧ (e satis�es condition for
all timeslots) : TRUE. Admin and target condition which are TRUE are satis�ed in all
states. The last line of each case statement is the default route, and this prevents state
changes outside of the rules in the ATRBAC policy.

51

3.5.6 Performance Considerations

The performance techniques described above are able to give a performance increase in the
best case, and in the worst case add polynomially timed overhead. In this section we will
consider each of the performance techniques and outline conditions where a performance
increase or decrease is expected.

The Polynomial Time Solving module of Cree, is optimized to run very quickly because
they are executed before each technique. We see a performance increase if the ATRBAC
policy is relatively simple or when running with abstraction re�nement on. We have found
that the initial abstraction re�nement steps are able to be solved almost exclusively using
Polynomial Time Solving. We also found that we do not see any noticeable decrease in
performance if this technique is not able to solve the policy.

Forward pruning is e�ective when the ATRBAC policy contains rules that cannot �re.
There are a few di�erent ways that this can be the case for a rule. Forward pruning has
been shown to greatly reduce the policies created by Uzun et al. [133]. We see an increase
in performance for backwards pruning if there exists low coupling between the set of goal
roles and the rules which reference them. Backwards pruning decreases performance if
there is high coupling within the policy, as this results in very few roles/rules/timeslots
from being removed.

A performance increase from abstraction re�nement is only possible for UNSAFE
ATRBAC-Safety policies. This due to the one sided error that abstraction re�nement
implements. If the policy is assumed SAFE, then this feature should be turned o� to
increase performance. Parallelizing abstraction re�nement would mitigate the negative ef-
fects on performance for SAFE policies, but this feature was not implemented in Cree due
to time constraints.

The performance considerations for bound estimation rely on the optimizations of the
ATRBAC-Safety solver being used. Our bound estimation produces an upper bound which
can be exponential in the size of the input. The performance e�ects of bound estimation
relies on the ingenuity of the solver. Empirically, we have noticed that NuSMV [78],
when running in bounded model checking, is much faster than its symbolic model checking
variant only when given our upper bound. If only using Tightening 1, we have found that
symbolic model checking was quicker on average.

52

Benchmark Class (a)

100 300 500 700 1,000

0

2

4

6

8

→ Failed

� � � � �� �
� �

�

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓← ← ← ← ←→

Number of Roles

T
im

e
(s
ec
)

100 300 500 700 1,000

0

2

4

6

8

→ Failed All Tests

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓� � �
�

�

� � � � �← ← ← ← ←

Number of Rules

10 20 40 60 80 100

0

2

4

6
→ Failed

↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓�� �
� �

�

�� � � � �←← ← ← ← ←→

Number of Timeslots

�Cree�Mohawk+T ↑ TRedRole ↓ TRedRule← ASASPTime SA→ ASASPTime NSA

Figure 3.6: Results from all tools for Benchmark Class (a). It comprises random input
instances from a generator from Uzun et al. [133]. The curves interpolate averages, and
the error-bars show the standard deviation. Figure D.1 contains no Mohawk+T.

3.6 Empirical Assessment

We have implemented Cree in Java, and made it available for public download [103]. In
this section, we discuss an empirical assessment we have conducted of Cree, in comparison
to �ve prior tools for ATRBAC-Safety to which we have access. Our intent with such
an empirical assessment is to ask whether Cree's design and implementation does indeed
result in a performant tool when compared to prior tools.

We have conducted empirical assessments on the three benchmark classes from prior
work: Uzun et al. [133], Ranise et al. [93], and Jayaraman et al. [56]. Our results are
shown in Figure 3.6, Figure 3.7, and Figure 3.8. Results without Mohawk+T are shown in
Figure D.1, Figure D.2, and Figure D.3. The curves interpolate the average of 5 runs. The
error-bars show the standard deviation from the average. The red wavy lines represent the
point where a tool is unable to solve the rest policies due to timing out or crashing.

Benchmark Class (a) in Figure 3.6, �rst presented by Uzun et al. [133], but altered
here, are randomized test-cases where:

� Roles subplot: Rules are �xed at 200 and Timeslots at 20.
� Rules subplot: Roles are �xed at 200 and Timeslots at 20.
� Timeslots subplot: Rules and Roles are �xed at 200.

Everything about the rules created in the Benchmark Class (a) rules are randomized:

� Random start and end times for the administrator time-interval, where start ≤ end time.
� For every role that exists there is a 1/5 chance that it will be added to the rule's
precondition as a positive role condition, and 1/5 chance for a negative precondition.

53

c01 c02 c03 c04 c05 c06 c07 c08

0

5

10

����������������↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓← ← ← ← ← ←
← ←

→

→
→ →

→

→

→
→

T
im

e
(s
ec
)

Benchmark Class (b) Tests 1 - 8

c09 c10 c11 c12 c13

0

50

100

150

↑ ↑ ↑ ↑ ↑

↓

↓ ↓ ↓ ↓� � � � �� � � � �← ← ← ← ←
→ →

→

→

→
Benchmark Class (b), Tests 9 - 13

H1 H3 H5 H10 U1 U5 U7 U10

0

20

40

���
�

����

�

�
��
�
���
�
���

���

�

����������������→→→→→→→→→→→→→→→→→→→
→

Benchmark Class (c)

Figure 3.7: Results from Benchmark Class (b) (two graphs to the left), and Benchmark
Class (c) (right). These comprise input instances from the work of Ranise et al. [93].
Figure D.2 contains no Mohawk+T.

These factors di�er from the original code in [133] where there was an equal probability
of 1/3 for each case. The change is to reduce the number of role preconditions is to
allow for more rules that have zero preconditions, and thus are allowed to be executed.
Without rules with empty preconditions the query will always be unreachable and thus
a safe system.

� The target role is randomized.
� The target time-interval is a set of time-slots and there is a 1/2 probability of a time-slot
being added to the �role-schedule�.

� The type of rule is randomized with a 1/2 probability for t_can_assign or t_can_revoke.
� The administrator is �TRUE�.

Benchmark Class (b) in Figure 3.7, presented by Ranise et al. [93], are ARBAC policies
that have �temporality� randomly added to them. We would like to thank Ranise et al.
for providing these test-cases for us to use. This set of 13 policies all have �TRUE� as the
administrator and only contain t_can_assign and t_can_revoke rules.

Benchmark Class (c) in Figure 3.7, presented by Ranise et al. [93], is generated similarly
to Benchmark Class (b) but these rules allow for arbitrary administrator roles.

In Figure 3.8, we present test cases taken from [56], which are ARBAC policies and
we convert them to ATRBAC policies by introducing 1 time-slot and having every rule
associate with that time slot. We �rst converted this set in our prior work [115]. Given
an example ARBAC rule: 〈a, C, t〉, we can convert it with a single time-slot ts such that
the policy still re�ects it's original guarantees on safety: 〈a, ts, C, ts, t〉. The Mohawk test-
cases are split into 3 complexity classes: polynomial time, NP-Complete, and PSPACE-
Complete. This re�ects what is contained within the test-cases:

54

� Polynomial Time: can_assign and can_revoke rules where the administrator is �TRUE�,
only positive preconditions for can_assign rules or �TRUE�, and can_revoke rule's pre-
conditions are �TRUE�.

� NP-Complete: can_assign rules where the administrator is �TRUE� and preconditions
can include positive or negative roles, or be �TRUE�.

� PSPACE-Complete: can_assign and can_revoke rules where the administrator is �TRUE�
and preconditions can include positive or negative roles, or be �TRUE�.

For Benchmark Class (a), Figure 3.6, Cree is within 0.5 seconds of the tools TREDROLE,
TREDRULE, and ASASPTIME-SA and outperforms our prior tool Mohawk+T by almost 6
seconds for the bigger policies. ASASPTIME-NSA was unable to run most these tests. Cree's
Polynomial Time Solving when possible is the factor that reduces the run time down to
comparable times to the other software as we are able to skip the expensive overhead of
running the model checker.

For Benchmark Class (b), Figure 3.7, all tools, except ASASPTIME-NSA and ASASP

TIME-SA, solve the policies within 1 second. This is the only instance where Mohawk+T
outperforms Cree, but the amount of the order of 10 milliseconds.

For Benchmark Class (c), Figure Figure 3.7, Cree either performs the quickest or is
tied with the other fastest tool ASASPTIME-NSA. The only exception to this is the policy
Hospital 4, where Cree performs the worst overall. Note that as in prior work [93], we did
not try this Benchmark Class on the TREDROLE and TREDRULE tools.

For the Mohawk inputs, Figure 3.8, Cree signi�cantly outperforms all the existing
tools. Furthermore, besides Mohawk+T, the existing tools are unable to withstand the
input instances from Mohawk [56] beyond a certain threshold. For the polynomial-time
veri�able sub-class, for example, which is Test Suite 1, none of the existing tools were able
to handle inputs beyond 20,000 roles and 80,000 rules.

Cree is no worse than any of the prior tools for any input we tried. Furthermore, for
each of the prior tools, there exists an input for which Cree is strictly better. Mohawk+T is
strictly worse than Cree for Benchmark (a), Benchmark(c), and the Mohawk inputs. ASASP

TIME-SA is strictly worse than Cree for input Benchmark (b). For the tests 9-13, ASASP

TIME-SA performs 0.5 to 3 seconds slower than Cree. ASASPTIME-NSA is strictly worse than
Cree for the Mohawk inputs. TREDROLE and TREDRULE perform much faster than Cree in
almost all instances it was able to handle, but Cree is able to solve much larger policies
without crashing or timing out.

55

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

4k
,
20

k

20
k,

80
k

30
k,

12
0k

40
k,

20
0k

0

50

100

150

200

250 ↑ & ↓ Timeout

→ Failed,

← Failed

������������������
�
�

↑ ↑ ↑ ↑ ↑ ↑
↑

↓ ↓ ↓ ↓ ↓ ↓
↓

←←←←←

←

←

←

→→→→→

→

→

Num. of Roles, Num. of Rules

T
im

e
(s

ec
)

Test Suite 1 (Poly–time Verifiable)

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

4k
,
20

k

20
k,

80
k

30
k,

12
0k

40
k,

20
0k

0

25

50

75

100
↑ & ↓ Timeout → Failed

← Failed

�������
�
�

�

����������↑ ↑ ↑↓ ↓ ↓←←←←←←←→→→
→
→→

Num. of Roles, Num. of Rules

Test Suite 2 (NP–Complete)

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

4k
,
20

k

20
k,

80
k

30
k,

12
0k

40
k,

20
0k

0

25

50

75

100 ↑ & ↓ Timeout

← & → Failed

�������
�
�

�

����������↑ ↑ ↑↓ ↓ ↓←←←←←←→→→
→→→

Num. of Roles, Num. of Rules

Test Suite 3 (PSPACE–Complete)

Figure 3.8: Mohawk inputs [56] converted to ATRBAC-Safety instances using one time-
slot. Test Suite 1 are inputs with non-negated preconditions only. Test Suite 2 are inputs
with no revoke rules. Test Suite 3 are both positive and negated preconditions, and as-
sign/revoke rules. Red wavy lines are tools that crashed/timed-out during testing for
certain input sizes. Figure D.3 contains no Mohawk+T.

3.7 Conclusions

We have proposed a new approach and corresponding tool which we call Cree, for address-
ing safety analysis in the context of Administrative Temporal Role-Based Access Con-
trol (ATRBAC). ATRBAC introduces new features, and therefore technical challenges for
safety analysis: support for time-intervals in policies, and rules for enabling and disabling
roles. In Cree, we reduce the problem to model checking and then leverage an existing
model checker, NuSMV. In addition, we incorporate several heuristics for performance:
Polynomial Time Solving when possible, Forward and Backward Pruning, Abstraction Re-
�nement, and Bound Estimation. While these heuristics are inspired by prior work, our
algorithms are customized for the speci�c technical challenges that ATRBAC-Safety intro-
duces. We have conducted a thorough empirical assessment in which we compare Cree to
�ve prior tools. Cree is no worse than any of the other tools across all inputs we tried, and
outperforms every other tool for at least one of the input cases. In addition to comparable
completion time, Cree is also able to solve many more test cases without timing out or
failing than all prior tools.

56

Acknowledgements

We thank the creators of the prior tools [93, 133] for making their tools and benchmarks
available to us and helping us with their use. This work was partially supported by the
National Science Foundation (NSF) grants NSF CNS-0964710, NSF CNS-1748109, and
NSF Award #1736209; awarded to Jianwei Niu.

57

Chapter 4

Generating Hard Instances of
ATRBAC-Safety

Contents
4.1 Introduction . 59

4.2 ATRBAC-Safety Background 60

4.3 ATRBAC-Safety Sources of Complexity 60

4.4 Analysis of ATRBAC-Safety Datasets 63

4.5 Performance Techniques for ATRBAC-Safety 71

4.6 Generating New Hard ATRBAC Instances 77

4.7 Empirical Analysis . 78

4.8 Future Work . 81

4.9 Conclusions . 81

Declaration of Contributions

I am the sole author of this chapter.

58

4.1 Introduction

Access control is vital for the security of computers connected to a network. Access control
policies de�ne the privileges each user has to each of the resources controlled by the system.
ATRBAC is an access control model that is typically used in large organizations that have
a large user base and who often deal with o�ces spanning multiple timezones.

Safety analysis of Access Control policies, is a decision problem which veri�es if ev-
ery reachable state, from the initial state, satis�es a Safety Query. The safety query in
ATRBAC-Safety ask whether any user can obtain a set of roles, for a speci�c time, from
the initial state (no users have roles assigned to them and no roles are enabled). This type
of query is often used to ensure that users, who have a certain access level, are unable to
obtain sensitive/compromising privileges within an ATRBAC-policy.

Schools, Hospitals, and Governments can utilize ATRBAC to handle their access control
needs, and can use ATRBAC-Safety to ensure that manual and automatic policy generation
conforms to business security logic. An example safety query within a school environment:
can a student in class A also obtain the privileges to update marks for class A. An example
for a hospital setting: does the current ATRBAC policy conform to the HIPPA and PHIPA
laws. This last example would require potentially many safety queries to test.

Prior work in Access Control, ARBAC, ATRBAC, and Safety Analysis is located in
Section 3.3. Shahen et al. [115] show that solving the above safety analysis queries is a
PSPACE-complete problem. In Chapter 3, we created an ATRBAC-Safety solver, and
tested the e�ectiveness against datasets produced by: Uzun et al. [133], Ranise et al. [93],
and modi�ed policies from Jayaraman et al. [56].

The contributions of this chapter are: an analysis of ATRBAC-Safety, identifying some
�sources of complexity�, an analysis of previous datasets, and the creation of 2 new datasets
that demonstrate increased solver di�culty.

The rest of this chapter is organized as follows. In Section 4.2, we provide background
on ATRBAC-Safety. Then in Section 4.3, we outline some of aspects of ATRBAC-Safety
policies which cause the instances to be di�cult to solve, called �sources of complexity�. In
Section 4.4, we analyze the datasets created by [133, 93, 115] and show which sources of
complexity are included. In Section 4.5, we analyze 4 general ATRBAC-Safety performance
techniques that were seen in previous empirical solutions to ATRBAC-Safety. We then
propose 2 new dataset generation techniques, in Section 4.6. In Section 4.7 we provide
empirical analysis of the 2 new datasets and test the performance of Cree using multiple
operational modes. The chapter ends with Future Work and Conclusions.

59

4.2 ATRBAC-Safety Background

The ATRBAC-Safety background has been moved to Section 2.2.

4.3 ATRBAC-Safety Sources of Complexity

ATRBAC-Safety was shown to be PSPACE-complete in [115]. In this section we will
attempt to enumerate some of the aspects within an instance of ATRBAC-Safety that
make the problem di�cult to solve. We will call these aspects the �sources of complexity�,
as was done by Jayaraman et al. [56] and Stoller et al. [126] with ARBAC-Safety. In this
section we will describe sources of complexity and provide intuition as to why it makes
ATRBAC-Safety more di�cult. In Section 4.5 we describe general techniques that address
some of these sources of complexity to show empirical improvements with the datasets
provided. As well, in Section 4.6 we use these sources of complexity to create �hard�
ATRBAC-Safety policies.

Sources of complexity for ATRBAC-Safety can be de�ned in terms of a state-search
algorithm, similar to model checking. Sources of complexity are attributes of an ATRBAC-
Safety policy that require more space in the state or more computation steps required to
answer the safety query. Obvious sources of complexity are adding more roles, timeslots,
and rules to a policy. Adding role/timeslots increase the size of the TRBAC state that is
required to be kept track of. Adding more rules can increase the number of states that are
reachable. If we �x the number of roles/timeslots/rules of an ATRBAC-Safety policy, we
can then identify less obvious sources of complexity.

4.3.1 Solver Sources of Complexity

ATRBAC-Safety has many versions published in the literature. The ATRBAC-Safety
version used by Cree, in Chapter 3, is a generalization of the previously published versions.
Here we discuss the sources of complexity that come from implementation decisions made
by a solver. Performance techniques used by Cree are discussed in Section 4.5.

Non-Separate Administration The separate administration restriction, in the con-
text of safety analysis, excludes administrator roles from appearing in the precondition
and target conditions. A separate administration policy is one where the set of roles that
appear in the administrator condition does not overlap with the set of roles that appear in

60

the precondition and target roles. Jayaraman et al. [56] used the separate administration
restriction for their ARBAC-Safety tool Mohawk. Versions of ATRBAC-Safety were cre-
ated with the separate administration restriction in the works [133, 93]. We will focus on
ATRBAC-Safety where a Non-Separate Administration is assumed, as it is a more general
problem. The work of Ranise et al. [93] and Shahen et al. [115, 116] use non-separate
administration in their works.

The non-separate administration restriction provides a source of complexity because
the administration condition now must be considered. In a separate administration, all
rules are satis�ed if at least 1 user is within the admin role, so we can rewrite all of our rules
with the administration role equal to TRUE. In non-separate administration we now are
required to create a user that is able to satisfy the administration condition before �ring
a rule. This adds computation steps to safety analysis because we also need to �nd paths
for potential administration roles before we can �re a rule on our target user. This can
add space required in the TRBAC state, since the maximum required users is the number
of admin roles plus one user to satisfy the safety query.

Time Progression In the ATRBAC-Safety described in [93, 115], time is an integer m
which increases until it reaches a maximum value and then resets to 0 and repeats. The
current time m is used to validate the administration time interval, as the m must be in
the time interval in order for the rule to �re. Tools can greatly reduce the number of
computation steps required if they do not encode the current time into the TRBAC state,
but instead assume that given enough time m, will eventually be the correct value required
to �re a rule.

TRBAC Encoding The method of encoding a solver uses for the TRBAC state can
determine additional sources of complexity. We outlined a binary matrix method in Sec-
tion 3.5.5, which is the method used by Cree. The size of the TRBAC state remains
consistent throughout executions of rules. Another encoding method would be a list of
sets for each user and a set for role enablement. Where a user U is enrolled in a the role r
for the timeslot t if tuple 〈r, t〉 ∈ U . A more space compact versions is where the tuple is
〈r, [t1, t3, . . .]〉. Both versions have the minimum size at the initial size and increase in size
when a CanAssign or CanEnable rule is invoked, decrease when a CanRevoke or CanDis-
able rule is invoked. The choice of encoding scheme can change the space/computational
requirements an instance requires to solve.

4.3.2 Dataset Sources of Complexity

Jayaraman et al. [56] listed the following attributes as sources of complexity for ARBAC:

61

Disjunctions: multiple CanAssign rules with the same target role,
Irrevocable Roles: a role that has a CanAssign rule but no CanRevoke rule,
Positive Precondition Roles: roles that appear without negation in CanAssign rules.
Mixed Roles: roles that appear with and without negation in CanAssign rules,

We will �rst adapt the above observation to ATRBAC-Safety and then we will make
additional observations for new sources of complexity.

Disjunctions An ATRBAC-Safety policy that contains disjunctions means it contains
multiple CanAssign rules with the same target rule. This adds a source of complexity
because we have now multiple paths to obtain a required role. Disjunctions form a problem
in NP, the correct path to a target role can be veri�ed using polynomial time, which path to
choose is non-obvious and requires a polynomial set of non-deterministic decisions to �nd.
Disjunctions can also exists in the role-enabled table, if there exists multiple CanEnable
rules with the same target role. ATRBAC includes a precondition for all rule types, thus
disjunctions now exists for the Can Revoke and Can Disable rules if the target role appears
as negated in a precondition. Timeslots alter the �disjunctions� source of complexity in the
following way: a disjunction exists in an ATRBAC-Safety policy if there exists multiple
rules where they share the same target role and at least 1 target timeslot.

Irrevocable/Un-Disableable Roles A role is irrevocable if it exists as a target role
in a CanAssign rule with a target time-slot array T = [t1, t2, . . . , tx] and does not have
corresponding CanRevoke rules for the set of timeslots in T . If there exists disjunctions
then T is the union of all CanAssign rules with the same target role. Irrevocable roles also
exists in the Enabled domain, where the above is altered to CanEnable and CanDisable
rules. For algorithms that are using a �forward-search� technique, it is non-obvious when a
user should obtain an irrevocable role and non-obvious when a un-disableable role should
be enabled, as a further rule condition might require the user to not have the role for a
particular timeslot or for a role to be disable for a particular timeslot. For an irrevocable
or un-disableable role to cause di�culty when solving, the role must also appear as a
positive and negated role in a precondition of CanAssign/CanRevoke (irrevocable) and
CanEnable/CanDisable (un-disableable).

Positive Precondition Roles A positive precondition role is a role that appears in a
rule's precondition without negation. We can see that the more positive precondition roles
there are the more computational steps are required to satisfy all possible conditions.

Mixed Roles A mixed role in ATRBAC-Safety is a role that appears in the precondition
of CanAssign/CanRevoke rules or CanEnable/CanDisable rules with negation and without
for at least 1 shared timeslot. The source of complexity that mixed roles add is that a user

62

my need to enroll in a role for a particular timeslot to obtain another role and then be
required to unenroll in order to satisfy another condition, same for role enablement. This
adds more computation steps to the safety analysis.

Number of Administration Roles The number of roles in the set administrator roles
is a source of complexity as stated above in Non-Separate Administration. For each ad-
ministration role we can be required to create a unique user to obtain that role. This new
user increases the size of the TRBAC state. In separate administration we only required 2
users, an administrator and a target user. In non-separate administration we require the
number of administration roles to act as potential users plus 1 user to be the target user
attempting to reach the goal state.

Minimum Number of Steps to Goal State For ATRBAC-Safety policies where the
Safety Query is Reachable, the limit on the minimum number of computation steps required
is dictated by how far the goal state is from the initial state. If an ATRBAC-Safety policy
has 1000 roles, rules, and timeslots, but the goal state is reachable by applying 1 rule to a
user, then the number of computation steps required is constant in the number of rules.

Rules Types and Properties We list a few of the complexities derived from rule type
and properties below. Given no Can Enable or Can Disable rules, we can remove the role
enablement table from the TRBAC state. All rules which have admin roles but no Can
Enable rules are impossible from running since no user can satisfy the admin condition
from the initial conditions. This can be applied to Can Assign/Can Revoke rule, for roles
which appear as a positive precondition, if there exists no Can Assign rule for that role
for the required timeslot, then that rule can never �re. Similar for Can Enable and Can
Disable rules. We explore rule types and properties in more detail in Section 4.4.2.

4.4 Analysis of ATRBAC-Safety Datasets

There are 3 main ATRBAC-Safety datasets from the literature. We refer to them by there
�rst authors surname: Uzun, Ranise, and Jayaraman. Table 4.1 provides an overview of
the notable features from each dataset. All policies used in our analysis can be found here
[104].

Uzun et al. [133] presented the �rst dataset in the literature. They created a program
to randomly create an ATRBAC-Safety policy given 3 numbers as input: number of rules,
roles, and timeslots. In order to have an accurate comparison, Shahen et al. [116] created
a repository where they randomly generated 10 policies for each of the role/rule/timeslots

63

Table 4.1: Summary of Previous ATRBAC-Safety Datasets.

Uzun Ranise Jayaraman

Number of Policies: 150 33 30
Number of Reachable/Unreachable: 0/150 25/8 30/0

Longest Pre-Condition: 711 5 4
Longest Timeslot Array: 549 1 1
Longest Reachable Path: 0 5 4

combinations that were presented in the original paper. We used those policies for our
analysis. Table 4.1 shows that the random nature of generation produces reachable safety
queries in very unlikely cases. This is due, in part, to the very long preconditions and time
slot arrays.

Ranise et al. [93] created 3 datasets, which we have combined into a single dataset for
analysis. The �rst dataset was created with the assumption that there exists a separate
administrator role, and thus the admin condition for every rule in the set is TRUE. The
second and third datasets assume non-separate administrator roles. The second and third
dataset are created from hospital and university access control policies, respectively. These
datasets produce the longest reachable path, and contain both reachable and unreachable
safety policies.

Jayaraman et al.[56] created an 3 ARBAC-Safety datasets, where each dataset intro-
duces additional features to increase the complexity required to solve. Shahen et al. [115]
updated the ARBAC-Safety policies to ATRBAC-Safety, using the version of ATRBAC-
Safety presented in [115]. The conversion introduced a single timeslot which all admin
intervals and target time slot arrays are set to.

These datasets have been used to show relative performance of many ATRBAC-Safety
solvers. We are analyzing the datasets to see what sources of complexity exists within the
combined datasets. This analysis will show where these datasets lack in terms of �sources
of complexity�, and why Cree was able to solve all tests cases in under 25 seconds when
the complexity class of the problem is PSPACE-complete.

64

Figure 4.1: Comparison of two methods for measuring policy size. Top �gure de�nes pol-
icy size using the number of Roles/Rules/Timeslots. Bottom �gure show the new proposal
for measuring the size of an ATRBAC-Safety policy, by determining the minimum simple
path required to visit all possibly required roles.

4.4.1 Measuring Size of a Policy

In prior work [133, 93, 115, 116], ATRBAC-Safety policies were described in terms of 3
numbers: the number of unique roles, rules, and timeslots that appear within the policy.
This de�nition can be used to compare policies where only 1 of these values di�er, but
when 2 or all 3 of the numbers are di�erent, the expected hardness for solving policies of
those sizes becomes much harder to determine. Figure 4.1 shows the policy size of all prior
dataset using this de�nition for policy size.

We can compute the values in Figure 4.1, top �gure, using a linearly timed algorithm.
Using the policy size can be used to predict how di�cult a policy would be to perform safety
analysis. The Jayaraman dataset has the greatest number of roles and rules, but there is
is only a single timeslot. We see that Uzun and Ranise have comparable number of rules,
but that Uzun has a larger number of roles and timeslots. This de�nition of policy size
provides predictions on the size of the TRBAC state required to perform safety analysis.
This de�nition relies upon three values which makes comparisons between 2 policies more

65

Figure 4.2: The percentage of rules by type.

di�cult.

In Figure 4.1, bottom �gure, we create a single value representation of the size of the
policy. This value can be computed using a polynomially timed algorithm. The size is cal-
culated using the formula in Section 4.5.4. This de�nition calculates the maximum length
of a minimum simple reachable path for the safety query and the rules in the policy. This
allows for comparison of computational steps required and incorporates the safety query
into the measurement. From the graph we see that the datasets have switched positions.
Uzun has the largest size, then Jayaraman, and last Ranise. While the number is useful to
compare abstract policies of a �xed size, the number of operations to solve each test case
varies. In the case of the Uzun dataset, due to how the policies are randomly created, it is
near impossible for a reachable policy to be created (as can be seen in Table 4.1).

4.4.2 Rule Types and Properties

There are 4 rule types de�ned in an ATRBAC-Safety policy: CanAssign, CanRevoke, Ca-
nEnable, and CanDisable. All rules are a tuple of the following: Admin Role, Admin
Time-Interval, Pre-Condition, Target Timeslot Array, Target Role. The CanAssign/Can-
Revoke rules e�ect changes in the TUA state, and CanEnable/CanDisable rules e�ect
changes in the RS state.

Satisfying the safety query requires any user to obtain a set of roles for a speci�ed
timeslot. A minimum requirement requires that there exists CanAssign rules with a target
role and the timeslot in timeslot array for all roles in the safety query. From the set of
CanAssign rules above, we can extract conditions which these rules require to �re. We
perform this analysis during backwards pruning in Cree (see Section 3.5.2. A summary of
additional conditions:

66

Figure 4.3: Number rules by Rule Property: Truly Startable, Startable, Invokable, and
Unassignable Precondition. If no truly startable rules exists, and we assume a empty initial
condition, then TUA and RS are unable to change.

� Positive roles in the precondition require extra CanAssign Rules,
� Roles that appear as positive and negative in the precondition require CanRevoke rules,
� Administrator roles that are not TRUE require CanAssign and CanEnable rules, and
� CanDisable rules are required if any role appears as positive and negative in a CanEnable
rule.

In Figure 4.2, we show the percentage of each rule type for each dataset. Jayaraman
and Uzun assumed separate administrator, thus no CanEnable/CanDisable rules. Ranise
contains CanEnable/CanDisable rules for 2 of the test suites. The middle test suite for
Jayaraman contains only CanAssign rules and the other test suites contain very few Can
Revoke rules. Uzun datasets randomly select the rule type, thus the number of rules per
type is nearly equal. Ranise has the most evenly spread of rule types.

Rules can be classi�ed in many ways, one way of classi�cation is looking at the condi-
tions that might restrict a rule from �ring. Within the safety analysis, we assume that if
an administrator exists then they will give a user a role if they ask for it. Thus there exists
2 conditions that restrict a target user from obtaining a role in a given state:

1. The target user does not currently satisfy the Pre-Condition and Target Timeslot Array,
and

2. No user is able to satisfy the Admin Role and Admin Time-Interval.

The number of rules that are able to �re for a given state, is a source of complexity as it
determines the number of states that are reachable.

In Figure 4.3, we show the number of rules that with the following properties:

Truly Startable A rule that can be �red during the initial state.
Startable A rule that can be �red only if an admin is available and enabled.

67

Figure 4.4: Average number of roles in the precondition and average number of time slots
in the target time slot array. Maximum number in Table 4.1.

Invokable A rule that has the possibility of �ring some time in the future.
Unassignable Precondition A rule where it is impossible for any user to satisfy the

precondition.

The set of truly startable rules dictate the number of paths that exists from the initial
state, and are able to �re in almost every state afterwards. The set of startable rules is able
to �re once a single user obtains the necessary administrator role and that role is enabled.
A truly startable rule is also a startable rule. The set of Invokable rules is able to �re only
when the admin condition is satis�ed by an admin user, and the precondition is satis�ed
by a target user. It is hard to determine the set of rules required to satis�ed invokable
rules. It is harder to determine the sequence of steps necessary to �re an invokable rule.

In Figure 4.3, we see that the Uzun dataset contains only invokable and unassignable
preconditions rules. Thus safety analysis is very easy for these policies, since there are no
branches from the initial state. Jayaraman contains no unassignable precondition rules.
The number of truly startable rules is equal to the number of startable rules for Jayaraman.
Ranise has a signi�cant number of unassignable precondition rules. From this analysis,
Jayaraman has the most rules that can be �red during the starting state and most rules
which can add available branches for each state.

4.4.3 Precondition and Timeslot Array Lengths

The number of roles in a rule's precondition and the number of timeslots in a rule's timeslot
array length is a source of complexity. Speci�cally, the more roles in a precondition, the
more rules that are required to satisfy the precondition. This is similar for the timeslot
array, as a user must have all positive precondition roles for all timeslots in the timeslot

68

Figure 4.5: Number of roles that appear in unique roles within each policy for each of the
prior datasets. The number is calculated by iterating through all rules and adding each
role to a set for each role property, the number is the size of the set. Uzun and Jayaraman
both assume a separate administrator scheme, and thus have no administrator roles. The
set of positive, negative, and in precondition are all the same size for the Uzun dataset,
this is because all roles have a probability of 2/3 of being in each rule.

array and not have any of the negative roles for any of the timeslots in the array. Thus
longer precondition and timeslot arrays increase the work required for rules to be �red,
thus adding to the source of complexity.

In Figure 4.4, we plot the average length of the precondition and timeslot arrays.
Table 4.1 shows the maximum length precondition and timeslot array. The datasets for
Jayaraman and Ranise are quite similar in that they have low averages for the precondition
and only associated with 1 timeslot. The dataset from Uzun takes the opposite approach
and saturates each rule with many precondition roles and timeslots. Unfortunately, due to
the randomness of Uzun's dataset generation, the probability is very low that any of these
rules will have assignable preconditions/timeslot arrays.

4.4.4 Role Types

Figure 4.5 shows a breakdown of each policy and how many unique roles appear in the
role types: admin, target, precondition, positive precondition, and negative precondition.
From our description of Jayaraman and Uzun's dataset, we know that they utilize separate
administer, and thus have no roles in the admin slot. From Section 4.3.2, we know that

69

Figure 4.6: Length of the counter example returned by Cree for all reachable policies.
Uzun is not present due to no reachable policies. The longest path length is 5 rule �rings.

the number of administrator roles is a source of complexity. Only the Ranise's University
(Test ID ∼70) and Hospital (Test ID ∼60) policies contain non-zero administrator roles.
The largest number of administrator roles is 12 unique roles.

The size of the target role set determines the number of bits that are required for a
safety analysis tool to store per user in the TUA for Can Assign and Can Revoke rules,
and per role in the RS for Can Enable and Can Disable rules. Jayaraman has the largest
set of target roles, there are no roles that appear in preconditions that do not appear in
a target role. The same cannot be said for Ranise �rst dataset (left side) or Uzun; where
more roles appear in the precondition than do in the target role.

Positive-Only and Negative-Only precondition roles are not a source of complexity,
due to the fact that they will never need to be acquired and then un-acquired. We see
that Jayaraman have the largest set of roles that appear as both positive and negative in
preconditions; this only occurs in their �mixed� (Test ID ∼40) and �mixednocr� (Test ID
∼30) datasets, their �positive� dataset (Test ID ∼20) only contains positive roles in the
preconditions. The datasets from Uzun have an equal number of positive and negative
roles in the preconditions, but the length of the positive preconditions is so large that most
rules are impossible to �re. The Ranise datasets have an even spread of role types, but the
quantity is small.

4.4.5 Path Length of Reachable Policies

For safety queries where a satisfying state is reachable, the minimum number of steps
required to reach that state is a source of complexity. In Figure 4.6, we show the minimum
number of steps required to solve the reachable policies from Jayaraman and Ranise. Uzun

70

Figure 4.7: The Policy Size of each policy after applying static slicing techniques.

is not present because no test cases were reachable. From this �gure we see that the
maximum length path required to solve all policies from the 3 previous datasets is 5 steps.
In Section 4.5.4, we test the performance gains from setting a �xed bound of 6 steps for
the Cree solver.

4.5 Performance Techniques for ATRBAC-Safety

Here we address Cree's performance techniques used to combat the sources of complexity
in ATRBAC-Safety. We can mitigate the negative performance e�ects from the sources of
complexity by identifying instances where rules/roles/timeslots can be removed, alterna-
tive solvers can be used, and reduced limits for the solver's search space. The following
techniques are a balance of performance improvements for the set of inputs it relates to
and minimizing the overhead added to the policies outside of this set.

4.5.1 Static Slicing

Static slicing is a performance technique which attempts to reduce the size of the policy
before executing the safety analysis. There are 2 methods to static slicing: forward pruning
and backwards pruning.

Forward Pruning method of removing rules which are impossible to execute. This
method of reduction takes rules that contain both a positive role r and a negative role r
in the precondition. We also remove all rules where the administrative role can never be
assigned and enabled for any of the timeslots in the admin time-interval. Forward slicing

71

is e�ective in the following situations: Ill-formed policies, especially randomly generated
policies, and sub-policies created when excluding rules from a policy.

Backwards Pruning method of removing rules that are not required to answer the
safety query. We perform backwards pruning by starting with the safety query and adding
all CanAssign rules where the target role and the timeslot array appear in the safety
query. From this initial set of rules, we can add any CanAssign and CanRevoke rules that
could be used to satisfy a precondition in our set of rules. We also add CanAssign and
CanEnable rules to satisfy any of the administrator role during the administrator time
interval. For CanEnable and CanDisable rules we only add CanEnable/CanDisable rules
to the set for positive/negative roles in the precondition and CanAssign/CanEnable rules
for the administrator role. We continue iterating, adding rules, until we have added all
rules that satisfy our set of rules or all rules have been processed.

