
Autonomous Driving at Intersections:
A Critical-Turning-Point Approach
for Planning and Decision Making

by

Keqi Shu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2020

c© Keqi Shu 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Left-turning at unsignalized intersection is one of the most challenging tasks for ur-
ban automated driving, due to the various shapes of different intersections, and rapidly
changing nature of the driving scenarios. Many algorithms including rule-based approach,
graph-based approach, optimization-based approach, etc. have been developed to over-
come the problems. However, most algorithms implemented were difficult to guarantee the
safety at intersection scenarios in real time due to the large uncertainty of the intersections.
Other algorithms that aim to always keep a safe distance in all cases often become overly
conservative, which might also be dangerous and inefficient.

This thesis addresses this challenge by proposing a generalized critical turning point
(CTP) based hierarchical decision making and planning method, which enables safe and
efficient planning and decision making of autonomous vehicles. The high-level candidate-
paths planner takes the road map information and generates CTPs using a parameterized
CTP extraction model which is proposed and verified by naturalistic driving data. CTP is
a novel concept and the corresponding CTP model is used to generate behavior-oriented
paths that adapt to various intersections. These modifications help to assure the high
searching efficiency of the planning process, and in the meanwhile, enable human-like
driving behavior of the autonomous vehicle. The low-level planner formulates the decision-
making task to a POMDP problem which considers the uncertainties of the agent in the
intersections. The POMDP problem is then solved with a Monte Carlo tree search (MCTS)-
based framework to select proper candidate paths and decide the actions on that path.

The proposed framework that uses CTPs is tested in several critical scenarios and
has out-performed the methods of not using CTPs. The framework has shown the abil-
ity to adapt to various shapes of intersections with different numbers of road lanes and
different width of median strips, and finishes the left turns while keeping proper safety
distances. The uses of the CTP concept which is proposed through human-driving left-
turning behaviors, enables the framework to perform human-like behaviors that is easier
to be speculated by the other agents of the intersection, which improves the safety of the
ego vehicle too. The framework is also capable of personalized modification of the desired
real-time performance and the corresponding stability. The use of the POMDP model
which considers the unknown intentions of the surrounding vehicles has also enabled the
framework to provide commute-efficient two-dimensional planning and decision-making.
In all, the proposed framework enables the ego vehicle to perform less conservative and
human-like actions while considering the potential of crashes in real-time, which not only
improves the commute-efficiency, but also enables urban driving autonomous vehicles to
naturally integrate into scenarios with human-driven vehicles in a friendly manner

iii

Acknowledgements

I would like to thank my supervisor Prof. Dongpu Cao for giving me the opportunity
to study and doing research on my field of interest in the Cogdrive lab. His patience and
understanding and the kindly encouragements helped me navigate the toughest challenges
in this journey. I am very lucky to have such a mentor both in research and life.

I would like to thank Dr. Huilong Yu, who had provided profound insights, ideas which
made the project fun and exciting. The knowledge you passed on through the heated
discussion is embedded deep in my heart.

I would also like to thank all my lab mates, without whom my life in Waterloo would
be a lot different, the fun we had and the pleasure of research we enjoyed together would
be my beautiful memories as a graduate student.

Thanks to my figure skating varsity teammates and coach Mrs. Kim Biddiscombe, who
made my life a lot more exciting and fun after school.

Finally, thanks to my family for always supporting me and encouraging me throughout
the toughest times, this thesis would not have been possible without them.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Figures ix

List of Tables xi

List of Abbreviations xii

1 Introduction 1

1.1 Background . 1

1.2 Remaining Challenges . 2

1.3 Thesis Objectives . 4

1.4 Outline . 4

2 Literature Review 6

2.1 Introduction . 6

2.2 Rule Based Approach . 6

2.3 Graph Based Approach . 7

2.4 Optimization Based Approach . 9

2.5 Reinforcement Learning Based Approach 11

2.6 POMDP Based Approach . 11

2.6.1 Exact Solution . 13

2.6.2 Offline Approximate Solution . 15

2.6.3 Online Approximate Solution . 19

2.7 Summary . 24

vi

3 Left-turning Human Driving Behavior Analysis 25

3.1 Introduction . 25

3.2 Left-Turning Behavior Analysis . 25

3.3 Critical Turning Point Model . 29

3.4 CTP Model Identification and Validation 31

3.5 Summary . 37

4 CTP-Based Left-Turning Planning and Decision-Making Framework 38

4.1 Introduction . 38

4.2 A Hierarchical Planning and Decision Making Framework 38

4.2.1 High-level Behavior-Oriented Paths Generation 40

4.2.2 Candidate Path Selection and Speed planning 42

4.3 CTP-based Candidate Paths Generation 42

4.4 POMDP Problem Formulation . 46

4.4.1 State Space . 47

4.4.2 Observation Space and Observation Model 48

4.4.3 Action Space . 48

4.4.4 Reward . 49

4.4.5 Transition Model . 50

4.5 Solving the Decision-Making Problem . 51

4.5.1 Representation of the Policy . 51

4.5.2 Policy Generation and Update . 54

4.6 Summary . 56

5 Simulation and Results 58

5.1 Introduction . 58

5.2 Simulation under Typical Scenarios . 58

5.3 Adaption to Various Road Geometries . 61

5.4 Optimization between Tree Size and Performance Stability 63

5.5 Summary . 65

vii

6 Conclusions and Future Work 66

6.1 Conclusions . 66

6.2 Future Work . 67

References 68

viii

List of Figures

2.1 Value function representation by hyperplanes in a continuous belif state [1] 13

2.2 Procedure of value iteration [2] . 14

2.3 Tree constructed by MCTS . 23

2.4 Outline of Monte Carlo Tree Search [3] . 24

3.1 Real-life driving behavior of left turns . 26

3.2 Selected scenarios in the INTERACTION dataset [4] 27

3.3 Extracted left-turning trajectories from naturalistic dataset 28

3.4 Yaw rate and speed along the global coordinates and left-turning paths . . 29

3.5 Critical turning point model . 30

3.6 CTP location distribution in the local frame 32

3.7 CTPs extracted from regular intersection dataset 34

3.8 Driving style evaluation . 35

3.9 CTP extracted from irregular intersection dataset 36

4.1 CTP-Based left-turning planning and decision-making framework overview 39

4.2 Simplified nonholonomic vehicle model for path generation [5] 43

4.3 Interpolating of the 2-D curve [5] . 44

4.4 Illustration of the relation between the episode and the path in the belief
tree [6] . 53

5.1 Simulation results of three typical scenarios with different oncoming vehicle’s
intention . 59

ix

5.2 Vehicle distance and speed profile with respect to time in two critical scenarios 60

5.3 Change of actions due to different beliefs 61

5.4 Speed profile and marching ratio with respect to time 62

5.5 Commuting efficiency with different number of CTPs 64

x

List of Tables

4.1 Recommended parameters for path generation of four typical intersections 46

5.1 Performance evaluated in different intersections 63

5.2 Different tree sizes with according performances 65

xi

List of Abbreviations

ABT Adaptive Belief Tree 51, 54, 55

ADAS Automotive Driver Assistance Systems 1

AV Autonomous Vehicles 1, 6, 11, 12

CL-RRT Closed-loop Rapidly-exploring random tree 7

CTP crtical turning point 25, 30, 31, 33, 35, 37, 38, 40, 42, 48, 50, 56, 59, 61–67

DARPA Defense Advanced Research Projects Agency 1

MCTS Monte Carlo tree search 11, 22, 23, 42, 51, 66

MDP Markov decision process 11, 16, 21

MPC Model predictive control 9, 10

PBVI Point-based value iteration 17–19

POMDP partially observable Markov decision process 4, 6, 11–17, 19, 22, 24, 42, 46, 51,
54–57, 60, 63, 65, 66

RL Reinforcement learning 11

RRT Rapidly-exploring random tree 7, 8

SAE Society of Automotive Engineers 1

UCB upper confidence bound 54

UCB1 upper confidence bound, version 1 54, 56

xii

Chapter 1

Introduction

1.1 Background

The development of the Automotive Driver Assistance Systems (ADAS) has grown rapidly
due to its increasing potential to improve the efficiency of traffic, and meanwhile, ensure
the safety of the passengers and drivers [7]. After the Defense Advanced Research Projects
Agency (DARPA) Grand Challenge [8] where many benchmark works have been established
and implemented, the ADAS system progresses rapidly and has been implemented by
many car manufacturers. Up to now, a lot of manufacturers and research labs are aiming
to realized level-4 or level-5 Society of Automotive Engineers (SAE) level [9] autonomous
driving.

One of the hot spots in developing a highly autonomous ADAS system is to enable safe
and efficient planning and decision-making at intersections. Even for human drivers, 40%
of all injury accidents that happen on road occur at intersections in the United States every
year [10]. As for autonomous vehicles, most of the algorithms implemented had shown that
they were difficult to guarantee safety [11] due to the complexity and dangerous nature
of intersections. However, algorithms that avoid accidents in an extensive manner often
become overly conservative [12], this is also very dangerous. Because overly conservative
systems could lead to a counterproductive effect on the commuting efficient, and could lead
to collisions, congestion and even deadlock [13].

Therefore, decision making and planning of Autonomous Vehicles (AV)s under unsignal-
ized intersections is a challenging task [14]. Thus, it is well worth to develop planning and
decision-making algorithms that significantly minimize the potential of collisions with other

1

agents in the environments and provide efficient and comfort for both the ego vehicle and
surrounding vehicles.

1.2 Remaining Challenges

Among all planning and decision-making tasks at intersections, left turning when the
oncoming vehicles are not using turn signals is one of the most common and challenging
tasks. The challenges remained in these research domain include 1) the exact future paths
of the surrounding vehicles that are hard to predict; 2) the unknown intention of the
surrounding vehicles and pedestrians; 3) the various shapes of different intersections; 4)
the rapidly changing nature of the intersection scenarios; 5) the perception uncertainties
of the surrounding environment.

If the exact future paths of the surrounding vehicles are certain, the ego vehicle could
plan paths that increase the commute efficiency while guaranteeing safety. However, the
exact long-term future trajectories of surrounding vehicles can not be 100% accurate for the
following reasons. The training data need to be labeled which is very time-consuming [15].
The early predictions of surrounding vehicles are hard due to the lack of the observed
traveled trajectories, the insufficient knowledge of the historic trajectories made it hard
to find the specific model to fit. Long-term prediction is also changeling because the
prediction error would accumulate and the predicted paths would be very unreliable [16].
most common approaches either can not always provide accurate predictions due to the
consideration of the dependencies between the ego vehicle and the environment, or suffers
from poor real-time performances because of computational complexity [17].

The unknown intention of the surrounding driver and pedestrian is a higher level of
prediction compare to exact trajectories prediction, which is also critical to ensure the
safety of the autonomous vehicles driving at intersections, especially when the real-time
trajectories prediction is infeasible. However, this problem still remained to be unsolved
for self-driving cars [18]. More specifically, the driving style various from people to people
and a general model to fit all the driver is nearly impossible. Conservative drivers would
decrease speed to very slow or even came to a full stop before making a left turn, an
aggressive driver, on the other hand, might make the turns with relatively high speed or
some times did not even brake before making the turns. Also, different behaviors would
be performed at different road intersections and scenarios, the capabilities of adaption to
different intersection scenarios is a challenging task too. For example, people driving at
multi-lane intersections might be more cautious due to the increasing surrounding vehicles
and the higher probability of collision compare to single lane intersections. Formulating

2

the intention estimator with a single model would lead to errors of the estimation, which is
very dangerous for the passenger on the ego vehicle. What’s more, as same as future paths
prediction, the longer prediction horizon is chosen, the lower confidence of the estimated
intention is preserved. Finally, the balance of the weights of the labeled class for model
training is also a formidable task [19].

The wide variety of different road shapes including different numbers of road lanes for
regular intersections, and different road angles or T-junctions for irregular intersections
would be a burden for generalized model and real-world world application of planning and
decision-making at intersections. Common approaches include formulating the problem
as an optimization problem and explore all the possible paths of the whole intersection,
due to the number of dynamic objects and interactive nature of the intersection, this
could lead to heavy computation load, which influence real-time performance. Another
common approach is generating a pre-defined path and generate speed profiles on that
path. However, in some irregular intersections, the pre-defined path could be challenging
to generate automatically. Also, planning on a single path might lead to sub-optimal
solutions.

The intersection scenarios evolve heavy interaction from the ego vehicle with the envi-
ronment in a high frequency, the pedestrians and surrounding vehicles might make rapid
changes in their behavior, for example, the front car might decelerate at any time to yield
to the street-crossing pedestrians, which need the ego vehicle to respond in time. More-
over, there were also scenarios where occlusion occur, that the vision of left-turn vehicles
is partially blocked by the left-turning vehicles in the opposite direction, especially the
case where the left-turning vehicles were trucks. In this case, the so-called “ghost vehi-
cle”, which is the oncoming vehicles that were out of the field of view of the ego vehicle,
would drive out of the blocked area, and collide with the ego vehicle [20]. Not until the
ego vehicle observed the dangerous action of the environment, could they respond in time
to avoid collisions. Therefore, the frequency of decision-making needed to be realized as
high as possible. However, due to the limitation of computational power, in general, good
decisions usually acquire a though exploration of all the possible policies, which limit the
rate of decision-making. As a result, the compromise between generating better policies
and improving real-time performance becomes a challenge for the left-turning vehicle.

Finally, although many perception algorithms had been developed to obtain good pre-
ception results for autonomous vehicles [21], there still lies the problem that fatal perception
error might occur due to bad perception sensor layout, occlusion at the intersections, poor
sensor resolution, etc. [22], the uncertainties in perception would lead to serious collisions.
As a result, it would be ideal if the planner of the ego vehicle could take the uncertainties
into consideration.

3

1.3 Thesis Objectives

The main goal of this thesis is to achieve safe and efficient planning and decision making
in urban scenarios, more specifically, the scope of this thesis focused on unsignalized left-
turning scenarios. On the basis of approaches in the literature and the existing problems,
the goal for the proposed framework is:

• the framework should be able to deal with complex intersection scenarios;

• the framework should enable ego vehicle to always keep a safety distance with other
agents in the intersection;

• the framework should avoid overly conservative actions;

• the framework should have good generalization character and should be able to be
adapted to various shapes of intersections;

• the framework should be operated online to overcome the rapidly changing nature of
the intersection.

1.4 Outline

Chapter 2 first gives an overview of the popular approaches for solving planning and
decision-making problems at intersections in literature, and evaluates the advantages and
disadvantages of every approach. After that, a detailed review of solving partially observ-
able Markov decision process (POMDP) problem is presented, including solving an exact
solution of POMDP problem and approximate solutions.

Chapter 3 analyses the left-turning driving behavior through naturalistic driving
datasets and from the observed phenomena, a CTP model is proposed. The general-
ized and parametric model is then verified through further evaluation of the naturalistic
driving datasets.

Chapter 4 proposed a CTP-based left-turning hierarchical planning and decision-
making framework. First, the structure of the framework is presented, then the high-
level candidate path generation method is presented. Finally, the low-level path selection
and speed profile generation method is proposed, which includes both POMDP problem
formulation and POMDP problem-solving method.

4

Chapter 5 describes the simulation results of the proposed framework. The frame-
work is first tested in several typical scenarios in simulation and the commute efficiency
is evaluated. Then, the ability of adaption to different shapes of road intersections are
also tested. Finally, the optimization between a more optimal solution and performance
stability is discussed.

Chapter 6 summarized this thesis, highlights the major contributions, and discussed
about possible future works that would be done.

5

Chapter 2

Literature Review

2.1 Introduction

Decision making and planning of AVs under unsignalized intersections is a challenging task
[14] due to the rapidly changing nature and unknown intentions of the surrounding human-
driven vehicles. Left turning when the oncoming vehicles are not using turn signals is one of
the most common and challenging tasks for planning at unsignalized intersections [23]. On
solving such a complicated problem, balancing between safety and commuting efficiency
is critical. There are various approaches that mitigate this contradiction. The approaches
include rule-based, graphs based, optimization-based and machine-learning-based methods.
These methods all have their advantages and drawbacks. Through comparison among the
approaches, the POMDP based methods have shown the most satisfying advantages and
drawbacks that could be weakened. Therefore, the major and popular approaches for
solving POMDP problems are reviewed. The advantage and disadvantages of the methods
are also analyzed.

2.2 Rule Based Approach

The rule-based approach is comparatively easier to implement, which is widely used for
planning at intersections [24–26]. Klingelschmitt et.al. [25] proposed a scene representation
for traffic scene modeling semantically, in which semantic state space was used to realize
transition in model states. Klingelschmitt et.al. [24] presented a generalized and efficient
situation hypotheses selection system framework, which combines a probabilistic situation

6

recognition and a fast risk assessment algorithm. The framework was able to notably reduce
the total unnecessarily considered situation hypotheses. Hubmann et.al. [27] proposed a
longitudinal driving strategy that analyzed the Inevitable Collision States and used it
as guidance to avoid collision with both static and dynamic objects. The algorithm had
shown good real-time performance and the capability to be implemented on an autonomous
vehicle. [28] introduced a discriminative maneuver estimator that could work in various
scenarios, the approach used pairwise probability coupling to combine the reusable and
partial classifiers to enable the proposed model to be able to estimate a huge amount of
intersection scenarios. The result showed that the reduction of the complexity of the partial
classifiers outperformed the models that are particularly designed for some scenarios. These
approaches are quick to be implemented, however, the performance of the planner is closely
related to the completeness of modeling every scenario, which is nearly impossible for cases
as intersections.

