
On the Techniques for Efficient Sampling, 

Uncertainty Quantification and Robust 

Control of Stochastic Multiscale Systems 
 

 

 

by 

 

 

Grigoriy Kimaev 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Chemical Engineering 

 

 

Waterloo, Ontario, Canada, 2020 

 

 

 

© Grigoriy Kimaev 2020 

  



ii 

 

Examining Committee Membership 

The following served on the Examining Committee for this thesis. The decision of the Examining 

Committee is by majority vote. 

External Examiner Vinay Prasad 

Professor 

Chemical and Materials Engineering, University of Alberta  

 

Supervisor Luis A. Ricardez-Sandoval 

Associate Professor 

Chemical Engineering, University of Waterloo  

 

Internal Members Hector Budman 

Professor 

Chemical Engineering, University of Waterloo 

 

Eric Croiset 

Chair & Professor 

Chemical Engineering, University of Waterloo 

 

Internal-external Member Christopher Nielsen 

Associate Professor 

Electrical and Computer Engineering, University of Waterloo 

  



iii 

 

Author’s Declaration 

This thesis consists of material all of which I authored or co-authored: see Statement of 

Contributions included in the thesis. This is a true copy of the thesis, including any required final 

revisions, as accepted by my examiners.  

I understand that my thesis may be made electronically available to the public. 

  



iv 

 

Statement of Contributions  

Chapters 1, 2 and 7 were written entirely by me. My supervisor, Luis A. Ricardez-Sandoval, 

provided suggestions and recommendations regarding their contents.  

The results in chapter 3 of this thesis have been published to the AIChE Journal on March 7, 2017. 

Kimaev, G., & Ricardez-Sandoval, L. A. (2017). “A comparison of efficient uncertainty 

quantification techniques for stochastic multiscale systems.” AIChE Journal, 63(8), 3361–3373. 

https://doi.org/10.1002/aic.15702 That paper was written entirely by myself and edited by my 

supervisor.  

The results in chapter 4 of this thesis have been published to the AIChE Journal on December 4, 

2017. Kimaev, G., & Ricardez-Sandoval, L. A. (2018). “Multilevel Monte Carlo applied to 

chemical engineering systems subject to uncertainty.” AIChE Journal, 64(5), 1651–1661. 

https://doi.org/10.1002/aic.16045 That paper was written entirely by myself and edited by my 

supervisor.  

The results in section 5.1 of this thesis have been published to the Chemical Engineering Research 

and Design journal on October 13, 2018. Kimaev, G., & Ricardez-Sandoval, L. A. (2018). 

“Multilevel Monte Carlo for noise estimation in stochastic multiscale systems.” Chemical 

Engineering Research and Design, 140, 33–43. https://doi.org/10.1016/j.cherd.2018.10.006 That 

paper was written entirely by myself and edited by my supervisor.  

The results in sections 5.2 – 5.4 of this thesis have been published to the AIChE Journal on May 

8, 2020. Kimaev, G., Chaffart, D., & Ricardez-Sandoval, L. A. (2020). “Multilevel Monte Carlo 

applied for uncertainty quantification in stochastic multiscale systems.” AIChE Journal, 66(8), 

e16262. https://doi.org/10.1002/aic.16262 My fellow PhD Candidate Donovan Chaffart provided 

https://doi.org/10.1002/aic.15702
https://doi.org/10.1002/aic.16045
https://doi.org/10.1016/j.cherd.2018.10.006
https://doi.org/10.1002/aic.16262


v 

 

the description of the gap-tooth catalytic pore reactor model (which can be found in section 5.4 of 

this thesis) and its implementation in MATLAB® code. The rest of the paper was written entirely 

by myself and edited by my supervisor. This contribution was identified by Dr. Jinfeng Liu 

(University of Alberta) as the Best Presentation in the session “Advances in Computational 

Methods and Numerical Analysis” of the 2018 AIChE Annual Meeting in Pittsburgh.  

The results in section 6.3 of this thesis have been published to the Chemical Engineering Science 

journal on July 19, 2019. Kimaev, G., & Ricardez-Sandoval, L. A. (2019). “Nonlinear model 

predictive control of a multiscale thin film deposition process using Artificial Neural Networks.” 

Chemical Engineering Science, 207, 1230–1245. https://doi.org/10.1016/j.ces.2019.07.044 That 

paper was written entirely by myself and edited by my supervisor.  

The results in section 6.4 of this thesis have been published to the Chemical Engineering Research 

and Design journal on June 25, 2020. Kimaev, G., & Ricardez-Sandoval, L. A. (2020). “Artificial 

Neural Networks for dynamic optimization of stochastic multiscale systems subject to 

uncertainty.” Chemical Engineering Research and Design, 161, 11–25. 

https://doi.org/10.1016/j.cherd.2020.06.017 That paper was written entirely by myself and edited 

by my supervisor.  

The results in section 6.5 of this thesis have been published to the Journal of Physical Chemistry 

C virtual special issue “Machine Learning in Physical Chemistry” on July 30, 2020. Kimaev, G., 

& Ricardez-Sandoval, L. A. (2020). “Artificial Neural Network discrimination for parameter 

estimation and optimal product design of thin films manufactured by chemical vapour deposition.” 

http://dx.doi.org/10.1021/acs.jpcc.0c05250 That paper was written entirely by myself and edited 

by my supervisor.   

https://doi.org/10.1016/j.ces.2019.07.044
https://doi.org/10.1016/j.cherd.2020.06.017
http://dx.doi.org/10.1021/acs.jpcc.0c05250


vi 

 

Abstract 

In order to better understand and leverage natural phenomena to design materials and devices (e.g. 

biomedical coatings, catalytic reactors, thin conductive films for microprocessors, etc.), stochastic 

multiscale models have been developed that explicitly model the interactions and feedbacks 

between the electronic, atomistic/molecular, mesoscopic and macroscopic scales. These models 

attempt to use the accurate results from the fine scales to inform industrially relevant domain sizes 

and thereby improve product quality through optimal control actions during industrial 

manufacturing. However, the presence of stochastic calculations increases the computational cost 

of such modeling approaches and makes their direct application in uncertainty quantification, 

optimization and online control challenging. Uncertainty cannot be ignored from simulations, 

otherwise there will be model-plant mismatch and loss in performance. The added computational 

intensity necessitates the development of more efficient computational methods that can leverage 

the accurate predictions of stochastic multiscale models in the industrial setting where accuracy, 

efficiency and speed are of utmost importance.  

A lot of research has been done in the area of stochastic multiscale models over the past few 

decades, but some gaps in knowledge remain. For instance, the performance of traditional 

uncertainty quantification techniques such as power series (PSE) and polynomial chaos expansions 

(PCE) has not been compared in the context of stochastic multiscale systems. Furthermore, a novel 

sampling technique called Multilevel Monte Carlo (MLMC) sampling emerged from the field of 

computational finance with the aim of preserving accuracy of estimation of model observables 

while decreasing the required computational cost. However, its applications in the field of 

chemical engineering and in particular for stochastic multiscale systems remain limited. Also, the 

advancements in computing power caused the usefulness of machine learning methods such as 



vii 

 

Artificial Neural Networks (ANNs) to increase. Because of their flexibility, accuracy and 

computational efficiency, ANNs are experiencing a resurgence of research interest, but their 

application for stochastic multiscale chemical engineering systems are still limited at the moment.   

This thesis aims to fill the identified gaps in knowledge. The results of the conducted research 

indicate that PCE can be more computationally efficient and accurate than PSE for stochastic 

multiscale systems, but it may be vulnerable to the effects of stochastic noise. MLMC sampling 

provides an attractive advantage over the heuristic methods for uncertainty propagation in 

stochastic multiscale systems because it allows to estimate the level of noise in the observables. 

However, the stochastic noise imposes a limit on the maximum achievable MLMC accuracy, 

which was not observed for continuous systems that were originally used in MLMC development. 

ANNs appear to be a very promising method for online model predictive control of stochastic 

multiscale systems because of their computational efficiency, accuracy and robustness to large 

disturbances not seen in the training data.  
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Chapter 1: Motivation 

Numerous processes in systems biology, fluid-surface interactions, materials manufacturing and 

chemical engineering are inherently multiscale. Some examples of processes that consist of events 

occurring at several temporal and spatial scales are: heterogeneous catalysis, semiconductor 

doping, thin film production for integrated circuits, manufacturing of micro-electro-mechanical 

systems, photovoltaic cells and biomedical devices, as well as protein crystallization for 

pharmaceuticals.1–10 Furthermore, all of these processes, and many others, are subject to 

uncertainty.  

While the properties (e.g. lattice structure, roughness, composition, etc.) of the products of the 

processes mentioned above often directly depend on the microscale phenomena, macroscale 

quantities (e.g. pressure, concentration, temperature) strongly influence the occurrence and 

behaviour of the microscale events. For efficient mass production, the macroscale variables are 

often used for process optimization and control.11 The behaviour of macroscale quantities can be 

modelled using the well-known continuum approach and closed-form expressions. However, since 

bidirectional interactions between the macro and molecular scales exist,12,13 multiscale modelling 

techniques were developed in order to enhance model prediction accuracy (i.e. reduce model-plant 

mismatch) and, therefore, improve the product quality and the overall efficiency of the processes 

while accounting for their inherent multiscale nature.1,3,4,13–20  

The coupling of highly different temporal and spatial scales can make the multiscale models stiff 

(i.e. highly sensitive to small perturbations). Furthermore, the explicit modelling of microscale 

phenomena introduces several challenges. Simulations of the molecular scale demand the 

implementation of techniques that model stochastic phenomena (e.g. Molecular Dynamics, 
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Metropolis Monte Carlo, kinetic Monte Carlo, etc.), since the traditional closed-form equations of 

continuum modelling cannot explicitly capture the phenomena at small length and time scales such 

as lateral interactions and many-body effects.1,13,21 Consequently, the random noise associated with 

stochastic modelling creates variability in the observables of stochastic multiscale models. 

Stochastic modelling techniques of the molecular scale phenomena also tend to be quite 

computationally intensive. As a result, the computational complexity associated with sampling, 

uncertainty quantification, optimization and control of such models grows and often inhibits their 

applicability to time-sensitive scenarios such as online control under uncertainty. 

To overcome the computational challenges and take advantage of the potential benefits offered by 

stochastic multiscale models for process and product design, many studies have been published 

that examine efficient uncertainty propagation, optimization and model predictive control 

techniques for such systems. Some of the multiscale systems under consideration included 

epitaxial thin film growth, plasma-enhanced chemical vapour deposition, protein crystallization, 

heterogeneous catalysis, wood fiber production and flows through porous media.4–8,18,22–37 Power 

Series and Polynomial Chaos Expansions (PSE and PCE, respectively) have been used for efficient 

sampling, uncertainty quantification and robust optimization of stochastic multiscale 

models.9,35,37–42 Furthermore, reduced order models, multidomain modelling, parallel computation 

and data-driven models such as the machine learning technique called Artificial Neural Networks 

(ANNs) have been applied for the control of stochastic multiscale systems.17,32,33,35,43–48  

However, to the extent of the author’s knowledge, the performance of PSE and PCE techniques 

has not been compared in the context of  uncertainty propagation in a stochastic multiscale model 

until the work in this thesis has been performed. Also, the current applications of an advanced 

sampling technique called Multilevel Monte Carlo (MLMC) appear to be limited in the field of 
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chemical engineering to uncertainty quantification of porous media flows, oil reservoir simulations 

and enhanced oil recovery.49–53 The performance of MLMC, PSE and PCE techniques has not been 

compared for traditional chemical engineering systems. Moreover, MLMC has not been applied 

to stochastic multiscale models. In addition, the applications of ANNs to stochastic multiscale 

systems and product design under uncertainty remain limited in number.31,46–48  

1.1: Research Objectives 

The purpose of this thesis is to address the gaps in the literature by presenting the work performed 

in the areas of sampling, noise estimation and uncertainty quantification of stochastic multiscale 

systems, as well as their efficient online control under nominal conditions and in the presence of 

uncertainty using data-driven models.  

The following research objectives are pursued in this thesis in order to address the gaps in 

knowledge:  

• Investigate the effect of random noise associated with the multiscale stochastic systems on 

the performance of common uncertainty quantification techniques, such as PSE and PCE.  

• Apply MLMC to estimate the expected values of traditional chemical engineering systems 

(e.g. wastewater treatment plant, distillation column), assess the variability of the estimates 

and compare MLMC performance to PSE and PCE.  

• Apply MLMC to stochastic multiscale systems (e.g. chemical vapour deposition chamber, 

catalytic pore reactor) to estimate the variability in the estimated expected values and use 

MLMC to improve uncertainty quantification in stochastic multiscale systems (e.g. via 

PCE).  
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• Develop computationally efficient and robust ANN models to predict the responses of 

stochastic multiscale models to a wide range of perturbations in the manipulated variables, 

under nominal conditions and in the presence of parametric uncertainty. Conduct model 

predictive control of the system by completely replacing the stochastic multiscale model 

with the ANNs.  

• Use ANNs to account for time-invariant parametric uncertainty with a variety of 

techniques. First,  model the statistical moments of the observables and conduct open-loop 

dynamic optimization. Next, use parameter estimation to discriminate between multiple 

plausible ANNs and conduct closed-loop control under uncertainty using the best-fit ANN.  

1.2: Structure of the Thesis 

This thesis is organized as follows: 

Chapter 2 presents a literature review of the current applications of uncertainty quantification 

techniques, multilevel Monte Carlo sampling, and machine learning to the field of chemical 

engineering in general and specifically to stochastic multiscale systems. The gaps in knowledge 

that motivate the research presented in this thesis are identified and discussed.  

Chapter 3 compares the performance of traditional methods, i.e. power series and polynomial 

chaos expansions (PSE and PCE, respectively), in uncertainty quantification of a stochastic 

multiscale system subject to single- and multi-parameter uncertainty. The effect of stochastic noise 

is highlighted and discussed. The work in Chapter 3 has been partially presented at the 66th 

Canadian Chemical Engineering Conference in 2016 and has been published in the AIChE 

Journal.54 
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Chapter 4 applies multilevel Monte Carlo sampling (MLMC) for the estimation of expected values 

in standard chemical engineering systems subject to parametric uncertainty. A tutorial example 

explains how the MLMC method samples a continuous system subject to time-invariant 

uncertainty. Following the tutorial, the performance of MLMC is compared to PSE, PCE and 

brute-force Monte Carlo sampling (MC) for three traditional chemical engineering systems. This 

work has been published in the AIChE Journal.55 

Chapter 5 extends the MLMC method to noise estimation in the observables of stochastic 

multiscale systems. The results of noise estimation are subsequently used to improve uncertainty 

quantification via Polynomial Chaos Expansions (PCE). The nuances involved in the adaptation 

of the MLMC method to stochastic multiscale systems are presented. The performance of MLMC 

in these systems is qualitatively compared to the results of Chapter 4. This work has been partially 

presented at the 2018 and 2019 AIChE Annual Meetings and published in the Chemical 

Engineering Research and Design journal56 and the AIChE Journal.57  

Chapter 6 switches the scope of the thesis from sampling and uncertainty quantification of 

stochastic multiscale systems to their efficient control. Artificial Neural Networks (ANNs) are 

used to capture and predict the dynamic responses of a stochastic multiscale system to 

perturbations in the manipulated variables. Furthermore, the chapter presents two approaches for 

applying ANNs for nonlinear model predictive control (NMPC) of stochastic multiscale systems 

under parametric uncertainty. ANNs were used to model the statistical moments of system 

observables and parameter estimation was used to identify a best-fit ANN for closed-loop NMPC. 

This work has been partially presented at the 68th Canadian Chemical Engineering Conference in 

2018 as well as the 2019 AIChE Annual Meeting. This work has been published in the Chemical 

Engineering Science journal,58 accepted for publication in the Chemical Engineering Research and 
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Design journal (acceptance number CHERD-D-20-00647R1) and submitted to the Journal of 

Physical Chemistry C (submission number jp-2020-05250w).  

Chapter 7 summarizes the key outcomes and contributions from the studies performed in Chapters 

3-6 and outlines the recommendations for future research.  
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Chapter 2: Literature Review 

Over the past decades, many studies have been published examining different stochastic multiscale 

systems in chemical engineering as well as various sophisticated mathematical models developed 

to explain and predict the behaviour of those systems. Furthermore, numerous techniques have 

been devised for efficient sampling, uncertainty quantification and model predictive control of 

these systems and models. In addition, Multilevel Monte Carlo sampling and machine learning 

methods have also been applied to the field of chemical engineering over the past years. However, 

a review of the literature found some gaps in knowledge that serve as motivation for the research 

presented in this thesis. This chapter presents the conducted literature review and discusses the 

identified knowledge gaps.  

2.1 Stochastic Multiscale Processes  

Numerous processes in systems biology, fluid-surface interactions, materials manufacturing and 

chemical engineering are comprised of interacting phenomena which span several temporal and 

spatial scales, for example: semiconductor doping, protein binding to cell membrane, the 

production of thin films by ion beam sputtering, thermal atomic layer deposition or 

chemical/physical vapour deposition for optical devices, biomedical coatings, solar cells, 

integrated circuits and micro-electro-mechanical systems (MEMS), as well as heterogeneous 

catalysis with interactions between a fluid phase and catalyst surface, and continuous and plug-

flow protein crystallization in pharmaceutical applications.1–8,26,27,37,59–62  

While the phenomena and structure at the microscale directly affect the final product’s properties 

and performance, in the industrial mass-production setting usually only the macroscale quantities 

(e.g. inlet concentration(s), inlet flow rate(s), temperature, etc.) are available for the manipulation 
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of multiscale processes to ensure that the product meets design specifications.1,2,11,12 Consequently, 

stochastic multiscale models have been developed to gain insight on and enable the control of the 

bidirectional interactions between different spatial and temporal scales and identify the underlying 

mechanisms that impact process performance.3,4,12,13,15–18,24,28  

Several approaches exist for the implementation of stochastic multiscale models. While the 

techniques and implementations can differ widely, the ultimate goal of using these models is to 

expedite the product development cycle, improve product quality and lessen the cost associated 

with the design of materials. Such models consist of coupled simulations of multiple temporal and 

spatial scales and provide sufficiently accurate results at a high computational cost. For example, 

although the simulations of individual particles over industrially relevant domain sizes are 

computationally infeasible because the quantity of particles in the domain of interest can approach 

or exceed Avogadro’s number, in multiscale simulations the electronic structure of atoms can be 

used to inform the intermolecular potential calculations, which in turn can improve the 

understanding of bulk behaviour.21 Thus, sufficiently accurate results can be obtained at a high but 

feasible computational cost.  

One common approach to classifying simulation scales is by the temporal and spatial domains, 

e.g. the frequency of events and the length scales over which they occur.16,21,63 Using this approach, 

the scales can be classified16,21,64 as electronic (where the events occur with frequencies shorter 

than 10-12 s over distances less than 10-9 m), atomistic (where the event frequency range is 10-12–

10-10 s and spatial domains are 10-10–10-8 m long), mesoscopic (10-10–10-2 s and 10-9–10-2 m) and 

macroscopic (where the frequencies are longer than 10-2 s and distances exceed 10-6 m). It should 

be noted that these classifications are approximate and that the specified temporal and spatial 
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ranges overlap between subsequent scales. These overlaps create “handshaking” regions that 

enable multiscale simulation techniques to exchange information between scales.16,21  

Different computational approaches must be used to capture the phenomena occurring at different 

scales. At the electronic scales, quantum mechanics calculations and density functional theory 

(DFT) are used to calculate the quantities of interest (e.g. reaction activation energies).65,66 At the 

atomistic scale, a realistic depiction of the events requires the usage of molecular dynamics (MD) 

or non-closed-form expressions such as Monte Carlo (MC), kinetic Monte Carlo (kMC) or 

simulated annealing to properly capture the random (stochastic) behaviour of individual atoms and 

molecules.64,67–69 Mesoscale calculations can rely on dissipative particle dynamics, coarse-grained 

MD, MC or kMC, or Brownian dynamics, to capture the average behaviour of aggregates of 

individual particles (hence the name “coarse-grained”).68,70  

On the other hand, the continuum assumption is valid at the macroscale, so the corresponding 

calculations tend to use the well-understood deterministic models based on classical mechanics 

and the Navier-Stokes equations of motion.71 Continuum calculations rely on partial differential 

equations (PDEs) to describe the behaviour of matter and are solved using Finite Element Analysis, 

Finite Differences, or the Method of Lines. Alternatively, simplifying assumptions may be used to 

reduce PDEs to ordinary differential equations (ODEs) to further diminish the computational 

complexity.  

Once the simulation scales have been identified, a method of exchanging information between 

them needs to be devised. One approach is to do sequential modeling that does not consider any 

feedbacks that may be present between the scales.21 In this scenario, usually the finest scale is 

solved first, and then the information is provided to calculations at the larger scale. For example, 

the reaction activation energies can be approximated using DFT.59,64,65 Then, the parameter values 
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can be used to simulate the reactions on a catalytic surface using kMC.59 Alternatively, different 

scales can be coupled through a boundary condition or an initial condition, as in the case where a 

pharmaceutical drug first diffuses through ingested nanovesicles and then enters the body’s 

bloodstream without being reabsorbed by the nanoparticles. In this scenario, the smaller scale 

(nanoparticle) delivers the drug to the larger scale (bloodstream) over some time period until a 

steady state is reached due to the depletion of nanoparticles.72  

However, since feedbacks between different scales frequently occur in nature, computational 

models that consider these interactions are also necessary.16,21 One method of developing such a 

simulation is to couple the subdomains through the “handshaking” region where the subdomains 

overlap, as in the case of a gas diffusing from bulk towards a substrate in a stagnation flow 

reactor.15 PDEs can be used to describe the macroscale gas behaviour, while kMC or MD can be 

employed to model the microscale phenomena (adsorption, desorption, migration, reaction, etc.). 

Then, the fine scale can be solved for one timestep, the boundary condition and the macroscale 

solution can be updated, and the fine scale simulation can be repeated with the data from the 

updated macroscale solution.13,15,21  

If it can be assumed that the boundary condition is spatially invariant (e.g. stagnation flow reactor), 

only one microscale simulation domain is sufficient.13,15 However, if this assumption does not 

hold, as in the cases of spatial gradients in the “handshaking” region due to the absence of a gas 

distributor in a deposition chamber or due to fluid diffusion through a thick membrane or a tubular 

catalytic reactor, a multigrid approach would be necessary.21,37,73–75 In such a simulation, the 

governing equations at the continuum scale would be discretized over the simulation domain and 

microscale simulations (i.e. “grids”) would be conducted at the appropriate discretization points.  



11 
 

The purpose of the aforementioned multiscale approaches is to leverage highly accurate fine scale 

simulations to improve the accuracy of device-relevant domain sizes. In addition to using the 

overlapping subdomains, a different multiscale simulation paradigm exists. Rather than create 

interfaces between disparate spatial and temporal scales, coarse-graining can be used to 

approximate the average behaviour of conglomerations of individual atoms/molecules and access 

larger spatial domains using this methodology.21,76,77 Also, following this paradigm, coarse-time-

stepping (accelerated time advancement) and net-event kMC can be employed to access longer 

temporal scales.25,59,77 However, careful selection of the coarse timestep is required to ensure 

numerical stability of the calculation.78–84  

Since in stochastic multiscale models the non-closed-form expressions are used to “inform” the 

calculations at the continuum scale, the observables produced by stochastic multiscale models can 

exhibit the noise that has been propagated from the discrete simulations. Furthermore, while the 

results of such models can be accurate and realistic, they often cannot be used for optimization and 

online control due to their high computational intensity, which can be mainly attributed to 

evaluating the non-closed-form expressions. These challenges motivate the development of 

efficient uncertainty propagation, optimization and control strategies to ensure the industrial 

relevance of stochastic multiscale models. 

Chemical Vapour Deposition (CVD), a unit operation of chemical engineering, is an example of a 

stochastic multiscale process that has significant industrial importance.85 It is widely used for 

manufacturing smooth thin conductive films needed for semiconductor manufacturing.61 This 

process is typically represented by multiscale models.16 It is necessary to ensure that film 

roughness is within specified constraints, since high roughness will render the thin film unsuitable 

for integration in electronic devices applications by adversely affecting its electrical 
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conductivity.86–90 Thus, the bulk property of conductivity is directly affected by the nanoscale 

structure of the film. Therefore, it is critical to control the key factors in film formation (e.g. inlet 

gas concentration, substrate temperature61) to keep film roughness within the specifications despite 

various parametric uncertainties or model structure errors (e.g. uncertain activation energies for 

adsorption, desorption and migration of atoms, or missing/incorrect equations for the underlying 

mechanisms). Ignoring the uncertainty in process parameters can lead to significant variability in 

product quality.12,21  

2.2 Uncertainty Propagation 

Uncertainty is the lack of deterministic knowledge about the values of process parameters, and it 

is present in every process. Uncertainty arises from two major sources: variability inherent to the 

underlying natural phenomena (“aleatory” uncertainty) and insufficient knowledge about them 

(“epistemic” uncertainty).91,92 Further research into the underlying chemical and physical 

phenomena can reduce epistemic uncertainty through the development of more accurate 

models.91,93 Alternatively, it can be assumed that accounting for parametric uncertainty can 

compensate for the errors in model equations.  

However, unlike epistemic uncertainty, aleatory uncertainty cannot be lessened. Parameter 

uncertainty can be present at any scale, which motivates the integration of uncertainty 

quantification in multiscale modelling. Simulations of molecular-scale phenomena demand the 

implementation of stochastic modelling techniques, since the traditional closed-form equations of 

continuum modelling cannot explicitly capture the phenomena at small length and time scales such 

as lateral interactions and many body effects in heterogeneous catalytic systems.1,13,21 While 

stochastic modelling of nanoscale phenomena takes molecular events into account more accurately 

and thereby removes epistemic uncertainty to some degree, the lack of closed-form expressions 
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adds an additional level of computational expense, simulation complexity, and introduces 

variability among the results of different simulation runs. The noise in these stochastic multiscale 

systems can be decreased by averaging the results of multiple simulations35 at the expense of 

higher computational costs.  

Probabilistic techniques are used to draw reliable conclusions from data that includes uncertainty.92 

Typically, these techniques associate probabilistic bounds or probability distribution functions 

with the uncertain variables. Since it is not possible to know exactly which numerical value of the 

uncertain parameter will be manifested in a particular experiment or simulation run, uncertainty 

must be propagated through the system – the experimental results or computer model calculations 

have to be obtained using as many uncertain parameter realisations as possible. Consequently, the 

impact of parameter uncertainty on the response variables is estimated in the form of 

approximating their bounds or their probability distribution functions, thereby quantifying the 

uncertainty.92,94 This estimation establishes an appropriate degree of confidence in the results and 

conclusions drawn from the analysis. Therefore, uncertainty quantification can aid in ensuring 

compliance with safety and environmental regulations.91 It is also highly beneficial to product 

quality improvement and the design of processes that need to remain insensitive (robust) to 

uncertainty.  

Uncertainty propagation requires either multiple experiments or numerous simulation runs and is 

therefore the most resource-intensive stage in the uncertainty quantification process. If manifold 

experiments are conducted during uncertainty analysis, both temporal and economic expenditures 

are incurred. While computer simulations are available to lessen these expenses, they can still be 

very time-consuming. Monte Carlo (MC) sampling is a technique that can be used to randomly 

select the uncertain parameter values for simulations.94,95 However, its implementation for large-
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scale applications is computationally expensive, which motivates the development of more 

efficient techniques. For example, because of its time-sensitive nature, online process control in 

the presence of uncertainty would benefit from efficient uncertainty propagation methods.38 

Power Series Expansion (PSE)96–98 and Polynomial Chaos Expansion (PCE)92,94,99–101 are two 

commonly used mathematical techniques for efficient and fast uncertainty quantification in 

chemical engineering applications35,97,98 The techniques have also been applied in other disciplines 

as well, including but not limited to mechanics99 and biomechanics102. The techniques estimate the 

observables using different approaches: PSE uses the sensitivities of response variables with 

respect to uncertain parameters, while PCE relies on an orthogonal basis set of polynomials (each 

scaled by an appropriate expansion coefficient), to derive low-order closed-form expressions that 

establish a direct relationship between the uncertain parameter(s) and an observable (output) 

variable of interest. Since the expansions consist of simple mathematical operations, the 

uncertainty propagation process can be implemented very rapidly once the sensitivities or the 

expansion coefficients have been obtained.  

The predictive capabilities of PSE22,34,35,37 and PCE103–107 have been studied individually in 

different contexts. The performance of PSE and PCE has been compared for a simulation of a 

nonlinear dynamical system (batch crystallization process, represented by continuum equations) 

in the presence of parameter uncertainties38; that study suggested that 2nd order PCE produced 

highly accurate approximations of the non-Gaussian probability distribution function of the 

observable. However, it appears that this is the only comparison of PSE and PCE currently 

available in the literature. This gap in the literature motivated the development of the work 

presented in Chapter 3 of this thesis, i.e. the comparison of PSE and PCE for uncertainty 

quantification in stochastic multiscale systems.  
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2.2.1 Polynomial Chaos Expansions 

Polynomial Chaos Expansion (PCE)92 provides a closed-form expression that relates the 

observable variable to one or multiple uncertain parameters. PCE consists of an orthogonal basis 

set of polynomials that are functions of the uncertain parameters.94,100,101 The choice of basis 

depends on the probability distributions of the uncertain parameters,94 which have to be known (or 

assumed) a priori. While the polynomials in the basis are known, the expansion coefficients are 

not, and need to be estimated. Once the coefficients are obtained, the PCE expression can be used 

for fast uncertainty propagation. A general representation of the PCE is of the form: 

 𝒚𝑃𝐶𝐸 = 𝛽0Ψ0 + ∑ 𝛽𝑖Ψ1(𝝃𝒊)

∞

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗Ψ2(𝝃𝒊, 𝝃𝒋)

𝑖

𝑗=1

∞

𝑖=1

+ ∑ ∑ ∑ 𝛽𝑖𝑗𝑘Ψ3(𝝃𝒊, 𝝃𝒋, 𝝃𝒌)

𝑗

𝑘=1

𝑖

𝑗=1

∞

𝑖=1

+ . .. (1) 

where 𝛽𝑖 are the unknown expansion coefficients and Ψ(𝝃) are the polynomials in the orthogonal 

basis.92 The set of random parameters is represented by 𝝃, with 𝝃𝜖ℝ𝑛𝜉 . The subscripts of the 𝛽𝑖 

coefficients do not have a particular significance, other than to uniquely identify the coefficient. 

The random parameters 𝝃 are related to the set of uncertain parameters 𝒖, where the latter represent 

physically significant magnitudes and units. In fact, 𝝃 are the transformed parameters 𝒖. For 

example, if the uncertain parameter is normally distributed with mean 𝜇 and standard deviation 𝜎, 

it would be transformed to have the standard normal distribution, 𝒖 ∼ 𝒩(𝜇, 𝜎2) → 𝝃 ∼ 𝒩(0,1). 

Since an orthogonal basis is used, the random parameters 𝝃 are required to be uncorrelated in the 

PCE expansion. If the distributions of 𝒖 (and consequently, 𝝃) are correlated, then after scaling the 

distributions to standard form 𝝃 ∼ 𝒩(0,1) it is necessary to obtain the Cholesky factor of the 

correlation matrix. The inverse of the Cholesky factor must then be applied to the scaled 

distributions to obtain uncorrelated random parameter distributions. A more thorough discussion 
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on such transformations for normal distributions and other types of distributions can be found 

elsewhere.92 

The calculation of 𝛽𝑖 is the focal point of constructing the expansion. One approach to calculating 

these coefficients is the stochastic Galerkin method,94,100 which is an analytical (intrusive) method. 