Forward and backwards pruning are polynomial-time algorithms, and thus including
them in the safety analysis does not change the complexity class. Increased performance
only occurs if the reduced size of the policy translates to faster solution time minus the
static slicing overhead. A smaller sized policy results in a smaller state space, and can
reduce the size of the TRBAC state by removing roles/timeslots that were only mentioned
in the set of rules that were removed. This method works well for unreachable ATRBAC-
Safety policies.

In Figure 4.7, we show the minimum size (as de�ned in Section 4.4.1) for each policy
after running each pruning technique. Static slicing is unable to reduce the size of any
policies in the Jayaraman dataset. The Uzun dataset is able to reduce almost all policies
to length zero with forward pruning only. Backwards pruning only is able to reduce all
Uzun policies to zero. The Ranise dataset sees a small improvement from forward pruning,
an even larger improvement from backwards pruning, and the best reduction in size from
the combined pruning methods.

4.5.2 Abstraction Re�nement

Safety queries often do not require all of the rules in the ATRBAC policy to determine if
a policy is reachable. If we assume this, then we can gain a potentially large performance
increase by testing sub-sets of the original policy until we �nd a sub-policy which is reach-
able or we test the original policy. Abstraction re�nement has one sided errors, where if
there exists a path from the initial state to the goal state in one of the sub-policies then
it exists in the original policy, but the lack of a path in the sub-policy does not mean that
a path does not exists in the original policy. This method is only increases performance

72

Figure 4.8: The number of required abstraction re�nement steps used to solve each policy
from the prior datasets. The more steps required, the more di�cult the policy. 0 steps
means the solver is called once.

for large policies that have a reachable safety query. This method supports parallelizing,
where we can perform safety analysis of multiple sub-policies in parallel and stop if the
safety query is satis�ed or if the original policy �nishes running. Given enough resources
for parallelization, this method will take negligible amount of extra time than just running
the original policy and potentially much faster.

The abstraction re�nement algorithm (see Section 3.5.3) starts with the safety query
and �nd all CanAssign rules where the target role is in the safety query role array and the
query timeslot is in the CanAssign target role timeslot array. This is the initial sub-policy.

From our initial policy we can perform a re�nement step and create our next sub-policy.
Each re�nement step uses the previous sub-policy to provide additional constraints that
allow for more rules to be included. We build the new sub-policy by copying the old policy
and including rules from the original policy that satisfy any of the following conditions:

� All CanAssign rules where the target role appears in the previous policy's CanAssign/-
CanRevoke rules as a positive role in the precondition

� All CanDisable rules where the target role appears in the previous policy's CanAssign/-
CanRevoke rules as a negative role in the precondition

� All CanEnable rules where the target role appears in the previous policy's CanEnable/-
CanDisable rules as a positive role

� All CanAssign and CanEnable rules where the target role appears in the previous policy's
CanAssign/CanRevoke/CanEnable/CanDisable rules as an administrative role

The abstraction re�nement algorithm is similar to building a dependency graph, but
we take intermediate snapshots to test in the hopes that one of those smaller policies will
return with a satis�ed safety query. Abstraction re�nement performs a backwards pruning

73

Figure 4.9: Number of policies solved using the Cree's polynomial time algorithm.

technique where the last sub-policy contains all rules that might be required to solve the
safety query, and the number of rules is less than or equal to the original policy.

Figure 4.8 shows the number of abstraction re�nement steps used to solve each of the
prior datasets. From this we can determine how many abstraction steps is required to
solve a policy. The more abstraction re�nement steps required, the more di�cult a policy
is to solve when utilizing abstraction re�nement. The Uzun dataset is able to be solved
with no abstraction re�nement steps, meaning one call to the solver. The Jayaraman
dataset requires very few abstraction re�nement steps. The Ranise dataset requires the
most abstraction re�nement steps, but the maximum number is 6 steps. Six abstraction
re�nement steps requires 7 calls to the solver, but we can see that the path length (from
Figure 4.6) only requires 3 steps for the model checker to solve.

4.5.3 Polynomial Time Safety Solver (Quick Decisions)

In ATRBAC-Safety there exists policies which can be solved using polynomial time algo-
rithms. This set of policies is vast and varied. The following sets have been identi�ed in
Section 3.5.1.

Empty Query Role Array A policy is insecure when no roles are provided in the
safety query's role array. This result is true for all instances because all users satisfy this
condition, irregardless of the roles they are enrolled in.

74

No CanAssign Rules for the Safety Query's Role Array and Timeslot The
safety query is unreachable because the initial conditions have no users assigned to any
roles. With no CanAssign rules to obtain the query's roles, for the query's timeslot, it is
impossible for a user to obtain the goal roles.

No Truly-Startable CanAssign Rules A Truly Startable rule is any rule that has
the precondition and the administrator condition set to TRUE. This means that a Truly-
Startable CanAssign rule is satis�ed in the initial conditions. If no Truly-Startable CanAs-
sign rules exists then the initial user-role assignment TUA can never be changed. Thus
the policy is secure.

Query Truly-Startable CanAssign Rules The safety query is reachable if there exists
a set of truly-startable rules that can satisfy the safety query.

Figure 4.9 shows the e�ectiveness of the current polynomial time algorithms, where it
is able to solve: 77.3% of the Uzun dataset, 70% of the Jayaraman dataset, and 27.3% of
the Ranise dataset. The results for Jayaraman and Uzun are quite impressive, as it shows
the very large sizes each of these datasets have, does not require complex, nor involved,
algorithms to solve them. From Section 4.3, Sources of Complexity, we can identify more
classes of input which are polynomially solvable.

4.5.4 Bounded Search of State Space

ATRBAC-Safety is a state search, where a state is represented by a TRBAC policy and
the state transitions are the rules from the ATRBAC policy. An ATRBAC policy has a
reachable safety query if there exists a path from the initial conditions to a state where
the safety query is satis�ed.

Performing ATRBAC-Safety using state reachability, it is useful to know the minimum
number of state transitions, from the initial state, that a satisfying state can be found.
Estimating this value allows for a bound to be placed on the state search algorithm.

In Section 3.5.4, we create an algorithm to estimate the bound for any ATRBAC-Safety
instance. This algorithm returns the length of the longest simple path that traverses every
state that might be required to reach the goal state. This algorithm assumes that the
current time is not encoded in each state, thus any rule can be applied to a state. This
assumption on time greatly reduces the bound and complexity of the estimation algorithm.

75

Figure 4.10: The left �gure ranks each model checker option is terms of duration and
displays the sum of those ranks over all policies. The smaller the value, the faster that
option is overall. The fastest option is using a �xed bound set to 6 steps (maximum 5
steps required from Figure 4.6). The right �gure shows the durations for all policies for
the �xed bound at 6 steps and Cree's Bound Estimation algorithm (baseline).

Figure 4.10, the left �gure, shows the relative speeds of the following model checker
options.

Cree's Bound Estimation (baseline) Running the model checker in bounded model
checking mode and using Cree's bound estimation.

Fixed Bound (�xed_bound_X) Running the model checker in bounded model check-
ing mode and using a �xed bound of X. The value 6 is used from the analysis in Sec-
tion 4.4.5.

Symbolic Mode (smc_mode) Running the model checker in symbolic model checking
mode and supplying no bound.

From Figure 4.10, we see that the fastest model checking option is using the �xed bound
of 6, which is the smallest value that can satisfy all reachable policies. The second fastest
option is using Cree's bound estimation. As the �xed bound gets larger, the speed reduces.
The slowest option is the symbolic mode.

We plot the di�erence in duration between the fastest and second fastest options, in
Figure 4.10. For the majority of test cases, using Cree's bound estimation is 1 second or
faster. This shows that the bound estimation helps, but improvement can still be made
for speci�c policies where an unfavourable bound is provided.

In Figure 4.11 the bound estimation for each policy is provided.We can see that the
bound estimation can produce quite a large upper bound for non-trivial ATRBAC-Safety
policies. The number can be so large that it is actually more performant to run in an

76

Figure 4.11: Cree's Bound Estimation for all previous datasets.

in�nite bound setting or using symbolic model checking mode. These cases are rare in the
prior datasets, as most of the estimations occur below the �xed bound of 6. Many times
the bound is 1, which is the smallest bound.

4.6 Generating New Hard ATRBAC Instances

This section brie�y describes two new techniques for generating hard instances of ATRBAC-
Safety. Both techniques from below focus on creating hard instances by creating long
reachable paths. From Table 4.1, we know that the longest reachable path is 5 rule exe-
cutions. I plan to create hard instances by forcing the shortest reachable path to be much
larger than 5.

Each dataset is generated with a script that accepts 1 input: Input Policy Size. Both
datasets can be found in [104], and the source code is publically hosted here [113].

Version 1 Creates a dependency list, where for an input policy size of n, it requires the
safety query from input policy size n− 1 for a new admin role. That new admin role is the
only admin role able to satisfy the safety query using a Can Assign rule on the target user.
This new admin role cannot be assigned to any user who is a member of the previous admin
roles. This new admin role is the only role allowed to assign the goal role to a user. Only
Can Assign and Can Enable rules are used. All roles are un-revokable and un-disableable.
There is no randomization used in the generation of these policies.

Version 2 Similar premise to Version 1, but this version introduces mixed roles into the

77

admin dependency graph. Each input policy size n is built using the input policy size n−1.
Admin users must obtain the previous admin role in order to assign the new admin role,
but this chain forces roles to be obtained and then revoked to obtain another role. This
introduces an intermediary role that is required to reach a satisfying state but must be
removed to allow for enrollment of un-revokable roles. Utilizes the rule types Can Assign,
Can Revoke, and Can Enable. There is no randomization used in the generation of these
policies.

4.7 Empirical Analysis

Here we will analyze the newly formed datasets, where the input policy sizes used to create
the policies are: 1-10, 25, 50, 100, and 200. To minimize the size of this chapter, all �gures
were moved to Appendix E.

Policy Size Each policy is created using an input policy size. This value is used in an
iterative process to create new policy. The actual size of the policies created is shown in
Figure E.1. Each version has a linear growth in the number of rules/roles that are used for
each policy size. The minimum path policy size shows a polynomial growth with respect
to the input policy size. The size of these datasets is similar to all 3 prior datasets in terms
of number of rules and the minimum path policy size.

Rule Types Figure E.2 shows the percentage distribution of rule types for each of the
new datasets. Version 1 has only Can Assign and Can Enable rules, with Can Assign
being the majority. The lack of Can Revoke and Can Disable rules show that all roles are
un-revokable and un-disableable. Version 2 has Can Assign, Can Revoke, and Can Enable
rules, with Can Assign as the majority and equal parts Can Revoke and Can Enable. The
introduction of Can Revoke rules brings revokable roles, and this allows for temporarily
assigned roles.

Rule Properties Figure E.3 shows the number of rules that fall within well de�ned
properties. Version 1 and 2 contain only Invokable rules and no rules with Unassignable
Preconditions. Both datasets have equal number of Truly Startable and Startable rules,
and these grow linearly with the input policy size (All Truly Startable rules are Startable
rules, thus these sets are identical). Both datasets have more Invokable rules than Startable
Rules, thus we know that the reachable states are at minimum more than 1 steps from
the initial conditions. Both datasets have the number of rules grow linearly, but given the

78

same input policy size, Version 2 creates more rules.

Precondition and Timeslot Array Lengths The average precondition and timeslot
array lengths are show in Figure E.4. The average time slot array for Version 1 and Version
2 is 1, as there is only one time slot for each dataset. Version 1 has an average precondition
length of 1 (TRUE as a precondition has length 0), thus we have fairly simple rules similar to
Jayaraman and Ranise datasets. Version 2 has an average precondition length that grows
linearly with the input policy size, these produces complex rules and can make manual
analysis very di�cult. Version 2 has a maximum precondition length of 80, which makes
this dataset �t between Ranise/Jayaraman and Uzun.

Role Types The number of unique roles that appear in speci�c role types is shown in
Figure E.5. Both datasets have a linear growth of roles for each of the role types for the
given input policy size. Version 1 has equal number of roles that appear as positive and
negative preconditions. These sets are not equal, as the set of roles which appear as a
precondition role is double the size of the positive and negative precondition role sets. The
number of roles that appear as an admin role and as a target role are equal (target role
set has 1 extra: the safety query role). Version 2 has the smallest number of roles that
appear as administer roles, followed by double the number of roles that appear as negative
preconditions. The number of roles for that appear as target, positive precondition, and
in the precondition is 3 times the number of administrator roles. These datasets are very
di�erent from the prior datasets for distribution of role types.

Expected Path Length Without validation from a solver, we do not know the mini-
mum path length, thus the expected path length is provided in Figure E.6. Each dataset
generator builds a counter example path as it builds the policy. This is used to show the
steps required to reach a satisfying state. Almost all policies in the new datasets, have an
expected path length much greater than 5 (the previous longest path). For an input policy
size of 200, the expected path length for Version 1 is 20498 steps and Version 2 is 20900.
The growth of the expected path grows quadratically with the input policy size.

Static Slicing The results for each Static Slicing technique can be found in Figure E.7.
The pruning techniques are unable to reduce the size of any of the policies. This is similar
to the Jayaraman dataset.

Abstraction Re�nement Every rule is required in the new datasets to reach a satisfying
state, thus only the last abstraction re�nement step will produce a result. Figure E.8 shows
the number of abstraction re�nement steps required to solve each policy. For Version 1,
the number of abstraction re�nement steps grow linearly with the input policy size. Each

79

of these re�nement steps is wasted computation due to the design of these datasets. This
is much greater than all previous datasets, where the maximum abstraction re�nement
steps was previously 6. For Version 2 the number abstraction re�nement steps is �xed at
2, thus only 1 abstraction re�nement step is wasted. This is very similar to the Jayaraman
dataset.

Polynomial Time Algorithms Only the smallest sized policy for Version 1 was able
to be solved using the polynomial timed algorithm. The results for this experiment can be
found in Figure E.9. This is much better than all prior datasets.

Bounded Search Cree's bound estimation algorithm produced bounds that exceed the
maximum integer value for both new datasets. For Version 1 there are 5 usable bounds,
and Version 2 has 3 usable bounds. The results for this experiment can be found in
Figure E.10. The lack of usable bound will reduce the speed of solution since in�nite
bounded model checking is required to be used. The bound estimation algorithm uses
the longest simple path to estimation the max-min path required to solve the policy (see
Section 3.5.4), since both datasets have very long path lengths, which require every rule,
this creates an exponential bound estimation. The estimation for these datasets is far
larger than all previous datasets.

Cree Solver Duration This experiment runs the Cree ATRBAC-Safety solver, using
multiple modes, against the new datasets for a 1hr time limit. From the results above, we
note the very large bound estimation for both new datasets, and for Version 1 the number
of abstraction re�nement steps grows linearly with the input policy size. Thus we tested
Cree using the following combination of modes: Symbolic Model Checker/Bounded Model
Checking and Abstraction Re�nement/No Abstraction Re�nement. The results for this
experiment can be found in Figure E.11.

From Figure E.11 we notice the same result as with Section 4.5.4, where bounded model
checking gets slower as the bound is increased to very large values. Here we see that the
bound is so high that symbolic model checking is the faster option. Both SMC modes are
faster than either BMC modes for the majority of tests.

The e�ects of Abstraction Re�nement, for both datasets, is seen best when comparing
the BMC mode. For Version 1, the non-Abstraction Re�nement BMC mode is faster and
able to solve 1 additional policy compared to Abstraction Re�nement in BMC mode. Since
the abstraction re�nement steps for Version 2 is �xed at 2 steps, the timing di�erence is
not as pronounced, but non-Abstraction Re�nement is still faster.

When comparing the policy sizes, using Figure E.1 and Figure 4.1, we see that the
prior datasets include larger policies in terms of number of rules, roles, timeslots, and

80

minimum path size, but all of those policies were able to be solved within the 1 hr time
limit. The maximum input policy size able to solve by Cree within the 1hr limit: 6 for
Version 1 and 4 for Version 2. This shows that the new datasets are indeed hard instances
of ATRBAC-Safety.

4.8 Future Work

The new datasets provide much in the way of missing sources of complexity, but future
work is needed for utilizing time slots and adding more di�cult Can Enable and Can
Disable rules. Future work is required into creating better bound estimation. Static slicing
had no e�ect on the new datasets because all rules are required to obtain the reachable
state. Future work into adding noise, in a intelligent method, to the new datasets.

The new datasets all have reachable safety queries. Random rule dropout would require
inserting another rule, otherwise the polynomial time solver could be used to show no path
exists. Future work into an intelligent, and random, method for creating unreachable
policies.

4.9 Conclusions

Section 4.3 identi�ed multiple sources of complexity that exists within ATRBAC-Safety.
These sources were split into two categories: ATRBAC-Safety Solver sources and Sources
that exists within an instance of ATRBAC-Safety. From these sources, in Section 4.4 we
analyzed the previous datasets released by Jayaraman et al. [56], Ranise et al. [93], and
Uzun et al. [133]. A new singular value for measuring policy size is introduced in Sec-
tion 4.4.1. Important rule and role properties are de�ned in Section 4.4.2 and Section 4.4.4.
From our analysis, we found that the longest reachable path from all previous datasets was
5 steps.

Cree introduced 4 generic performance techniques that can be used by all ATRBAC-
Solvers. In Section 4.5, we explore how e�ective these techniques are with the previous
datasets.

From our analysis, in Section 4.6 we created 2 techniques for generating new ATRBAC-
Safety policies. These new policies all contain reachable safety queries, which require a large
number of steps to reach. In Section 4.7, we analyze these new datasets and compare them
to the prior datasets. For similar instance sizes to the prior datasets, we were able to

81

achieve very hard instances of ATRBAC-Safety. Given a 1 hour time limit, the largest
policy solved by Cree for Version 1 had an input policy size of 6 and for Version 2 had an
input policy size 4. All other test cases were unable to be solved within the time limit.
The size of the smallest unsolvable policy is much smaller than the hardest policies from
the prior datasets.

All source code and the new datasets are available as open source [113, 104].

82

Chapter 5

Safety Analysis for Ethereum Smart
Contracts

Contents
5.1 Introduction . 84

5.2 Ethereum Blockchain Background 86

5.3 Reduced-Solidity . 86

5.4 Reduced-Solidity Safety Problem 88

5.5 Reduction to Model Checking 90

5.6 Experimental Results . 100

5.7 Future Work . 102

5.8 Conclusions . 102

Declaration of Contributions

I am the sole author of the content within this chapter. The exception to this is the
implementation of: state rollback and require statements, function modi�ers, and the
Enumeration data type. These were created by Alireza Takami. These implementations
were code reviewed and modi�ed by myself.

83

5.1 Introduction

The Ethereum Blockchain is a relatively new technology. In July 2015 the �rst block
on the Ethereum blockchain was mined. Ethereum combines the security, immutability,
and public record keeping of block chain technology with distributed computing. This
combination allows for the creation of distributed applications where the code is in the
block chain, called Smart Contracts.

A prominent use for smart contracts is as a virtual, public, and cheap escrow for
contracts between 2 or more parties. The ability to act as a trusted escrow, works through
the use of converting currency into Ethereum's Ether currency, transferring it to a smart
contract's balance, and then the other party digitizes their asset (if able), once both parties
agree, then the smart contract sends the balance and asset to the correct parties. Every
step of the transaction is publicly available and is con�rmed by a majority of the nodes in
the network. This public record can act as a receipt for both parties. The smart contract
is able to remove banks and notaries that are usually required to hold the assets and to
witness the signing of the agreement.

The ability for smart contracts to act as escrows is important and a very useful task,
but there are many other uses that have been created for smart contracts. Here is a list of
the most popular smart contract categories:

� Games � Popular games revolve around trading cards/assets. Other game companies
utilize the Ethereum network to accept payments and handle asset delivery (i.e. custom
skins, in game currency, downloadable content).

� Initial Coin O�ering (ICO) � A fund raising e�ort for new businesses where coin
shares have the ability to be given special meaning (i.e. voting power, dividends).

� Buy/Sell Stores and Auctions � The ability to replace e-commerce websites by
transferring ether for access tokens or receipts of sale.

� Tokens/Gift Cards � The ability to exchange real money/ether for unique tokens that
have arbitrary meaning and worth. These tokens can have a one-to-one worth of Ether,
but are restricted to only be used in a particular store (gift card replacement).

5.1.1 Prior Work

Prior work which is relevant to ours can be categorized into the following: Blockchain,
Cryptocurrencies, the Ethereum Network, Safety Analysis, Vulnerability analysis, and For-

84

mal Veri�cation. A comprehensive survey of these is beyond the scope of this work. In this
section we will speci�cally discuss work into safety and vulnerability analysis for Ethereum
Smart Contracts.

Ethereum Smart Contracts are typically written in a higher level language (ex: Solidity,
vyper, etc) and then compiled into EVM byte code. The EVM byte code is what is stored
on the Ethereum network and it what the is executed in the EVM. Work has been done
to reverse the public EVM byte code stored on the Ethereum network to Solidity/Vyper
code (Panoramix [36] and EthRays [22]). Panoramix uses symbolic execution as a means
of decompilation, and is the decompiler found on EtherScan. EthRays is a EVM byte code
decompiler created for the DEFCON Capture the Flag (CTF) 2018 game. The following
tools can be be used to convert EVM byte code to assembly [58, 30, 29]. Erays [161] reverse
engineers the EVM byte code into pseudo code

Work has been proposed which performs analysis looking for speci�c vulnerabilities in
[132].

Prior work using Satis�ability Modulo Theories (SMT) based symbolic execution tools
are found in Oyente [72], Mythril [27], MAIAN [77], a tool created by Park et al. [83],
VeriSmart [124]. Oyente utilizes assert statements for encoding safety queries, whereas
the other tools check for speci�c known vulnerabilities in smart contracts. Each tool
simulates the Ethereum Virtual Machine (EVM). Formal veri�cation tool SMTChecker [3],
is a new experimental tool that utilizes require as assumptions and assert statements
for speci�cations. The tool created in [83], by Park et. al., uses the formal semantics
of KEVM (see [50]) and performs analysis on the ERC20 token, Ethereum Casper, and
DappHub MakerDAO contracts. Solc-Verify, by Hajdu et. al. [46], is similar to the above,
except veri�es based on a Solidity smart contract instead of the underlining EVM byte
code.

Other reductions can be found to Why3 [39], F* [13], LLVM [61], and Event-B [163].
F* and LLVM reduction are only able to verify speci�c vulnerabilities, whereas the Why3
reduction allows for user provided assertions (similar to Oyente). The reduction to Event-B
utilizes a similar approach of reducing the grammar of Solidity and then performing their
reduction to Event-B.

VerX, by Permenev et. al. [85], creates a closed source tool which is able to verify
temporal properties. A reduced set of features from Solidity is used: loop are restricted,
no recursion, no direct storage via assembly, no execution of external code, and no cre-
ation/destruction of contracts. Symbolic execution is performed using Z3.

ETHBMC, by Frank et al. [40], creates a bounded model checker which models the
Ethereum virtual machine (EVM) using precise memory model. ETHBMC models the

85

EVM as an Abstract State Machine and utilizes SMT to verify that execution paths are
feasible. This work di�ers from ours as they are creating a model checker and this work is
creating a reduction to a model checker. Another di�erence is that our work use Solidity
as the input language, and ETHBMC use EVM byte code. Our work is general safety
analysis, which allows for more general analysis than ETHBMC, which limits the attacker
model only the following options: Attacker stealing/extracting Ether, Attacker redirection
execution �ow, and Attacker self destructing the smart contract.

Solidi�er, by Antonino et. al. [5], creates an intermediate language called Solid and
from Solid reduce to model checking. VeriSol, by Wang et. al. [139], is very similar to
Solidi�er. Solidi�er provides an empirical analysis comparing against VeriSol [139], solc-
verify [46], and Mythril [27].

5.2 Ethereum Blockchain Background

The Ethereum Blockchain background has been moved to Section 2.3.

5.3 Reduced-Solidity

Ethereum's Solidity language, and corresponding EVM byte code, is a very powerful lan-
guage. We introduce a subset of the language, called Reduced-Solidity. Safety analysis of
this language will be shown to be PSPACE-complete. Figure 5.1 is smart contract using
only the features available in Reduced-Solidity. Below we outline the supported features
in Reduced-Solidity.

Data Types We limit the data type to �xed size data types only. The list of �xed size
data types includes: Boolean (1 byte), signed/unsigned integers (32 bytes), signed/un-
signed �xed point numbers (42 bytes), and address (20 bytes). Fixed sized arrays for
all data types above and ENUM (converted to integer) are supported. Instances of other
Reduced-Solidity Smart Contracts are allowed as a data type. Mappings and variable-sized
arrays (bytes and string) are not supported due to their ability to create exponential sized
states.

Delegate Calls Delegate calls are not supported in reduced-Solidity. All delegate calls
can be replaced with a function call, and copying over the delegate code into the contract.

86

1 contract SimpleContract {
2 enum State { locked , unlocked }
3 State public l o ck = State . locked ;
4 uint ca l lCount = 0 ; uint maxCount = 5 ; uint b = 0 ;
5 /*!QUERY: lock > 0; UNREACHABLE */

6 /*!QUERY: callCount > 0; REACHABLE */

7 /*!QUERY: callCount > maxCount; UNREACHABLE */

8 /*!QUERY: b > 0; UNREACHABLE */

9

10 modifier modFunc1{
11 require (l o ck == State . unlocked , "Must be unlocked") ;
12 _;
13 }
14 modifier modFunc2{
15 require (ca l lCount < maxCount , "Reached the maximum allowed calls") ;
16 l o ck = State . unlocked ; _; l ock = State . locked ;
17 }
18

19 // This function can NEVER be called

20 function mfTest1 () public modFunc1 modFunc2 {
21 b = b + 1 ;
22 /*!QUERY: TRUE ; UNREACHABLE */

23 }
24 // This function can be called at most maxCount Times

25 function mfTest2 () public modFunc2 modFunc1 {
26 ca l lCount = cal lCount + 1 ;
27 /*!QUERY: TRUE ; REACHABLE */

28 }
29 }

Figure 5.1: Example Smart Contract, using Reduced Solidity and included embedded
Safety Queries.

This allows for less complexity on the part of the solver, without loss of generality.

Inline Assembly Inline assembly is not supported to restrict state size, and the com-
plexity of the solver. Allowing inline assembly would require adding: a stack, memory
locations, registers, and support for the many EVM assembly commands.

Available Commands Many Smart Contracts can be made with only the following
subset of Solidity commands:

� State Variable Creation, Initialization, and Modi�cation Statements
� Function Parameters and Local Variables
� Functions and Constructors
� Function Modi�ers
� If/Else Statements
� Loop Statements (for, while)
� Require Statements and Rolling Back State

87

� Address Balance and Transfer for only Addresses provided

Embedded Safety Queries In this chapter we choose to di�erentiate between: require,
assert, and safety queries. We see each having a distinct meaning. We have thus created
a custom comment to act as the safety query. This comment will not e�ect testing, and
will not be deployed to the Ethereum network. Embedding the safety queries into the code
allows for more complex queries to be posed. On lines 5-8, in Figure 5.1, we have safety
queries that rely on information that is written to the blockchain. On lines 22 and 27, we
have safety queries that can interact with transient and temporary information contained
within a function.

5.4 Reduced-Solidity Safety Problem

Informally: given a Solidity DApp (set of Smart Contracts), with embedded Safety Queries,
and a set of Accounts. For each Safety Query, determine if a path exists from the initial
state to a state where the Safety Query is true. Below we formally de�ne Reduced-Solidity
Safety.

Inputs A list of Smart Contracts written in Reduced-Solidity, set of embedded Safety
Queries, and set of Accounts. The size of the input is equal: size of the Solidity code +
size of the deployed smart contracts on Ethereum network + the size of accounts on the
Ethereum network.

Initial State The initial state is the blockchain state after deploying the smart contracts.
Deploying a smart contract involves an Account and running the constructor. The set of
Accounts and Balances are available on the blockchain.

Decision Problem For a single embedded Safety Query, sq, we return TRUE if there
exists a path from the initial state to a state where sq is satis�ed; FALSE otherwise.

Theorem 1. Reduced-Solidity Safety requires to store, and have accessible, the set of pro-
vided Smart Contract state variables and each Account's balance. All other values on the
Ethereum Network's block chain is not accessible.

Proof. In order for the EVM, while running a Solidity smart contract, to access other parts
of the block chain, one of the following actions must be performed:

1. Call another Smart Contract using a Call/Delegate Call function (Section 2.3.6).

88

2. Check balance or send money to an Account.

We only permit smart contract calls for smart contracts that are included in the input,
thus those state variables are already included in the state. We limit the interactions with
accounts to a set provided in the input, thus those account balances are included in the
state. �

Theorem 2. Reduced-Solidity Safety is in PSPACE.

Proof. We will show that Reduced-Solidity Safety is in NPSPACE and from the Savitch's
theorem [102], PSPACE = NPSPACE, we can show that Reduced-Solidity Safety is in
PSPACE.

Reduced-Solidity does not allow reading arbitrary values from the blockchain. Thus
the only values from the blockchain that need to be stored in the state are:

� Account Balances,
� State Variables for each Smart Contract, and
� Function Parameters and Internal Variables

The account balance is stored as an unsigned integer, and all data types in Reduced-Solidity
are a �xed size. The size of the above state is polynomial to the size of the input. Thus we
can create a Turing machine, with size polynomial to the input, and where the alphabet
simulates the available actions in Reduced-Safety.

The alphabet used to simulate the EVM, is required to simulate transactions and
executing smart contract functions. All Solidity Smart Contracts functions halt, this is
due to the gas limit and is described in Section 2.3.7. Transactions are only added to the
blockchain if they are successful. A transaction can fail in 2 ways, a require statement
fails or the transaction runs out of gas. Thus our Turing machine needs some method of
reverting to the state before the transaction, in the event that a transaction fails. A simple
method is to duplicate the state parameters, copy the state into this backup state before
executing a transaction, and revert the state using the backup values in the case of a failed
transaction, otherwise do nothing. Thus we correctly simulate the EVM, ensure we halt,
and ensure the state is polynomial to the size of the input.

If a path exists from the initial state to a state which satis�es the safety query, then a
non-deterministic Turing machine can create a �nite path of non-deterministic actions to
this state and return TRUE for the decision problem. If no path exists, the Turing machine
will visit all, �nite, states and halt and return FALSE for the decision problem. Thus
Reduced-Solidity Safety is in NPSPACE and from Savitch's theorem [102], NPSPACE
= PSPACE, we show that Reduced-Solidity Safety is in PSPACE. �

89

Input Solidity Filestart Java/OO DApp FSM

Model Checking Model Checker Set of Decisions

Figure 5.2: Flow diagram of the steps required for the reduction from Reduced-Solidity-
Safety to Model Checking.

Theorem 3. Reduced-Solidity Safety is PSPACE-complete.

Proof. In Section 6.4, we reduce ATRBAC-Safety policies to Baked ATRBAC Smart Con-
tracts. We know from the work in Chapter 3 that the number of users required for
ATRBAC-Safety analysis is equal to the number of administrator role + 1. The state
of the reduced smart contract is described in Section 6.4.1. From this we can convert the
mapping data type to a �xed array for the address, we can also convert the mapping for
role id and timeslot id to �xed arrays. This new baked smart contract is now in Reduced-
Solidity formatting. In Section 6.4.3 we convert the safety query to a �bug bounty� query.
We can put a TRUE safety query (line 22 of Figure 5.1) at the end of this withdraw

function to create an embedded safety query.

This is a correct reduction from ATRBAC-Safety to Reduced-Solidity Safety ATRBAC-
Safety is PSPACE-complete and Reduced-Solidity Safety is in PSPACE. Thus Reduced-
Solidity Safety is PSPACE-complete. �

5.5 Reduction to Model Checking

The reduction from Reduced-Solidity Safety to Model Checking is outlined by the steps
shown in Figure 5.2. The input Solidity �le contains all Smart Contracts related to the
safety problem. This �le is converted into an internal Java object oriented (OO) represen-
tation. This representation is converted into a �nite state machine (FSM). The FSM is
converted to model checking, with all safety queries embedded. The model checker runs
and returns the solutions for each model checking speci�cation.

5.5.1 Experimental Reduced Solidity Features

The experimental implementation in this chapter only contains a subset of Reduced-
Solidity's supported features. Below is a list of the available features.

90

init

start

constructors Loop State

. . .C1.f1(unit a) Cm.fn() Error State

Gas Err State

.

return return return

Figure 5.3: Diagram of the Finite State Machine that is created from a single DApp.
The � . . .� state contains multiple states to simulate the function, all other states are added
to simulate Ethereum transactions.

� Multiple Contracts in a single �le
� State Variables, Function Parameters, and Local Variables
� Data Types: integer, unsigned integer, Boolean, Enum
� Data Change Statements (ex: a = a + 5, b=a & c & d)
� Constructors and Functions
� Function Modi�ers
� If Statements
� Require Statements
� Rolling Back State
� Optional Parameters: Gas Limit, INT/UINT limits

Using preprocessing, we can remove static loops through unrolling. Using state vari-
ables, we can simulate transferring ether from one Account to another.

5.5.2 Finite State Machine

From the Java OO DApp we create a Finite State Machine (FSM), which is used to simulate
the DApp and the Ethereum network in model checking. The outline of the FSM is shown
in Figure 5.3. The init state is used to start the FSM. The constructor states run the
constructor for all Smart Contracts in the DApp in the order that they are presented in
the Solidity �le. Once all constructors are sequentially created, the FSM enters the Loop
State. The Loop State represents the time between mined blocks on the Ethereum Network,
when returning to the loop state this symbolizes a new block has been mined. The loop
state is the special state that allows the model checker to use its internal heuristics to select

91

Loop State C1.f1(unit a) State Backup Param Selection Function Modifiers . . .

Write State

Rollback State

Error State

Gas Err State
return

Figure 5.4: Expanded view of a single function from Figure 5.3. The � . . .� state contains
many states that represent the actual logic of the function.

the next function to run. Once a function has �nished running, it will return the output
and return the Loop State.

Figure 5.4 shows an expanded view of the states that are called after the model checker
selects a function from the Loop State. The �rst state is called the Function Entry State,
shown as C1.f1(uint a). This state locks the model checker's heuristic choice. State Backup
copies the value of any state variables used in this function to temporary variables. The
temporary variables are used in place of state variables for all operations. The Parameter
Selection state allows the model checker to select any function parameter values. The
Function Modi�ers states sequentially perform the function modi�ers. Function modi�ers
can run code before and after a function is called, thus there is an implicit Function
Modi�ers states at the end of �. . .� state.

The states denoted using . . ., simulate the function and any function modi�ers that
have code after the function completes. During these states, if a require statement fails,
then the next state is Rollback State. The Rollback State does not do anything, since we
only used temporary variables, but this state allows for safety queries to incorporate the
rollback. (called the Gas Limit Section 2.3.5). If the function runs out of gas, the next
function is the Gas Error State.

In Ethereum, integers automatically over�ow and under�ow for arthritic operations, we
provide an optional parameter to simulate over�ow/under�ow on a limited ranged integer
or to go to the Error State. All transaction in Ethereum are provided with a Gas Limit
(see Section 2.3.5), where each operation costs gas, and if the gas limit is reached then the
transaction will fail, and all of the gas will be paid to the miner. We have provided an
optional parameter, in Section 5.5.6, to simulate a gas limit on the Attacker. If the sum
total of gas, over all states and transactions, is more than the attacker's gas limit then the
next state is Gas Error State. If no errors occur, then the function ends with the Write
State. In this state the temporary variables are written to the state variables. The Return
State is where the return value is passed to the calling function (if this is not called from
the loop state).

92

5.5.3 Available Queries

Due to the ability for functions to rollback, and for state variables to have multiple values
during a function call, but only the last one is saved to the block chain, several safety
queries are required to capture these scenarios.

State Reachability Does a path exist from the initial state to query state sq (corre-
sponds to a line of code) and then Loop State without rolling back. The State Reachability
query is denoted by /*!QUERY: TRUE ; UNREACHABLE*/. This query is placed on any line within a
Smart Contract function. This appears as a comment to the EVM compiler, and /*QUERY:

is our symbol to show it is a safety query. �TRUE� shows this query is a state reachability
query and �UNREACHABLE� is where the expected result is printed. The Expected Result
can be empty, but if provided with either REACHABLE or UNREACHABLE, it allows for more
visible error messages by our solver.