2.3 Graph Based Approach

Another popular approach plans the trajectory and speeds only considering the current
state of the environment, but plans in a high frequency at intersection scenarios using graph
theory, such as the Rapidly-exploring random tree (RRT) algorithm [29]. This algorithm
was first introduced by LaValle [30], after that, the algorithm had been developed to many
variants and is widely used for the planning of autonomous vehicles. The tree generation
process of the general RRT algorithm is presented in Algorithm 1 [30]. This algorithm uses
a randomly sampled method to generate a tree-like path that explores the search space.
The main procedure for generating the search tree given the initial point is: first, a point
is sampled randomly in the free space, then, the distance is calculated from each of the
tree nodes to the newly sampled point and the closest tree node is obtained. Then in the
direction from the nearest point to the sampled point, a predefined distance extends from
the nearest point to obtain a new point (n-point). Finally, if the line that connects the
nearest point and n-point located inside the free space, the n-point and the connecting line
is added to the search tree.

After the RRT was proposed, many variants based on this algorithm have been pro-
posed. Few classic variations include the RRT* algorithm [31] and Closed-loop Rapidly-
exploring random tree (CL-RRT) algorithm [32] which are often compared with other
planning algorithms in literature as benchmarks. RRT* had shown to provide asymptotic
optimal paths by adding a rewire process to the search tree growing process. CL-RRT
uses the closed-loop simulation while generating the tree to provide better feasibility of the

7

Algorithm 1 Rapidly-exploring random tree generation

1: function Generate RRT (xinit, K, ∆t)
2: T . init(xinit)
3: for k = 1 to K do
4: xrand ← RANDOM STATE()
5: xnear ← NEAREST NEIGHBOR(xrand,T)
6: u ← SELECT INPUT(xrand,xnear)
7: xnew ← SELECT INPUT(xrand,xnear)
8: T . add vertex(xnew)
9: T . add edge(xnear,xnew,u)

return T

generated paths. This method could operate in complex and constrained scenarios. With
the emerging development of the RRT family, RRT-based algorithms had shown to sat-
isfying performances and are widely applied in autonomous driving including intersection
scenarios.

Ma et.al. [33] used a sampling-based RRT method to generate paths at a intersection.
It takes advantage of the road geometry and generates splines accordingly. Using the spline
as the initial tree, RRT method was used to generate obstacle avoidance trajectories. This
method can quickly generate collision-free paths at high frequency. Chen et.al. [34] formed
the problem in to a hierarchical model. The planning algorithm can be divided into three
layers, route planning layer, task planning layer and motion planning layer. Route planning
layer generates way-points from the road geometry. The task planner received the way-
points as milestones and generate tasks accordingly. The motion planner then generate
real-time control commands with each task. The prediction-planning approach can be
implemented in various scenarios that benefit from the plentiful prediction and planning
algorithms. Yoon et.al. [35] introduced a spline-based RRT* algorithm that combined
cubic Bezier curves and RRT* to achieve continuous and efficient collision avoidance at
intersections. This kind of method is applicable in all kinds of intersections using various
prediction and planning algorithms. Mehta et.al. [36] brought a human interface into
the RRT planner to enable to add experienced-drivers knowledge to assist the process of
replanning.

However, RRT algorithms are mostly implemented in mazes and other static environ-
ments, with the complexity and fast-changing nature of intersections leads to conservative
decisions and the refresh rate of the planner may not be fast enough for some critical
scenarios.

8

Only considers and plans on the current state may be insufficient to guarantee safety.
Therefore, planning with predicted future states of the surrounding vehicles has become
a popular way of solving left-turn problems, benefiting from the plentiful prediction algo-
rithms [15–19,37,38]. Huang et.al. [15] predicted the conditional variational distribution of
future paths of the ego vehicle using multiple sensors, and realized the approach by train-
ing a variational neural network. The proposed algorithm is able to deal with inherently
uncertainties and coordination between different sensors, it is also able to be enhanced by
the physics-based model to increase the prediction accuracy and other performances. [37]
introduced an intention prediction RNN-based method using Lidar-tracking information.
The recurrent neural network was trained by a big amount of unsignalized intersection
naturalistic driving dataset. The dataset was also used to evaluate the good prediction
results, that the predictor was able to predict potential collision 1.3 seconds in advance.
Using these prediction algorithms, the performance of the intersection planner could be
improved significantly. Jeong et.al. [39] used SVM to predict the intention of surrounding
vehicles, based on the predicted state, the ego vehicle was able to perform human-like
planning behaviors at uncontrolled intersections. Jeong et.al. [40] trained an LSTM-based
RNN to predict the motion of surrounding vehicles, with the prediction results, the planner
was able to increase safety. Wang et.al. [41] predicted the probabilistic occupancy of sur-
rounding vehicles with Monte Carlo simulation, the prediction model was trained off-line
to achieve a good real-time performance of the online planner. If the prediction accuracy
is good, the methods could provide good safety performance and could apply to different
scenarios. However, to make precise predictions on all the vehicles at intersections is a
formidable task.

2.4 Optimization Based Approach

Another popular approach is modeling the problem into an optimization problem, by prop-
erly modifying the reward function and constraints, planning and decision-making could
be operated in a heuristic manner. One typical optimization method used for autonomous
vehicles in intersections is the Model predictive control (MPC) method. The key elements
in MPC include a vehicle model, an obstacle model, and a proper optimization method.

The vehicle model includes point-mass model which considers the vehicle as a point with
mass, and does not consider the tire model or vehicle geometry. The kinematics model
on the other hand, considers vehicle geometry which is often used in path planning. The
dynamic model are developed by considering the tire model and thus are nonlinear, and
are often used in control problems and high-speed scenarios with large lateral forces. The

9

obstacle model which are used for obstacle avoidance includes two major approaches. One
approach is through setting a virtual repulsive force in the cost function to add resistance
from the obstacle to the vehicle, also known as the potential field methods, slack variables
could be added to the constraints to obtain better acceptable feasibility. This modification
leads to nonconvex and nonlinear cost functions. Another approach is through setting
the constrains to allow the vehicle to operate inside the obstacle-free area, however, the
constraints are most likely nonconvex. Solving nonconvex problems could cause high com-
putation power, therefore, the model is often simulated to a linear programming problem,
quadratic programming problems, etc [42]. Then the problem could be solved with the
corresponding solver.

Over the years MPC has been broadly developed and used in solving planning and de-
cision making problems for autonomous vehicles including intersection planning problems.
Schildbach et.al. [43] designed a Robust Model Predictive Control planning algorithm to
ensure safe gaps at intersection scenarios. The method maximized efficiency and driving
comfort and also improved the model with “Affine Disturbance Feedback”. [41] first used
road geometry to generate initial trajectories, then MPC was used to refine the coarse initial
trajectories and generate action and the corresponding speed profile along the smoothed
path. During this process, the constraints of the optimization were easy to be implemented
through coordinate transformation. Finally, probabilistic-occupancy-based predictions of
surrounding vehicles were calculated offline to provide better real-time performances. The
simulation results showed that the improvement of the planned path and speed, and also
demonstrated the efficiency of the proposed approach.

Hult et.al. [44] presented a bi-level (coordination level and vehicle level) MPC for inter-
section planning. Which allot occupancy time slots during the intersection and generated
vehicle direct control inputs separately. This approach had shown feasibility and stability
with certain assumptions. Nilsson et.al. [45] used 2 loosely coupled MPC to make lon-
gitudinal and lateral planning accordingly. Liu et.al. [46] introduced a MPC model that
could automatically select appropriate parameters for different maneuvers to improve the
generality of the planner. To achieve better driving comfort, a lane-associated potential
field was used. Also, the surrounding vehicles are modeled as polygons and are converted
into constraints in MPC to ensure safety. [47] planed speed of the ego vehicle on a fixed
path generated from a set of waypoints by using temporal optimization. The non-convex
optimization problem was simplified by a set of quadratic programs and was solved by the
slack convex feasible set (SCFS) algorithm to improve the real-time performance of the
proposed method. However, this method requires accurate modeling of the vehicle and the
environment that will lead to heavier computational load, which influences the real-time
performance.

10

2.5 Reinforcement Learning Based Approach

Reinforcement learning (RL) is also a common approach for intersection decision making
and planning for AVs, these approaches are commonly combined with neural networks for
better generalization and feasibility. Bouton et.al. [48] introduced a safe RL algorithm
based on the model-checker to improve safety, and a learning-based belief update method
was used to allow the proposed method to coop with occlusions and perception errors. [49]
enabled high-level decision making of ego vehicles at occluded multi-lane intersections. A
risk-based reward function was used to combine risk assessment to the NN-based Q net-
work, which enabled the decision-maker to perform less cautions and safe actions. [50]
learned typical behaviors of other vehicles to enable the ego vehicle to coop with surround-
ing vehicles at intersections. The speed of the surrounding vehicles and the distance from
the surrounding vehicles to the ego vehicle was taken into consideration in the model to
perform different driving behaviors. The proposed approach was able to crossover the in-
tersection and avoid collision almost all the time, which outperformed the state-of-the-art
models. [51] introduced an intersection planner that considered the low-level control of the
ego vehicle. The planner considered the dynamic and kinematic constraints of the ego
vehicle in the deep-RL model, this improves the feasibility of the high-level planning re-
sults in real-life intersection scenarios, and the feasibility was verified by simulations. Isele
et.al. [52] combined reinforcement learning and neural network to learn active sensing be-
haviors to grantee safety in a congestion environment. Qiao et.al. [53] trained the policies
in an intersection scenario with an automatically generated curriculum (AGC) to increase
the training speed. However the performance of the deep reinforcement learning approach
is closely related to the training data, and it would be very hard to obtain data for all the
dangerous cases, which sometimes would lead to unsafe performances.

2.6 POMDP Based Approach

In a Markov decision process (MDP) model, all the states are considered to be definite.
However, in the real-world, the states can be partially observable. Therefore, to represent
this uncertainty, a POMDP based approach was introduced and had become an emerg-
ing technique for solving intersection planning problems in autonomous driving. Bouton
et.al. [54] navigated the ego vehicle at intersection scenarios where rapid changes occurred
by modeling the problem into a POMDP problem and solved the problem with Monte Carlo
tree search (MCTS) method, the results showed that the planner was able to outperform a
threshold-based heuristic method in safety and efficiency. [55] also formulated the intersec-

11

tion planning and decision-making problem into POMDP problem, the paper modeled the
unknown intention of the surrounding vehicles with a probabilistic model and merged that
into the observation model of the POMDP model. By solving the POMDP problem, the
ego vehicle was able to make continues decisions on a fixed path at intersections on-line.
As an extension from [55], [56] extended the intersection planning and decision model so
that the model could coop with more than one surrounding vehicles and was capable to
perform better results with more computation time, also, the proposed POMDP model
was able to operate in continuous state space. Hubmann et.al. [20] considered occlusion
caused by both static and dynamic objects, and represented the operation of the vehicles
in the observation filed and the phantom vehicles as reachable sets. This enabled the ego
vehicle to navigate in urban intersections and perform less conservative yet safe actions
compared to the baseline method. Brechtel et.al. [57] considered several aspects of uncer-
tainty and predicted the results for different actions due to different assumptions in the
proposed approach. The authors did not use symbolic representation to properly represent
the state space for all the scenarios, but they used a continuous solver to represent spe-
cific situations. [58] enabled decision making at generalized congested intersections which
avoided both static and dynamic obstacles. The objects in the observable area were pre-
dicted and objects in the occluded area were modified with extra attention to avoid severe
collisions. The proposed model was able to perform human-like behaviors at unsignalized
intersections.

POMDP model takes uncertainties into consideration, which could increase the com-
muting efficiency of AVs. Solving such problems online using the Monte Carlo tree search
is effective, however, it would cost a great amount of computational power. To ensure
real-time performance, most approaches use a one-dimensional and highly-discrete action
set to reduce the search space but that limits the exploration space. However, using a
two-dimensional action set (e.g. vertically and horizontally) would lead to poor searching
efficiency.

POMDP is a decision making framework for the agent in a designed scenario. The model
embedded the ability of cooperating with uncertainties, for decision-making of autonomous
driving vehicles, theses uncertainties include perception uncertainties, surrounding drivers’
intention uncertainties and control uncertainties. The agent would receive feedbacks from
the reward after a decision had been made at each time step [1]. The major classes of solving
the POMDP problems could be divided into exact solution methods and approximate
solution methods.

12

common
action u

Belief state space

useless
hyperplane

l1

l2

l3

l5

l4

J̄
β
(b

)

b0 = 1 − b1

Figure 4: Convex piecewise linear representation of a value function for a con-
tinuous belief state with |S| = 2. The plot is a slice from a 3-dimensional
plot defined by valid points in the the 2-dimensional simplex, that is, where
b0 = 1 − b1. If the set L is parsimonious then each ln defines a line segment
which is maximum in some partition of belief space. Each such partition has a
unique optimal action u∗

n.

all belief states can be represented exactly by a convex piecewise linear function
[Smallwood and Sondik, 1973]. Such a representation is shown for a 2 state
system in Figure 4. The set L contains the hyperplanes needed to represent the
value function. Each l ∈ L is an |S| dimensional vector such that the value of
hyperplane l for belief state b is b · l. The value of J̄β(b) is the maximum over
all hyperplanes

J̄β(b) = max
l∈L

{b · l}.

To be useful, a hyperplane l must be the maximum for some b. If L contains
only useful hyperplanes then it is called a parsimonious set [Zhang, 1995].

Estimating the value function proceeds by using value iteration on belief
states chosen to be points in the belief simplex that have a unique maximuml l,
and that have not yet converged to their true value. These points, as found by
the Witness algorithm, are called witness points [Cassandra et al., 1994]. This
term is now often used to describe any belief state upon which it is useful to
perform a DP update. Such updates generate new vectors to be added to L. A
difficult task — and the way in which most exact POMDP algorithms differ —
is determining the witness points efficiently. This is often done by solving a set
of linear programs. Once a single round of value iteration has been performed
L is examined to remove useless vectors, creating a parsimonious set ready for
the next round.

10

Figure 2.1: Value function representation by hyperplanes in a continuous belif state [1]

2.6.1 Exact Solution

Representation of the Value Functions

The approaches of finding exact solutions of a POMDP model was first introduced by [59]
and [60], and were then greatly developed in academia [61]. For finite horizon problems,
the value functions of every belief sates could be denoted as piece-wise linear function
which is convex. Figure 2.4 is an example of the value function of a two states system with
continuous belief state. The figure is a cross-section of a three-dimensional plot defined
by available points in the two-dimensional simplex (b0 = 1 − b1). All the hyperplanes l
that represents the value function formed the set L, also, the maximum value of all the
hyperplanes along the belief state space formed J̄β(b) in Figure 2.4. Alpha vectors stand
as a common representation of the final policy, due to their ability to represent the policy
in a compact format. [62].

Value Iteration

One fundamental idea for finding an exact solution is through value iteration. The basic
procedure is presented in Figure 2.2, where V stands for the value function, b stands for

13

Figure 2.2: Procedure of value iteration [2]

the belief states and H is the value functions mapping. More specifically, the method first
traversed all the plans for only one step, then all the corresponding results are evaluated
and the plans that are not good enough for any initial belief state are discarded, linear
programming could be used to locate the dominating plan at the desired belief state. From
the rest of the one-step plans, two-step plans are generated, the results are evaluated,
and again, the corresponding results that are not good enough for any belief states are
discarded. This international steps stop until the designated horizon is reached or if the
so-called Bellman error is smaller than the desired threshold which is written as ε in
Figure 2.2. Bellman error is the difference between two value functions generated from
consecutive steps, which is represented as V (b) − V ′

in Figure 2.2. In most cases, a huge
component of the potential plans are dominated by other plans, tossing the plans that
are dominating could limit the load of computation to find the optimal policy. Other
methods were also developed for the exact solution of POMDP problems, [63] described an
enumeration algorithm that enumerated all the possible hyperplanes to denote the value
function and used dynamic programming to update the hyperplanes. Other approaches
include, One-pass algorithm [64], Linear support algorithm [65], Witness algorithm [66]
and Incremental Pruning algorithm [1,67].

Weak Point of Exact Solutions

However, for POMDP problems with more states, the complexity of the problem would
grow exponentially accordingly. Since belief states needed to be updated when using
dynamic programming (DP), the grown states made it nearly impossible to be monitored
[68]. Also, with longer horizon length, the problem of representation of value function
after operating several steps of dynamic programming increased exponentially. Finally, the
process of finding the belief state for which the hyperplane is dominating would cost huge

14

computational effort solving complicated linear programming problems. Even in the case
of solving simplified POMDP problem with finite horizon, finding the most optimal policy
is still a PSPACE-hard problem [69], and it is an NP-hard problem to find the optimal
policy tree using limited nodes [70]. For POMDP problems with an infinite horizon, the
number of belief states could be infinite, so does the corresponding hyperplanes. This would
lead to undecidable in determining convergence [71]. Considered the burdens of finding
exact solutions, many approaches focused on finding an approximate answer, experimental
results showed that there exist possibilities of the solver converging to an acceptable but
fixed policy in a limited amount of time for very complicated problems. Thus, finding the
sub-optimal policy is one of the feasible solutions for very complex POMDP problems [1].
Finding approximate solution could be divided into on-line methods and off-line methods,
which will be discussed in the rest of the section.