This approach has been applied successfully to systems governed by stochastic nonlinear ODEs 

and PDEs.100 However, in all cases closed-form equations were available for the application of 

stochastic Galerkin method, rendering it inadequate for stochastic multiscale simulations that do 

not have closed-form expressions in at least one of the length and time scales. Numerical (non-

intrusive) methods can thus be used to calculate the expansion coefficients for PCE. The standard 

techniques are Least Squares (LSQ) regression and Non-Intrusive Spectral Projection (NISP). The 

former method employs the conventional linear algebra techniques which aim to find the model 

coefficients 𝛽𝑖 by minimizing the least-squares errors.38,92 On the other hand, the NISP method 

leverages the orthogonality property of the basis polynomials Ψ(𝝃) for calculating the expansion 

coefficients 𝛽𝑖. The application of the orthogonality property to both sides of the PCE expression 

allows to isolate each expansion coefficient;38 the generalized formulation to compute 𝑖th 

expansion coefficient 𝛽𝑖 is given by: 

 𝛽𝑙 =
∫ 𝒚(𝝃)Ψ(𝝃)𝑤(𝝃)𝑑𝝃

Ω

∫ (Ψ(𝝃))
2

Ω
𝑤(𝝃)𝑑𝝃

 (2) 

where Ω refers to the support range92 of the weighting function 𝑤. The type of orthogonal basis 

dictates the choice of the weighting function. The types of bases and the appropriate weighting 

functions have been tabulated previously.92,100 The values of the uncertain parameters used to 

obtain the observable variable 𝒚 from experiment or simulation must correspond to the roots of a 

polynomial from the orthogonal basis. Note that the choice of the polynomial and the roots can 
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influence the accuracy of the PCE NISP method.38 The dimensionality of the integration in 

equation ((2)) is equal to the number of uncertain parameters involved in the 𝑖th term of the PCE 

expression. The integrals can be approximated using numerical methods such as Gaussian 

quadrature or Radau quadrature.108 

When applied to stochastic systems, the calculation of PCE coefficients separates the random and 

deterministic components of the contributions of the uncertain parameters to the value of the 

estimated observable.107 In addition, the PCE coefficients can be used to calculate variance 

analytically for any expansion order.100 Also, the use of an orthogonal polynomial basis allows to 

calculate the expansion coefficients at a low computational cost by the NISP method. This is due 

to the fact that NISP allows to drastically reduce the number of realisations of the uncertain 

parameters by limiting them to the number of roots of the polynomial chosen from the basis. 

However, the very nature of PCE imposes a limitation, since the probability distributions of the 

uncertain parameters have to be known a priori100 in order to select the proper polynomial basis. 

In addition, truncating the expansion up to a finite order introduces an error in the estimations105 

and the computational cost associated with constructing PCE rises as the number of uncertain 

parameters increases. Nevertheless, the last two drawbacks apply to any expansion-based approach 

(including the Power Series Expansion). 

2.2.2 Power Series Expansion 

Power Series Expansion (PSE)96,97 utilizes the sensitivities of the observable variable with respect 

to the uncertain parameters37 to construct closed-form expressions that establish a direct 

relationship between the uncertain parameters and the observable. A general expression for PSE 

takes the following form: 
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 𝒚𝑃𝑆𝐸 = 𝒚(𝜇𝑢1
… 𝜇𝑢∞

) + ∑
𝜕𝒚

𝜕𝑢𝑖
(𝑢𝑖 − 𝜇𝑢𝑖

)

∞

𝑖=1

+ ∑ ∑
1

2!

𝜕2𝒚

𝜕𝑢𝑖𝜕𝑢𝑗
(𝑢𝑖 − 𝜇𝑢𝑖

) (𝑢𝑗 − 𝜇𝑢𝑗
)

∞

𝑗=𝑖

∞

𝑖=1

+ . .. (3) 

where 𝜇𝒖 denote the nominal values of various uncertain parameters 𝒖. The sensitivities of the 

observable with respect to the uncertain parameters can be calculated using analytical or numerical 

differentiation techniques (e.g. finite differences). 

The presence of covariance between the uncertain parameters does not add an extra step in the 

derivation of PSE (which is not the case for PCE). Thus, PSE is simple and intuitive to implement. 

When calculating the sensitivities for stochastic systems, the perturbations of the uncertain 

parameters have to be sufficiently large in order to isolate (or, reduce) the effect of stochastic noise 

from the observable’s sensitivity to changes in the uncertain parameters.109 That is, the sampled 

values of the uncertain parameters should be selected such that they reflect an actual change in the 

observables. Therefore, for systems with stochastic noise, it is possible to improve PSE accuracy 

by increasing the size of the perturbations while keeping the PSE order fixed. However, the 

perturbation size is limited by the feasible operating range of the uncertain parameters. 

Consequently, PSE performance may suffer when applied to systems with large variance of the 

uncertain parameters. Moreover, if the variance of the uncertain parameters is not known a priori, 

several iterations of the PSE approximations may be required to determine the perturbation size 

that reduces the stochastic noise. An additional drawback of the PSE approach is that the analytical 

calculation of variance is only possible for the 1st order expansion.38 The calculation of the output’s 

variance for higher-order PSE expansions require the simulation of the PSE model. Furthermore, 

PSE may fall short of yielding accurate results in systems where the relationship between the 

uncertain parameters and the observable is highly nonlinear. 
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PSE and PCE are not the only computationally efficient methods of uncertainty quantification in 

existence. More efficient selection of uncertain parameter realisations can be achieved using Latin 

hypercube sampling42,110 and response surface methodology.41,111,112 A recently developed 

technique called Multilevel Monte Carlo (MLMC) sampling113 has shown the ability to provide 

accurate estimations at computational costs that can be several orders of magnitude less than 

standard MC sampling. The combination of improved speed and high accuracy motivates its 

application to chemical engineering systems that are subject to uncertainty.  

2.2.3 Multilevel Monte Carlo 

Multilevel Monte Carlo (MLMC) sampling method was originally developed in the field of 

computational finance113 for calculating an observable’s expected value at a reduced 

computational cost by using samples of different accuracy. Many low-cost low-accuracy samples 

are used as control estimates, and the expected value is refined with a progressively diminishing 

number of higher-cost higher-accuracy calculations. The accuracy is controlled by refining the 

discretization of the integration domain (which is oftentimes the time domain). The general 

expression for calculating the expected value in the observables using MLMC sampling is as 

follows:  

 𝔼[𝑃] = 𝔼[𝑃0] + ∑ 𝔼[𝑃𝑙 − 𝑃𝑙−1]

𝐿

𝑙=1

 (4) 

where 𝑃 is the observable (a random variable), 𝔼[𝑃] is its expected value, 𝑃𝑙 is the numerical 

approximation at the discretization level 𝑙 (with 𝑙 = 0 corresponding to the coarsest discretization), 

and 𝐿 is the total number of discretization levels used in MLMC. The samples 𝑃𝑙 and 𝑃𝑙−1 are 

computed using subsequent fine and coarse discretization levels, respectively, but they both 
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correspond to the same stochastic sample (i.e. the same uncertain parameter realisations and the 

same Brownian path113 for stochastic systems).  

The MLMC method enables one to find 𝑌, the multilevel estimator of 𝔼[𝑃] that has the root mean 

square error less than a user-defined tolerance ϵ. The MLMC method also provides the maximum 

bound on the computational complexity associated with finding the estimator. However, this 

information can be obtained by MLMC only when the conditions of the underlying theorem are 

met:114 

Theorem 1. Let 𝑃 denote a random variable, and let 𝑃𝑙 denote the corresponding level 𝑙 numerical 

approximation. If there exist independent estimators 𝑌𝑙 based on 𝒩𝑠𝑙 Monte Carlo samples, each 

with expected cost 𝐶𝑙 and variance 𝑉𝑙, and positive constants 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶, 𝛾𝑀𝐿𝑀𝐶, 𝑐1, 𝑐2, 𝑐3 

such that 𝛼𝑀𝐿𝑀𝐶 ≥
1

2
min(𝛽𝑀𝐿𝑀𝐶 , 𝛾𝑀𝐿𝑀𝐶), and 

i) |𝔼[𝑃𝑙 − 𝑃]| ≤ 𝑐12−𝑙𝛼𝑀𝐿𝑀𝐶 

ii) 𝔼[𝑌𝑙] = {
𝔼[𝑃0], 𝑙 = 0

𝔼[𝑃𝑙 − 𝑃𝑙−1], 𝑙 > 0
 

iii) 𝑉𝑙 ≤ 𝑐22−𝑙𝛽𝑀𝐿𝑀𝐶 

iv) 𝐶𝑙 ≤ 𝑐32𝑙𝛾𝑀𝐿𝑀𝐶 

then there exists a positive constant 𝑐4 such that for any 𝜖 < exp−1 there is a total number of levels 

𝐿 and a number of samples at every level 𝒩𝑙 for which the multilevel estimator  

 

𝑌 = ∑ 𝑌𝑙

𝐿

𝑙=0

 (5) 

has a mean-square-error with bound 

 𝔼[(𝑌 − 𝔼[𝑃])2] < ϵ2 (6) 

with a computational complexity 𝐶 with bound 
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𝔼[𝐶] ≤ {

𝑐4𝜖−2, 𝛽𝑀𝐿𝑀𝐶 > 𝛾𝑀𝐿𝑀𝐶 ,

𝑐4𝜖−2(log 𝜖)2, 𝛽𝑀𝐿𝑀𝐶 = 𝛾𝑀𝐿𝑀𝐶 ,

𝑐4𝜖−2−(𝛾𝑀𝐿𝑀𝐶−𝛽𝑀𝐿𝑀𝐶)/𝛼𝑀𝐿𝑀𝐶 𝛽𝑀𝐿𝑀𝐶 < 𝛾𝑀𝐿𝑀𝐶 .

 (7) 

It is apparent that Theorem 1 requires the knowledge of many constants. In practice, they are not 

known and need to be estimated using the results of preliminary sampling of the model.113,114 It 

has been suggested that the constants 𝛼𝑀𝐿𝑀𝐶  and 𝛽𝑀𝐿𝑀𝐶 can be estimated using linear least-squares 

regression by constructing the following first order114 polynomials:  

 
log2|𝑌𝑙| = −𝛼𝑀𝐿𝑀𝐶𝑙 + 𝑐𝛼 , 𝑙 > 0
log2 𝑉𝑙 = −𝛽𝑀𝐿𝑀𝐶𝑙 + 𝑐𝛽 , 𝑙 > 0

 (8) 

where 𝑐𝛼 and 𝑐𝛽 are constants obtained by linear regression. The constant 𝛾𝑀𝐿𝑀𝐶 can be 

approximated using the expected computational costs at the finest and second-finest levels of 

discretization: 

 
𝛾𝑀𝐿𝑀𝐶 = log2

𝐶𝐿

𝐶𝐿−1
 (9) 

where the costs 𝐶𝐿−1 and 𝐶𝐿 represent the time required for the simulation to find 𝑌𝐿−1 and 𝑌𝐿 

during preliminary sampling (described below). Note that 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶, and 𝛾𝑀𝐿𝑀𝐶 need to be 

positive. A negative 𝛼𝑀𝐿𝑀𝐶  would imply that a finer discretization does not improve the accuracy 

of calculations of the expected value, a negative 𝛽𝑀𝐿𝑀𝐶 would indicate that the variance of the 

estimator is not diminishing, and a negative 𝛾𝑀𝐿𝑀𝐶 would show that the computational cost of finer 

discretization levels is less than the cost of computing coarser samples. Furthermore, note that 𝑉𝑙 

is not the variance of 𝑃, but rather it is the variance of the estimators of 𝑃 at different discretization 

levels 𝑙. However, MLMC has been extended for the calculation of higher order statistical 

moments of 𝑃.50,115–118 The maximum entropy method117 that approximates probability 

distributions by using MLMC-generated estimates of central statistical moments116 appears to be 
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the most promising currently available technique for calculating statistical moments and obtaining 

confidence intervals. Additional details on the MLMC Theorem can be found elsewhere.113,114,119  

Note that in addition to equation (6), ϵ also plays a role in the calculation of the optimal number 

of samples at every discretization level:113 

 𝒩𝑙 = ⌈2𝜖−2√𝑉𝑙ℎ𝑙 (∑ √
𝑉𝑙

ℎ𝑙

𝐿

𝑙=0

)⌉ (10) 

where ℎ𝑙 is the step size used in discretizing the domain (typically, it is reduced according to a 

geometric series113,114). Note that 𝒩𝑙 represents the rounded-up result of the calculation in equation 

(10). The MLMC algorithm has been summarized below.114,119 

Preliminary sampling: 

 Step 1: Set the value of 𝐿 (𝐿 ≥ 2). Set the coarsest integration step size, ℎ0, and calculate 

other step sizes as ℎ𝑙 =
ℎ0

2𝑙  (i.e. a geometric series). Initialize the number of samples to use at the 

defined levels, 𝑁𝑠𝑙. Note that in Step 1, 𝑁𝑠𝑙 will be the same number for all levels; however, this 

will change from level to level as MLMC sampling algorithm continues. Set the value of 𝜖 (𝜖 <

exp−1). 

Step 2: Obtain the estimates of 𝔼[𝑌𝑙], 𝑉𝑙 and 𝐶𝑙 by sampling the model and tracking the 

time spent on calculations at each level. Note that since 𝑁𝑠𝑙 is the same for all levels because it 

has not changed since Step 1, the changes in 𝐶𝑙 are exclusively due to the changes in discretization 

among the levels. 

Step 3: Approximate 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶 and 𝛾𝑀𝐿𝑀𝐶 using equations (8) and (9). MLMC can 

be applied only if all constants are positive and 𝛼𝑀𝐿𝑀𝐶 ≥
1

2
min(𝛽𝑀𝐿𝑀𝐶 , 𝛾𝑀𝐿𝑀𝐶), as per Theorem 



23 
 

1. If the conditions are not met, increasing 𝐿 and/or 𝑁𝑠𝑙 in Step 1 may help to meet the conditions 

by providing better estimates of 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶 and 𝛾𝑀𝐿𝑀𝐶.  

Prior to proceeding with the MLMC approximation (i.e. Steps 4-8 below), reset the value of 𝐿 to 

2. The reset helps to prevent unnecessary sampling if the estimator will converge at a level number 

smaller than what was chosen for Step 1. The obvious disadvantage of preliminary sampling is 

that too many samples may have been used for (and too much time has been spent on) some levels, 

especially the finer discretizations. However, this is likely to happen only for systems that are not 

computationally intensive.  

MLMC approximation: 

Step 4: Calculate 𝑁𝑙 at every defined level (from 0 to 𝐿) using the estimates of 𝑉𝑙, and the 

values of ℎ𝑙 and 𝜖 (see equation (10)). 

Step 5: For every level where 𝑁𝑙 is greater than the corresponding 𝑁𝑠𝑙, conduct additional 

sampling to obtain the total of 𝒩𝑙 samples at the level. Update 𝑁𝑠𝑙 to track the total number of 

samples performed at every level. 

Step 6: Update the estimates of 𝑉𝑙 and repeat Step 4 (i.e. update 𝒩𝑙 at every level). 

Step 7: If 𝒩𝑙 has not increased by more than 1% from Step 4 to Step 6 for every level, 

proceed to Step 8. Otherwise, go back to Step 5. 

Step 8: Check for the robust convergence114 of 𝔼[𝑃], i.e., if the condition 

 
2𝛼𝑀𝐿𝑀𝐶(𝑙−𝐿)

2𝛼𝑀𝐿𝑀𝐶−1
𝔼[𝑌𝑙] ≤

𝜖

√2
 (11) 
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is satisfied for all three finest discretization levels (i.e. 𝑙 = 𝐿 − 2, 𝐿 − 1, and 𝐿), finish MLMC 

sampling and calculate 𝔼[𝑃] as per equation (4). Otherwise, add a new discretization level: set 

𝑉𝐿+1 =
𝑉𝐿

2𝛽𝑀𝐿𝑀𝐶
, set 𝑁𝑠𝑙 for the new level to 0, calculate ℎ𝐿+1 as 

ℎ0

2𝐿+1, set 𝐿 = 𝐿 + 1, and go back 

to Step 4. 

Extension to multiple observables: 

To enable the MLMC algorithm to estimate multiple observables simultaneously, the following 

modifications can be made to the steps described above: 

Step 2: Obtain the estimates of 𝔼[𝑌𝑙] and 𝑉𝑙 for every observable. 

Step 3: Estimate 𝛼𝑀𝐿𝑀𝐶  and 𝛽𝑀𝐿𝑀𝐶 for every observable. All constants need to be positive 

and the condition 𝛼𝑀𝐿𝑀𝐶 ≥
1

2
min(𝛽𝑀𝐿𝑀𝐶 , 𝛾𝑀𝐿𝑀𝐶) needs to be satisfied for every observable. 

Step 4: For each observable and each level, calculate the corresponding 𝒩𝑙 values as per 

equation (10). For each level, find the maximum 𝒩𝑙 among the values calculated at that level for 

all the observables and set 𝒩𝑙 for the level to the maximum value. 

Step 8: Check the convergence of each observable’s estimator using the 𝛼𝑀𝐿𝑀𝐶  value that 

corresponds to the observable (calculated in Step 3). If condition (11) is not satisfied for at least 

one observable, define another discretization level. For each observable, set 𝑉𝐿+1 =
𝑉𝐿

2𝛽𝑀𝐿𝑀𝐶
 using 

the corresponding 𝛽𝑀𝐿𝑀𝐶 (calculated in Step 3). Proceed with the rest of Step 8 in the same way 

as for the case of one estimated observable. 

The main limitation of the MLMC method is that the algorithm is heuristic and is not guaranteed 

to converge.114 However, MLMC has been shown to converge and perform well in numerous 

applications.114,119–121 Another limitation is that the MLMC Theorem requires many constants to 
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be known or approximated,114 which adds the need for preliminary sampling when these constants 

are not available. However, the computational time for MLMC has been shown to be orders of 

magnitude less than for standard MC sampling,113,114 which compensates for the time spent on 

preliminary sampling. Another advantage of MLMC is that it does not rely on a priori knowledge 

about the shapes of probability distributions associated with the uncertain parameters, unlike PCE, 

which is applicable to a limited number of probability distributions that must be known in advance 

of constructing the expansion.92,101 Furthermore, the MLMC Theorem provides information on the 

difference between the approximated and true values. Thus, if the conditions of the Theorem are 

met and MLMC converges, the estimate will be within the imposed error tolerance from the true 

value. By contrast, the standard MC sampling, PSE and PCE make no such claims and may 

converge to a local minimum or maximum that can differ substantially from the true value.  

Since the original publication,113 the MLMC method has been expanded to estimating the expected 

values of various types of Ordinary Differential Equations (ODEs) including stochastic differential 

equations,114,122–124 continuous time Markov chains,125 computing mean exit times,126 central 

statistical moments of arbitrary order116 and even probability density functions.50,115,117,118 

Furthermore, MLMC has been applied to uncertainty analysis of flows through highly 

heterogeneous porous media,29,30,49,50,121,127–129 estimation of cumulative distribution functions in 

stochastic oil reservoir simulations, statistical solutions of the Navier-Stokes equations,120 

reliability analysis of engineered systems119 and surfactant/polymer enhanced-oil-recovery.49–51 In 

all cases, improvements in computational costs associated with obtaining accurate results have 

been reported. However, a review of the available literature appears to show a gap in knowledge. 

MLMC has not been applied in the field of chemical engineering beyond the topics of flows in 

porous media and enhanced-oil-recovery, which motivates the work presented in Chapters 4 and 
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5 of this thesis, where MLMC is applied to standard chemical engineering systems and stochastic 

multiscale processes, respectively.  

2.3 Data-Driven Models 

Advanced sampling techniques such as those described in section 2.2 enable the efficient 

estimation of probability distributions of the observables of stochastic multiscale models. 

However, the uncertainty in the observables may be time-varying and may also change at different 

values of the manipulated variables, and hence new PSE and PCE expressions would have to be 

identified at each of those settings. To circumvent this challenge, PSE/PCE can be identified 

offline at various settings prior to implementing online control. This approach has been 

implemented for propagating distributional uncertainty via PCE in a batch crystallization process, 

a dynamic model represented by a Volterra series, dynamic flux balance metabolic models, a 

dynamic model of self-powered neutron detector and other dynamic models.38,130–138 However, in 

the case of stochastic multiscale models, analytical expressions for PCE expansion coefficients 

cannot be obtained by intrusive methods (e.g. Galerkin projection) due to the presence of non-

closed-form expressions in the models. Furthermore, the computational expense associated with 

obtaining the observables necessary to identify PCE coefficients by non-intrusive methods (or to 

calculate the PSE sensitivities) can be quite large. Thus, the high computational cost may impede 

PSE and PCE from applications in the online control of stochastic multiscale systems, especially 

if these expressions need to be identified in real time for an unforeseen operating condition (e.g. 

in response to a disturbance).  

In order to diminish the computational cost associated with the stochastic multiscale models based 

on first principles, data-driven models such as Kriging, Wiener-Hammerstein, reduced-order 

models, and others139–143 can be employed to find the empirical relationships (e.g. linear and 
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nonlinear correlations) between the manipulated and/or process state variables and the control 

variables.7,22,34–36,54,143–153 In the data-driven system identification approach, the accuracy in the 

responses of observables to manipulated variables is preserved, while at the same time the 

computational cost associated with the stochastic multiscale models is substantially alleviated. 

However, finding empirical correlations can completely disregard the underlying fundamental 

relationships between the manipulated variables and the observed responses. Thus, a notable 

drawback of data-driven models can be their inability to predict the correct responses to 

perturbations that have not been used during the development of empirical models, especially for 

extrapolation, i.e. when the new inputs lie significantly far away from the ranges of input values 

used to construct the data-driven models.154 

It has been shown that data-driven models based on machine learning techniques such as Artificial 

Neural Networks (ANNs) are capable of accurately and efficiently predicting system behaviour 

and responses to perturbations.155 ANNs can establish complex relationships between multiple 

manipulated and response variables, but they require large datasets for accurate model training. 

When the provided datasets are small, ANNs are prone to overfitting, i.e. they memorize the 

relationships between datapoints, which impedes their ability to make the correct predictions when 

provided with inputs that were not used in training. However, when properly trained, a particularly 

appealing feature of ANNs is their capacity to make reasonably accurate predictions even when 

they are provided with data that has not been used during model development.156 

During the recent decades, there has been a resurgence of research interest in ANNs (and other 

machine learning techniques), with numerous applications in nonlinear signal processing, 

modelling time series data, medical diagnosis, electrical load forecasting, and hydrologic models, 

in addition to many other fields.155–173 The existing applications of ANNs that are highly relevant 
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to the field of chemical engineering include process fault diagnosis, process modelling and control, 

the design of fuel additives and catalysts, predicting two-phase flow patterns, optimization of 

thermal atomic layer deposition, as well as other important problems such as computational fluid 

dynamics, food chemistry, renewable energy, bioresources. 31,165,174–192  

As briefly mentioned above, artificial neural networks (ANNs) are information processing systems 

that are data-driven and can identify complex relationships between the controlled and the response 

variables in a time series.155,178,184,193,194 ANNs consist of an input layer, one or several hidden 

layers, and an output layer. In each ANN layer, there are one or multiple processing units called 

“neurons”. The input layer serves to perceive the incoming variable data (e.g. control actions of a 

process) and pass it to the other layers in the network. In the hidden layer(s), the information is 

processed, and the output layer eventually produces a prediction of the response variable(s). The 

processing of information by the hidden and output layers is done as follows: each neuron accepts 

and combines the outputs from all the neurons in the preceding layer, where the combination is a 

weighted sum of each neuron’s output scaled by the corresponding strength of the connection 

(referred to as weight) between the neuron that is accepting the information and each neuron in the 

preceding layer. The output of a neuron in a hidden layer or in the output layer of an ANN may be 

represented as follows:  

 𝜒ℓ = 𝜑(Σ𝓅(𝜔ℓ,𝓅𝜒𝓅) + 𝛽ℓ,𝐴𝑁𝑁) (12) 

where 𝜒ℓ is the output of neuron ℓ in the layer of interest, 𝜑 is the transfer function (this function 

can also be called the activation or output function and it acts on (Σ𝓅(𝜔ℓ,𝓅𝜒𝓅) + 𝛽ℓ,𝐴𝑁𝑁), i.e. the 

net input to the neuron ℓ), 𝜔ℓ,𝓅 is the weight associated with the connection between the neuron ℓ 

and some neuron 𝓅 in the previous layer (i.e. the input layer or a hidden layer), 𝜒𝓅 is the output of 
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the neuron 𝓅, Σ𝓅 signifies the weighted sum of the outputs of all neurons 𝓅 in the previous layer, 

and 𝛽ℓ,𝐴𝑁𝑁 denotes the bias that is independent from the previous layer’s output but nevertheless 

contributes to the activation of the neuron ℓ in addition to the weighted sum Σ𝓅(𝜔ℓ,𝓅𝜒𝓅). Common 

choices for the neuron activation functions include the simple linear function, also called the 

identity function, the binary step function (i.e. the Heaviside function), and the sigmoid functions, 

such as the hyperbolic tangent function.155,194 

The values of the weights 𝜔ℓ,𝓅 and the biases 𝛽ℓ,𝐴𝑁𝑁 of an ANN are identified and refined during 

the iterative training on the input and output datasets. The training method of choice for ANNs 

with at least one hidden layer is called backpropagation. It is a gradient-based technique that aims 

to find 𝜔ℓ,𝓅 and 𝛽ℓ,𝐴𝑁𝑁 that would minimize the objective function, which is usually defined as 

the sum of squared errors of the network’s predictions against the actual magnitudes of the 

response variables. The iterative training continues until the values converge to a local optimum.154 

It has been shown that the Levenberg-Marquardt algorithm, a second-order optimization method, 

can arrive at one of the lowest errors between the actual and predicted responses.154,195–197 Hence, 

this algorithm is frequently chosen for ANN training.  

It is necessary to find the weights and biases that would allow the ANN to generalise, i.e. make 

reasonably accurate predictions about the input data that was not seen during training but is similar 

to what was used for ANN development. In order to achieve good generalisation capabilities 

instead of finding 𝜔ℓ,𝓅 and 𝛽ℓ,𝐴𝑁𝑁 that work well only for the seen-before data, a technique called 

early stopping is used for ANN training.154,198 In this approach, a test dataset that is never used for 

training/adjusting the weights and biases is employed to calculate the generalisation error, i.e. the 

error between the ANN predictions of responses to the inputs never used during training and the 
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actual responses to these inputs. As the iterative training proceeds, the generalisation error on the 

test dataset is monitored and when it starts to increase, the training is terminated because the 

growth of this error indicates the commencement of the memorization of the training dataset.  

Just as a biological neural network (e.g. the brain) needs exposure to large amounts of information 

to learn to identify patterns accurately (e.g. in some cases, the expertise has to be acquired over a 

lifetime of human experience), ANNs also require large datasets for accurate weight and bias 

training. The need for the large datasets constitutes a disadvantage of the ANN-based approach to 

system identification, since such datasets may not be readily available for chemical engineering 

systems.165 This challenge can be circumvented when a mathematical model of the process is 

available, which is the case in the present thesis. Another possible disadvantage of using ANNs is 

the potential need for multiple training attempts, since the randomly chosen initial guesses for the 

weights and biases can have a strong impact on the trained network’s prediction accuracy. In some 

cases, poor initial guesses may prevent the convergence in weights and biases altogether. 

Typically, this challenge is mitigated by training the ANN in “open-loop” mode, meaning that 

each point in the training dataset is provided to the ANN as initial condition for predicting the next 

point in the time series rather than restricting the ANN to only use its own, possibly quite 

inaccurate, prediction for the current timepoint as the basis for making the forecast (this training 

regime is referred to as “closed-loop” mode). In addition, the existence of multiple local optima in 

the non-convex objective function154,199 may complicate the decision-making process as to which 

of the possible acceptable ANNs should actually be used to model the system’s behaviour. 

Furthermore, using large datasets for training, using complicated network structures with many 

neurons and hidden layers, and potentially repeating the training attempts all contribute to lengthy 

training times and increase the computational cost of ANN identification.  
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However, the compelling advantages of the ANN-based approach to system identification and 

modelling that compensate for the possible drawbacks are the computational efficiency of ANNs, 

as well as their ability to describe nonlinear relationships between inputs/parameters and 

responses, their potential to generalise and predict responses to never-before-seen input data, and 

their robustness towards noisy inputs.154 

Recently, ANNs have been applied to a stochastic multiscale model that simulated thin film 

deposition.31 In that study, a stochastic partial differential equation (SPDE) simulated thin film 

surface evolution and was coupled to partial differential equations (PDEs) that modelled the 

continuum scale phenomena. The ANNs were used to efficiently predict the coefficients of the 

SPDE based on the time-dependent manipulated variables. The application of ANNs to the model 

enabled online optimization and control of the thin film deposition process. That work appears to 

be one of the first applications of ANNs for stochastic multiscale systems. A search in the literature 

shows a gap in knowledge since there are no applications where ANNs are used to completely 

replace stochastic multiscale models and, thanks to their computational efficiency, enable online 

optimization and control of these systems at nominal parameter values and under parametric 

uncertainty. 

2.4 Chapter Summary 

Stochastic multiscale systems consist of coupled phenomena that occur at multiple distinct 

temporal and spatial scales. Such systems are abundant in nature and therefore in applied science 

disciplines such as chemical engineering, where the aim is to use natural processes to design 

materials and devices. While the macroscale can be represented well with continuous closed-form 

equations, the microscale exhibits stochastic phenomena associated with the random motion of 

atoms and molecules. In order to better control stochastic multiscale processes and improve the 
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quality of their products, multiscale simulations have been devised that couple continuous 

equations with non-closed-form expressions that represent  the microscale. A variety of coupling 

schemes exists, but the overarching goal is to leverage the accurate but computationally expensive 

calculations at fine scales to improve the process control procedures implemented at the 

macroscale. The computational intensity associated with the calculations at the fine scale raises 

the overall computational costs associated with stochastic multiscale systems.  

Since every process is subject to uncertainty, it is also present in stochastic multiscale systems. 

The stochastic noise that propagates from the microscale calculations into the observables of these 

systems makes the application of traditional uncertainty quantification techniques (such as Power 

Series and Polynomial Chaos Expansions) more challenging since these techniques rely on 

accurate observable values when calculating their sensitivities and expansion coefficients. A new 

sampling technique called Multilevel Monte Carlo shows great promise in reducing the 

computational cost while preserving the accuracy, but its applications in the field of chemical 

engineering and in particular for stochastic multiscale systems appear limited. Furthermore, data-

driven models called Artificial Neural Networks are experiencing a resurgence of research interest 

and are well-suited to efficiently and accurately predict dynamic responses of observables to 

perturbations of the manipulated variables. This ability makes them attractive for applications in 

efficient model predictive control of stochastic multiscale systems, but such studies are also limited 

in the literature. In order to fully leverage stochastic multiscale models for designing high quality 

products, uncertainty must be accounted for and efficient control schemes must be implemented.  
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Chapter 3: Power Series and Polynomial Chaos Expansions for 

Uncertainty Quantification in Stochastic Multiscale Systems 

A review of the literature showed that polynomial chaos expansions (PCE) have not been applied 

for uncertainty propagation in a multiscale model that couples the continuous and discrete 

stochastic expressions that do not have closed forms, nor has the performance of power series and 

polynomial chaos expansions (PSE and PCE, respectively) been compared in this context. In order 

to address the gap in knowledge, this chapter compares the performance of PSE and PCE in the 

uncertainty quantification of a stochastic multiscale system subject to single- and multi-parameter 

uncertainty.  

3.1 Synopsis  

This chapter examines the effect of noise present in stochastic multiscale systems on the 

performance of PSE and PCE. A multiscale model of thin film formation by chemical vapour 

deposition35 was used to study the effects of single parameter and multivariate uncertainty. 

Although a particular model was used as a case study, the analysis methodology can be applied to 

other stochastic multiscale models as well.  

In this work, probability density functions of observable variables that exhibit linear and nonlinear 

dependence on the uncertain parameters have been estimated. To this end, MC sampling of the 

multiscale model, and the PSE and PCE expressions, were used in the cases with single and 

multiple uncertain parameters. Different factors affecting the accuracy of PSE and PCE were 

examined and their impact was analyzed. The statistical moments (mean, variance, skewness and 

kurtosis) of the observable and confidence interval data were computed and used to assess the 

performance of PSE and PCE. To demonstrate the efficiency of the uncertainty propagation 

techniques, PSE and PCE expressions were used in the implementation of constrained robust 
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optimization. The goal of the optimization study was to maintain the probability densities of 

observables within pre-specified operational targets by manipulating a macroscale parameter 

(temperature). The accuracy and computational costs of PSE and PCE have been examined in all 

cases listed above. 