Boolean Expression Reachability Does a path exist from the initial state to the Loop
State such that the contract's state satis�es the Boolean expression. This is denoted by
/*!QUERY: <bool_expr> ; UNREACHABLE*/, in a Smart Contract but outside of a function. Lines 5-8
in Figure 5.1.

State and Boolean Expression Reachability Does a path exist from the initial state
to query state sq, where the contract's state satis�es the Boolean expression, and then
back to the Loop State without rolling back (failing a require statement). This Safety
Query appears in the Smart Contract, inside of a function. This is denoted by /*!QUERY:

<bool_expr> ; UNREACHABLE*/. The Boolean expression uses the values in the temporary state
variables.

5.5.4 Model Checking Speci�cs

The reduction to model checking creates a main module, which handles the FSM and the
attack gas limit, and a module for each of the smart contracts inside of the DApp.

The main module, outline shown in Figure 5.5, is the entry point for the model checker.
There are 3 sections de�ned in the main module:

� VAR � This section is where state variables are de�ned.

� _State � ENUM type of all states in the FSM.

93

� _QueryName � ENUM type of all safety queries and their internal names. Used for
back tracing the model checking output for speci�cations to Reduced-Solidity Safety
Queries.

� _GasLimit � Integer type, with a range of 0 to the user speci�ed gas limit. This is
optional. De�ned in Section 5.5.6.

� contract1 � All Smart Contracts are formatted as modules, here is where they are
instantiated.

� IVAR � This section is where the input variables are de�ned.

� nextFunc � Stores all functions that can be called from the Loop State. This stores
the Function Entry State for each function.

� ASSIGN � This section is where state variables are initialized and the state transitions
are de�ned.

� _State � The FSM is initialized to the start state. The FSM is encoded in the next
function. When in the Loop State, the model checker uses the input variable nextFunc
to select the next function to run (line 13).

� _GasLimit � The gas limit is initialized to the amount of total gas available. For
states that correspond to Solidity code, the _GasLimit will be reduced by an estimate
cost for that state; other states will not reduce the gas limit. The limit is reduced
until 0, then it forces the FSM to go into an error state (line 12).

� _QueryName � The query name has no de�ned initial value, nor are there any restric-
tions on the next value it can take. This means that for any state it can take any of
the available query names.

Figure 5.6 outlines the features contained in a smart contract module. Each smart
contract module is passed a reference to the current state and the query name. The smart
contract is not able to change the state, but it uses the current state to change internal
state variables and to accurately de�ne the safety queries. The _QueryName is indirectly
controlled by the smart contracts, when a query is successful, the _QueryName must equal
the Java internal query name. Since there are no restrictions on the state transition for
_QueryName, this variable assumes that value to make the model checking speci�cation
satis�ed.

The DEFINE section, in Figure 5.6, allows for all model checking speci�cations to
be de�ned. The reduction for these queries is de�ned below. In the VAR section the
smart contract state variables are de�ned and limited to this module's scope. This is
convenient due to similar scope rules in Solidity. A copy of all state variables, pre�x

94

1 MODULE main

2 VAR

3 _State : {start ,LoopState , }; -- ... all states

4 _QueryName : {BoolExprReachabilityQuery_0 , }; -- ... all query variable names

5 _GasLimit : 0 .. 50000; -- Optional Attacker Gas Limit

6 contract1 : contract_SimCon(_State ,_QueryName); -- Each Smart Contract

7 IVAR

8 nextFunc : {LoopState , }; -- ... all starting states for functions

9 ASSIGN

10 init(_State) := start;

11 next(_State) := case

12 _GasLimit = 0 : OutOfGasError;

13 _State = LoopState : nextFunc;

14 _State = start : LoopState;

15 -- ... the Finite State Machine

16 TRUE: _State;

17 esac;

18 init(_GasLimit) := 50000;

19 next(_GasLimit) := case

20 _State = SimCon_mfTest1_FunctionEntryState_ln20 : max(0, _GasLimit - 1);

21 -- ...

22 TRUE : _GasLimit;

23 esac;

Figure 5.5: Outline of the Main module for the model checking reduction.

Temp, is used to accurately simulate rollback for failed transactions. Function parameters
and internal variables are also declared here, but do not require any temporary variables.
Query and require variables are de�ned as required. Using modules allows for multiple
instantiations and provides scoping rules similar to Solidity; which reduces processing
during the reduction.

NuSMV supports the speci�cations: Computational Tree Logic (CTL) and Linear Tem-
poral Logic (LTL) (see Appendix B for details). Our reduction utilizes CTL speci�cations
for the safety queries. In Figure 5.7, we have the queries from lines 8 and 22 from Fig-
ure 5.1. The �rst query, named BoolExprReachabilityQuery_3, veri�es if a path from
the initial state to the Loop State exists, such that b > 0 is TRUE during the Loop State.
The second query, name QueryState_4, veri�es if a path from the initial state to the state
represented by line 22, where the Boolean expression TRUE is satis�ed and then the function
returns to the Loop State without rolling back.

The �rst query is a Boolean Expression Reachability safety query. The reduction creates
the following conjunction Boolean expression:

� _QueryName = BoolExprReachabilityQuery_3 � there is no restriction on _QueryName,
thus is can take any value. This is used for back tracing NuSMV output.

� _State = LoopState � Safety query is only valid during the Loop State.

95

MODULE contract_SimCon(_State ,_QueryName)

DEFINE

-- Define all Smart Contract queries (include query name for backreferencing)

CTLSPEC NAME BoolExprReachabilityQuery_0 := AG !(_QueryName = BoolExprReachabilityQuery_0

& _State = LoopState & StateVar_lock >0);

VAR

-- Define query variables

mfTest1_QueryVar_query_c1f1_QS_ln22 : {not_reached ,cond_reached ,cond_confirmed };

-- Define all Smart contract State Variables and their Temporary/Working variables for

rollingback

StateVar_b : 0 .. 200;

_Temp_StateVar_b : 0 .. 200;

-- Define all extra require statement variables

REQUIRE_SimCon_mfTest1_RequireState_ln15 : boolean;

ASSIGN

-- Initialize all variables

init(REQUIRE_SimCon_mfTest1_RequireState_ln15) := FALSE;

-- Assign next values for Require statements/State/query/

next(REQUIRE_SimCon_mfTest1_RequireState_ln15) := _Temp_StateVar_callCount <

_Temp_StateVar_maxCount;

Figure 5.6: Outline of the Smart Contract module for the model checking reduction.

� StateVar_b > 0 � The state variable (not the temporary variable) satis�es the Boolean
condition.

This Boolean expression is negated and the CTL AG operator is used. The AG operator
veri�es that the condition p must be true in all states that can be reached from the
initial state. We negate the Boolean expression to return a counter example if the state is
reachable.

The second query is a State and Boolean Expression Reachability safety query. This
reduction requires an additional state variable: mfTest1_QueryVar_query_c1f1_QS_ln22.
The transition table for this new variable is:

1. Initialized to not_reached.
2. Every Function Entry State resets the value to not_reached.
3. When the FSM reaches the Query State, and the Boolean expression is satis�ed using

the temporary state variables, then the value is changed to cond_reached; otherwise it
stays not_reached.

4. If the function reaches the Function Success State (after the Write State in Figure 5.4)
and the variable equals cond_reached, then it con�rms that no roll back has occurred
and the query has been satis�ed.

The NuSMV speci�cation is similar to the �rst query, except we use the additional variable
to determine if the query is satis�ed and we do not need to be in the Loop State.

96

1 MODULE contract_SimCon(_State ,_QueryName)

2 DEFINE

3 CTLSPEC NAME BoolExprReachabilityQuery_3 :=

4 AG !(_QueryName = BoolExprReachabilityQuery_3 & _State = LoopState & StateVar_b >0);

5 CTLSPEC NAME QueryState_4 :=

6 AG !(_QueryName = QueryState_4 & mfTest1_QueryVar_query_c1f1_QS_ln22 = cond_confirmed)

;

7 VAR

8 mfTest1_QueryVar_query_c1f1_QS_ln22 : {not_reached ,cond_reached ,cond_confirmed };

9 ASSIGN

10 init(mfTest1_QueryVar_query_c1f1_QS_ln22) := not_reached;

11 next(mfTest1_QueryVar_query_c1f1_QS_ln22) := case

12 _State = SimCon_mfTest1_EmptyState_ln19 : not_reached;

13 _State = SimCon_mfTest1_QueryState_ln3 & TRUE : cond_reached;

14 _State = SimCon_mfTest1_FunctionSuccessState_ln32

15 & mfTest1_QueryVar_query_c1f1_QS_ln22 = cond_reached : cond_confirmed;

16 TRUE : mfTest1_QueryVar_query_c1f1_QS_ln22;

17 esac;

Figure 5.7: Reduction for Safety Queries on lines 8 and 22 of Figure 5.1.

In Figure 5.8, we show the reduction of the require Solidity statement. Simulating
require statements need an additional Boolean variable to keep track of the require

function condition. This variable, pre�xed REQUIRE_, is initialized to FALSE. The variables
state transition table always set the next value to the result of the of the Boolean condition.
The Boolean condition uses temporary state variables. The FSMn in the main module,
use this variable to decide if execution should continue or if the function needs to roll back.
Roll back is simulated by not updating the state variables with the temporary variable
values. If execution continues, then we reach the Function Success State and update all
state variables with the temporary variable values.

5.5.5 Known Issue

Model Checking is well suited to small action spaces, due to the state explosion when
too many actions are available. Currently this experimental version is unable to represent
the full range for integer values. The signed and unsigned int data types have too many
potential values (2256). This creates a state explosion which makes simple safety queries
impossibly long to complete if the model checker is given the opportunity to select one of
these values for a function parameter. In the next section we provide a method of reducing
the available options for int and uint.

97

MODULE main

VAR contract1 : contract_SimCon(_State ,_QueryName);

ASSIGN

next(_State) := case

_State = SimCon_mfTest1_RequireState_ln15 & contract1.

REQUIRE_SimCon_mfTest1_RequireState_ln15 : SimCon_mfTest1_EmptyState_ln8;

_State = SimCon_mfTest1_RequireState_ln15 & !contract1.

REQUIRE_SimCon_mfTest1_RequireState_ln15 :

SimCon_mfTest1_FunctionFailedEndState_ln9;

esac;

MODULE contract_SimCon(_State ,_QueryName)

VAR

StateVar_b : 0 .. 200;

REQUIRE_SimCon_mfTest1_RequireState_ln15 : boolean;

ASSIGN

init(StateVar_b) := 0;

init(REQUIRE_SimCon_mfTest1_RequireState_ln15) := FALSE;

next(REQUIRE_SimCon_mfTest1_RequireState_ln15) := _Temp_StateVar_callCount <

_Temp_StateVar_maxCount;

next(StateVar_b) := case

_State = SimCon_mfTest1_FunctionSuccessState_ln32 : _Temp_StateVar_b;

TRUE : StateVar_b;

esac;

Figure 5.8: Reduction showing Require Statements and State Rollback.

5.5.6 Parameters

The following security and performance parameters were created.

Attacker Gas Limit

We can potentially speed up long running safety analysis through the use of limiting the
amount of gas the attacker is willing to spend. Every transaction, function call from the
Loop State, must be paid for by the account who is creating the transaction. There can be
multiple transactions from the same account inserted into the next block, and attacks can
take place over many blocks. Thus we cannot rely upon the Block Gas Limit as a method
for limiting the attacker.

In cryptography, factoring large products of primes is considered �secure� for classical
computers and given large primes. Given unlimited time and resources an attacker can
use brute force and classical computer algorithms to �nd the large primes that make the
factors. We can use this relative security to de�ne the security of a smart contract in terms
of the attacker. Realistically, this attacker won't �nd the factors before the application
that used them has changed to new factor or stopped working.

98

We imitate this by showing that �The Safety Query is unreachable for attackers for up to
100× 109 gas� (for 10 gwei/gas this equals 1000 eth ≈ $209× 103 USD). The cost in gas per
operation is always the same, but the cost of gas �uctuates, so to does the conversion rate
from Ether to other currencies (much more �uctuations than more established currencies).

This parameter is under active development and requires more accurate gas cost esti-
mation. Use this parameter with the following command: /*!AttackGasLimit: <int_gas>;*/

Signed/Unsigned Integer Limits

Due to the state explosion that occurs when an integer's value need to be selected by the
model checker (for function parameters), simple test cases become very hard to solve. To
mitigate this issue, the ability to reduce the size of integers has been provided. There exists
classes of inputs where the extreme range of integers is not required, i.e. the number of
books someone would like to buy. Using this setting can reduce the state space and �nd
reachable solutions faster. The current range for signed integers is -100 to 100, and unsigned
integers is 0 to 200. Changes to these limits can be made through the special commands:
/*!UINT_MIN: <uint>;*/, /*!UINT_MAX: <uint>;*/, /*!INT_MIN: <int>;*/, and /*!INT_MAX: <int>;*/.

Rede�ning the limits can allow for forcing focus of the model checking to interesting
ranges. Ethereum allows for over�ow and under�ow for integer arithmetic operations, and
this is correctly simulated in the reduction. De�ning integer ranges that are too small,
can result in incorrect safety analysis. Thus careful thought is required when de�ning the
ranges for signed/unsigned integers.

Error on Rollback

Simulating the rollback for failed functions can be expensive for the model checker since it
does not end a branch but creates a loop. We can disable the ability to simulate rollback
by having failed require statements go to the Error State. This parameter is enabled with
the command line option: -noRollback.

Error on Integer Over�ow/Under�ow

Solidity naturally over�ow/under�ows integer data types. This can cause bugs. This
option allows for any under�ow/over�ow operations to result in the Error State. If a
Smart Contract is not using a safe math library, then this option can be used to show how
operations would change if they did utilize the Safe Math library.

99

1 contract NonObvious {
2 uint a=3, b = 5 , c=0;
3 /*!QUERY: c = 17; REACHABLE */

4 /*!QUERY: c = 18; REACHABLE */

5 function func1 () public {
6 c = a + b ;
7 b = b − 1 ;
8 a = 2 ;
9 /*!QUERY: c<a & c<b;UNREACHABLE */ // BUG

10 }
11 function func2 () public {
12 b = b + a ;
13 }
14 function func3 () public {
15 a = 10 ;
16 }
17 }

Figure 5.9: Non-obvious simple Smart Contract.

5.6 Experimental Results

We have created over 30 Reduced-Solidity Safety test cases to show each supported feature
working. These smart contracts will be published along with the source code once it can
be made available. Below are 2 select examples which have interesting results.

The �rst experiment, in Figure 5.9, shows a simple obfuscated contract but where the
answers to the safety queries are non-obvious.

The safety query on line 3 is indeed reachable (as the expected result suggests). The counter
example below shows the initialization and all functions the model checker selected from
next_func. The Loop State is removed, but occurs between all functions.
s t a r t −> cons t ruc to r −> func2 −> func2 −> func2 −> func1 −> GOAL_STATE

The counter example for the safety query on line 4:
s t a r t −> cons t ruc to r −> func2 −> func3 −> func1 −> GOAL_STATE

The counter example for the safety query on line 9:
s t a r t −> cons t ruc to r −> func2 −> func2 −> func3 −> func2 −> func2 −> func2 −> func2
−> func2 −> func2 −> func2 −> func2 −> func2 −> func2 −> func2 −> func2 −> func2
−> func2 −> func2 −> func2 −> func2 −> func2 −> func1 −> GOAL_STATE

From the counter examples, it is possible for the safety queries on lines 3 and 4 to be
manually validated. The safety query on line 9 is harder to manually validate. This safety
query is reachable due to over�owing the value in c. The limits of the unsigned integer are
set 0 to 200, thus the length of this path is much smaller than it would be if the full 2256

unsigned integer range was used.

The second experiment, Figure 5.10, converts a Purchase Smart Contract (created by
the Ethereum company) into a Reduced-Solidity Safety smart contract. The original Smart

100

1 // unit mvalue (replaces msg.value), Accounts sender (replaces msg.sender)

2 contract PurchaseConverted {
3 // Removed all code that did not change from original Purchase Smart Contract

4 enum Accounts {Zero , S e l l e r , Buyer , Other}
5 Accounts public s e l l e r , buyer ;
6 /*!QUERY: buyer = seller; UNREACHABLE */ // POTENTIAL BUG

7 /*!QUERY: seller = Accounts.Other; UNREACHABLE */

8 constructor (uint mvalue) public payable {
9 s e l l e r = Accounts . S e l l e r ;
10 va l = mvalue / 2 ;
11 require ((2 * va l) == mvalue , "Value has to be even.") ;
12 }
13 // Abort the purchase and reclaim the ether.

14 function abort (Accounts sender) public o n l y S e l l e r (sender) i nS ta t e (State . Created) {
15 s t a t e = State . I n a c t i v e ;
16 // seller.transfer(address(this).balance);

17 /*!QUERY: TRUE; REACHABLE */

18 /*!QUERY: sender != Accounts.Seller; UNREACHABLE */

19 }
20 // Confirm the purchase as buyer. Transaction has to include `2 * val' ether.

21 function conf irmPurchase (Accounts sender , uint mvalue) public payable

22 i nS ta t e (State . Created) cond i t i on (mvalue == (2 * va l)) {
23 buyer = sender ;
24 s t a t e = State . Locked ;
25 /*!QUERY: TRUE; REACHABLE */

26 }
27 // Confirm that you (the buyer) received the item. This will release the locked ether.

28 function conf i rmRece ived (Accounts sender) public onlyBuyer (sender) i nS ta t e (State . Locked)
29 {
30 s t a t e = State . I n a c t i v e ;
31 // buyer.transfer(val);

32 // seller.transfer(address(this).balance);

33 /*!QUERY: TRUE; REACHABLE */

34 }
35 }

Figure 5.10: Converting Smart Contract from Section H.2 to current supported features.

Contract has been included for reference in Section H.2. The purpose of this contract is to
enable the selling of a product. The Seller deploys the contract and any potential Buyer
can start the purchase process. The smart contract in Section H.2 is a fully functioning,
Figure 5.10 accurately simulates this contract. Risk is mitigated in this contract by forcing
the buyer to send 2 times the cost of the product, they get a refund when they con�rm
that they have received the product. The seller locks up 2 times the value of the product
to show �good will�, and the intention of shipping the product. The refund of the extra
ether occurs by the buyer in confirmReceived.

Converting Section H.2 to Figure 5.10 requires the following steps. Replace addresses
with a limited enumeration called Accounts. The model checker now only has to work
with 4 accounts: Zero, Seller, Buyer, Other. The Zero address is the default value for
address data types. The Seller account is set during the smart contract constructor. Ac-

101

counts initiating a transaction are now being sent via function parameter instead of using
msg.sender. The model checker has the option of calling any function with any of the
Accounts.

When running this experiment through the reduction and solver, we �nd that there is
an interesting bug for the query on line 9, where the seller and the buyer can be the
same person. Buying your own product might seem innocent, but this can be a type of
fraud where buying your own products is used to show shareholders and the public that
the company is successful, thus in�ating the companies perceived worth.

5.7 Future Work

The following items are scheduled for future work on this project:

� Ethereum Accounts: Address data type, support for msg.sender and msg.value

� Account Transfer and Balance Queries: address(0xab12).balance,
address(0xab12).transfer(amount), address(this)

� Static Arrays and Mapping data type
� Loop Statements: while and for, with support of continue and break

� Intelligent Integer Selection: allow for full integer range but model checker selection is
more selective. Similar to the FSM _State and nextFunc.

� Support more CTL Speci�cations for more varied Queries. Speci�cally safety queries
concerning account balances given 2 Boolean expressions (A [p U q] from Section B.1).

A survey of previous Ethereum attack is written by Atzei et. al. [7] and a quantitative
analysis of smart contracts is provided by Chatterjee et. al. [24]. Future work will convert
the Smart Contracts used in previous attacks to Reduced-Solidity and then verifying that
our approach is able to verify the attack vectors used.

5.8 Conclusions

In this chapter we introduced Reduced-Solidity Safety and showed that it is PSPACE-
complete. We developed an experimental setup which parses Solidity �les, with embedded
safety queries as comments, creates a representation in Java, converts to a Finite State
Machine, reduces to Model Checking, and solves using a model checker. We outlined each

102

step in the reduction to show it is in polynomial time and presented 2 example Smart
Contracts for experiments. The �rst contract is small, but has non-obvious results where
manual analysis might not be feasible. The second experiment converts a Purchase smart
contract to a Reduced-Solidity Safety smart contract, by removing unsupported features
and adding security queries. We show that there is a bug in the contract, where the seller
and buyer can be the same person. From this work we have shown that safety analysis of
Solidity Smart Contracts is possible with the use of a model checker.

103

Chapter 6

Converting Administrative Temporal
Role Based Access Control (ATRBAC)
Policies to Ethereum Smart Contracts

Contents
6.1 Introduction . 105

6.2 Background . 105

6.3 Generic ATRBAC Smart Contract 105

6.4 Baked ATRBAC Smart Contract 108

6.5 Costs . 111

6.6 EIP 170 - Contract Code Size Limit 112

6.7 Conclusions . 113

Declaration of Contributions

I am the sole author of this chapter.

104

6.1 Introduction

Access control systems are a complex and important infrastructure in computer networks.
These systems deal with restricting access to many distributed assets, and are required to
high a high availability and be very secure. Access control systems provide an attractive
point of attack, since compromising these systems can provide access to all resources within
a network. Access control systems can be centralized, but are often distributed. If access
control is centralized, this provides a single point of failure. This is vulnerable to denial of
service attacks, and any malicious changes to the policy are accepted without veri�cation.

Access control in a distributed environment can mitigate the denial of service attacks.
Access control on a blockchain can mitigate attacks on a speci�c node, as a majority of
nodes is required to update the ledger in a blockchain. The immutability of blockchain also
provides history of all changes and thus visibility to access control attacks. The blockchain
makes all access control requests visible, and thus inappropriate and malicious requests
can be mitigated by security aware employees.

There are many access control schemes, we will focus on Administrative Temporal
Role Based Access Control (ATRBAC). This scheme generalizes the access matrix, RBAC,
TRBAC, and ARBAC. In this chapter, we create 2 methods for creating ATRBAC Smart
Contracts. The �rst method is called the Generic Smart Contract, which is a smart contract
where the access control policy is built on the Ethereum network after deployment. The
second method is called the Baked Smart Contract, where the ATRBAC policy is encoded
into the smart contract before deployment and cannot be altered after. We discuss the
bene�ts and costs with their deployment and use in Section 6.5.

6.2 Background

The background for Administrative Temporal Role Based Access Control (ATRBAC) poli-
cies is in Section 2.2, the background on the Ethereum network is in Section 2.3. The Cree
tool is used to read and model the ATRBAC policies, Chapter 3 describes the tool.

6.3 Generic ATRBAC Smart Contract

The goal of the Generic ATRBAC Smart Contract is to have a single smart contract that
can be deployed without modi�cation and can be used to create any ATRBAC policy.

105

Ethereum
Network

Super User

Admin User

Access
Control

User

Deploy Contract

Add Super Users

Add/Remove Rules

Add/Remove Role to User

Call Rule

Request
Access

Verify Access Request Access

Figure 6.1: All actors and actions which can be used with the Generic ATRBAC Smart
Contract.

This smart contract does not require any special tools, besides the tools to compile and
deploy to the Ethereum blockchain. After the smart contract is deployed, the account who
deployed is now a super user for that contract. This allows them to create the ATRBAC
policy and to update it in the future.

The Generic ATRBAC Smart Contract was created during the 36 hour ETH-Waterloo
hack-a-thon, held November 2019 in Waterloo Canada. It has since been modi�ed for this
chapter and is open source [110]. Another project was created for this chapter, which con-
verts existing ATRBAC policies into web3 commands to automatically deploy the generic
ATRBAC contract and create the ATRBAC policy [112]. The full Generic ATRBAC Smart
Contract has been provided in Appendix F.

Once the generic smart contract is deployed to the Ethereum blockchain it can be used
to simulate the User-Role aspects of an ATRBAC policy. Figure 6.1 shows the actions that
each user role can perform on the contract. Administrative users can �re Can Assign, Can
Revoke, Can Enable, and Can Disable rules. The super user is able to deploy, create, and
maintain the ATRBAC Smart Contract. All functionalities of ATRBAC policies, except
linking role to permissions, is contained in this smart contract. The Role-Permission table
is omitted due to storage space cost on the Ethereum blockchain, the Role-Permission table
is usually much larger than the User-Role table.

Once an account has deployed the Generic ATRBAC Smart Contract, the account is
saved as a Super User. Any Super User can add another account to the Super User role
using the suAddSuperUser(user). The purpose the Super User role is to build and update

106

contract ATRBAC {
RoleTimes lots . Role [] public t rbac_state ;
mapping(uint => mapping(uint => bool)) public role_enablement ;
Rule . r u l e [] ca_rules , cr_rules , ce_rules , cd_rules ;
Timeslot . t ime s l o t [] public t ime s l o t s ;
mapping(address=>bool) public super_users ;
constructor () public { }
// USER Actions

function hasAccess (address _user , uint _role , uint _times lot) public view

r o l eEx i s t s (_role) t ime s l o tEx i s t s (_times lot) returns (bool) { }
function getRoleName (uint _role) public view r o l eEx i s t s (_role) returns (string memory) {}
function ro leEnabled (uint _role , uint _times lot) public view

r o l eEx i s t s (_role) t ime s l o tEx i s t s (_times lot) returns (bool) { }
function f i reCanAss ignRule (uint _ruleIndex , address _targetUser) public { }
function f ireCanRevokeRule (uint _ruleIndex , address _targetUser) public { }
function f i reCanEnableRule (uint _ruleIndex) public { }
function f i r eCanDisab leRule (uint _ruleIndex) public { }

}

Figure 6.2: Outline of the User available data and functions from the ATRBAC Smart
Contract. Full code in Appendix F and [110].

rules for the ATRBAC policy. This is how ATRBAC policies are usually administered,
where the IT department has super user permissions over the policy and the access control
system.

The super user must �rst create all of role and timeslots that the policy requires, using
the contract functions suAddNewRole(name) and suAddNewTimeSlot(start_hr,end_hr).
These function are used to create ATRBAC rules: suAddCARule(...), suAddCRRule(...),
suAddCERule(...), and suAddCDRule(...); the parameters is the same as denoted in
Chapter 3 and are described in detail in Appendix F.

Once the ATRBAC rules are completed, the super users can add users to unreach-
able/restricted positions using the suAddRoleTimeslotToUser(user,role,timeslot). They
can also enable any roles that don't have rules attached to them using suEnableRole(-

role,timeslot). There are revoke and disable function to remove a role from a user and
to disable a role.

The policy is now setup and ready to be connected to an access control centre. Users
are identi�ed by their Ethereum wallet (public/private key), which can be generated free of
charge and a person can have as many wallets as they wish. When a user makes a request
for certain access to an asset, the access control system can check if they have access by
checking the current access control state (which is publically viewable) and grant/deny the
request.

All non-super user available actions are de�ned in Figure 6.2. Users who wish to �re a

107

Query : t1 , [goa lRole]
Expected : REACHABLE
// Path : CE−1 −> CE−2 −> CD−1 −> CE−3 −> CA−1 −> CA−2 −> CR−1 −> CA−3
CanAssign {
/* CA−1 */ < TRUE, t1 , TRUE, t1 , r o l e 3>
/* CA−2 */ <ro l e3 , t1 , ro l e3 , t1 , r o l e 2>
/* CA−3 */ <ro l e3 , t1 , r o l e 2 & NOT ~ ro l e3 , t1 , goa lRole>
}
CanRevoke {
/* CR−1 */ <TRUE, t1 , TRUE, t1 , r o l e 3>
}
CanEnable {
/* CE−1 */ <TRUE, t1 , TRUE, t1 , r o l e 1>
/* CE−2 */ <TRUE, t1 , ro l e1 , t1 , r o l e 2>
/* CE−3 */ <TRUE, t1 , r o l e 1 & NOT ~ ro l e2 , t1 , r o l e 3>
}
CanDisable {
/* CD−1 */ <TRUE, t1 , TRUE, t1 , r o l e 2>
}

Figure 6.3: Example ATRBAC Policy where the Safety Query is Reachable.

rule in the ATRBAC policy do so by sending a transaction to the Smart Contract for the
functions: fireCanAssignRule(rule,targetUser), fireCanRevokeRule(rule,targetUser),
fireCanEnableRule(rule), and fireCanDisableRule(rule).

We created a tool [112] to automatically generate the web3 commands to deploy the
Generic ATRBAC Smart Contract, create all the required roles/timeslots, and create each
rule. We web3 commands to convert the ATRBAC policy in Figure 6.3 into a Generic
ATRBAC Smart Contract, are found in Appendix G.

6.4 Baked ATRBAC Smart Contract

An alternative method to the Generic ATRBAC Smart Contract, is to �bake� an existing
ATRBAC-policy into a Smart Contract. Where the creation of the smart contract occurs
before deployment, and each smart contract only simulates a single instance of ATRBAC
policy. This shifts the costs away from users invoking rules to the organization who deploys
the contract. Baked smart contracts are immutable and cannot be altered after deployment.
The baked contract has no Super Users and only stores the TRBAC state table and Role
Enablement table. This project is open source [112].

In the following section we will �bake� the ATRBAC-Safety policy in Figure 6.3 into a
Smart contract. This will show a reduction from ATRBAC-Safety to Smart Contract.

108

mapping (address => mapping (uint => mapping (uint => bool))) public t rbac_state ;
mapping(uint => mapping(uint => bool)) public role_enablement ;

modifier noZeroAddress (address account) {
require (account != address (0) , "Address cannot be the zero address") ;
_;

}
modifier t a r g e t (boolean cond) {
require (cond , "Target User does not satisfy the preconditions for the rule.") ;
_;

}
modifier sender (boolean cond) {
require (cond , "Sender is not authorized to fire this rule at this time.") ;
_;

}
modifier r o l e (boolean cond) {
require (cond , "Target Role does not satisfy the preconditions for the rule.") ;
_;

}

Figure 6.4: The state variables and function modi�ers used in Baked ATRBAC Smart
Contracts.

6.4.1 State and Modi�ers

The Baked ATRBAC Smart Contract has a smaller state, shown in Figure 6.4, compared
to the Generic ATRBAC Smart Contract. The �baked� smart contract's state only stores
the TRBAC and Role Enablement tables. The role enablement variable is de�ned the same
as in Figure 6.2. Which is a mapping from the id of the role to a mapping from the id of
the timeslot to a Boolean value. By default, if a value does not exists in a mapping, it will
return the default value of that data type (Boolean = false). This agrees with the initial
conditions assumed by ATRBAC-Safety. The TRBAC State is rede�ned since all roles
and time slots are known before hand. This becomes a mapping from the user's account
address to a mapping similar to the role enablement variable. This reduces the size of the
smart contract from the Generic version, but it removes the ability to reverse lookup roles
based on names.

In solidity, a function modi�er wraps the statements of a function, which allows for code
to be run before and after a function executes. The modi�er is provided a callback function
(_;), which it can choose to call the callback function, force the transaction to fail, or return
without calling. In the Baked Smart Contract, we utilize function modi�ers to reduce the
size each function. In Ethereum, the zero address can never represent a real account, but
it is the default value for the address data type, thus it should never be used to indicate
a user; this constraint is covered with noZeroAddress modi�er. In order for an ATRBAC
rule to �re, the admin user (represented by msg.sender) must satisfy the admin condition,

109

// /* CA -3 */ <role3 , t1, role2 & NOT ~ role3 , t1 , goalRole >

function f ireCA3Rule (address _targetUser) public noZeroAddress (_targetUser)
sender (t rbac_state [msg . sender] [0] [0] == true)
t a r g e t (t rbac_state [_targetUser] [3] [0]== true && trbac_state [_targetUser] [0] [0] == fa l se)

{
trbac_state [_targetUser] [2] [0] = true ;

}
// /* CE -3 */ <TRUE , t1 , role1 & NOT ~ role2 , t1, role3 >

function f i reCE3Rule () public

r o l e (role_enablement [1] [0] == true && role_enablement [3] [0] == fa l se)
{

role_enablement [0] [0] = true ;
}

Figure 6.5: Converting rules for Baked ATRBAC Smart Contracts.

for Can Assign/Can Revoke the target user must satisfy the precondition, and for Can
Enable/Can Disable the target role must satisfy the precondition. These constraints are
covered with sender, target, and role function modi�ers.

6.4.2 Convert Rules

Within a Baked Smart Contract, each converted ATRBAC rule is given its own function.
In Figure 6.5, we show the converted Can Assign rule CA-3 and Can Enable rule CE-3 from
Figure 6.3. The constraints for each rule are converted into function modi�er calls. Any
constraint that is TRUE, will be excluded from the list of constraints. Within the function,
the TRBAC or Role Enablement states are directly altered. Can Assign and Can Revoke
rules use the TRBAC state for the admin and target user conditions. Can Enable and Can
Disable rules use the TRBAC state for the admin conditions and the Role Enablement
state for the target role conditions. The above accurately simulates ATRBAC policies.

6.4.3 Convert Safety Query

Performing safety analysis on the Ethereum network would be too expensive, slow, and
currently impossible for non-trivial safety queries due to the gas block limit. Thus we
convert the safety query into a bug bounty, show in Figure 6.6. Bug bounties have proven
very useful for software companies, Google paid $6.5 million USD in bug bounty rewards in
2019 [81]. This bug bounty allows anyone to send Ether to the contract, but only someone
who satis�es the safety query can withdraw from the smart contract's balance. This allows
the company, or any stakeholder, to put money into the bug bounty. If anyone is able to
retrieve the balance, then the list of steps to get to the safety query state is saved in the

110

// Query : t1 , [goalRole]

function withdraw (uint256 amount) public {
require (amount <= address (this) . balance , "Not Enough Funds") ;
require (t rbac_state [msg . sender] [2] [0]== true , "User does not satisfy the Safety Query")

;
msg . sender . transfer (amount) ;
}

Figure 6.6: Converting the Safety Query into a Bug Bounty for Baked ATRBAC Smart
Contracts.

Ethereum blockchain. From this, security administrators can alter their polices to remove
the safety vulnerability and reward and security researcher for their e�orts and results.

6.5 Costs

Ethereum is an attractive option for companies: account creation is free, fees for trans-
actions are small, reading/viewing data is free, and the fees are directly related to the
amount of gas/work executed by the miners. For most small to medium sized companies,
the cost to recreate the Ethereum network is too signi�cant to be practical.

In Table 6.1, we outline the costs of converting the ATRBAC policies from Ranise et al.
[93]. These ATRBAC policies represent real University ATRBAC policies and thus can
provide a good estimation of the cost for deploying a Generic or Baked ATRBAC Smart
Contract.

The �rst column in Table 6.1 is the ATRBAC policy �le. The next 3 columns provide
the number of unique roles/timeslots/rules in the policy. This indicates how large the
TRBAC State and Role Enablement table are. The Generic Gas column represents the
total cost, in gas, for deploying and setting up the Generic ATRBAC Smart Contract. This
includes the steps: deploy contracts and libraries, all transactions to add roles/timeslots,
all transactions to create rules (see Appendix G). The Baked Gas column represents to
deployment costs, in gas, for each Baked ATRBAC Smart Contract.

Once deployed, all access control changes made by the administrators cost gas per trans-
action. It costs approximately 75 000 gas ≈ $0.31 USD to execute one fireCanAssignRule
function in the Generic ATRBAC Smart Contract. Functions that have the keyword view,
like hasAccess and getRoleName in Figure 6.3, do not cost any gas to run locally. If a
view function gets called during a transaction, then the statements inside that function
do cost gas. To call a can assign rule in a Baked ATRBAC Smart Contract the cost is
approximately 45 000 gas ≈ $0.19 USD.

111

Table 6.1: Costs for Converting Ranise et al. [93] �University� ATRBAC policies to
Generic and Baked Smart Contracts. 10× 106 gas ≈ $41.6 USD, 150× 106 gas ≈ $624 USD
(using 20 gwei/gas).