2.6.2 Offline Approximate Solution

Common offline methods do all of the computation before implementing the policies and
represent the policies in either finite-state controllers or alpha vectors. Some other ap-
proaches do most of the computation by finding the upper and lower bounds for setting
the optimal value function, which increases the efficiency of the online search by directing
the search to the appropriate direction and help to estimate the long-term reward.

Blind Policy

The blind policy is an approach for obtaining lower bound for a POMDP online solver, in
this method, no matter how the belief states changes, the planner would select the same
action. Since each static policy must be equal or less optimal than the best policy, thus,
resulting value functions (usually specified by an alpha-vectors) of these policies stand as
lower bounds of the solution. Where these alpha-vectors could be represented as:

αat+1(s) = R(s, a) + γ
∑

s′∈S
T (s, a, s′)αat (s), (2.1)

where αa0 = mins∈S R(s, a)/(1 − γ). The alpha-vectors could be used to find the value of
the lower bound of a belief state. This method requires much less computation power.
However, the lower bounds obtained are usually far from optimal, thus it does not imply
much information [2, 72].

15

MDP and QMDP

The MDP based approach approximates the value function of a POMDP problem into its
underlying MDP [73], the approximated value function can be calculated with Bellman’s
equation under the MDP framework

V ∗(s) = max
a

(
R(s, a) + γ

∑

s′

T (s′|s, a)V ∗ (s′)

)
. (2.2)

Similar to the MDP approach, QMDP [73] approximates the POMDP model to a MDP
model in some extent. The major concept of the algorithm is that it assumed that all the
uncertainties (partial observability) disappear after the first step. Then a set of alpha-
vectors corresponding to each actions are being created. Based on the value function of a
MDP problem Q(s, a), alpha-vectors could be computed through value iteration as:

α(t+1)
a (s) = R(s, a) + γ

∑

s′

T (s′|s, a) max
a′

α
(t)
a′ (s′) , (2.3)

where α
(0)
a (s) = 0. If enough iteration has been done, the set of alpha-vectors could be

able to approximate the value function. This approximation formed a upper-bound on
the value function that is tighter than the MDP approach. This approach could encounter
limitation in information-gathering actions, but has shown to be applicable in many real life
scenarios where different choices of actions could not significantly reduce the uncertainty
of the states [62].

Fast Information Bound

Fast information bound algorithm [2] considers some level of uncertainties of the POMDP
model, a alpha vector would be generated for every action and instead of using iteration
method as QMDP (Equation 2.3) to obtain the alpha vectors, the method calculates the
alpha vectors by:

α(k+1)
a (s) = R(s, a) + γ

∑

o

max
a′

∑

s′

O (o|s′, a)T (s′|s, a)α
(k)
a′ (s′) . (2.4)

Though fast information bound is a little more complicated than QMDP, this approach
provides a upper bound that is tighter or equally tight upper bound compare to the QMDP
method, where the complexity is usually manageable.

16

Point-based value iteration (PBVI)

PBVI method family are very popular approaches for solving POMDP problems with a
finite set of belief points. The general PBVI approaches include two major parts, that
are limiting the size of the value function through representing the value of the problem
at the finite and reachable subset of the beliefs, and also using point-based algorithms to
optimize the value function. In other words, the general procedure of solving point-based
value iteration is to collect belief subset then update the value over the select beliefs until
the stopping criterion is reached. Different approaches in this PBVI family have different
ways of achieving the two major parts, and the stopping criterion is relevant to the different
choices of the two major parts.

The first point-based value iteration method was introduced by Pineau et.el. [74]. The
algorithm starts by initiating the belief state (B0 = {b0}), after that, the algorithm updates
the value function using a point-based Bellman backup for each point of the current belief
set bi. Which could be represented as

V j+1
B =

{
backup

(
b, V j

B

)
: b ∈ B

}
. (2.5)

The Bellman backup is operated in a random order and this procedure stopped whenV j
B =

V j+1
B , or the predefined rounds of iteration have been reached.

Then to achieve better results, the algorithm selects a successor b
′
from each belief state

b which is furthest from the set B. Let L represents the selected distance metric, we have:

|b′ −B|L = min
b∈B
|b− b′|L , (2.6)

and forward simulation is used to generate the candidate successors:

b′ = max
a,o
|ba,o −B|L . (2.7)

In this way, the successor points (a single b
′

for every b ∈ Bi) are added into Bi, the newly
added points and the original points in Bi formed the new set Bi+1. The detailed procedure
is written in Algorithm 2 [75].

PBVI intended to choose belief points in the reachable belief space in an even man-
ner, and tried to fully span the reachable space in the designated horizon. However, the
approach searches greedily in the local space, thus it may not be able to provide a full
span for the current belief. But still, the error between the value functions is limited by
the linear function over the belief subset [74]. Thus, the value converged to optimal value
under certain circumstances [75].

17

Algorithm 2 PBVI

1: function PBVI
2: while V has not converged to V ∗ do
3: Improve(V,B)
4: B ← Expand (B)

1: function Improve(V, B)
2: repeat
3: for each b ∈ B do
4: α← backup(b, V)
5: //execute a backup operation on all points in B in arbitrary order
6: V ← V ∪ {α}
7: until V has not converged,
8: //repeat the above until V stops improving for all points in B

1: function Expand(V, B)
2: Bnew ← B
3: for each b ∈ B do
4: Successors(b)← {ba,o|Pr(o|b, a) > 0}
5: Bnew ← Bnew ∪ argmaxb′∈Succec sarc(b)

‖B, b′‖L //add the furthest successor of b
return B new

Perseus

The PBVI algorithms family focuses on the proper expansion of the belief state set B
since the expansion is relatively hard, also the set B decides the size of the value function
V . If a huge set of beliefs could be collected easily and the set lead to a compact V ,
the efficiency of the point-based Bellman backups would be monitored without having
complicated belief selection procedures. The Perseus algorithm first takes an initial belief
set and does exploration to expand the set until a sufficient number of points have been
expanded and collected. after exploration in the belief space, the algorithm computes the
value function iteratively. At the start of each iteration, the set is B′ = B and the value
function is empty, then a belief point from the belief set is sampled randomly and is used
to compute a new alpha-vector αnew. If αnew · b′ > V (b′), then the new alpha-vector is
added to the empty value function. Then all the belief points that the value is improved
by the alpha-vector are deleted, thus would not be backed up at that iteration cycle. If
αnew · b ≤ V (b) then αold = argmaxα∈V α · b is added to V

′
. The iteration ends until B′ = φ

and V is set to V ′. The algorithm is also presented in Algorithm 3 [75].

18

This algorithm has two major advantages, the belief expansion and collection is rel-
atively fast. Also, the value function is created by a set of alpha-vectors that are much
smaller than |B| in the value update process. This could enable the algorithm to collect
the belief points much bigger than PBVI methods, therefore, shows the potential to cover
the reachable belief space better. However, this method also suffers from some disadvan-
tages. The pure random selection strategy to back up the beliefs means the exploration
is uni-directional, thus, there usually exists unneeded backups that did not help the value
function to converge. Also, for more complicated problems, the algorithm needs to explore
a large set of beliefs, thus would be hard to operate [75].

2.6.3 Online Approximate Solution

Offline methods pre-calculates the policies covering any possible belief states, this is usually
applicable for problems with small or medium complexity. For large POMDPs, offline
methods would take a great amount of time to generate policies, and the approximation
of the value function performs badly in very large domains. Therefore, online methods
became a good alternative for solving large POMDP problems. Instead of considering
finding the alpha-vector that is optimal for the whole process, online methods only focus
on finding the local optimal, that is, generating the optimal solution in a fixed horizon
based on the current belief. This allows the solver to only deal with a small set of beliefs,
thus reduces the computation effort and decreases the time for policy generation compared
to offline methods. Since the solver has to operate in real-time, the solver has very limited
time for policy construction, this remains a major concern for most online solvers.

The general online planning framework includes a planning process and an execution
process that are operated successively and repeatedly. During the planning process, a tree
representing the policy for beliefs on each time frame is generated. The tree represents
the policy by including possible sequences of actions and observations from the current
belief, it represents the beliefs with OR-nodes which had actions as their children, where
the action nodes are included between every layer of belief nodes, which are presented as
AND-nodes. The major procedure is as follows. The algorithm first initializes the root
of the tree with the initial belief, then it selects the following fringe node, after that, the
next reachable beliefs node are generated and the value for this node is calculated, finally,
the value is backpropagated to its ancestors. This cycle continues until some termination
condition is reached (e.g computation time for policy tree construction). Values of beliefs
are estimated by backpropagation from fringe nodes all the way back to the root nodes.
Upper bounds and lower bounds are sometimes pre-calculated as the initial value of the
beliefs. The execution phase then selects the action with the biggest value from the current

19

Algorithm 3 Perseus

1: function Perseus
2: B ← Random Explore(n)
3: V ← PerseusUpdate(B, φ)

1: function RandomExplore(n)
2: B ← φ
3: b← b0
4: repeat
5: choose a random successor of b
6: Choose a ∈ A randomly
7: Choose o ∈ Ω following the Pr(o|b, a) distribution
8: Add ba,o to B
9: b← ba,o

10: V ← V ∪ {α}
11: until |B| = n

1: function PerseusUpdate(V, B)
2: repeat
3: B′ ← B
4: V ′ ← φ
5: while B′ 6= φ do
6: // Choose an arbitrary point in B to improve
7: Choose b ∈ B′
8: α← backup(b, V)
9: if α · b ≥ V (b) then
10: // Remove all points from B that was already improved by the new α
11: B′ ← {b ∈ B′ : α · b < V (b)}
12: αh ← α
13: else
14: B′ ← B′ − {b}
15: αb ← argmaxα∈V α · b
16: V ′ ← V ′ ∪ {αb}
17: V ← V ′

18: until V has converged

20

root belief node and executes the action, the tree will then updates the root belief with
the obtained observation.

Most approaches improve the performance of the algorithms by reducing the number
of beliefs of the policy tree. The major difference between the different approaches include
ways of expanding and constructing the next belief nodes and selecting the next fringe node
from the current node. The major online planning approach includes Branch-and-Bound
Pruning, Heuristic Search, and Monte Carlo Sampling.

Branch-and-Bound Pruning

Brach-and-Bound pruning is an approach that reads the information from the upper and
lower bounds of the value function to trim the search tree. With pre-computes lower bound
and upper bound, the tree only grows necessary lower nodes and prune the sub-optimal
nodes. Some popular offline methods mentioned in Section 2.6.2 could be used for finding
the bounds. Blind policy selects the same action for all cases which could be used form the
lower bound, while the MDP, QMDP and the fast informed bound could work as the upper
bound. These bounds are maintained on the value of actions of each belief nodes in the tree.
If the upper bound of an action a in a belief b is lower than another action ã on the same
belief, then value of that action ã on that node must be greater than the value of action a
(Q∗(b, ã) ≥ Q∗(b, a)). Therefore, the a is suboptimal on belief b, thus, this branch will be
deleted and the children belief node of the action a in belief b will not be considered. First,
the bounds are applied on the fringe nodes then through backpropagation, the bounds are
applied to the parent nodes. It can be easily concluded that the tighter the bounds are
chosen, the more portion of the tree would be pruned, thus the less computation effort is
needed to select an action. The detailed algorithm is presented as Algorithm 4 [62]. Where
U represents the lower bound, Ū denote the upper bound, b represents the belief and d
represents the depth of the tree.

Monte Carlo Tree Search

Monte Carlo methods are a popular approach that is based on repeated random sampling.
Instead of setting up heuristics straight away and search and pruning based on the heuris-
tics, which is very effective, it obtains and assesses the states through sufficient random
simulations. Because the main idea of the method is, with more and more random simula-
tion, the strategy will be derived closer and closer to a successful strategy. In problems that
have large state space, precise representation of the probability function of the transition

21

Algorithm 4 Branch and bound online policy

1: function SelectAction(b, d)
2: if d = 0 then return (NIL, U(b))

3: (a∗, u)← (NIL,−∞)
4: for a ∈ A do
5: if Ū(b, a) ≤ u then return (a∗, u)

6: u← R(b, a)
7: for o ∈ O do
8: b′ ← UpdateBelief(b, a, o)
9: (a′, u′)← SelectAction (b′, d− 1)
10: u← u+ γP (o|b, a)u′

11: if u > u then
12: (a∗, u)← (a, u)

return a∗, u)

model T and observation model O can be hard. Thus, a generative model G also known as
the black box simulator is used to overcome this problem. The model takes in the states
and actions in the current time frame, and output a sample of the received reward, the
observation and the state in the next time frame, which applies similar dynamics as the
POMDP problem. The Monte Carlo methods includes simple roll-out methods that dose
pure random sampling where no search tree is constructed [76] and fixed horizon depth-first
search [77] and also MCTS methods [78]. MCTS is a very popular approach for solving
online POMDP problems, the method is possible to be applied to any problem that could
be represented by state-action pairs, the tree generated by this method is represented in
Figure 2.6.3. Where a represents the actions, o represents the beliefs and b is the belief.
The tree nodes of a MCTS represents the states of the problem. Each state is associate
with a action formulate the visitation count of the node N(s, a), and the cumulative value
Q(s, a) of all the simulation that passed that node. The empty history started from the
initial belief is represented by the root node, where a history is a sequence of past obser-
vations and actions [62]. The tree grows with sequences of layers, different layers alternate
between action node layer and observation layer.

The method builds the search tree by making random simulations from the initial node
of the tree until termination condition is reached. The simulation follows four major steps,
that is selection, expansion, simulation and backpropagation, which is also presented in
Figure 2.6.3. At the selection phase, the algorithm starts from the root of the tree and
executes actions base on that node to reach another node, then from the new node, it

22

b0

b11 b10 b1sŏ

a00 a3na1na0n a10 a30

ŏ ŏ ŏ

o00 o01 o0m

ŏ

ŏ

a00 a3n
a1na0n a10 a30

ŏ ŏ ŏŏ ŏ�
�
�

Figure 2.3: Tree constructed by MCTS

executes actions again to reach another node, this goes on until the algorithm reached
the leaf node. Different heuristic selection strategy can be applied during this process,
some approaches focus on balancing between exploitation and exploration. After that,
the expansion phase, one or more new children is generated from the leaf node. Then,
at the simulation phase, if the previously generated leaf node(s) does not indicate the
terminal state, a simulation would be operated with sequential actions until the terminate
state is reached. Finally, the value of the previously generated node(s) obtained from the
simulation phase will be backpropagated to all the nodes in the history from the root node
to the leaf node. Then this process is repeated X times to generate the desired policy. At
the next time step, the children of the root node corresponding with the selected action
and actual observation becomes the new root node. The MCTS is an anytime algorithm
and has shown that with a sufficient number of iterations, this method could converge very
close to the optimal solution or obtain an optimal solution. Also, prior knowledge could
be applied to the algorithm through setting initialized visitation count N0 and cumulative
value Q0 in of the node as well as the simulation phase where rollout policy could be
applied.

MCTS has three major advantages. First, the tree could be searched and grew in the
direction where it is worth more computation effort to increase the search efficiency, states
that have the potential to lead the tree to an optimal policy are visited more often. Second,
the algorithm could be stopped at any time, if computational time is limited, the algorithm

23

Figure 2.4: Outline of Monte Carlo Tree Search [3]

could be able to provide the so-far optimal policy for execution [79].

2.7 Summary

Different methods to solve left-turning planning and decision-making of autonomous vehi-
cles are evaluated in this chapter. Among all the approaches, the POMDP based approach
has shown strong potential of providing high commute-efficient left-turning decisions of the
ego vehicle while avoiding collision with surrounding vehicles. The exact solutions, online
and offline approximate solution methods are introduced. The online approximate solution
methods had outperformed other approaches in dealing with complex POMDP problems
in a timely manner, which would suit our complex left-turning problem.

24

Chapter 3

Left-turning Human Driving
Behavior Analysis

3.1 Introduction

With the objection of enabling the intersection planner to perform actions like experienced
drivers which are not only more likely to provide higher commute efficiency at intersections
and also the human-like behaviors of the autonomous vehicle would be easier for the sur-
rounding human drivers to predict, thus, increases the safety of the planner since it is easier
to be coop with. Therefore, inspired by the real-life driving experience and naturalistic
driving datasets, a novel crtical turning point (CTP) has been borough out, and the CTP
model which could be applied in various shaped intersections has been proposed. Finally,
the model is verified through more thorough measurements of the left-turning behaviors in
the datasets.

3.2 Left-Turning Behavior Analysis

To obtain a perceptual understanding of how people drive at intersections, a quadcopter
was used to record the driving behavior of people left-turning at intersections. Videos were
taken from a bird-eye view at a few major intersections in urban areas of China. The
videos include both heavy traffic and light traffic scenarios at regular-shaped intersections
and irregular intersections.