3.2 Thin Film Deposition Model 

In order to compare the performance of PSE and PCE techniques for uncertainty quantification in 

multiscale stochastic systems, one such system needs to be selected for case study purposes. One 

of the most industrially relevant and widely used multiscale processes is thin film formation by 

chemical vapour deposition.13,16 A model of this process has been developed previously1,13,35 and 

has been selected for this work. An overview of multiscale model is described in the remainder of 

this section. More details about this model can be found elsewhere.1,13,35 

The multiscale model consists of the microscale kinetic Monte Carlo (KMC) simulation of thin 

film formation by chemical vapour deposition coupled with the macroscale gas-phase partial 

differential equation (PDE) model that captures the mass transfer in the gas boundary layer above 

the film.1,13,22,34–36 The gas boundary layer’s metrics (concentration, temperature, mole fraction 

profile) differ from the uniform metrics of the gas in the bulk because the deposition process 

consumes the precursor molecules from the gaseous phase. A diagram of the model has been 

presented in Figure 1. The model parameters employed for simulation and testing of the proposed 

uncertainty quantification techniques are listed in Table 1.  
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Figure 1: Diagram of the multiscale simulation of thin film formation by chemical vapour deposition 

 

Table 1: Model parameter values (adapted from Rasoulian and Ricardez-Sandoval35) 

Parameter Symbol Value and Unit 

Density of the bulk divided by gas boundary layer density 𝜌𝑏/𝜌 1 

Substrate temperature 𝑇𝑠𝑢𝑟𝑓 800 K 

Mole fraction of the chemical species in the bulk 𝑋𝑏𝑢𝑙𝑘 2×10-6 

Schmidt number of the depositing chemical species 𝑆𝑐 0.75 

Hydrodynamic strain rate 𝑎  5 s-1 

Viscosity of the bulk multiplied by its density 𝜇𝑏𝜌𝑏 9×1011 

Concentration of sites on the film surface 𝐶𝑡𝑜𝑡 1.6611×10-5 sites ∙ mol/m2  

Sticking coefficient 𝑆0 0.1 

Chamber pressure 𝑃𝐶𝑉𝐷 105 Pa 

Precursor molecular weight 𝑚 0.028 kg/mol 

Event frequency constant 𝑘𝑑0 109 s-1 

Energy associated with a single bond 𝐸 17000 cal/mol 

Energy required for desorption 𝐸𝑑 17000 cal/mol 

Energy required for migration 𝐸𝑚 10200 cal/mol 

Coupling time interval ∆𝒯 0.10 s 
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3.2.1 Continuum (Macroscale) Model 

The continuum approach is used to model the gas-phase under the axisymmetric flow assumption 

by the following momentum, energy and mass transfer equations,15 respectively: 
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where 𝜏 is the dimensionless time (𝜏 = 2𝑎𝑡 with 𝑎 as the hydrodynamic strain rate and 𝑡 as time), 

𝑓 is the dimensionless stream function, 𝜂 is the dimensionless distance away from thin film surface, 

𝑃𝑟 is the Prandtl number, and 𝑥 is the mole fraction of the depositing chemical vapour species. 

Equations of momentum and energy transfer, (13) and (14), respectively, are solved at steady state 

at the beginning of the simulation. Thus, only the mass transfer expression shown in equation (15) 

needs to be solved repeatedly during the simulation until a final batch time is reached. Equations 

(13)-(15) are subject to the following boundary conditions in the bulk (𝜂 → ∞): 

 𝑇 = 𝑇𝑏𝑢𝑙𝑘 (16) 

 
𝜕𝑓

𝜕𝜂
= 1 (17) 

 𝑥 = 𝑋𝑏𝑢𝑙𝑘 (18)  

and at the thin film surface (𝜂 → 0): 

 𝑇 = 𝑇𝑠𝑢𝑟𝑓 (19) 

 𝑓 = 0 (20) 
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 (22) 
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where 𝑇𝑏𝑢𝑙𝑘 is the bulk temperature of the chemical vapour, 𝑇𝑠𝑢𝑟𝑓 is the temperature of the 

substrate and the thin film, and 𝑅𝑎 and 𝑅𝑑 correspond to the rates of adsorption and desorption, 

respectively. The continuum simulation scale cannot capture the changes in 𝑅𝑎 and 𝑅𝑑 and thus 

needs to be informed by the KMC model. Note that the present multiscale model assumes that the 

changes in gas concentration along the radial direction can be neglected. In practice this uniformity 

can be achieved using a gas distributor.35 

3.2.2 Discrete Kinetic Monte Carlo Model 

The microscale KMC model employed in this work is an on-lattice solid-on-solid model. A cubic 

lattice represents the thin film structure. In this model, an atom on the thin film surface can have 

up to five neighbours: one underneath and up to four in the same layer. Secondary neighbours are 

not taken into account. As in previous works,28,29,41 three events are considered to occur on the 

surface, i.e. adsorption, desorption and migration. The rates of the events, 𝑊𝑎, 𝑊𝑑 and 𝑊𝑚, 

respectively, can be estimated using the kinetic theory of ideal gases and described by the 

following equations:15 

 𝑊𝑎 =
𝑆0𝑃𝐶𝑉𝐷𝑥

√2𝜋𝑚𝑅𝑔𝑇𝐶𝑡𝑜𝑡

𝑁2 (23) 
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 𝑊𝑚 = ∑ 𝑀𝑖𝑘𝑑0𝑒
−
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where 𝑁 is the number of atoms along an edge of the square thin film (and 𝑁2 is the total number 

of available adsorption sites), 𝑅𝑔 is the gas constant, 𝑖 is the number of neighbours an atom has, 

and 𝑀𝑖 is the number of adsorbed surface atoms with a particular number of neighbours (between 

one and five). Periodic boundary conditions have been employed to simulate bulk behaviour. The 
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choice of the event (adsorption, desorption or migration) is determined by the rates of the events 

(𝑊𝑎, 𝑊𝑑, 𝑊𝑚) and a uniform random number selected from the range [0,1).13 Whenever an event 

is performed, the kMC time is incremented according to equation (26), which relies on another 

uniform random number 𝜍 from the interval (0,1) and the total rate of the system:13 

 ∆𝑡𝑘𝑀𝐶 = −
ln 𝜍

𝑊𝑎 + 𝑊𝑑 + 𝑊𝑚
 (26) 

As shown in Figure 1, the phenomena at the two scales affect each other. The mole fraction of 

precursor in the gaseous phase (𝑥) will affect the rate of adsorption of atoms onto the film surface. 

However, the adsorption of atoms onto the surface decreases the concentration of the precursor in 

the gas boundary layer, while desorption of atoms from the surface does the opposite. During the 

KMC simulation, the numbers of adsorbed and desorbed atoms, 𝑁𝑎 and 𝑁𝑑, are tracked in order 

to enable the calculation of rates of adsorption and desorption: 

 𝑅𝑎 − 𝑅𝑑 =
𝑁𝑎 − 𝑁𝑑

2𝑎𝑁2∆𝒯
  (27) 

where ∆𝒯 is the coupling time interval. Equation (27) allows for the kMC simulation to inform the 

continuum boundary condition, as shown in equation (22). Once the kMC time reaches ∆𝒯, the 

coupling between the microscale and continuum models is carried out through updating the 

boundary condition, as depicted in Figure 1. Additional details of the implementation can be found 

in previous studies.1,13,35 

The roughness 𝑅, thickness 𝑇ℎ and growth rate 𝐺𝑟 of the thin film are considered as the 

observables of the present multiscale deposition model. The roughness can be calculated in ML 

(monolayers) as the number of broken bonds on the surface of the film:4  
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 𝑅 = 1 + 
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2𝑁2
 (28) 

Similarly, thickness of the film can be calculated (also in ML) as the average lattice site height:2,35 

 𝑇ℎ =
1

𝑁2
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𝑁

𝑗=1

𝑁
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The growth rate can be calculated in ML/s: 

 
𝐺𝑟 =

𝑁𝑎 − 𝑁𝑑

𝑁2∆𝒯
 (30) 

Note that a perfectly smooth film would have 𝑅 = 1.0 ML. Also note that 𝐺𝑟 and 𝑇ℎ are related, 

where the former is the time derivative of the latter, since the term (𝑁𝑎 − 𝑁𝑑)/𝑁2 represents the 

change in 𝑇ℎ over a coupling time interval during which the kMC model has been simulating 

adsorption, desorption and migration events, and ∆𝒯 is the duration of the coupling interval 

(measured in seconds). As shown, the observables depend on the time evolution events occurring 

on the thin film surface, which also depends on the macroscale behaviour of the reactor. 

3.3 Uncertainty Analysis 

Since the multiscale model uses a stochastic technique to simulate the molecular scale behaviour, 

its output will vary even when the same uncertain parameter realisations are used in the 

simulations. Thus, the results will be subject to stochastic noise, the effect of which is amplified 

for low order lattices (e.g. 30 × 30). A larger surface lattice can be used to diminish the noise 

while increasing the computational costs; e.g. at 𝑇𝑠𝑢𝑟𝑓 = 800 𝐾, a CPU time of 37 min was needed 

to reach the simulation batch time of 100 s for 100 × 100 lattice, whereas a simulation of 

150 × 150 surface lattice required 2.1 h (on an Intel® CoreTM i7-4770 CPU @ 3.40 GHz with 16 

GB of RAM). However, Figure 2 illustrates that averaging the results of 6 lattices with 𝑁 = 30 
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can be used to diminish the noise while maintaining computational efficiency (total CPU time for 

the six lattices was 5.3 min), which is in agreement with literature.2,35 Note that previous works 

have not observed finite size effects for 𝑁 = 30 lattice size.6,200 As a result, multiples of 6 

simulations with 30 × 30 lattices have been used in this work to identify the PSE and PCE 

expressions. For every realisation of the uncertain parameters, at least 6 duplicate simulations were 

conducted. Their final roughness and thickness values were collected and averaged to reduce the 

stochastic noise in the data.  

 

Figure 2: Data from high-order lattices can be approximated by an average of 6 low order lattices (data from each low order 

lattice has been plotted as green lines) 

The uncertain parameters in this study were assumed to be normally distributed, similar to previous 

works.34,35,38 Hence, Hermite polynomials (and the corresponding weighting function 𝑤 as per 

equation (2)) were used as the orthogonal basis for the PCE method.92,100,101 For PCE, the uncertain 

parameter values were transformed to their corresponding random parameter values 𝜉.  

For the PSE approach, the sensitivities were approximated using finite differences, but special care 

had to be taken in the selection of the size of the perturbations to the nominal values of the uncertain 
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parameters. The perturbations to the parameters were set to be at least two times the standard 

deviations of their respective probability distributions in order to reduce the effect of stochastic 

noise.109 Single parameter and multivariate uncertainty studies were conducted using the model 

described in the previous section in order to assess the performance of PSE and PCE.  

3.3.1 Single Parameter Uncertainty 

The first step in comparing the performance of PSE and PCE in uncertainty quantification for 

stochastic multiscale systems involves few degrees of freedom to simplify the analysis. The 

multiscale model used in this work exhibited a nonlinear response of roughness to perturbations 

in the uncertain model parameters considered in this study. Therefore, the greatest benefit of 

studying a single uncertain parameter results from examining the effect of uncertainty in a 

parameter most closely related to roughness. Accordingly, the uncertain parameter under scrutiny 

was 𝐸𝑚, the magnitude of which affects the migration rate of atoms on the thin film surface. 𝐸𝑚 

was assumed to have a normal distribution with the mean value reported in Table 1 and standard 

deviation of 510 cal/mol (i.e. 5% of the mean value).  

In order to ensure that a representative distribution for roughness was obtained from the multiscale 

model, 5,000 MC sampling realisations in 𝐸𝑚 were selected from its normal distribution. This 

number of realisations was found to achieve convergence in the mean and variance of the 

distribution of thin film roughness. The results from these simulations were used as the benchmark 

to compare the performance of the PSE and PCE approximations. For the present case study, PSE 

models were constructed up to 3rd order: 

 𝑅𝑃𝑆𝐸 = 𝑅(𝜇𝐸𝑚
) +

𝑑𝑅

𝑑𝐸𝑚
(𝐸𝑚 − 𝜇𝐸𝑚

) +
1

2

𝑑2𝑅

𝑑𝐸𝑚
2 (𝐸𝑚 − 𝜇𝐸𝑚

)
2

+
1

6

𝑑3𝑅

𝑑𝐸𝑚
3 (𝐸𝑚 − 𝜇𝐸𝑚

)
3
 (31) 
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where 𝜇𝐸𝑚
 represents the expected (mean) value of the uncertain parameter. When constructing 

the PSE expansions, the sensitivities were approximated using the centered finite difference 

approach. To test the effect that the magnitude of perturbation from the mean value 𝜇𝐸𝑚
 has on 

PSE accuracy, the perturbation magnitudes of 10%, 25% and 50% of the mean value were used 

for 1st and 2nd order expansions. For 3rd order, using the 50% perturbation caused an infeasible 

realisation in 𝐸𝑚 (0 cal/mol); therefore, this perturbation size was omitted from the analysis. 

PCE formulations were also constructed up to the 3rd order. The 3rd order PCE approximation of 

roughness is given as follows: 

 𝑅𝑃𝐶𝐸 = 𝛽0𝐻0 + 𝛽1𝐻1(𝜉𝐸𝑚
) + 𝛽2𝐻2(𝜉𝐸𝑚

) + 𝛽3𝐻3(𝜉𝐸𝑚
) (32) 

where 𝐻’s represent Hermite polynomials (of up to 3rd order). When the Least Squares regression 

was used to calculate the 𝛽𝑖 expansion coefficients (i.e. PCE LSQ), the number of points selected 

from the distribution of 𝜉𝐸𝑚
 using MC sampling was 12, 24 and 36. When 𝛽𝑖 coefficients were 

calculated by the NISP method, different numbers of Hermite polynomial roots were used for 

integrating equation (2) using Gaussian quadrature. For the 1st order expansion, the roots of 

𝐻2(𝜉𝐸𝑚
) polynomial were used as the quadrature points for finding all 𝛽𝑖. The roots of 𝐻2(𝜉𝐸𝑚

) 

were also used as 𝜉𝐸𝑚
 realisations that were needed to obtain the corresponding roughness values 

(𝑅𝑃𝐶𝐸) from the multiscale model (i.e. the 𝑦(𝜉) values in equation (2)). The procedure was repeated 

using the roots of 𝐻3(𝜉𝐸𝑚
) and 𝐻4(𝜉𝐸𝑚

). For 2nd order PCE, the roots of 3rd, 4th and 5th order 

polynomials were sampled. For 3rd order expansion, the roots of 4th to 6th order Hermite 

polynomials were used. For all expansions, 6 and 12 duplicates of every realisation of uncertain 

parameters were used. Note that duplicates were abbreviated as “dupl” in Table 2, and the number 

of uncertain parameter realisations for PCE LSQ and roots for PCE NISP were denoted as “pts”. 
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Once the expansions described above were constructed, 10 million realizations selected from the 

distribution of 𝐸𝑚 by MC sampling were used to evaluate the corresponding PSE and PCE models 

on roughness. Statistical moments (mean, 𝜇𝑅, variance, 𝜎𝑅
2, skewness 𝑠𝑅 and kurtosis 𝑘𝑅) and the 

data from two-sided confidence intervals of the constructed expansions were compared to the 

distribution for roughness obtained by MC sampling of the multiscale model. 

Table 2: Roughness data in the case of one uncertain parameter (the roughness values are reported in ML) 

 

𝝁𝑹 𝝈𝑹
𝟐  𝒔𝑹 𝒌𝑹 

Confidence level 

bounds  CPU 

time (hr)  𝛼 = 0.1% 

 0.05% 99.95% 

MC sampling 16.35 5.32 0.46 3.49 9.58 25.52 7.64 

1st order PSE  

10% step, 12 dupl  

16.29 5.44 0.00 3.00 8.61 23.98 
0.37 

-0.35% 2.25% -100% -14% -10% -6.02% 

1st order PCE LSQ  

12 pts, 6 dupl 

16.60 5.54 0.00 3.00 8.84 24.36 
1.10 

1.53% 4.13% -100% -14% -7.65% -4.54% 

1st order PCE NISP  

4 pts, 6 dupl 

16.22 5.28 0.00 3.00 8.64 23.79 
0.37 

-0.82% -0.76% -100% -14% -9.74% -6.78% 

2nd order PSE 

50% step, 6 dupl 

16.33 5.84 0.32 3.14 9.67 25.55 
0.28 

-0.13% 9.68% -30% -10% 0.93% 0.11% 

2nd order PCE LSQ  

12 pts, 12 dupl 

16.49 4.86 0.27 3.10 10.21 24.71 
2.20 

0.86% -8.65% -42% -11% 6.58% -3.16% 

2nd order PCE NISP  

5 pts, 12 dupl 

16.32 4.54 0.12 3.02 9.71 23.75 
0.94 

-0.22% -15% -74% -13% 1.44% -6.93% 

3rd order PSE 

25% step, 6 dupl 

16.36 5.35 0.39 3.21 10.21 25.45 
0.47 

0.04% 0.55% -15% -7.86% 6.57% -0.25% 

3rd order PCE LSQ  

12 pts, 12 dupl 

16.48 5.13 0.21 3.54 8.73 25.65 
2.20 

0.81% -3.53% -54% 1.56% -8.88% 0.53% 

3rd order PCE NISP  

6 pts, 12 dupl 
16.44 5.31 0.37 2.93 11.07 24.80 1.10 
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Table 2 summarizes the results obtained for each expansion type (i.e. PSE, PCE LSQ, PCE NISP) 

and order (1st, 2nd, 3rd) considered in this work. Similarly, Figure 3 provides a qualitative 

comparison of select results of PSE and PCE approximations of the probability density of 

roughness obtained from 5,000 MC samples of 𝐸𝑚 applied to the primary multiscale model. As 

shown in Figure 3, the 2nd and 3rd order expansions estimated the density more accurately than 1st 

order expansions. The distributions from higher order expansions approximated the right-skewed 

non-normal shape of the probability density obtained by MC sampling (𝑠𝑅 was 0.46 and 𝑘𝑅 was 

3.49, see the top row of Table 2), whereas all 1st order expansions produced normal probability 

densities with 𝑠𝑅 of 0.00 and 𝑘𝑅 of 3.00 (reported in Table 2). The shape of the density from MC 

sampling indicated a nonlinear relationship between the uncertain parameter and roughness, since 

the uncertain parameter was normally distributed but roughness was not. 

 

Figure 3: Selected roughness results with one uncertain parameter; “KMC PDE” refers to the multiscale model 

The data extracted from the expansions is presented in Table 2 as various statistical moments and 

confidence interval bounds of roughness, with their corresponding percent deviations from the 
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results of MC sampling. As mentioned above, different perturbation sizes (referred to as “step” in 

Table 2) were tested for PSE, and those found to be the most accurate for each PSE order have 

been presented in Table 2 (the results with inferior accuracy have been omitted for brevity). While 

the 1st order PSE approximation was more accurate with the smallest step size (10%), higher PSE 

orders performed best with the largest tested perturbation sizes (50% for 2nd order PSE and 25% 

for 3rd order PSE). The estimates of confidence level bounds by 1st order PSE exhibited errors 

greater than 6% for the confidence level 𝛼 = 0.1% (see Table 2). Using 2nd order PSE to estimate 

the bounds on roughness with the same confidence level allowed to reduce the errors to less than 

2% (2nd order PSE in Table 2). Increasing the order of PSE from 2nd to 3rd did not improve the 

estimate. However, the 3rd order PSE errors in estimating the mean and variance of roughness were 

both lower than those from 2nd order PSE (especially 𝜎𝑅
2). In addition, the 3rd order PSE decreased 

the error in the approximation of 𝑠𝑅 nearly by a factor of one half compared to 2nd order PSE, and 

moderately improved upon the estimation of 𝑘𝑅. However, specifying a 3rd order PSE was almost 

70% more computationally intensive than identifying a 2nd order PSE; as shown in Table 2, the 3rd 

order PSE required 0.47 hr of CPU time, while the 2nd order PSE needed only 0.28 hr. If the 

requirements for the accuracy of estimates of 𝜎𝑅
2 and 𝑠𝑅 are not stringent, then expending the extra 

CPU time to construct 3rd order PSE may not be necessary.  

The percent deviations shown in Table 2 also suggest that 2nd and 3rd order PCE expansions were 

not able to outperform their corresponding PSE counterparts. Among the 2nd order expansions, 

PSE demonstrated lower deviations from MC sampling in all cases except when estimating the 

variance (where 2nd order PCE LSQ was closer to MC sampling result). Among the 3rd order 

expansions, the only instances when PSE did not provide the most accurate results were in the 

estimation of 𝜎𝑅
2 and 𝑘𝑅, for which PCE NISP and PCE LSQ provided more accurate measures, 
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respectively. Among PSE, PCE LSQ and PCE NISP, only PSE demonstrated a consistent 

improvement in the estimation of all statistical moments when the expansion order was increased 

from 2nd to 3rd. However, increasing the order from 2nd to 3rd did not consistently improve the 

estimates of confidence level bounds for any expansion. In terms of computational costs for 2nd 

and 3rd order expansions, PSE requirements were the lowest. Using 12 duplicates (instead of 6) 

did not appear to consistently improve the results of PSE and PCE. The drawback of using 12 

duplicates was the doubling of the computational costs, and without a consistent improvement in 

accuracy it did not appear necessary.  

Based on the above, the 2nd order PSE expansion that used 6 duplicates and the 50% perturbation 

provided the most computationally efficient approximation among all results of Table 2. Among 

the 1st order expansions, PCE NISP with an adequate number of roots provided similar accuracy 

to PSE at the same computational expense. 

3.3.2 Multivariate Uncertainty 

While the single parameter uncertainty analysis provides insight into system behaviour, it is more 

realistic to consider the case with multivariate uncertainty. The interplay of multiple uncertain 

parameters adds additional degrees of freedom and complicates the procedure of obtaining the 

probability distributions of the observables. To study such a scenario and compare the performance 

of PSE and PCE, two more parameters (in addition to 𝐸𝑚) were assumed to be uncertain: 𝐸 and 

𝑋𝑏𝑢𝑙𝑘. The parameter 𝐸 plays a large role in the rate of migration of atoms adsorbed on the film 

surface, thereby affecting film roughness. The mole fraction of the chemical species in the bulk, 

𝑋𝑏𝑢𝑙𝑘, affects the mass transfer of the depositing species, and is therefore connected to both 

roughness and thickness. The mean values, 𝜇𝐸, 𝜇𝐸𝑚
 and 𝜇𝑋𝑏𝑢𝑙𝑘

, of uncertain parameters 𝐸, 𝐸𝑚 and 
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𝑋𝑏𝑢𝑙𝑘, respectively, were taken from Table 1. The parameters were assumed to be normally 

distributed with the following variances: 

 

𝐸 ∼ 𝒩(𝜇𝐸 , (0.05𝜇𝐸)2)

𝐸𝑚 ∼ 𝒩 (𝜇𝐸𝑚
, (0.025𝜇𝐸𝑚)

2
)

𝑋𝑏𝑢𝑙𝑘 ∼ 𝒩 (𝜇𝑋𝑏𝑢𝑙𝑘
, (0.05𝜇𝑋𝑏𝑢𝑙𝑘

)
2

)

 (33) 

A set of 10,000 MC sampling realisations of the uncertain parameters applied to the primary 

multiscale model was used to obtain a representative distribution for roughness in the multivariate 

case. In order to estimate the probability distribution for roughness using PSE and PCE, 107 

realisations of the uncertain parameters were used once the expansions were constructed.  

To construct the PSE expansion (as per equation (3)), 25% perturbations (“step sizes”) of the 

nominal values of the uncertain parameters were used for each parameter; centered finite 

differences were employed to approximate the sensitivities. For PCE LSQ expansion, 50 MC 

realisations of uncertain parameters were used to construct both 1st and 2nd order expansions. 

Further, for PCE NISP, the roots of 3rd order Hermite polynomial were used as the quadrature 

points for calculating the expansion coefficients. As in the case with a single uncertain parameter, 

these roots were also used as realisations of the uncertain parameters for the multiscale model. In 

all cases, 6 duplicate simulations were conducted for every realisation of the uncertain parameters.  

The estimated probability densities for roughness have been plotted in Figure 4 and the estimated 

roughness data, along with the computational expenses, are reported in Table 3 (note that the 

terminology used in Table 3 for its row and column headings is the same as for Table 2).  
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Table 3: Roughness data in the case of three uncertain parameters (the roughness values are reported in ML) 

 

𝝁𝑹 𝝈𝑹
𝟐  𝒔𝑹 𝒌𝑹 

Confidence level bounds from the probability distributions of roughness CPU 

time 

(hr) 

 𝛼 = 0.1% 𝛼 = 1% 𝛼 = 3% 𝛼 = 5% 

 0.05% 99.95% 0.5% 99.5% 1.5% 98.5% 2.5% 97.5% 

MC sampling 16.68 17.52 0.84 4.26 7.57 36.85 8.57 30.58 9.48 27.49 10.02 26.21 15.30 

1st order PSE 

7 pts, 25% step 

16.36 21.42 0.00 3.00 0.96 31.24 4.14 28.07 6.09 26.12 7.07 25.14 
0.64 

-1.94% 22% -100% -29% -87% -15% -52% -8.20% -36% -4.98% -29% -4.09% 

1st order PCE 

LSQ 50 pts 

17.01 18.86 0.00 3.00 2.45 31.01 5.68 28.02 7.29 26.18 8.21 25.26 
4.58 

2.00% 7.68% -100% -29% -68% -16% -34% -8.36% -23% -4.76% -18% -3.65% 

1st order PCE 

NISP 9 pts 

17.54 18.14 0.00 3.00 3.34 31.23 6.29 28.28 8.10 26.47 9.01 25.56 
0.83 

5.14% 3.52% -100% -29% -56% -15% -27% -7.50% -15% -3.69% -10% -2.48% 

2nd order PSE 

19 pts, 25% step 

16.83 21.85 0.59 3.47 5.70 36.31 7.13 31.05 8.33 28.42 8.81 26.98 
1.74 

0.90% 25% -30% -19% -25% -1.47% -17% 1.54% -12% 3.39% -12% 2.94% 

2nd order PCE 

LSQ 50 pts 

16.76 17.61 0.72 3.70 7.92 35.14 8.82 29.97 9.49 27.49 9.94 26.14 
4.58 

0.49% 0.54% -14% -13% 4.61% -4.64% 2.90% -2.00% 0.15% 0.02% -0.81% -0.27% 

2nd order PCE 

NISP 21 pts 

17.54 18.74 0.64 3.59 7.39 36.07 8.82 31.09 9.76 28.25 10.24 27.06 
1.93 

5.14% 6.99% -23% -16% -2.31% -2.13% 2.88% 1.68% 3.01% 2.77% 2.13% 3.24% 
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A comparison of MC sampling results in Tables 2 and 3 shows that while the mean roughness 

values remained somewhat similar (16.35 ML in Table 2 and 16.68 ML in Table 3), all other 

statistical moments, especially 𝜎𝑅
2, increased in the multivariate case (Table 3) versus the single 

parameter scenario (Table 2). This is a clear indication of the effect of multiple uncertain parameter 

realisations on the multiscale process and the nonlinear relationship between roughness and these 

parameters. 

 

Figure 4: Selected roughness results with three uncertain parameters. The number of duplicates was 6 for all cases. 

The qualitative comparison of 1st and 2nd order expansions in Figure 4 shows that for roughness, 

2nd order expansions consistently outperformed the 1st order expansions in capturing the shape of 

the probability density obtained by MC sampling of the multiscale model. The 1st order expansions 

provided normal probability densities, since all of their predicted 𝑠𝑅 and 𝑘𝑅 values in Table 3 were 

0.00 and 3.00, respectively. The 2nd order expansions yielded non-normal distributions, which can 

be observed from Figure 4. The 𝑠𝑅 and 𝑘𝑅 values of 2nd order expansions corroborated the 

observation of non-normality and also showed that all expansions underestimated skewness and 
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kurtosis (see Table 3). In addition, it can be observed from Figure 4 that 2nd order PCE estimates 

exhibited a sharper drop-off at the tails than 2nd order PSE distributions. In Table 3, this was 

confirmed by more accurate estimates of 𝜎𝑅
2, 𝑠𝑅 and 𝑘𝑅 by 2nd order PCE than 2nd order PSE. This 

was further demonstrated by looking at the confidence level bounds, where 2nd order PSE 

consistently underestimated the roughness values at the left boundary of every confidence interval 

(i.e. 0.05%, 0.5%, 1.5% and 2.5% bounds), and the deviations of PSE were significantly larger 

than 2nd order PCE. As shown in Table 3, the accuracy of the estimations of the right confidence 

interval bounds (99.95%, 99.5%, 98.5% and 97.5%) was somewhat similar for 2nd order PSE and 

2nd order PCE NISP, while 2nd order PCE LSQ approximations changed from being the worst of 

the three 2nd order expansions at 99.95% and 99.5% confidence level bounds to being the most 

accurate at 𝛼 = 3% and 𝛼 = 5% levels. 

A trend that persisted among the estimations of the two-sided confidence interval bounds was that 

for larger 𝛼 levels (i.e. closer to the mean of the distribution), the estimations improved. This was 

especially evident for the 1st order expansions, where the deviations were notably larger at the 𝛼 = 

0.1% level than at 𝛼 = 3% and 𝛼 = 5%. It can also be observed from Table 3 that all 2nd order 

expansions exhibited larger deviations at the 0.05% confidence level bound than at the 2.5% 

bound. Moreover, 2nd order PCE LSQ underestimated the 99.95% level to a greater extent than the 

97.5% level (see Table 3). This, along with the underestimated 𝑘𝑅 value, corroborated the assertion 

made by Lu and coworkers104 that PCE expansions are not globally accurate (which is also true 

for PSE), and should therefore exhibit larger errors when the tails of the distribution of the 

observable are being approximated by PCE and PSE. 

Table 3 showed that the 2nd order PCE LSQ exhibited superior accuracy when approximating all 

statistical moments of roughness, because the percent deviations of 2nd order PCE LSQ were 
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smaller than from other techniques. While the accuracy exhibited by 2nd order PCE NISP was 

inferior to PCE LSQ, especially in terms of estimating the statistical moments, the 2nd order PCE 

NISP method still estimated 𝜎𝑅
2 significantly better than 2nd order PSE, i.e. the deviations (shown 

in Table 3) were approximately 7% and 25%, respectively. The lack of accuracy from 2nd order 

PSE may be because the method of finite differences is not capturing accurately the nonlinear 

relationships between roughness and the uncertain parameters. Therefore, higher PSE orders might 

be needed.  

Table 3 also summarized the computational requirements. A comparison with Table 2 (single 

parameter uncertainty) reveals that the computational costs have increased by approximately a 

factor of 2 for 1st order expansions (except for PCE LSQ, where the increase in CPU time was over 

4 times). For the 2nd order expansions, the costs increased by approximately a factor of 4 for PSE 

and PCE NISP, while for 2nd order PCE LSQ the cost went up by a factor of 2. Thus, a 3-fold 

increase in the number of uncertain parameters caused the computational costs to rise by 2-4 times 

for the present analysis.  

Among the 2nd order expansions, the most accurate was also the most computationally expensive 

(PCE LSQ, 4.58 hr). However, 2nd order PCE NISP used the minimum number of uncertain 

parameter realisations necessary for implementing the expansion and provided an optimal balance 

between computational efficiency and accuracy. It achieved a level of accuracy similar to 2nd order 

PCE LSQ, especially when estimating confidence level bounds, using less than half of the time 

(i.e. NISP required 1.93 hr, as shown in Table 3). Thus, 2nd order PCE NISP can be considered as 

the most computationally efficient method to arrive at reasonably accurate results in the case of 

multivariate uncertainty, which was rather different from the conclusions in the previous section. 