Roles Timeslots Rules Generic Gas Baked Gas

AGTUniv01 30 5 220 10,680,294 gas 42,291,721 gas
AGTUniv02 33 5 224 10,831,662 gas 32,917,668 gas
AGTUniv03 31 11 483 16,766,814 gas 75,101,757 gas
AGTUniv04 33 10 491 17,047,898 gas 76,342,997 gas
AGTUniv05 33 20 542 18,322,046 gas 79,908,514 gas
AGTUniv06 30 20 560 18,751,430 gas 90,026,032 gas
AGTUniv07 32 30 784 23,997,078 gas 147,290,341 gas
AGTUniv08 30 30 802 24,326,650 gas 148,317,445 gas
AGTUniv09 32 40 938 27,732,874 gas 191,105,053 gas
AGTUniv10 31 40 994 28,994,414 gas 150,517,292 gas

From the from the deployment costs in Table 6.1 we see that the Generic ATRBAC
Smart Contract costs much less than the Baked ATRBAC Smart Contract. This is because
new functions have a high gas cost to create. The higher deployment costs for the Baked
ATRBAC Smart Contract reduces the transactional cost. The Generic Smart Contract is
able to update over time, at a relatively low cost to add/remove a rule. Whereas a new
Baked Smart Contract needs to be deployed for any alteration to the policy. The limited
features of the Baked Smart Contract is ideal for well designed ATRBAC policies where
expansion is not required. The Generic Smart Contract is ideal for organically written
ATRBAC policies, where they are updated as needs arise. This versatility of the Generic
ATRBAC Smart Contract is at the cost of a new attack vector.

6.6 EIP 170 - Contract Code Size Limit

Ethereum Improvement Proposals (EIP), are proposals for change to the Ethereum net-
work. Each EIP is given a number, title, and description. EIPs are debated, and those
which are implemented are known as Accepted EIPs. The Accepted Ethereum Improve-
ment Proposals (EIP) 170 [23] proposed to limit the maximum smart contract code size.
This EIP e�ects the size of ATRBAC policies which can be baked. EIP 170 was imple-
mented at Block Number 2675000, and it limits the maximum size of smart contract to

112

24576 bytes. This limit only e�ects the size during deployment, the smart contract can
grow after this. All ATRBAC policies can be converted to the Generic ATRBAC Smart
Contract within this limit. ATRBAC policies with more than 400 rules cannot be converted
to Baked ATRBAC Smart Contracts.

By splitting the Baked functions into new smart contracts and utilizing delegate calls,
we can convert any ATRBAC policy into a Baked ATRBAC Smart Contract. EIP 2535
[74], the Diamond Standard, provides a method of splitting contracts and utilizing delegate
calls.

EIP 170 has found critism within the Ethereum community and might not stay im-
plemented. EIP 1662 [44], called �Removing Contract Size Limit�, proposes removing the
maximum deployment contract size which EIP 170 implemented.

In Section 6.5, EIP 170 prevented gas estimates for the baked smart contracts. We
changed the version of the solidity compiler to v0.4.24, which was created before EIP 170
was implemented. This change required running Ganache [43] (locally hosted Ethereum
Blockchain) with the �allowUnlimitedContractSize �ag and set the block gas limit
(�gasLimit) equal to 0x1FFFFFFFFFFFFF.

6.7 Conclusions

In this chapter we have created two methods for automatically creating ATRBAC Smart
Contracts. The Generic ATRBAC Smart Contract needs no modi�cation before deploying
it to the Ethereum network. Once deployed it can be updated with new roles/timeslots
and rules. The list of super users can be expanded to include more people and accounts can
be removed from super user access. Setting up the ATRBAC policy requires transactions
for creating roles/timeslots and for each rule. The second method Bakes the ATRBAC
policy into a smart contract. This setup occurs locally, and only 1 transaction is required
to deploy the ATRBAC Smart Contract.

The deployment costs are much higher Baked ATRBAC Smart Contracts. The costs
are higher to �re rules in the Generic Smart Contract. Thus it is possible over the life time
of an ATRBAC policy that the costs of Generic can exceed the costs of the Baked smart
contract due to frequent transactions.

Due to the accepted EIP 170 [23], the maximum size of a Baked ATRBAC Smart
Contract is limited to 24576 bytes. There are methods to take a large smart contract
and, using delegate calls, to create multiple smart contracts which are all below EIP 170's

113

threshold. One process to perform this is outlined in EIP 2535 [74]. If EIP 1662 [44] is
accepted, the limit imposed by EIP 170 will be removed.

If customizability is required in the ATRBAC policy, then the Generic method is better.
If immutability is required, then the Baked method would be preferred. The Generic
method can be made immutable by removing all super users. If reduced transaction costs
are preferred then the Baked method is preferred. Generic ATRBAC Smart Contract have
much smaller deployment costs.

114

Part II

Problems Reduced to Integer Linear
Programming

115

Chapter 7

Vagabond: Using VM Scheduling to
Combat Side-Channels in Cloud
Systems

Contents
7.1 Introduction . 117

7.2 Minimizing Information Leakage 122

7.3 Reductions to ILP . 127

7.4 Empirical Assessment . 129

7.5 Minimum Total Information Leakage Attack 134

7.6 Future Work . 137

7.7 Conclusions . 137

Declaration of Contributions

This chapter is based o� the paper [60], written by: Nahid Juma, Jonathan Shahen (thesis
author), Khalid Bijon, and Mahesh Tripunitara. The contributions included in this chapter
are my contributions to that paper. All sections, except for Section 7.5, are copied from
[60], with modi�cations to �t within this thesis. Section 7.5 was created after [60] and
solely my work.

116

7.1 Introduction

Cloud computing has become an important paradigm by o�ering �exibility and cost-
e�ectiveness to both providers of infrastructure and services, and their clients. An aspect of
cloud computing is virtualization, which enables providers to host virtual machines (VMs)
of multiple clients on the same physical infrastructure. Multiple VMs may reside on the
same server, which we call co-resident. While co-residency has bene�ts, such as economies
of scale, it gives rise to a serious security threat. Information may leak from a victim
client's VM to a malicious co-resident VM via a side-channel attack. In such an attack,
the attacker runs a VM on the same server as the victim's VM and takes advantage of a
shared physical component in order to extract information about the victim. For example,
the attacker may retrieve the victim's cryptographic key by observing the activity of the
processor cache. Prior work exposes several such co-residency side-channels in shared cloud
environments [54, 55, 71, 80, 96, 128, 148, 155, 156].

A straightforward solution to this security issue is hard-isolation: preclude co-residency
and give each client dedicated hardware. This is unfavourable because it reduces e�cient
use of resources. Several other defences that do not involve the complete elimination of
co-residency have been suggested by prior work [136, 87, 84]. Many of these defences
su�er from at least one of the following drawbacks. Firstly, they entail changes to existing
deployments and applications (see Section 7.1.1 and [73] for a discussion). Secondly, they
are catered speci�cally to known cross-VM side-channel attacks. Therefore, as new attacker
capabilities are unveiled, more changes may have to be made. It is desirable to have
defences that are general across a broad spectrum of side-channel attacks and immediately
deployable with no or only few modi�cations to existing cloud hardware and software.

With this objective in mind, scheduler-based defences have been proposed in recent
work by Moon et al. [73]. These can be thought of as a realization of the moving target
defence philosophy to mitigate side-channels [35]. The mindset is that security is a factor
which should be considered when deciding how VMs are placed on servers, rather than as
an after-thought.

A scheduler has several mechanisms it can employ to maximize security. Two that have
been explored in recent prior work by Moon et al. [73] are the following. A scheduler can be
careful with where it places a newly arrived VM thereby limiting information leakage from
or to it. Migration of existing VMs is yet another mechanism, with the intent that a victim
VM does not leak too much information to a co-resident malicious VM. In Figure 7.1, we
illustrate a scheduler-based defence. In the �gure, a scheduler places and migrates client
VMs in a manner that minimizes information leakage between them.

117

Time Epoch

1 2 3

Free slots

Client A

Client B

Client C

Figure 7.1: Scheduling actions that can reduce information leakage. Time is discretized
into periods called epochs. A scheduler places VMs, such as the ones that arrive in Epoch
1 and are placed in Epoch 2. It also migrates VMs, which results in a new placement
for Epoch 3. We use this example in several sections of the chapter. In particular, the
placement in Epoch 2 may or may not be considered to su�er from more information
leakage than the one in Epoch 3, depending on the model for leakage that we adopt.

Scheduler-based defences appear to have promise as they o�er several advantages.
Firstly, they focus on the root cause of side channels, i.e. co-residency, and are agnos-
tic to the speci�c side-channel attack used. This makes them robust against unforeseen
side-channels that meet certain conditions [73]. Secondly, they require no changes to the
cloud provider's hardware, client applications, and hypervisors and can be deployed �out
of the box� as they require only changing the VM placement and/or scheduling algorithm
deployed by the cloud provider. While we acknowledge that there may be other defences,
e.g. shielded execution [10], that also o�er these advantages to some extent, our focus in
this work is on scheduler-based defences.

An important contribution of Moon et al. [73] is four models that quantify information
leakage in co-resident settings. These allow for the security-sensitive scheduling problem
to be posed precisely as an optimization problem � given a migration budget, we seek a
placement of VMs on servers that minimizes information leakage. That work explores three
approaches to solve the problem, namely a mapping to ILP, an initial greedy algorithm
called Baseline Greedy, and a �nal greedy algorithm whose associated software is called
Nomad.

7.1.1 Related Work

Cross-VM side-channel attacks Ristenpart et al. [96] were among the �rst to show
how an attacker can map the internal cloud infrastructure using network probing in order

118

to achieve co-residency with a victim VM, and how the co-residency can be exploited to
extract coarse-grained information such as keystroke patterns.

This was followed up by the work of Zhang et al. [155] who showed how a Prime+Probe
side-channel attack on upper level cache can be used to extract more �ne-grained informa-
tion such as an ElGamal decryption key. In the prime stage, the attacker �lls a portion of
cache and then waits to allow the victim to access cache. In the probe stage, the attacker
reloads the primed data and uses the probe time to decide whether the victim accessed
that portion of cache. Prime+Probe attacks on last level caches that make use of huge
page-sizes have also been studied [71, 54, 52].

Research has also shown how �ne-grain information can be extracted using Flush+Reload
techniques [156, 55, 148]. In the �ush stage, the attacker �ushes out certain lines in mem-
ory and waits to allow the victim to access them. In the reload stage, the attacker accesses
the �ushed lines. If any such line does not take long to load, the attacker knows the line
was accessed by the victim.

Other works have shown that sharing of same-content memory pages among co-resident
clients poses the threat of a memory disclosure attack [80, 128]. The attacker can identify
which pages it shares with a victim and take advantage of di�erences in write times to gain
information about the victim's applications and OS.

Of course, other kinds of side-channels may exist. For example, the work of Xu et
al. [145] considers the issue of excluding the operating system from the trusted computing
base, and side-channels that can result as a consequence. As another example, the work of
Shinde et al. [122] considers side-channels based on page-faults. Such attacks can certainly
underlie cross-VM side-channel attacks. For example, if a benign VM runs a particular
kind of application that allows a malicious VM that is co-resident to cause a page-fault, it
may be vulnerable to the latter kind of attack.

Defences To counter such attacks, several defence strategies have been proposed. At a
hypervisor level, Vattikonda et al. [136] proposed hiding a program's execution time by
eliminating �ne grained timers. Kim et al. [63] used statistical multiplexing to protect
against cache-based side-channel attacks in the cloud. They proposed a set of locked cache
lines per core that are e�ciently multiplexed amongst co-resident VMs and never evicted
from the cache. Raj et al. [87] identi�ed Last Level Cache (LLC) sharing as one of the
impediments to �ner grain isolation, and proposed two resource management approaches
to provide performance and security isolation - cache hierarchy aware core assignment and
page colouring based cache partitioning. Shi et al. [121] proposed an approach that lever-
ages dynamic cache colouring: when an application is doing security-sensitive operations,
the Virtual Machine Manager (VMM) is noti�ed to swap the associated data to a safe and

119

isolated cache line. Varadarajan et al. [135] suggested introducing a minimum run time
(MRT) guarantee into the Xen scheduler, to limit the frequency of preemptions.

At a guest OS level, Zhang et al. [157] proposed a method by which a tenant can
construct its VMs to automatically inject additional noise into the timings that an attacker
might observe from caches. Pattuk et al. [84] suggested partitioning cryptographic keys
into random shares and storing each share in a di�erent VM. Zhou et al. [162] presented
a software approach which dynamically manages physical memory pages shared between
security domains to disable sharing of LLC lines.

At a hardware level, some works have proposed modifying the cache architecture to
obtain access randomization [70, 140] while others have explored the partitioning of cache
[82]. In recent work, Liu et al. [69] demonstrated how to combat LLC side-channel attacks
by using the Intel Cache Allocation Technology (CAT) to partition the LLC into a hybrid
hardware-software managed cache.

As many side-channel attacks are based on the observances of memory access, a promis-
ing defence strategy is to use Oblivious RAM (ORAM) to randomize data access patterns
[42, 125]. When an adversary observes the physical storage locations accessed, the ORAM
algorithm ensures that they have negligible probability of learning the true access pattern.

An approach that focuses on isolation is that of shielded execution, for example, by using
Intel SGX enclaves [10]. Chen et al. [25] presented a software framework that enables a
shielded execution to detect page-fault side-channel attacks.

Various scheduler-based defences have also been explored. Y. Zhang et al. [158] pro-
posed periodically migrating VMs using methods based on game theory. Azar et al. [9]
focused on mitigating co-location attacks, on the premise that they are a necessary �rst
step to performing cross-VM attacks. They suggested assigning VMs to servers such that
attack VMs are rarely co-located with target VMs. Their model is based on co-location
rather than on information leakage. Han et al. [47] also studied how to minimize the at-
tacker's possibility of co-locating their VMs with targets. They introduced a security game
model to compare di�erent VM allocation policies and advocated selecting an allocation
policy statistically from a pool instead of having a �xed one. Bijon et al. [18] proposed an
attribute-based constraints speci�cation framework that enables clients to express essential
properties of their resources as attributes. A constraints enforcement engine then sched-
ules the VMs while respecting the con�icts speci�ed by these attributes. Han et al. [48]
proposed metrics which can be used to assess the security of a VM allocation policy.

The work that is most closely related to ours is by Moon et al. [73]. They characterized
information leakage models which can be used to pose the security-sensitive scheduling
problem precisely and explore various approaches to address the problem. Our work di�ers

120

from theirs in the following ways: (1) We analyze the problem's computational complexity
(in [60]), (2) Our reduction to ILP is polynomial time, while theirs can be exponential
time for a certain encoding of input, (3) We also investigate the approach of reducing to
CNF-SAT and employing a SAT solver (in [60]), (4) Our approaches guarantee security
whereas their �nal approach, Nomad, does not, and (5) We show a new attack which occurs
in non-zero information leakage systems.

7.1.2 Summary of Conference Paper Contributions

This chapter is based o� the work done in Juma et al. [60]. Here we will summarize the
important contributions that paper made that are not part of this chapter.

1. We show that a decision version of the problem, to which the optimization version
reduces polynomially, is in NP. We show also that the problem is indeed NP-hard and
is therefore NP-complete.

2. We then establish that even the special case of the problem for closed systems, under
the 〈R,C〉 model for information-leakage, is NP-hard.

3. Our second set of contributions is an analysis of the three approaches taken by Moon et
al. to address security-sensitive scheduling [73]. We analyze their mapping and observe
that while it does appear to be a reduction, it can be ine�cient � there exists an encoding
of placement for which the output of the mapping from that work is exponential in the
size of its input.

4. A reduction from this problem to CNF-SAT was created and included as part of the
testing.

7.1.3 Contributions

We reduce the problem to ILP with the intent of adopting an ILP solver as an oracle. Our
reduction to ILP di�ers from that of prior work in that ours is computable in polynomial-
time, and, as a consequence, the size of its output is polynomial in the size of the input.

We have implemented our ILP approach in this chapter and the CNF SAT approach
in [60]. Also, we have conducted an empirical assessment of our approaches, and Nomad.
We have validated some of our analytical observations on Nomad against its implemen-
tation. We implemented both reductions due, from practice, that SAT/ILP solvers may
not demonstrate the same performance on all input instances. Thus, even though both

121

CNF-SAT and ILP are NP-complete, it is interesting to investigate whether one of those
approaches outperforms the other for di�erent classes of input instances.

Our ILP implementation is discussed in Section 7.3, and we make empirical observations
in Section 7.4. Our empirical observations are consistent with the main themes of this work.
We �nd that while approaches based on reduction to ILP and CNF-SAT do not scale as
well as Nomad, their scalability appears to be much better than previously reported [73]
� for example, for a cluster of 40 servers, an approach based on reduction to ILP takes 4
minutes, and not longer than a day as previously reported (see Section 7.4).

In Section 7.5, we show a new attack that occurs with the previous reductions and
Nomad, in non-zero information systems and using Total Information Leakage. We propose
an alternative reduction to ILP to solve this attack. We perform an empirical analysis on
the 2 ILP reductions within this attack case in Section 7.5.1.

7.2 Minimizing Information Leakage

In this section, we describe the problem posed by Moon et al. [73]. The problem is: given
(i) a set of clients, each having a number of VMs, (ii) a set of servers, each having a capacity
expressed as a number of VMs, and (iii) a migration budget, that limits the number of
VM migrations that can occur, what is a placement of VMs on servers that minimizes
information leakage? Our exposition is similar to that of Moon et al. [73], with changes
for clarity only.

Setup Time is discretized into periods called epochs. A VM is a virtual machine, which
is containerized software, similar to a process in a conventional operating system. A VM's
execution may last several epochs. A client is associated with a set of VMs; every VM
belongs to a client. The set of VMs that belong to a client can change over time. A server
is a machine on which a VM runs; the VM is said to be hosted by that server. A server is
able to host a maximum number of VMs at any given time, this is called the capacity. VMs
may be moved and hosted by a di�erent server in a later epoch, this is calledmigration. VM
migrations occur seamlessly, meaning the VM is not aware of the migration. A potential
victim client has some secret information in her VMs. A malicious client attempts to steal
the secret of a victim client via information-leakage across VMs that can occur when the
VMs are co-resident, i.e., hosted by the same server. We do not know beforehand which
VMs are potential victims, and which are malicious. In the leakage models we consider,
clients do not share secrets, and a client's secret may be present in more than one of its
VMs. Figure 7.1 shows three servers and clients, and six VMs across those three clients,

122

spanning three epochs. These notions are further explained by Table 7.1, which presents
the symbols we use in our calculations of information-leakage.

We quantify information as a certain number of bits. We premise that merely owing
to co-residency of a victim and a malicious VM, information leaks from the former to the
latter. Information that leaks from a VM to another aggregates over the time that the
two VMs are co-resident. In order to aggregate information leakage as a function of co-
residency over time, we consider a sliding window of the most recent 4 epochs. This can
model secrets, such as cryptographic keys, that are refreshed periodically; information the
adversary gathered in previous sliding windows is no longer useful to her. We assume that
during an epoch, a VM leaks 1 bit to another that is co-resident. This can be generalized to
the case that the amount of leakage is some constant, k bits. The value k can then be used
to model the time-length of an epoch. The amount of information leaked from a victim to
an adversary is proportional to the time their VMs are co-resident with one another. For
example, if a VM of Client A is co-resident with a VM of Client B for 2 epochs, then the
total information leaked from Client A's VM to Client B's VM over 2 epochs is 2 bits.

Replication and Collusion Replication means that information is duplicated across
a victim client's VMs. This is potentially advantageous for an attacker because when
an attacker VM is co-resident with multiple victim VMs, under the assumption that the
attacker VM extracts di�erent bits of information from each victim VM, the rate of leakage
to the attacker increases. For example, in Figure 7.1, for the placement in Epoch 2, with
replication, Client C (black), on server 1, gains twice as many bits from Client A (white)
than it would without replication.

Collusion means that a malicious client's VMs can collaborate with one another. This
is potentially advantageous for the attacker because when multiple attacker VMs are co-
resident with a victim VM, under the assumption that each attacker VM extracts di�erent
bits from the victim VM, the rate of leakage to the attacker, as a whole, increases. In
Figure 7.1, for the placement in Epoch 2, with collusion, Client A (white), on server 1,
gains twice as much information from Client C (black) than it would without. As in prior
work, we denote the presence of replication and collusion by R and C respectively, and
the absence by NR and NC respectively. This leads to four possible leakage models:
〈NR,NC〉, 〈R,NC〉, 〈NR,C〉, 〈R,C〉.

Information Leakage Models We now describe how client-to-client leakage is calcu-
lated under the four models, using the example in Figure 7.2.

For the 〈NR,NC〉 case, the information leakage from client c to client c′ is the maximum
per-VM-pair information leakage across all pairs of VMs. This is the information which

123

Table 7.1: Symbols used for calculating Total Information Leakage.

Symbol Meaning Symbol Meaning
vc,i The ith VM of client c. X,xi X = {x1, x2, . . . , xn} is a set of in-

tegers where xi denotes the num-
ber of VMs that belong to the ith

client.
Yc,i,c′,i′(e

′) Indicator variable {0, 1}. It takes
the value of 1 if vc,i and vc′,i′ are
co-resident on a server during an
epoch e′. Otherwise 0.

S, sj S = {s1, s2, . . . , sk} is a set of inte-
gers where sj denotes the number
of VMs the jth server can host.

Ic,i,c′,i′(e,4) The VM-to-VM information leak-
age from vc,i to vc′,i′ over the slid-
ing window of epochs [e − 4, e].
This quantity is calculated as

e∑
e′=e−4

Yc,i,c′,i′(e
′)

A, ai A = {a1, a2, . . . , an} is a set of inte-
gers where ai denotes the number
of VMs belonging to the ith client
which have arrived in this epoch.

Ic,c′(e,4) The client-to-client information
leakage from c to c′ over the sliding
window of epochs [e − 4, e]. This
quantity is dependent on the pres-
ence (R,C) or absence (NR,NC)
of replication and collaboration.

F, fe F = {fe−1, fe−2, . . . , fe−4}, where
each fe encodes the placement of
VMs in servers in the eth epoch.
Entries in F can be used to express
VMs that depart.

Itotal(e,4) The total information leakage over
the sliding window of epochs [e −
4, e], under one of the four leak-
age models, {R,NR} × {C,NC}.
This quantity is calculated by ag-
gregating the client-to-client leak-
age across all pairs of clients.

m An integer that is the migration
budget. Each kind of migration
(e.g., swap VMs on two servers)
has a cost associated with it. A
special symbol, ∞, for m, is used
to indicate that we are to be uncon-
strained by a migration budget.

124

leaks to the adversary VM that is co-resident with the same victim VM for the largest
number of epochs:

〈NR,NC〉: Ic,c′(e,4) = max
i

max
i′

Ic,i,c′,i′(e,4)

In Figure 7.2, the maximum VM-to-VM leakage from the blue client (B) to the red client
(R) is 2 bits, so the leakage from B to R under 〈NR,NC〉 is 2 bits over the three epochs.

For the 〈R,NC〉 case, there is a cumulative e�ect across victim VMs. The information
leakage from client c to client c′ is determined by the adversary VM that has extracted the
most information:

〈R,NC〉: Ic,c′(e,4) = max
i′

[∑
i

Ic,i,c′,i′(e,4)

]

In Figure 7.2, R1 obtains the most information, a total of 1+2=3 bits, so the leakage from
B to R under 〈R,NC〉 is 3 bits.

For the 〈NR,C〉 case, there is a cumulative e�ect across adversary VMs. The informa-
tion leakage from client c to client c′ is determined by the victim VM that has leaked the
most information:

〈NR,C〉: Ic,c′(e,4) = max
i

[∑
i′

Ic,i,c′,i′(e,4)

]

In Figure 7.2, B1 and B2 each leak a total of 1+2=3 bits, so the leakage from B to R under
〈NR,C〉 is 3 bits.

Finally for the 〈R,C〉 case, there are cumulative e�ects across both victim and adversary
VMs:

〈R,C〉: Ic,c′(e,4) =
∑
i

∑
i′

Ic,i,c′,i′(e,4)

In Figure 7.2, the sum of all bits leaked from B's VMs to R's VMs is 6, so the leakage from
B to R under 〈R,C〉 is 6 bits.

Given the client-to-client information leakage in any one of the four models, the total
information leakage that we seek to minimize is:

Itotal(e,4) =
∑
c

∑
c′

Ic,c′(e,4)

125

B2 B1

R1 R2 R3

R1 R2 R3

R1 R2 R3

Epoch 1

Epoch 2

Epoch 3

B1 B2

B2 B1

VM Pair Leakage
(bits)

B1 → R1 1
B1 → R2 0
B1 → R3 2
B2 → R1 2
B2 → R2 1
B2 → R3 0

Figure 7.2: Example showing how client-to-client leakage is calculated under all four
models. The leakage from B1 to R1 is 1 bit over the three epochs because B1 is co-resident
with R1 for one out of the three epochs.

Minimizing Itotal(e,4) is equivalent to minimizing the average leakage across client
pairs. We acknowledge that there may be other ways to represent the security of the
system, for example, by minimizing the inter-client leakage. Although we chose the above
representation for ease of comparison with prior work [73], the approaches we propose in
Section 7.3 are general and can be used for such representations of security by modifying
the objective function.

Problem Statement We now pose the scheduling problem that is solved at the begin-
ning of each epoch with the intent of minimizing information-leakage. We �rst choose and
�x a particular information leakage model from amongst {R,NR} × {C,NC}.

Inputs: The sets X,S,A, F , and an integer, m � see Table 7.1.

Output: A placement for the current epoch that corresponds to the minimum total infor-
mation leakage subject to the constraints speci�ed as input.

As an example, suppose that the input is as shown for Epoch 2 in Figure 7.1. Assume
the leakage model is 〈R,C〉, and m = 2. Also assume that Client A corresponds to Client
1, Client B to Client 2 and so on. Then, the inputs are: X = {3, 1, 2}, S = {4, 4},
A = {0, 0, 0} and a function f2(i, j) which indicates the number of VMs of client i on
server j during Epoch 2, e.g. f2(1, 1) = 2. The output is the placement shown for Epoch
3 in Figure 7.1. In this example, the total information leakage in Epoch 2 is 10 bits,
and in Epoch 3 it is 14 bits (10+4). That is, migrating some VMs causes the increase in
information-leakage to be 4 only, rather than 10, which would have been the case had we
adopted the same placement for Epoch 3 as we have for Epoch 2.

126

(1) (2) (3)(1) (2) (3)

Servers

4 4

4

22 3

1

3

1 1

4

22 3

4

3

Optimal <R,C> Placement

Current Placement

4

1

(1) (2) (3)(1) (2) (3)

Servers

4 4

4

22 3

1

3

1 1

4

22 3

4

3

Optimal <R,C> Placement

Current Placement

4

1

Figure 7.3: An example to show the sub-optimality of Nomad for the 〈R,C〉 model. The
capacity of each server is at least 3 VMs. Clients 1, 2 and 3 have two VMs each, and Client
4 has three VMs. The placement in the left �gure is the current placement. There is no
free-insert or 2-way swap that results in a reduction in leakage. Hence Nomad makes no
moves even when unconstrained by a migration budget. The optimal placement is shown
in the right �gure.

7.3 Reductions to ILP

In [60], we show that Nomad provides no decrease in information leakage for in�nitely many
inputs. An example placement map is shown in Figure 7.3. Thus we revert to our two
reduction approaches. One is an e�cient reduction to ILP (discussed here) and the other
is an e�cient reduction to CNF-SAT (discussed in [60]). Our primary intent is to identify
whether we can indeed realize software that is e�cient in practice, and provides the security
guarantee of minimizing information leakage, notwithstanding the NP-hard worst-case for
computational complexity. Both approaches are e�cient algorithms given access to oracles
for ILP and CNF-SAT, respectively. We chose to invest in both approaches because there
can be di�erences in the performance of individual solvers for di�erent classes of problem
instances.

Reduction to ILP Figure 7.4 is our reduction to ILP for the 〈R,C〉 case. The other
cases require minor modi�cations only, as we discuss in the following. The input to the
reduction is an instance of the problem posed in Section 7.2, and the output is the optimal
placement map. The unknown in the constraints and the optimization objective, is a new
placement � values for the n× k variables ft(i, j), for each i ∈ [1, n], j ∈ [1, k], for a given
t, for the 〈R,C〉 case. These values are the number of VMs of client i on server j in the
upcoming epoch, t. For the other three models of information leakage, the unknowns are
ft(v, i, j), where v ∈ [1, xi], which indicates whether VM v of client i is placed on server j
in epoch t.

In Figure 7.4, Line (7.1) provides the precomputed past total information leakage for

127

input: Ω =
t−1∑

t′=t−4

n−1∑
c=1

n∑
c′=c+1

k∑
j=1

F [t′][c][j]× F [t′][c′][j] (7.1)

minimize Ω +
k∑

j=1

n−1∑
c=1

F [t][c][j]×
(

n∑
c′=c+1

F [t][c′][j]

)
(7.2)

subject to

2×m ≥
n∑

c=1

k∑
j=1

|F [t][c][j]− F [t− 1][c][j]| (7.3)

sj ≥
n∑

c=1

F [t][c][j] ∀ j ∈ [i, k] (7.4)

xi =
k∑

j=1

F [t][c][j] ∀ c ∈ [1, n] (7.5)

0 ≤ F [t][c][j] ∀ t, c, j (7.6)

Figure 7.4: Reduction to ILP for the 〈R,C〉 model for total information leakage. Sym-
bols are explained in Table 7.1. Constraint (1) ensures that the migration budget, m, is
respected. Constraint (2) ensures that the capacity of a server, si, is not exceeded. Con-
straint (3) ensures that every VM of each client is placed on exactly one server. Constraint
(4) ensures only positive numbers are allowed. The objective function minimizes the to-
tal information leakage. The source code for this reduction in CPLEX OPL is attach in
Appendix I.

the 〈R,C〉 model. This is an optimization step to reduce overhead from the ILP model.
The objective function, Line (7.2), ensures that we minimize the total information. Line
(7.3) limits the number of migrations the current placement map is able to make. If m is
speci�ed as∞ in the input, then this line is omitted. Line (7.4) is the constraint to ensure
that the capacity of each server, sj, is not exceeded in the new placement. Line (7.5) is
the constraint to ensure that every VM of each client is placed on exactly one server. Line
(7.6) ensures that the placement is formatted correctly, i.e. positive integers.

The only nuance here is that the objective function, for the 〈R,C〉 case, is not a set
of linear constraints, but rather quadratic constraints. However, Quadratic Constraint
Programming is known to be in NP as well [137]. We have designed and implemented a

128

reduction from quadratic to linear constraints via bit-wise multiplication.

Figure 7.4 runs in polynomial-time; its running-time is: O
((

n
2

)
· 4 · k · log2

2 maxi xi

)
,

where n is the number of clients, 4 is the number of epochs in the sliding-window, k is
the number of servers, and log2 maxi xi is the maximum number of bits we need to express
the number of VMs per client. This bound is not tight; more e�cient reductions can exist
from, for example, more compact encodings for placement.

7.4 Empirical Assessment

We have conducted a limited empirical assessment of our two approaches, ILP and CNF-
SAT, and Nomad. The intent of our empirical assessment is: (a) to understand the over-
head of actually providing a security guarantee of minimizing leakage in practice, and, (b)
validate empirically our analytical insights on the shortcomings of Nomad.

7.4.1 Tests

We designed and ran the following tests.

Test 1 A test for scalability. We report the response-time vs. cluster-sizes for the two
approaches from the previous section, and Nomad.

Test 2 Demonstrate an example for which Nomad provides no decrease in information-
leakage. We know that several such inputs exist, we demonstrate one in practice.

Test 3 Random input-cases that have a known, non-zero value for optimum information-
leakage. The intent is to check whether each of the three approaches indeed converges to
the optimum. This test is di�erent from Test 2, in that we have randomly picked inputs,
with no a priori knowledge that Nomad will provide no bene�t to information leakage.
Our inputs have a non-zero optimum because we anticipate that such inputs are more
challenging for an approach.

Test 4 A test for how fast, in terms of epochs, each approach reduces total informa-
tion leakage given limiting migration budgets. We test with random inputs, with three
migration budgets, and measure the incremental improvements to the information leakage.

Test 5 Another test for scalability. Number of clients, servers and VM-slots per server,
vs. response-time for 1 epoch. We choose the inputs such that a client has several VMs,

129

Figure 7.5: Scalability of Nomad, ILP, and CNF-SAT using the testing parameters pre-
sented in Moon et al. [73]. Cluster size of x means: x servers with capacity 4, and x clients
with 2 VMs each. Total VMs in the cluster:

∑
VM = 2 · x.

and server-utilization is 50% only. We anticipate that this models reality in practice;
cloud-servers are shown to be under-utilized [75].

Setup All tests were performed on a desktop with a 3.60 GHz Intel(R) Core(TM) i7-4790
CPU, has 24 GB RAM, and runs the 64-bit Windows 8.1 operating system. The code for
the reductions is written in Java. Our ILP-solver was CPLEX, commercial version 12.6.1.0
[51], the same as the one used in prior work [73]. CPLEX provides a Java API, which
we used. Our SAT-solver was Lingeling [2]. Lingeling does not have native binaries for
Windows; we used Cygwin [1]. We modi�ed Nomad to allow for arbitrary inputs, and for
retrieval of the placement at each epoch. The performance of Nomad is not impacted by
these modi�cations. Nomad is written in C++.

Design Choices We made the following design choices:

1. We ran tests for the 〈R,C〉 leakage model only. The 〈R,C〉 model has the strongest
attacker. Also the implementation of Nomad we were provided works for 〈R,C〉 inputs
only.

2. We ran tests for the closed migration version of the problem only. The reason is that
the implementation of Nomad we were provided works for closed-migration only.

3. The sliding window for was �xed at 5 epochs (see Section 7.2). The reason is that the
implementation of Nomad we were provided has the sliding window hard-coded at 5.

130

Figure 7.6: Information leakage for all three approaches when run for 10 epochs on the
placement map shown in Figure 7.3. The CNF-SAT and ILP solvers were both able to
obtain the optimal placement, while Nomad was unable to �nd any migrations that yield
lower total information leakage.

7.4.2 Results

We now present and discuss our results.

Test 1 We show the results of this test in Figure 7.5, which is recreated from the work
of Moon et al. [73]. The input instances comprised x ∈ {10, 20, 40, 50} servers, each with a
capacity of 4 VMs, and x clients each with 2 VMs. The initial placement is random. The
optimal placement is for every client to be placed on a server of its own. Figure 7.5 shows
the average time to compute the placement per epoch. We �nd that Nomad performs well,
as reported in prior work [73].

An interesting observation is a di�erence in our results, and the results reported by
Moon et al. [73], on the performance of the approach based on reduction to ILP. Moon et
al. [73] report that their reduction to ILP takes longer than a day for cluster sizes of 40 and
50. In contrast, as we report in Figure 7.5, our ILP approach takes about 4 and 8 minutes,
respectively. We suspect that this is a consequence of their ine�cient (exponential-time)
reduction to ILP.

Test 2 We show the results in Figure 7.6. In this test, we ran the example from Fig-
ure 7.3. We establish analytically in [60] that Nomad provides no decrease in information-
leakage for such an input, even with an unlimited migration budget. Our empirical ob-
servations concur. The approaches based on reduction to CNF-SAT and ILP immediately
converge to the optimum.

Test 3 We show the results for this test in Figure 7.7. Our input instance comprised 5
servers, each with a capacity of 4 VMs, and 6 clients, each with 3 VMs. We ran the test

131

Figure 7.7: Total Information leakage for 1 epoch and 10 random initial placements.
Input parameters: 5 servers with 4 VM slots each, and 6 clients with 3 VMs each. Each
of the 10 tests were run over a duration of 1 epoch with an in�nite migration budget. The
optimal placement is the one resulting in leakage of 18 bits. ILP and CNF-SAT always
converged to the optimal. Nomad's performance was inconsistent.

over 1 epoch for 10 di�erent random initial placements. The optimal placement results in
a total information leakage of 18 bits. We see that CNF-SAT and ILP were always able to
converge to an optimal placement, whereas Nomad yields the optimum sometimes only.

Test 4 The results are shown in Figure 7.8. The input instance comprised 6 servers each
with a capacity of 6 VMs, and 3 clients each having 6 VMs. We used a random initial
placement, and provided three di�erent migration budgets: 2, 5, and ∞. The results in
Figure 7.8 show that the ILP and CNF-SAT solvers reached the optimal placement faster
than Nomad. This is because Nomad makes locally optimal greedy choices; the other two
approaches globally optimize for information leakage.