25

Figure 3.1: Real-life driving behavior of left turns

From the large amount of real-life driving video, left-turning behaviors in different traffic
are observed. It is found that when left-turning at intersections, if there exist oncoming
traffic (the left-turning path is blocked), the ego vehicle would creep forward and wait in
the middle of the intersection. If the road is clear, the vehicle would then make a sharp
turn, which the left turn process is demonstrated in Figure 3.1. The red bounded vehicles
are the left-turning vehicle, and the yellow bounded vehicles are the oncoming vehicles.
The dashed line and the dash-dotted line indicate the history path of the two left-turning
vehicles accordingly. When the oncoming road is clear, the vehicle would steer the vehicle
to make the turn at the beginning of the intersection, and the average path is more round
compare to left-turning paths with heavy oncoming traffic.

It is also observed from the videos that at the same intersection, if there exist oncoming
vehicles, the ego vehicles would make sharp turns at different locations. This is because
the future path is cleared before the ego vehicle reached the waiting point, thus, the shift
from creeping forward to sharp steering happens at different timing. This phenomenon can
also be found in Figure 3.1. In Figure 3.1 (c) it could be observed that the two vehicles
bounded by red rectangles are creeping forward due to the occlusion caused by the yellow
bounded vehicle. In Figure 3.1 (d) shows that the white vehicle is taking the sharp turn
while the black vehicle with the red bound is still creeping forward because the future path
is still blocked by the yellow bounded vehicle. Then in Figure 3.1 (e) the path is clear for

26

Figure 3.2: Selected scenarios in the INTERACTION dataset [4]

both of the vehicles, and different points have been chosen to make the sharp turn.

Observing through recorded videos only gives a rough and intuitive understanding of
left-turning behaviors. To understand this behavior from an in-depth perspective, human
drivers’ driving behaviors are being studied through two intersection datasets. Which is
the InD Drone dataset [80] and the INTERACTION dataset [4]. The InD dataset is a
recently published dataset that records naturalistic vehicle and pedestrian trajectories at
four different locations in Germany. The data was collected by a drone, thus, there is
sufficient information in the occlude environment. The INTERACTION dataset is also
a dataset that records the naturalistic traffic participants’ trajectories in various kinds
of highly interactive driving scenarios which include irregular intersections. The major
difference from the INTERACTION dataset and the InD dataset from our perspective
is that the INTERACTION dataset includes irregular intersections that the road is not
strictly perpendicular to each other, and also that intersection includes median strips. The
stereoscopic representation of the selected intersection is presented in Figure 3.2. The
difference and irregular shape of the intersection enable more generalized driving behavior
observation.

A regular intersection in the InD dataset is evaluated for observing driving behaviors
at regular intersections. First, the left-turning trajectories are extracted by restricting
the starting point and the ending point of all the trajectories of traffic participants. The
result of all the extracted trajectories is presented in Figure 3.3. The figure shows that the
left-turning curves cover a a recognizable portion of the left turning space, and different
people would take the sharp turns at different locations along the road.

The yaw rate and longitudinal speed along the left-turning paths are also extracted,
and are plotted with respect to the x-axis in the global coordinates, as shown in Figure 3.4
part (a) and (c)), and the yaw rate and speed are also plotted with respect to the local

27

Figure 3.3: Extracted left-turning trajectories from naturalistic dataset

coordinates (the direction of the initial heading angle of the ego vehicle which is also
presented as the yellow arrow in Figure 3.3) as shown in Figure 3.4 part (b) and (d).
Figure 3.4 part (a) and (b) show that, most of the vehicle comes to a full stop or decrease
to a low speed in both coordinates (the lowest speed of the trajectories at the intersection is
plotted as red dots), then increase their speed afterward. Figure 3.4 part (b) and (d) show
that at certain points the yaw rates of the vehicles increase sharply and eventually reach
a very high value (the biggest yaw rates are indicated with red dots), which indicates that
the ego vehicle is making a sharp turn. Through comparing part (a) and (c) and part (b)
and (d) of Figure 3.4, it is observed that the positions of the points where the ego vehicle
is making the left turn and the positions of the points where the vehicles decrease their
speed to the lowest value are in the same range. This could indicate that when making
left-turns, most drivers would first decelerate its speed or even comes to a full stop at a
certain point, before accelerate and make a sharp turn to finish the left turn.

Similar data extraction and processing methods are used to observe the INTERAC-
TION dataset as well. In the INTERACTION dataset, an irregular-shape intersection has
been studied, this intersection not only have median strips, but also have non-perpendicular
crossroads. The extracted yaw rates also follow a rapid increase and decrease pattern, and
at the same time, most of the vehicles decelerate to its lowest speed at the location where

28

(b) Speed in the local frame

(d) Yaw rate in the local frame(c) Yaw rate in the global frame

(a) Speed in the global frame

Figure 3.4: Yaw rate and speed along the global coordinates and left-turning paths

the vehicle is making sharp steering. This shows that the left-turning phenomena have been
observed from the INTERACTION dataset too. This shows that the observed phenomena
exist in different kinds of intersections, and has shown its universality.

3.3 Critical Turning Point Model

From the observation of the left turning behaviors in the previously mentioned videos, it
could be concluded that: for left turns at intersections, there are 2 phases: a creeping
forward phase that the driver assesses the safety of the environment, and a intense steering
phase when the driver feels confident to drive through the potential collision area (red
shaded area in Figure 3.5). The different points where the driver makes the phase change
are crucial to the safety and commuting efficiency of the left-turn vehicle, therefore, these

29

W

W

𝑤!

𝑤"

𝑙#
𝑙"
𝑙!

L

𝑙$

𝑤#
CTP1

CTP2

CTP3

CTP4

𝑚%

𝑚#

𝑛% 𝑛#

Figure 3.5: Critical turning point model

points are defined as critical turning points (CTPs). To be able to extract CTP in various
shapes of intersections, a generalized and parametric CTP extraction model is proposed
as shown in Figure 3.5. m1,m2 are the number of the horizontal road lanes and n1, n2 are
the number of the vertical road lanes. W is the width of the median strip (white shaded
area in Fig. 3.5) and also the width of the purple-color rectangle. and L is the horizontal
distance from the starting point to the extension of the goal lane.

As shown in Figure 3.5, all the CTPs are allocated on the purple-color rectangle in
Figure 3.5. The longitudinal and lateral distance to the starting point of each CTP is
defined as: {

li = kl,i · (L− lr) i ∈ 1, 2, . . . , q

wi = kw,i ·W i ∈ 1, 2, . . . , q,
(3.1)

where
lr = cr ·Rmin, (3.2)

i represents the number of a CTP, q indicates the total number of CTPs. L − lr is the
length of the rectangle where lr is calculated by multiplying a slackness ratio cr with
the vehicle’s minimum turning radius Rmin as shown in Equation 3.1.This improves the
trajectory-tracking feasibility of our proposed planner at a kinematic level. Finally, kl,i
and kw,i are the longitudinal and lateral distance coefficients that allocate the CTPs in

30

the rectangle. L which is also presented in Figure 3.5 is closely related to the number
of horizontal road lanes m2 and the road width, with bigger intersections, the CTPs will
be allocated in a long purple shaded area, thus, this ensures the generality of the CTPs
extraction model. The width of the rectangle is only related to the width of the median
strip. If the median strip does not exist, the width is defined as 0, in that case, all the
CTPs lies evenly on a vertical line.

The CTP concept is proposed by observing the videos of naturalistic behaviors of vehi-
cles at intersections, however, this concept is only proposed through rough visual measure-
ments, thus, to obtain more accurate measurements of this phenomenon, it is appropriate
to analyze some more detailed left-turning data for more comprehensive observation. Also,
though the parameters (e.g. cr, kl,i, kw,i) can be obtained with personalized modification.
It would be ideal to extract the recommended parameters from studying naturalistic driv-
ing data, and thus with the recommended parameters, the model would be able to extract
CTPs in a more human-like manner. Therefore, this extraction model is verified and the
parameters are approximated by naturalistic driving datasets in the next section.

3.4 CTP Model Identification and Validation

The rationality and the recommended parameters of the CTP model need further eval-
uation and verification. More accurate measurements of this phenomenon and the exact
location of the turning points need to be extracted from the datasets. By definition, the
point where the vehicle is making changes in the left-turning phase is the CTP. Therefore
the point where the yaw rate is starting to increase rapidly is one possible representation of
the aforementioned CTP. However, the data is interference by noise caused by lane-keeping
steering. To overcome the disturbance of the noise, a threshold is set and is presented as
the green dashed line in Fig. 3.6 part (a). If the average yaw rate in five consecutive time
steps is greater than the threshold value, then the position at the first time step of the
consecutive five steps is determined as the CTP. The average value further diminished the
influence of the pulse-like noise, and makes it possible to extract the CTP in a more sensi-
tive manner. The distribution of the longitudinal-directional location of CTPs are plotted
as a histogram in Fig. 3.6 part (c), different bin widths are set to present the distribution
in various microscopic aspects. This histogram shows that most of the CTPs distributed
around the end corner in the longitudinal-direction (around 45m to 53m).

The points in the left-turning trajectories where the vehicles decrease the longitudinal
speed or come to a full stop is another possible representation of the CTPs. The location
of the lowest speed is presented by red dots in Fig. 3.6 part (b), and the distribution is

31

(a)

(d)

(b)

(c)

Figure 3.6: CTP location distribution in the local frame

32

presented in Fig. 3.6 part (d). This distribution is similar to the CTPs extracted considering
yaw rates. There is a little offset between the two distribution, this is because both CTP
extraction criteria could lead to a very small portion of mistakenly extracted CTP position.
Drivers some times decrease speed or comes to a full stop because they are stuck in heavy
traffic, or they are responding to emergency situations. Therefore, when longitudinal speed
is used as the criteria, the position of the point with the lowest speed may not always
represent the CTP. If using the yaw rate as the criteria, the points where the yaw rate
increases to its maximum are the exact CTPs, but the noise caused by steering makes it
hard to extract the position precisely. Therefore, comparing the two distributions, the yaw
rate is selected as a major criterion because all the CTPs can be extracted, though the
positions are not precise, the approximation is still acceptable.

With the extracted CTP for every left-turning trajectories, which are plotted as semi-
transparent dots in Figure 3.7, the average positions of the CTPs could be obtained through
K-means clustering. K-mean clustering is a popular partitioning algorithm for clustering.
K Cluster centers (centroids) are repeatedly chosen randomly and the distance between
each point to their closest centroids is being calculated until the algorithm converges. This
is used to find the minimum sum of squared distances (Euclidean distance) from the points
to their closest centroid. The object function which is also known as the sum-of-squared
errors (SSE) [81] is presented in Equation 3.3.

O(C) =
K∑

k=1

∑

pi∈ck
‖pi − µk‖2 , (3.3)

pi is the two-dimensional vector representing the position (x, y) of every extracted point,
and µk is the mean of the corresponding cluster ck, K represents the total number of clusters
while the goal is to minimize this objective function O(C). Then the average point of each
cluster can be obtained, and Figure. 3.7 is a demonstration of the case of two to four clusters
being taken. As shown in the figure, when different numbers of clusters are being selected,
the clustered average positions of CTPs follow an isometric pattern, which also shows that
the CTPs are located evenly along the road. In reality, the number of clusters could be
different case by case, but the extracted naturalistic driving behaviors showed that they
could all be represented by Equation 3.1. For easier implementation, better generalization
and without much loss of feasibility, we assume that the CTPs located evenly along the
longitudinal axis.

The different driving styles are also evaluated through evaluating the maximum yaw
rate and maximum lateral acceleration of the left-turning vehicles, the distribution is shown
in Figure 3.4. Different colors represented the number of equal-width bins in the range. The

33

(a)

(d)(c)

(b)

Figure 3.7: CTPs extracted from regular intersection dataset

34

(a) (b)

Figure 3.8: Driving style evaluation

count for both maximum yaw rate and maximum lateral acceleration all follow a normal-
like distribution, thus most of the driver would take 0.02 rad/s to 0.027 rad/s as their
maximum yaw rate, and -1.8 m/s2 to -3 m/s2 as their maximum lateral acceleration. As
one of our goals is to perform human-like driving behaviors, for the surrounding vehicles
to better understand the decisions of the ego vehicle. It would be appropriate to limit
our most intensive behavior in that domain. The figure also shown feasibility for more
conservative driving style for the maximum lateral acceleration can be greater than -1.2
m/s2 and the maximum yaw rate can be low as 0.015 rad/s2, same with more aggressive
driving style. With this evaluation, different dynamic constrains for different driving styles
could be applied for more personalized autonomous driving.

Same as extracting the InD dataset, the left-turning trajectories by the staring and
ending position of the left-turning vehicles, which is also presented in Figure 3.9. Then the
yaw rate is plotted for every trajectory and the threshold is set to extract all the CTPs,
and finally the position of each cluster of CTP is grouped as shown in Figure 3.9.

From Figure 3.9 it can be observed that the red dots does not locate in the direction
of the road, but have offsets in the horizontal direction due to the existence of the median
strip. The CTP model considered the existence of median strips and thus, the CTPs could
still be presented using Equation 3.1. Also, with different numbers of CTPs choices, the
average locations of the average CTPs still roughly follow a isometric pattern. Therefore,
a similar simplification assumption for the general CTPs location on the lateral direction
is made, that the general CTPs located evenly along the lateral axis.

35

(a) (b)

(c) (d)

y
(m
)

y
(m
)

y
(m
)

y
(m
)

Figure 3.9: CTP extracted from irregular intersection dataset

36

3.5 Summary

In this chapter, a CTP concept is proposed by observing several real-life intersection driving
videos and analyzing naturalistic intersection driving datasets. Then using these obser-
vations, a generalized and parametric CTP model is proposed. To verify the rationality
of the CTP concept and provide recommended parameters for the extraction model, two
recently published intersection datasets are used for evaluation. Left-turning trajectories
and the corresponding CTPs are extracted and the CTPs are grouped to extract the aver-
age positions of CTPs. The dataset analysis showed that the average location of the CTPs
could be simplified to an isometric pattern both on the lateral and longitudinal axis.

37

Chapter 4

CTP-Based Left-Turning Planning
and Decision-Making Framework

4.1 Introduction

The CTP based left-turning planning and decision-making hierarchical framework is in-
troduced in this chapter. First, an overview of the framework is proposed. Then, a more
detailed explanation of the high-level candidate path planning method of the framework
is introduced. The critical components for better generalization of the planner to differ-
ent shapes of intersections are discussed. Finally, the low-level decision-making approach
including a problem modeling method and the solving algorithm is explained too.

4.2 A Hierarchical Planning and Decision Making Frame-

work

The complete structure of our proposed CTP based hierarchical left-turn planner and
decision-maker is illustrated in Fig. 4.1 and Algorithm 5. The framework includes a high-
level candidate path generator that operates offline and a low-level path selector and speed
planner that operates online.

38

0 5 10 15 20 25
x (m)

0

5

10

15

20

25

y
(m

)

0

5

10

15

20

25

30

v
(k

m
/h

)
High-level Human-like Paths Generation

(a) Critical Zone from Road Geometry (b) Critical Turning Points Extraction (c) Paths Planned from CTP

Low-level Path Selection and Speed Planning

POMDP Model :
(S, 𝐴, 𝑂,	𝕋, ℝ, 𝕆, 𝛾)

• Transition Model:
𝕋(𝑠!, 𝑎, 𝑠) = 𝑃(𝑠!|𝑠, 𝑎)

• Observation Model:
	𝕆(o, 𝑎,𝑠!) = 𝑃 𝑜 𝑠!, 𝑎

• Reward Model:
ℝ = 𝑅" + 𝑅#+ 𝑅$+ 𝑅%+ 𝑅&

(d) POMDP Formulization(e) POMDP Solver (MCTS)

...

(f) Speed Planned on the Chosen Path

WW

L

W W

W CTP1

CTP3

CTP4

CTP2

b0

b11 b10 b1sŏ

a00 a1na0n a10

ŏ ŏ

o00 o01 o0m

a00 a1na0n a10

ŏ ŏ
ŏ

B
A

C D

Figure 4.1: CTP-Based left-turning planning and decision-making framework overview

39

4.2.1 High-level Behavior-Oriented Paths Generation

With the proposed concept of CTP and the phenomenon that the left-turning vehicle in
congested traffics usually drives slowly into the intersection before making sharp turns
at certain points to finish the left turn, a candidate path generation method for higher
left-turn commuting efficiency is proposed. The structure and strategy of the high-level
candidate path generator are explained more thoroughly as follows.

Critical Zone Extraction from Road Geometry

The Critical Zone is the yellow shaded area in Fig. 4.1 (a) where all the possible left-turn
trajectories take place. When a vehicle drives into the intersection, it first generates a
rectangle using the middle point on the edge of the start and goal lane (point A and D in
Fig. 4.1) as diagonal vertices, then the corner points of the current and goal lane (B and
C in Fig. 4.1) are used to help limit the Critical Zone as a pentagon. The length (L) of
the rectangle bounding box of the Critical Zone along with the width of the median strip
(W) are sent to the next part for CTP extraction.

CTP Extraction

After receiving the parameters of the intersection, CTPs can be allocated using the CTP
extraction model presented in Section 3.3 which includes detailed demonstration of the
CTP extraction model and verification with naturalistic driving datasets, which is also
shown in Fig. 4.1 (b). These CTPs are crucial waypoints of all the candidate paths.