Compared to 2nd order PSE and 2nd order PCE LSQ, the greatest limitation of the PCE NISP 
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technique was its estimation of the mean roughness value, since the deviation exhibited by NISP 

was approximately 5% greater than the error observed for PSE and PCE LSQ. The inaccuracy of 

2nd order PCE NISP estimation of 𝜇𝑅 is likely due to the stochastic noise, since its estimate of 𝜇𝑅, 

i.e. 𝛽0 value (the first term in the expansion), was calculated using only 3 realisations of the 

uncertain parameters (whereas for 2nd order PCE LSQ, 50 realisations of the uncertain parameters 

contributed to the calculation of 𝛽0 by Least Squares regression). However, because in PCE NISP 

the calculation of every coefficient is independent of any other, this issue can be mitigated by using 

a larger number of quadrature points specifically when calculating 𝛽0. The minimum required 

number of quadrature points can be used to estimate other expansion coefficients to maintain 

computational efficiency. Figure 5 demonstrates that the impact of stochastic noise can be 

diminished by using a larger number of PCE NISP roots when calculating 𝛽0, since the deviation 

from 𝜇𝑅 obtained by KMC simulations diminishes with more quadrature points. However, 

increasing the number of NISP roots does not completely eliminate the impact of stochastic noise 

(see Figure 5). This effect is not often observed in systems comprised entirely of closed-form 

expressions and is likely due to the absence of closed-form expressions at the discrete scale of the 

model used in this study. 

Thickness distributions have been reported in Figure 6. The film thickness exhibited a linear 

dependence on the distributions of the uncertain parameters in single and multivariate uncertainty 

scenarios (Figure 6 shows the latter), and was captured equally well by 1st and 2nd order expansions 

from all techniques, in harmony with previous works.34 Quantitative results did not offer additional 

insight and have been omitted for brevity. 
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Figure 5: The relationship between the number of PCE NISP roots used to calculate 𝛽0 and percent error from 𝜇𝑅𝐾𝑀𝐶 

 

Figure 6: Selected thickness results with three uncertain parameters. The number of duplicates was 6 for all cases 
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3.4 Robust Optimization  

In the case of thin film manufacturing, roughness and thickness strongly affect the device 

performance; hence, efforts are made to control these observables.1 A common approach to 

controlling these parameters is by manipulating the process temperature.22,34 In the previous 

section, multivariate PSE and PCE models have been developed at the temperature of 800 K. In 

this section, PSE and PCE models (with the same uncertain parameters as in the Multivariate 

Uncertainty section) have been developed at temperature values other than 800 K to establish a 

relationship between temperature and the coefficients of the low-order approximation models (i.e. 

PSE and PCE). 

Second-order PCE and PSE roughness models and first-order thickness models were identified 

offline (as per equations (1) and (3), respectively) on the substrate temperature range 𝑇𝑠𝑢𝑟𝑓 ∈ [600 

K, 1100 K] with the increments in 𝑇𝑠𝑢𝑟𝑓 being 100 K. To identify the models, the same approach 

was taken as that discussed in the preceding section. The 2nd order PSE model for roughness, 

constructed at a temperature 𝑇, is given by the following expression. Note that in the remainder of 

this section 𝑇 and 𝑋 symbols are used instead of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘, respectively, for brevity: 

 

𝑅𝑃𝑆𝐸(𝑇, 𝐸, 𝐸𝑚, 𝑋) = 𝑅(𝑇, 𝜇𝐸 , 𝜇𝐸𝑚
, 𝜇𝑋) +

𝜕𝑅

𝜕𝐸
(𝑇)(𝐸 − 𝜇𝐸) +

𝜕𝑅

𝜕𝐸𝑚

(𝑇)(𝐸𝑚 − 𝜇𝐸𝑚
)

+
𝜕𝑅

𝜕𝑋
(𝑇)(𝑋 − 𝜇𝑋) +

1

2

𝜕2𝑅

𝜕𝐸2
(𝑇)(𝐸 − 𝜇𝐸)2 +

1

2

𝜕2𝑅

𝜕𝐸𝑚
2

(𝑇)(𝐸𝑚 − 𝜇𝐸𝑚
)

2

+
1

2

𝜕2𝑅

𝜕𝑋2
(𝑇)(𝑋 − 𝜇𝑋)2 +

1

2

𝜕2𝑅

𝜕𝐸𝜕𝐸𝑚

(𝑇)(𝐸 − 𝜇𝐸)(𝐸𝑚 − 𝜇𝐸𝑚
)

+
1

2

𝜕2𝑅

𝜕𝐸𝜕𝑋
(𝑇)(𝐸 − 𝜇𝐸)(𝑋 − 𝜇𝑋) +

1

2

𝜕2𝑅

𝜕𝐸𝑚𝜕𝑋
(𝑇)(𝐸𝑚 − 𝜇𝐸𝑚

)(𝑋 − 𝜇𝑋)

 (34) 

where 𝜇𝐸 , 𝜇𝐸𝑚
 and 𝜇𝑋 denote the mean values of the uncertain parameters as shown in equation 

(33). The 2nd order PCE model for roughness at a temperature 𝑇 is as follows: 
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𝑅𝑃𝐶𝐸(𝑇, 𝜉𝐸 , 𝜉𝐸𝑚
, 𝜉𝑋) = 𝛽0(𝑇)𝐻0 + 𝛽1(𝑇)𝐻1(𝜉𝐸) + 𝛽2(𝑇)𝐻1(𝜉𝐸𝑚

) + 𝛽3(𝑇)𝐻1(𝜉𝑋)

+𝛽4(𝑇)𝐻2(𝜉𝐸) + 𝛽5(𝑇)𝐻2(𝜉𝐸𝑚
) + 𝛽6(𝑇)𝐻2(𝜉𝑋)

+𝛽7(𝑇)𝐻1(𝜉𝐸)𝐻1(𝜉𝐸𝑚
) + 𝛽8(𝑇)𝐻1(𝜉𝐸)𝐻1(𝜉𝑋) + 𝛽9(𝑇)𝐻1(𝜉𝐸𝑚

)𝐻1(𝜉𝑋)

 (35) 

where 𝜉𝐸, 𝜉𝐸𝑚
 and 𝜉𝑋 are scaled random parameters that correspond to 𝐸, 𝐸𝑚 and 𝑋, respectively. 

The 1st order PSE and PCE models for thickness, constructed at a temperature 𝑇, are given by 

equations (36) and (37), respectively: 

 

𝑇ℎ𝑃𝑆𝐸(𝑇, 𝐸, 𝐸𝑚, 𝑋) = 𝑇ℎ(𝑇, 𝜇𝐸 , 𝜇𝐸𝑚
, 𝜇𝑋) +

𝜕𝑇ℎ

𝜕𝐸
(𝑇)(𝐸 − 𝜇𝐸) +

𝜕𝑇ℎ

𝜕𝐸𝑚
(𝑇)(𝐸𝑚 − 𝜇𝐸𝑚

)

+
𝜕𝑇ℎ

𝜕𝑋
(𝑇)(𝑋 − 𝜇𝑋)

 (36) 

 𝑇ℎ𝑃𝐶𝐸(𝑇, 𝜉𝐸 , 𝜉𝐸𝑚
, 𝜉𝑋) = 𝛽0(𝑇)𝐻0 + 𝛽1(𝑇)𝐻1(𝜉𝐸) + 𝛽2(𝑇)𝐻1(𝜉𝐸𝑚

) + 𝛽3(𝑇)𝐻1(𝜉𝑋)  (37) 

After the data for the PSE and PCE models was obtained at all temperatures on the specified range, 

polynomial models (of up to 3rd order) were used to fit each PSE/PCE model coefficient to 

temperature, i.e. 

 𝜔(𝑇) = 𝛾0 + 𝛾1𝑇 + 𝛾2𝑇2 + 𝛾3𝑇3 (38) 

where 𝑇 is the corresponding temperature value, 𝛾𝑖 are the coefficients of the polynomial model, 

and 𝜔(𝑇) represents parameters from the PSE and PCE models that have been fitted to 

temperature, e.g. 
𝜕𝑇ℎ

𝜕𝐸
(𝑇), 𝛽𝑖(𝑇). As can be seen from equations (34) and (35), the PSE and PCE 

models for roughness contained 10 coefficients, while the models for thickness (equations (36) 

and (37)) consider 4 coefficients. A polynomial model (equation (38)) was then fitted for each of 

the coefficients in the models for roughness and thickness. For brevity, the polynomial coefficients 

𝛾𝑖 identified from least squares for each PSE/PCE model coefficient have been presented in the 

Appendix A. Having access to these models allows the formulation and efficient solution of 

practical robust optimization problems for thin film deposition. 
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3.4.1 Case Study 1: Minimizing Temperature Under a Maximum Roughness Constraint 

Thin films with lower surface roughness exhibit higher conductivity since the effects of surface 

scattering of electrons in such films are diminished.87,88 The first case study in this section aims to 

find the minimum temperature that will yield a target roughness value at a given confidence level 

in the presence of multivariate uncertainty. Thus, the temperature is both the decision variable and 

the objective function in problem (39). The PSE and PCE models together with the polynomial 

models that related PSE sensitivities and PCE coefficients to temperature were embedded in the 

optimization. The robust optimization problem involving PSE is as follows: 

min
𝑇

𝑇
 

Subject to: 

𝑃(𝑅𝑃𝑆𝐸 ≤ 𝛿𝑅) ≥ 𝛿∗ 

Uncertain parameter distributions, equation (33) 

Closed-form PSE model for Roughness, equation (34) 

𝑇𝑙 ≤ 𝑇 ≤ 𝑇ℎ 

(39) 

In formulation (39), 𝑃 represents the probability, 𝛿𝑅 is the constraint on roughness (equal to 4.0 

ML), 𝛿∗ is the probability limit on the constraint (𝛿∗ = 95%) and 𝑅𝑃𝑆𝐸 refers to the film surface 

roughness values predicted by the corresponding closed-form model (PSE and PCE). That is, this 

constraint ensures that as 𝑇 is minimized, 95% of the roughness values remain below 4.0 ML in 

the presence of parametric uncertainty (equation (33)). The values for 𝑇𝑙 and 𝑇ℎ were set to 600K 

and 1100 K, respectively. A similar problem formulation was built for the PCE method and is not 

shown here for brevity. That is, the corresponding PCE NISP and LSQ models (equation (35)) 

were used to predict 𝑅𝑃𝐶𝐸 (instead of 𝑅𝑃𝑆𝐸). Three different temperature values were obtained 

(reported in Table 4), one for each method, i.e. PSE, PCE LSQ and PCE NISP.  
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Table 4: Case Study 1 - robust optimization to determine the minimum temperature value 

Expansion Optimal T, 

robust 

optimization (K) 

𝑹 value at 95% 

cumulative probability, 

validation (ML) 

CPU time, 

robust 

optimization (s) 

CPU time, validation 

PSE 1029 4.18 (+4.55%) 113.4 2.00×105 s (55.6 hr) 

PCE LSQ 1052 3.72 (-7.10%) 202.2 2.68×105 s (74.4 hr) 

PCE NISP 1034 4.04 (+0.98%) 189.6 2.15×105 s (59.7 hr) 

 

Validation of the results was conducted at the three temperature values using the original 

multiscale model with 3,500 MC realisations in the uncertain parameters. The probability 

distributions for roughness were examined and values that corresponded to the 95% cumulative 

probability are reported in Table 4. The results from the validation showed that the robust 

optimization that employed the PCE NISP model identified a temperature value that satisfied the 

roughness constraint of problem (39) more closely (with an overestimation by only 0.98%). The 

temperature value from PSE yielded a roughness value that exceeded the constraint satisfaction by 

4.55%, while the resulting temperature of PCE LSQ produced a roughness value that 

underestimated the desired specification by 7.10%. Figure 7 compares the probability distributions 

for roughness at 1034 K using the primary multiscale model and 2nd order PCE NISP. The 

coefficients of PCE NISP have been calculated at 1034 K using the polynomial models employed 

in robust optimization (see equations (35) and (38)). It can be observed that the estimated 

probability distribution function captures the shape and the tails of the distribution generated 

during validation. 
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Figure 7: Comparison of the roughness validation results against PCE NISP 2nd order (T=1034 K) 

The CPU time requirements have been summarized in Table 4. For each expansion technique, the 

time for validation using the multiscale model was 3 orders of magnitude greater than the time 

necessary for the robust optimization to converge to a temperature value. For each PSE and PCE 

method, the optimization routine converged after 21 to 26 function evaluations. Therefore, if 

instead of the embedded polynomial models the original multiscale model were used in robust 

optimization, the time needed for the optimization to converge would become prohibitive; hence 

the significance of the approach employed in this work.  

3.4.2 Case Study 2: Maximizing Thickness Under a Maximum Roughness Constraint 

In addition to roughness, thickness also influences thin film conductivity. While excessive 

roughness is detrimental to conductivity, insufficient thickness has the same effect.89,90 However, 

since a lower roughness can be achieved by increasing the temperature, and a higher thickness can 

be obtained by doing the opposite (for a fixed batch time), selecting a temperature that satisfies 

both of these constraints in the presence of uncertainty is not a trivial task. Finding the optimal 
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temperature value that can result in a low roughness film with an adequate thickness will cause the 

manufacturing process to be less time-consuming and more energy efficient. This robust 

optimization formulation can be posed as follows: 

max
𝑇

 
𝜇𝑇ℎ𝑃𝑆𝐸  

Subject to: 

(𝜇𝑅𝑃𝑆𝐸
+ 𝜎𝑅𝑃𝑆𝐸

) ≤ 𝛿𝑅 

Uncertain parameter distributions, equation (33) 

Closed-form PSE model for Roughness and Thickness, equations (34) and (36) 

𝑇𝑙 ≤ 𝑇 ≤ 𝑇ℎ 

(40) 

In formulation (40), the roughness constraint 𝛿𝑅 has been set to 3.5 ML, 𝜇𝑇ℎ𝑃𝑆𝐸
 denotes the mean 

value of film thickness estimated by the PSE model, while 𝜇𝑅𝑃𝑆𝐸
 and 𝜎𝑅𝑃𝑆𝐸

 stand for the estimates 

of mean and standard deviation of roughness using the PSE model, respectively. The values of 𝑇𝑙 

and 𝑇ℎ were the same as for case study 1 (section 3.4.1). The same formulation was used for PCE, 

in which case closed-form PCE models (equations (35) and (37)), combined with the polynomial 

models (38), were used to provide the estimates for 𝜇𝑅𝑃𝐶𝐸
, 𝜎𝑅𝑃𝐶𝐸

 and 𝜇𝑇ℎ𝑃𝐶𝐸
.  

Three different temperatures were obtained and presented in Table 5 along with the results of 

optimization and the computational costs. Validation was performed using the primary multiscale 

model at the PCE NISP temperature (1053 K) with 3,500 MC samples of the uncertain parameters. 

The resulting mean thickness value obtained from this simulation (1,641.75 ML) was found to be 

only 0.19% higher than the outcome of robust optimization with PCE NISP (1,638.56 ML), while 

the validated value of 𝜇𝑅 + 𝜎𝑅 (3.4 ML) was found to be 2.86% lower than the imposed 𝛿𝑅. Figure 

8 shows that roughness probability distribution was skewed and non-normal, and that its shape and 

tails were captured accurately by PCE NISP. If roughness were normally distributed, at least 84% 

of the MC sampling results would need to satisfy 𝛿𝑅. Figure 9 demonstrated that 89.3% of 
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validation results for roughness satisfied the 𝛿𝑅 constraint. At 1053 K, MC sampling of the primary 

multiscale model required 94.5 h of CPU time to compute the observables, which was four orders 

of magnitude greater than the time needed for robust optimization to converge to the optimal 

temperature using PCE NISP models (13.2 s).  

Table 5: Case Study 2 – constrained maximization of thickness 

Expansion Optimal T, (K) 𝝁𝑻𝒉 (ML) 𝝁𝑹 (ML) 𝝈𝑹 (ML) CPU time (s) 

PSE 1056 1636.95 3.22 0.28 8.4 

PCE LSQ 1064 1630.71 3.06 0.45 15.6 

PCE NISP 1053 1638.56 3.06 0.44 13.2 

 

 

Figure 8: Comparison of the roughness validation results against PCE NISP 2nd order (T=1053 K) 
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Figure 9: Validated roughness and thickness data satisfied the constraint on roughness (T=1053 K) 

 

3.5 Chapter Summary 

This chapter compared the performance of Power Series Expansions and Polynomial Chaos 

Expansions (calculated via the Least Squares and NISP methods) in the uncertainty analysis of a 

non-closed-form stochastic multiscale system. While the study used a specific thin film deposition 

multiscale model, the analysis methodology described herein is general and can be extended to 

other multiscale systems. In the single uncertain parameter study, the 2nd order PSE was found to 

be the most accurate and computationally efficient method to predict the probability distribution 

of an observable. However, in the multivariate case, 2nd order PCE Least Squares provided the 

most accurate results, while 2nd order PCE NISP provided a similar level of accuracy at half the 

computational cost. In the multivariate case, the greatest shortcoming of PCE NISP against the 

other methods considered here was lower accuracy in estimating the mean value of the observable. 

However, this accuracy was found to improve when more quadrature points (roots) were used for 
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calculating the expansion coefficient that estimated the mean of the observable value. Using a 

greater number of roots for this coefficient and the minimum necessary number of roots for the 

other coefficients in PCE NISP can provide high accuracy while keeping the computational costs 

low. Nevertheless, the stochastic noise could not be completely eliminated from the estimate of 

the mean due to the non-closed-form expressions involved in the present multiscale system. 

Depending on the technique, the computational costs for the present multiscale case study were 

found to increase by 2-4 times when 3 uncertain parameters were considered in the multivariate 

uncertainty scenario against the single uncertain parameter case. In order to demonstrate the 

efficiency of using PSE and PCE for uncertainty propagation instead of MC sampling, the 

sensitivities and coefficients of multivariate expansions were correlated with temperature and then 

used in robust optimization case studies. Among the three expansions techniques, PCE NISP was 

found to be computationally efficient and to yield results which were demonstrated to have 

satisfied the constraints of the robust optimization problems more closely than the other two 

methods. 
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Chapter 4: Multilevel Monte Carlo for the Estimation of Expected 

Values in Continuous Chemical Engineering Systems 

Multilevel Monte Carlo sampling (MLMC) has been demonstrated to provide accurate estimates 

of the expected values of system observables under uncertainty and save computational time.113,114 

However, as discussed in section 2.2.3, there is a limited number of applications of MLMC for the 

estimation of expected values in chemical engineering systems subject to uncertainty. To address 

this gap in knowledge, MLMC has been applied to three standard chemical engineering systems 

subject to uncertainty and its performance has been compared to traditional uncertainty 

quantification techniques.  

4.1 Synopsis  

The aim of the work presented in this chapter is to evaluate the performance of Multilevel Monte 

Carlo (MLMC) sampling technique for expected value estimation in chemical engineering 

systems. Initially, the MLMC method is described and a tutorial example is presented, in which 

MLMC estimated one observable from a mixing tank model subject to two normally distributed 

uncertain parameters. Afterwards, the performance of MLMC is compared to standard Monte 

Carlo sampling (MC) and Power Series (PSE) and Polynomial Chaos (PCE) expansions for the 

estimation of an observable of a wastewater treatment plant subject to multiple uncertain 

parameters, one of which may be thought of as a model structure error. Following the wastewater 

treatment plant case study, the performance of MLMC is compared to MC sampling for the 

simultaneous estimation of four observables of a computationally intensive ternary distillation 

column model subject to multiple uncertain parameters. Also, the nuances of adapting the MLMC 

technique to chemical engineering systems and the advantages of using MLMC for uncertainty 
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quantification are highlighted. Based on a review of the current literature, it appears that this study 

incorporates the first comparison of MLMC, PSE and PCE techniques.  

4.2 Illustrative Case Study: Mixing Tank 

For illustration purposes, the MLMC technique was initially implemented on a relatively simple 

system201 of a continuously stirred mixing tank that uses a PI controller to maintain the liquid level 

at a desired setpoint 𝐻𝑠𝑝. The model consists of the following equations:201  

 𝐴𝑇

𝑑𝐻

𝑑𝑡
= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡 (41) 

 𝐹𝑜𝑢𝑡 = 𝐾𝐶𝑣√10−3𝜌𝑤𝑔𝑤𝐻 (42) 

where 𝑡 represents time, 𝐴𝑇 is the area of the mixing tank, 𝐻 is the height of the liquid level, while 

𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 are the inlet and outlet flow rates, respectively. 𝐶𝑣 is the outlet valve coefficient, 𝜌𝑤 

is the density of water and 𝑔𝑤 is its standard gravity. In this system, it is assumed that the stem 

position of the outlet valve, 𝐾, is manipulated by a PI controller, i.e. 

 
𝐾(𝑡) = 𝐾̅ + 𝐾𝑐𝜀 +

𝐾𝑐

𝜏𝑖,𝑡𝑎𝑛𝑘
∫ 𝜀𝑑𝑡

𝑡

0

 (43) 

where 𝐾̅ is the nominal value of 𝐾, 𝐾𝑐 is the controller’s gain, 𝜏𝑖,𝑡𝑎𝑛𝑘 is the integral time constant 

and 𝜀 is the error term (𝜀 = 𝐻𝑠𝑝 − 𝐻).  

To demonstrate how MLMC can be used for uncertainty propagation in the mixing tank system, 

𝐶𝑣 and 𝐹𝑖𝑛 were considered as independent normally distributed uncertain parameters. The values 

for all model parameters have been provided in Table 6.  
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Table 6: Parameter values for the mixing tank model. Note that 𝒩 denotes the normal distribution. 

Parameter Value 

𝐴𝑇 1 m2 

𝐶𝑣 Uncertain, 𝒩(25, 52) 

𝐹𝑖𝑛 Uncertain, 𝒩(6 m3/hr, (0.5 m3/hr)2) 

𝜌𝑤 1000 kg/m3 

𝑔𝑤 0.981 

𝐻𝑠𝑝 8 m 

𝐾̅ 0.1 

𝐾𝑐 -0.01 

𝜏𝑖,𝑡𝑎𝑛𝑘 0.1 min 

 

The goal was to approximate the expected value of the time-averaged liquid level in the tank, i.e. 

 
𝔼[𝐻𝑡] = 𝔼 [

∫ 𝐻(𝑡)𝑑𝑡
𝑡𝑓

0

∫ 𝑑𝑡
𝑡𝑓

0

] (44) 

where 𝑡𝑓 was set to 10 hr. The MLMC algorithm for this case study was set up as follows: 

 Step 1: 𝐿 was initially set to 5 because this number of levels was observed to produce 

consistent estimates of 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝐶𝑀 and 𝛾𝑀𝐿𝑀𝐶 when multiple preliminary samplings were 

conducted, unlike 𝐿 = 2.  

The coarse discretization step size, ℎ0, was set to 0.5 hr. The step sizes from ℎ1 to ℎ5 were 

calculated as 
ℎ0

2𝑙
. The choice of ℎ0 magnitude is problem-specific. The guideline is to set ℎ0 value 

such that the coarse discretization does not produce excessive variance 𝑉0 in the estimator at 𝑙 = 0 

(in this study, 𝔼[𝐻0
𝑡]) through inaccurate numerical integration. When 𝑉0 is significantly large, it 

causes oversampling of the system by inflating 𝑁0 (see equation (10)). Oversampling diminishes 

the savings in computational time that MLMC offers. Even though an individual sample is 
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inexpensive to compute when ℎ0 is very coarse relative to the entire integration domain, the total 

number of sample evaluations will be so large as to negate the computational savings offered by 

MLMC. At the same time, starting MLMC with a small ℎ0 will also slow down the MLMC 

algorithm because the computational cost of each sample will be relatively high and will be 

exacerbated by the total number of samples at the coarser levels, especially at 𝑙 = 0.  

𝑁𝑠𝑙 was set to 100 for all six levels (from 𝑙 = 0 to 𝑙 = 5). This value provides a sufficient 

representation of 𝐻𝑙
𝑡 and 𝑉𝑙 values without causing excessive time expenditures on the preliminary 

sampling. For computationally intensive systems, it may be necessary to use a smaller 𝑁𝑠𝑙, i.e. 

100 may be computationally prohibitive (see the Distillation Column section). 

The value of 𝜖 was chosen to be 10-3 m (this magnitude is less than exp−1). For systems 

that exhibit a large variability of 𝑌𝑙 (i.e. 𝐻𝑙
𝑡 in this case study) and/or are computationally 

expensive, using a very small 𝜖 may make the approximation of observables computationally 

prohibitive if their absolute values are orders of magnitude greater than the chosen 𝜖. 

 Step 2: The estimates of 𝔼[𝐻𝑙
𝑡], 𝑉𝑙 and 𝐶𝑙 were obtained by drawing MC samples from the 

distributions of 𝐶𝑣 and 𝐹𝑖𝑛 and then simulating the closed-loop mixing tank model (equations (41)-

(43)) for each realisation. 

 Step 3: The 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶 and 𝛾𝑀𝐿𝑀𝐶 values were estimated by linear least-squares 

regression to be 1.006, 2.837 and 0.176, respectively, using equations (8)-(9). They were all 

positive and the condition 𝛼𝑀𝐿𝑀𝐶 ≥
1

2
min(𝛽𝑀𝐿𝑀𝐶 , 𝛾𝑀𝐿𝑀𝐶) was clearly met. Following the MLMC 

algorithm described in the previous section, the value of 𝐿 was reset to 2. 
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 Step 4: Equation (10) was used to calculate the values of 𝒩0, 𝒩1 and 𝒩2 (i.e. in total, there 

were three currently defined levels). Hence, their corresponding samples were 1,237, 51 and 9, 

respectively.  

Step 5: Since 100 samples have already been performed at levels 0-2, only 1,137 additional 

samples were done at 𝑙 = 0. Hence, 𝑁𝑠0 was updated to 1,237, while 𝑁𝑠1 and 𝑁𝑠2 were kept at 

100. 

Step 6: Having updated 𝑉𝑙 using the results of Step 5, the new values for 𝒩0, 𝒩1 and 𝒩2 

were 1,147, 49 and 9, respectively. 

Step 7: The 𝒩𝑙 values from Step 6 did not exceed 𝒩𝑙 from Step 4. Therefore, proceed to 

Step 8. Had the updated 𝒩𝑙 values exceeded those from Step 4 for any 𝑙, it would have been 

necessary to return to Step 5. 

Step 8: The current approximations of 𝔼[𝐻0
𝑡], 𝔼[𝐻1

𝑡] and 𝔼[𝐻2
𝑡] were 7.9157 m, 0.0377 m 

and 0.0188 m, respectively. Condition (11) did not hold for any of the values. Therefore, set 𝑉3 =

𝑉2/22.837, set 𝑁𝑠3 to 0, calculate ℎ3 as 
ℎ0

23, set 𝐿 = 3, and go back to Step 4. 

Steps 4-8 were repeated until 𝐿 = 7 was reached. During the procedure, an additional 20 

samples were drawn from the distributions of the uncertain parameters for 𝑙 = 0 (1,257 total 

samples at 𝑙 = 0, 𝔼[𝐻0
𝑡] changed to 7.9153 m). The values of 𝒩𝑙 and 𝔼[𝐻𝑙

𝑡] were reported in Table 

7. The multilevel estimator of 𝔼[𝐻𝑡] was 7.9906 m, calculated by adding the individual 𝔼[𝐻𝑙
𝑡] 

values in Table 7. The entire MLMC approximation was accomplished in 4.01 seconds on an 

Intel® CoreTM i7-4770 CPU @ 3.40 GHz with 16 GB of RAM (the same computer was used for 

all the case studies presented in this chapter).  
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Table 7: The results of MLMC approximation for the mixing tank model. Note that the values of 𝔼[𝐻𝑙
𝑡] are in metres.  

𝑙 𝒩𝑙 𝔼[𝐻𝑙
𝑡] (m) 

0 1,257 7.9153 

1 100 0.0377 

2 100 0.0188 

3 2 0.0094 

4 1 0.0052 

5 1 0.0024 

6 1 0.0012 

7 1 0.0006 

 

For comparison purposes, standard MC sampling was used to determine 𝔼[𝐻𝑡] using 10,000 

realisations of uncertain parameters with the integration time-step of 0.01 hr (roughly equal to 
ℎ0

22). 

The approximation for 𝔼[𝐻𝑡] was 7.9881 m, obtained in 26.17 seconds. The results of MC and 

MLMC have been reported in Figure 10, which shows the distributions and independence of the 

two uncertain parameters and compares the mean values obtained by MC and MLMC. There is a 

close agreement of 𝔼[𝐻𝑡] approximations (with a difference of 0.0025 m), obtained 6.5 times 

faster using MLMC. 
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Figure 10: The uncertain parameters and the results of applying MLMC to the mixing tank model. 

 

4.3 Wastewater Treatment Plant 

In order to examine the potential benefits of applying the MLMC technique to more 

computationally demanding chemical engineering systems, the method was applied to a 

wastewater treatment plant described elsewhere202,203 (see Figure 11 for a diagram). The aim of 

this process is to remove organic substrates from municipal wastewater by using a population of 

microorganisms (referred to as biomass). The microorganisms consume the substrates, grow in the 

bioreactor and form an activated sludge. The effluent from the reactor is passed to the settler, where 

the sludge is separated by sedimentation and then recycled back to the bioreactor along with 

organic substrates that were not consumed by the biomass.203  
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Figure 11: A diagram of the wastewater treatment plant model. 

 

The wastewater treatment plant is represented by the following set of ordinary differential 

equations: 

 
𝑑𝑥𝑏𝑖𝑜

𝑑𝑡
= 𝜇𝑔𝑟𝑦𝑏𝑖𝑜

𝑥𝑏𝑖𝑜𝑠

𝑘𝑠 + 𝑠
− 𝑘𝑑

𝑥𝜑

𝑠
− 𝑘𝑐𝑥𝑏𝑖𝑜 +

𝑞

𝑉𝑟
(𝑥𝑖𝑟,𝑏𝑖𝑜 − 𝑥𝑏𝑖𝑜) (45) 

 
𝑑𝑠

𝑑𝑡
= −𝜇𝑔𝑟

𝑥𝑏𝑖𝑜𝑠

𝑘𝑠 + 𝑠
+ 𝑓𝑑𝑘𝑑

𝑥𝜑

𝑠
+ 𝑓𝑑𝑘𝑐𝑥𝑏𝑖𝑜 +

𝑞

𝑉𝑟
(𝑠𝑖𝑟 − 𝑠) (46) 

 
𝑑𝑥𝑏,𝑏𝑖𝑜

𝑑𝑡
=

1

𝐴𝑑𝑙𝑏
(𝑞𝑖 + 𝑞2 − 𝑞𝑝)(𝑥𝑏𝑖𝑜 − 𝑥𝑏,𝑏𝑖𝑜) +

1

𝑙𝑏
(𝑣𝑠𝑑 − 𝑣𝑠𝑏) (47) 

  
𝑑𝑥𝑑,𝑏𝑖𝑜

𝑑𝑡
=

1

𝐴𝑑𝑙𝑑
(𝑞𝑖 − 𝑞𝑝)(𝑥𝑏,𝑏𝑖𝑜 − 𝑥𝑑,𝑏𝑖𝑜) −

1

𝑙𝑑
𝑣𝑠𝑑 (48) 

  
𝑑𝑥𝑟,𝑏𝑖𝑜

𝑑𝑡
=

1

𝐴𝑑𝑙𝑟
𝑞2(𝑥𝑏,𝑏𝑖𝑜 − 𝑥𝑟,𝑏𝑖𝑜) +

1

𝑙𝑟
𝑣𝑠𝑏 (49) 

  
𝑑𝑐𝑤

𝑑𝑡
= 𝑘𝑙𝑎𝑓𝑘(𝑐𝑠 − 𝑐𝑤) − 𝑂𝑈𝑅 −

𝑞

𝑉𝑟
𝑐𝑤 (50) 

 𝑂𝑈𝑅 = 𝑘01𝜇𝑔𝑟𝑥𝑏𝑖𝑜

𝑥𝑏𝑖𝑜

𝑘𝑠 + 𝑠
 (51) 

  𝑞𝑟 = 𝑞2 − 𝑞𝑝 (52) 
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  𝑞 = 𝑞𝑖 + 𝑞𝑟 (53) 

  𝑞𝑖 = 100 𝑠𝑖𝑛(𝜔𝑡) + 500 (54) 

where 𝑡 is time (𝑡 ∈ [0 hr, 2000 hr]), 𝑥𝑏𝑖𝑜 is the time-dependent biomass concentration and 𝑠 is the 

time-dependent concentration of organic substrates in the bioreactor (all concentrations are in 

mg/L); 𝑞𝑖, 𝑞𝑟 and 𝑞 stand for flow rates (in m3hr-1) of inlet, recycled and outlet streams, 

respectively, 𝑞𝑝 is the purge flow rate, 𝑥𝑖𝑟,𝑏𝑖𝑜 represents the combined inlet and recycled 

concentration of biomass, while 𝑥𝑑,𝑏𝑖𝑜 and 𝑥𝑏,𝑏𝑖𝑜 stand for biomass concentrations in the surface 

and middle layers in the settler, and 𝑠𝑖𝑟 denotes the combined inlet and recycled concentration of 

organic substrates. The surface area of the top layer of the settler is represented by 𝐴𝑑, and 𝑣𝑠𝑑 

and 𝑣𝑠𝑏 are the rates of settling of the activated sludge in the top and middle layers, respectively. 