Test 5 In Figure 7.9, the input instances comprise x ∈ [5, 20] servers, each with a capacity
of x VMs. We had x clients each with bx/2c VMs. The number of total VMs range from
10 to 200. We adopted a time-out of 4 minutes per test. For the initial placement, we tried
(i) random, where VMs are assigned randomly to a server that can accommodate it, and,
(ii) spread, where each VM of a client is placed on a di�erent server. That is, under the
spread-placement, each client had its bx/2c VMs spread out on the �rst bx/2c servers; the
other servers are empty. Both random- and spread-placements are used in practice [31].
Figure 7.9 shows that the ILP implementation scaled the best. This test demonstrates
that an approach based on reduction to ILP can perform well; in some cases, even better
than a polynomial-time algorithm such as Nomad.

132

Migration.Budget: 2 Migration.Budget: 5 Migration.Budget: Inf

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

Epoch

In
fo

rm
at

io
n

Le
ak

ag
e

Solver

CNF

ILP

Nomad

Random 50% Full Placement Map

Figure 7.8: How the per-epoch information leakage varied over 10 epochs for all three
approaches with a random initial placement and di�erent migration budgets. The instance
comprised 6 servers each having a capacity of 6 VMs, and 3 clients each having 6 VMs.

Initial.Placement: Evenly Spaced Initial.Placement: Random

10 20 35 50 72 98 128 200 10 20 35 50 72 98 128 200

0

50

100

150

200

250

Total VMs

E
po

ch
 T

im
e

(s
ec

)

Solver

CNF SAT

ILP

Nomad

Scalability of Epoch Time Vs. Total VMs
Random and Evenly Spaced Initial Placement Maps

Figure 7.9: The average time it took to compute a placement for 1 epoch. The input
instance comprised of x servers each having a capacity of x VMs, and x clients each having
bx/2c VMs. The test was run for both random and even initial placements. Tests were
not included if they did not complete in under 240 seconds (4 minutes).

133

Figure 7.10: Comparison of the placement maps for the Original ILP method and the
New ILP method. The original method quickly reduces to the lowest total information
leakage state, but then remains there, whereas the new method never stays in one state.

7.5 Minimum Total Information Leakage Attack

Attackers can often create non-standard conditions to test the original programmer's as-
sumptions to see if a vulnerability can be found in an untested region. If we assume an
attacker is able to �ll up a cloud computing cluster/region, then we explore the situation
of whether the placement methods contain any �aws which would allow an attacker to
operate their side-channel attacks.

In Figure 7.10, we outline a simple experiment where an attacker can take advantage
of minimizing total information leakage method to attack a set of clients without fear of
VM migrations. In this experiment we have the following settings:

� 3 Machines with 3 VM slots each,
� 4 Clients: Client {0, 1, 2} have 2 VMs and Client 3 has 3 VMs,
� Migration Budget: m = 5, Sliding Window: ∆ = 10, and
� Initial Placement: Client {0, 1, 2} have their own machine and Client 3 has 1 VM on
each machine (see epoch 0 in Figure 7.10).

134

●
●

●
●

● ● ●
● ●

●
● ● ● ●

● ● ● ● ● ●
● ●

● ● ●
● ● ●

● ●
● ●

0

50

100

150

0 10 20 30
Epoch Progression

In
fo

rm
at

io
n

Le
ak

ag
e

Solver

● New (Max Client)

New (Total)

Original (Max Client)

Original (Total)

Information Leakage of Special Case

Figure 7.11: Comparison of the Total Information Leakage and the Max Client-to-Client
Information Leakage across the original and new ILP reductions. The �rst 16 placement
maps are shown in Figure 7.10. The absolute value of the Total and Max Client-to-Client
information leakage is greatly e�ected by the sliding window. In this example the sliding
window is set to 10.

Figure 7.3 shows an example where the method from Moon et al. [73] created a place-
ment map which was sub-optimal in terms of total information leakage compared to our
methods. That was an example where an attacker could utilize Nomad's sub-optimal,
greedy, design to their advantage and under take a side-channel attack. We have created a
similar example in Figure 7.10, to show a new attack vector for the static placement map
that occur with minimizing the total information leakage of a system.

7.5.1 Max Client-to-Client Information Leakage

In Figure 7.10, the reason why the original solution is unable to change the placement map
after epoch 3 is because it is minimizing the information leakage across all clients, where
each client-to-client is weighted equally. But this situation allows for leaving client's in non-
zero information leakage states with the same client for inde�nite amount of time. This is
the type of situation an attacker would like to create, in order to successfully attack a client
and circumvent the security of the cloud infrastructure. We solve this issue by minimizing
the maximum individual Client-to-Client information leakage. With this focus, we see that
the placement maps from epoch 5 onwards, are changing so as to prevent the attacker's
ability to steal too much information from a particular client.

In Figure 7.11, we plot the 2 types of information leakage: Total Information Leakage
(�Original� � Figure 7.4) and Maximum Client-to-Client Information Leakage (�New� �
Figure 7.12). From this graph we see that our �New� method is able to reduce the Max

135

minimize max
c1∈[1,n]

[
t−1∑

t′=t−4

(
k∑

j=1

F [t][c1][j]×
(

n∑
c2 6=c1

F [t][c2][j]

))]
(7.7)

subject to

2×m ≥
n∑

c=1

k∑
j=1

|F [t][c][j]− F [t− 1][c][j]| (7.8)

sj ≥
n∑

c=1

F [t][c][j] ∀j ∈ [i, k] (7.9)

xi =
k∑

j=1

F [t][c][j] ∀c ∈ [1, n] (7.10)

0 ≤ F [t][c][j] ∀c, j (7.11)

Figure 7.12: New ILP problem for the 〈R,C〉 model for minimizing the Max Client-to-
Client Information Leakage. This is di�erent from the 〈R,NC〉 and 〈NR,C〉 models as it
models. The source code for this reduction in CPLEX OPL is attach in Appendix I.

Client information leakage when compared to the �Original� method. We can also see that
the New method has much more information leakage between all clients. This can be a
problem if we assume a majority of the clients are attackers. This assumption might be
unrealistic in some security models.

The choice of sliding window greatly e�ects how this Figure 7.11 looks, larger sliding
windows produce larger numbers and a bigger separation between the New and Original
methods for both Total and Max Client models.

This new method of information leakage prevents the attacker from exploiting the
security �aw in single non-zero information leakage cloud environments, but at the cost
of more total information leakage within the cloud system. This can be mitigated by
increasing the frequency of epochs and by restricting the ability for the cloud to enter
these single non-zero information leakage states.

136

7.6 Future Work

The Max Client-to-Client Information Leakage model solves the security vulnerability of
the Total Information Leakage model but at the cost of increased total information leakage
of the cloud environment. Future work into this �eld would combine the Max Client-to-
Client and Total Information Leakage such that the security vulnerabilities are abated, the
Total information leakage is lowered, and the e�ect on performance is still NP-hard (and
decision problem is NP-complete).

7.7 Conclusions

We have designed and implemented an e�cient reduction to ILP. We have conducted a
limited empirical assessment with a focus on the main points of our work. Our empirical
results suggest that the overhead imposed by an approach that indeed decreases information
leakage is more than prior work suggests, but lower than previous work reported. For inputs
that prior work suggests take longer than a day with an ILP approach, our implementation
only requires a few minutes. This suggests that further research-investment in well-founded
approaches can decrease the overhead further.

This chapter has provided the following contributions:

� E�cient reduction to ILP for minimizing Total Information Leakage in 〈R,C〉 mode,
� Matrix form of the ILP reduction in Figure 7.4 (this di�ers from the paper [60]),
� A new attack for Total Information Leakage,
� A new ILP method in Figure 7.12, which focuses on minimizing the maximum Client-
to-Client information leakage, and addresses the attack on Total Information Leakage.

In this chapter the Max Client-to-Client Information Leakage was tested against the
Total Information Leakage and shown to have a negligible e�ect on performance. We also
were able to create an example which shows the security vulnerability in the Total Infor-
mation Leakage model, which is solved by the new model. This example is not singular,
but there exists in�nitively many cloud environments that follow the same single non-zero
information leakage format as shown in Figure 7.10.

137

Acknowledgements

We thank the authors of Nomad [73] for making a version of their implementation available
to us.

138

Chapter 8

ILP Attack on Logic-Locked Circuits

Contents
8.1 Introduction . 140

8.2 Background . 142

8.3 The Logic Locking Problem . 143

8.4 Brute Force Attack . 144

8.5 The SAT-Attack . 144

8.6 Reduction To ILP . 145

8.7 Experiments . 150

8.8 Results . 152

8.9 Future Work . 153

8.10 Conclusions . 153

Declaration of Contributions

This research was performed with the collaboration of Nahid Juma, Mahesh Tripunitara,
and later on Mohamed El Massad. Section 8.1.1 is shared work with the above co-authors.
Table J.1 contains reduction from Boolean to CNF SAT to ILP, the Boolean to CNF SAT
v1 was created by Mahesh Tripunitara, and CNF SAT v2 is adapted from [28]. I created
the reduction in Table 8.1, and I reduced from CNF SAT to ILP in Table J.1. All other
sections are my sole work.

139

8.1 Introduction

In electronic manufacturing, companies can spend million of dollars in research and devel-
opment for a new product. When that product is ready for production, they will often
save money by hiring contractors to create pieces of the product and then assemble with
another contractor. Utilizing contractors introduces the threat of counterfeiting, unautho-
rized overproduction, and stolen intellectual property.

Most sales of electronic items occur early in the life of the product, this is due to
continual innovations in technology that can make past products obsolete or ine�ective
when compared to newer products. Thus any protection mechanism would only need to
protect the circuit for 1-3 years after production begins. After this period, the company
has recouped their losses from research and development and make a pro�t, if the product
was successful. Protection mechanisms used for securing national security, i.e. nuclear and
rocket control circuits, would require much longer time frames and much higher security
guarantees.

One security measure proposed to protect integrated circuits (ICs) is called Logic Lock-
ing (alternatively called Logic Encryption [90]). Logic locking obfuscates a circuit by
modifying the circuit gates, and adding input wires, known as the key inputs, where the
incorrect values render the circuit ine�ective. The key inputs need to integrated into the
circuit in such a fashion that without the correct digital signals running on the key inputs,
the locked circuit will not function identically to the original circuit. We show 2 basic
forms of logic locking, XOR and MUX gates, in Section 2.4.2.

There are 2 metrics a logic locked circuit can be measured: how many new key inputs,
and how integrated are the key inputs. If the key size is too small, then a brute force
method can be used to �nd the correct key. Storing the key in a secure location, and
transporting it to the circuit, is expensive and increases with the size of the key. If the
circuit and key are loosely coupled, then brute and manual analysis can be used to remove
the key. If the locked circuit integrates the key into every layer of the circuit multiple
times, then the cost of the circuit increases. We measure the level of protection to the
original circuit with encryption overhead. Where 5% encryption overhead means that the
locked circuits number of gates is approximately 5% more than the original circuit.

This chapter recreates the successful SAT-Attack, from Subramanyan et al. [127], utiliz-
ing Integer Linear Programming (ILP) as the NP solver. ILP is not as natural a substitute
to simulate circuits compared to SAT, but ILP solvers are quite powerful. Our contribu-
tions are the following:

1. Logic Locking ILP-Attack

140

2. 4 di�erent Logic Gates to ILP reductions
3. Optimizations to the attack
4. Circuit optimization for known input/output pairs

In Section 8.1.1, we outline the related and prior works in logic locking protection
mechanisms and attacks. In Section 8.2 we describe circuit representation and 2 basic logic
locking techniques. In Section 8.3 we de�ne the Logic Locking Problem. In Section 8.4
and Section 8.5 we describe the brute force and SAT attacks. In Section 8.6 we detail
the reduction from Logic Locking to ILP. In Section 8.7 and Section 8.8 we outline the
experiments and results obtained using the ILP Attack. Section 8.9 outlines future work,
and we conclude in Section 8.10.

8.1.1 Related Works

Logic locking, to our knowledge, was �rst introduced in 2008 by Roy et al. [98]. In their
scheme, EPIC, a set of XOR/XNOR key gates is randomly inserted into the original circuit,
such that one input of each key gate connects to a key input and the other input is driven
by a wire in the original circuit. Applying a correct key to the key inputs renders the locked
circuit equivalent to the original. Rajendran et al. [88] observed that an adversary with
access to a working IC could attack EPIC by using an automatic test pattern generation
(ATPG) algorithm to identify a correct key. They proposed a scheme based on graph
theory that seeks to be resilient to such an attack.

In 2015, El Massad et al. [33] and Subramanyan et al. [127] concurrently published
attacks against Rajendran et al.'s scheme [88]. Their attacks are referred to in the liter-
ature as the �SAT attack� and it is based on the observation that a single input/output
observation from a working chip can potentially eliminate a large number of incorrect keys.
The discovery of the SAT attack was considered seminal because it defeated all locking
schemes known at the time [11, 32, 89].

Much of the subsequent work focused on devising SAT-resilient schemes. These can
broadly be categorized into three:

1. Formulate locking, and obfuscation, mechanisms that are not translatable to SAT,
2. Make the underlying SAT problems hard, and
3. Make the number of SAT problems the SAT attack must solve in order to be successful

exponential.

Examples of defences in the �rst category are cyclic obfuscation [118] and behavioural
locking of the logic [143]. In cyclic obfuscation, the key idea is to introduce logical loops

141

in the circuit so that it can no longer be represented as a directed acyclic graph. This
forces a SAT attack to either be trapped in an in�nite loop or to generate an incorrect
key upon termination [97]. In behavioural locking, the key not only determines circuit's
functionality, but also the timing pro�le. If the SAT model does not properly simulate
the timing pro�le for each key, this will result in timing violations and thus making the
circuit malfunction. Shortly after the introduction of these schemes, stronger attacks such
as cycSAT [160] and the Satis�ability Module Theories (SMT) attack [8] were discovered
that were able to model cyclic or behavioural locking into a SAT or SAT+theory solvable
logic problems.

Defences in the second category include Cross-lock [119] and Full-lock [62]. In Cross-
lock, a onetime programmable interconnect mesh is used to obfuscate the routing of the
circuit, in order to substantially increase the runtime of each iteration of the SAT attack.
In Full-lock a set of cascaded fully programmable logic and routing block (PLR) networks
replace parts of the logic and routing in the desired circuit, resulting in harder SAT in-
stances than Cross-lock. Other defences in this category are those that incorporate one-way
functions to make the underlying SAT instances hard [152, 159].

Defences in the third category include those that are based on point functions [149, 142,
67]. For example in SARLock [149], every incorrect key is wrong for the single input that is
identical to it. Similarly, the Anti-SAT block scheme [142] utilizes functions whose number
of input vectors that result in an output of 1 is either very high or very low. Although these
defences make the number of iterations involved in the SAT attack exponential, they are
vulnerable to other attacks such as the Signal Probability Skew (SPS) attack [151], removal
attacks [150], approximate attacks [117, 120], the bypass attack [144], and the Satis�ability
Module Theories (SMT) attack [8]. Also in the third category is the more recent and
state-of-the-art defence TTLock [154] and its subsequent generalization SFLL [153]. Key-
recovery attacks against TTLock and SFLL include the Functional Analysis Attack [123],
and an attack that exploits structural traces left behind in the circuit [146].

8.2 Background

The Logic Locking background has been moved to the Section 2.4.

142

Find
−→
 such that: � (−→-8 ,

−→
) = �> (−→-8), ∀−→-8

Logic Locked
Circuit: � (−→- ,−→) = −→.

Unlocked Oracle
Circuit: �> (−→-) = −→.

−→
-8

−→

−→
.1

−→
-8

−→
.2

Figure 8.1: The Logic Locking Key Recovery Problem. Given a description of the locked
circuit C (~X and ~K inputs; ~Y outputs) and access to an unlocked black box circuit Co.
Find the values of ~K such that C(~Xi, ~K) == Co(~Xi) ∀ ~Xi.

8.3 The Logic Locking Problem

In this section we formally de�ne the Logic Locking problem and the attacker model used.
In Figure 8.1, we provide a diagram of the key recovery problem in logic locking.

Notation Let the original, unsecured, circuit be Co. Let the input wires to Co be a
Boolean vector ~X. Let the output wires of Co be ~Y . The logic locked circuit corresponding
to Co is C. The inputs to C are the primary inputs of Co and the key inputs ~K. We will
use function notation for circuits: Co(~Xi) = ~Yi.

Problem Description For a given locked circuit C and an oracle Co, �nd the set ~K
such that Co(~Xi) = C(~Xi, ~K) ∀ ~Xi. The attacker is provided a full description of the
locked circuit C, experimentally this is provided as the circuit's netlist. The attacker has
blackbox oracle access to the unlocked circuit and is able to perform arbitrary calls for any
~Xi, i.e. Co(~Xi) = ~Yi. Experimentally we provide the original circuit netlist for use to only
perform these oracle requests. We are limiting our experimentations to full key recovery.
An alternative logic locking problem is partial key recovery, where a certain percentage of
the key is required for the attacker to be successful.

Key Space Some logic locking techniques can create a locked circuit C such that more
than one key, ~K1 and ~K2, satisfy the logic locking problem above. The attacker only needs
to return the �rst key which satis�es the problem.

Distinguishing Inputs Some logic locking techniques create locked circuits C such that
for a well selected input, ~X1, this input and oracle output, Co(~X1), are able to invalidate
many keys from the remaining key space. It is this property which the SAT-Attack uses
to reduce the key space without requiring exponential time. Logic locking techniques have
been proposed which reduce the ability for speci�c inputs to act as distinguishing inputs.

143

Figure 8.2: SAT-Attack Algorithm from Subramanyan et al.[127]

8.4 Brute Force Attack

Let the number of input bits be | ~X| and number of key bits be | ~K|. The exhaustive brute
force algorithm is O(2|

~X|+| ~K|) in the worst case. Then the attacker tries each of the 2|
~K| keys

on all 2|
~X| input/ouput pairs to determine the �rst key, which satis�es all input/output

pairs.

Analysis of a locked circuit, and set of correct input/output pairs, can reveal extra
propositional logic that can restrict the input and key space that is require to search. In
Figure 2.6, we can determine extra information from the gate po1= (¬keyinput2)⊕ (pi01∧
pi02). If po1 = 1, then the input and key set is reduced such that only input/key pairs
that satisfy the condition:

(pi01 ∧ pi02 ∧ keyinput2) ∨ ((¬pi01 ∨ ¬pi02) ∧ ¬keyinput2)

8.5 The SAT-Attack

In Figure 8.2 we have provided the SAT-Attack created in [127]. The notation for a locked
circuit C di�ers from this thesis; these are equivalent C(~X, ~K) = ~Y ≡ C(~X, ~K, ~Y). On
line 2, 2 circuits are created, they share the same input vector, but have di�erent variables
for the keys and outputs. In line 3, they loop their incrementally larger SAT problem until

144

Input:
〈�,�>〉

Di�erence Circuit:
� (−→ 1,

−−→
-��) ≠ � (−→ 2,

−−→
-��)

Preload Equal Constraints:−−→
-�� = {®0, ®1, A0=3 (), . . .}

Add Equal Constraints:
� (−−→-�� ,−→ 1) = � (−−→-�� ,−→ 2) = �> (−−→-��)

Optimize Equal Constraints:
� ®-��
(−→ 1) = � ®-��

(−→ 2) = �> (−−→-��)

ILP Solver
ILP Solver:

Solve all Equal ConstraintsReturn Solved Key

Found Distinguishing Input:
−−→
-��

No Distinguishing
Input Exists

Figure 8.3: Flow diagram for the ILP Attack. The attack takes as input: locked circuit
C and an oracle Co. The attack repeatedly �nds distinguishing inputs using an ILP Solver.
When no more distinguishing inputs are found, the ILP Solver is used to solve for a key
which satis�es all distinguishing inputs and matches the output from the Oracle.

it becomes unsatis�able. The SAT problem they are creating in lines 2, 3, and 6, is: Does
there exists an input ~X such that 2 keys can be found where ~Y1 6= ~Y2 and the keys are
able to correctly produce all previous distinguishing input/output pairs ~Xd

i ,
~Y d
i . The SAT

problem on line 4 returns the distinguishing input ~Xd
i , and line 5 returns the correct output

for that distinguishing input (which can be di�erent from the sat assignment value). Line 6
adds the new constraint that both keys must match this input/output pair from the oracle.
Line 9 returns the key that is able to correctly satisfy all distinguishing input/output pairs
from the oracle.

8.6 Reduction To ILP

The ILP Attack, outlined in Figure 8.3, takes as input a locked circuit C and an oracle
Co. From this we convert C into an ILP representation, such that the input wires are
unrestricted, but the output wires are conditional on which values the input wires take.
Thus we create a simulation of C in ILP, where the input, output, and internal wires are
all ILP integer variables restricted to the range [0, 1]. We go into details in Section 8.6.1.

The second step in the reduction is to create a di�erence circuit, where there are 2
circuits C1 and C2, which share the same input, but have di�erent variables representing
their keys. The ILP reduction forces C1(

−→
K1,
−−→
XDI) 6= C2(

−→
K2,
−−→
XDI). This constraint must

be satis�ed for the input to be considered a distinguishing input. The details are outlined
in Section 8.6.2.

The �rst distinguishing inputs are often not special or speci�cally hard to compute.
Thus the next step in Figure 8.3 is to preload the attack with speci�c and random dis-
tinguishing inputs. This component can increase performance. The amount of preload
is user de�ned, with our empirical solution allowing for: User de�ned number of random

145

distinguishing inputs, or User provided list of distinguishing inputs (this can be externally
calculated). Section 8.6.3 discusses the details.

Each preloaded distinguishing input is added to an Equal circuit, which forces the keys
from the di�erence circuit to be valid keys for the previous found distinguishing inputs and
their oracle output. The Reduction for the equal circuit is shown in Section 8.6.4. Each
equal is optimized using the known input and the oracle output values. The process for
optimizing these circuits is shown in Section 8.6.5.

The next step of the attack enters a loop, which can have an exponential number of
iterations in the worst case 2|

~X|. The SAT attack was successful against previous logic
locking techniques because of the relatively low number of distinguishing inputs required
to exit this loop. This loop can only exit if no new distinguishing input can be found. This
occurs once all distinguishing inputs are exhaustively found, this set can be equal to the
set of all possible inputs. The quality of the distinguishing inputs found, can reduce the
size of this set.

After all distinguishing inputs are found, the attack creates a new ILP problem with
all equal circuits for the shared key input ~K1. The solution to this is a key that produces
the same output as the oracle for all found distinguishing inputs. This last step can fail
to �nd a key if the circuit C is unable to be represented probably in ILP/SAT, or if
the circuit contains internal saved state which changes output of circuit depending on the
inputs previously received. Prior work has been proposed which implement such protection
mechanisms (see Section 8.1.1).

8.6.1 Simulating Circuits in ILP

The �rst step of the ILP Reduction is to convert the locked circuit to an equivalent ILP
program. In Table 8.1, we outline 2 of the 4 methods we used to convert circuit gates into
ILP constraints. The other 2 ILP reductions are outlined in Table J.1.

When converting the circuit in Figure 2.6 into a ILP simulation, all inputs, outputs, and
internal wires (left hand of equal sign) are declared as binary integers. The ILP objective
function is empty. The order of constraints does not matter. All gates in the circuit are
converted by using one of the reductions from Table 8.1 or Table J.1. The ILP reductions
contain no assumptions, thus a mix of all the 4 reductions, even for the same gate, is
possible.

During the reduction for each gate, extra variables are required for the (A) reduction
for the NAND, NOR, XOR, and 2 are required for the XNOR gates. In reduction (B)

146

Table 8.1: Reduction from speci�c logic/circuit gate to ILP constraint. Reduced ILP
problem has no objective function, only constraints. Reduction (A) requires extra variables
for NAND, NOR, XOR, and 2 for XNOR. Reduction (B) removes these extra variables.
All variables must be an integer in the range [0, 1].

GATE Boolean ILP Reduced ILP

Expression Constraints (A) Constraints (B)

NOT y = ¬x1 y = 1− x1 y = 1− x1
BUF y = x1 y = x1 y = x1
AND y = x1 ∧ x2 0 ≤ x1 + x2 − 2y ≤ 1 0 ≤ x1 + x2 − 2y ≤ 1

NAND y = ¬(x1 ∧ x2)
0 ≤ x1 + x2 − 2z ≤ 1

y = 1− z
0 ≤ x1 + x2 − 2 + 2 ∗ y ≤ 1

OR y = x1 ∨ x2 0 ≤ 2y − x1 − x2 ≤ 1 0 ≤ 2y − x1 − x2 ≤ 1

NOR y = ¬(x1 ∨ x2)
0 ≤ 2z − x1 − x2 ≤ 1

y = 1− z
0 ≤ 2− 2 ∗ y − x1 − x2 ≤ 1

XOR y = x1 ⊕ x2 y == x1 + x2 − 2t y == abs(x1 − x2)

XNOR y = ¬(x1 ⊕ x2)
z == x1 + x2 − 2t

y == 1− z
y == 1− abs(x1 − x2)

we are able to remove these extra variables from the constraints. Reductions (C) and (D)
do not require any additional variables. CPLEX [51] and Gurobi [45], the ILP solvers
used for this project, converts the abs function to an extra range variable, which is not the
same variable type as in reduction (A) and only one constraint for XNOR. CPLEX/Gurobi
converts all dual inequalities into 2 inequalities: 0 ≤ b ≤ 1 would be 0 ≤ b and b ≤ 1.

8.6.2 Di�erence Circuit

The di�erence circuit takes as input: a Circuit C, input wires
−−→
XDI , 2 key wires sets−→

K1/
−→
K2, and ensures that the output from those 2 circuits di�er by at least one bit. The

input wires are only constrained by this di�erence circuit. The 2 key wires are constrained
in the di�erence circuit and all equal circuits created and appended to the ILP problem.
The input wires that are solved for here is called a new distinguishing input.

In Figure 8.4, we show the di�erence circuit that can be used to ensure that the output
of the circuit C(XDI , K1) di�ers by at least 1 bit from C(XDI , K2). We convert each of
the XOR gates using Table 8.1, and then sum the result and force this to be greater than
or equal to 1.

147

−→
 1

−−→
-��

−−−→
>DC1

�

−→
 2

−−→
-��

−−−→
>DC2

�

di� di� == 1

ILP Constraint∑
i=1

∣∣∣C.out(i)1 − C.out
(i)
2

∣∣∣ ≥ 1

Figure 8.4: Circuit and ILP equivalent, of a constraint to force the output of 2 circuits
to not equal. The ILP equivalent is condensed and easier to understand.

−→

−−→
-��

−−→
>DC

� equal == 1

1010 . . .

1

0

1

1

ILP Constraints
C.out1 == 1
C.out2 == 0
C.out3 == 1
C.out4 == 1

Figure 8.5: Circuit and ILP equivalent of the constraints used to force the output of a
circuit to equal a set of bits. The ILP equivalent is condensed and easier to understand.

8.6.3 Preloading Distinguishing Inputs

We have empirically found, and through the work of [33], that randomly selecting inputs
as distinguishing inputs can provide useful distinguishing inputs in the start of the attack.
Preloading the circuit with selected distinguishing inputs can skip the overhead of running
the ILP solver many times to produce similar quality distinguishing inputs. From the work
of [33], they showed that utilizing only randomly generated distinguished inputs requires
larger sets to complete the attack; we have found this to be true with the ILP attack as
well.

We have provided 2 methods of preloading inputs into the attack: user de�ned num-
ber of randomly generated inputs, and user provided list of distinguishing inputs. The
randomly generated inputs was empirically faster for smaller sizes (5 to 10 inputs), after
this the attack would not see much improvement and only required more memory and

148

Gate Pin Input: 0 Pin Input: 1

BUF OFF ON
NOT ON OFF

AND OFF BUF
NAND ON NOT

OR BUF ON
NOR NOT OFF

XOR BUF NOT
XNOR NOT BUF

Input: 000

lo1

n01

n04

n02

la1

n06

n05

n03

n07

n08

po0

po1

po2

0
0
0

0
0

0

0

0

0
keyinput2

keyinput0 keyinput1

keyinput1

Simpli�ed

n06

n05

n07

po0

po1

po2
keyinput2

keyinput0

keyinput0

keyinput1

1

Figure 8.6: Simplifying each Equal Circuit by propagating the known Distinguishing
Inputs through them. This simpli�es the circuit and reduces the number of constraints.

computation time to complete iterations. The user provided list of distinguishing inputs
allow for additional analysis to be performed on the circuit and the oracle that might yield
higher quality distinguishing inputs, or similar quality inputs for less computation time.
For repeatability, all experimental results were preloaded with the

−→
0 and

−→
1 distinguishing

inputs and no randomly generated inputs.

8.6.4 Equal Circuit

For each distinguishing input, 2 new equal circuits are added to the previous ILP problem.
These equal circuits force the 2 key wire sets, used in the di�erence circuit, to have the
correct output for the new distinguishing input and oracle output. The equal circuit is
used to reduce the key space by using the distinguishing input to invalidate hopefully
many keys.

In Figure 8.5, we show the equal circuit that is used to ensure that the output of the
circuit C, when given the speci�c input XDI , exactly matches the output obtained from the
oracle. Converting this circuit directly to ILP, usingTable 8.1, produces a more complex
reduction than if we simply force each output wire to match the bit from the oracle. This
is much easier to understand and contains less constraints.

149

Table 8.2: Benchmark circuits used to test the ILP Attack.

(a) ISCAS'85 Circuits [20]

Circuit Input Output Gates

c432 36 7 160
c499 41 32 202
c880 60 26 383
c1355 41 32 546
c1908 33 25 880
c2670 233 64 1193
c3540 50 22 1669
c5315 178 123 2307
c7552 207 107 3512

(b) Select MCNC Circuits [147]

Circuit Input Output Gates

i4 192 6 338
apex2 39 3 610

i9 88 63 1035
ex5 8 63 1055
i7 199 67 1315
k2 46 45 1815

dalu 75 16 2298
i8 133 81 2464

seq 41 35 3519
ex1010 10 10 5066
apex4 10 19 5360

des 256 245 6473

8.6.5 Simplifying Equals Circuits

Before the equal circuits get added to the ILP problem, we simplify the circuits to reduce
computation required by the ILP solver. In Figure 8.6, we show the rules used to simplify
the equal circuits based on the distinguishing input XDI . We also show an example,
where we simplify the circuit from Figure 2.6 and the distinguishing input 000. The equal
circuit before the simpli�cation had 19 variables representing the input/output/internal
wires. After simplifying, and removing the unneeded po2 gate, the circuit has 8 variables
representing the input/output/internal wires. We can clearly see that this simpli�cation
can be very bene�cial to the ILP solver, it requires less memory storing the constraints,
and if the ILP solver is unable to perform this type of optimization, then more computation
to �nd a new distinguishing input that satis�es all constraints.

8.7 Experiments

In Table 8.2, we detail the benchmark circuits used in our experiments. All benchmarks
are considered small circuits when compared to the density of modern CPUs, which have
hundreds of millions of transistors, and gates are made up 1 to 6 transistors. The Intel
i7-940 CPU has approximately 731 million transistors [53]. The size of these circuits is still
relevant to circuit manufactures, smaller and more specialized electronics do not require the

150

CPLEX (B)

CPLEX (C)

CPLEX (A)

Gurobi (B)

Gurobi (C)

Gurobi (A)

0 50 100 150
Count

S
ol

ve
r

an
d

R
ed

uc
tio

n

Solver − Reduction

CPLEX (B)

CPLEX (C)

CPLEX (A)

Gurobi (B)

Gurobi (C)

Gurobi (A)

Number of Experiments with Fastest Time

1

10

100

1000

10000

c4
32

c4
99 i4

c8
80

c1
35

5

ap
ex

2

c1
90

8 i9

ex
5

c2
67

0 i7

c3
54

0 k2

da
lu

c5
31

5 i8

c7
55

2

se
q

ex
10

10

ap
ex

4

de
s

Circuit

T
im

e
(s

)

Gurobi and Reduction (A)

Figure 8.7: Ranking the best ILP Solver and Reduction, and the duration the best took
to solve all benchmarks. On the left: the number of solved circuits where a particular
solver/reduction pair had the fastest time. Reduction (D) is not on the graph as it never
solved a circuit fastest. On the right: the timing of circuit benchmarks from Table 8.2
across all locking algorithms and encryption overheads. The circuits are sorted by the
number of gates in their unlocked circuit.

generalized architecture of a CPU. All benchmark circuits have been locked with the logic
locking techniques: rnd (EPIC) [98], dac12 [88], toc13xor and toc13mux [89], iolts14
[32], and sarlock applied with dac12 and with iolts14 [149]. The benchmark circuits
were logic locked with 5%, 10%, 25%, and 50% encryption overhead. The exception is
sarlock, which was only locked for 5%, 10%, and 25%, and for only the MCNC circuits.
These locked circuit netlists are accessible from Subramanyan et al. [127].

All 486 locked circuits were tested with a combination of ILP solver (CPLEX [51] and
Gurobi [45]) and the 4 reduction variants (Section 8.6.1 and Appendix J). All experiments
were run on an AMD Ryzen 7 2700 8-core 3.2 GHz base clock CPU, with 32 GB of DDR4
RAM, 1 TB of SSD space, and using Ubuntu 18.04. Experiments were allowed to run for
a maximum of 10 hrs.

151

Table 8.3: Number of Circuits Solved with the ILP-Attack. Tests stopped after 10hrs.

Algorithm Encrypt ILP/Total Algorithm Encrypt ILP/Total

dac12 [88]

5 % 9 / 21

toc13mux [89]

5 % 19 / 21
10 % 7 / 21 10 % 15 / 21
25 % 2 / 21 25 % 12 / 21
50 % 1 / 21 50 % 9 / 21

iolts14 [32]

5 % 21 / 21

toc13xor [89]

5 % 10 / 21
10 % 20 / 21 10 % 7 / 21
25 % 20 / 21 25 % 5 / 21
50 % 18 / 21 50 % 1 / 21

rnd (EPIC [98])

5 % 19 / 21
sarlock (dac12) [149]

5 % 1 / 11
10 % 15 / 21 10 % 1 / 11
25 % 9 / 21 25 % 0 / 11
50 % 4 / 21

sarlock (iolts14) [149]
5 % 1 / 11
10 % 1 / 11
25 % 1 / 11

8.8 Results

In Figure 8.7, we show the results of running the ILP Attack on all the locked circuits.
From the �gure on the left we see that Gurobi is able to produce the fastest solve time
for all reductions compared to CPLEX. Within the reductions, reduction (A) (from Ta-
ble 8.1), was able to produce the fastest key by a signi�cant number of circuits. It is this
combination, Gurobi and reduction (A), that we show the box plots for each circuit across
all locking techniques that were solvable. This plot shows that the i9 circuit has a lot of
variability due to the logic locking technique, whereas c7552 is much more consistent.

In Table 8.3 we outline the number of solved circuits based on the logic locking technique
and the encryption overhead. sarlock is able to withstand the ILP-Attack for all but 1
circuit (ex5). The ILP attack is not very pro�cient at solving dac12 or toc13xor locked
circuits. The attack works very well with toc13mux and iolts14 locked circuits.

152

8.9 Future Work

The reductions in Section 8.6.1 are unable to utilize ILP's full strength and utilize more
range of the integer variable type. Future work into non-binary variable types could increase
the performance of the ILP Attack. Future work into condensing constraints for known
sub-circuits into single constraints could increase performance. An example sub-circuit
would be a 1 bit adder, using non-binary integer variables could produce the required
complexity to model this sub-circuits in a way that is more favourable for the ILP solver.
This would also allow for more complex equal circuit simpli�cations in Section 8.6.5.

In Section 8.6.2, the di�erence circuit constraint requires at least one bit di�erence, but
future work into using the number of di�ering bits as part of the optimization function.
The idea is that distinguishing inputs which maximize the number of changed bits could
reduce the number of distinguishing inputs required to solve for a key.

8.10 Conclusions

Recreating the SAT-Attack using ILP is possible, but it is not as performant as the original
SAT-Attack. The ILP version of this attack is not able to solve more benchmarks compared
to the SAT approach, nor is it able to signi�cantly outperform on any speci�c benchmark.
From this research we can see that for a logic locking technique to claim to be �SAT-Attack
resistant�, they must also make the claim for all NP-complete solvers that can be used in
place for the SAT solver. While ILP was not able to perform better than SAT, this is not
sure for all NP-complete solvers. This is a much harder claim for defence technique to
make.