Candidate Path Generation Using CTP

Candidate paths are generated with the starting point, CTPs and goal point as important
waypoints. As shown in Fig. 4.1 (c), straight lines are used to connect the starting point
and CTPs, while quintic polynomials [5] are used to generate the left-turn paths from
CTPs to the goal point. The detailed quintic polynomial model and car model used
will be demonstrated in Section 4.3. After the entire paths have been generated, they are
transferred from the Cartesian coordinate system to the Frenet–Serret frame [82] coordinate
system. Since using the traveled distance s and speed v along the fixed paths, the ego
vehicle’s position (x, y) and velocity (vx, vy) can be represented in lower dimensions, which
increases the search efficiency of the online planner proposed later.

40

Algorithm 5 CTP based POMDP planning algorithm
1: OFFLINE PREPARATION
2: Critical Turning Area← Road Map
3: CTPs← Critical Turning Area
4: (p1, ..., pn) = Quintic Polynomial (CTP, pts, pte)
5: M0 ← Model Modification (p1, ..., pn)
6: (H, τ) = Generate Policy (M0, b0)
7: Mi ← POMDP model at time i
8: R← Range tree
9: b = b0
10:

11: ONLINE PLANNING
12: while not Collide or Finish Left Turn do
13: if Mt 6= Mt−1 then
14: H ′ = Get Affected Parts (Mt,Mt−1, H,R, τ)
15: Revised and Update Tree (Mt, τ, b,H

′)
16: while There is still time do
17: Improve Policy (Mt,Mt−1, H,R, τ, b)

18: a = arg max
a∈A

(Q̂(b, a) + c

√
log(|Hb|)
|H(b,a)|)

19: s = T (s′, a, s)
20: o = O (o, a, s′)
21: b← Update belief
22: t = t+ 1

41

4.2.2 Candidate Path Selection and Speed planning

The candidate paths generated from the high-level planner are sent to the low-level planner
for POMDP problem formulation as shown in Fig. 4.1 (d). Then the appropriate candidate
path is chosen and speed is planned on that path in an online manner using MCTS [6] as
shown in Fig. 4.1 (e). However, the model should be carefully formulated to ensure the
online performance of the solver.

4.3 CTP-based Candidate Paths Generation

With the CTPs extracted from the CTP extraction model, the interpolating curves ap-
proach is used to generate paths from each CTP the goal point to achieve smooth and
efficient planning. Some popular interpolating spline curves include Bézier curve, cubic
polynomial curve and quintic polynomial curves. Bézier curves used several points to
shape the desired curve, the curve can be generated considering the road geometric and
kinematic of the model. The Bézier curves could be represented as [83]:

P (ξ) =
n∑

k=0

pk

(
n
k

)
(1− ξ)n−kξk, (4.1)

where p0, · · · , pn represented the control points, n is the dimension of the desired curve,

ξ ∈ [0, 1] and

(
n
k

)
(1 − ξ)n−kξk is the Bernstein basis polynomial with

(
n
k

)
as the

coefficient. The Bézier curves are able to provide computational efficient and smooth
curves and take the road geometric and kinematic constrains into consideration. However,
this method could not control the curves locally and if one control point changes, the
shape of the whole curves changes, this shows the drawbacks of generality and flexibility
of this method. Cubic polynomial interpolation curve uses 4 constrains to determine the
coefficients of the curve, however, the four constrains limits the diversity of the possible
paths. Quintic polynomial provide diverse local adjustable curves, and could compute the
interpolation curves in a timely manner, therefore, quintic polynomials [5] are chosen for
path generation from the CTPs to the goal point.

In consideration of the lateral motion dynamics of the ego vehicle, and to improve the
design of the automatic steering of the vehicle, a simplified nonholonomic model is used to
provide lateral motion dynamics which is presented as Figure 4.2 and Equation 4.2. Where
x and y stands for the rear axle midpoint of the vehicle, ẋ and ẏ represents the speed on

42

428 A. Broggi et al.

Fig. 20. Vehicle’s variables of the model (4.4).

inversion that exploits the flatness property. Subsequently, the resulting system’s

state and output trajectories are stabilized against disturbances and modeling errors

by designing a suitable feedback controller.22

Focusing on trailer systems, that are nonholonomic, it is possible to use flatness

for deriving the motion planning.23,24 Pursuing a similar aim regarding the nonholo-

nomic system (4.4), we exploit its flatness by studying the di↵erential properties of

the vehicle’s cartesian trajectory. Before presenting the proposition summarizing

the main findings, we introduce the following terminology and definitions.

A curve on the {x, y}-plane can be described by a parameterization p(u) =

[x(u) y(u)]T with real parameter u 2 [u0, u1]. The associated “path” is the image

of [u0, u1] under the vectorial function p(u). We say that the curve p(u) is regular

if there exists ṗ(u) over [u0, u1] and ṗ(u) 6= 0 8u 2 [u0, u1]. A curve p(u) has first

order geometric continuity, i.e. p(u) 2 G1, if p(u) is regular and its unit tangent

vector is a continuous function over [u0, u1]. In turn, a curve p(u) has second order

geometric continuity, i.e. p(u) 2 G2, if p(u) 2 G1 and its curvature vector is

continuous over [u0, u1].
25 By natural extension we say that a {x, y}-path, i.e. a set

of points in the {x, y}-plane, belongs to Gi, i 2 {1, 2} if there exists a parametric

curve p(u) 2 Gi such that its image is the {x, y}-path. The Euclidean norm of a

vector p is denoted with kpk.

Proposition 1. A path on plane {x, y} is generated by vehicle model (4.4) via a

continuous control input �(t) if and only if the {x, y}-path is a G2-path.

Proof.

Necessity

Consider a {x, y}-path generated by model (4.4) with a continuous �(t). A natural

parameterization over this path is given by the explicit solution p(t) = [x(t) y(t)]T

of the model (4.4) when t belongs, say, to the interval [t0, t1]. The unit tangent

Figure 4.2: Simplified nonholonomic vehicle model for path generation [5]

the x and y axis. θ is the heading angle and v and l is the vehicle’s velocity and inter-axle
distance respectively, while δ represents the steering angle of the front wheel.

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

l
tan δ

(4.2)

[5] proved that the path generated in the 2-D plane x, y using the car model as
shown in Figure 4.2 through a continuous control input δ(t) if and only if the 2-D path
is a second order geometric continuous path, and also provided that the generated path
could be assigned as a given parametric curve. Thus, the problem could be taken as
an interpolation problem given the starting states and ending states of the ego vehicle.

The starting and ending positions of the 2-D plane is defined as pA =
[
xA yA

]T
and

pB =
[
xB yB

]T
accordingly with corresponding tangent vectors θA and θB as well as

scalar curvature κA and κB (signs of κA and κB are decided according the Frenet formulae)
as presented as Figure 4.3. The scalar curvature κ could be represented as Equation 4.3
where δ (t) is the steering angle at time t.

κ = (1/l) tan δ (t) , (4.3)

The interpolated path can be represented as (x(u), y(u)) u ∈ [0, 1], where u = 0 and
u = 1 indicate that the trajectory is at the starting and ending position respectively, and

43

The ARGO Autonomous Vehicle’s Vision and Control Systems 431

Fig. 21. The new recursive trajectory control scheme.

Fig. 22. The G2-interpolating problem on the {x, y}-plane.

4.3. Quintic G2-splines and Recursive Trajectory Control

The su�ciency proof of Proposition 1 gives the explicit dynamic inversion formulae

(4.8)–(4.10) for the open-loop steering control of vehicle (4.4) provided that the

desired path to follow is assigned as a given parametric curve. Therefore, consider

the following interpolating path problem. Let be given on plane {x, y} two distinct

points pA = [xA yA]T and pB = [xB yB]T with assigned unit tangent vectors

defined by ✓A and ✓B and scalar curvatures A and B (see figure 22). The signs

of A and B are given according to the Frenet formulae; cf. the introduction to

(4.9) in the proof of Proposition 1. The data pA, ✓A, and A represent the vehicle’s

current status at a given time t0, i.e. the coordinates xA and yA of the rear axle

midpoint, the heading angle, and the curvature A given by

A = (1/l) tan �(t0) (4.21)

where �(t0) is the current steering angle. The data pB , ✓B , and B are the desired

future status of the vehicle.

The parametric curve to consider is a quintic polynomial vector function p(u) =

[x(u) y(u)]T , u 2 [0, 1] where

x(u) := x0 + x1u + x2u
2 + x3u

3 + x4u
4 + x5u

5 (4.22)

Figure 4.3: Interpolating of the 2-D curve [5]

x(u), y(u) can be expanded as shown in Equation 4.5.

{
x(u) = x0 + x1u+ x2u

2 + x3u
3 + x4u

4 + x5u
5

y(u) = y0 + y1u+ y2u
2 + y3u

3 + y4u
4 + y5u

5,
(4.4)

where interpolation conditions could be written as:

p(0) = pA, p(1) = pB,

ṗ(0)

‖ṗ(0)‖ =

[
cos θA
sin θA

]
,

ṗ(1)

‖ṗ(1)‖ =

[
cos θB
sin θB

]
,

κ(0) = κA, κ(1) = κB.

(4.5)

These conditions only determines four parameters for x and y, thus, this leaves four degrees
of freedom which could be decided and modifies through giving extra constrains. In [5],
a another set of fine-tuning parameters η := [η1, η2, η3, η4]

T to uniquely determine the
parametric curve. This allows the curve to also be represented as p(u;η). η1 and η1 describe
the “velocity”, for example, if a large η1 is selected, it will make it hard to form a sharp
curve around the starting point. The η3, η4 denote the “twist” of the curve, which enhance
the curvature of the generated path. The closed-form solution of all the parameters can

44

be calculate with:

x0 =xA

x1 =η1 cos θA

x2 =
1

2

(
η3 cos θA − η21κA sin θA

)

x3 =10 (xB − xA)−
(

6η1 +
3

2
η3

)
cos θA −

(
4η2 −

1

2
η4

)
cos θB

+
3

2
η21κA sin θA −

1

2
η22κB sin θB

x4 =− 15 (xB − xA) +

(
8η1 +

3

2
η3

)
cos θA + (7η2 − η4) cos θB

− 3

2
η21κA sin θA + η22κB sin θB

x5 =6 (xB − xA)−
(

3η1 +
1

2
η3

)
cos θA −

(
3η2 −

1

2
η4

)
cos θB

+
1

2
η21κA sin θA −

1

2
η22κB sin θB,

(4.6)

y0 =yA

y1 =η1 sin θA

y2 =
1

2

(
η3 sin θA + η21κA cos θA

)

y3 =10 (yB − yA)−
(

6η1 +
3

2
η3

)
sin θA −

(
4η2 −

1

2
η4

)
sin θB

− 3

2
η21κA cos θA +

1

2
η22κB cos θB

y4 =− 15 (yB − yA) +

(
8η1 +

3

2
η3

)
sin θA + (7η2 − η4) sin θB

+
3

2
η21κA cos θA − η22κB cos θB

y5 =6 (yB − yA)−
(

3η1 +
1

2
η3

)
sin θA −

(
3η2 −

1

2
η4

)
sin θB

− 1

2
η21κA cos θA +

1

2
η22κB cos θB.

(4.7)

The interpolation conditions given in Equation 4.5 decide the starting and ending states

45

of the ego vehicle, and η decides the shapes of the candidate paths. To generate candidate
paths closer to naturalistic driving trajectories that enable naturalistic driving behaviors
at different intersections, proper fine-tuning parameter selection is essential. For regular
intersections, there are only limited kinds of shapes due to the limited number of road lanes
that forms the intersection (m1, m2, n1, n2 in Fig. 3.5). Therefore, fine-tune parameters
could be pre-defined for each type of intersection. In this paper, recommended fine-tuning
parameters for 4 common intersection scenarios are given in Table 4.1. Parameters for
other types of intersections (i.e. different number of traffic lanes and irregularly shaped
intersections) or more customized paths could be obtained in a similar way.

Table 4.1: Recommended parameters for path generation of four typical intersections

(m1,m2, n1, n2)
(η1, η2, η3, η4)

Path1 Path2 Path3 Path4
(1,1,1,1) (8,13,-2,0) (12,13,-2,0) (13,13,-2,0) (14,13,-2,0)
(2,1,2,1) (6,13,-2,0) (9,13,-2,0) (10,13,-2,0) (11,13,-2,0)
(1,2,1,2) (8,13,-2,0) (9,13,-2,0) (10,13,-2,0) (10,13,-2,0)
(2,2,2,2) (8,13,-2,0) (10,13,-2,0) (10,13,-2,0) (10,13,-2,0)

4.4 POMDP Problem Formulation

POMDP provide a way to make decisions on the best sequences of actions to perform when
the agent can not fully observe the states of the environment, in our case, it is the intention
of the surrounding vehicles. To properly present the model, a POMDP problem can be
summed to a tuple (S,A,O,T,R,O, γ) as shown in Fig. 4.1 (d). The component of each
element in the model are explained as follows:

• S = {s1, s2, . . .} describes all the information of the scenario at a certain moment
which is critical information for the decision-making process.

• A = {a1, a2, . . . } is the action set that represents all the possible actions.

• O = {o1, o2, . . .} is the observation space that includes all the possible observations.

• T (s′, s, a) = Pr (s′ | s, a) is the transition model that describe the probability of
obtaining of state s

′
by performing action a from state s.

46

• R(s, a) is the reward model that returns the reward from executing action a from
state s at each step.

• O(a, s, o) = Pr (o | a, s′) is the observation model that represents the probability of
obtaining an observation o from the new state s

′
which is gained by performing action

a from the current state s .

• γ represents the discount factor which γ ∈ (0, 1), this is useful when the horizon of
the action sequence is very large.

With the partially known information of the environment, the states are presented as
a distribution of states, also known as beliefs (b), which the set contains all the possible
beliefs is called the belief space B. The policy is represented by assigning an action a to
a belief b. The goal of the agent is to generate a policy to enable the planner to select
a sequence of actions that maximizes the accumulative expected reward. Also, a value
function V (b, π) for every belief within the policy is set to represent the expected cumulative
reward of performing policy π from belief b. This value function can be computed as [6]:

V (b, π) = E

[∞∑

t=0

γtR (st, at) | b, π
]
. (4.8)

4.4.1 State Space

The states space of the model is presented by Equation 4.9, which includes both the ego
vehicle’s states x0,t, and the oncoming vehicle’s states xi,t(i = 1, 2 . . . , n) at time t. The
explicit expansion of each vehicle’s states can be found in Equation 4.10, where Si,t stands
for the traveled distance on the pre-defined path, Vi,t represents the speed along that path.
P0,t indicates the path that is chosen by the ego vehicle, and Pi,t(i = 1, 2 . . . , n) denotes
the intention of the oncoming vehicles, which includes going straight, making right or left
turns.

Xt = (x0,t, x1,t . . . , xn,t) , (4.9)

xi,t = (Si,t, Vi,t, Pi,t) i ∈ 0, 1, 2, . . . , n. (4.10)

It is worth mentioning that the position and velocity of the vehicles are defined on
the Frenet–Serret frame [82]. By using pre-defined paths, the dimensions to represent
the vehicle’s states are reduced, which helps to limit the size of the policy tree, and as

47

a result, increase the search efficiency. The states of oncoming vehicles can be divided
into unobservable states such as the driver’s intention Pi,t, and explicit states such as the
vehicle’s position and velocity, which closely related to the proposed observation model.

4.4.2 Observation Space and Observation Model

The observation model records the observations of all the vehicles at time t and is repre-
sented in the observation space (Equation 4.11). The speed and position of each oncoming
vehicle in the Cartesian coordinate system are written as Oi,t in Equation 4.12, and the
ego vehicle’s route, speed along the route and traveled distance are shown as O0,t in Equa-
tion 4.12.

Ot = (O0,t, O1,t, . . . , On,t) , (4.11)
{
Oi,t = (x′i,t, y

′
i,t, v

′
i,t) i ∈ 1, 2, . . . , n

O0,t = (s′0,t, v
′
0,t, P0,t) i = 0.

(4.12)

The model assumes that there is no sensor noise during perception and the ego vehi-
cle has full knowledge of its own states. However, the states (such as the route) of the
surrounding vehicles are not fully observable.

The observation space is a crucial component for deciding the size of the tree which is
critical to make efficient planning. Therefore, an accuracy variable κa for the observation
model is introduced in Equation 4.13. The states are multiplied by the accuracy variable
first, then rounded to the closest integer and finally divided by κa. By tuning κa, the width
of the search tree could be adjusted.

X ′i,t = bXi,t
κa
e · κa. (4.13)

4.4.3 Action Space

The action space includes an acceleration variable (av in Equation 4.14) and a left-turning
“instruction” Boolean variable at. The acceleration variable (av ranged from -4 m/s to 4
m/s with a interval of 1 m/s, it only controls the ego vehicle’s speed along the predefined
path. The left-turning“instruction” variable at on the other hand, conveys sharp turn
instructions. When this parameter is set to “1”, the ego vehicle will shift from the creeping
forward phase to the sharp left-turning phase at the next CTP ahead. With this Boolean
variable, the ego vehicle would be able to plan in a two-dimension but smaller search space.

a = (av, al) . (4.14)

48

4.4.4 Reward

The model’s reward includes rewards for reaching the goal, moving as the referenced speed,
selecting the proper path and also a penalty for crashing with the oncoming vehicle and
going backward, which is written as

R = Rv +Rc +Rg +Rr +Rm. (4.15)

Rv = −300 (V − vref)2 is set for the vehicle to follow the desired speed, the speed
difference is squared for fast and closed tracking of the ego vehicle’s speed to the reference.
The crash penalty is formulate as

Rc =

{
−5× 106, if dist < distsafe

0, otherwise.
(4.16)

similarly, the reward for reaching the goal is set as

Rg =

{
5× 104, if S > Sfull
0, otherwise.