The dissolved oxygen concentration is designated by 𝑐𝑤 and the speed of aeration turbines is 

represented by 𝑓𝑘. Note that “𝑂𝑈𝑅” is an acronym for “Oxygen Uptake Rate”. The parameters of 

equations (45)-(54) are listed in Table 8.  

The purpose of applying the MLMC technique was to estimate the expected value of the time-

averaged substrate concentration at the outlet, 𝔼[𝑠𝑡], subject to uncertainty. The observable was 

formulated as follows:  

 
𝔼[𝑠𝑡] = 𝔼 [

∫ 𝑠(𝑡)𝑑𝑡
𝑡𝑓

0

∫ 𝑑𝑡
𝑡𝑓

0

] (55) 

where 𝑡𝑓 was set to 2,000 hr. 
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Table 8: Parameters for the simplified model of a wastewater treatment plant.202,203 Note that 𝒰 denotes the uniform distribution. 

Parameter Value Description 

𝜇𝑔𝑟 0.1824 hr-1 Specific growth rate of the microorganisms 

𝑦𝑏𝑖𝑜 0.5948 Fraction of substrate converted to biomass 

𝑘𝑠 300 hr-1 Saturation constant 

𝑘𝑑 5.0×10-5 hr-1 
Rate of biomass death by endogenous 

metabolism 

𝑘𝑐 1.333×10-4 hr-1 Rate of biomass death by biological waste 

𝑘𝑙𝑎 0.7 hr-1 Rate of oxygen transfer into the water 

𝑘01 1.0×10-4 hr-1 Rate of oxygen demand  

𝑉𝑟 2500 m3 Volume of the bioreactor 

𝑓𝑑 0.2 
Fraction of dead biomass that contributes to 

the substrate 𝑠 

𝑞𝑟 403 m3hr-1 Flow rate of the recycled stream 

𝑥𝑖,𝑏𝑖𝑜 Lognormal (80
mg

L
, (15

mg

L
)

2

) Biomass concentration in the inlet stream 

𝑥𝑟,𝑏𝑖𝑜 5975.82 mg/L Biomass concentration in the recycled stream 

𝑠𝑖  Lognormal (366
mg

L
, (40

mg

L
)

2

) Substrate concentration in the inlet stream 

𝑐𝑠 8.0 hr-1 Oxygen specific saturation 

𝑙𝑑 2 m Depth of the top layer of the settler 

𝑙𝑏 1 m Depth of the middle layer of the settler 

𝑙𝑟 0.5 m Depth of the bottom layer of the settler 

𝜔 Lognormal(0.005 hr−1, (0.005 hr−1)2) 
The frequency of the disturbance in the inlet 

stream 

𝜑 𝒰(1.3,2.7) 
Uncertain exponent of biomass concentration 

in equations (45) and (46) 

 

Uncertainty was assumed to arise from four uncertain parameters. The value of exponent 𝜑 in 

equations (45) and (46) was taken to be uniformly distributed on the interval [1.3, 2.7] (i.e. 

𝜑~𝒰(1.3,2.7)). This uncertainty alone caused the observable to deviate by 18% from the 
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observable value obtained when all uncertain parameters were set to their mean values (not shown 

for brevity). Furthermore, this uncertain parameter may be accounted for as a model structure error 

because it directly affects the dynamic behaviour of the dependent variable 𝑥𝑏𝑖𝑜. The other three 

uncertain parameters considered in the study were 𝑥𝑖,𝑏𝑖𝑜, 𝑠𝑖, and 𝜔. Each of these three parameters 

was assumed to be lognormally distributed with the mean values and standard deviations as 

reported in Table 8. Note that although each uncertain parameter was time-invariant, 𝜔 appears in 

equation (54), which is a time-dependent function that determines the variability in the inlet 

stream’s flowrate at any time t. Therefore, this variation can be considered as a time-varying 

disturbance affecting this process. 

The root mean square error criterion (𝜖) for MLMC was set to 0.1 mg/L. Levels 0-5, inclusive, 

with 100 uncertain parameter realisations at each level, were used to estimate 𝑉𝑙 for equation (10). 

The coarsest time domain discretization of MLMC, ℎ0, was set to 31.25 hr because it provided a 

reasonable balance between accuracy in the estimates and computational time at 𝑙 = 0 during the 

MLMC’s preliminary sampling phase. The MLMC procedure was performed 20 times and the 

results have been presented in Figures 12 and 13 as solid horizontal blue lines spanning the 

integration time-steps used by MLMC, while MC results were presented as circles at the 

appropriate time-steps. For comparison purposes, MC sampling was conducted with various 

integration time-steps (see the green circles in Figures 12 and 13). MC sampled 10,000 realisations 

of the uncertain parameters per batch until the relative error between the estimate of 𝔼[𝑠𝑡] based 

on all previous batches and the estimate based on all batches (i.e. all previous plus the current 

batch) was less than 0.1 mg/L. The “Benchmark” values were obtained using MC sampling with 

small integration time-steps (see Figure 12, black circles) with the relative error convergence 

criterion of 0.001 mg/L, resulting in 170,000 samples (17 batches of 10,000 samples each) at the 
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integration time-step of 0.1 hr and 390,000 samples (39 batches of 10,000 samples each) at the 

integration time-step of 0.01 hr.  

 

Figure 12: A comparison of the accuracy of MC and MLMC estimates for the wastewater treatment plant model. Note that the 

vertical axis is expressed as a logarithm (for clarity). 

 

Figure 13: Comparison of the computational requirements of MC and MLMC sampling for the wastewater treatment plant. 
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In order to minimize the computational expenses for both MC and MLMC techniques, vectorized 

(element-wise) operations were implemented wherever possible for the wastewater treatment plant 

model. However, the capacity of RAM memory became a limiting factor for vectorized operations 

when very small time-steps were used for MC sampling. This limitation is evident from the 

vectorized MC data of Figure 13 at the time-step of 0.1 hr, where the vectorized MC operations 

required over 1.5 orders of magnitude more CPU time than what was needed at larger time-steps. 

Calculations using vectorized MC operations became computationally intractable for the time-step 

of 0.01 hr while using the computer used in this study; hence the absence of the result from Figure 

13. Consequently, simulations with conventional “for” loops were used for the time-steps of 0.1 

hr and 0.01 hr, resulting in significantly slower calculations (represented by the black circles in 

Figure 13) despite running the “for” loop operations in parallel on the quad-core CPU computer 

used in this study. MLMC code was also implemented with “for” loops to ensure that the way the 

algorithm was simulated did not affect the accuracy of results; the data was presented in Figures 

12 and 13 using dashed blue lines.  

By inspecting Figure 12, one can observe that the results of MLMC were within ±0.1 mg/L of the 

Benchmark values. Moreover, the difference between the maximum and minimum MLMC results 

was approximately 0.20 mg/L, which divided by 2 was 0.10 mg/L, in harmony with the 𝜖 setting 

of 0.1 mg/L. The computational requirements of vectorized MLMC were up to 2.8 orders of 

magnitude less than MC sampling that yielded the Benchmark value after 390,000 samples (see 

Figure 13). The vectorized MC sampling required 0.5 to 0.75 orders of magnitude less CPU time 

than vectorized MLMC, except for the case where integration time-step of 0.1 hr was used for 

vectorized MC operations, where the CPU time for MC was at least 0.7 orders of magnitude greater 

than MLMC. However, Figure 12 showed that the results of this MC sampling were not guaranteed 
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to land within the ±0.1 mg/L band (black solid lines in Figure 12) from the Benchmark values. In 

fact, even the mean value of different MC sampling outcomes, represented by the green dashed 

line in Figure 12, was outside the ±0.1 mg/L band. On the other hand, the MLMC results were 

within the band since 𝜖 was set to 0.1 mg/L. The large variability of MC results is due to the fact 

that MC sampling convergence is based on monitoring the change in estimates when additional 

samples were added to the pool of sampled data. Therefore, MC sampling is much more likely to 

converge to a local critical point (minimum/maximum) than to the true value. Although MLMC is 

not guaranteed to converge,114 its results were observed to be more precise and more accurate than 

standard MC. The final estimates of MLMC are informed by the progressively more accurate 

calculations done at the increasingly finer discretization levels. The incorporation of accurate 

calculations into the final outcome, combined with checking for robust convergence,114 improves 

the precision of MLMC results and increases the chances of those results being more accurate than 

standard MC.  

In order to make a thorough comparison of MLMC to other common uncertainty propagation 

techniques, 2nd order Power Series (PSE) and Polynomial Chaos (PCE) expansions were 

constructed, parametric uncertainty was propagated, and the resulting mean values and the 

necessary computational time were plotted in Figures 12 and 13, respectively, as red (PCE) and 

blue (PSE) circles at the time-steps of 0.1 hr, 0.01 hr and 0.001 hr. The PSE formulation relied on 

33 realizations of the uncertain parameters and used centered finite differences for the sensitivities. 

The PCE was constructed with Lagrange and Hermite polynomials (for the uniform and lognormal 

distributions of the uncertain parameters, respectively) and the PCE coefficients were calculated 

using the Least Squares method with 33 realisations of the parameters. Further details on how to 

construct PSE and PCE expressions can be found elsewhere.54 While PSE and PCE required 0.2 
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to 1.8 orders of magnitude less CPU time than MLMC (see Figure 13), their accuracy was 

substantially inferior to the results of both MLMC and MC sampling, as indicated in Figure 12. 

The 2nd order PSE produced values that underestimated the Benchmark by 20.5%, while the 2nd 

order PCE results were inconsistent, from 2.4% lower to 2.1% higher than the Benchmark. Only 

one PCE approximation was within the ±0.1 mg/L band (see Figure 12, integration time-step of 

0.001 hr). Thus, MLMC produced the most accurate results at a computational cost that was 0.7 

to 2.8 orders of magnitude lower than what was required for MC to achieve a similar accuracy. 

4.4 Distillation Column 

To examine the performance of MLMC in highly computationally intensive chemical engineering 

systems, this uncertainty propagation technique was applied to a ternary distillation column.204,205 

This separation system consists of 28 stages, with stage 1 at the top of the column. Stage 1 is 

comprised of a condenser/reflux drum, and stage 28 contains a partial reboiler and a cooler. The 

feed stream, which is a mixture of toluene, n-hexane and heptane, is provided at the 22nd stage for 

the purpose of separating toluene from the other two chemicals. The bottom outlet stream is 

required to contain at least 90% toluene by mole fraction, while the distillate (top) stream should 

predominantly consist of n-hexane and heptane. The model assumes that the mole fractions of 

toluene in the top stream and heptane in the bottom stream can be measured online and contains 

PI controllers that regulate variability in these variables. The toluene mole fraction in the top 

stream is controlled by changing the reflux ratio of the condenser, while the heptane mole fraction 

in the bottom stream is maintained by adjusting the partial reboiler heat duty. Table 9 contains the 

values for various model parameters. The model was simulated on a time domain 𝑡 ∈ [0 hr, 25 hr]. 
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Table 9: Parameters of the ternary distillation column model. 

Parameter Value Description 

𝑁𝑠𝑡𝑎𝑔𝑒𝑠 28 Number of stages in the column (the top stage is #1) 

𝑁𝑓𝑒𝑒𝑑  22 Feed stage number 

𝐷𝑐𝑜𝑙 0.722 m Column diameter 

𝐴𝑐𝑜𝑛𝑑 0.1795 m2 Area of the condenser 

𝐴𝑟𝑒𝑏 0.1014 m2 Area of the reboiler 

𝐴𝑐𝑜𝑜𝑙 0.0250 m2 Area of the cooler 

𝐹22 600 mol/hr Feed flowrate 

𝑇 60 ⁰C Temperature of inlet and outlet streams 

𝑃𝑐𝑜𝑛𝑑 0.9334 atm Pressure in the condenser 

𝑠𝑝1 5.83×10-3 
Set-point for the PI controller of the of toluene mole fraction in 

the top stream 

𝐾𝑐1 -16.67 Gain of the toluene PI controller 

𝜏𝐼1 0.505 min Integral time constant of the toluene controller 

𝑠𝑝2 8.00×10-2 
Set-point for the PI controller of heptane mole fraction in the 

bottom stream 

𝐾𝑐2 43.33 Gain of the heptane PI controller 

𝜏𝐼2 0.175 min Integral time constant of the heptane controller 

 

The aim of this case study was to use MC and MLMC sampling to characterize product variability 

due to uncertainty in the feed composition. The mole fractions of n-hexane and heptane in the inlet 

stream were assumed to be uncertain and uniformly distributed on the intervals [0.06, 0.10] and 

[0.10, 0.14], respectively. Time trajectories of the observables at various uncertain parameter 

realisations were plotted in Figure 14. For this case study, the MLMC technique was adjusted to 

simultaneously estimate the expected values of the time-averaged mole fractions of toluene in the 

bottom stream (𝔼[𝓉ℓ𝑏
𝑡 ]), n-hexane in the distillate stream (𝔼[𝒽𝓍𝑑

𝑡 ]), n-hexane in the bottom stream 

(𝔼[𝒽𝓍𝑏
𝑡 ]) and heptane in the distillate stream (𝔼[𝒽𝓅𝑑

𝑡 ]). This is formulated as follows:  
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𝔼[𝓉ℓ𝑏

𝑡 ] = 𝔼 [
∫ 𝓉ℓ𝑏(𝑡)𝑑𝑡

𝑡𝑓

0

∫ 𝑑𝑡
𝑡𝑓

0

] (56) 

 
𝔼[𝒽𝓍𝑑

𝑡 ] = 𝔼 [
∫ 𝒽𝓍𝑑(𝑡)𝑑𝑡

𝑡𝑓

0

∫ 𝑑𝑡
𝑡𝑓

0

] (57) 

 
𝔼[𝒽𝓍𝑏

𝑡 ] = 𝔼 [
∫ 𝒽𝓍𝑏(𝑡)𝑑𝑡

𝑡𝑓

0

∫ 𝑑𝑡
𝑡𝑓

0

] (58) 

 
𝔼[𝒽𝓅𝑑

𝑡 ] = 𝔼 [
∫ 𝒽𝓅𝑑(𝑡)𝑑𝑡

𝑡𝑓

0

∫ 𝑑𝑡
𝑡𝑓

0

] (59) 

where 𝑡𝑓 was 25 hr. Note that these quantities are not directly under closed-loop control, but they 

are important for assessing the product quality of the distillation column.  

 

Figure 14: Time trajectories of the mole fractions of the distillation column’s observables at various realisations of uncertain 

parameters. 

 

The ϵ value for MLMC was set to 0.01 (the same for all observables). For preliminary sampling, 

the total number of levels, L, was set to 3, and the number of uncertain parameter realisations to 
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use at each level, 𝑁𝑠𝑙, was set to 8. The coarsest MLMC time-step (ℎ0) was set to 0.05 hr because 

it was the largest time-step that did not produce numerical instabilities during the integration of 

model equations. Compared to the mixing tank and the wastewater treatment plant, the number of 

levels 𝐿 used in preliminary sampling of the distillation column model and the number of samples 

𝑁𝑠𝑙 at each level were much smaller. This reduction is due to a significantly higher computational 

complexity of the distillation column model: the time to conduct one simulation is two orders of 

magnitude greater than for the mixing tank and wastewater treatment plant models, and can range 

from 120 to 620 seconds, depending on the realisation of uncertain parameters.  

The MLMC procedure for the simultaneous estimation of multiple observables was carried out as 

described in the Multilevel Monte Carlo section of this study. Four sets of optimal numbers of 

samples were generated, one for each observable. For each level, the maximum among the sets 

was used to conduct MLMC calculations. The MLMC sampling converged upon reaching L = 3, 

and the entire procedure required an average of 11,673 seconds (in total, there were 5 

implementations of MLMC). The computational budget for MC sampling was set to 13,500 

seconds, 360 seconds higher than the maximum time required by MLMC (13,140 seconds), to 

observe the quality of results MC sampling was capable of producing with a slightly higher 

timeframe than MLMC. Like MLMC, MC was also implemented 5 times. Note that the integration 

of model equations during MC sampling was performed using the time-step ℎ3 (the finest 

discretization) of MLMC to allow MC sampling to produce reasonably accurate results.  

Table 10 summarizes the results from the present case study. To compare the performance of MC 

and MLMC sampling within the same computational budget, the outcomes of the sampling 

techniques have been plotted against CPU time in Figure 6.  Qualitatively, it can be seen in Figure 

15 that the variability of final MC results exceeded the variability of MLMC approximations for 
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all observables since the differences between the largest and smallest MC approximations at the 

final CPU times were greater than the differences between the largest and smallest results of 

MLMC. Table 10 shows that the variability of MC sampling outcomes exceeded the variability of 

MLMC results by 3.71 times for 𝔼[𝓉ℓ𝑏
𝑡 ], 1.55 times for 𝔼[𝒽𝓍𝑑

𝑡 ], 3.55 times for 𝔼[𝒽𝓍𝑏
𝑡 ], and 1.58 

times for 𝔼[𝒽𝓅𝑑
𝑡 ]. While additional MC sampling would be needed to establish the benchmark 

values for the expected time averages and their variability, for identical CPU time constraints 

MLMC demonstrated higher precision than MC. In order for the standard MC sampling to obtain 

results of similar precision to MLMC, it would likely require at least one order of magnitude 

greater computational budget (i.e. in excess of 37.5 hours). Therefore, MLMC is the preferred 

method for computationally demanding problems.  

 

Figure 15: A comparison of MC and MLMC estimates of the observables of the distillation column model. Red solid lines 

represent MC results, black solid lines represent MLMC results and span the time required for a particular MLMC run. Red 

dashed lines represent the mean MC results, and the blue dashed lines represent the mean MLMC results. MC sampling used the 

smallest time-step employed by MLMC (i.e. ℎ3). 
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Table 10: A comparison of MC and MLMC sampling results. Note that 𝜇𝑀𝐶 stands for the mean of MC sampling results, 𝜎𝑀𝐶 

stands for the standard deviation of MC sampling results, 𝜇𝑀𝐿𝑀𝐶 represents the mean of MLMC sampling runs, and 𝜎𝑀𝐿𝑀𝐶 is the 

standard deviation of MLMC sampling runs. 

Observable 𝜇𝑀𝐶 
𝜎𝑀𝐶

𝜇𝑀𝐶
 𝜇𝑀𝐿𝑀𝐶 

𝜎𝑀𝐿𝑀𝐶

𝜇𝑀𝐿𝑀𝐶
 

𝜎𝑀𝐶

𝜇𝑀𝐶

𝜎𝑀𝐿𝑀𝐶

𝜇𝑀𝐿𝑀𝐶
⁄  

𝔼[𝓉ℓ𝑏
𝑡 ] 0.9192 0.0053% 0.9193 0.0014% 3.71 

𝔼[𝒽𝓍𝑑
𝑡 ] 0.6099 0.74% 0.6063 0.48% 1.55 

𝔼[𝒽𝓍𝑏
𝑡 ] 7.707×10-4 6.35% 7.436×10-4 1.79% 3.55 

𝔼[𝒽𝓅𝑑
𝑡 ] 0.3843 1.18% 0.3879 0.75% 1.58 

 

4.5 Potential Shortcomings of MLMC 

The results presented in this work show that MLMC is an attractive alternative to the standard MC 

sampling. However, it should be emphasized that MLMC is not free of potential shortcomings. 

The convergence in the estimates is not guaranteed since there may be a limit on the minimum 

achievable 𝜖. Oversampling is possible in systems with a high variability of the estimated 

quantities. As already noted in the Illustrative Case Study section, only the optimal domain 

discretization at l = 0 provides the maximum time savings offered by MLMC over standard MC. 

Several preliminary sampling runs may be required to find the optimal domain discretization at l 

= 0. Furthermore, for the preliminary sampling, the choice of the initial number of levels and 

samples per level has to be guided by the user’s experience with the system of interest, rather than 

a universal rule, making the automation of preliminary sampling problem-specific. The total 

number of levels that will be necessary for the MLMC sampling procedure is difficult to determine 

beforehand; the relationship between the discretization level and the variance of the estimate needs 

to be known or observed through preliminary sampling. As discussed in the Multilevel Monte 

Carlo section, the constants 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶, and 𝛾𝑀𝐿𝑀𝐶 have to be known, assumed a priori, or 

estimated through preliminary sampling. If the conditions of the MLMC Theorem cannot be met 
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(e.g. if the error in the estimates increases as the domain discretization becomes finer), MLMC is 

not applicable to the problem and standard MC sampling should be used for estimating the 

observables of interest. 

4.6 Chapter Summary 

In this work, MLMC has been applied to three chemical engineering systems and its accuracy and 

computational costs have been compared to MC sampling, and, for the first time, to PSE and PCE. 

A mixing storage tank was used in this study to illustrate the step-by-step implementation of the 

MLMC algorithm. For the case of the wastewater treatment plant, the most notable feature of 

MLMC results was that they were within the specified error bound from the Benchmark value, not 

just from each other. Thus, the MLMC accuracy significantly exceeded that of MC, PSE and PCE 

at a lower computational cost than MC. For the case of the ternary distillation column with a fixed 

computational budget, MLMC estimated four observables simultaneously and produced results 

with a lower variability than MC sampling for all observables. The MLMC technique is a very 

promising and computationally attractive option when a certain degree of accuracy in the results 

needs to be ensured, since it is more likely to converge to the true value than standard MC 

sampling.  
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Chapter 5: Multilevel Monte Carlo Applied to Stochastic Multiscale 

Systems 

Building upon the results of Chapter 4 and the favourable performance of Multilevel Monte Carlo 

Sampling (MLMC) for traditional chemical engineering systems, this chapter presents the 

applications of MLMC to stochastic multiscale systems in chemical engineering. First, MLMC is 

used to estimate and reduce the noise in the observables of the chemical vapour deposition (CVD) 

process discussed in Chapter 3. Next, MLMC is used to improve uncertainty quantification in the 

CVD model. Following that, the same methodology is applied to improve uncertainty 

quantification in a catalytic pore reactor model.  

The purpose of the work presented in this chapter is to adapt the MLMC sampling technique 

(described in sections 2.2.3 and 4.2) for the estimation and reduction of random noise in the 

observables of stochastic multiscale systems. The systems used as case studies of industrially-

relevant stochastic multiscale chemical engineering processes were the simulation of thin film 

formation by chemical vapour deposition discussed in section 3.2 and a stochastic multiscale 

model of a catalytic pore reactor (discussed in section 5.4). First, the noise in the expected value 

of the CVD system’s observable was estimated using MLMC. The performance of this technique 

was compared to the standard Monte Carlo (MC) sampling. Next, the MLMC method was used to 

increase the precision of the estimated expected values of the observables of the two stochastic 

multiscale systems (the CVD and the catalytic pore reactor models) and thereby improve the 

quality of the traditional low-order uncertainty quantification expressions (PCE has been used in 

this chapter). The performance of MLMC for improving uncertainty quantification was compared 

to the heuristic method of constructing PCE and to standard MC sampling.  
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The work presented in this chapter highlights the nuances of adapting the MLMC technique to 

stochastic multiscale systems and provides insight on the benefits and challenges of using MLMC 

with stochastic multiscale systems. Based on a review of the current published literature (presented 

in section 2.2.3), the present work is the first application of MLMC for noise estimation and 

uncertainty quantification in multiscale systems that incorporate non-closed-form equations.  

5.1 MLMC sampling applied to stochastic multiscale models 

When applying the MLMC sampling technique to a system, it is necessary to identify the key 

discretization domains that affect the variability of the observable values generated by the system, 

as well as the computational cost associated with each level of accuracy. The majority of current 

MLMC implementations discretize the time domains of their respective simulation systems 

because the systems are represented by time-dependent differential equations and smaller 

integration timesteps yield results of lower variability. In the case of stochastic multiscale systems, 

domains other than temporal (e.g. spatial) may have a greater influence on the accuracy of 

simulations’ outcomes. For example, in systems that combine discrete particle simulations (e.g. 

kMC) with continuous differential equations, the number of particles considered in the discrete 

simulation domain may have a stronger impact on the noise in the observables than the integration 

timestep used to integrate the continuous differential equations.  

Once the discretization domain is chosen, the sequence for discretization level refinement needs 

to be selected. The levels should be chosen such that the variability of the observables is reduced 

in an optimal way. On the one hand, a slow refinement of the discretization would reduce the 

variance, but the overall computational cost would be unnecessarily high since too many levels 

would be sampled by the MLMC scheme. On the other hand, a drastic refinement of discretization 

could quickly make higher discretization levels (and the total cost) computationally intractable; 
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for example, decreasing the integration timestep of a large system of differential equations by an 

order of magnitude with every additional level could make the costs of sampling prohibitive after 

a few levels have been added by the MLMC scheme. For efficient MLMC sampling, a geometric 

sequence is commonly used for discretization level refinement.114 The optimal value of the 

refinement factor is system-specific:113,114 

 ℳ =
∆𝑡𝑙+1

∆𝑡𝑙
 (60) 

where ℳ is the optimal refinement factor (e.g. ½, ¼), and ∆𝑡𝑙 and ∆𝑡𝑙+1 represent the integration 

timesteps used by MLMC while sampling a time-dependent system at the successive discretization 

levels 𝑙 and 𝑙 + 1, respectively.  

5.1.1 Applying MLMC to the Chemical Vapour Deposition Model 

In the stochastic multiscale kMC-PDE model described in section 3.2, the size of the lattice of the 

kMC thin film model (represented by 𝑁 in section 3.2.2) directly affects the variance of the 

roughness observable at the end of the batch, as demonstrated in Figure 16. As discussed in section 

3.3, using larger lattices (e.g. 𝑁 = 100 or 150) substantially decreases the noise in the observable 

(i.e. surface roughness) at the expense of longer simulation times. Therefore, the relationships 

between lattice size, observable’s variability and computational cost indicate that MLMC sampling 

is indeed applicable to this stochastic multiscale system.  

As discussed in section 3.3, the current heuristic approach2 to approximating roughness is to use 

six 𝑁 = 30 lattices, find the roughness time trajectories from each lattice, find the average 

trajectory, and use it as an adequate representation of results that would be obtained from 𝑁 = 100 

and 𝑁 = 150 simulations, as illustrated in Figure 2 (see section 3.3). Substantial CPU time savings 

can be achieved when the simulations are run in parallel. MLMC sampling can also take advantage 
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of parallel computing, but one can approach the selection of the number and size of lattices in a 

more objective manner because MLMC tracks the decay in the variability of the estimates of the 

observable with each discretization level and adjusts the number of samples accordingly, as per 

equations (4) and (10).  

 

Figure 16: The decay of variance in roughness at the end of the batch due to increasing thin film lattice size. For brevity, results 

at only two temperature values have been shown. 

 

Since larger thin film lattice sizes impact both the observable’s estimates and the computational 

cost, the 𝑁 values can be considered as discretization levels in the spatial domain. To adapt the 

MLMC sampling algorithm to the present multiscale model, an empirical relationship was 

established using least squares regression between the lattice size 𝑁, temperature 𝑇, and the kMC 

timestep ∆𝑡𝑘𝑀𝐶, since they are already related through the kMC rate of adsorption 𝑊𝑎. This rate is 

calculated based on √𝑇 and 𝑁2 in equation (23) and is inversely related to ∆𝑡𝑘𝑀𝐶 through equation 

(26). In this work, only 𝑁 and 𝑇 were manipulated. Thus, an empirical relationship was established 

using 𝑁 and 𝑇 as the independent variables. Note that since 𝜍 of equation (26) is a uniform random 
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number, variability is present in the kMC timestep. Hence, 𝑁 and 𝑇 are related to the mean value 

of the kMC timestep (∆𝑡̂𝑘𝑀𝐶) as follows:  

 ∆𝑡̂𝑘𝑀𝐶 = (𝛼𝑇 + 𝛽)𝑁−2 (61) 

where the 𝛼 and 𝛽 model coefficients were found by least squares regression. This model was 

validated by examining its quality of fit to the mean kMC timestep values collected from the 

multiscale model at various 𝑁 and 𝑇 values (discussed in detail in section 5.1.2 below). For the 

purposes of this study, equation (26) of the kMC-PDE model was replaced with equation (61). 

Note that if another stochastic multiscale model were considered for MLMC sampling or if the 

kMC-PDE model is examined at a temperature outside the valid range of temperatures where 

equation (61) is valid, an empirical relationship different from equation (61) will need to be 

established.  

Next, it was necessary to establish the rule for selecting the kMC lattice sizes to enable MLMC 

sampling to systematically define each discretization level. Substituting equation (61) into 

equation (60) yields:  

 ℳ =
(𝛼𝑇 + 𝛽)𝑁𝑙+1

−2

(𝛼𝑇 + 𝛽)𝑁𝑙
−2  (62) 

which, upon simplification, results in: 

 
𝑁𝑙+1

𝑁𝑙
= √ℳ−1 (63) 

Equation (63) can be further rearranged to yield the rule for selecting the lattice sizes 𝑁𝑙 during 

MLMC sampling of the modified kMC-PDE model: 

 𝑁𝑙 = ⌈𝑁0 × (√ℳ−1)
𝑙
⌉ (64) 
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where 𝑁0 is the user-defined minimum lattice size used by MLMC sampling. Equation (64) 

ensures a systematic selection of discretization levels of the spatial domain of the kMC simulation: 

the lattice size at an MLMC discretization level 𝑙 > 0 will correspond to the ∆𝑡̂𝑘𝑀𝐶 value that is 

an ℳ factor refinement of the mean kMC timestep at the preceding discretization level, in 

harmony with the existing MLMC implementations.113–115,206  

5.1.2 Establishing the 𝛼 and 𝛽 constants 

To estimate the 𝛼 and 𝛽 coefficients of equation (61), ∆𝑡𝑘𝑀𝐶 values of equation (26) were collected 

from various simulations of the original, unmodified kMC-PDE model. In total, 105 simulations 

were conducted, where the lattice sizes ranged from 20 to 120, inclusive, with increments of 5, at 

temperatures from 800 𝐾 to 1200 𝐾, inclusive, with increments of 100 𝐾. The temperature range 

was selected based on the expected operating conditions for an actual thin film deposition system. 

The mean kMC timestep values, ∆𝑡̂𝑘𝑀𝐶, were calculated for each of the 105 simulations and the 

results have been plotted in Figure 17 (red markers). It can be seen that all 105 ∆𝑡̂𝑘𝑀𝐶 values were 

distinct from each other. Their uniqueness was further verified from their statistical distributions. 

Since each simulation was run from 0 𝑠 to 100 𝑠 with the coupling interval ∆𝒯 = 0.1 𝑠, the kMC 

and PDE scales were coupled 1000 times in every simulation. The mean kMC timestep values 

were calculated for every coupling interval of every simulation, and their histograms were plotted 

(one histogram per simulation). The statistical distributions from all simulations were normal or 

close to normal, with sharp peaks that coincided with the data (red dots) presented in Figure 17 

and very short tails that did not overlap with distribution tails from other simulations (the 

distributions were not shown for brevity). Thus, it was concluded that the variability of the mean 

kMC timesteps was sufficiently low to be neglected.  