153

Part III

Conclusions

154

Chapter 9

Conclusions

We have proved our thesis that there exists e�ective solutions based on polynomially time
reductions to Model Checking or Integer Linear Programming (ILP), for the problems:
ATRBAC-Safety (Chapter 3 and Chapter 4), Reduced-Solidity Safety (Chapter 5), Min-
imizing Information Leakage via VM Scheduling (Chapter 7), and ILP Attack on Logic
Locked Circuits (Chapter 8). For ATRBAC-Safety and Reduced-Solidity Safety, we have
established two new reductions. The ATRBAC-Safety reduction, named Cree, implements
4 optimizations techniques which allowed for very comparable completion times compared
to prior work tools and allowed for better scaling to large test cases to support large ATR-
BAC policies without timing out or failing. The Reduced-Solidity Safety reduction is not
fully complete, but in a testable state. This reduction is novel and shows that for test
smart contracts it is able to �nd all vulnerabilities. For VM Scheduling we have estab-
lished a more e�cient reduction, and for the SAT attack we have shown that a reduction
to ILP is also e�ective. The VM Scheduling reduction is able to solve a problem which
was previously reported to take over a day in around 4 minutes, and there are instances
where our ILP reduction is able to out perform the Nomad (polynomially time greedy
algorithm). The ILP attack is implemented with optimization techniques to preload dis-
tinguishing inputs and the reduce the number of constraints for each Equal circuits. We
have also provided a new attacker vector for Total Information Leakage which completely
invalidates the protection mechanisms of VM Scheduling.

Our theory has shown the considerable power available by mature model checker and
ILP solvers to solving problems in computer security. By solving this thesis, we have
also identi�ed the di�culties that arise from performing a reduction to model checking
or ILP. Di�culties in creating an e�ective reduction comes from performing high level
optimizations before passing the problem to the solver. Model checking and ILP solvers

155

implement their own domain speci�c optimizations. These optimizations often do not work
well with a direct reduction from the computer security problems. This thesis has found
that creative optimization, before performing the reduction, create much better results.
In Chapter 3, 4 creative optimization techniques were created, and in Chapter 4 we show
how e�ective each technique is to prior test cases. Optimization techniques were created
for Chapter 5 and Chapter 8. The reduction for VM Scheduling in Chapter 7 contains an
optimization in the reduction that reduced the runtime from 1 day to 4 minutes for cluster
size of 40 in Figure 7.5.

This thesis can naturally be applied to many problems in computer security. Future
access control schemes should have their �rst solver be a reduction to model checking. New
features are regularly added to EVM and Solidity, if adding those features to Reduced-
Solidity and this new language is PSPACE-complete, then our solver in Chapter 5 can be
modi�ed to support the new features. In Chapter 6, we showed that ATRBAC-Safety can
be embedded into smart contracts, if future computer security problems are found to be
embedded in smart contracts, this thesis supports extracting the problem and analyzing
it outside of the EVM environment. Total Information Leakage was shown to contain an
attack vector which invalidates the security protection provided by VM Scheduling, this
thesis provides the framework for creating a reduction to ILP for future information leakage
models. In Chapter 8, we showed that ILP was an e�ective tool to perform the SAT attack,
this leads to the natural question, how do other mature NP-complete solvers perform in
attacking logic locked circuits. This thesis naturally extends to any problem that is shown
to be PSPACE-complete and NP-complete.

156

References

[1] Cygwin. https://www.cygwin.com/.

[2] Lingeling. http://fmv.jku.at/lingeling/.

[3] Leonardo Alt and Christian Reitwiessner. Smt-based veri�cation of solidity smart
contracts. In Tiziana Margaria and Bernhard Ste�en, editors, Leveraging Appli-
cations of Formal Methods, Veri�cation and Validation. Industrial Practice, pages
376�388, Cham, 2018. Springer International Publishing.

[4] Paul Ammann, Richard J. Lipton, and Ravi S. Sandhu. The expressive power of
multi-parent creation in monotonic access control models. Journal of Computer
Security, 4(2/3):149�166, 1996.

[5] Pedro Antonino and A. W. Roscoe. Formalising and verifying smart contracts with
solidi�er: a bounded model checker for solidity, 2020.

[6] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, USA, 1st edition, 2009.

[7] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts. IACR Cryptol. ePrint Arch., 2016:1007, 2016.

[8] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan.
Smt attack: Next generation attack on obfuscated circuits with capabilities and
performance beyond the sat attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 97�122, 2019.

[9] Yossi Azar, Seny Kamara, Ishai Menache, Mariana Raykova, and Bruce Shepard. Co-
location-resistant clouds. In Proceedings of the 6th Edition of the ACM Workshop
on Cloud Computing Security, CCSW '14, pages 9�20, New York, NY, USA, 2014.
ACM.

157

https://www.cygwin.com/
http://fmv.jku.at/lingeling/

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from
an untrusted cloud with haven. ACM Trans. Comput. Syst., 33(3), August 2015.

[11] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing ic piracy using
recon�gurable logic barriers. IEEE Design & Test of Computers, 27(1):66�75, 2010.

[12] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal role-
based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191�233, August
2001.

[13] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Golla-
mudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas
Sibut-Pinote, Nikhil Swamy, et al. Formal veri�cation of smart contracts: Short pa-
per. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, pages 91�96, 2016.

[14] Armin Biere. Lingeling: Sat competition 2016 version. http://fmv.jku.at/

lingeling/lingeling-bbc-9230380-160707.tar.gz, Jun 2016.

[15] Armin Biere. Plingeling: Sat competition 2016 version. http://fmv.jku.at/

lingeling/plingeling-ayv-86bf266-140429.zip, Jun 2016.

[16] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In W. Rance Cleaveland, editor, Tools and Algorithms
for the Construction and Analysis of Systems, pages 193�207, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

[17] Armin Biere and Mathias Preiner. Hardware Model Checking Contest 2019.
http://fmv.jku.at/hwmcc19/, October 2019.

[18] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Mitigating multi-tenancy risks in
iaas cloud through constraints-driven virtual resource scheduling. In Proceedings of
the 20th ACM Symposium on Access Control Models and Technologies, SACMAT
'15, pages 63�74, New York, NY, USA, 2015. ACM.

[19] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceed-
ings 1996 IEEE Symposium on Security and Privacy, pages 164�173, May 1996.

[20] F. Brglez, D. Bryan, and K. Kozminski. Combinational pro�les of sequential bench-
mark circuits. In Circuits and Systems, 1989., IEEE International Symposium on,
pages 1929�1934 vol.3, May 1989.

158

http://fmv.jku.at/lingeling/lingeling-bbc-9230380-160707.tar.gz
http://fmv.jku.at/lingeling/lingeling-bbc-9230380-160707.tar.gz
http://fmv.jku.at/lingeling/plingeling-ayv-86bf266-140429.zip
http://fmv.jku.at/lingeling/plingeling-ayv-86bf266-140429.zip

[21] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142 � 170,
1992.

[22] Amy Burnett and Markus Gaasedelen. Building up from the Ethereum Bytecode
- Practical Decompilation of Ethereum Smart Contracts. https://blog.ret2.io/

2018/05/16/practical-eth-decompilation/, 2018. Online; accessed May 2020.

[23] Vitalik Buterin. EIP 170: Contract code size limit. https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-170.md, 2020. Online; accessed May 2020.

[24] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner. Quantitative
analysis of smart contracts. Lecture Notes in Computer Science, page 739�767, 2018.

[25] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. Detecting
privileged side-channel attacks in shielded execution with déjà vu. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security,
ASIA CCS '17, pages 7�18, New York, NY, USA, 2017. ACM.

[26] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Dexter Kozen, editor, Logics of
Programs, pages 52�71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[27] ConsenSys. Mythrill - Security analysis tool for EVM bytecode. https://github.

com/ConsenSys/mythril, 2018. Online; accessed May 2020.

[28] Thomas H. Cormen, Cli�ord Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[29] Crytic. ethersplay: EVM dissassembler. https://github.com/crytic/ethersplay,
2020. Online; accessed May 2020.

[30] Crytic. pyevmas: Ethereum Virtual Machine (EVM) disassembler and assembler.
https://github.com/crytic/pyevmasm, 2020. Online; accessed May 2020.

[31] Docker. Docker swarm strategies, Accessed: Oct. 2016. Available from https:

//docs.docker.com/swarm/scheduler/strategy/.

[32] Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale, Marie-Lise Flottes, and Bruno
Rouzeyre. A novel hardware logic encryption technique for thwarting illegal over-
production and hardware trojans. In 2014 IEEE 20th International On-Line Testing
Symposium (IOLTS), pages 49�54. IEEE, 2014.

159

https://blog.ret2.io/2018/05/16/practical-eth-decompilation/
https://blog.ret2.io/2018/05/16/practical-eth-decompilation/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/crytic/ethersplay
https://github.com/crytic/pyevmasm
https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/strategy/

[33] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. Integrated circuit
(ic) decamou�aging: Reverse engineering camou�aged ics within minutes. In NDSS,
pages 1�14, 2015.

[34] Ethereum. Solidity, the Contract-Oriented Programming Language. https://

github.com/ethereum/solidity, 2020. Online; accessed May 2020.

[35] D. Evans, Anh Nguyen-Tuong, and J Knight. E�ectiveness of moving target defenses.
In Moving Target Defenses, pages 29�48. Springer, 2011.

[36] Eveem. About Eveem - Panoramix. https://www.eveem.org/about/, 2020. Online;
accessed May 2020.

[37] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy
Chandramouli. Proposed nist standard for role-based access control. ACM Trans.
Inf. Syst. Secur., 4(3):224�274, August 2001.

[38] Anna Lisa Ferrara, P. Madhusudan, and Gennaro Parlato. Policy analysis for self-
administrated role-based access control. In Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS'13, pages 432�447, Berlin, Heidelberg, 2013. Springer-Verlag.

[39] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 � where programs meet
provers. In Matthias Felleisen and Philippa Gardner, editors, Programming Lan-
guages and Systems, pages 125�128, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[40] Joel Frank, Cornelius Aschermann, and Thorsten Holz. ETHBMC: A bounded model
checker for smart contracts. In 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, August 2020.

[41] Mikhail I. Gofman, Ruiqi Luo, Ayla C. Solomon, Yingbin Zhang, Ping Yang, and
Scott D. Stoller. RBAC-PAT: A Policy Analysis Tool for Role Based Access Control,
pages 46�49. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[42] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431�473, May 1996.

[43] Tru�e Blockchain Group. Ganache - One Click Blockchain. https://www.

trufflesuite.com/ganache, 2020. Online; accessed May 2020.

160

https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://www.eveem.org/about/
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache

[44] Mudit Gupta. EIP 1662: Removing Contract Size Limit. https://github.com/

ethereum/EIPs/issues/1662, 2020. Online; accessed May 2020.

[45] Gurobi. Gurobi 9.0 Optimizer, 2019. http://www.gurobi.com/products/

gurobi-optimizer, Apr 2019.

[46] Ákos Hajdu and Dejan Jovanovi¢. solc-verify: A modular veri�er for solidity smart
contracts. In Working Conference on Veri�ed Software: Theories, Tools, and Exper-
iments, pages 161�179. Springer, 2019.

[47] Yi Han, Tansu Alpcan, Je�rey Chan, and Christopher Leckie. Security games for
virtual machine allocation in cloud computing. In 4th International Conference on
Decision and Game Theory for Security - Volume 8252, GameSec 2013, pages 99�118,
New York, NY, USA, 2013. Springer-Verlag New York, Inc.

[48] Yi Han, Je�rey Chan, Tansu Alpcan, and Christopher Leckie. Using virtual machine
allocation policies to defend against co-resident attacks in cloud computing. IEEE
Transactions on Dependable and Secure Computing, 2015.

[49] Michael A. Harrison, Walter L. Ruzzo, and Je�rey D. Ullman. Protection in operating
systems. Commun. ACM, 19(8):461�471, August 1976.

[50] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore,
D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. Kevm: A complete formal semantics
of the ethereum virtual machine. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 204�217, 2018.

[51] IBM. IBM ILOG CPLEX 12.10, 2019. https://www.ibm.com/analytics/

cplex-optimizer, Apr 2019.

[52] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea, Thomas Eisen-
barth, and Berk Sunar. Seriously, get o� my cloud! cross-vm rsa key recovery in a
public cloud. IACR Cryptology ePrint Archive, 2015:898, 2015.

[53] Intel. Intel core i7-940 processor. https://

ark.intel.com/content/www/us/en/ark/products/37148/

intel-core-i7-940-processor-8m-cache-2-93-ghz-4-80-gt-s-intel-qpi.

html. Accessed: 2020-05-29.

[54] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. A shared cache attack that
works across cores and de�es vm sandboxing�and its application to aes. In Security
and Privacy (SP), 2015 IEEE Symposium on, pages 591�604. IEEE, 2015.

161

https://github.com/ethereum/EIPs/issues/1662
https://github.com/ethereum/EIPs/issues/1662
http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://ark.intel.com/content/www/us/en/ark/products/37148/intel-core-i7-940-processor-8m-cache-2-93-ghz-4-80-gt-s-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/37148/intel-core-i7-940-processor-8m-cache-2-93-ghz-4-80-gt-s-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/37148/intel-core-i7-940-processor-8m-cache-2-93-ghz-4-80-gt-s-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/37148/intel-core-i7-940-processor-8m-cache-2-93-ghz-4-80-gt-s-intel-qpi.html

[55] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait
a minute! a fast, cross-vm attack on aes. In Research in Attacks, Intrusions and
Defenses, pages 299�319. Springer International Publishing, 2014.

[56] Karthick Jayaraman, Mahesh Tripunitara, Vijay Ganesh, Martin Rinard, and Steve
Chapin. Mohawk: Abstraction-re�nement and bound-estimation for verifying access
control policies. ACM Trans. Inf. Syst. Secur., 15(4):18:1�18:28, April 2013.

[57] S. Jha, Ninghui Li, M. Tripunitara, Qihua Wang, and W.H. Winsborough. Towards
formal veri�cation of role-based access control policies. Dependable and Secure Com-
puting, IEEE Transactions on, 5(4):242�255, Oct 2008.

[58] Nick Johnson. evmdis: EVM disassembler. https://github.com/Arachnid/

evmdis, 2020. Online; accessed May 2020.

[59] Anita Jones. Protection mechanism models: their usefulness. Foundations of secure
Computation, pages 237�252, 1978.

[60] N. Juma, J. Shahen, K. Bijon, and M. Tripunitara. The overhead from combating
side-channels in cloud systems using vm-scheduling. IEEE Transactions on Depend-
able and Secure Computing, 17(2):422�435, 2020.

[61] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: Analyzing
safety of smart contracts. In NDSS, pages 1�12, 2018.

[62] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
Full-lock: Hard distributions of sat instances for obfuscating circuits using fully con-
�gurable logic and routing blocks. In Proceedings of the 56th Annual Design Au-
tomation Conference 2019, pages 1�6, 2019.

[63] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem: System-level
protection against cache-based side channel attacks in the cloud. In Proceedings
of the 21st USENIX Conference on Security Symposium, Security'12, pages 11�11,
Berkeley, CA, USA, 2012. USENIX Association.

[64] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Pub-
lishing Co., Inc., USA, 2005.

[65] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, E. Amparore, M. Beccuti,
B. Berthomieu, G. Ciardo, S. Dal Zilio, T. Liebke, S. Li, J. Meijer, A. Miner, J. Srba,
Y. Thierry-Mieg, J. van de Pol, T. van Dirk, and K. Wolf. Complete Results for the

162

https://github.com/Arachnid/evmdis
https://github.com/Arachnid/evmdis

2019 Edition of the Model Checking Contest. http://mcc.lip6.fr/2019/results.php,
April 2019.

[66] Adam J. Lee, Kent E. Seamons, Marianne Winslett, and Ting Yu. Automated Trust
Negotiation in Open Systems, pages 217�258. Springer US, Boston, MA, 2007.

[67] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z
Pan. Provably secure camou�aging strategy for ic protection. IEEE transactions on
computer-aided design of integrated circuits and systems, 2017.

[68] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access control.
ACM Trans. Inf. Syst. Secur., 9(4):391�420, November 2006.

[69] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud computing. In 2016 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
406�418, March 2016.

[70] Fangfei Liu and Ruby B. Lee. Random �ll cache architecture. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
47, pages 203�215, Washington, DC, USA, 2014. IEEE Computer Society.

[71] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level
cache side-channel attacks are practical. In 36th IEEE Symposium on Security and
Privacy, pages 605�622, San Jose, May 2015 2015.

[72] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 254�269, 2016.

[73] Soo-Jin Moon, Vyas Sekar, and Michael K. Reiter. Nomad: Mitigating arbitrary
cloud side channels via provider-assisted migration. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS '15, pages
1595�1606, New York, NY, USA, 2015. ACM.

[74] Nick Mudge. EIP 2535: Diamond Standard. https://github.com/ethereum/EIPs/
issues/2535, 2020. Online; accessed May 2020.

[75] Patrick Nelson. How one startup hopes to solve server un-
derutilization. Network World, August 2015. Available from
http://www.networkworld.com/article/2959532/data-center/

startup-says-it-has-solved-server-underutilization.html.

163

https://github.com/ethereum/EIPs/issues/2535
https://github.com/ethereum/EIPs/issues/2535
http://www.networkworld.com/article/2959532/data-center/startup-says-it-has-solved-server-underutilization.html
http://www.networkworld.com/article/2959532/data-center/startup-says-it-has-solved-server-underutilization.html

[76] Niklas Eén and Niklas Sörensson. MiniSat 2.2. http://minisat.se/, Jun 2016.

[77] Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC '18, page 653�663,
New York, NY, USA, 2018. Association for Computing Machinery.

[78] NuSMV. NuSMV 2.6.0, 2015. http://nusmv.fbk.eu/, Jun 2016.

[79] The Open Group. Seconds Since the Epoch.

[80] Rodney Owens and Weichao Wang. Non-interactive os �ngerprinting through mem-
ory de-duplication technique in virtual machines. In 30th IEEE International Per-
formance Computing and Communications Conference, pages 1�8, November 2011.

[81] Natasha Pabrai, Jan Keller, Jessica Lin, Anna Hupa, and Adam Bacchus. Vulner-
ability Reward Program: 2019 Year in Review. https://security.googleblog.

com/2020/01/vulnerability-reward-program-2019-year.html, 2020. Online;
accessed May 2020.

[82] D. Page. Partitioned cache architecture as a side-channel defence mechanism, 2005.

[83] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Ro³u. A formal
veri�cation tool for ethereum vm bytecode. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2018, page 912�915, New York,
NY, USA, 2018. Association for Computing Machinery.

[84] Erman Pattuk, Murat Kantarcioglu, Zhiqiang Lin, and Huseyin Ulusoy. Prevent-
ing cryptographic key leakage in cloud virtual machines. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 703�718, San Diego, CA, August 2014.
USENIX Association.

[85] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev. Verx:
Safety veri�cation of smart contracts. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1661�1677, Los Alamitos, CA, USA, may 2020. IEEE Computer
Society.

[86] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems in
cesar. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, International
Symposium on Programming, pages 337�351, Berlin, Heidelberg, 1982. Springer
Berlin Heidelberg.

164

http://minisat.se/
http://nusmv.fbk.eu/
https://security.googleblog.com/2020/01/vulnerability-reward-program-2019-year.html
https://security.googleblog.com/2020/01/vulnerability-reward-program-2019-year.html

[87] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. Resource man-
agement for isolation enhanced cloud services. In Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, CCSW '09, pages 77�84, New York, NY,
USA, 2009. ACM.

[88] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. Security
analysis of logic obfuscation. In Proceedings of the 49th Annual Design Automation
Conference, pages 83�89, 2012.

[89] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic encryption. IEEE
Transactions on computers, 64(2):410�424, 2013.

[90] Jeyavijayan (JV) Rajendran and Siddharth Garg. Logic Encryption, pages 71�88.
Springer International Publishing, Cham, 2017.

[91] P. Rajkumar and R. Sandhu. Safety decidability for pre-authorization usage con-
trol with �nite attribute domains. IEEE Transactions on Dependable and Secure
Computing, 13(05):582�590, sep 2016.

[92] P. V. Rajkumar and R. Sandhu. Safety decidability for pre-authorization usage
control with identi�er attribute domains. IEEE Transactions on Dependable and
Secure Computing, pages 1�1, 2018.

[93] Silvio Ranise, Anh Truong, and Alessandro Armando. Scalable and Precise Au-
tomated Analysis of Administrative Temporal Role-based Access Control. In Pro-
ceedings of the 19th ACM Symposium on Access Control Models and Technologies,
SACMAT '14, pages 103�114, New York, NY, USA, 2014. ACM.

[94] Silvio Ranise, Anh Truong, and Luca Viganò. Automated analysis of rbac policies
with temporal constraints and static role hierarchies. In Proceedings of the 30th
Annual ACM Symposium on Applied Computing, SAC '15, pages 2177�2184, New
York, NY, USA, 2015. ACM.

[95] Silvio Ranise, Anh Truong, and Luca Viganò. Automated analysis of rbac policies
with temporal constraints and static role hierarchies. In Proceedings of the 30th
Annual ACM Symposium on Applied Computing, SAC '15, page 2177�2184, New
York, NY, USA, 2015. Association for Computing Machinery.

165

[96] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get
o� of my cloud: Exploring information leakage in third-party compute clouds. In Pro-
ceedings of the 16th ACM Conference on Computer and Communications Security,
CCS '09, pages 199�212, New York, NY, USA, 2009. ACM.

[97] Shervin Roshanisefat, Hadi Mardani Kamali, and Avesta Sasan. Srclock: Sat-
resistant cyclic logic locking for protecting the hardware. In Proceedings of the 2018
on Great Lakes Symposium on VLSI, pages 153�158, 2018.

[98] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Epic: Ending piracy of
integrated circuits. In Proceedings of the conference on Design, automation and test
in Europe, pages 1069�1074, 2008.

[99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model for
role-based administration of roles. ACM Trans. Inf. Syst. Secur., 2(1):105�135,
February 1999.

[100] Ravi S Sandhu. The typed access matrix model. In IEEE Symposium on Security
and Privacy, pages 122�136, 1992.

[101] Amit Sasturkar, Ping Yang, Scott D. Stoller, and C. R. Ramakrishnan. Policy
analysis for administrative role based access control. Theoretical Computer Science,
412(44):6208�6234, October 2011.

[102] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177 � 192, 1970.

[103] Jonathan Shahen. Cree: Source Code and Supplementary Material. https://ece.
uwaterloo.ca/~jmshahen/cree/, Jan 2019.

[104] Jonathan Shahen. Cree and Mohawk+T datasets. https://git.uwaterloo.ca/

atrbac-safety-mohawk-t-cree/mohawk-t-data, 2015. Online; accessed Jun 2020.

[105] Jonathan Shahen. Cree: Source Code. https://ece.uwaterloo.ca/~jmshahen/

mohawk+t/, 2015. Online; accessed Jun 2018.

[106] Jonathan Shahen. Mohawk+T: Source Code. https://ece.uwaterloo.ca/

~jmshahen/mohawk+t/, 2015. Online; accessed Jun 2015.

[107] Jonathan Shahen. Mohawk+T: E�cient Analysis of Administrative Temporal Role-
Based Access Control (ATRBAC) Policies. Master's thesis, University of Waterloo,
2016. Available from https://uwspace.uwaterloo.ca/.

166

https://ece.uwaterloo.ca/~jmshahen/cree/
https://ece.uwaterloo.ca/~jmshahen/cree/
https://git.uwaterloo.ca/atrbac-safety-mohawk-t-cree/mohawk-t-data
https://git.uwaterloo.ca/atrbac-safety-mohawk-t-cree/mohawk-t-data
https://ece.uwaterloo.ca/~jmshahen/mohawk+t/
https://ece.uwaterloo.ca/~jmshahen/mohawk+t/
https://ece.uwaterloo.ca/~jmshahen/mohawk+t/
https://ece.uwaterloo.ca/~jmshahen/mohawk+t/
https://uwspace.uwaterloo.ca/

[108] Jonathan Shahen. Vagabond: Source Code. https://git.uwaterloo.ca/

jmshahen/vagabond, 2018. Online; accessed May 2018.

[109] Jonathan Shahen. Analyze ATRBAC Policies Source Code. https:

//git.uwaterloo.ca/atrbac-safety-mohawk-t-cree/cree-policy-analyzer,
2019. Online; accessed May 2020.

[110] Jonathan Shahen. Generic ATRBAC Smart Contract Source Code. https://git.

uwaterloo.ca/jmshahen/ethereum-atrbac-smart-contract, 2019. Online; ac-
cessed May 2020.

[111] Jonathan Shahen. ILP Logic Locking: Source Code. https://git.uwaterloo.ca/
jmshahen/LogicLocking-Empirical, 2019. Online; accessed June 2019.

[112] Jonathan Shahen. Convert ATRBAC Policy to Smart Contract Source Code. https:
//git.uwaterloo.ca/jmshahen/atrbac-policy-to-solidity-smart-contract,
2020. Online; accessed May 2020.

[113] Jonathan Shahen. Hard Instances of ATRBAC-Safety - Generator Source Code.
https://git.uwaterloo.ca/jmshahen/hard-atrbac-instances, 2020. Online;
accessed Jun 2020.

[114] Jonathan Shahen. Solidity Safety: Source Code. https://git.uwaterloo.ca/

jmshahen/solidity-safety-to-model-checking, 2020. Online; accessed May
2020.

[115] Jonathan Shahen, Jianwei Niu, and Mahesh Tripunitara. Mohawk+t: E�cient anal-
ysis of administrative temporal role-based access control (atrbac) policies. In Pro-
ceedings of the 20th ACM Symposium on Access Control Models and Technologies,
SACMAT '15, pages 15�26, New York, NY, USA, 2015. ACM.

[116] Jonathan Shahen, Jianwei Niu, and Mahesh Tripunitara. Cree: a performant tool for
safety analysis of administrative temporal role-based access control (atrbac) policies.
IEEE Transactions on Dependable and Secure Computing, PP:1�1, 10 2019.

[117] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
Appsat: Approximately deobfuscating integrated circuits. In 2017 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST), pages 95�100.
IEEE, 2017.

167

https://git.uwaterloo.ca/jmshahen/vagabond
https://git.uwaterloo.ca/jmshahen/vagabond
https://git.uwaterloo.ca/atrbac-safety-mohawk-t-cree/cree-policy-analyzer
https://git.uwaterloo.ca/atrbac-safety-mohawk-t-cree/cree-policy-analyzer
https://git.uwaterloo.ca/jmshahen/ethereum-atrbac-smart-contract
https://git.uwaterloo.ca/jmshahen/ethereum-atrbac-smart-contract
https://git.uwaterloo.ca/jmshahen/LogicLocking-Empirical
https://git.uwaterloo.ca/jmshahen/LogicLocking-Empirical
https://git.uwaterloo.ca/jmshahen/atrbac-policy-to-solidity-smart-contract
https://git.uwaterloo.ca/jmshahen/atrbac-policy-to-solidity-smart-contract
https://git.uwaterloo.ca/jmshahen/hard-atrbac-instances
https://git.uwaterloo.ca/jmshahen/solidity-safety-to-model-checking
https://git.uwaterloo.ca/jmshahen/solidity-safety-to-model-checking

[118] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
Cyclic obfuscation for creating sat-unresolvable circuits. In Proceedings of the on
Great Lakes Symposium on VLSI 2017, pages 173�178, 2017.

[119] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin. Cross-lock: Dense layout-level
interconnect locking using cross-bar architectures. In Proceedings of the 2018 on
Great Lakes Symposium on VLSI, pages 147�152, 2018.

[120] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating security of logic encryption
algorithms. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages
179�184, 2017.

[121] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring. In Proceedings of the
2011 IEEE/IFIP 41st International Conference on Dependable Systems and Net-
works Workshops, DSNW '11, pages 194�199, Washington, DC, USA, 2011. IEEE
Computer Society.

[122] S Shinde, ZL Chua, V Narayanan, and P Saxena. Preventing your faults from telling
your secrets. In Proceedings of the 11th ACM Symposium on Information, Computer
and Communications Security (ASIACCS), Xian, China, 2016.

[123] Deepak Sirone and Pramod Subramanayan. Functional analysis attacks on logic
locking. IEEE Transactions on Information Forensics and Security, 2020.

[124] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. Verismart: A
highly precise safety veri�er for ethereum smart contracts, 2019.

[125] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path oram: An extremely simple oblivious ram
protocol. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS '13, pages 299�310, New York, NY, USA, 2013.
ACM.

[126] Scott D. Stoller, Ping Yang, C R. Ramakrishnan, and Mikhail I. Gofman. E�cient
policy analysis for administrative role based access control. In Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS '07, pages
445�455, New York, NY, USA, 2007. ACM.

168

[127] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security of
logic encryption algorithms. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 137�143. IEEE, 2015.

[128] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. Memory deduplica-
tion as a threat to the guest os. In Proceedings of the Fourth European Workshop on
System Security, EUROSEC '11, pages 1:1�1:6, New York, NY, USA, 2011. ACM.

[129] Ethereum Team. Design Rationale. https://github.com/ethereum/wiki/wiki/

Design-Rationale#gas-and-fees, 2019. Online; accessed May 2020.

[130] Mahesh Tripunitara and Ninghui Li. A theory for comparing the expressive power of
access control models. Journal of Computer Security, 15(2):231�272, February 2007.

[131] A. Truong and D. H. T. That. Solving the user-role reachability problem in arbac
with role hierarchy. In 2016 International Conference on Advanced Computing and
Applications (ACOMP), pages 3�10, Nov 2016.

[132] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bün-
zli, and Martin Vechev. Securify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS '18, page 67�82, New York, NY, USA, 2018. Association for
Computing Machinery.

[133] Emre Uzun, Vijayalakshmi Atluri, Shamik Sural, Jaideep Vaidya, Gennaro Parlato,
Anna Lisa Ferrara, and Madhusudan Parthasarathy. Analyzing Temporal Role Based
Access Control Models. In Proceedings of the 17th ACM Symposium on Access Con-
trol Models and Technologies, SACMAT '12, pages 177�186, New York, NY, USA,
2012. ACM.

[134] Emre Uzun, Vijayalakshmi Atluri, Jaideep Vaidya, Shamik Sural, Anna Ferrara,
Gennaro Parlato, and P Madhusudan. Security analysis for temporal role based
access control. Journal of Computer Security, 22:961�996, 06 2014.

[135] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift. Scheduler-
based defenses against cross-vm side-channels. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 687�702, 2014.

[136] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating �ne grained
timers in xen. In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW '11, pages 41�46, New York, NY, USA, 2011. ACM.

169

https://github.com/ethereum/wiki/wiki/Design-Rationale#gas-and-fees
https://github.com/ethereum/wiki/wiki/Design-Rationale#gas-and-fees

[137] S. A. Vavasis. Quadratic programming is in np. Inf. Process. Lett., 36(2):73�77,
October 1990.

[138] Vyperlang. Vyper - Pythonic Smart Contract Language for the EVM. https://

github.com/vyperlang/vyper, 2020. Online; accessed May 2020.

[139] Yuepeng Wang, Shuvendu Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born, and
Immad Naseer. Formal speci�cation and veri�cation of smart contracts for azure
blockchain. April 2019.

[140] Zhenghong Wang and Ruby B Lee. A novel cache architecture with enhanced per-
formance and security. In 2008 41st IEEE/ACM International Symposium on Mi-
croarchitecture, pages 83�93. IEEE, 2008.

[141] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1�32, 2014.

[142] Yang Xie and Ankur Srivastava. Mitigating sat attack on logic locking. In Interna-
tional conference on cryptographic hardware and embedded systems, pages 127�146.
Springer, 2016.

[143] Yang Xie and Ankur Srivastava. Delay locking: Security enhancement of logic locking
against ic counterfeiting and overproduction. In Proceedings of the 54th Annual
Design Automation Conference 2017, pages 1�6, 2017.

[144] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel bypass
attack and bdd-based tradeo� analysis against all known logic locking attacks. In
International conference on cryptographic hardware and embedded systems, pages
189�210. Springer, 2017.

[145] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 640�656. IEEE, 2015.

[146] Fangfei Yang, Ming Tang, and Ozgur Sinanoglu. Stripped functionality logic locking
with hamming distance-based restore unit (s�l-hd)�unlocked. IEEE Transactions on
Information Forensics and Security, 14(10):2778�2786, 2019.

[147] S. Yang. Logic synthesis and optimization benchmarks user guide: Version 3.0.
Technical report, MCNC Technical Report, January 1991.

170

https://github.com/vyperlang/vyper
https://github.com/vyperlang/vyper

[148] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low noise, l3
cache side-channel attack. In 23rd USENIX Security Symposium (USENIX Security
14), pages 719�732, San Diego, CA, August 2014. USENIX Association.

[149] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and Ozgur
Sinanoglu. Sarlock: Sat attack resistant logic locking. In 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 236�241. IEEE,
2016.

[150] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Ra-
jendran. Removal attacks on logic locking and camou�aging techniques. IEEE Trans-
actions on Emerging Topics in Computing, 2017.

[151] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Ra-
jendran. Security analysis of anti-sat. In 2017 22nd Asia and South Paci�c Design
Automation Conference (ASP-DAC), pages 342�347. IEEE, 2017.

[152] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri.
On improving the security of logic locking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(9):1411�1424, 2015.

[153] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan Rajendran, and Ozgur Sinanoglu. Provably-secure logic lock-
ing: From theory to practice. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 1601�1618, 2017.

[154] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris,
Ozgur Sinanoglu, and Jeyavijayan Rajendran. What to lock? functional and para-
metric locking. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages
351�356, 2017.

[155] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm
side channels and their use to extract private keys. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS '12, pages 305�316,
New York, NY, USA, 2012. ACM.

[156] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-tenant
side-channel attacks in paas clouds. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS '14, pages 990�1003, New
York, NY, USA, 2014. ACM.

171

[157] Yinqian Zhang and Michael K. Reiter. Düppel: Retro�tting commodity operating
systems to mitigate cache side channels in the cloud. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS '13, pages 827�
838, New York, NY, USA, 2013. ACM.

[158] Yulong Zhang, Min Li, Kun Bai, Meng Yu, and Wanyu Zang. Incentive compat-
ible moving target defense against vm-colocation attacks in clouds. In Gritzalis,
Dimitris and Furnell, Steven and Theoharidou, Marianthi (eds.) Information Secu-
rity and Privacy Research, pages 388�399, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[159] Hai Zhou. A humble theory and application for logic encryption. IACR Cryptology
ePrint Archive, 2017:696, 2017.

[160] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. Cycsat: Sat-based attack on cyclic
logic encryptions. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 49�56. IEEE, 2017.

[161] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael
Bailey. Erays: reverse engineering ethereum's opaque smart contracts. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 1371�1385, 2018.

[162] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A software approach to defeating
side channels in last-level caches. arXiv preprint, arXiv:1603.05615v1, 2016. http:

//arxiv.org/.

[163] Jian Zhu, Kai Hu, Mamoun Filali, Jean-Paul Bodeveix, and Jean-Pierre Talpin.
Formal veri�cation of solidity contracts in event-b, 2020.

172

http://arxiv.org/
http://arxiv.org/

APPENDICES

173

Appendix A

Summary of Software and Solvers

A summary of all tools and software created by myself are in Table A.1. Many projects in
this thesis reduce one problem space to: ILP, Model Checking, or SAT. A summary of the
public ILP and model checker solvers are provided in Table A.2.

Table A.1: Summary of Software Projects created by the author and used in this the-
sis. All software projects, except Mohawk+T, were created during PhD. Mohawk+T was
updated and improved during PhD.

Software Problem Space Complexity Class Project

Mohawk+T [106] ATRBAC-Safety PSPACE-Complete ATRBAC-Safety
Cree [105] ATRBAC-Safety PSPACE-Complete ATRBAC-Safety
ATRBAC Policy Statistics [109] ATRBAC-Safety P Hard ATRBAC Instances
Vagabond [108] VM Migrations NP-Complete Cloud Security
ILP Attack [111] Logic Locked Circuits NP-Complete Logic Locking
Solidity Safety [114] Ethereum Smart Contracts PSPACE-Complete Ethereum Safety
ATRBAC Smart Contract [112] Ethereum Access Control P ATRBAC Smart Contracts

Table A.2: List of publically available solvers used in this thesis.