(4.17)

where S stands for the traveled distance on the chosen path, Sfull is the full length of the
chosen left-turn candidate path. The penalty for the ego vehicle to move backward is set
as

Rr =

{
−1× 105, if v < 0

0, otherwise.
(4.18)

to avoid dangerous revers movements.

Finally, the key reward that enables the vehicle to select the appropriate path is set
as Rm = 10y − 50x2, which encourages the vehicle to move closer to the goal on both x
and y-axis. Thus, the ego vehicle would be able to select the appropriate path for better
commute efficiency in different scenarios.

The specific values for the parameters of the rewards are selected in a priority sequence.
Safety is the highest demand for the framework. Therefore, Rc is selected first and is set to
a large value, and Rr is selected afterward with a relevantly high value. It is also critical for
the vehicle to behave as commanded and finally reach the goal. Thus, Rv and Rg is then
selected with a smaller value. Finally, for the framework to help the ego vehicle to select
the proper candidate path, Rm is selected as a small value, which has a small influence on
the whole reward function, but enables the path selection function.

49

4.4.5 Transition Model

With the assumption that all the vehicles are moving on the pre-defined paths, the transi-
tion model could also be defined on the Frenet–Serret frame. Before the ego vehicle enters
the intersection, the turning state P0,t is set as -1. When the ego vehicle is driving close to
a CTP and no path has been selected, the next state of the ego vehicle is generated using
the following equation.

S0,t+1

V0,t+1

P0,t+1

 =

1 ∆t 0
0 1 0
0 0 1

S0,t

V0,t
P0,t

+

1
2
∆t2 0
∆t 0

0 dS0,t+L

L
e

[
av
al

]
. (4.19)

Where L represents the distance between neighboring CTPs (e.g. distance between CTP1
and CTP2 in Fig. 4.1). The vehicle’s position and speed on the fixed path are controlled
by the acceleration action variable av and the candidate path is selected by the sharp-turn
instruction variable (al). When a sharp turn instruction (al = 1) is given, the number of
the closest CTP ahead (which is also the number of the selected path) is recorded using the
transition function (Equation 4.19). Once P0,t is updated to a non-negative value, the left-
turning ”instruction” variable al is invalidated and the vehicle will take the corresponding
candidate path. Also, if the ego vehicle passed the last CTP, then P0,t is set to the number
of the last CTP (4 in the case of Fig 4.1), and al is invalidated as well.

As for the oncoming vehicles, their state-transition strategy is similar to the ego vehicle.
Only the route (Pi,t) of each vehicle is pre-defined and fixed, the acceleration action as of
each vehicle follows a normal distribution of N (0, 1) ranging from [−2 m/s2, 2 m/s2], with
a interval of 1 m/s2. The transfer function is given as

Si,t+1

Vi,t+1

Pi,t+1

 =

1 ∆t 0
0 1 0
0 0 1

Si,t
Vi,t
Pi,t

+

1
2
∆t2

∆t
0

 as. (4.20)

With the 2 given transfer functions of the vehicles, if there is only 1 oncoming vehicle,
the distribution of uncertainties of the transition model can be represented as a normal
distribution as

T = (s′|s, a) = N (0, 1), (4.21)

where the uncertainty comes from the unknown actions of the surrounding vehicles.

50

4.5 Solving the Decision-Making Problem

Due to the complexity and rapidly changing nature of intersections, it would be appropriate
to solve left-turning decision-making problems online. Therefore, according to the literature
review made in Section 2.6.3, the Monte Carlo tree search method is implemented in our
framework for left-turning navigation because of its aforementioned 3 major advantages.
Among all the MCTS methods, Adaptive Belief Tree (ABT) [6] is implemented. This
solver uses MCTS to generate a policy tree, then the action with the highest reward is
executed and belief is updated using a particle filter. After that, instead of discarding the
entire policy tree as the classical POMCP online solver [78], ABT only identifies and trims
the parts of the policy tree that are influenced by the change of the model (e.g. change
of action space, transition model, observation model, etc.), then revises the influence part
of the policy tree and improves it if there is still time left in that time cycle. Since most
part of the policy tree is saved after each time step, the search efficiency is boosted. Thus,
the real-time performance and safety of the left-turn planner is significantly improved.
A detailed explanation of the ABT-based POMDP solver is presented in the rest of this
section.

4.5.1 Representation of the Policy

The policy is represented by sequences of pairs of action and beliefs, and also the relation
between the states, beliefs and their reachability information. This representation could
increase the speed of finding the part of the policy tree that had been influenced by the
change of the POMDP model. The change of the POMDP model is defined as changing
any element of the POMDP model, which in this case could be the change of the updated
belief and the transition function.

ABT represents the policy through a belief tree T . The belief tree is formed by a set
of sampled episodes H, an episode h ∈ H is represented by a sequences of quadruples
(s, a, o, r) as shown in the table in Figure 4.4, where s ∈ S represents the state, a ∈ A
represents the action o ∈ O and r ∈ R represent the reward. The beliefs in the tree are
represented as belief nodes which is represented as nodes in Figure 4.4 (e.g. b0 represents
the root of the belief tree T), each node is formed by a set of particles (which is represented
as dots in the nodes of Figure 4.4), where every particle is associated with a quadruple. The
edge that connects the nodes b and b

′
in the tree is formed by a action-observation pair (e.g.

a0 − o0 pair in Figure 4.4), which means that a particle in the belief b performs an action
a and reached to belief b

′
(i.e. b′ = τ(b, a, o)) which perceives an observation o. These

51

Algorithm 6 Episode generation

1: b = bstart
2: Let l be the depth level of node b in T
3:

Let s be a state sampled from b .
The sampled state s is essentially the state at the lth quadruple of an episode h′ ∈ H

4: Initialize h with the first l elements of h′

5: Initialize doneMode as UCB.
6: Let A be the action space of POMDP model P
7: while γl > ε AND doneMode == UCB do
8: Let A′ be the set of actions that labelled the edges from b in T
9: if |A′| == |A| then
10: a = UCB− ACTION− SELECTION(T , b)
11: else
12: a = an action sampled trom A\A′ unitormly at random.
13: doneMode = Rollout.
14: (o, r, s′) = GenerativeModel (P, s, a)
15: Insert (s, a, o, r) to h
16: Add hl.s to the set of particles that represent belief node b and associate b with hl
17: s = s′

18: b = child node of b via an edge labelled a -o. If no such child exist, create the child.
19: l = l + 1

20: if doneMode == Rollout then
21: Let p be a number sampled uniformly at random from [0, 1]
22: if p < ppolicy then
23: r = ROLLOUT-POLICY (T , s, b)
24: rolloutUsed = policy.
25: else
26: r = ROLLOUT-DET (P, s)
27: rolloutUsed = deterministic.
28: else
29: r = GenerativeModel (P, s)

30: Insert (s,−,−, r) to h
31: Add hl.s to the set of particles that represent belief node b and associate b with hl
32: valueImprovement = UPDATE-VALUES(T , h)
33: ppolicy = UPDATE-ROLLOUT-PROB(rolloutUsed, valueImprovement).
34: Insert h to H

52

6 Hanna Kurniawati and Vinay Yadav

next state sampled by the last call to the generative model and r = R(s) is the reward
of being at state s.

To maintain an explicit relation be-

(s0, a0, o0, r0)

(s1, a2, o2, r2)

...

...

(sn+1,�,�, rn+1)

b0
s0

a0

o0
s1

a1

o1

...

... ...

sn+1

h 2 H T

...
...

Fig. 1 Illustration of an association between an
episode h 2 H and path in the belief tree T .

tween beliefs, states, and their reacha-
bility information efficiently, ABT main-
tains a belief tree, denoted as T , and
associates it with the set of episodes in
H. Each node in T represents a belief.
For writing compactness, we refer to the
node and the belief it represents inter-
changeably. The root of T represents the
initial belief b0. Each edge bb0 in T is
labelled by a pair of action and obser-
vation a–o. An edge bb0 with label a–o
means that when a robot at belief b per-
forms action a and perceives observation

o, its next belief would be b0, i.e., b0 = t(b,a,o) where b,b0 2 B, a 2 A, and o 2 O.
The paths in the belief tree T are associated with the episodes in H. Suppose f

is a path in T and f = hb0,a0,o0, . . . ,an,on,bn+1i, where bi,bn+1 2 B, ai 2 A, and
oi 2O for i2 [0,n]. Then, f is associated with the set of episodes Hf ✓H which con-
sists of all episodes in H that contains h(s0,a0,o0,⇤), . . . , (⇤,an,on,⇤),(⇤,–,–,⇤)i,
where s0 is any state sampled from b0, ai and oi (i 2 [0,n]) are the corresponding
actions and observations in f , and ⇤ means any relevant value. Figure 1 illustrates
the relation between an episode in H and a path in the belief tree T . Each episode
in H corresponds to exactly one path of T , but a path of T may be associated with
many episodes.

Each belief in T is represented by a set of particles, which comprises the states
in the corresponding quadruples of the corresponding episodes. Suppose b is a node
at level-l of T (the root has level 0). Suppose F(b) is the set of all paths in T
that starts from the root and contains the node b, and Hb =

S
f2F(b) Hf . Then, b is

approximated with the set of particles {hl .s | h 2 Hb}, which comprises the state in
the lth quadruple of each episode in Hb (the quadruples are indexed from 0).

The policy p of ABT is embedded in the belief tree T , with

p(b) = argmax
a2A(E,b)

Q̂(b,a) (1)

and value V (b,p) = max
a2A(E,b)

Q̂(b,a) (2)

where b 2 B, E is the set of edges in T , and A(E,b) ✓ A is the set of actions
that have been used to expand b, i.e., the actions that labelled the out-edges of
b in T . The value Q̂(b,a) denotes the estimated Q-value. Q-value Q(b,a) is the
value of performing action a from belief b and continuing optimally afterwards, i.e.,
Q(b,a) = R(b,a)+ g Âo2O t(b,a,o)V ⇤(t(b,a,o)). ABT estimates Q(b,a) as

Q̂(b,a) =
1��H(b,a)

�� Â
h2H(b,a)

V (h, l) (3)

Figure 4.4: Illustration of the relation between the episode and the path in the belief
tree [6]

edges that connect the initial belief to the final belief are defined as paths. Assume φ is
a path of the belief tree, then φ can be represented by φ = (b0, a0, o0, r0, . . . , an, on, bn+1)).
This path is associated with the all the corresponding episodes Hφ ⊆ H that contains
((∗, a0, o0, ∗) , . . . , (∗, an, on, ∗) , (∗,−,−, ∗)). As shown in Figure 4.4, an episode can be
matched to a single path in the belief tree. However, that path can be matched to many
episodes of the tree since there are three particles in the belief nodes that shares the same
path.

The policy π is embedded in the policy tree, which is represented by:

π(b) = arg max
a∈A(E,b)

Q̂(b, a), (4.22)

with
V (b, π) = max

a∈A(E,b)
Q̂(b, a), (4.23)

where b ∈ B is the belief, E is the set of all the edges of the tree and A(E, b) represents
the possible actions that generate b

′
from b. Q̂(b, a) is an estimation of the Q-value, which

is the reward received after executing action a and keep on performing optimally until the
horizon has been reached, which are also presented as:

Q(b, a) = R(b, a) + γ
∑

o∈O
τ(b, a, o)V ∗(τ(b, a, o)). (4.24)

53

ABT estimates the Q-value through:

Q̂(b, a) =
1∣∣H(b,a)

∣∣
∑

h∈H(b,a)

|h|∑

i=l

γi−lR (hi · s, hi · a) , (4.25)

where H(b,a) ⊆ H represents all the of episodes that include the corresponding belief-

action, l is the tree depth and V (h, l) =
∑|h|

i=l γ
i−lR (hi · s, hi · a) is the value of an episode

h starting from the element of lth depth, γ stands for the discount factor and R denotes
the reward function. It has been proved in [6] that the estimation of the Q-value which is
the Q̂(b, a) as presented in Equation 4.25 can properly approximate the true Q-value.

4.5.2 Policy Generation and Update

The policy is represented by the belief tree which is formed by episodes. To properly sample
the episodes, thus grown the policy tree to an ideal size, this algorithm uses two major
search methods, which is the upper confidence bound, version 1 (UCB1) search [84] and
the rollout search [78]. The thorough representation of sampling an episode is presented
in Algorithm 6 [6].

UCB1 Algorithm

The upper confidence bound (UCB) strategy is widely used in reinforcement learning prob-
lems, it formed the action selection problem from the belief nodes into a multi-arm bandit
problem. In this POMDP solver, UCB1 algorithm is used to balance between the exploita-
tion (e.g. select the action that showed the best performance so far) and exploration (e.g.
select the action that has not been selected yet, but have the potential to show good per-
formances) in the tree search. UCB1 is selected also because it is one of the best multi-arm
bandit algorithms that solved the problem in which the reward for executing an action
follows a stationary distribution and is unknown before searching. The action selection
strategy of UCB1 can be written as:

a = arg max
a∈A

(Q̂(b, a) + c

√
log (|Hb|)∣∣H(b,a)

∣∣), (4.26)

where Hb is all the episodes that include the belief b, and similarly H(a,b) represents all the
episodes that execute action a from belief b. |∗ | indicates the size of ∗ (e.g. could represent

54

the visiting counts of a belief node). c is a critical factor that balances between exploration
and exploitation (c = 0 means that the algorithm is searched greedily inside the tree). This
algorithm has been widely used in many POMDP solvers [6,78], and enables the POMDP
solvers to converge to optimal policies.

Rollout Search

The rollout search is a simple Monte Carlo method that helps to evaluate the state s. The
actions are first selected according to a certain probability distribution, until a terminal
condition has been reached or the planning horizon has bee reached. Then a sequence of
reward is returned, and the average return of all the reward returned is used to estimate
the value of the state s as [79]:

R̂ =
dn∑

d=0

γdrd, (4.27)

where rd=0, rd=1, . . . , rdn is the sequence of the reward. In the ABT framework, two types of
rollout policy are used, which are the ROLLOUT-DET and ROLLOUT-POLICY, which is
presented in Algorithm 6 line 21-27. ROLLOUT-DET (Algorithm 6 line 26) is the rollout
method that assumes that the problem is a deterministic problem, and thus calculate the
accumulative reward of the robot starts from state s execute action a and then operates
optimally based on the assumption. ROLLOUT-POLICY (Algorithm 6 line 23) applied
heuristic based on existing policy. The algorithm first uses the generative model to sample
a simulation and obtains an observation, then uses a particle filter to compute the resulting
belief b′ = τ(b, a, o). With the belief, the algorithm finds the belief node b̂′ in the existing
tree that is closest to b′, this distance is measured using the expected state-space distance
assuming that the beliefs do not correspond to each other. If the distance between the
beliefs is small enough (a preset threshold), then the beliefs are equal, thus the algorithm
simulates the total discounted reward using the policy that is already existed inside the
policy tree from b̂′ until a leaf node is reached. This discounted reward is the heuristic
estimation of the Q-value. Otherwise, if the distance between the beliefs is large, the
algorithm still uses the ROLLOUT-DET to estimate the Q-value.

Generating an Initial Policy

The major steps of generating an initial policy are sampling episodes. To sample an episode,
the algorithm first sample a particle (state s ∈ S) from the initial belief b0. Then, given
the initial particle, the algorithm has to select an action to execute, the action selection

55

strategy is: if all the actions corresponded to that node has been used to expand the belief
node at least once, the algorithm will use the UCB1 algorithm, which is represented in
Algorithm 6 line 9-10. If the conditions of executing UCB1 are not satisfied, then the
rollout strategy is applied. The algorithm selects an action randomly from all the actions
that have not been used to expand the belief node (Algorithm 6 line 12). The rollout
strategy will give a relatively good estimation of the Q-value (Algorithm 6 line 21-27.),
which is very useful for the UCB1 method to converge faster to the optimal action when
the UCB1 operation conditions is validated. The search continues until the tree is grown
to an ideal size or time has run out. If there is still time, the algorithm improves policy
(Algorithm 5 line 17).

Policy Execution and Belief Tree Update

After the belief tree is grown, the agent executes the action with the highest Q-value
from the initial belief node b0 (a = π(b0)). Then the agent receives an observation from
the observation function. Using this observation the belief is updated using a particle
filter. After the operation of the agent, the POMDP model is changed, including the
initial belief, the policy tree, etc. The algorithm finds the subsets of the policy that are
influenced by the change of the model (the set of states influenced by the changes), once
the influenced states have been identified, the relevant episodes that are influenced can
be located. The algorithm then revises the affected elements of all the located episodes
through the following procedure. First, the algorithm finds the most shallow tree depth of
all the affected in the episodes. For each of these three episodes, the algorithm deletes the
part of the episode that is deeper than the obtained tree depth, and then re-samples the
deleted part of the episode. Finally, the algorithm replaces the deleted quadruples of the
episodes with the re-sampled sequence of the next states, observations and rewards, etc.
This revision process leads to a rebuilt of the policy tree, thus the Q-values of the revised
belief in the policy tree are updated, which enables the update of the policy embedded in
the policy tree.