90 
 

Next, the 𝛼 and 𝛽 coefficient values of equation (61) were obtained from least squares regression 

(−7.594 × 10−4 𝑠 ∙ 𝐾−1 and 1.106 𝑠, respectively). The resulting surface plot, where ∆𝑡̂𝑘𝑀𝐶 was 

calculated according to equation (61), has also been presented in Figure 17. A very close agreement 

between the two datasets was demonstrated: the average ∆𝑡𝑘𝑀𝐶 of the original model (red markers 

in Figure 17) and ∆𝑡̂𝑘𝑀𝐶 from equation (61) (surface plot in Figure 17) have negligible residual 

errors (between -4.4% and 1.7%, not shown for brevity). Therefore, the dataset considered for 𝑁 

and 𝑇 was sufficient to obtain an accurate empirical relationship.  

 

Figure 17: A comparison between the mean kMC timesteps obtained from simulations (red markers) and the kMC timesteps 

calculated from equation (61) (surface plot). Note that 𝛼 was found to be −7.594 × 10−4 𝑠 ∙ 𝐾−1 and 𝛽 was 1.106 𝑠.  

 

Next, the method of calculating the kMC timestep in the multiscale model was modified: equation 

(26) was replaced with equation (61). To verify that the modified kMC model can produce 

sufficiently accurate results, multiscale simulations were conducted with lattice sizes 𝑁 = 50 and 

𝑁 = 100 at the temperatures of 940 𝐾 and 1140 𝐾. These temperature values were chosen 
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because they were not used to identify the coefficients of equation (61) and because they represent 

the two regimes of the multiscale model, the lower-temperature adsorption-dominated regime that 

produces thin films with higher roughness (940 𝐾) and the higher-temperature migration-

dominated regime that results in smoother thin films (1140 𝐾). For each temperature, two kinds 

of simulations were carried out: with the original multiscale model where ∆𝑡𝑘𝑀𝐶 was calculated 

by equation (26) after each kMC event, and with the modified multiscale model where the fixed 

∆𝑡̂𝑘𝑀𝐶 was calculated from equation (61) once at the beginning of the simulation and used 

throughout without alterations. The comparison is presented in Figure 18, with 8 roughness time 

trajectories from the original model and 1 representative roughness trajectory (no averaging) from 

the modified model in each subplot. Clearly, the replacement of equation (26) by equation (61) 

preserved the accuracy of predictions. The predictions from the modified model approached the 

average of the time trajectories obtained from the original model, especially for larger lattice sizes 

(𝑁 = 100), as shown in Figure 18. Note that the use of a fixed kMC timestep did not affect the 

computational costs. Additional testing has been performed to corroborate this observation 

(omitted for brevity). A review of the current literature indicates that such a result has not been 

reported for this stochastic multiscale system. Also, note that fixing the kMC timestep did not 

eliminate the noise from the roughness time trajectories, since the kMC portion of the multiscale 

model continued to use uniform random numbers to choose among the adsorption, desorption and 

migration surface events, as discussed in section 3.2.2.  
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Figure 18: A comparison between the time trajectories of roughness produced by the original multiscale simulation and the 

modified model with a fixed kMC timestep. 

 

5.1.3 Estimating the noise via MC and MLMC sampling 

To compare the computational cost and accuracy of estimating the noise in the roughness 

observable of the multiscale model by the two sampling techniques, Monte Carlo and Multilevel 

Monte Carlo, multiscale simulations were conducted with the original model and the modified 

model (with equation (61) substituted for equation (26)) at three temperature settings: 940 𝐾, 

1040 𝐾 and 1140 𝐾. The focus of this work was to estimate the maximum noise in the average of 

the last five roughness values (i.e. at seconds 96-100, inclusive, of each simulation). The average 

is denoted from henceforth by  𝑅𝑓.  
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While MC sampling relied on the original model, the MLMC scheme used the modified version, 

i.e. the model that uses a fixed kMC timestep. MC sampling was performed using 𝑁 = 100. Larger 

lattices were not sampled because the substantial increase in computational cost was not justified 

by the observed changes in the roughness trajectory. For example, a negligible difference can be 

observed between 𝑁 = 100 and 𝑁 = 150 in Figure 2, yet the computational cost is more than 3 

times higher for 𝑁 = 150 (see section 3.3). Throughout MC sampling, the maximum and 

minimum observed 𝑅𝑓 values, as well as the difference between them, were updated whenever a 

new batch of 80 multiscale simulations finished running. In total, 6,000 simulations were 

performed at each temperature.  

MLMC sampling used equation (64) as the rule for setting the spatial domain discretization at each 

MLMC level. The minimum lattice size used in equation (64), i.e. 𝑁0, was set to 20, since that 

was the smallest 𝑁 value that did not cause extreme noise in the predictions made by the present 

kMC-PDE model. The optimal refinement factor (ℳ) was set to ½ because it was the smallest 

value that did not cause MLMC to sample computationally intractable lattice sizes at higher 

discretization levels.  

MLMC sampling was performed for each of the three temperatures; the root mean square error 

tolerance 𝜖 was set to 0.3 and 0.2 at each temperature. To ensure adequate sampling, 64 MLMC 

runs were performed at each combination of the temperature and 𝜖 values. Once all MLMC 

sampling runs were completed, the differences between the maximum and minimum estimated 𝑅𝑓 

values were calculated at each setting. Figure 19 and Table 11 compare the 𝑅𝑓 noise bounds 

obtained by MC and MLMC sampling.  
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Figure 19: A comparison of the estimates of noise in 𝑅𝑓 from MC and MLMC sampling. 

Table 11: Summary of MC and MLMC results. 

𝑇 (K) Sampling 

method 

CPU time 

(hours) 

𝑚𝑎𝑥 𝑅𝑓 − 𝑚𝑖𝑛 𝑅𝑓 

 MC, 𝑁 = 100 208.3 0.679 

940 MLMC, 𝜖 = 0.3 21.0  1.054  

 MLMC, 𝜖 = 0.2 38.2 0.809 

 MC, 𝑁 = 100 217.6 0.289 

1040 MLMC, 𝜖 = 0.3 12.7 1.175 

 MLMC, 𝜖 = 0.2 28.5 0.803 

 MC, 𝑁 = 100 349.8 0.140 

1140 MLMC, 𝜖 = 0.3 6.5 0.347 

 MLMC, 𝜖 = 0.2 9.8 0.307 



95 
 

Based on the results summarized in Figure 19, it was observed that MC sampling exhibited 

creeping noise in roughness values due to the asymptotic behaviour of max 𝑅𝑓 − min 𝑅𝑓 values. 

MC sampling achieved noise bounds of 0.679 for 𝑇 = 940 𝐾, 0.289 for 1040 𝐾 and 0.140 for 

1140 𝐾. It should be noted that these noise estimates could increase with additional MC sampling. 

In this study, the computational cost of MC became prohibitive after such a long sampling time 

(i.e. over 200 hours).  

From Figure 19 and Table 11, it was apparent that MLMC could produce conservative estimates 

of noise in 𝑅𝑓 values and offered an order of magnitude time savings compared to MC sampling: 

the computational requirements of MLMC were between 6.5 hours (at 1140 𝐾, 𝜖 = 0.3) and 38.2 

hours (at 940 𝐾, 𝜖 = 0.2), whereas the MC sampling time ranged from 208.3 hours (at 𝑇 =

940 𝐾) to 349.8 hours (at 𝑇 = 1140 𝐾), as per Table 11. It could also be observed that the MLMC 

and MC results at 940 𝐾 and 1140 𝐾 showed consistent trends: all MLMC and MC noise 

estimates at 1140 𝐾 were smaller than at 940 𝐾 (e.g. for 𝜖 = 0.2, MLMC results were 0.809 at 

940 𝐾 and 0.307 at 1140 𝐾, while MC results were 0.679 at 940 𝐾 and 0.140 at 1140 𝐾). 

However, at 1040 𝐾, the MC estimate (i.e. 0.289) was between the MC noise values from 940 𝐾 

and 1140 𝐾 (0.679 and 0.140, respectively), while MLMC produced a result higher than at 940 𝐾 

(for 𝜖 = 0.3, at 1040 𝐾 the result was 1.175, higher than 1.054 at 940 𝐾). Thus, at 1040 K, MLMC 

diverged from the trends in the noise bounds observed at 940 K and 1140 K. One possible 

explanation to this behaviour is that the multiscale system started to transition into the lower-noise 

migration-dominated regime and caused MLMC 𝑅𝑓 noise estimate to become overly conservative. 

This issue could be mitigated to some extent by decreasing 𝜖 from 0.3 to 0.2 at 𝑇 = 1040 𝐾, but 

for 𝜖 = 0.2 the MLMC result at 1040 𝐾 was still very close to the value at 940 𝐾 (0.803 versus 

0.809, respectively). The obvious shortcoming of this approach to tuning the 𝜖 value is that to 
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obtain a more accurate noise estimate, the selection of 𝜖 has to be guided by some a priori 

knowledge of the system behaviour. However, as a general guideline, it is recommended to initially 

set 𝜖 to 5%-10% of the magnitude of the expected value and subsequently tune the 𝜖 tolerance as 

necessary. Thus, despite the computational time savings offered by MLMC sampling, MC 

sampling may still need to be conducted for a short amount of time to obtain an approximation of 

the noise that can validate the estimates from MLMC. The greatest computational savings from 

MLMC were observed in the low-noise regime, i.e. at 1140 𝐾, where MLMC required at most 9.8 

hours of CPU time (for 𝜖 = 0.2), whereas MC sampling took 349.8 hours. Note that the reported 

MLMC CPU time does not include the time needed to identify the MLMC Theorem constants via 

preliminary sampling (discussed in Chapter 3). The computational cost of preliminary sampling 

may reach the CPU time needed for one MLMC run (e.g. approximately 4 hours at 𝑇 =  1140 𝐾), 

depending on the number of levels and samples per level (𝑁𝑠𝑙) that the user chooses to employ in 

the estimation of the constants 𝛼𝑀𝐿𝑀𝐶 , 𝛽𝑀𝐿𝑀𝐶 and 𝛾𝑀𝐿𝑀𝐶. Also, since the CPU times required by 

MLMC were on the order of hours, online applications of MLMC for stochastic systems would 

still be challenging. However, the usage of high-performance computing clusters could enable 

online applications by leveraging the parallelization of MLMC sampling. Furthermore, using 

larger 𝜖 values could also reduce the computational costs.  

Note that smaller 𝜖 were considered (e.g. 0.1). At 𝑇 = 940 𝐾 and 1040 𝐾, setting 𝜖 to 0.1 caused 

MLMC to sample large, computationally intractable thin film lattices. Such MLMC sampling runs 

were terminated before completion and their results could not be obtained. At 1140 𝐾, MLMC 

runs with 𝜖 = 0.1 were able to achieve roughness estimates because the multiscale system was in 

the low-noise regime at that temperature, but the approximations did not improve upon the 

presented results. This behaviour of MLMC is different from what was observed previously for 
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closed-form systems in Chapter 4. This result suggests that there is a lower bound on the 𝜖 error 

tolerance that can be achieved by MLMC for the case of stochastic systems.  

Furthermore, it is imperative for MLMC to use the same Brownian path113 when the samples of 

the observable are obtained at two subsequent discretization levels, as discussed in section 2.2.3. 

When MLMC is applied to systems represented by continuous equations, the discretization level 

must be the only source of discrepancies between the samples. Due to the application of MLMC 

sampling to a stochastic multiscale system, an additional source of variability arises: the inherent 

noise associated with the non-closed-form expressions will cause deviations in the results of 

different simulation runs even when all parameter values and the discretization level are the same. 

To ensure that MLMC uses the same Brownian path when sampling the observables of a stochastic 

multiscale system for a particular uncertain parameter realization, the same seed must be provided 

to the random number generator in the simulations performed at two subsequent discretization 

levels.  

Note that multiple approaches for adapting the multiscale model for MLMC sampling were 

explored in this study. The coupling timestep ∆𝒯 between the kMC and PDE scales was considered 

as the discretization level in MLMC sampling. However, when ∆𝒯 was small, it resulted in longer 

simulation times and produced the same roughness trajectories. However, when ∆𝒯 was large, it 

caused discontinuities in the roughness time trajectory, indicating numerical instability 

encountered at the coupling of the two scales. Consequently, MLMC was applied to use the lattice 

sizes as discretization levels.  
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5.2 Applying MLMC sampling to the identification of PCE 

As shown in equation (2), the calculation of PCE coefficients 𝛽𝑖 by the NISP method directly 

depends on 𝑦(𝝃), which are the observable values obtained at specific realisations of the 

corresponding uncertain parameters. The noise inherent in stochastic multiscale systems causes 

the sampled observables to vary even when all process/model parameters are kept the same 

between batch runs. Hence, the quality of PCE approximation can be improved if greater care is 

exercised when estimating the values that are needed for the NISP method to calculate 𝛽𝑖 for PCE.  

It was demonstrated in section 5.1.3 that MLMC sampling can reduce the noise in the expected 

values of the observables of stochastic multiscale systems by tuning the 𝜖 parameter (i.e. the root 

mean square error tolerance). Therefore, MLMC has been applied to assist in the calculation of 𝛽𝑖 

PCE coefficients obtained via the NISP method. MLMC was used to decrease the variability in 

the corresponding observables obtained at appropriate realizations of the uncertain parameters of 

two stochastic multiscale systems: the CVD model and a catalytic pore reactor model (described 

in section 5.4). Since MLMC makes the obtained observables more precise, the quality of 

uncertainty quantification is improved. The framework for applying MLMC sampling to 

uncertainty quantification via PCE NISP is summarized below.  

MLMC Preliminaries 

Step 1: Select an appropriate discretization domain for MLMC to control the accuracy of the 

estimates of the observable of the stochastic multiscale model, i.e. 𝑃𝑙 of equation (4).  

Step 2: Select a sequence for refining the discretization levels 𝑙 for the domain chosen in Step 1.  
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Step 3: Conduct preliminary sampling of the stochastic multiscale model at several discretization 

levels (e.g. 𝑙 = 0, 1…4) to estimate the variability of the estimates of the observable, i.e. the 𝑉𝑙 

values in equation (10).  

Step 4: Based on the knowledge from Step 3, select the magnitude of the root mean square error 

tolerance 𝜖 that will be appropriate for the magnitude of the estimated observable of the stochastic 

multiscale model and computationally feasible considering the amount of stochastic noise present 

in the system. The minimum feasible 𝜖 can be approximated from preliminary simulations by first 

setting it to 10% of the expected observable value obtained at 𝑙 = 0 and then adjusting the 𝜖 value 

through trial and error until MLMC cannot achieve the imposed error tolerance.  

PCE NISP Settings 

Step 5: Select the order of the PCE expression and the type of orthogonal polynomial basis based 

on the a priori knowledge about the distributions of the uncertain parameters 𝒖.  

Step 6: Set the number of polynomials’ roots that will be used to calculate 𝛽𝑖 in equation (2).  

Step 7: Generate the combinations of uncertain parameters’ realizations that correspond to the 

roots in Step 6.54,100  

MLMC applied to identifying the PCE 

Step 8: Use MLMC sampling to estimate the observable values of the stochastic multiscale model 

(𝑦 in equations (2), or, equivalently, 𝔼[𝑃] in equation (4)) at each combination of the uncertain 

parameter realizations generated in Step 7. MLMC will continue to sample the system at each 

combination of uncertain parameters and add discretization levels until the variability of the 

observable’s estimates at the last three discretization levels satisfies the 𝜖 chosen in Step 4.55,56 If 
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the 𝜖 tolerance is too strict (i.e. smaller than the noise inherent in the stochastic multiscale system), 

MLMC will attempt computationally infeasible discretization levels and not converge. In this 

situation, the 𝜖 criterion in Step 4 should be relaxed to enable MLMC to converge. 

Identify 𝛽𝑖 via NISP  

Step 9: Using the data collected in Step 8 with MLMC, calculate the 𝛽𝑖 coefficients via the NISP 

method according to equation (2).  

Uncertainty quantification via PCE 

Step 10: Estimate the probability distribution of the observable of interest using the PCE 

expression identified in Step 9, respectively.  

The above procedure was followed for both stochastic multiscale models presented in this work. 

The particulars of Steps 1-4 had to be adjusted to each model since different discretization domains 

played prominent roles in each simulation code. Furthermore, the models produced observables of 

different magnitudes. The specific adjustments that were done to Steps 1-4 are described further. 

5.3 MLMC for uncertainty quantification in the CVD model 

As discussed in sections 3.3 and 5.1.1, the current heuristic for estimating the key observable of 

the CVD stochastic multiscale system, i.e. roughness at the end of the batch (𝑅𝑓𝑖𝑛𝑎𝑙), without 

incurring excessive computational expense is to simulate six batches (in parallel) at identical 

conditions with the lattice size of 𝑁 = 30 and use the average of the six roughness values as an 

estimate equivalent to the result that would be obtained from a large lattice with low levels of noise 

(e.g. 𝑁 = 100, 150),2,35,37,54,56 as illustrated in Figure 2.  
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The values obtained in this fashion can subsequently be used to construct closed-form expressions 

such as PCE. However, the usage of this heuristic does not guarantee that adequate sampling has 

been conducted during the estimation and the results of PCE based on this heuristic may still vary 

significantly depending on the drawn samples, affecting the reliability of uncertainty quantification 

that the PCE would be used for.  

In order to compare the performance of the heuristic and MLMC when obtaining the observables 

necessary to construct PCE, the following three parameters of the CVD model were assumed to 

be uncertain: the energy associated with a single bond between particles in the thin film, i.e. 𝐸 in 

equations (24) and (25), the energy associated with particle migration on the surface of the thin 

film, i.e. 𝐸𝑚 in equation (25), and the gas-phase precursor mole fraction, i.e. 𝑋𝑏𝑢𝑙𝑘 in equation 

(18). Hence, uncertainty is present at both scales in this multiscale model, similar to section 3.3.2. 

The parameters were assumed to have normal uncorrelated distributions, i.e. 54  

 

𝐸 ∼ 𝒩(17000 𝑐𝑎𝑙/𝑚𝑜𝑙, (850 𝑐𝑎𝑙/𝑚𝑜𝑙)2)

𝐸𝑚 ∼ 𝒩(10200 𝑐𝑎𝑙/𝑚𝑜𝑙, (255 𝑐𝑎𝑙/𝑚𝑜𝑙)2)

𝑋𝑏𝑢𝑙𝑘 ∼ 𝒩(2 × 10−6, (1 × 10−7)2)

 (65) 

Three methods were employed to approximate the distribution of 𝑅𝑓 subject to uncertainty: 

standard Monte Carlo (MC) sampling and 2nd order PCE NISP54 with Hermite polynomials and 

with 3 roots per coefficient, where the pre-requisite 𝑅𝑓 values were estimated using the traditional 

heuristic rule (i.e. 6 duplicates of N = 30 lattices at each combination of the necessary uncertain 

parameter realizations) and MLMC sampling with the root mean square error tolerance 𝜖 = 0.1. 

The 𝜖 tolerance was arrived at through a trial and error process. As a rule of thumb, we recommend 

setting the 𝜖 to 5% of the observable at nominal uncertain parameter values on the first try in the 

trial and error procedure and then adjusting it until MLMC produces PCE expressions whose 

predictions are consistent with each other. 
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During the preliminary sampling stage of MLMC, 100 realizations of the uncertain parameters 

were sampled at five levels (from 𝑙 = 0 to 𝑙 = 4) to estimate the variability of 𝑅𝑓 at each of the 

levels. The 2nd order was chosen for PCE because it could capture asymmetric distributions without 

incurring the computational costs associated with constructing higher order expansions, as 

demonstrated in our previous work.54 Note that the 𝑅𝑓 distribution was estimated at 𝑇 = 940 K 

since at this industrially relevant temperature the system is in the high-noise regime.54,56 For MC, 

sampling was conducted with the lattice size 𝑁 = 100 in batches of 1,000 until the distribution was 

observed to converge with 10,000 samples. To assess the performance of the heuristic rule, 200 

2nd order PCE expressions were constructed to observe the variability in the resulting 𝑅𝑓 

probability density approximations. For MLMC, the 2nd order PCE was estimated 10 times to 

observe the variability in the predictions. When propagating the uncertainty, 10 million 

realizations of the uncertain parameters were generated and used in the PCE expressions. Note that 

these calculations are performed very fast (i.e. within 2 seconds) since the PCE expressions are 

low-order models.  

The results are summarized in Table 12, Figure 20 (heuristic-based PCE) and Figure 21 (MLMC-

based PCE). Since preliminary MLMC sampling was a one-time procedure and its computational 

cost was insignificant compared to the time needed to obtain all the necessary data for one MLMC-

based PCE, the CPU time for MLMC in Table 12 does not include that cost. For the CVD model 

at T = 940 K, 𝜖 = 0.1 was approximately 1.9% of 5.25 ML, which was the 𝑅𝑓 value at nominal 

uncertain parameter realizations. The 𝜖 = 0.1 value was close to the minimum computationally 

feasible error tolerance that could be imposed at T = 940 K because of the inherent stochastic noise 

present in the CVD model, and the usage of 𝜖 = 0.1 resulted in PCE expressions that could capture 

the benchmark shape, as shown in Figure 21.  
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Qualitatively, it can also be seen from Figures 20 and 21 that the PCE expressions obtained by the 

heuristic method failed to capture the distribution of the benchmark (Figure 20) while the PCEs 

based on MLMC sampling with the root mean square error tolerance 𝜖 = 0.1 were able to match 

the benchmark distribution shape more closely and accurately (Figure 21). Also, the MLMC-based 

PCE distributions in Figure 21 were quite close to each other. Therefore, observing convergence 

between multiple MLMC-based PCE can serve as another way to confirm that the chosen 𝜖 

tolerance is adequate.  

Table 12 corroborates the observation that the usage of MLMC can help achieve a more accurate 

approximation of the benchmark because compared to the heuristic, MLMC could significantly 

reduce the percent deviations in the reported statistics of the final roughness value 𝑅𝑓, i.e. the 

minimum value min 𝑅𝑓, the maximum value max 𝑅𝑓, the mean value 𝜇𝑅𝑓
, standard deviation 𝜎𝑅𝑓

, 

skewness 𝑠𝑅𝑓
 and kurtosis 𝑘𝑅𝑓

. For example, consider the improvement in accuracy when 

estimating the min 𝑅𝑓 value: the prediction could vary by 188 % based on the heuristic method 

(from underestimation by 148 % to overestimation by 40 %), while the variability from MLMC-

based PCE decreased to 36 % (from underestimation by 13 % to overestimation by 23 %). Other 

significant improvements in variability due to the usage of MLMC were demonstrated for the 

skewness of final roughness distributions (𝑠𝑅𝑓
) and the maximum predicted final roughness 

(max 𝑅𝑓). The variability shown by the heuristic method was 222 % for 𝑠𝑅𝑓
 predictions and 71% 

for max 𝑅𝑓, while the MLMC technique achieved 41 %  variability for 𝑠𝑅𝑓
 and 12 % for max 𝑅𝑓 

(see Table 12). 

However, the improvement offered by MLMC comes at a significant computational cost increase 

compared to the heuristic method; the CPU time to obtain one MLMC-based PCE was two orders 
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of magnitude greater than the cost to obtain one heuristic-based PCE, as stated in Table 12. 

However, it should also be emphasized that constructing one heuristic-based PCE does not 

guarantee that the shape of the benchmark will be adequately captured: out of 200 heuristic-based 

PCE that were constructed for this scenario, approximately 50 failed to capture the shape of the 

benchmark by overestimating the 𝑅𝑓 values at the left tail and underestimating the skewness of the 

benchmark distribution (such distributions were shown in Figure 20 with red, green and black 

lines). Furthermore, constructing additional heuristic-based PCE, even hundreds of them as in this 

work, can only provide an upper bound on the variability of the statistics of 𝑅𝑓 rather than decrease 

that variability (which MLMC can do by tuning 𝜖). Thus, the CPU time for the heuristic method 

can grow by orders of magnitude without a true improvement in precision and accuracy of 

predictions. Therefore, the advantage of MLMC compared to the heuristic is the ability to decrease 

the variability of the predictions by imposing a smaller error tolerance (𝜖) at the expense of 

additional computational effort. Note that the MLMC method was one order of magnitude (up to 

5.3 times) faster than the benchmark’s CPU time, as reported in Table 12.  

Table 12: Estimating 𝑅𝑓𝑖𝑛𝑎𝑙  in the CVD model using MC sampling and 2nd order PCE NISP constructed with the heuristic rule 

and MLMC. The columns that correspond to heuristic and MLMC methods contain percentage deviations from the benchmark 

observed from probability distributions constructed with PCE NISP based on those methods. 

Method MC sampling N = 100 

10,000 realizations 

Heuristic 6 dupl. 

N = 30 

MLMC  

𝝐 = 0.1 

min Rf 2.82 ML -148 % to 40 % -13 % to 23 % 

max Rf 11.42 ML -13 % to 58 % 7 % to 19 % 

𝝁𝑹𝒇
 5.46 ML -2 % to 7 % -1 % to 2 % 

𝝈𝑹𝒇
 0.99 ML -22 % to 15 % -15 % to -4 % 

𝒔𝑹𝒇
  0.68 -140 % to 82 % -28 % to 13 % 

𝒌𝑹𝒇
  3.81 -21 % to 34 % -13 % to 0 % 

CPU time 209.3 hours  0.43 hours 39.2 hours 
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Figure 20: Approximations of the probability distribution of 𝑅 at the end of the batch using MC sampling and the heuristic 

method of constructing 2nd order PCE NISP under multiple parameter uncertainty. The heuristic method can cause the PCE-

based distribution to not capture the shape of the MC-based benchmark. Four representative PCE distributions were plotted. 

 

 

Figure 21: Approximating the distribution of roughness using MLMC-based PCE NISP with the root mean square error 

tolerance 𝜖 = 0.1. Four representative PCE distributions were plotted. 
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5.4 MLMC for uncertainty quantification in a catalytic pore reactor model 

The second multiscale model employed in this work is a steady-state model of a plug flow catalytic 

pore reactor that facilitates a bimolecular reaction,9,37 as illustrated in Figure 22. Two gaseous 

species adsorb to vacant sites on the catalyst surface inside the pore to either irreversibly react 

(which is possible only if they adsorb to adjacent vacant sites) and produce a gaseous product, or 

desorb without reacting, as per the reaction mechanism (66):  

 
𝐴 + ∗ ⇌ 𝐴∗ 

𝐵 + ∗ ⇌ 𝐵∗ 

𝐴∗ + 𝐵∗ → 𝐴𝐵 + ∗∗ 

(66) 

where 𝐴 and 𝐵 represent the gaseous reactants, ∗ represents one vacant site on the catalyst surface, 

𝐴∗ and 𝐵∗ represent the adsorbed reactants, and 𝐴𝐵 represents the gaseous product of the 

irreversible reaction. The stochastic multiscale model for this system consists of three PDEs 

coupled with kMC lattices which are assumed to be uniformly distributed along the length of the 

pore. Each PDE describes the concentration of the corresponding species (𝐴, 𝐵 or 𝐴𝐵) within the 

catalytic pore, while the kMC lattices simulate the atomistic-scale events (adsorption, desorption, 

reaction). The two scales are coupled through boundary conditions because the microscale event 

rates depend on the concentrations of the species, while the concentrations are in turn affected by 

the number of irreversible reactions that have taken place along the length of the pore. The 

fundamental equations of the multiscale model are presented below; a detailed description of the 

model, including parameter definitions and values, can be found in Appendix B and in previous 

reports.9,37  

5.4.1 Continuum (macroscale) model 

The catalytic pore is assumed to have length ℒ = 1 µm and radius 𝜌 = 50 nm, as illustrated in 

Figure 22. The reactants 𝐴 and 𝐵 enter the pore and react to produce 𝐴𝐵 as they flow along the 
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pore length. The reaction is assumed to be isothermal, and plug flow is assumed to adequately 

explain the mass transfer inside the pore. Furthermore, the reaction is assumed to occur at steady 

state. The pore is assumed to have the shape of a perfect cylinder, the radial component of the flow 

velocity is treated as negligible and the axial component is considered constant.9,37 Hence, only 

the mass transfer PDEs are needed to describe the concentration of each of the three species in the 

pore. 

 

Figure 22: Schematic of the catalytic pore reactor model with reactions happening on the inner surface of the pore. Note that the 

symbol 𝑊 refers to the rates of kMC events (adsorption, desorption, reaction) happening to the appropriate species. 

Symmetry arguments enable the simplification of the PDEs to 2 dimensions, 𝑥 and 𝑦:  

 𝐷𝑖

𝜕2𝐶𝑖(𝑥, 𝑦)

𝜕𝑦2
− 𝜈

𝜕𝐶𝑖(𝑥, 𝑦)

𝜕𝑥
= 0 (67) 

where 𝐶𝑖 corresponds to the concentration of species 𝑖 (i.e. 𝐴, 𝐵, 𝐴𝐵), 𝐷𝑖 is the corresponding 

diffusion coefficient and 𝜈 is the fluid velocity. For each species the following boundary conditions 

apply:  

 𝐶𝑖(0, 𝑦) = 𝐶𝑖,𝑖𝑛 (68) 

 
𝜕𝐶𝑖(𝑥, 0)

𝜕𝑦
= 0 

(69) 
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 𝐷𝑖

𝜕𝐶𝑖(𝑥, 𝜌)

𝜕𝑦
= −𝜔𝑖,𝑎𝑑𝑠(𝑥, 𝜌) + 𝜔𝑖,𝑑𝑒𝑠(𝑥, 𝜌) + 𝜔𝑖,𝑝𝑟𝑜𝑑(𝑥, 𝜌) − 𝜔𝑖,𝑐𝑜𝑛𝑠(𝑥, 𝜌) (70) 

where 𝐶𝑖,𝑖𝑛 is the inlet concentration of species 𝑖, and 𝜔𝑖,𝑎𝑑𝑠, 𝜔𝑖,𝑑𝑒𝑠, 𝜔𝑖,𝑝𝑟𝑜𝑑 and 𝜔𝑖,𝑐𝑜𝑛𝑠 are the 

rates of adsorption, desorption, production and consumption of species 𝑖, respectively. The 

coupling of the PDEs to kMC is accomplished through boundary condition (70) because the rates 

cannot be calculated accurately using the continuum assumption.9,37 

5.4.2 Microscale kinetic Monte Carlo model 

As mentioned above, the on-lattice kMC model with periodic boundary conditions simulates 

reaction mechanism (66) occurring on the catalyst surface (i.e. at 𝑦 = 𝜌). The kMC rates of 

adsorption, desorption and reaction events, respectively, are calculated as follows:  

 𝑊𝑎,𝑖(𝑥, 𝜌) = 𝐶𝑖(𝑥, 𝜌)𝑁𝑒(𝑥, 𝜌)𝑘𝑎,𝑖 (71) 

 
𝑊𝑑,𝑖(𝑥, 𝜌) = 𝑁𝑖(𝑥, 𝜌)𝑘𝑑,𝑖e−

𝐸𝑑,𝑖
𝑅𝑇  (72) 

 
𝑊𝑟(𝑥, 𝜌) = 𝑁𝑟(𝑥, 𝜌)𝑘𝑟e−

𝐸𝑟
𝑅𝑇 (73) 

where 𝑁𝑒 denotes the number of empty catalytic surface sites, 𝑁𝑖 represents the quantity of 

adsorbed molecules of species 𝑖, and 𝑁𝑟 is the number of 𝐴∗ and 𝐵∗ pairs adsorbed at adjacent 

catalyst surface sites ready to react to produce 𝐴𝐵. The definitions of other parameters can be 

found in Appendix B and in previous works.9,37 Note that the kMC rate of adsorption, i.e. equation 

(71), depends upon the solution of PDE (67), thereby necessitating the coupling between the macro 

and micro scales. The kMC code tracks the values of the parameters 𝑁𝑒, 𝑁𝑖, and 𝑁𝑟. Whenever an 

event is executed, the kMC time is incremented as follows: 

 𝜏𝜄 = −
ln(𝜁)

∑ [𝑊𝑎,𝑠(𝑥, 𝜌) + 𝑊𝑑,𝑠(𝑥, 𝜌)]
𝑛𝑆
𝑠 + 𝑊𝑟(𝑥, 𝜌)

 (74) 
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where 𝜁 is a uniform random number from the interval (0,1). The coupling between the kMC and 

PDE scales is carried out when the kMC simulation reaches steady state in the parameters 𝑁𝑒, 𝑁𝑖, 

and 𝑁𝑟, at which point the elapsed kMC time exceeds the coupling interval duration.  