Solver Problem Space Complexity Class Projects

NuSMV [78] Model Checking PSPACE-Complete ATRBAC-Safety and Ethereum Safety
NuXmv [78] Model Checking PSPACE-Complete ATRBAC-Safety and Ethereum Safety
Gurobi [45] ILP NP-Complete Logic Locking
IBM ILOG CPLEX [51] ILP NP-Complete Logic Locking and Cloud Security
Lingeling [14] SAT NP-Complete Cloud Security
Plingeling [15] SAT NP-Complete Cloud Security
Minisat [76] SAT NP-Complete Cloud Security

174

Appendix B

NuSMV Supported Speci�cations

Figure B.1: Figure showing a representation of the CTL Speci�cations. Image Credit:
Dr. Bonakdarpour http://web.cs.iastate.edu/~borzoo/teaching/15/CAS701/lectures/ctl.pdf.

B.1 Computational Tree Logic (CTL) Speci�cations

Computational Tree Logic (CTL) speci�cations are used in this thesis. Below we provide
the grammar of CTL Speci�cations accepted by NuSMV v2.6 [78]. We also provide an
explanation of the di�erent speci�cations de�ned in CTL.

175

http://web.cs.iastate.edu/~borzoo/teaching/15/CAS701/lectures/ctl.pdf

〈ctl-expr〉 ::= 〈boolean-expr〉
| `!' 〈ctl-expr〉 logical not
| `(' 〈ctl-expr〉 `)'
| 〈ctl-expr〉 (`&' | `|' | `xor' | `xnor' | '->' | `<->') 〈ctl-expr〉
| (`EG' | `EX' | `EF' | `AG' | `AX' | `AF') 〈ctl-expr〉
| (`E' | `A') `[' 〈ctl-expr〉 `U' 〈ctl-expr〉 `]'

� EX p � is true in a state s if there exists a state s′ such that a transition goes from s
to s′ and p is true in s′.

� AX p � is true in a state s if for all states s′ where there is a transition from s to s′

and p is true in s′.
� EF p � is true in a state s0 if there exists a series of transitions s0 → s1, s1 → s2, . . .,
sn−1 → sn such that p is true in sn.

� AF p � is true in a state s0 if for all series of transitions s0 → s1, s1 → s2, . . . , sn−1 → sn,
p is true in sn.

� EG p � is true in a state s0 if there exists an in�nite series of transitions s0 → s1,
s1 → s2, . . . such that p is true in every si.

� AG p � is true in a state s0 if for all in�nite series of transitions s0 → s1, s1 → s2, . . . p
is true in every si.

� E[p U q] � is true in a state s0 if there exists a series of transitions s0 → s1, s1 → s2,
. . ., sn−1 → sn such that p is true in every state from s0 to sn−1 and q is true in state sn.

� A[p U q] � is true in a state s0 if for all series of transitions s0 → s1, s1 → s2, . . .,
sn−1 → sn, p is true in every state from s0 to sn−1 and q is true in state sn.

B.2 Linear Temporal Logic (LTL) Speci�cations

Linear Temporal Logic (LTL) is another speci�cation format. This format is not used in this
thesis, but is included here for completeness. Below is the grammar of LTL Speci�cations
accepted by NuSMV v2.6 [78].

〈bound〉 ::= `[' 〈int〉 `,' 〈int〉 `]'

176

〈ltl-expr〉 ::= 〈boolean-expr〉
| `!' 〈ltl-expr〉 logical not
| `(' 〈ltl-expr〉 `)'
| 〈ltl-expr〉 (`&' | `|' | `xor' | `xnor' | '->' | `<->') 〈ltl-expr〉
| (`G' | `X' | `F' | `G' 〈bound〉 | `F' 〈bound〉) 〈ltl-expr〉 Future
| (`Y' | `Z' | `H' | `O' | `H' 〈bound〉 | `O' 〈bound〉) 〈ltl-expr〉 Past
| 〈ltl-expr〉 (`S' | `T') 〈ltl-expr〉 Since and Triggered

� X p � is true at time t if p is true at time t + 1.
� F p � is true at time t if p is true at some time t′ ≥ t.
� F [l, u]p � is true at time t if p is true at some time t + l ≤ t′ ≤ t + u.
� G p � is true at time t if p is true at all times t′ ≥ t.
� G [l, u] p � is true at time t if p is true at all times t + l ≤ t′ ≤ t + u.
� p U q � is true at time t if q is true at some time t′ ≥ t, and for all time t′′ (such that
t ≤ t′′ < t′) p is true.

� p V q is true at time t if q holds at all time steps t′ ≥ t up to and including the time
step t′′ where p also holds. Alternatively, it may be the case that p never holds in which
case q must hold in all time steps t′ ≥ t.

� Y p is true at time t > t′ if p holds at time t− 1. Y p is false at time t0.
� Z p is equivalent to Y p with the exception that the expression is true at time t0.
� H p is true at time t if p holds in all previous time steps t′ ≤ t.
� H [l, u] p is true at time t if p holds in all previous time steps t− u ≤ t′ ≤ t− l.
� O p is true at time t if p held in at least one of the previous time steps t′ ≤ t.
� O [l, u] p is true at time t if p held in at least one of the previous time steps t−u ≤ t′ ≤
t− l.

� p S q is true at time t if q held at time t′ ≤ t and p holds in all time steps t′′ such that
t′ < t′′ ≤ t.

� p T q is true at time t if p held at time t′ ≤ t and q holds in all time steps t′′ such that
t′ ≤ t′0 ≤ t. Alternatively, if p has never been true, then q must hold in all time steps
t′′ such that t0 ≤ t′′ ≤ t

177

Appendix C

Cree Pruning and Bound Estimation

C.1 Static Slicing

Static pruning, implemented in Cree, has empirically shown to improve performance of
the test cases shown in Section 3.6. There is a balance point where searching for more
roles, rules, or timeslots to remove, takes longer than just reducing to Model Checking
and running NuSMV. From this, we created two pruning techniques (modelled after those
shown in [56]): forward and backwards pruning. Peudo-code for our forward and backward
pruning algorithms are shown as Algorithm 3 and Algorithm 4. Both algorithms have
polynomial run times.

178

ALGORITHM 3: Forward Pruning
Input : P � Mohawk+T Policy
// rule: 〈a, La, Ct, St, t〉
RCA ← {t′|r ∈ P .CA ∧ r.t = t′};
RCE ← {t′|r ∈ P .CE ∧ r.t = t′};
for r ∈ {P .CA ∪ P .CR} do

if (∃c ∈ r.Ct|c is pos∧ c /∈ RCA) or (∃c, d ∈ r.Ct|c is pos∧ d is neg∧ c = d) or (r.a /∈ RCA) or (r.a /∈ RCE) then

// Do not add rule to P ′.
else

if r ∈ P .CA then P ′.CA← P ′.CA ∪ r ;
else P ′.CR← P ′.CR ∪ r ;

for r ∈ {P .CE ∪ P .CD} do
if (∃c ∈ r.Ct|c is pos∧ c /∈ RCE) or (∃c, d ∈ r.Ct|c is pos∧ d is neg∧ c = d) or (r.a /∈ RCA) or (r.a /∈ RCE) then

// Do not add rule to P ′.
else

if r ∈ CE then P ′.CE← P ′.CE ∪ r ;
else P ′.CD← P ′.CD ∪ r ;

P ′.query ←− P .query;
return P ′

ALGORITHM 4: Backward Pruning
Input : P � Mohawk+T Policy
// rule: 〈a, La, Ct, St, t〉

1 P ′′.query← 〈Rq , sq〉 ← P .query;
2 Spos ← Rpos ← {g1, g2, . . . , g|Rq|} ← Rq ;

3 Rneg , Renb, Rdis, Sneg , Senb, Sdis, Tneg , Tenb, Tdis ← {};
4 Tpos ← {g1 : {sq}, g2 : {sq}, . . . , g|Rq| : {sq}};
5 while (Spos 6= ∅

∨
Sneg 6= ∅

∨
Senb 6= ∅

∨
Sdis 6= ∅) do

6 spos ← Spos.pop();
7 for {r|r ∈ P.CA ∧ r.t = spos ∧ r.St ∩ Tpos[spos] 6= ∅} do
8 for {p|p ∈ r.Ct ∧ p is pos ∧ p /∈ Rpos} do
9 Spos ← Spos ∪ p; Rpos ← Rpos ∪ p;
10 Tpos[p]← Tpos[p] ∪ r.St

11 for {n|n ∈ r.Ct ∧ n is negative ∧ n /∈ Rneg} do
12 Sneg ← Sneg ∪ n; Rneg ← Rneg ∪ n;
13 Tneg [n]← Tneg [n] ∪ r.St

14 if r.a 6= TRUE then

15 Tpos[r.a]← Tpos[r.a]∪ r.La;
16 Tenb[r.a]← Tenb[r.a]∪ r.La;
17 if (r.a /∈ Rpos) then
18 Spos ← Spos ∪ r.a; Rpos ← Rpos ∪ r.a
19 if (r.a /∈ Renb) then
20 Senb ← Senb ∪ r.a; Renb ← Renb ∪ r.a

21 Run Lines 6-20 for: Sneg and P.CR;
22 Run Lines 6-20 for: Senb and P.CE;
23 Run Lines 6-20 for: Sdis and P.CD;

24 P ′′.CA← {r|r ∈ P.CA
∧

r.t ∈ Rpos
∧

r.St
⋂

Tpos[r.t] 6= ∅};
25 P ′′.CR← {r|r ∈ P.CR

∧
r.t ∈ Rneg

∧
r.St

⋂
Tneg [r.t] 6= ∅};

26 P ′′.CE ← {r|r ∈ P.CE
∧

r.t ∈ Renb
∧

r.St
⋂

Tenb[r.t] 6= ∅};
27 P ′′.CD ← {r|r ∈ P.CD

∧
r.t ∈ Rdis

∧
r.St

⋂
Tdis[r.t] 6= ∅};

28 return P ′′;

179

// Path : CE1(admin) → CE3(a) → CA6(a) → CA6(user) → CA4(u) → CR2(u) → CA2(u) → CA6(u)
Query : t2 , [r3 , r4]
CanAssign :

/*CA1*/ <TRUE, t1−t3 , TRUE, [t2 , t3] , r1>
/*CA2*/ <r3 , t1−t3 , r2 & NOT r3 , [t2 , t3] , r4>
/*CA3*/ <r1 , t1−t3 , r1 , [t2 , t3] , r5>
/*CA4*/ <r3 , t1−t3 , r3 , [t1] , r2>
/*CA5*/ <r1 , t1−t3 , r5 & NOT r3 , [t2 , t3] , r6>
/*CA6*/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r3>

CanRevoke :
/*CR1*/ <TRUE, t1−t3 , TRUE, [t1 , t2] , r1>
/*CR2*/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r3>
/*CR3*/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r2>

CanEnable :
/*CE1*/ <TRUE, t1−t2 , TRUE, [t1] , r1>
/*CE2*/ <TRUE, t1−t2 , TRUE, [t2] , r1>
/*CE3*/ <TRUE, t1−t2 , r1 & NOT r2 , [t1] , r3>
/*CE4*/ <TRUE, t1−t2 , r1 , [t1] , r2>

CanDisable :
/*CD1*/ <TRUE, t1−t2 , TRUE, [t1] , r1>
/*CD2*/ <TRUE, t1−t2 , TRUE, [t1] , r2>

Figure C.1: An example that shows rules/roles/timeslots, that can be removed without
changing the security of the policy. Removing all unnecessary rules/roles/timeslots with
static pruning ensures: (1) the pruned policy's size will be less than or equal to the input
policy's size, and (2) the safety response remains unchanged.

C.2 Bound Estimation Example

Using Figure 3.2, we will show how to calculate each of the bound estimation steps. We
have recreated that example here in Figure C.1.

C.2.1 Initial Upper Bound

User-Role-Timeslot Assignment:

u = |Users| · |Roles| · |Timeslots|
= (|Roles| · |Timeslots|) · |Roles| · |Timeslots|
Role-Timeslot Enablement:

r = |Roles| · |Timeslots|
Upper Bound:

d0 = 2u+r = 2(|Roles|
2·|Timeslots|2)+(|Roles|·|Timeslots|)

Applying to Figure C.1:

Roles = {r1, r2, r3, r4, r5, r6}
Timeslots = {t1, t2, t3}

d0 = 2(6
2·32)+(6·3) = 2342

180

C.2.2 Tightening 1

|Users| = |Admin Roles|+ 1

d1 = 2(|Admin Roles|+2)·|Roles|·|Timeslots|

Applying to Figure C.1:

Roles = {r1, r2, r3, r4, r5, r6}
Timeslots = {t1, t2, t3}

Admin Roles = {r1, r3}
d1 = 2(2+2)·6·3 = 272

C.2.3 Tightening 2

User-Role-Timeslot Assignment:

|u2| =(|Admin-Roles|+ 1) · |CA-Target-Roles ∩ (CA-CR-Positive-Precondition ∪Admin-Roles

∪Goal-Roles)| · |CA-Target-Timeslots|
Role-Timeslot Enablement:

|r2| =|CE-Target-Roles ∩ (CE-CD-Positive-Precondition ∪Admin-Roles)| · |CE-Target-Timeslots|
Upper Bound:

d2 =2|u2|+|r2|

Applying to Figure C.1:

CA-Target-Roles = {r1, r2, r3, r4, r5, r6}
CA-CR-Positive-Precondition = {r1, r2, r3, r5}

CE-Target-Roles = {r1, r2, r3}
CE-CD-Positive-Precondition = {r1}

Goal-Roles = {r3, r4}
Admin Roles = {r1, r3}

u2 = (2 + 1) · |{r1, r2, r3, r4, r5}| · |{t1, t2, t3}| = 45

r2 = |{r1, r3}| · |{t1, t2}| = 4

d2 =2|u2|+|r2| = 249

181

C.2.4 Tightening 3

Ugoal =

∣∣∣∣∣∣CA-Target-Roles
⋂ ⋃

g∈Goal-Roles

Get-Roles[LSPCA,CR(g)]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
g∈Goal-Roles

Get-Timeslots[LSPCA,CR(g)]

∣∣∣∣∣∣
Uadmins =

 ∑
a∈Admin-Roles

∣∣CA-Target-Roles ∩Get-Roles[LSPCA,CR(a)]
∣∣ · |Get-Timeslots[LSPCA,CR(a)]|

RE =

∣∣∣∣∣∣CE-Target-Roles
⋂ ⋃

a∈Admin-Roles

Get-Roles[LSPCE,CD(a)]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
a∈Admin-Roles

Get-Timeslots[LSPCE,CD(a)]

∣∣∣∣∣∣
d3 =2Ugoal+Uadmins+RE

Applying to Figure C.1:

CA-Target-Roles = {r1, r2, r3, r4, r5, r6}
CE-Target-Roles = {r1, r2, r3}

Goal-Roles = {r3, r4}
Admin Roles = {r1, r3}

LSPCA,CR(r1) = {CA1}
LSPCA,CR(r3) = {CA6}
LSPCA,CR(r4) = {CA2, CA4, CA6, CR2}
LSPCE,CD(r1) = {CE2}
LSPCE,CD(r3) = {CE3, CE1}

Ugoal =|{r1, r2, r3, r4, r5, r6} ∩ {r3, r2, r4}| · |{t1, t2, t3}| = 9

Uadmins =(|{r1, r2, r3, r4, r5, r6} ∩ {r1}| · |{t2, t3}|+ |{r1, r2, r3, r4, r5, r6} ∩ {r3}|) · |{t1, t2, t3}| = 5

RE =|{r1, r2, r3} ∩ [{r1} ∪ {r1, r3}]| · |{t2} ∪ {t1}| = 4

d3 =29+5+4 = 218

The LSPA,B(r) function usesA as a positive rule set (either t_can_assign or t_can_enable)
and B as the negative rule set (t_can_revoke or t_can_disable). The function returns the
longest length path, from the set of shortest rule paths starting from r till all conditions
are satis�ed. We start the LSP function with a rule in A that has r as its target role. We
then branch out from this using an algorithm found in abstraction re�nement to build a
dependency graph that includes all rules. If there exists more than one rule in A that has
r as the target role, then LSP returns the longest list of rules.

The Get-Roles function returns a set of target roles from a set of rules. The Get-Timeslots
function returns a set of the target timeslots from a set of rules.

182

Appendix D

Cree Empirical Results without
Mohawk+T

Benchmark Class (a)

200 400 600 800 1,000

0

0.2

0.4

0.6

→ Failed

� � � � �

↑ ↑ ↑ ↑
↑

↓ ↓ ↓ ↓ ↓← ← ← ← ←

→

Number of Roles

T
im

e
(s
ec
)

200 400 600 800 1,000

0

0.2

0.4

0.6

→ Failed All Tests

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓
↓

� � � � �

← ← ← ← ←

Number of Rules

20 40 60 80 100

0

0.2

0.4

0.6

→ Failed

↑ ↑ ↑ ↑ ↑
↑

↓ ↓ ↓ ↓ ↓ ↓

�� � � � �

←← ← ← ← ←

→

Number of Timeslots

�Cree ↑ TRedRole ↓ TRedRule← ASASPTime SA→ ASASPTime NSA

Figure D.1: Results from all tools for Benchmark Class (a). It comprises random input
instances from a generator from Uzun et al. [133]. The curves interpolate averages, and
the error-bars show the standard deviation. Mohawk+T has been removed.

183

c01 c02 c03 c04 c05 c06 c07 c08

0

2

4

6

8

10

12

� � � � � � � �↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓←
← ← ← ← ←

← ←

→

→
→ →

→

→

→
→

T
im

e
(s
ec
)

Benchmark Class (b) Tests 1 - 8

c09 c10 c11 c12 c13

0

50

100

150

↑ ↑ ↑ ↑ ↑

↓

↓ ↓ ↓ ↓� � � � �← ← ← ← ←
→ →

→

→

→
Benchmark Class (b), Tests 9 - 13

Ho
sp
ita

l 1

Ho
sp
ita

l 5

Un
ive

rsi
ty

1

Un
ive

rsi
ty

5

Un
ive

rsi
ty

10

0

5

10

15

20

25

���

�

����������������→→→→→→→→→
→
→→→→→→→→

→
→

Benchmark Class (c)

�Cree ↑ TRedRole ↓ TRedRule← ASASPTime SA→ ASASPTime NSA

Figure D.2: Results from Benchmark Class (b) (two graphs to the left), and Benchmark
Class (c) (right). These comprise input instances from the work of Ranise et al. [93].
Mohawk+T has been removed.

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

40
00

,
20

00
0

20
00

0,
80

00
0

30
00

0,
12

00
00

40
00

0,
20

00
00

0

50

100

150

200
↑ & ↓ Timeout

→ Failed,

← Failed

����������↑ ↑ ↑ ↑ ↑ ↑

↑

↓ ↓ ↓ ↓ ↓ ↓

↓

←←←←←

←

←

←

→→
→
→→

→

→

Num. of Roles, Num. of Rules

T
im

e
(s

ec
)

Test Suite 1 (Poly–time Verifiable)

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

40
00

,
20

00
0

20
00

0,
80

00
0

30
00

0,
12

00
00

40
00

0,
20

00
00

0

2

4

6

8

10

12
↑ & ↓ Timeout

→ Failed

← Failed

�������
��

�

↑ ↑ ↑↓ ↓

↓

←←←

←

←

←

←

→
→
→

→

→

→

Num. of Roles, Num. of Rules

Test Suite 2 (NP–Complete)

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

40
00

,
20

00
0

20
00

0,
80

00
0

30
00

0,
12

00
00

40
00

0,
20

00
00

0

2

4

6

8

10

12

↑ & ↓ Timeout ← & → Failed

�������
�

��

↑ ↑
↑

↓ ↓

↓

←←←

←←
←

→
→
→

→

→
→

Num. of Roles, Num. of Rules

Test Suite 3 (PSPACE–Complete)

�Cree ↑ TRedRole ↓ TRedRule← ASASPTime SA→ ASASPTime NSA

Figure D.3: Mohawk inputs [56] converted to ATRBAC-Safety instances using one time-
slot. Test Suite 1 are inputs with non-negated preconditions only. Test Suite 2 are inputs
with no revoke rules. Test Suite 3 are both positive and negated preconditions, and as-
sign/revoke rules. Red wavy lines are tools that crashed/timed-out during testing for
certain input sizes. Mohawk+T has been removed.

184

Appendix E

Analysis of the New Datasets Created
in Chapter 4

Figure E.1: Policy size, using rule/roles/timeslots and minimum simple path, for the new
datasets.

185

Figure E.2: The distribution of rules by type: Can Assign, Can Revoke, Can Enable,
Can Disable.

Figure E.3: Number of rules which are: Truly Startable, Startable, Invokable, and
Unassignable Precondition.

Figure E.4: Average number of roles in the precondition and average number of time
slots in the target time slot array.

186

Figure E.5: The number of unique roles that appear for each role type.

Figure E.6: The expected path length required to reach a satis�able state. This is shown
with a log vertical scale. Black line is x2, where the x is the input policy size.

Figure E.7: The measured minimum size of each policy �le after each pruning technique
is performed.

187

Figure E.8: The number of required abstraction re�nement steps used to solve each policy
from the new datasets.

Figure E.9: Number of policies solved using the Cree's polynomial time algorithm.

Figure E.10: Cree's Bound Estimation for new datasets.

188

Figure E.11: Duration for Cree to solve the new datasets given 1hr time limit.

189

Appendix F

Generic ATRBAC Smart Contract

pragma sol idity ^0 . 5 . 0 ;

import "./ RoleTimeslots.sol" ;
import "./Rule.sol" ;
import "./ Timeslot.sol" ;

/**

* @author Jonathan Shahen

* @notice Implements the Administrative Temporal Role Based Access Control empirical

version described

* in the Mohawk+T paper in SACMAT '15 (http ://dx.doi.org /10.1145/2752952.2752966) */

contract ATRBAC {
using RoleTimes lots for RoleTimes lots . Role ;
using Timeslot for Timeslot . t ime s l o t ;
using Rule for Rule . r u l e ;

bool constant IGNORE_TIME_DEBUG = true ;
/** the current state of the access control policy.

We use this to determine if a rule can fire and if a user satisfies a condition.*/

RoleTimes lots . Role [] public t rbac_state ;

/** stores wether a role is enabled for a particular timeslot.

If a role is enabled , then that allows rules to be fired for the admin condition.*/

mapping(uint => mapping(uint => bool)) public role_enablement ;
/** Can Assign rules allow for changes to the TRBAC State by adding role/timeslots to a

target user.*/

Rule . r u l e [] ca_rules ;
/** Can Revoke rules allow for changes to the TRBAC State by removing role/timeslots

from a target user.*/

Rule . r u l e [] c r_ru le s ;
/** Can Enable rules allow for changes to the Role Enablement table by enabling role/

timeslots.*/

Rule . r u l e [] ce_rules ;
/** Can Disable rules allow for changes to the Role Enablement table by disabling role/

timeslots.*/

Rule . r u l e [] cd_rules ;
enum RuleType {CanAssign , CanRevoke , CanEnable , CanDisable }

190

/**

* @title A list of all the timeslots in the policy

* @notice A timeslot must be added before it is referenced in a rule's time interval or

timeslots array

*/

Timeslot . t ime s l o t [] public t ime s l o t s ;

/** The list of users who can DO ANYTHING to the ATRBAC policy

* SECURITY: Limit this list to the MINIMUM number of users.*/

mapping(address=>bool) public super_users ;

// CONSTRUCTOR AND EVENTS

constructor () public {
super_users [msg . sender] = true ;
suAddNewRole ("TRUE") ; // Add the TRUE role (assigned to all users and enabled for all

timeslots)

}
event SuperUser_AddSuperUser (address _super_user , address _new_super_user) ;
event SuperUser_RemoveSuperUser (address _super_user , address _new_super_user) ;

// Modifiers

modifier onlySuperUsers {
require (super_users [msg . sender] == true , "Sender must be a Super User.") ;
_;

}
modifier noZeroAddress (address account) {
require (account != address (0) , "Address cannot be the zero address") ;
_;

}
modifier r o l eEx i s t s (uint _role) {
require (_role < trbac_state . length , "Role does not exists.") ;
_;

}
modifier t ime s l o tEx i s t s (uint _times lot) {
require (_times lot < t ime s l o t s . length , "Timeslot does not exists.") ;
_;

}

// Super User Actions

function suAddSuperUser (address _super_user) public onlySuperUsers noZeroAddress (
_super_user) returns (bool) {

require (super_users [_super_user] == false , "User is already a Super User.") ;
super_users [_super_user] = true ;

emit SuperUser_AddSuperUser (msg . sender , _super_user) ;
return true ;

}
function suRemoveSuperUser (address _super_user) public onlySuperUsers noZeroAddress (

_super_user) returns (bool) {
require (super_users [_super_user] == true , "User is not a Super User.") ;
super_users [_super_user] = fa l se ;

emit SuperUser_RemoveSuperUser (msg . sender , _super_user) ;
return true ;

}
function suAddRoleTimeslotToUser (address _user , uint _role , uint _times lot) public

191

onlySuperUsers noZeroAddress (_user) r o l eEx i s t s (_role) returns (bool) {
trbac_state [_role] . add (_timeslot , _user) ;
return true ;

}
function suRemoveRoleTimeslotToUser (address _user , uint _role , uint _times lot) public

onlySuperUsers noZeroAddress (_user) r o l eEx i s t s (_role) returns (bool) {
trbac_state [_role] . remove (_timeslot , _user) ;
return true ;

}
function suAddTimeSlot (uint _start_hour , uint _end_hour) public onlySuperUsers returns (

uint) {
require (_start_hour <= _end_hour , "The Start Hour must be less than or equal to the

End Hour.") ;
require (0 <= _start_hour && _start_hour <= 23 , "The Start Hour must be in the range

[0,23]") ;
require (0 <= _end_hour && _end_hour <= 23 , "The End Hour must be in the range [0,23]")

;

t ime s l o t s .push(Timeslot . t ime s l o t (_start_hour , _end_hour)) ;
return t ime s l o t s . length − 1 ;

}
function suAddNewRole (string memory _name) public onlySuperUsers returns (uint) {
require (bytes (_name) . length > 0 , "The Role's name must be non -zero length") ;

t rbac_state .push(RoleTimes lots . Role (_name)) ;
return t rbac_state . length − 1 ;

}
function suEnableRole (uint _role , uint _times lot) public

onlySuperUsers r o l eEx i s t s (_role) t ime s l o tEx i s t s (_times lot) returns (bool) {
role_enablement [_role] [_times lot] = true ;
return true ;

}
function suDisab leRole (uint _role , uint _times lot) public

onlySuperUsers r o l eEx i s t s (_role) t ime s l o tEx i s t s (_times lot) returns (bool) {
role_enablement [_role] [_times lot] = fa l se ;
return true ;

}

/**

* @notice Adds a new Can Assign rule to the policy

* @param _adminRole The role that will act as administrator (0 for TRUE)

* @param _adminTimeIntervalStart The index of the timeslot to start the interval

* @param _adminTimeIntervalEnd The index of the timeslot to end the interval

* @param _precondition List of role indexes , negative role indexes indicate a negative

precondition

* @param _targerTimeSlotArray List of timeslot indexes that the target user/role must

satisfy

* @param _targetRole Index of the target role

*/

function suAddCARule (uint _adminRole , uint _adminTimeIntervalStart , uint

_adminTimeIntervalEnd ,
int [] memory _precondit ion , uint [] memory _targerTimeSlotArray , uint _targetRole)

public

r o l eEx i s t s (_adminRole) r o l eEx i s t s (_targetRole)
t ime s l o tEx i s t s (_adminTimeIntervalStart) t ime s l o tEx i s t s (_adminTimeIntervalEnd) {

require (_adminTimeIntervalStart <= _adminTimeIntervalEnd ,
"The Admin Time Interval Start index must be <= to the End index") ;

192

// Verify Precondition

Precondi t ionRole memory r ;
for (uint i = 0 ; i < _precondit ion . length ; i++) {

r = sp l i tRo l eP r e c ond i t i on (_precondit ion [i]) ;
require (r . r o l e < trbac_state . length , "Role does not exists.") ;

}
// Verify Timeslot Array

for (uint i = 0 ; i < _targerTimeSlotArray . length ; i++) {
require (_targerTimeSlotArray [i] < t ime s l o t s . length , "Timeslot does not exists.") ;

}

ca_rules .push(Rule . r u l e (_adminRole , _adminTimeIntervalStart , _adminTimeIntervalEnd ,
_precondit ion ,

_targerTimeSlotArray , _targetRole)) ;
}
function suAddCRRule (uint _adminRole , uint _adminTimeIntervalStart , uint

_adminTimeIntervalEnd ,
int [] memory _precondit ion , uint [] memory _targerTimeSlotArray , uint _targetRole)

public

r o l eEx i s t s (_adminRole) r o l eEx i s t s (_targetRole)
t ime s l o tEx i s t s (_adminTimeIntervalStart) t ime s l o tEx i s t s (_adminTimeIntervalEnd) {

require (_adminTimeIntervalStart <= _adminTimeIntervalEnd ,
"The Admin Time Interval Start index must be <= to the End index") ;

// Verify Precondition

Precondi t ionRole memory r ;
for (uint i = 0 ; i < _precondit ion . length ; i++) {

r = sp l i tRo l eP r e c ond i t i on (_precondit ion [i]) ;
require (r . r o l e < trbac_state . length , "Role does not exists.") ;

}
// Verify Timeslot Array

for (uint i = 0 ; i < _targerTimeSlotArray . length ; i++) {
require (_targerTimeSlotArray [i] < t ime s l o t s . length , "Timeslot does not exists.") ;

}

c r_ru le s .push(Rule . r u l e (_adminRole , _adminTimeIntervalStart , _adminTimeIntervalEnd ,
_precondit ion ,

_targerTimeSlotArray , _targetRole)) ;
}
function suAddCERule (uint _adminRole , uint _adminTimeIntervalStart , uint

_adminTimeIntervalEnd ,
int [] memory _precondit ion , uint [] memory _targerTimeSlotArray , uint _targetRole)

public

r o l eEx i s t s (_adminRole) r o l eEx i s t s (_targetRole)
t ime s l o tEx i s t s (_adminTimeIntervalStart) t ime s l o tEx i s t s (_adminTimeIntervalEnd) {

require (_adminTimeIntervalStart <= _adminTimeIntervalEnd ,
"The Admin Time Interval Start index must be <= to the End index") ;

// Verify Precondition

Precondi t ionRole memory r ;
for (uint i = 0 ; i < _precondit ion . length ; i++) {

r = sp l i tRo l eP r e c ond i t i on (_precondit ion [i]) ;
require (r . r o l e < trbac_state . length , "Role does not exists.") ;

}
// Verify Timeslot Array

for (uint i = 0 ; i < _targerTimeSlotArray . length ; i++) {

193

require (_targerTimeSlotArray [i] < t ime s l o t s . length , "Timeslot does not exists.") ;
}

ce_rules .push(Rule . r u l e (_adminRole , _adminTimeIntervalStart , _adminTimeIntervalEnd ,
_precondit ion ,

_targerTimeSlotArray , _targetRole)) ;
}
function suAddCDRule (uint _adminRole , uint _adminTimeIntervalStart , uint

_adminTimeIntervalEnd ,
int [] memory _precondit ion , uint [] memory _targerTimeSlotArray , uint _targetRole)

public

r o l eEx i s t s (_adminRole) r o l eEx i s t s (_targetRole)
t ime s l o tEx i s t s (_adminTimeIntervalStart) t ime s l o tEx i s t s (_adminTimeIntervalEnd) {

require (_adminTimeIntervalStart <= _adminTimeIntervalEnd ,
"The Admin Time Interval Start index must be <= to the End index") ;

// Verify Precondition

Precondi t ionRole memory r ;
for (uint i = 0 ; i < _precondit ion . length ; i++) {

r = sp l i tRo l eP r e c ond i t i on (_precondit ion [i]) ;
require (r . r o l e < trbac_state . length , "Role does not exists.") ;

}
// Verify Timeslot Array

for (uint i = 0 ; i < _targerTimeSlotArray . length ; i++) {
require (_targerTimeSlotArray [i] < t ime s l o t s . length , "Timeslot does not exists.") ;

}

cd_rules .push(Rule . r u l e (_adminRole , _adminTimeIntervalStart , _adminTimeIntervalEnd ,
_precondit ion ,

_targerTimeSlotArray , _targetRole)) ;
}

function hasAccess (address _user , uint _role , uint _times lot) public view

r o l eEx i s t s (_role) t ime s l o tEx i s t s (_times lot) returns (bool) {
return t rbac_state [_role] . has (_timeslot , _user) ;

}
function getRoleName (uint _role) public view r o l eEx i s t s (_role) returns (string memory) {
return t rbac_state [_role] . name ;

}
function ro leEnabled (uint _role , uint _times lot) public view

r o l eEx i s t s (_role) t ime s l o tEx i s t s (_times lot) returns (bool) {
return role_enablement [_role] [_times lot] ;

}
function getLastRole Id () public view returns (uint) {
return t rbac_state . length − 1 ;

}
function getNextRoleId () public view returns (uint) {
return t rbac_state . length ;

}

// TIMESLOTS

function getTimeslotHours (uint _times lot) public view t ime s l o tEx i s t s (_times lot) returns (
uint [2] memory) {

return ([t ime s l o t s [_times lot] . start_hour , t ime s l o t s [_times lot] . end_hour]) ;
}
function getLastTimes lot Id () public view returns (uint) {
return t ime s l o t s . length − 1 ;

194

}
function getNextTimeslotId () public view returns (uint) {
return t ime s l o t s . length ;

}

// HELPER FUNCTIONS

function getCanAssign () public pure returns (uint) { return uint (RuleType . CanAssign) ; }
function getCanRevoke () public pure returns (uint) { return uint (RuleType . CanRevoke) ; }
function getCanEnable () public pure returns (uint) { return uint (RuleType . CanEnable) ; }
function getCanDisable () public pure returns (uint) { return uint (RuleType . CanDisable) ; }

struct Precondi t ionRole {
uint r o l e ;
bool not ;

}

function s p l i tRo l eP r e c ond i t i on (int _role) internal pure returns (Precond i t ionRole memory)
{

uint r o l e = (_role < 0) ? uint(−1 * _role) : uint (_role) ;
bool not = _role < 0 ;
return (Precond i t ionRole (ro l e , not)) ;

}

function nowInTimeslot (uint _times lot) public view t ime s l o tEx i s t s (_times lot) returns (
bool) {

return t ime s l o t s [_times lot] . a c t i v e (now) ;
}

/** Returns TRUE only if the sender is allowed to fire the rule at the timestamp

provided.