4.6 Summary

The CTP-based left-turning planning and decision-making framework are proposed, the
high-level candidate paths generation model uses quintic polynomials to generate paths
from the CTPs to the goal point. Different modifications are made for the path planner
to adapt to various shapes of intersections. Then the framework modifies the intersection

56

decision-making problem into a POMDP model which includes state space, action space,
observation space, etc. The POMDP model is solved through an POMDP planner, the
planner generates the policy tree with policy embedded inside. With the generation of the
original policy tree and the fast policy tree update, optimal actions can be chosen in a
timely manner.

57

Chapter 5

Simulation and Results

5.1 Introduction

The performance of the proposed left-turn planner is evaluated in different aspects. First,
the framework is tested in typical intersection scenarios that a collision may occur, and the
ability to consider the unknown intentions of the oncoming vehicle is testes too. The ability
of the framework to adapt to various shapes of intersection is also verified, which stands
as an important part of the generalization of the intersection planner and decision-maker.
Finally, the appropriate three sizes which enable a thorough search of the intersection and
a further evaluation horizon, and meanwhile also provide a good real-time performance of
the decision-maker.

In the test scenarios, left-turns take place at regularized intersections where the width
of the median strip is set as 1 meter. It is also assumed that only 1 oncoming vehicle is
entering the unsignalized intersection, and the vehicle has an intention (route to follow) that
is unknown to the ego vehicle, the surrounding vehicle also has an uncertain acceleration
deceleration which follows a normal distribution. The ego vehicle, on the other hand, is
entering the intersection at a relatively high speed or low speed.

5.2 Simulation under Typical Scenarios

3 typical scenarios that collisions may occur are tested, which is the oncoming vehicle turns
right at low speed, goes straight with low and high speed. The results are shown in Fig. 5.1.

58

Figure 5.1: Simulation results of three typical scenarios with different oncoming vehicle’s
intention

Colored dots with black contours indicate the ego vehicle’s trajectory, and the rest of the
dots represent the oncoming vehicle’s trajectory. The color of each dot represents the speed
of the vehicle at that position. The dashed lines are the possible candidate paths of the
ego vehicle, and the dotted lines are the pre-defined path of the oncoming vehicle.

If the oncoming vehicle is going straight, the left-turning vehicle might collide with
the oncoming vehicle at the potential collision area (red shaded area in Fig. 4.1 (b)), thus
when the intention of the oncoming vehicle is uncertain, there is a possibility that the
Critical Zone (orange shaded area in Fig. 4.1 (a)) is blocked. As presented in Fig. 5.1,
the ego vehicle is able to consider this risk and drives slowly into the intersection and
waits for the intention to be clear. After the intention of the oncoming vehicle is certain,
more “confident” actions were made, that the ego vehicle either decelerates if the Critical
Zone is blocked or take a sharp turn when the Critical Zone is clear. What’s more, when
the oncoming vehicle with an intention of going straight blocks the Critical Zone, the
ego vehicle takes sharp turns around different CTPs according to different timing for the
oncoming vehicle to drive pass the collision area (Fig. 5.1 (a), (b)). When the oncoming
vehicle is taking a right turn, the Critical Zone is cleared at an earlier stage, the ego vehicle
then correspondingly makes the sharp turn earlier (Fig. 5.1 (c)). The results show that
the planner would be able to select and plan different candidate paths and plan speed
along the path in a sensible manner considering the uncertain intention and actions of the
oncoming vehicle.

The safety distance (distsafe in Equation 4.16) is set to 2.4 meters to avoid collision
when making left turns. In all test cases, this distance is strictly ensured. The results

59

0 1 2 3 4 5 6 7 8 9
(a) Time (s)

0

10

20

30

V
eh

ic
le

 d
is

ta
nc

e
(m

)

0

10

20

30

S
pe

ed
 (

m
/s

)

Oncoming vehicle going straight

0 1 2 3 4 5 6 7 8 9
(b) Time (s)

0

10

20

30

V
eh

ic
le

 d
is

ta
nc

e
(m

)

0

10

20

30

S
pe

ed
 (

m
/s

)

Oncoming vehicle turning right

Figure 5.2: Vehicle distance and speed profile with respect to time in two critical scenarios

of 2 specific test cases in which a crash may occur are shown in Fig. 5.2. The blue lines
indicate the distance between the ego vehicle and the oncoming vehicle, and the orange
lines represent the changing speed of the ego vehicle. In Fig. 5.2 (a) and (b), the distance
between the 2 vehicles is always greater than 2.4 meters and the ego vehicle’s speed starts
to decrease before the distance is at its minimum. This shows that the planner is able to
keep the pre-set safety distance and avoid collisions.

The main feature of the POMDP problem is that it can deal with the problem with
uncertainties, the feature has been tested in our simulation. Fig. 5.3 demonstrates that the
planner is able to make decisions considering the oncoming vehicle’s uncertain intentions,
the blue lines are the beliefs of the intentions and the orange lines stand for the action of
the ego vehicle. As shown in Fig. 5.3 (a), (b) and (c), the ego vehicle performs similar
actions from 0s - 1.5s. After that, if the oncoming vehicle’s left-turning intention becomes
certain, which means that the Critical Zone is clear, the ego vehicle maintains its current
speed (Fig. 5.3 (a)). If the intention of going straight or turning right is still uncertain, the
ego vehicle decelerates consider the probability that the Critical Zone might be blocked.
At last, if the oncoming vehicle’s intention of going straight becomes certain, the Critical
Zone is blocked, then the ego vehicle continues to decelerate (Fig. 5.3 (b)). Moreover, if the
oncoming vehicle is confirmed to turn right at last, there is more space to make left turns,
then acceleration is performed (Fig. 5.3 (c)). These results show that our proposed method
enables the ego vehicle to make less conservative actions considering the uncertainties of

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(a) Time (s)

0

0.5

1

B
el

ie
f

-5

0

5

A
ct

io
n

(m
/s

2)

left straight right action

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(b) Time (s)

0

0.5

1

B
el

ie
f

-5

0

5

A
ct

io
n

(m
/s

2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(c) Time (s)

0

0.5

1

B
el

ie
f

-5

0

5

A
ct

io
n

(m
/s

2)

Figure 5.3: Change of actions due to different beliefs

the oncoming vehicle.

5.3 Adaption to Various Road Geometries

The performance of the CTP based hierarchical planner is evaluated in different road
geometric environments. Intersections with different shapes are tested with planners with
and without CTPs. The different shapes of intersections are mainly differs from the number
of road lanes, as shown in the first column of Table 5.1, these variables (m1,m2, n1, n2)
represent the road lanes as shown in Figure 3.5. Each scenario is tested 10 times with a
time step of 0.5 seconds, the average time steps of each scenario are shown in Table 5.1,
where the time to finish each left turn is calculated by multiplying the number of time
steps with 0.5. From the table, it can be seen that, in all the test cases, the commuting
efficiency of the planner with CTPs is no less than the planner without CTPs. Moreover,

61

0 2 4 6 8 10
(b) Time (s)

0

0.5

1

M
ar

ch
in

g
ra

tio
 (

%
) Without CTP

With CTP

0 2 4 6 8 10
(a) Time (s)

0

10

20

30

S
pe

ed
 (

km
/h

)

Without CTP
With CTP

Figure 5.4: Speed profile and marching ratio with respect to time

commuting efficiency increases conspicuously when the oncoming vehicle is going straight.
These results show that the proposed planner can be applied in more general road geometric
environments and produce finer performances.

The reason that commuting efficiency is improved is illustrated in Fig. 5.4. The figure
shows the change of the marching ratio and speed at a specific scenario (m1 = 1,m2 =
2, n1 = 1, n2 = 2 with the oncoming vehicle going straight) with and without CTPs.
Marching ratio is defined as the distance traveled by the ego vehicle divided by the length
of the chosen path, because the lengths of the paths are different when using different
planners, simply compare the traveled distance would be confusing.

As shown in Fig. 5.4 (a), without the uses of CTPs, the path of the ego vehicle is fixed,
thus, when the Critical Zone is blocked by the oncoming vehicle, the ego vehicle stops and
waits for the critical zone to clear until any acceleration can be executed. However, with
the uses of CTPs, if one of the paths is blocked, the vehicle has the option to keep moving
forward and take the sharp turn at the next CTP. This is also demonstrated in Fig. 5.4
(b), when the blue line becomes flat, the red line still rises. In other words, the vehicle
will manage to get closer to the goal point on the y-axis when moving along the x-axis is
dangerous. As a result, when the critical zone is cleared, the remaining distance of travel
is decreased with the uses of CTPs, also, the average speed is increased too.

62

Table 5.1: Performance evaluated in different intersections

(m1, m2, n1, n2) Intention (Speed) CTP
Average

Steps
Average
Time (s)

(1, 2, 1, 2) straight (low)
no 24 12
yes 21.1 10.55

(1, 2, 1, 2) left (fast)
no 11 5.5
yes 11 5.5

(1, 1, 1, 1) right (fast)
no 12.9 6.45
yes 12.2 6.1

(1, 1, 1, 1) left (fast)
no 10.7 5.35
yes 10.5 5.25

(2, 2, 2, 2) straight (fast)
no 12.7 6.35
yes 11 5.5

5.4 Optimization between Tree Size and Performance

Stability

The performance of the POMDP based planner is closely related to the size of the search
tree. If the tree size is large (i.e. having great tree depth or width), the planner will be
more likely to find the solution closer to the optimal policy, however, generating a huge
policy tree would cost a great amount of time, and that effect real-time performance. In
intersection decision making and planning problems, real-time performance is as important
as finding the optimal policy. Therefore, finding the proper width and depth of the tree
will be important to generate proper actions and ensures real-time performance.

The test scenario is formulated as a regular intersection with numbers of traffic lanes
set as m1 = 1, m2 = 2, n1 = 1, n2 = 2 (parameters in Fig. 3.5), and a oncoming vehicle
that enters the intersection with the intention of going straight. 4 CTPs are used in this
scenario. In each case, the planner is tested for ten times with a time step of half a second,
then the average number of steps and time is recorded in Tabel 5.2, taken fewer steps means
shorter time needed to finish the left turn, which brings higher commuting efficiency.

Only the first test case is not operated in real-time, it takes 10 times the time needed
for real-time operation to generate the policy, therefore the policy is closer to the optimal
policy among all test cases. Thus, the policy generated is defined as the benchmark policy,
and the path taken is defined as the ideal path. As shown in Tabel 5.2, with a tree depth

63

 1 (none) 2 3 4 5 6 7 8
Number of CTP

14

15

16

17

18
A

ve
ra

ge
 n

um
be

r
of

 s
te

ps

Figure 5.5: Commuting efficiency with different number of CTPs

of 5, an observation accuracy ratio of 1 and the deepest tree depth among all the other
test cases, the planner takes the same path every time and the average number of steps
are 12.9 (6.45 seconds of operation time and 64.5 seconds of calculation time).

The rest of the test cases all operate in real-time. The second to the fourth test cases
(2-4 row) uses different tree depths, and as shown in the second test case, the optimal
path has not been chosen, and the average number of steps is 15. This shows that a tree
depth of 3 is insufficient for the planner to “foresee” the potential collisions in the future
and make good decisions. The third and fourth test cases take deeper tree depth and have
generated a policy that is much closer to the benchmark policy. The last 3 test case takes
a higher resolution of the observation space, thus, the width of the tree becomes larger.
As shown in the last 3 rows of Tabel 5.2, the average steps taken and the percentage of
selecting the ideal path both decreases conspicuously. Due to these results, an observation
accuracy as 1 and a tree depth of 4 or 5 would be an ideal tree size for good performance
in this test scenario. For different shapes of intersections, tree size could be tuned to meet
different personal requirements (e.g. larger intersections may require a deeper tree depth).

The complexity of the model is also a major influence on the performance of the plan-
ner. In this case, complexity is influenced by the numbers of CTPs, the more CTPs that
are used, the more candidate paths would be generated to be taken into account to find an
appropriate behavior. higher complexity means a thorough exploration of the intersection,
however, that also expands the observation space and state-space correspondingly, which
means more particles would be needed to generate a proper policy tree. The test environ-
ment is formulated as a multi-lane (m1 = 1, m2 = 2, n1 = 1, n2 = 2) regular intersection
with an oncoming vehicle going straight, different number of CTPs are tested for ten times

64

Table 5.2: Different tree sizes with according performances

Observation
Accuracy

Tree
Depth

Calculation
Time (s)/Step

Ideal
Path

Average
Steps

Average
Time (s)

1 5 5 100% 12.9 6.45
1 3 0.5 0% 15 7.5
1 4 0.5 100% 12.9 6.45
1 5 0.5 90% 13.1 6.55

1.5 4 0.5 50% 13.3 6.65
1.5 5 0.5 50% 13.4 6.7
2 4 0.5 0% 15 7.5

each. Then the results are presented as an error bar as shown in Fig. 5.5. The red dot
represents the average number of steps and the upper and lower bound of the error bar
represents the range of the number of time steps for each case.

As shown in Fig. 5.5, without the use of CTPs, the steps needed to drive through the
intersection is around 18 steps (9 seconds), when there are 2-4 CTPs used, the steps needed
is reduced to 15 (7.5 seconds). However, when more than 4 CTPs are used, the results
become unstable and the average number of steps grows accordingly. This means that
when more CTPs are used, a more complex problem is to be solved in a limited amount of
time, the tree is spanned to an inadequate size and may not always be able to find a good
solution. So in this case, 4 CTPs would be appropriate.

5.5 Summary

The simulation results show that our proposed CTP-based intersection planning and de-
cision making framework can be applied to various shapes of intersections with median
strips. The use of the CTPs enables the ego vehicle to increase the commuting efficiency
in left turns. With the application of the POMDP modeling and solving, the ego vehicle is
able to consider the uncertainties of the surrounding vehicles, and make less conservative
yet safe actions. The sufficiency of tuning the tree size and model complexity is also veri-
fied and our proposed framework had shown the ability to be adjusted and fit to different
left-turning scenarios.

65

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objective of this thesis to propose a safe and efficient intersection planning and decision-
making framework for autonomous vehicles. To achieve this goal, a generalized CTP-based
hierarchical left-turning planner and decision-maker are proposed. The model uses the
novel generalized CTP concept by observing real-life left-turning driving behaviors. Using
this CTP concept, a CTP model is developed which is applicable at intersections with
multiple traffic lanes and median strips. This model is proposed and verified through
observing naturalistic driving-behavior datasets at intersections. CTPs extracted from the
model is also a key component of the left-turning planning and decision-making framework.
The high-level candidate path generator which could adapt to different intersections uses
CTP as a critical component to generating candidate paths. With the generated candidate
left-turning paths, the left-turn problem is formulated as a partially observable Markov
decision process (POMDP) problem. Then the problem is solved using a MCTS-based
POMDP solver which generates a policy tree and updates the tree in every time step.
During this process, the POMDP solver gives an approximate solution to the problem in
real-time.

The proposed framework is first tested in several critical scenarios that collisions may
occur. The simulation results show that the framework is able to keep the preset safety
distance in all the cases, while considering the intentions of the surrounding vehicles to
avoid overly conservative actions. It is also shown that the proposed left-turning planning
and decision-making framework that uses CTPs has shown better performance than the
framework that is not using CTPs in some critical scenarios, and performs equally well in

66

rest of the cases. The generality of the framework has also been tested. It is being tested
in various different shapes of intersections that are common in daily lives. The framework
has shown that it could adapt to all the cases and perform efficient and safe performances.
The tree size of the generated policy tree in the POMDP solver is highly related with the
performance of the framework, therefore, the appropriate tree size to provide the balance
between obtaining relative good policy and stability is tested and discussed. This also
shows the ability that the framework could provide personalized modification to be able
to meet the demand for real-time performance or more optimal solutions.

The uses of CTP in the framework which is extracted from real-life driving behaviors
enable more human-like driving behaviors. This allows the surrounding vehicles to be
easier to understand the intentions of the ego vehicle which improves safety for both the
ego vehicle and other agents in the scenario. In all, using this proposed approach, the
autonomous vehicle is able to make less conservative decisions while considers the risks
of collision in real-time, which improves the commute-efficiency, and urban driving of
autonomous vehicles will be able to integrate into surrounding human-driven vehicles in a
friendly manner.

6.2 Future Work

The framework only output high-level sequences of decisions, therefore, for better implan-
tation, a low-level controller could be developed in the future since in real-life it would be
uncomfortable for passengers to encounter jerks on the ride. Also, from the perspective of
the vehicle model, though the minimum turning circle is considered and a simplified non-
holonomic vehicle model is used. For easier path tracking and action execution in real-life,
a more complex vehicle model could be used for candidate paths generation and action
selection. Finally, though the framework had shown the potential of having the previously
mentioned advantages both in theory and in simulation, real-world testing and evaluation
would still be appropriate for works needed to be done in the future.

67

References

[1] Douglas Aberdeen. A (revised) survey of approximate methods for solving partially
observable markov decision processes. Technical report, Technical report, National
ICT Australia, 2003.

[2] Milos Hauskrecht. Value-function approximations for partially observable markov
decision processes. Journal of artificial intelligence research, 13:33–94, 2000.