Since kMC simulations are computationally intensive, it is not possible to use kMC at every 

possible value of 𝑥 along the length of the catalytic pore. Instead, the kMC lattices, also referred 

to as “teeth”, are placed at equidistant intervals, referred to as “gaps”, along the length of the pore; 

hence the name “gap-tooth” model. The results from the individual teeth are interpolated over the 

gaps prior to being provided to the boundary condition (70). Hence, this model uses the multigrid 

approach (mentioned in section 2.1) to implement the coupling between macro and micro scales. 

The rates for this boundary condition are determined using the interpolated data from the kMC 

simulation as follows:  

 𝜔𝑖,𝑎𝑑𝑠(𝑥, 𝜌) = 𝜅𝑘𝑎,𝑖𝐶𝑖(𝑥, 𝜌)
𝑁𝑒(𝑥, 𝜌)

𝑁𝑡𝑜𝑡𝑎𝑙
 (75) 

 
𝜔𝑖,𝑑𝑒𝑠(𝑥, 𝜌) = 𝜅𝑘𝑑,𝑖e− 

𝐸𝑑,𝑖
𝑅𝑇

𝑁𝑖(𝑥, 𝜌)

𝑁𝑡𝑜𝑡𝑎𝑙
 (76) 

 
𝜔𝑖,𝑝𝑟𝑜𝑑(𝑥, 𝜌) = 𝜅

𝑀𝑖,𝑝𝑟𝑜𝑑(𝑥, 𝜌)

𝑁𝑡𝑜𝑡𝑎𝑙 ∑ 𝜏𝜄(𝑥, 𝜌)𝑛𝜏(𝑥,𝜌)
𝜄=1

 (77) 

 𝜔𝑖,𝑐𝑜𝑛𝑠(𝑥, 𝜌) = 0 (78) 

where 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of sites on one kMC lattice. In this work, 𝑁𝑡𝑜𝑡𝑎𝑙 = 900 since 𝑁 = 

30 lattice sizes were used at each tooth. Note that the adsorption and desorption rates for each 

species, equations (75) and (76), respectively, have an explicit dependence on 𝑁𝑒 and 𝑁𝑖 provided 

by kMC. Equation (77) indirectly depends on 𝑁𝑟 because 𝑀𝑖,𝑝𝑟𝑜𝑑 is the number of gas-phase 

species 𝑖 being produced. Also, note that equation (78) is equal to zero because it pertains to the 

consumption of gas-phase species, but in this study the adsorbed species are the only ones being 

consumed. The definitions of other parameters in equations (75)-(78) can be found in Appendix B 
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and in the literature.9,37 A complete cycle of the multiscale model can be described as follows: the 

fluid phase is analyzed using the continuum models, and the fluid species concentrations 𝐶𝑖(𝑥, 𝜌) 

are extracted along the length of the catalyst surface in order to calculate the catalyst adsorption 

rates in equation (71) at each tooth. Subsequently, the kMC model is operated at each tooth until 

it reaches steady state as described above. The parameters 𝑁𝑒, 𝑁𝑖, and 𝑀𝑖,𝑝𝑟𝑜𝑑 are extracted at each 

tooth and interpolated across each gap, and then used to update the surface boundary condition 

(70)  using equations (75)-(78). The feedback loop between the continuous and discrete scales is 

repeated until the steady state solution to PDE (67) is obtained for each of the concentrations of 

the three species in reaction (66). For the purposes of this work, the key observable of interest was 

the concentration of the product of reaction (66) at the outlet of the catalytic pore, i.e. 𝐶𝐴𝐵(ℒ, 𝑦) 

or 𝐶𝐴𝐵,𝑜𝑢𝑡 for short, since this outlet concentration exhibited the largest variability among the three 

species 𝐴, 𝐵, and 𝐴𝐵 (plots not shown for brevity).  

Note that the number of teeth, i.e. 𝓃, affects both the accuracy of the calculated concentrations and 

the computational cost of the multiscale model. Also, the uncertainty exhibited in the pore may 

depend on the spatial coordinates. Furthermore, the usage of kMC at each tooth increases the noise 

present in this system; thus, great care is required in the selection of coupling intervals between 

the discrete and continuous scales in order to avoid numerical instability. Consequently, the 

complexity of the catalytic pore model exceeds that of the CVD model and adds more degrees of 

freedom to the uncertainty quantification procedure.  

5.4.3 MLMC sampling applied to the catalytic reactor model  

For the catalytic pore reactor model, MLMC was used to control the spatial discretization through 

defining the number of teeth along the length of the pore (𝓃). As the number of teeth grows, the 

noise in the estimate of 𝐶𝐴𝐵,𝑜𝑢𝑡 diminishes. Hence, the MLMC technique can enable efficient and 



111 
 

accurate calculation of 𝐶𝐴𝐵,𝑜𝑢𝑡 values which can be used to construct the PCE expressions via 

NISP method for uncertainty quantification, as discussed previously in sections 5.2 and 5.3.  

It was assumed that the two halves of the catalytic pore were subject to different uncertainties. The 

allowed total numbers of teeth at a level were restricted to positive even values in order to ensure 

that an equal number of teeth was used for each of the two halves of the reactor:  

 𝓃𝑙 = 2𝑙+1 (79) 

Note that in this scenario the minimum number of teeth (i.e. 𝓃0 at 𝑙 = 0) is 2 and that the number 

of teeth grows exponentially with the level number. The choice 𝓃0 = 2 ensured a low 

computational expense at MLMC level 0 while also avoiding the excessive noise that would be 

exhibited due to an insufficient number of teeth (i.e. 1) that would ignore the effect of spatially 

varying uncertainty. The exponential growth scheme presented in equation (79) was chosen since 

it limited the growth of the number of teeth and kept the higher MLMC discretization levels 

computationally feasible as opposed to using 4𝑙+1 or even higher spatial discretization refinement 

factors.  

5.4.4 The results of MLMC-based PCE approximations (Catalytic Pore model) 

To consider the impact of catalyst deactivation/catalytic surface fouling on the final product, the 

activation energy of desorption for species 𝐴, i.e. 𝐸𝑑,𝐴 in equations (72) and (76) with 𝑖 = 𝐴, was 

assumed to be uncertain and the distribution of the concentration 𝐶𝐴𝐵,𝑜𝑢𝑡 was estimated. Spatially 

varying uncertainty was assumed at 𝑦 = 𝜌 along the length of the reactor such that the first half of 

the reactor (inlet to midpoint) was subject to lower variance than the second half:  

 
𝐸𝑑,𝐴

(1)
∼ 𝒩(95000 𝑘𝐽/𝑚𝑜𝑙 , (1900 𝑘𝐽/𝑚𝑜𝑙)2) for 𝑥 ∈ [0,

𝐿

2
), 𝑦 = 𝜌 

𝐸𝑑,𝐴
(2)

∼ 𝒩(95000 𝑘𝐽/𝑚𝑜𝑙 , (4750 𝑘𝐽/𝑚𝑜𝑙)2) for 𝑥 ∈ [
𝐿

2
, 𝐿], 𝑦 = 𝜌 

(80) 
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where 𝐸𝑑,𝐴
(1)

 and 𝐸𝑑,𝐴
(2)

 represent the uncertain parameters in the first and second halves of the 

catalytic pore, respectively. Consequently, the PCE expression was formulated as a function of 

two uncertain parameters.  

Two methods were employed to approximate the distribution of 𝐶𝐴𝐵,𝑜𝑢𝑡 subject to uncertainty: 

standard Monte Carlo (MC) sampling and 2nd order PCE NISP with Hermite polynomials with 3 

NISP roots per coefficient, where the pre-requisite 𝐶𝐴𝐵,𝑜𝑢𝑡 values were estimated using MLMC 

sampling with the root mean square error tolerances 𝜖 = 1×10-5 and 𝜖 = 5×10-6. Similar to the CVD 

model scenario, the 2nd order for PCE was chosen to keep the identification costs low while 

enabling the resulting PCE expression to capture asymmetric probability distributions. Also 

similar to the CVD scenario, 100 realizations of the uncertain parameter were sampled at the first 

five levels (from 𝑙 = 0 to 𝑙 = 4) during the preliminary sampling of MLMC (the associated 

computational cost was not tracked in the total CPU time for the MLMC method for the same 

reasons as in the CVD model case study). When obtaining the MC benchmark, sampling was 

conducted using 12 teeth along the length of the catalytic pore in batches of 1,000 samples until 

the distribution converged; 10,000 samples were collected. To test the precision of MLMC 

calculations, four PCE expressions were identified for each 𝜖 value. Note that more PCE 

expressions could be obtained, but they were outside the allocated computational budget. When 

propagating the uncertainty, 10 million realizations of 𝐸𝑑,𝐴
(1)

 and 𝐸𝑑,𝐴
(2)

 were generated and used in 

the PCE expressions. 

The resulting distributions of 𝐶𝐴𝐵,𝑜𝑢𝑡 from both cases are presented in Figures 23 (𝜖 = 1×10-5) and 

24 (𝜖 = 5×10-6). Note that the 𝜖 values of 1×10-5 and 5×10-6 were 3.0% and 1.5%, respectively, of 

3.35×10-4 mol/L, which was the 𝐶𝐴𝐵,𝑜𝑢𝑡 value observed at nominal uncertain parameter 
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realizations. Both of the utilized 𝜖 tolerances resulted in adequate PCE performance (as shown in 

Figures 23 and 24), which corroborates our recommendation that 𝜖 should initially be set to less 

than 5% of the observable value obtained at nominal uncertain parameters (and subsequently tuned 

based on the available computational budget and precision requirements). 

 

Figure 23: Approximations of the probability distribution of 𝐶𝐴𝐵,𝑜𝑢𝑡 with MC sampling and 2nd order PCE NISP constructed 

using MLMC with 𝜖 = 1×10-5. 
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Figure 24: Approximations of the probability distribution of 𝐶𝐴𝐵,𝑜𝑢𝑡 with MC sampling and 2nd order PCE NISP constructed 

using MLMC with 𝜖 = 5×10-6. 

Furthermore, the results are summarized in Tables 13 and 14. Table 13 shows the variability in the 

𝐶𝐴𝐵,𝑜𝑢𝑡 values that were used to calculate the four sets of PCE coefficients by the NISP method at 

each 𝜖 value of MLMC. The variability in 𝐶𝐴𝐵,𝑜𝑢𝑡 (denoted in Table 13 as max 𝐶𝐴𝐵,𝑜𝑢𝑡 - min 𝐶𝐴𝐵,𝑜𝑢𝑡) 

was due to the stochastic noise in the catalytic pore model. The noise-induced variability was the 

reason why the PCE-based distributions in Figures 23 and 24 differed from each other (i.e. the 

noise in 𝐶𝐴𝐵,𝑜𝑢𝑡 propagated into the PCE coefficients calculated by the NISP method). The 

variability was assessed based on the four 𝐶𝐴𝐵,𝑜𝑢𝑡 values obtained from the catalytic pore model 

by MLMC sampling at every combination of the realizations of 𝐸𝑑,𝐴
(1)

 and 𝐸𝑑,𝐴
(2)

 that corresponded 

to the NISP roots. Table 14 summarizes the deviations of MLMC-based PCEs from the MC-based 

benchmark in terms of the minimum, maximum, mean, standard deviation, skewness and kurtosis 

of 𝐶𝐴𝐵,𝑜𝑢𝑡 (i.e. min 𝐶𝐴𝐵,𝑜𝑢𝑡, max 𝐶𝐴𝐵,𝑜𝑢𝑡, 𝜇𝐶𝐴𝐵,𝑜𝑢𝑡
, 𝜎𝐶𝐴𝐵,𝑜𝑢𝑡

, 𝑠𝐶𝐴𝐵,𝑜𝑢𝑡
, and 𝑘𝐶𝐴𝐵,𝑜𝑢𝑡

, respectively). 
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Table 13: The precision in the estimates of 𝐶𝐴𝐵,𝑜𝑢𝑡 was improved by decreasing the 𝜖 value 

𝐸𝑑,𝐴
(1)

 

realization 

(J/mol) 

𝐸𝑑,𝐴
(2)

 

realization 

(J/mol) 

max 𝐶𝐴𝐵,𝑜𝑢𝑡 - min 𝐶𝐴𝐵,𝑜𝑢𝑡 

(mol/L) 
Decrease in the 

variability of 𝐶𝐴𝐵,𝑜𝑢𝑡 

due to 𝜖 tuning 
MLMC 

𝜖 = 1×10-5 

MLMC 

𝜖 = 5×10-6 

91709 86773 1.36×10-5 2.80×10-6 79 % 

91709 95000 1.68×10-5 7.50×10-6 55 % 

91709 103230 1.74×10-5 4.40×10-6 75 % 

95000 86773 1.13×10-5 3.70×10-6 67 % 

95000 95000 1.06×10-5 4.40×10-6 58 % 

95000 103230 1.47×10-5 9.40×10-6 36 % 

98291 86773 1.28×10-5 1.02×10-5 20 % 

98291 95000 1.43×10-5 9.50×10-6 34 % 

98291 103230 2.77×10-5 1.06×10-5 62 % 

 

Table 14: Estimating 𝐶𝐴𝐵,𝑜𝑢𝑡 using MC sampling and 2nd order PCE NISP constructed with MLMC. The last two columns 

contain percent deviations of MLMC-based PCEs from the MC-based benchmark in terms of the minimum, maximum, mean, 

standard deviation, skewness and kurtosis of 𝐶𝐴𝐵,𝑜𝑢𝑡. 

Method 
MC sampling, 12 teeth 

10,000 realizations 

MLMC  

𝝐 = 1×10-5 

MLMC  

𝝐 = 5×10-6 

𝐦𝐢𝐧 𝑪𝑨𝑩,𝒐𝒖𝒕 1.21×10-4 mol/L -100 %  -100 % 

𝐦𝐚𝐱 𝑪𝑨𝑩,𝒐𝒖𝒕 4.01×10-4 mol/L -8 % to 2 % -6 % to 6 % 

𝝁𝑪𝑨𝑩,𝒐𝒖𝒕
 3.12×10-4 mol/L -0.4 % to 0.8 % -1 % to 0.5 % 

𝝈𝑪𝑨𝑩,𝒐𝒖𝒕
 4.77×10-5 mol/L -5 % to -1 % -6 % to -4 % 

𝒔𝑪𝑨𝑩,𝒐𝒖𝒕
 -0.70 75 % to 142 % 93 % to 119 % 

𝒌𝑪𝑨𝑩,𝒐𝒖𝒕
 2.89 86 % to 143 % 103 % to 129 % 

CPU time 190.6 hours 4.25 hours 22.4 hours 

 

A qualitative examination of Figures 23 and 24 shows that the decrease of 𝜖 from 1×10-5 to 5×10-

6 caused the MLMC-based PCE probability distributions to be more consistent with each other, 

although at both 𝜖 values the stochastic noise in 𝐶𝐴𝐵,𝑜𝑢𝑡 estimates prevented some PCE from 

capturing the right tail of the benchmark (represented by the magenta line in Figure 23 and the 

green line in Figure 24). An examination of Table 13 explains the underlying reason for this 
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qualitative observation. For each realization of the uncertain parameters, the variability in the 

obtained 𝐶𝐴𝐵,𝑜𝑢𝑡 values diminished as 𝜖 was decreased. Consequently, the variability in the PCE 

coefficients calculated by the NISP method using the obtained 𝐶𝐴𝐵,𝑜𝑢𝑡 values also decreased. The 

improvements in the variability of 𝐶𝐴𝐵,𝑜𝑢𝑡 ranged from 20 % (a decrease from 1.28×10-5 mol/L to 

1.02×10-5 mol/L for the uncertain parameter realizations 98291 J/mol and 86773 J/mol) to 79 % 

(where the decrease was from 1.36×10-5 mol/L to 2.80×10-6 mol/L for realizations 91709 J/mol 

and 86773 J/mol). On average, the variability in 𝐶𝐴𝐵,𝑜𝑢𝑡 decreased by 54 %. While it is possible 

for the variability to increase in either scenario with additional sampling of 𝐶𝐴𝐵,𝑜𝑢𝑡 values by 

MLMC, the results indicate that tuning the 𝜖 value helps to increase the precision of the estimates 

of the observables and thereby improve the consistency of PCE predictions (which is not a feature 

of other heuristic rules for sampling stochastic multiscale systems to construct uncertainty 

quantification expressions such as PCE).  

Table 14 indicates that tuning the 𝜖 value decreased the variability in the predictions of such 

statistical moments as standard deviation 𝜎𝐶𝐴𝐵,𝑜𝑢𝑡
, skewness 𝑠𝐶𝐴𝐵,𝑜𝑢𝑡

, and kurtosis 𝑘𝐶𝐴𝐵,𝑜𝑢𝑡
. The 

variability in 𝑠𝐶𝐴𝐵,𝑜𝑢𝑡
 and 𝑘𝐶𝐴𝐵,𝑜𝑢𝑡

 demonstrated the most notable improvements. For example, at 

𝜖 = 1×10-5, 𝑠𝐶𝐴𝐵,𝑜𝑢𝑡
 varied by 67 % (overestimation by 75 % to 142% of the benchmark value) 

while at 𝜖 = 5×10-6  the variability in 𝑠𝐶𝐴𝐵,𝑜𝑢𝑡
 decreased to 26 % (overestimation by 93 % to 119 

%).  The variability in 𝑘𝐶𝐴𝐵,𝑜𝑢𝑡
 decreased from 57 % (𝜖 = 1×10-5) to 26 % (𝜖 = 5×10-6). Note that 

tuning the 𝜖 did not improve the accuracy in the estimations of skewness and kurtosis because for 

both 𝜖 the min 𝐶𝐴𝐵,𝑜𝑢𝑡 value obtained from the benchmark was strongly underestimated by the 

PCE-based expressions (see Table 14). However, this is a shortcoming of the PCE technique (more 

NISP roots and/or higher PCE order may be needed) rather than the MLMC method. MLMC could 
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control the variability in the observable values obtained from the catalytic pore model, as per Table 

13. Also, while there were PCE expressions that did not adequately capture the right tail of the 

benchmark in Table 14 and Figures 23 and 24, this indicated the sensitivity of PCE to the noise in 

𝑐𝐴𝐵,𝑜𝑢𝑡 rather than MLMC’s inability to estimate the observables according to the specified mean 

square error tolerances. Despite these shortcomings, the PCE-based estimates of the observable’s 

distributions provided a reasonable approximation of the benchmark distribution’s shape at a 

computational cost that was 1-2 orders of magnitude lower than MC sampling thanks to the usage 

of MLMC method, as shown in Table 14.  

5.5 Chapter Summary  

In this study, the Multilevel Monte Carlo (MLMC) sampling technique was adapted to stochastic 

multiscale systems. Unlike in most other MLMC implementations, which discretize the time 

domain, in this work the spatial discretization domain was used in the MLMC scheme. As a case 

study, MLMC was applied to  models that represented thin film formation by chemical vapour 

deposition (CVD) and a catalytic pore reactor. First, MLMC and Monte Carlo (MC) sampling 

techniques were used to estimate the noise in the observable of the CVD model, i.e. the roughness 

of the thin film. The greatest computational efficiency of MLMC was observed when the system 

was in the low-noise regime. However, while the potential computational time savings offered by 

MLMC were an order of magnitude compared to MC sampling, MLMC overestimated the noise 

values obtained from MC. The tuning of the root mean square error tolerance (𝜖) of the MLMC 

technique improved the accuracy of the noise estimates, but it relied on a priori knowledge of the 

system’s behaviour. It was also found that unlike for the case of closed-form continuous systems 

of equations, in stochastic multiscale systems MLMC could not satisfy every imposed 𝜖 at every 

set of simulation conditions, which suggests the existence of a lower bound on the error tolerance.  
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Next, MLMC was applied to improve uncertainty quantification via polynomial chaos expansions 

(PCE) in the CVD model with parametric uncertainty at both simulation scales and the catalytic 

pore reactor model with spatially varying uncertainty. The usage of MLMC and the tuning of 𝜖 

allowed to improve the precision with which the systems’ observables were identified. Since the 

observables were used to calculate the coefficients of the PCE using MLMC, the predictions made 

by PCE also became more consistent with each other. Despite the greater computational expense 

associated with MLMC, its ability to control the precision of PCE identification was a substantial 

improvement over the commonly used heuristic rule for obtaining low order models (e.g. PCE) for 

uncertainty quantification. For the CVD model, MLMC-based PCE was notably more accurate 

than the heuristic method of constructing PCE. However, while for the catalytic pore model the 

tuning of the 𝜖 tolerance caused the identified PCEs to be more consistent with each other, they 

strongly underestimated the values in the left tail of the benchmark distribution. Thus, it is 

recommended to select an uncertainty quantification technique that would be most appropriate and 

accurate for a given stochastic multiscale system and use MLMC to improve the precision in the 

identification of the uncertainty quantification expression (e.g. PCE, power series expansion (PSE) 

or others).   
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Chapter 6: Artificial Neural Networks (ANNs) for the Control of 

Stochastic Multiscale Systems  

Efficient sampling and uncertainty quantification techniques such as PSE, PCE and MLMC can 

estimate the statistical moments and distributions of the observables, but they do not have the 

ability to predict the dynamic responses of the approximated quantities. Once the process settings 

change, the identification of PSE sensitivities and PCE coefficients, as well as the MLMC 

procedure, would have to be repeated at the new settings, which can be computationally expensive. 

The computational cost makes the applications of these techniques challenging, especially for 

online optimization and control under uncertainty.  

This challenge can be overcome using data-driven models such as Artificial Neural Networks 

(ANNs). These modelling tools are able to provide efficient and accurate predictions of time series 

data by identifying the latent relationships between the manipulated variables and the observables. 

Although substantial computational resources are required to generate large datasets necessary to 

identify the ANNs with good interpolation (and extrapolation) abilities, the computational 

efficiency of ANNs enables efficient control of stochastic multiscale systems.  

This chapter presents studies that employ ANNs in the shrinking horizon nonlinear model 

predictive control (NMPC) of the thin film deposition system discussed in section 3.2. First, two 

ANNs were trained to predict the film’s roughness and growth rate under nominal conditions (no 

parametric uncertainty was considered). The ANNs were subsequently employed in a shrinking 

horizon optimization scheme to obtain the optimal time-varying profiles of the manipulated 

variables (temperature and precursor mole fraction) that would meet the desired thin film 

properties at the end of the batch. The resulting profiles were implemented on the thin film 

deposition system and a good agreement with the predictions of the ANNs was observed.  
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Next, uncertainty in the energy associated with a single bond between particles was considered. 

Additional ANN was identified using a new dataset to predict the standard deviation of roughness 

that arose due to the parametric uncertainty, and all three identified ANNs were employed in a 

reformulated shrinking horizon NMPC for open-loop control of the thin film batch process. 

Furthermore, an alternative shrinking horizon NMPC for closed-loop control was developed. The 

same datasets that were used to identify the ANNs listed above were instead used to train ANNs 

for specific uncertain parameter realizations. Next, maximum likelihood estimation was used for 

uncertain parameter estimation to identify the best-fit ANN for predicting the roughness trajectory 

under time-invariant uncertainty. In all studies, the robustness of ANNs to disturbances unseen in 

the training data was also tested.  

6.1 Nonlinear model predictive control (NMPC) framework 

The production of smooth and sufficiently thick films is critical for the semiconductor industry, 

since both properties increase electrical conductivity.87,88,207 The roughness and thickness 

properties are likewise significant for biomedical and optical applications of thin films.1 

Furthermore, a high growth rate 𝐺𝑟 would increase the throughput of the manufacturer and 

contribute to their profits by satisfying customer demand in a timely manner. However, achieving 

low roughness 𝑅 and high 𝐺𝑟 values under uncertainty requires optimal control actions in the 

manipulated variables (the inlet precursor mole fraction 𝑋𝑏𝑢𝑙𝑘  and the substrate temperature 

𝑇𝑠𝑢𝑟𝑓).  

The relationships between the variables of the batch process for thin film manufacturing are 

nonlinear. Therefore, the process may be amenable to nonlinear model predictive control 

(NMPC).95,141 NMPC relies on a nonlinear dynamic model to predict the responses of the 

observables to changes in the manipulated variables. The dynamic model needs to be 
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computationally efficient in online closed-loop NMPC applications, where the observable 

variables can be monitored and adjusted online based on the incoming measurements until the end 

of the batch. Hence, the shrinking horizon optimization scheme is best suited for finding the 

optimal profiles in 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 that would satisfy the final product quality and manufacturing 

rate requirements. In the shrinking horizon optimization approach, the goal is to drive the process 

to some desired target while adjusting the control actions online in the presence of uncertainty. 

Equation (81) describes the formulation of the shrinking horizon optimization problem that can be 

used to find the optimal time-dependent 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 profiles that would maximize the expected 

𝐺𝑟 during the production batch (and, consequently, the total 𝑇ℎ) while satisfying the desirable 

roughness 𝑅𝑘𝑀𝐶 under uncertainty at the end of the batch. Note that this formulation, as well as 

other formulations presented later in this chapter, can also be considered as economic model 

predictive control:  

 max
𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)   

1

𝑛
∑ 𝐺𝑟 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖))

𝑛

𝑖=1

 

Subject to:  

𝑓𝑘𝑀𝐶−𝑃𝐷𝐸 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖), 𝐸, 𝑅𝑘𝑀𝐶(𝑡𝑖), 𝐺𝑟𝑘𝑀𝐶(𝑡𝑖), 𝑇ℎ𝑘𝑀𝐶(𝑡𝑖)) = 0,    Eqs. (13)-(30) 

𝑡𝑖 = 𝑖∆𝑡;   ∀𝑖 = 0,1,2, … 𝑛 

𝑅 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑛), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑛)) ≤ 𝑅∗ 

𝑇𝑚𝑖𝑛 ≤ 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) ≤ 𝑇𝑚𝑎𝑥  

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖) ≤ 𝑋𝑚𝑎𝑥   

𝑇𝑠𝑢𝑟𝑓(0) = 𝑇0 

𝑋𝑏𝑢𝑙𝑘(0) = 𝑋0 

−∆𝑇 ≤ 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖+1) − 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) ≤ ∆𝑇 

−∆𝑋 ≤ 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖+1) − 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖) ≤ ∆𝑋 

(81) 

where 𝑡𝑖 represents the timepoints at which the process’ observables are sampled or measured 

disturbances can be detected (i.e. at the end of every sampling interval), 𝑛 is the total number of 
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sampling intervals, ∆𝑡 is the length of the sampling intervals; 𝑓𝑘𝑀𝐶−𝑃𝐷𝐸 is the stochastic multiscale 

model subject to time-invariant uncertainty in 𝐸 (i.e. the energy associated with a single bond 

between particles in the thin film), 𝐺𝑟 is the growth rate under uncertainty, 𝑅 is the roughness 

under uncertainty, and 𝑅∗ is the maximum allowed roughness constraint at the end of the batch. 

𝑇𝑚𝑖𝑛  and 𝑇𝑚𝑎𝑥 are the minimum and maximum allowed temperature values, respectively, and 

𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum allowed precursor mole fraction values, 

respectively. The settings 𝑇0 and 𝑋0 are the initial conditions for the manipulated temperature and 

precursor mole fraction, respectively, while ∆𝑇 and ∆𝑋 are the maximum allowed changes in the 

respective manipulated variables between adjacent sampling intervals. Note that the uncertainty in 

𝐸 affects 𝑊𝑑 and 𝑊𝑚, i.e. the rates of desorption and migration (equations (24) and (25), 

respectively), and consequently it can impact the thin film’s growth rate and roughness. The usage 

of Arrhenius-type expressions in equations (24) and (25) indicates that larger magnitudes of 𝐸 

would slow down both 𝑊𝑑 and 𝑊𝑚 rates, thereby causing slower growth rate and higher roughness. 

Also, 𝐸 is expected to change from batch to batch due to changes in the equipment specifications 

and process variability (e.g. changes in the property of the raw materials).  

In each iteration of the shrinking horizon optimization problem presented above, only the first 

control action from the optimal profile is implemented on the process. When new information 

becomes available during the batch run (e.g. a new measurement from the process or a detected 

disturbance to the operating conditions), it is used as the initial condition for the next iteration of 

shrinking horizon optimization, where a new set of optimal control actions are obtained for the 

shorter prediction horizon. The optimization scheme proceeds until the end of the production batch 

is reached.  



123 
 

The shrinking horizon NMPC framework seeks for the optimal control actions during the operation 

of the process (i.e. online) in the presence of time-invariant uncertainty in 𝐸. Hence, having a 

computationally efficient method of identifying the optimal control action profiles within a time 

interval ∆𝑡 is critical for the optimal design of thin films. However, due to the presence of non-

closed-form calculations at the discrete scale, the full kMC-PDE model comprised of equations 

(13)-(30), i.e. 𝑓𝑘𝑀𝐶−𝑃𝐷𝐸, is computationally intensive, and its application in equation (81) for 

online control is computationally intractable, especially in the presence of parametric uncertainty. 

Thus, to make the problem of equation (81) computationally feasible, we trained ANN models to 

predict the dynamic responses of 𝑅(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)) and 𝐺𝑟(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)) under 

uncertainty in 𝐸 and replaced the full kMC-PDE model with the ANNs. The training procedure 

and the structure of the ANNs are discussed in the next section.  

6.2 Training ANNs for stochastic multiscale systems 

In order to train the ANNs, we used the full multiscale model to generate two datasets under 

uncertainty. Uncertainty in the energy of a single bond, i.e. the E parameter in equations (24) and 

(25) which describe the rates of desorption and migration, respectively, is assumed to be an 

uncertain parameter that follows a normal probability distribution function, i.e.  

 
𝐸~𝒩 (17,000

𝑐𝑎𝑙

𝑚𝑜𝑙
,  (850

𝑐𝑎𝑙

𝑚𝑜𝑙
)

2

) 
(82) 

The value of 850 cal/mol was chosen for testing our approach and its ability to control thin film 

product properties in the presence of parameter uncertainty. In principle, this value could be 

obtained from process heuristics through the implementation of a parameter estimation technique, 

which is beyond the scope of this work. Note that other probability distributions for the uncertain 

parameters can be used for the design of ANNs. In this work however, we decided to use a 
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Gaussian distribution because it is the most practical assumption considered in an industrial 

setting. Also, a single uncertain parameter was considered in this work for simplicity. However, 

the present approach can be readily extended to consider multiple uncertain parameters in the 

analysis. 

The first dataset was generated using only the nominal uncertain parameter value (E = 17,000 

cal/mol) and it contained 400,000 points (one point per second), where each point consisted of the 

manipulated variables (the substrate temperature 𝑇𝑠𝑢𝑟𝑓 and the inlet precursor mole fraction 𝑋𝑏𝑢𝑙𝑘), 

and the corresponding outputs that are needed to evaluate the objective function and constraints 

considered in the shrinking horizon optimization formulation (81), i.e. roughness 𝑅 and growth 

rate 𝐺𝑟. Since the uncertain parameter was set to its nominal value, this dataset was used to train 

the ANNs for predicting 𝜇𝑅 and 𝜇𝐺𝑟, i.e. the mean values of roughness and growth rate, 

respectively.  