* Only checks the administrative condition.*/

function canFire (Rule . r u l e memory _rule , uint _timestamp) internal view returns (bool) {
i f (IGNORE_TIME_DEBUG == true) {
i f (_rule . admin_role == 0) {
return true ;

}

for (uint i = _rule . admin_start_timeslot ; i <= _rule . admin_end_timeslot ; i++) {
i f (t rbac_state [_rule . admin_role] . has (i , msg . sender) == true) {
return true ;

}
}

} else {
for (uint i = _rule . admin_start_timeslot ; i <= _rule . admin_end_timeslot ; i++) {
require (i < t ime s l o t s . length , "The Rule references a timeslot that does not exists

.") ;

i f (t ime s l o t s [i] . a c t i v e (_timestamp) | | IGNORE_TIME_DEBUG == true) {
i f (_rule . admin_role > 0) {
return t rbac_state [_rule . admin_role] . has (i , msg . sender) ;

}
return true ;

}
}

}
return fa l se ;

}

195

function s a t i f i e s P r e c o n d i t i o n (Rule . r u l e memory _rule , address _target_user) internal

view returns (bool) {
for (uint r = 0 ; r < _rule . p r e cond i t i on . length ; r++) {
for (uint t s = 0 ; t s < _rule . target_t imes lot_array . length ; t s++) {
uint r o l e = (_rule . p r e cond i t i on [r] < 0) ? uint(−1 * _rule . p r e cond i t i on [r]) : uint (

_rule . p r e cond i t i on [r]) ;
bool not = _rule . p r e cond i t i on [r] < 0 ;
i f (t rbac_state [r o l e] . has (_rule . target_t imes lot_array [t s] , _target_user) == not) {
return fa l se ;

}
}

}
return true ;

}
function s a t i f i e sP r e c o nd i t i o nRo l e (Rule . r u l e memory _rule) internal view returns (bool) {
for (uint r = 0 ; r < _rule . p r e cond i t i on . length ; r++) {
for (uint t s = 0 ; t s < _rule . target_t imes lot_array . length ; t s++) {
uint r o l e = (_rule . p r e cond i t i on [r] < 0) ? uint(−1 * _rule . p r e cond i t i on [r]) : uint (

_rule . p r e cond i t i on [r]) ;
bool not = _rule . p r e cond i t i on [r] < 0 ;
i f (role_enablement [r o l e] [_rule . target_t imes lot_array [t s]] == not) {
return fa l se ;

}
}

}
return true ;

}

// RULES

function f i reCanAss ignRule (uint _ruleIndex , address _targetUser) public {
require (_ruleIndex < ca_rules . length , "Unknown Can Assign Rule Index") ;
require (canFire (ca_rules [_ruleIndex] , now) == true , "Sender is not authorized to fire

this rule at this time.") ;
require (s a t i f i e s P r e c o n d i t i o n (ca_rules [_ruleIndex] , _targetUser) == true ,

"Target User does not satisfy the preconditions for the rule.") ;

for (uint i = 0 ; i < ca_rules [_ruleIndex] . target_t imes lot_array . length ; i++) {
trbac_state [ca_rules [_ruleIndex] . t a rge t_ro l e] . add (ca_rules [_ruleIndex] .

target_t imes lot_array [i] ,
_targetUser) ;

}
}
function f ireCanRevokeRule (uint _ruleIndex , address _targetUser) public {
require (_ruleIndex < cr_ru le s . length , "Unknown Can Revoke Rule Index") ;
require (canFire (c r_ru le s [_ruleIndex] , now) == true , "Sender is not authorized to fire

this rule at this time.") ;
require (s a t i f i e s P r e c o n d i t i o n (cr_ru le s [_ruleIndex] , _targetUser) == true ,

"Target User does not satisfy the preconditions for the rule.") ;

for (uint i = 0 ; i < cr_ru le s [_ruleIndex] . target_t imes lot_array . length ; i++) {
trbac_state [c r_ru le s [_ruleIndex] . t a rge t_ro l e] . remove (c r_ru le s [_ruleIndex] .

target_t imes lot_array [i] ,
_targetUser) ;

}
}

function f i reCanEnableRule (uint _ruleIndex) public {

196

require (_ruleIndex < ce_rules . length , "Unknown Can Enable Rule Index") ;
require (canFire (ce_rules [_ruleIndex] , now) == true , "Sender is not authorized to fire

this rule at this time.") ;
require (s a t i f i e sP r e c o nd i t i o nRo l e (ce_rules [_ruleIndex]) == true ,

"Target Role does not satisfy the preconditions for the rule.") ;

for (uint i = 0 ; i < ce_rules [_ruleIndex] . target_t imes lot_array . length ; i++) {
role_enablement [ce_rules [_ruleIndex] . t a rge t_ro l e] [ce_rules [_ruleIndex] .

target_t imes lot_array [i]] = true ;
}

}
function f i r eCanDisab leRule (uint _ruleIndex) public {
require (_ruleIndex < cd_rules . length , "Unknown Can Disable Rule Index") ;
require (canFire (cd_rules [_ruleIndex] , now) == true , "Sender is not authorized to fire

this rule at this time.") ;
require (s a t i f i e sP r e c o nd i t i o nRo l e (cd_rules [_ruleIndex]) == true ,

"Target Role does not satisfy the preconditions for the rule.") ;

for (uint i = 0 ; i < cd_rules [_ruleIndex] . target_t imes lot_array . length ; i++) {
role_enablement [cd_rules [_ruleIndex] . t a rge t_ro l e] [cd_rules [_ruleIndex] .

target_t imes lot_array [i]] = fa l se ;
}

}
}

pragma sol idity ^0 . 5 . 0 ;

/**

* @title Roles

* @dev Library for managing addresses assigned to a Role.

*/

l ibrary RoleTimes lots {
struct Role {
string name ;
mapping (address => mapping (uint => bool)) beare r ;

}

/**

* @dev Give an account access to this role.

*/

function add (Role storage ro l e , uint t imes lo t , address account) public {
require (! has (ro l e , t imes lo t , account) , "Roles: account already has role") ;
r o l e . beare r [account] [t ime s l o t] = true ;

}

/**

* @dev Remove an account 's access to this role.

*/

function remove (Role storage ro l e , uint t imes lo t , address account) internal {
require (has (ro l e , t imes lo t , account) , "Roles: account does not have role") ;
r o l e . beare r [account] [t ime s l o t] = fa l se ;

}

/**

* @dev Check if an account has this role.

* @return bool

*/

197

function has (Role storage ro l e , uint t imes lo t , address account) internal view returns (
bool) {

require (account != address (0) , "Roles: account is the zero address") ;
return r o l e . beare r [account] [t ime s l o t] ;

}
}

pragma sol idity ^0 . 5 . 0 ;

import "./ Timeslot.sol" ;

/**

* @title Rules

* @dev Library for managing rules in an ATRBAC policy.

*/

l ibrary Rule {
struct r u l e {
uint admin_role ;
uint admin_start_timeslot ;
uint admin_end_timeslot ;
int [] p r e cond i t i on ;
uint [] target_t imes lot_array ;
uint t a rge t_ro l e ;

}
}

pragma sol idity ^0 . 5 . 0 ;

/**

* @title Timeslots

* @author Jonathan Shahen

* @dev Library for managing timeslots and time intervals in an ATRBAC policy.

*/

l ibrary Timeslot {
/**

* @title Timeslot

* @notice Representation of a timeslot , which can be translated to the real world.

This SPECIFIC implementation of a timeslot if for a single day!

Any larger , or finer grain than hours , will need a new

implementation connected to the ATRBAC policy.

* @param start_hour This holds the inclusive starting hour of the day (hours range

[0 ,23])

* @param end_hour This holds the inclusive ending hour of the day (hours range [0 ,23])

*/

struct t ime s l o t {
uint start_hour ;
uint end_hour ;

}

uint constant SECONDS_PER_DAY = 24 * 60 * 60 ;
uint constant SECONDS_PER_HOUR = 60 * 60 ;
uint constant SECONDS_PER_MINUTE = 60 ;
function getHour (uint timestamp) internal pure returns (uint hour) {
uint s e c s = timestamp % SECONDS_PER_DAY;

198

hour = s e c s / SECONDS_PER_HOUR;
}

/**

* @dev Check if at timestamp is active for a timeslot.

* @return bool

*/

function a c t i v e (t ime s l o t storage ts , uint timestamp) internal view returns (bool) {
uint hour = getHour (timestamp) ;

i f (t s . start_hour <= ts . end_hour) {
return (t s . start_hour <= hour && hour <= ts . end_hour) ;

} else {
// We allow timeslots to wrap.

// 11pm - 1am is a valid timeslot which contains the hours: 23(11pm), 0(12am), 1(1am

)

return (hour <= ts . start_hour | | t s . end_hour <= hour) ;
}

}
}

199

Appendix G

Web3 Commands for Converting
ATRBAC Policy to Generic ATRBAC
Smart Contract

Web3 commands to create a Generic ATRBAC Smart contract of the ATRBAC policy in
Figure 6.3.

1 var atrbac = artifacts.require('ATRBAC');
2 let accounts = await web3.eth.getAccounts();
3 var su = accounts[0]; // Super User Account
4 let instance = await atrbac.deployed(); // Deploy Generic Contract
5 // Create Roles
6 await instance.suAddNewRole.sendTransaction('role3', { from: su });
7 await instance.suAddNewRole.sendTransaction('role1', { from: su });
8 await instance.suAddNewRole.sendTransaction('goalRole', { from: su });
9 // Create Timeslots
10 await instance.suAddTimeSlot.sendTransaction(0, 1, { from: su });
11 // CanAssign [TA1Tru] <TRUE, [t1−t1], TRUE, t1, role3>
12 await instance.suAddCARule.sendTransaction(0, 1, 1, [], [1], 1, { from: su });
13 // CanAssign [XX3Pos] <role3, [t1−t1], [role3], t1, role2>
14 await instance.suAddCARule.sendTransaction(1, 1, 1, [1], [1], 4, { from: su });
15 // CanAssign [XX4Mix] <role3, [t1−t1], [role2, NOT role3], t1, goalRole>
16 await instance.suAddCARule.sendTransaction(1, 1, 1, [4, −1 * 1], [1], 3, { from: su });
17 // CanRevoke [TA1Tru] <TRUE, [t1−t1], TRUE, t1, role3>
18 await instance.suAddCRRule.sendTransaction(0, 1, 1, [], [1], 1, { from: su });
19 // CanEnable [TA1Tru] <TRUE, [t1−t1], TRUE, t1, role1>
20 await instance.suAddCERule.sendTransaction(0, 1, 1, [], [1], 2, { from: su });
21 // CanEnable [XA3Pos] <TRUE, [t1−t1], [role1], t1, role2>
22 await instance.suAddCERule.sendTransaction(0, 1, 1, [2], [1], 4, { from: su });
23 // CanEnable [XA4Mix] <TRUE, [t1−t1], [role1, NOT role2], t1, role3>
24 await instance.suAddCERule.sendTransaction(0, 1, 1, [2, −1 * 4], [1], 1, { from: su });
25 // CanDisable [TA1Tru] <TRUE, [t1−t1], TRUE, t1, role2>
26 await instance.suAddCDRule.sendTransaction(0, 1, 1, [], [1], 4, { from: su });

200

Appendix H

Example Smart Contracts

H.1 New Coin

This is sample code provided by the Ethereum team on how to create a new Coin. This
allows for the creation of a new cryptocurrency without the costs associated with hardware
and running the miners. This can be used for internal currencies for games or marketplaces.
The owner of the contract is called the minter, and they are the only ones able to create
new coins. This contract does not support the ability to buy Coins with Ether, the minter
can setup an outside store to take money in and then mint coin for that address.
// Source: https :// solidity.readthedocs.io/en/v0 .4.24/ introduction -to-smart -contracts.html

contract Coin {
address public minter ;
mapping (address => uint) public ba lances ;
// Constructor code is only run when the contract is created

constructor () public {
minter = msg . sender ;

}
// Sends an amount of newly created coins to an address

function mint (address r e c e i v e r , uint amount) public {
require (msg . sender == minter) ;
require (amount < 1e60) ;
ba lances [r e c e i v e r] += amount ;

}
// Sends an amount of existing coins from any caller to an address

function send (address r e c e i v e r , uint amount) public {
require (amount <= balances [msg . sender] , "Insufficient balance.") ;
ba lances [msg . sender] −= amount ;
ba lances [r e c e i v e r] += amount ;

}
}

201

H.2 Purchase

The seller creates a new instance of this Smart Contract per item, along with the creation
of the contract they give 2 times the value of the product being sold. This tells the contract
how much the item costs and it provides �good will� to the Buyer that the seller will ship
the item. The Seller will get their money back if they abort the contract or if the Buyer
con�rms they received the item. Once a buyer has con�rmed their purchase, by providing
twice the cost of the item as �good will� to the Seller. When the Buyer con�rm that they
have received the item, the Buyer gets refunded the cost of the item (their good will) and
the Seller gets refund 3 * the cost of the item (good will + Buyer's money).
// Reference: https :// solidity.readthedocs.io/en/v0.5.3/ solidity -by-example.html

contract Purchase {
uint256 public va l ;
address payable public s e l l e r ;
address payable public buyer ;
enum State {Created , Locked , I na c t i v e }
State public s t a t e ;

// Ensure that `msg.value ` is an even number.

constructor () public payable {
s e l l e r = msg . sender ;
va l = msg . value / 2 ;
require ((2 * va l) == msg . value , "Value has to be even.") ;

}

modifier cond i t i on (bool _condit ion) { require (_condit ion) ; _; }
modifier onlyBuyer () { require (msg . sender == buyer , "Only buyer.") ; _; }
modifier o n l y S e l l e r () { require (msg . sender == s e l l e r , "Only seller.") ; _; }
modifier i nS ta t e (State _state) { require (s t a t e == _state , "Invalid state.") ; _; }

// Abort the purchase and reclaim the ether.

function abort () public o n l y S e l l e r i nS ta t e (State . Created) {
s t a t e = State . I n a c t i v e ;
s e l l e r . transfer (address (this) . balance) ;

}
// Confirm the purchase as buyer. Transaction has to include `2 * val ` ether.

function conf irmPurchase () public payable i nS ta t e (State . Created)
cond i t i on (msg . value == (2 * va l)) {

buyer = msg . sender ;
s t a t e = State . Locked ;

}
// Confirm that you (the buyer) received the item. This will release the locked ether.

function conf i rmRece ived () public onlyBuyer inS ta t e (State . Locked) {
s t a t e = State . I n a c t i v e ;
buyer . transfer (va l) ;
s e l l e r . transfer (address (this) . balance) ;

}
}

202

H.3 Auction

A smart contract to host an auction. If your bid is outbid by another account, then you
may withdraw your previous bids. If you are the current highest bid, you are unable to
remove your last bid, but can remove all previous bids. The auction ends based on a time
limit, with no option to end the auction early.
// Reference: https :// solidity.readthedocs.io/en/v0.5.3/ solidity -by-example.html

contract SimpleAuction {
address payable public b en e f i c i a r y ;
uint public auctionEndTime ;
address public h ighes tBidder ;
uint public highestBid ;
mapping(address => uint) pendingReturns ;
bool ended ;

constructor (uint _biddingTime , address payable _bene f i c i a ry) public {
b e n e f i c i a r y = _bene f i c i a ry ;
auctionEndTime = now + _biddingTime ;

}
// Bid on the auction with the value sent together with this transaction.

// The value will only be refunded if the auction is not won.

function bid () public payable {
require (now <= auctionEndTime , "Auction already ended.") ;
require (msg . value > highestBid , "There already is a higher bid.") ;
i f (h ighestBid != 0) {

pendingReturns [h ighes tBidder] += highestBid ;
}
h ighes tBidder = msg . sender ;
h ighestBid = msg . value ;

}
// Withdraw a bid that was overbid.

function withdraw () public returns (bool) {
uint amount = pendingReturns [msg . sender] ;
i f (amount > 0) {

pendingReturns [msg . sender] = 0 ;
i f (!msg . sender . send (amount)) {

pendingReturns [msg . sender] = amount ;
return fa l se ;

}
}
return true ;

}
// End the auction and send the highest bid to the beneficiary.

function auctionEnd () public {
require (now >= auctionEndTime , "Auction not yet ended.") ;
require (! ended , "auctionEnd has already been called.") ;
ended = true ;
b e n e f i c i a r y . transfer (h ighestBid) ;

}
}

203

Appendix I

Vagabond CPLEX OPL Code

int numMachines=...; range Machines=1..numMachines;

int numClients=...; range Clients=1..numClients;

int migrationBudget=...;

int vmsPerClient[Clients]=...;

int machineCapacity[Machines]=...;

// Sum of previous Information Leakage ClientToClient

int L[Clients,Clients]=...;

// Sum of Client VMs per Machine

int p0[Machines,Clients]=...;

int r=...;

int t=ftoi(ceil(lg(r+1)));

int dMaxVal=ftoi(pow(2,2*t-1)-1);

range tRange=0..t;

range zRange=0..t-1;

// NEW Placement of the Sum of Client VMs per Machine

dvar int p1[Machines,Clients] in 0..r;

// Variables to fix the quadratic variable from old reduction

dvar int p[Machines,Clients,tRange] in 0..1;

dvar int e[Clients,Clients,Machines,tRange,tRange] in 0..1;

dvar int d[Clients,Clients,Machines,zRange] in 0..dMaxVal;

minimize

if(max_client == true) {

max(c0, c1 in Clients: c0 != c1) (

L[c0,c1] + sum(k in Machines, z in zRange) (d[c0,c1,k,z])

);

}else { //sum total information leakage

sum(c0, c1 in Clients: c0 != c1)

(L[c0,c1] + sum(k in Machines, z in zRange) (d[c0,c1,k,z]));

}

204

subject to {

// p1 represented as a value from p's bit form

forall(i in Clients, k in Machines)

p1[k,i] == sum(l in tRange) (pow(2,l) * p[k,i,l]);

// Bitwise AND for all pairs in p1

forall(k in Machines, c0 in Clients, c1 in Clients, u in tRange, v in tRange)

0 <= p[k,c0,u] + p[k,c1,v] - (2 * e[c0,c1,k,u,v]) <= 1;

// Setting up values for d

forall(k in Machines, c0 in Clients, c1 in Clients, z in zRange)

d[c0,c1,k,z] == sum(l in zRange) (pow(2,z+l) *e[c0,c1,k,l,z]);

// Capacity of servers respected

forall(k in Machines)

machineCapacity[k] >= sum(i in Clients) (p1[k,i]);

// Sum of clients in p1 should equal the number of vms of that client

forall(i in Clients)

vmsPerClient[i] == sum(k in Machines) (p1[k,i]);

// Migration budget

2 * migrationBudget >= sum(i in Clients, k in Machines) (abs(p1[k,i] - p0[k,i]));

};

205

Appendix J

Boolean Circuit Reductions to ILP

A summary of all ILP reductions, using the intermediate CNF-SAT reductions, are listed
in Table J.1. Detailed steps for each reduction can be found in the following sections.

206

Table J.1: Summary of the �From CNF SAT� reductions to ILP. All ILP variables are
integers in the range [0, 1].

GATE Boolean Expression From CNF SAT v1 (C) From CNF SAT v2 (D)

NOT y = ¬x1
y + x ≥ 1

Same
y + x ≤ 1

BUF y = x1 y == x Same

AND y = x0 ∧ . . . ∧ xn−1

x0 − y ≥ 0

Section J.2.1
x1 − y ≥ 0

. . .
xn−1 − y ≥ 0

y − (x0 + x1 . . .+ xn−1) ≥ 1− n

NAND y = ¬(x0 ∧ . . . ∧ xn−1)

y + x0 ≥ 1

Section J.2.2
y + x1 ≥ 1

. . .
y + xn−1 ≥ 1

x0 + x1 . . .+ xn−1 + y ≤ n

OR y = x0 ∨ . . . ∨ xn−1

x0 + x1 + . . .+ xn−1 − y ≥ 0

Section J.2.3
y − x0 ≥ 0
y − x1 ≥ 0

. . .
y − xn−1 ≥ 0

NOR y = ¬(x0 ∨ . . . ∨ xn−1)

y + x0 + x1 + . . .+ xn−1 ≥ 1

Section J.2.4
y + x0 ≤ 1
y + x1 ≤ 1

. . .
y + xn−1 ≤ 1

XOR y = x0 ⊕ x1

x0 + x1 − y ≥ 0

Same
y + x0 + x1 ≤ 2
y + x1 − x0 ≥ 0
y + x0 − x1 ≥ 0

XNOR y = ¬(x0 ⊕ x1)

y + x0 + x1 ≥ 1

Same
y − x0 − x1 ≥ −1
x1 − y − x0 ≥ −1
x0 − y − x1 ≥ −1

207

J.1 From CNF-SAT v1

An alternative to the approach of Section 8.6.1. This one adopts a �via CNF SAT� mindset.
In each of the following, all the variables are binary, i.e., 0 or 1.

J.1.1 Big AND v1

y ⇐⇒ x0 ∧ x1 ∧ . . . ∧ xn−1

CNF:

y =⇒ x0 ∧ x1 ∧ . . . ∧ xn−1 ∧ y ⇐= x0 ∧ x1 ∧ . . . ∧ xn−1

≡ ¬y ∨ (x0 ∧ . . . ∧ xn−1) ∧ ¬ (x0 ∧ . . . ∧ xn−1) ∨ y

≡ ¬y ∨ x0 ∧ ¬y ∨ x1 . . . ∧ ¬y ∨ xn−1 ∧ ¬x0 ∨ ¬x1 ∨ . . . ∨ ¬xn−1 ∨ y

ILP:

x0 − y ≥ 0

x1 − y ≥ 0

. . .

xn−1 − y ≥ 0

y − (x0 + x1 . . . + xn−1) ≥ 1− n

J.1.2 Big NAND v1

¬y ⇐⇒ x0 ∧ x1 ∧ . . . ∧ xn−1

CNF:

¬y =⇒ x0 ∧ x1 ∧ . . . ∧ xn−1 ∧ ¬y ⇐= x0 ∧ x1 ∧ . . . ∧ xn−1

≡ y ∨ (x0 ∧ . . . ∧ xn−1) ∧ ¬ (x0 ∧ . . . ∧ xn−1) ∨ ¬y
≡ y ∨ x0 ∧ y ∨ x1 . . . ∧ y ∨ xn−1 ∧ ¬x0 ∨ ¬x1 ∨ . . . ∨ ¬xn−1 ∨ ¬y

208

ILP:

y + x0 ≥ 1

y + x1 ≥ 1

. . .

y + xn−1 ≥ 1

x0 + x1 . . . + xn−1 + y ≤ n

J.1.3 Big OR v1

x0 ∨ x1 ∨ . . . ∨ xn−1 ⇐⇒ y

CNF:

y =⇒ x0 ∨ x1 ∨ . . . ∨ xn−1 ∧ y ⇐= x0 ∨ x1 ∨ . . . ∨ xn−1

≡ ¬y ∨ x0 ∨ x1 ∨ . . . ∨ xn−1 ∧ y ∨ (¬x0 ∧ ¬x1 ∧ . . . ∧ ¬xn−1)

≡ ¬y ∨ x0 ∨ x1 ∨ . . . ∨ xn−1 ∧ y ∨ ¬x0 ∧ y ∨ ¬x1 . . . ∧ y ∨ ¬xn−1

ILP:

x0 + x1 + . . . + xn−1 − y ≥ 0

y − x0 ≥ 0

y − x1 ≥ 0

. . .

y − xn−1 ≥ 0

J.1.4 Big NOR v1

x0 ∨ x1 ∨ . . . ∨ xn−1 ⇐⇒ ¬y

209

CNF:

¬y =⇒ x0 ∨ x1 ∨ . . . ∨ xn−1 ∧ ¬y ⇐= x0 ∨ x1 ∨ . . . ∨ xn−1

≡ y ∨ x0 ∨ x1 ∨ . . . ∨ xn−1 ∧ ¬y ∨ (¬x0 ∧ ¬x1 ∧ . . . ∧ ¬xn−1)

≡ y ∨ x0 ∨ x1 ∨ . . . ∨ xn−1 ∧ ¬y ∨ ¬x0 ∧ ¬y ∨ ¬x1 . . . ∧ ¬y ∨ ¬xn−1

ILP:

y + x0 + x1 + . . . + xn−1 ≥ 1

y + x0 ≤ 1

y + x1 ≤ 1

. . .

y + xn−1 ≤ 1

J.1.5 NOT v1

x ⇐⇒ ¬y

CNF

¬y =⇒ x ∧ ¬y ⇐= x

≡ y ∨ x ∧ ¬y ∨ ¬x

ILP

y + x ≥ 1

−y − x ≥ −1

J.1.6 XOR v1

y ⇐⇒ (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1) ≡ y ⇐⇒ (x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

CNF:

y =⇒ (x0 ∨ x1) ∧ (¬x0 ∨ ¬x1) ∧ y ⇐= (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1)

≡ ¬y ∨ x0 ∨ x1 ∧ ¬y ∨ ¬x0 ∨ ¬x1 ∧ y ∨ ¬x0 ∨ x1 ∧ y ∨ x0 ∨ ¬x1

210

ILP:

x0 + x1 − y ≥ 0

y + x0 + x1 ≤ 2

y + x1 − x0 ≥ 0

y + x0 − x1 ≥ 0

J.1.7 XNOR v1

¬y ⇐⇒ (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1) ≡ ¬y ⇐⇒ (x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

CNF:

¬y =⇒ (x0 ∨ x1) ∧ (¬x0 ∨ ¬x1) ∧ ¬y ⇐= (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1)

≡ y ∨ x0 ∨ x1 ∧ y ∨ ¬x0 ∨ ¬x1 ∧ ¬y ∨ ¬x0 ∨ x1 ∧ ¬y ∨ x0 ∨ ¬x1

ILP:

y + x0 + x1 ≥ 1

y − x0 − x1 ≥ −1

x1 − y − x0 ≥ −1

x0 − y − x1 ≥ −1

J.2 From CNF-SAT v2

Yet another mindset is to reduce from CIRCUIT-SAT to SAT to 3-CNF-SAT, from CLRS.

J.2.1 Big AND v2

y ⇐⇒ x0 ∧ x1 ∧ . . . ∧ xn−1

211

3-CNF:

x0 ∧ x1 ⇐⇒ y1 ≡ x0 ∨ x1 ∨ ¬y1 ∧ x0 ∨ ¬x1 ∨ ¬y1 ∧ ¬x0 ∨ x1 ∨ ¬y1 ∧ ¬x0 ∨ ¬x1 ∨ y1

∧y1 ∧ x2 ⇐⇒ y2 ≡ y1 ∨ x2 ∨ ¬y2 ∧ y1 ∨ ¬x2 ∨ ¬y2 ∧ ¬y1 ∨ x2 ∨ ¬y2 ∧ ¬y1 ∨ ¬x2 ∨ y2

. . . ≡ . . .

∧yn−2 ∧ xn−1 ⇐⇒ y ≡ yn−2 ∨ xn−1 ∨ ¬y ∧ yn−2 ∨ ¬xn−1 ∨ ¬y
∧ ¬yn−2 ∨ xn−1 ∨ ¬y ∧ ¬yn−2 ∨ ¬xn−1 ∨ y

ILP:

x0 + x1 − y1 ≥ 0
x0 − x1 − y1 ≥ −1
−x0 + x1 − y1 ≥ −1
−x0 − x1 + y1 ≥ −1

x0 ∧ x1 ⇐⇒ y1

y1 + x2 − y2 ≥ 0
y1 − x2 − y2 ≥ −1
−y1 + x2 − y2 ≥ −1
−y1 − x2 + y2 ≥ −1

 y1 ∧ x2 ⇐⇒ y2

. . .

yn−2 + xn−1 − y ≥ 0
yn−2 − xn−1 − y ≥ −1
−yn−2 + xn−1 − y ≥ −1
−yn−2 − xn−1 + y ≥ −1

 yn−2 ∧ xn−1 ⇐⇒ y

J.2.2 Big NAND v2

¬y ⇐⇒ x0 ∧ x1 ∧ . . . ∧ xn−1

212

3-CNF ILP

x0 ∧ x1 ⇐⇒ y1

∧ y1 ∧ x2 ⇐⇒ y2

. . .

∧ yn−2 ∧ xn−1 ⇐⇒ ¬y
≡
x0 ∨ x1 ∨ ¬y1

∧ x0 ∨ ¬x1 ∨ ¬y1
∧ ¬x0 ∨ x1 ∨ ¬y1
∧ ¬x0 ∨ ¬x1 ∨ y1

∧ y1 ∨ x2 ∨ ¬y2
∧ y1 ∨ ¬x2 ∨ ¬y2
∧ ¬y1 ∨ x2 ∨ ¬y2
∧ ¬y1 ∨ ¬x2 ∨ y2

. . .

∧ ¬yn−2 ∨ ¬xn−1 ∨ ¬y
∧ yn−2 ∨ ¬xn−1 ∨ y

∧ ¬yn−2 ∨ xn−1 ∨ y

∧ yn−2 ∨ xn−1 ∨ y

x0 + x1 − y1 ≥ 0

x0 − x1 − y1 ≥ −1

−x0 + x1 − y1 ≥ −1

−x0 − x1 + y1 ≥ −1

y1 + x2 − y2 ≥ 0

y1 − x2 − y2 ≥ −1

−y1 + x2 − y2 ≥ −1

−y1 − x2 + y2 ≥ −1

. . .

yn−3 + xn−2 − yn−2 ≥ 0

yn−3 − xn−2 − yn−2 ≥ −1

−yn−3 + xn−2 − yn−2 ≥ −1

−yn−3 − xn−2 + yn−2 ≥ −1

−yn−2 − xn−1 − y ≥ −2

yn−2 − xn−1 + y ≥ 0

−yn−2 + xn−1 + y ≥ 0

yn−2 + xn−1 + y ≥ 1

J.2.3 Big OR v2

x0 ∨ x1 ∨ . . . ∨ xn−1 ⇐⇒ y

213

3-CNF ILP

x0 ∨ x1 ⇐⇒ y1

∧ y1 ∨ x2 ⇐⇒ y2

. . .

∧ yn−3 ∨ xn−2 ⇐⇒ yn−2

∧ yn−2 ∨ xn−1 ⇐⇒ y

≡
x0 ∨ x1 ∨ ¬y1

∧ x0 ∨ ¬x1 ∨ y1

∧ ¬x0 ∨ x1 ∨ y1

∧ ¬x0 ∨ ¬x1 ∨ y1

∧ y1 ∨ x2 ∨ ¬y2
∧ y1 ∨ ¬x2 ∨ y2

∧ ¬y1 ∨ x2 ∨ y2

∧ ¬y1 ∨ ¬x2 ∨ y2

. . .

∧ yn−3 ∨ xn−2 ∨ ¬yn−2
∧ yn−3 ∨ ¬xn−2 ∨ yn−2

∧ ¬yn−3 ∨ xn−2 ∨ yn−2

∧ ¬yn−3 ∨ ¬xn−2 ∨ yn−2

∧ yn−2 ∨ xn−1 ∨ ¬y
∧ yn−2 ∨ ¬xn−1 ∨ y

∧ ¬yn−2 ∨ xn−1 ∨ y

∧ ¬yn−2 ∨ ¬xn−1 ∨ y

x0 + x1 − y1 ≥ 0

x0 − x1 + y1 ≥ 0

−x0 + x1 + y1 ≥ 0

−x0 − x1 + y1 ≥ −1

y1 + x2 − y2 ≥ 0

y1 − x2 + y2 ≥ 0

−y1 + x2 + y2 ≥ 0

−y1 − x2 + y2 ≥ −1

. . .

yn−3 + xn−2 − yn−2 ≥ 0

yn−3 − xn−2 + yn−2 ≥ 0

−yn−3 + xn−2 + yn−2 ≥ 0

−yn−3 − xn−2 + yn−2 ≥ −1

yn−2 + xn−1 − y ≥ 0

yn−2 − xn−1 + y ≥ 0

−yn−2 + xn−1 + y ≥ 0

−yn−2 − xn−1 + y ≥ −1

J.2.4 Big NOR v2

x0 ∨ x1 ∨ . . . ∨ xn−1 ⇐⇒ ¬y

214

3-CNF

x0 ∨ x1 ⇐⇒ y1

∧ y1 ∨ x2 ⇐⇒ y2

. . .

∧ yn−2 ∨ xn−1 ⇐⇒ ¬y
≡
x0 ∨ x1 ∨ ¬y1

∧ x0 ∨ ¬x1 ∨ y1

∧ ¬x0 ∨ x1 ∨ y1

∧ ¬x0 ∨ ¬x1 ∨ y1

∧ y1 ∨ x2 ∨ ¬y2
∧ y1 ∨ ¬x2 ∨ y2

∧ ¬y1 ∨ x2 ∨ y2

∧ ¬y1 ∨ ¬x2 ∨ y2

. . .

∧ yn−2 ∨ xn−1 ∨ y

∧ yn−2 ∨ ¬xn−1 ∨ ¬y
∧ ¬yn−2 ∨ xn−1 ∨ ¬y
∧ ¬yn−2 ∨ ¬xn−1 ∨ ¬y

ILP

x0 + x1 − y1 ≥ 0

x0 − x1 + y1 ≥ 0

−x0 + x1 + y1 ≥ 0

−x0 − x1 + y1 ≥ −1

y1 + x2 − y2 ≥ 0

y1 − x2 + y2 ≥ 0

−y1 + x2 + y2 ≥ 0

−y1 − x2 + y2 ≥ −1

. . .

yn−2 + xn−1 + y ≥ 1

yn−2 − xn−1 − y ≥ −1

−yn−2 + xn−1 − y ≥ −1

−yn−2 − xn−1 − y ≥ −2

215

	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Motivation
	Contributions and Outline

	Background
	Problems Reduced To
	PSPACE-Complete – Model Checking
	NP-Complete – Integer Linear Programming (ILP)

	Access Control
	RBAC, ARBAC, and ARBAC-Safety
	TRBAC, ATRBAC, and ATRBAC-Safety

	Ethereum Blockchain
	DApps and Smart Contracts
	Currencies
	Tools for Interacting with the Ethereum Network
	Solidity and Vyper
	Ethereum Virtual Machine (EVM)
	Message Calls, Delegate Calls, and Call Code
	The Halting Problem

	Logic Locking
	Circuit Representations
	Locking Techniques

	I Problems Reduced to Model Checking
	Cree: a Performant Tool for Safety Analysis of Administrative Temporal Role-Based Access Control (ATRBAC) Policies
	Introduction
	ATRBAC-Safety Background
	Prior work
	Our work
	Cree
	Polynomial Time Solving when possible for ATRBAC-Safety
	Static Slicing
	Abstraction Refinement
	Bound Estimation
	Reduction to Model Checking
	Performance Considerations

	Empirical Assessment
	Conclusions

	Generating Hard Instances of ATRBAC-Safety
	Introduction
	ATRBAC-Safety Background
	ATRBAC-Safety Sources of Complexity
	Solver Sources of Complexity
	Dataset Sources of Complexity

	Analysis of ATRBAC-Safety Datasets
	Measuring Size of a Policy
	Rule Types and Properties
	Precondition and Timeslot Array Lengths
	Role Types
	Path Length of Reachable Policies

	Performance Techniques for ATRBAC-Safety
	Static Slicing
	Abstraction Refinement
	Polynomial Time Safety Solver (Quick Decisions)
	Bounded Search of State Space

	Generating New Hard ATRBAC Instances
	Empirical Analysis
	Future Work
	Conclusions

	Safety Analysis for Ethereum Smart Contracts
	Introduction
	Prior Work

	Ethereum Blockchain Background
	Reduced-Solidity
	Reduced-Solidity Safety Problem
	Reduction to Model Checking
	Experimental Reduced Solidity Features
	Finite State Machine
	Available Queries
	Model Checking Specifics
	Known Issue
	Parameters

	Experimental Results
	Future Work
	Conclusions

	Converting Administrative Temporal Role Based Access Control (ATRBAC) Policies to Ethereum Smart Contracts
	Introduction
	Background
	Generic ATRBAC Smart Contract
	Baked ATRBAC Smart Contract
	State and Modifiers
	Convert Rules
	Convert Safety Query

	Costs
	EIP 170 - Contract Code Size Limit
	Conclusions

	II Problems Reduced to Integer Linear Programming
	Vagabond: Using VM Scheduling to Combat Side-Channels in Cloud Systems
	Introduction
	Related Work
	Summary of Conference Paper Contributions
	Contributions

	Minimizing Information Leakage
	Reductions to ILP
	Empirical Assessment
	Tests
	Results

	Minimum Total Information Leakage Attack
	Max Client-to-Client Information Leakage

	Future Work
	Conclusions

	ILP Attack on Logic-Locked Circuits
	Introduction
	Related Works

	Background
	The Logic Locking Problem
	Brute Force Attack
	The SAT-Attack
	Reduction To ILP
	Simulating Circuits in ILP
	Difference Circuit
	Preloading Distinguishing Inputs
	Equal Circuit
	Simplifying Equals Circuits

	Experiments
	Results
	Future Work
	Conclusions

	III Conclusions
	Conclusions
	References
	APPENDICES
	Summary of Software and Solvers
	NuSMV Supported Specifications
	Computational Tree Logic (CTL) Specifications
	Linear Temporal Logic (LTL) Specifications

	Cree Pruning and Bound Estimation
	Static Slicing
	Bound Estimation Example
	Initial Upper Bound
	Tightening 1
	Tightening 2
	Tightening 3

	Cree Empirical Results without Mohawk+T
	Analysis of the New Datasets Created in Chapter 4
	Generic ATRBAC Smart Contract
	Web3 Commands for Converting ATRBAC Policy to Generic ATRBAC Smart Contract
	Example Smart Contracts
	New Coin
	Purchase
	Auction

	Vagabond CPLEX OPL Code
	Boolean Circuit Reductions to ILP
	From CNF-SAT v1
	Big AND v1
	Big NAND v1
	Big OR v1
	Big NOR v1
	NOT v1
	XOR v1
	XNOR v1

	From CNF-SAT v2
	Big AND v2
	Big NAND v2
	Big OR v2
	Big NOR v2