[3] Mark HM Winands, Yngvi Bjornsson, and Jahn-Takeshi Saito. Monte carlo tree search
in lines of action. IEEE Transactions on Computational Intelligence and AI in Games,
2(4):239–250, 2010.

[4] Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey Clausse, Maximilian Naumann,
Julius Kümmerle, Hendrik Königshof, Christoph Stiller, Arnaud de La Fortelle, and
Masayoshi Tomizuka. INTERACTION Dataset: An INTERnational, Adversarial and
Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps.
arXiv:1910.03088 [cs, eess], 2019.

[5] Alberto Broggi, Massimo Bertozzi, Alessandra Fascioli, C Guarino Lo Bianco, and Au-
relio Piazzi. The argo autonomous vehicle’s vision and control systems. International
Journal of Intelligent Control and Systems, 3(4):409–441, 1999.

[6] Hanna Kurniawati and Vinay Yadav. An online pomdp solver for uncertainty planning
in dynamic environment. In Robotics Research, pages 611–629. Springer, 2016.

[7] Yang Bai, Zhuang Jie Chong, Marcelo H Ang, and Xueshan Gao. An online approach
for intersection navigation of autonomous vehicle. In 2014 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO 2014), pages 2127–2132. IEEE, 2014.

[8] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The 2005 DARPA grand challenge:
the great robot race, volume 36. Springer, 2007.

68

[9] SAE On-Road Automated Vehicle Standards Committee et al. Taxonomy and defi-
nitions for terms related to on-road motor vehicle automated driving systems. SAE
Standard J, 3016:1–16, 2014.

[10] Mohammad Shokrolah Shirazi and Brendan Tran Morris. Looking at intersections: a
survey of intersection monitoring, behavior and safety analysis of recent studies. IEEE
Transactions on Intelligent Transportation Systems, 18(1):4–24, 2016.

[11] Yuxiao Chen, Huei Peng, and Jessy Grizzle. Obstacle avoidance for low-speed au-
tonomous vehicles with barrier function. IEEE Transactions on Control Systems
Technology, 26(1):194–206, 2017.

[12] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. Risk assessment
and planning with bidirectional reachability for autonomous driving. arXiv preprint
arXiv:1909.08059, 2019.

[13] Wei Zhan, Changliu Liu, Ching-Yao Chan, and Masayoshi Tomizuka. A non-
conservatively defensive strategy for urban autonomous driving. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC), pages 459–
464. IEEE, 2016.

[14] Xiaohui Li, Zhenping Sun, Dongpu Cao, Zhen He, and Qi Zhu. Real-time trajectory
planning for autonomous urban driving: Framework, algorithms, and verifications.
IEEE/ASME Transactions on Mechatronics, 21(2):740–753, 2015.

[15] Xin Huang, Stephen G McGill, Brian C Williams, Luke Fletcher, and Guy Rosman.
Uncertainty-aware driver trajectory prediction at urban intersections. In 2019 Inter-
national Conference on Robotics and Automation (ICRA), pages 9718–9724. IEEE,
2019.

[16] Mohammad Shokrolah Shirazi and Brendan Tran Morris. Trajectory prediction of
vehicles turning at intersections using deep neural networks. Machine Vision and
Applications, 30(6):1097–1109, 2019.

[17] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey on motion predic-
tion and risk assessment for intelligent vehicles. ROBOMECH journal, 1(1):1, 2014.

[18] Alex Zyner, Stewart Worrall, and Eduardo Nebot. Naturalistic driver intention and
path prediction using recurrent neural networks. IEEE Transactions on Intelligent
Transportation Systems, 2019.

69

[19] Derek J Phillips, Tim A Wheeler, and Mykel J Kochenderfer. Generalizable inten-
tion prediction of human drivers at intersections. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 1665–1670. IEEE, 2017.

[20] Constantin Hubmann, Nils Quetschlich, Jens Schulz, Julian Bernhard, Daniel Althoff,
and Christoph Stiller. A pomdp maneuver planner for occlusions in urban scenarios.
In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 2172–2179. IEEE, 2019.

[21] Francisca Rosique, Pedro J Navarro, Carlos Fernández, and Antonio Padilla. A sys-
tematic review of perception system and simulators for autonomous vehicles research.
Sensors, 19(3):648, 2019.

[22] Mathieu Barbier, Javier Ibañez-Guzmán, Christian Laugier, and Olivier Simonin. Val-
idation framework applied to the decision-making process for an autonomous vehicle
crossing road intersections. In Validation and Verification of Automated Systems,
pages 179–205. Springer, 2020.

[23] Lin Hu, Jian Ou, Jing Huang, Yimin Chen, and Dongpu Cao. A review of research
on traffic conflicts based on intelligent vehicles. IEEE Access, 8:24471–24483, 2020.

[24] Stefan Klingelschmitt, Florian Damerow, and Julian Eggert. Managing the complexity
of inner-city scenes: An efficient situation hypotheses selection scheme. In 2015 IEEE
intelligent vehicles symposium (IV), pages 1232–1239. IEEE, 2015.

[25] Ralf Kohlhaas, Thomas Bittner, Thomas Schamm, and J Marius Zöllner. Semantic
state space for high-level maneuver planning in structured traffic scenes. In 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), pages
1060–1065. IEEE, 2014.

[26] Lihua Zhao, Ryutaro Ichise, Tatsuya Yoshikawa, Takeshi Naito, Toshiaki Kakinami,
and Yutaka Sasaki. Ontology-based decision making on uncontrolled intersections and
narrow roads. In 2015 IEEE intelligent vehicles symposium (IV), pages 83–88. IEEE,
2015.

[27] Constantin Hubmann, Michael Aeberhard, and Christoph Stiller. A generic driving
strategy for urban environments. In 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), pages 1010–1016. IEEE, 2016.

[28] Stefan Klingelschmitt, Volker Willert, and Julian Eggert. Probabilistic, discrimina-
tive maneuver estimation in generic traffic scenes using pairwise probability coupling.

70

In 2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), pages 1269–1276. IEEE, 2016.

[29] Oren Salzman and Dan Halperin. Asymptotically near-optimal rrt for fast, high-
quality motion planning. IEEE Transactions on Robotics, 32(3):473–483, 2016.

[30] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

[31] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846–894, 2011.

[32] Yoshiaki Kuwata, Justin Teo, Sertac Karaman, Gaston Fiore, Emilio Frazzoli, and
Jonathan How. Motion planning in complex environments using closed-loop predic-
tion. In AIAA Guidance, Navigation and Control Conference and Exhibit, page 7166,
2008.

[33] Liang Ma, Jianru Xue, Kuniaki Kawabata, Jihua Zhu, Chao Ma, and Nanning Zheng.
Efficient sampling-based motion planning for on-road autonomous driving. IEEE
Transactions on Intelligent Transportation Systems, 16(4):1961–1976, 2015.

[34] Chao Chen, Markus Rickert, and Alois Knoll. Combining task and motion planning for
intersection assistance systems. In 2016 IEEE Intelligent Vehicles Symposium (IV),
pages 1242–1247. IEEE, 2016.

[35] Sangyol Yoon, Dasol Lee, Jiwon Jung, and David Hyunchul Shim. Spline-based rrt
using piecewise continuous collision-checking algorithm for car-like vehicles. Journal
of Intelligent & Robotic Systems, 90(3-4):537–549, 2018.

[36] Siddhartha S Mehta, Chau Ton, Michael J McCourt, Zhen Kan, Emily A Doucette,
and W Curtis. Human-assisted rrt for path planning in urban environments. In 2015
IEEE International Conference on Systems, Man, and Cybernetics, pages 941–946.
IEEE, 2015.

[37] Alex Zyner, Stewart Worrall, and Eduardo Nebot. A recurrent neural network solu-
tion for predicting driver intention at unsignalized intersections. IEEE Robotics and
Automation Letters, 3(3):1759–1764, 2018.

[38] Debaditya Roy, Tetsuhiro Ishizaka, C Krishna Mohan, and Atsushi Fukuda. Vehicle
trajectory prediction at intersections using interaction based generative adversarial
networks. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages
2318–2323. IEEE, 2019.

71

[39] Yonghwan Jeong, Kyongsu Yi, and Sungmin Park. Svm based intention inference and
motion planning at uncontrolled intersection. IFAC-PapersOnLine, 52(8):356–361,
2019.

[40] Yonghwan Jeong, Seonwook Kim, and Kyongsu Yi. Surround vehicle motion pre-
diction using lstm-rnn for motion planning of autonomous vehicles at multi-lane turn
intersections. IEEE Open Journal of Intelligent Transportation Systems, 1:2–14, 2020.

[41] Yijing Wang, Zhengxuan Liu, Zhiqiang Zuo, Zheng Li, Li Wang, and Xiaoyuan Luo.
Trajectory planning and safety assessment of autonomous vehicles based on motion
prediction and model predictive control. IEEE Transactions on Vehicular Technology,
68(9):8546–8556, 2019.

[42] Yadollah Rasekhipour. Prioritized obstacle avoidance in motion planning of au-
tonomous vehicles. 2017.

[43] Georg Schildbach, Matthias Soppert, and Francesco Borrelli. A collision avoidance
system at intersections using robust model predictive control. In 2016 IEEE Intelligent
Vehicles Symposium (IV), pages 233–238. IEEE, 2016.

[44] Robert Hult, Mario Zanon, Sebastien Gros, and Paolo Falcone. Optimal coordination
of automated vehicles at intersections: Theory and experiments. IEEE Transactions
on Control Systems Technology, 27(6):2510–2525, 2018.

[45] Julia Nilsson, Mattias Brännström, Jonas Fredriksson, and Erik Coelingh. Longitu-
dinal and lateral control for automated yielding maneuvers. IEEE Transactions on
Intelligent Transportation Systems, 17(5):1404–1414, 2016.

[46] Chang Liu, Seungho Lee, Scott Varnhagen, and H Eric Tseng. Path planning for
autonomous vehicles using model predictive control. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 174–179. IEEE, 2017.

[47] Changliu Liu, Wei Zhan, and Masayoshi Tomizuka. Speed profile planning in dy-
namic environments via temporal optimization. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 154–159. IEEE, 2017.

[48] Maxime Bouton, Alireza Nakhaei, Kikuo Fujimura, and Mykel J Kochenderfer. Safe
reinforcement learning with scene decomposition for navigating complex urban en-
vironments. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1469–1476.
IEEE, 2019.

72

[49] Danial Kamran, Carlos Fernandez Lopez, Martin Lauer, and Christoph Stiller. Risk-
aware high-level decisions for automated driving at occluded intersections with rein-
forcement learning. arXiv preprint arXiv:2004.04450, 2020.

[50] Tommy Tram, Anton Jansson, Robin Grönberg, Mohammad Ali, and Jonas Sjöberg.
Learning negotiating behavior between cars in intersections using deep q-learning.
In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 3169–3174. IEEE, 2018.

[51] Ali Demir and Volkan Sezer. Intersection navigation under dynamic constraints us-
ing deep reinforcement learning. In 2018 6th International Conference on Control
Engineering & Information Technology (CEIT), pages 1–5. IEEE, 2018.

[52] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fu-
jimura. Navigating occluded intersections with autonomous vehicles using deep rein-
forcement learning. In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2034–2039. IEEE, 2018.

[53] Zhiqian Qiao, Katharina Muelling, John M Dolan, Praveen Palanisamy, and Priyan-
tha Mudalige. Automatically generated curriculum based reinforcement learning for
autonomous vehicles in urban environment. In 2018 IEEE Intelligent Vehicles Sym-
posium (IV), pages 1233–1238. IEEE, 2018.

[54] Maxime Bouton, Akansel Cosgun, and Mykel J Kochenderfer. Belief state planning
for autonomously navigating urban intersections. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 825–830. IEEE, 2017.

[55] Constantin Hubmann, Marvin Becker, Daniel Althoff, David Lenz, and Christoph
Stiller. Decision making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles. In 2017 IEEE Intelligent Vehicles Symposium (IV),
pages 1671–1678. IEEE, 2017.

[56] Constantin Hubmann, Jens Schulz, Marvin Becker, Daniel Althoff, and Christoph
Stiller. Automated driving in uncertain environments: Planning with interaction and
uncertain maneuver prediction. IEEE Transactions on Intelligent Vehicles, 3(1):5–17,
2018.

[57] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic decision-
making under uncertainty for autonomous driving using continuous pomdps. In 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), pages
392–399. IEEE, 2014.

73

[58] Xiao Lin, Jiucai Zhang, Jin Shang, Yi Wang, Hongkai Yu, and Xiaoli Zhang. Deci-
sion making through occluded intersections for autonomous driving. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 2449–2455. IEEE, 2019.

[59] Richard D Smallwood and Edward J Sondik. The optimal control of partially ob-
servable markov processes over a finite horizon. Operations research, 21(5):1071–1088,
1973.

[60] Edward J Sondik. The optimal control of partially observable markov processes over
the infinite horizon: Discounted costs. Operations research, 26(2):282–304, 1978.

[61] Chelsea C White. A survey of solution techniques for the partially observed markov
decision process. Annals of Operations Research, 32(1):215–230, 1991.

[62] Mykel J Kochenderfer. Decision making under uncertainty: theory and application.
MIT press, 2015.

[63] George E Monahan. State of the art—a survey of partially observable markov decision
processes: theory, models, and algorithms. Management science, 28(1):1–16, 1982.

[64] Edward Jay Sondik. The optimal control of partially observable markov processes.
Technical report, Stanford Univ Calif Stanford Electronics Labs, 1971.

[65] Hsien-Te Cheng. Algorithms for partially observable Markov decision processes. PhD
thesis, University of British Columbia, 1988.

[66] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting opti-
mally in partially observable stochastic domains. In AAAI, volume 94, pages 1023–
1028, 1994.

[67] Nevin L Zhang and Wenju Liu. Planning in stochastic domains: Problem characteris-
tics and approximation. Technical report, Technical Report HKUST-CS96-31, Hong
Kong University of Science and Technology, 1996.

[68] Brian Sallans. Learning factored representations for partially observable markov de-
cision processes. In Advances in neural information processing systems, pages 1050–
1056, 2000.

[69] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987.

74

[70] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R Cassan-
dra. Solving pomdps by searching the space of finite policies. arXiv preprint
arXiv:1301.6720, 2013.

[71] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilis-
tic planning and infinite-horizon partially observable markov decision problems. In
AAAI/IAAI, pages 541–548, 1999.

[72] Trey Smith and Reid Simmons. Point-based pomdp algorithms: Improved analysis
and implementation. arXiv preprint arXiv:1207.1412, 2012.

[73] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning poli-
cies for partially observable environments: Scaling up. In Machine Learning Proceed-
ings 1995, pages 362–370. Elsevier, 1995.

[74] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An
anytime algorithm for pomdps. In IJCAI, volume 3, pages 1025–1032, 2003.

[75] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp solvers.
Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[76] Dimitri P Bertsekas and David A Castanon. Rollout algorithms for stochastic schedul-
ing problems. Journal of Heuristics, 5(1):89–108, 1999.

[77] Michael J Kearns, Yishay Mansour, and Andrew Y Ng. Approximate planning in
large pomdps via reusable trajectories. In Advances in Neural Information Processing
Systems, pages 1001–1007, 2000.

[78] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in
neural information processing systems, pages 2164–2172, 2010.

[79] Andreas Ten Pas. Simulation based planning for partially observable markov decision
processes with continuous observation spaces. PhD thesis, Citeseer, 2012.

[80] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater, and
Lutz Eckstein. The ind dataset: A drone dataset of naturalistic road user trajectories
at german intersections. 2019.

[81] Pasi Fränti and Sami Sieranoja. K-means properties on six clustering benchmark
datasets. Applied Intelligence, 48(12):4743–4759, 2018.

75

[82] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. Optimal tra-
jectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE
International Conference on Robotics and Automation, pages 987–993. IEEE, 2010.

[83] Huina Chen, Xiaonian Wang, and Jun Wang. A trajectory planning method consider-
ing intention-aware uncertainty for autonomous vehicles. In 2018 Chinese Automation
Congress (CAC), pages 1460–1465. IEEE, 2018.

[84] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

76

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Remaining Challenges
	Thesis Objectives
	Outline

	Literature Review
	Introduction
	Rule Based Approach
	Graph Based Approach
	Optimization Based Approach
	Reinforcement Learning Based Approach
	POMDP Based Approach
	Exact Solution
	Offline Approximate Solution
	Online Approximate Solution

	Summary

	Left-turning Human Driving Behavior Analysis
	Introduction
	Left-Turning Behavior Analysis
	Critical Turning Point Model
	CTP Model Identification and Validation
	Summary

	CTP-Based Left-Turning Planning and Decision-Making Framework
	Introduction
	A Hierarchical Planning and Decision Making Framework
	High-level Behavior-Oriented Paths Generation
	Candidate Path Selection and Speed planning

	CTP-based Candidate Paths Generation
	POMDP Problem Formulation
	State Space
	Observation Space and Observation Model
	Action Space
	Reward
	Transition Model

	Solving the Decision-Making Problem
	Representation of the Policy
	Policy Generation and Update

	Summary

	Simulation and Results
	Introduction
	Simulation under Typical Scenarios
	Adaption to Various Road Geometries
	Optimization between Tree Size and Performance Stability
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References