The temperature was constrained to the range between 800 K and 1200 K since it was 

representative of the industrial thin film production, whereas the maximum allowed step in 𝑇𝑠𝑢𝑟𝑓 

was 50 K (to avoid unrealistically high temperature transitions/thermal shock). For similar reasons, 

the precursor mole fraction was constrained to the range between 2.5×10-6 and 4×10-6 with the 

maximum allowed change in 𝑋𝑏𝑢𝑙𝑘 being 5×10-7. The values of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 were held constant 

for at least 25 seconds. The minimum time interval was chosen as 25 seconds to enable the 

multiscale model to reach steady state in the observables 𝑅 and 𝐺𝑟 before the next change in the 

manipulated variables would occur. The purpose of generating such a large dataset (400,000 

points) was to ensure that the ANNs would have enough information to obtain weights and biases 

that would make generalized predictions (i.e. interpolate accurately on the respective ranges of the 

manipulated variables rather than memorize the responses to the training data, as discussed in 



125 
 

section 2.3). Furthermore, the large dataset was intended to enable the ANN training algorithm to 

average out the effects of stochastic noise in the observables. The CPU time required to simulate 

the full multiscale model for 400,000 seconds was approximately 72 hours. Note that all 

calculations in this work were performed on a computer with 96 GB of RAM and two Intel® 

Xeon® E5-2620 v4 processors running at 2.10 GHz. To circumvent the previously mentioned 

challenges that arise from using stochastic multiscale models to generate ANN training data, we 

controlled the lattice size N (spatial domain discretization) of our multiscale model. In order to 

decrease the noise in the training data while maintaining feasible computational times, N was set 

to 50. Also, we resorted to parallel computing to speed up the generation of ANN training data 

under uncertainty (described below). Note that the noise could be diminished further with larger 

lattices such as N = 100 or N = 150, but at a disproportionately large increase in the computational 

time. For example, when the value of N is increased by a factor of 1.5, the computational cost 

grows by approximately a factor of 4, as discussed in our previous works.54,56  

The second dataset was generated using 300 realizations from the probability distribution of the 

uncertain parameter 𝐸 shown in equation (82). For each of 300 realizations, the full multiscale 

model was simulated for 10,000 s using the same time-varying signal in 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 subject 

to the restrictions described above, thereby generating the values of 𝑅 and 𝐺𝑟 under various 

realizations in 𝐸. Hence, the raw data used in the ANN identification contained 3,000,000 points 

(300 realizations × 10,000 s). The data recorded from these experiments was used to calculate 

standard deviations in 𝑅 and 𝐺𝑟, i.e. 𝜎𝑅 and 𝜎𝐺𝑟, respectively, for each second in the 10,000 s 

signal. Consequently, the second dataset consisted of 10,000 points, where each point consisted of 

the values for 𝑇𝑠𝑢𝑟𝑓, 𝑋𝑏𝑢𝑙𝑘, 𝜎𝑅 and 𝜎𝐺𝑟. A representative plot of the sensitivity of 𝑅 and 𝐺𝑟 to 

uncertainty is presented in Figure 25. 
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Figure 25: The sensitivity of roughness and growth rate observables to parametric uncertainty, presented as the ratio of the 

standard deviation of the observables to their respective mean values.  

As shown in Figure 25, the growth rate observable is relatively insensitive to the parametric 

uncertainty in 𝐸, since the standard deviation of growth rate 𝜎𝐺𝑟 tends to be less than 1.5% of its 

mean value 𝜇𝐺𝑟. On the other hand, the standard deviation in roughness, i.e. 𝜎𝑅, can reach up to 

30% of its mean value 𝜇𝑅. Thus, we decided to treat the standard deviation in growth rate as 

negligible. Note that the usage of the dataset obtained under 300 realizations of 𝐸 and the ANNs 

trained on it are described in sections 6.4 and 6.5.  

We trained multiple-input single-output nonlinear autoregressive ANNs that accepted external 

input and, upon training completion, were able to forecast the response variables based on the 

current inputs (i.e. the current values of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘) and their own past predictions (i.e. the 

past predictions of 𝜇𝑅, 𝜎𝑅  and 𝜇𝐺𝑟 were supplied to the respective ANN via closed-loop feedback). 

The autoregressive property of our ANNs allowed them to generate predictions in the absence of 

online measurements from the plant (which would not be the case for feedforward ANNs). The 

two datasets of 400,000 and 10,000 points were randomly subdivided into training, validation and 

test subsets: 70%, 15% and 15% of each dataset were assigned to each respective subset. The 

training subset was used for fitting the weights and biases of the ANNs (via the Levenberg-

Marquardt backpropagation with a mean square error objective function), the validation subset 

was used to evaluate the ANN models’ quality of fit and adjust the weights and biases, and the test 
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subset was used only to decide when to stop training to prevent the memorization of data. As per 

common practice (discussed in section 2.3), the hyperbolic tangent sigmoid transfer function was 

used for the neurons in the hidden layer(s) of the ANNs, and a linear transfer function was utilized 

for the neurons in the output layer of the ANNs. The above procedure was implemented using the 

Neural Net Time Series toolbox in MATLAB®. 

To accelerate the completion of ANN training and to mitigate the potentially detrimental effect of 

poor initial guesses for weights and biases on convergence to reasonably accurate ANNs, the 

training was carried out in the open-loop mode; the feedback loop in each ANN was closed only 

after the training was completed. That is, during training, the ANNs did not rely on their own past 

predictions of the observables to make the new predictions – instead, the known observable values 

at the previous timestep were used for the ANNs to make predictions for the current timestep. 

After the training was completed, the feedback loop within the ANNs was closed so that the only 

external inputs required by the ANNs were the manipulated variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘, whereas 

the networks’ prior predictions of the observables were used for the future predictions.  

To identify the networks that can potentially generate acceptable predictions, 9 ANNs for each of 

the 𝑅 and 𝐺𝑟 observables were trained, with network architectures that had one to three hidden 

layers, and two, five and ten neurons per hidden layer. Each network was trained on the same 

dataset with 400,000 points (described above). Next, the performance of the networks was assessed 

on a new dataset with 1,600,000 points that was never before seen by the networks. This dataset 

was obtained after approximately 260 hours of simulating the full multiscale model, and it was 

generated using the same restrictions on 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 as for the 400,000-point dataset. The new 

dataset was larger than the training dataset to confirm that the trained ANNs could predict the 

responses to previously unseen inputs accurately. Each of the 9 proposed networks for each of the 
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two observables calculated the responses to the 1,600,000 manipulated variable values in 55 ± 0.5 

seconds, regardless of the network’s structure. The statistics of the percent relative errors between 

the predicted responses of 𝑅 and 𝐺𝑟 and the 1,600,000 measured values have been summarized in 

Tables 15 and 16, respectively. Similarly, the probability distributions of the errors have been 

plotted in Figures 26 and 27, respectively. Note that in these Tables and Figures, different network 

structures have been specified using the number of hidden layers and the number of neurons in 

each layer; for example, the ANN with 1 hidden layer and 2 neurons in the layer was referred to 

as 1 layer, 2 neurons while the ANN with 3 hidden layers and 10 neurons per layer was called 3 

layers, 10 neurons. 

Table 15: Statistics on the percent relative errors between 1,600,000 predicted and actual roughness (𝑅) values 

 
Statistics on the percent relative errors 

ANN structure min max median mean std. dev. variance skewness 

1 layer, 2 neurons -53.73 45.56 0.57 0.42 7.67 58.78 -0.41 

2 layers, 2 neurons -54.91 49.61 0.45 0.51 7.02 49.25 -0.52 

3 layers, 2 neurons -49.75 45.29 0.91 0.95 7.59 57.59 -0.44 

1 layer, 5 neurons -55.47 45.57 0.25 0.06 6.55 42.86 -0.77 

2 layers, 5 neurons -55.21 97.17 0.20 0.06 6.46 41.72 -0.33 

3 layers, 5 neurons -54.94 210.72 0.21 0.05 6.53 42.63 0.89 

1 layer, 10 neurons -54.99 144.64 0.21 0.04 6.51 42.38 -0.14 

2 layers, 10 neurons -53.80 86.83 0.32 0.19 6.38 40.76 -0.38 

3 layers, 10 neurons -53.50 1097.68 0.22 2.09 40.08 1606.59 19.20 
 

Table 16: Statistics on the percent relative errors between 1,600,000 predicted and actual growth rate (𝐺𝑟) values 

 
Statistics on the percent relative errors 

ANN structure min max median mean std. dev. variance skewness 

1 layer, 2 neurons -23.25 44.62 0.02 0.09 2.46 6.07 1.26 

2 layers, 2 neurons -23.15 44.43 0.01 0.07 2.44 5.95 1.23 

3 layers, 2 neurons -23.06 44.49 0.02 0.08 2.44 5.95 1.23 

1 layer, 5 neurons -21.63 41.32 0.01 0.07 2.42 5.88 1.17 

2 layers, 5 neurons -19.53 39.50 0.01 0.06 2.31 5.34 0.90 

3 layers, 5 neurons -20.92 41.25 0.01 0.07 2.42 5.85 1.08 

1 layer, 10 neurons -22.10 43.36 0.00 0.06 2.43 5.91 1.22 

2 layers, 10 neurons -20.69 41.88 -0.02 0.03 2.33 5.43 1.12 

3 layers, 10 neurons -20.49 39.62 0.02 0.07 2.33 5.44 1.03 



129 
 

 

Figure 26: Probability distributions of the percent relative errors between 1,600,000 predicted and actual roughness (𝑅) 

responses 

 

Figure 27: Probability distributions of the percent relative errors between 1,600,000 predicted and actual growth rate (𝐺𝑟) 

responses 
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Based on the data presented in Table 155 and Figure 266, the ANN with 1 hidden layer and 5 

neurons was chosen to predict roughness (𝑅). It can be seen in Table 15 that the lowest mean and 

standard deviation of relative percent errors were demonstrated by all networks with 5 neurons per 

hidden layer and the network with 1 hidden layer and 10 neurons (e.g. the mean errors were 

between 0.04% and 0.06% for these ANNs). However, among these four networks, all the ANNs 

larger than the network with 1 hidden layer and 5 neurons demonstrated relatively high maximum 

possible percent errors (from 86.83% for the network with 2 layers and 10 neurons per layer up to 

1,097.68% for the network with 3 layers and 10 neurons per layer). The presence of such high 

possible maximum errors was also the reason why the corresponding probability distributions in 

Figure 26 appeared narrow and sharp.  

While no significant differences could be observed from Figure 27 among the error distributions 

from the ANNs that predicted the growth rate (𝐺𝑟) responses, Table 16 showed that the network 

with 2 hidden layers and 5 neurons in each layer demonstrated superior generalization abilities 

with the lowest possible minimum (-19.53%) and maximum (39.50%) relative percent errors, the 

second-lowest median (0.01%) and mean (0.06%) errors, and the lowest standard deviation 

(2.31%), variance (5.34) and skewness (0.90) of all the proposed ANN architectures. The 

corresponding architectures of the ANNs chosen to predict roughness and growth rate for the 

present multiscale model have been depicted in Figures 28 and 29, respectively.  
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Figure 28: A schematic of the chosen “1 layer, 5 neurons” ANN structure for predicting roughness (𝜇𝑅). Note that the output of 

the ANN is used for autoregression via the closed-loop feedback. 

 

Figure 29: A schematic of the chosen “2 layers, 5 neurons” ANN structure for predicting mean growth rate (𝜇𝐺𝑟). Note that the 

output of the ANN is used for autoregression via the closed-loop feedback.  

6.3: ANNs for NMPC of stochastic multiscale systems under nominal process conditions  

In this section, we present the results of applying the ANNs chosen in section 6.2 for the shrinking 

horizon optimization problem of equation (81) in section 6.1 under nominal conditions (i.e. no 

uncertainty in 𝐸). The shrinking horizon optimization problem was solved using the second order 

gradient-based interior-point constrained optimization algorithm implemented in the fmincon 

function in MATLAB®. For the interior point algorithm in fmincon, the constraint and optimality 

tolerances were 10-6 and the step tolerance was 10-10 (i.e. the default MATLAB® values). 

Furthermore, to speed-up the calculations, fmincon was set to compute the gradients in parallel in 

all scenarios presented below. In equation (81), the objective function had no additional weights, 
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and the batch time was set to range from 0 s to 450 s in order to allow the NMPC algorithm to 

sample an adequate number of decision variables while considering the possibility of having 

external and/or internal events that may impact the operation.  Identical to the training dataset 

characteristics described in section 6.2, the temperature parameters were set as follows: 𝑇𝑚𝑖𝑛 = 

800 K, 𝑇𝑚𝑎𝑥 = 1,200 K and ∆𝑇 = 50 K. The precursor mole fraction parameters were also identical 

to the characteristics of the training dataset: 𝑋𝑚𝑖𝑛 = 1×10-6, 𝑋𝑚𝑎𝑥 = 4×10-6 and ∆𝑋 = 5×10-7. Note 

that the initial conditions for the temperature and precursor mole fraction were set to 𝑇0 = 𝑇𝑚𝑖𝑛 

and 𝑋0 = 𝑋𝑚𝑎𝑥, respectively; this was done to maximize the value of 𝑊𝑎 in equation (23), i.e. the 

rate of adsorption of chemical vapour particles onto the substrate/thin film surface, thereby 

promoting thin film growth. Hence, these are reasonable settings for the start of the production 

batch that would aim to manufacture the thin films in a timely fashion. In the scenarios presented 

below, up to three final roughness targets (𝑅∗) were considered: 1.8 ML, 3.0 ML and 5.0 ML. The 

first two targets were used as industrially relevant criteria for smooth high-performance thin films 

since an ideal film would have 𝑅 = 1.0 ML, whereas the third value was proposed to test the 

performance of the ANN models for higher roughness targets subject to large stochastic noise. 

Note that in all scenarios, the manipulated variables were held piecewise constant for the duration 

of the corresponding sampling intervals ∆𝑡 (25 s in Scenarios A-C and 10 s in Scenario D, see 

below).  

6.3.1 Scenario A: No online measurements 

In the first scenario, there was no feedback from the full multiscale model (i.e. the plant model) 

provided to the ANNs. Instead, the ANNs were used within the gradient-based constrained 

optimization algorithm (mentioned previously) with the same constraints as in equation (81) to 

find the optimal time-dependent control action profiles that would, according to the ANN 
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predictions, satisfy the final roughness targets 𝑅∗ of 1.8 ML, 3.0 ML and 5.0 ML. Once found, the 

profiles were used to run the plant model in the open-loop batch mode to validate the solutions. 

This control scheme has been presented in Figure 30a, where 𝑅𝑘𝑀𝐶(𝑡𝑖) and 𝐺𝑟𝑘𝑀𝐶(𝑡𝑖) denote the 

values of the observables produced by the plant model, while 𝑅𝐴𝑁𝑁(𝑡𝑖) and 𝐺𝑟𝐴𝑁𝑁(𝑡𝑖) represent 

the predictions of the ANN models. Note that the sampling interval ∆𝑡 was set to 25 s, i.e. the 

manipulated variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 were allowed to be changed no sooner than every 25 s. 

Consequently, for the horizon of 450 s the total number of the sampling intervals, 𝑛, was 18. The 

results are presented in Table 17 and in Figures 31-33. Note that in Table 17, as well as in Tables 

18-20 in sections 4.2-4.4, 𝑅𝐴𝑁𝑁(𝑡𝑛) refers to the roughness prediction by the ANN model at time 

𝑡𝑛 (i.e. the end of the optimization horizon), 𝑅𝑘𝑀𝐶(𝑡𝑛) refers to the final roughness measurement 

from the plant, 𝐺𝑟𝐴𝑁𝑁
̅̅ ̅̅ ̅̅ ̅̅  refers to the average of the growth rate values predicted by the corresponding 

ANN over the entire optimization horizon, and 𝐺𝑟𝑘𝑀𝐶
̅̅ ̅̅ ̅̅ ̅̅  refers to the average of the growth rate 

values collected from the plant model over the entire horizon.  

 

Figure 30: The open-loop (a) and closed-loop (b) shrinking horizon NMPC schemes employed in Scenarios A-D. Scenario A used 

the open-loop scheme (a), while Scenarios B-D used the closed-loop scheme (b).  
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Table 17: The performance of ANN models for the case of no online measurements and the sampling interval ∆𝑡 = 25 s.  

 𝑇𝑠𝑢𝑟𝑓(𝑡𝑛)  

(K) 
𝑋𝑏𝑢𝑙𝑘(𝑡𝑛) 

𝐺𝑟𝐴𝑁𝑁
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝐺𝑟𝑘𝑀𝐶
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝑅𝐴𝑁𝑁(𝑡𝑛) 

(ML) 

𝑅𝑘𝑀𝐶(𝑡𝑛) 

(ML) 

𝑅∗ = 1.8 ML 1200 1.22×10-6 31.66 31.59 1.80 1.83 

𝑅∗ = 3.0 ML 1106 4.00×10-6 36.37 36.24 3.00 3.00 

𝑅∗ = 5.0 ML 1006 4.00×10-6 36.76 36.65 5.00 7.60 

 

 

Figure 31: Optimal profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and the responses in 𝑅 and 𝐺𝑟, no online measurements, ∆𝑡 = 25 s, 𝑅∗ = 1.8 ML 

 

Figure 32: Optimal profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and the responses in 𝑅 and 𝐺𝑟, no online measurements, ∆𝑡 = 25 s, 𝑅∗ = 3.0 ML 

 

Figure 33: Optimal profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and the responses in 𝑅 and 𝐺𝑟, no online measurements, ∆𝑡 = 25 s, 𝑅∗ = 5.0 ML  
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Figures 31-33 show that different profiles of the manipulated variables have been obtained 

depending on the three target roughness values 𝑅∗ (1.8 ML, 3.0 ML and 5.0 ML). A close overlap 

of the final roughness trajectories (approximately the last 50 seconds of the batch) can be observed 

in Figures 31 (𝑅∗ = 1.8 ML) and 32 (𝑅∗ = 3.0 ML). Note that for 𝑅∗ = 1.8 ML, the final roughness 

value from the multiscale model was 1.83 ML, slightly higher than the 𝑅∗ target (see Table 17). 

This can be explained by the presence of stochastic noise in the full multiscale model – the noise 

is present even at 1,200 K. The most detrimental effect of the noise, as well as potentially model-

plant mismatch, was observed for high roughness target values, i.e. 𝑅∗ = 5.0 ML, where the ANN 

for the roughness significantly underestimated 𝑅𝑘𝑀𝐶(𝑡𝑛) at 1,006 K: the 𝑅𝑘𝑀𝐶(𝑡𝑛) value was 52% 

greater than 𝑅𝐴𝑁𝑁(𝑡𝑛), i.e. 7.60 ML versus 5.00 ML, respectively. Note that for all 𝑅∗ targets, the 

roughness ANN overestimated the rate of dynamic response of the system to the changes in the 

temperature. This is most apparent in Figure 33, where the ANN predictions of roughness reached 

steady state at 800 K before the multiscale model did (a similar effect is observed in Figures 31 

and 32), and when the temperature started to increase at the sampling intervals 𝑖 ≥ 14 (𝑡 ≥ 326 s), 

the response of 𝑅𝐴𝑁𝑁 was much faster than of 𝑅𝑘𝑀𝐶. For the case of 𝑅∗= 5.0 ML, the poor accuracy 

of ANN predictions of roughness at the end of the batch could be attributed to the noisy training 

data154 at relatively low temperatures (under 1,050 K). During training, the weights and biases of 

the ANN for roughness likely converged to the values that captured the average responses of noisy 

low-temperature (e.g. under 1,050 K) roughness, resulting in model-plant mismatch and 

suboptimal ANN performance.  

Moreover, the ANN for the growth rate predicted the responses accurately and, in all the scenarios 

in this work, it did not overestimate 𝐺𝑟𝑘𝑀𝐶
̅̅ ̅̅ ̅̅ ̅̅  by more than 0.4 % (this error occurred for 𝑅∗ = 3.0 

ML in Table 17, compare 36.37 ML/s from the ANN to 36.24 ML/s from the multiscale model). 
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Note that in Table 17, all results for 𝐺𝑟𝐴𝑁𝑁
̅̅ ̅̅ ̅̅ ̅̅  slightly overestimated the corresponding 𝐺𝑟𝑘𝑀𝐶

̅̅ ̅̅ ̅̅ ̅̅  values, 

consistent with the fact that the ANN for growth rate with 2 hidden layers and 5 neurons per layer 

exhibited positive mean and median relative percent errors, as well as positive skewness of the 

errors (see the 2 layers, 5 neurons results in Table 16).  

Furthermore, the strength of the dependence of the observables on the manipulated variables can 

be qualitatively observed by comparing the optimized control inputs in Figures 31-33 to the 

corresponding time-dependent profiles of the observables. In Figures 32 and 33, only the substrate 

temperature 𝑇𝑠𝑢𝑟𝑓 was manipulated in the attempt to achieve 𝑅∗ = 3.0 ML and 𝑅∗ = 5.0 ML, 

respectively. In both cases, roughness started to decrease as soon as the temperature began to 

increase, but the growth rate decreased only at the temperatures greater than or equal to 850 K, 

and it did so at a much lower rate than the roughness trajectory. Hence, in this multiscale system, 

temperature has a greater impact on roughness than growth rate, but it is related to both observables 

nonetheless. An opposite qualitative relationship appears to exist between the precursor mole 

fraction (𝑋𝑏𝑢𝑙𝑘) and the observables: comparing Figures 31 and 32, it can be observed that the 

major difference is the manipulation of 𝑋𝑏𝑢𝑙𝑘 in Figure 31 (𝑅∗ = 1.8 ML). In the scenario of Figure 

31, both 𝑋𝑏𝑢𝑙𝑘 and 𝑇𝑠𝑢𝑟𝑓 were manipulated, but the precursor mole fraction caused the majority of 

the change in the growth rate trajectory (the growth rate at the end of the batch was 9 ML/s in 

Figure 31, which was 3.7 times lower than 33 ML/s in Figure 32). Comparing Figure 32 to Figure 

31, the final temperature was increased by less than 100 K, so the majority of the effect on the 

growth rate can be attributed to the precursor mole fraction manipulations. Therefore, both the 

roughness and the growth rate ANNs were able to capture the different strengths of connections 

between each manipulated variable and the corresponding observables, and the ANNs could adjust 

the manipulated variables depending on the final roughness constraint. Furthermore, the ANN 
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models demonstrated superior computational efficiency. On average, the optimization was 

completed in 75 seconds after approximately 2,300 evaluations of the ANN models. However, the 

average computational time to evaluate the full kMC-PDE model using the optimal profiles of the 

manipulated variables was 580 seconds. In other words, if the full kMC-PDE model were to be 

used in the optimization scheme and evaluated 2,300 times, the total computational time would be 

almost 18,000 times longer than with the ANN models. Thus, the ANN models efficiently provided 

reasonable estimates and, as a result, were used for further studies.  

6.3.2 Scenario B: Online measurements 

The second scenario was the full shrinking horizon NMPC technique, where 𝑅 and 𝐺𝑟 

measurements from the plant model (referred to as online measurements in Figures 30b and 34-

36, as well as in Table 18) were collected in real time once at the end of every sampling interval 

(∆𝑡 = 25 s) and then used as the initial conditions for the respective ANNs in the next iteration of 

the shrinking horizon optimization. This is summarized in Figure 30b, where the feedback between 

the plant model and the shrinking horizon optimization is represented by the dotted line and the 

feedback between the plant and the ANN models is represented by the dashed line. Note that in 

practice, such measurements can be collected using laser scattering combined with adaptive optics, 

as well as X-ray reflectivity.208,209 Figures 34-36 and Table 18 summarize the results of the study.  

Table 18: The performance of ANN models for the case with online measurements and ∆𝑡 = 25 s. 

 𝑇𝑠𝑢𝑟𝑓(𝑡𝑛)  

(K) 
𝑋𝑏𝑢𝑙𝑘(𝑡𝑛) 

𝐺𝑟𝐴𝑁𝑁
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝐺𝑟𝑘𝑀𝐶
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝑅𝐴𝑁𝑁(𝑡𝑛) 

(ML) 

𝑅𝑘𝑀𝐶(𝑡𝑛) 

(ML) 

𝑅∗ = 1.8 ML 1200 1.22×10-6 31.66 31.57 1.80 1.79 

𝑅∗ = 3.0 ML 1106 4.00×10-6 36.38 36.24 3.00 2.97 

𝑅∗ = 5.0 ML 1006 4.00×10-6 36.66 36.53 5.33 5.96 
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Figure 34: Optimal profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and the responses in 𝑅 and 𝐺𝑟, with online measurements, ∆𝑡 = 25 s, 𝑅∗ = 1.8 ML  

 

Figure 35: Optimal profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and the responses in 𝑅 and 𝐺𝑟, with online measurements, ∆𝑡 = 25 s, 𝑅∗ = 3.0 ML  

 

Figure 36: Optimal profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and the responses in 𝑅 and 𝐺𝑟, with online measurements, ∆𝑡 = 25 s, 𝑅∗ = 5.0 ML  

Unlike in Figures 31-33, the time-varying profiles of 𝑅𝐴𝑁𝑁 appear discontinuous because every 25 

seconds the measurement from the multiscale model was provided as the initial condition for the 

neural network predictions. We observed close agreement between 𝑅𝐴𝑁𝑁(𝑡𝑛) and 𝑅𝑘𝑀𝐶(𝑡𝑛) values 

for 𝑅∗ = 1.8 ML (1.80 ML vs 1.79 ML, respectively, see Table 18 and Figure 34) and 𝑅∗ = 3.0 ML 
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(3.00 ML vs 2.97 ML, respectively, see Table 18 and Figure 35). The growth rate predictions 

obtained using ANN and the stochastic multiscale model also exhibited good agreement. 

Furthermore, the final temperatures 𝑇𝑠𝑢𝑟𝑓(𝑡𝑛) obtained for the case with online measurements 

were identical (rounded to nearest integer) to the case without the online measurement for each 

roughness target 𝑅∗. Since the targets 𝑅∗ = 1.8 ML and 𝑅∗ = 3.0 ML were satisfied by the plant, 

the ANNs were shown to provide highly accurate predictions for the low-noise regime of the 

multiscale model.  

However, the target 𝑅∗ = 5.0 ML (see Figure 36) was not satisfied, neither by the ANN model nor 

by the plant. The mismatch between ANN roughness predictions and the data from the plant was 

significant: 𝑅𝐴𝑁𝑁(𝑡𝑛) was 5.33 ML and 𝑅𝑘𝑀𝐶(𝑡𝑛) was 5.96 ML, as per Table 18. Unlike in the 

previous scenario, here the online measurements were supplied as the initial conditions for the 

ANN. While the temperature was set to 800 K (until 325 seconds of batch time, 𝑖 ≤ 13), the ANN 

predictions were not able to detect an issue, expecting to meet the roughness constraint of 5.0 ML 

because the ANN overpredicted the rate of dynamic response of the model in the noisy regime. As 

depicted in Figure 36, as the temperature started to be increased (at 326 seconds of batch time, 𝑖 ≥ 

14), the initial conditions for the shrinking horizons started to be higher than previously anticipated 

by the ANN for roughness. Consequently, not only did the plant exceed the roughness constraint 

of 5.0 ML, but so did the ANN model, because the mismatch between the plant measurements and 

the ANN was too great for the ANN to overcome and reach the roughness target of 5.0 ML while 

abiding by the constraint on the maximum temperature increase between two successive sampling 

intervals (i.e. ∆𝑇 = 50 K). Since the temperature ramp began late in the time horizon, there were 

not enough decisions left to continue to increase the temperature to meet the 𝑅∗ = 5.0 ML 

requirement.  



140 
 

Note that for online optimization with embedded ANNs it may be necessary to use more efficient 

nonlinear programming and dynamic optimization software (e.g. DONLP2, IPOPT, etc.) instead 

of MATLAB® fmincon function, particularly if the computational resources are limited. It was 

observed that the shrinking horizon optimization problem’s CPU time and the solution accuracy 

were sensitive to the solver type and the specified tolerances, as well as the accuracy of the initial 

guess. For example, with the tolerance of 10-6 (i.e. the default fmincon value), 75 seconds of CPU 

time were required initially and the CPU time for optimization decreased to less than 25 seconds 

only when there remained 7 (or less) decisions to be made on the shrinking horizon. However, 

with the first order optimality tolerance set to 10-1, the optimization required approximately 15 

seconds of CPU time to make the initial prediction of optimal control actions, but the average 

growth rate decreased by approximately 15% compared to the presented solutions. Furthermore, 

when the active set algorithm was used instead of interior point and the initial guess was close to 

the optimal solution, the CPU time at the start of optimization was less than 3 seconds and the 

manipulated variables’ profiles were optimal. Therefore, the optimization tuning parameters will 

need to be adjusted based on the problem under consideration and the goals to be achieved by 

NMPC. 

6.3.3 Scenario C: Disturbance rejection 

Furthermore, we present a variation of the scenario B (section 4.2), where we studied the effect of 

a large disturbance in both manipulated variables. Using the same optimization procedure as in 

section 4.2, we added a disturbance not seen during ANN training. For the sampling interval 𝑖 = 

4, i.e. the interval that started at 76 s, disturbances to both the temperature and the precursor mole 

fraction were introduced and held constant for the entire interval; the disturbances were 3 times 

greater than the maximum allowed amount during data generation and training, i.e. the change in 
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𝑇𝑠𝑢𝑟𝑓 was 150 K and the change in 𝑋𝑏𝑢𝑙𝑘 was -1.5×10-6. Note that online measurements from the 

plant continued to be collected and provided to the ANN models with the sampling interval of ∆𝑡 

= 25 s. Also, the manipulated variables were again held constant for the duration of each sampling 

interval. Since the online measurements of the observables 𝑅 and 𝐺𝑟 were used by the shrinking 

horizon optimization as initial conditions on every iteration, any disturbances to the observables 

were captured by the NMPC framework. After obtaining the measurements, the framework chose 

the control actions that best satisfied the objective function and the constraints of equation (81). 

While accounting for the measured 𝑅 and 𝐺𝑟 through the initial conditions. The results have been 

summarized in Table 19 and Figures 37-39.  

Table 19: The performance of ANN models for the case with online measurements, disturbance at 76 s and ∆𝑡 = 25 s. 

 𝑇𝑠𝑢𝑟𝑓(𝑡𝑛)  

(K) 
𝑋𝑏𝑢𝑙𝑘(𝑡𝑛) 

𝐺𝑟𝐴𝑁𝑁
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝐺𝑟𝑘𝑀𝐶
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝑅𝐴𝑁𝑁(𝑡𝑛) 

(ML) 

𝑅𝑘𝑀𝐶(𝑡𝑛) 

(ML) 

𝑅∗ = 1.8 ML 1200 1.22×10-6 29.94 29.90 1.80 1.77 

𝑅∗ = 3.0 ML 1106 4.00×10-6 34.65 34.55 3.00 2.86 

𝑅∗ = 5.0 ML 1006 4.00×10-6 34.96 34.88 5.06 6.58 

 

 

Figure 37: Optimal profiles and the responses, with online measurements and a disturbance, ∆𝑡 = 25 s, 𝑅∗ = 1.8 ML 
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Figure 38: Optimal profiles and the responses, with online measurements and a disturbance, ∆𝑡 = 25 s, 𝑅∗ = 3.0 ML  

 

Figure 39: Optimal profiles and the responses, with online measurements and a disturbance, ∆𝑡 = 25 s, 𝑅∗ = 5.0 ML 

It can be seen from the optimal profiles in Figures 37-39 that ANNs reacted to disturbances 

efficiently by decreasing the temperature and increasing the precursor mole fraction during the 

time from 101 seconds to 150 seconds (i.e. intervals 𝑖 = 5 and 6) back to the original settings before 

manipulating the control inputs again later in order to meet the roughness target. This robustness 

to disturbances which were not seen during ANN models’ development is a beneficial feature for 

online process control, where unexpected disturbances may significantly affect plant operations. 

However, due to poor performance in the noisy regime, the 𝑅∗ = 5.0 ML target (see Figure 39) 

was not met neither by the ANN model for roughness (5.06 ML was the value of 𝑅𝐴𝑁𝑁(𝑡𝑛), as per 

Table 19), nor by the plant (6.58 ML was the measured 𝑅𝑘𝑀𝐶(𝑡𝑛), per Table 19). 

6.3.4 Scenario D: Decreasing the sampling interval  

To further investigate the ANN’s behaviour at high roughness values, we attempted to mitigate 

the issue of ANN underprediction of the final measured roughness for the target 𝑅∗ = 5 ML by 
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decreasing the sampling interval ∆𝑡 to 10 seconds instead of 25 seconds, making 𝑛 = 45 for the 

total batch time of 450 s. Measurements from the plant were collected and provided to the ANN 

models every 10 seconds. The results have been provided in Table 20 and Figure 40.  

Table 20: The performance of ANN models for the case with online measurements and ∆𝑡 = 10 s. For brevity, only the results for 

𝑅∗ = 5.0 ML are reported.  

 𝑇𝑠𝑢𝑟𝑓(𝑡𝑛)  

(K) 
𝑋𝑏𝑢𝑙𝑘(𝑡𝑛) 

𝐺𝑟𝐴𝑁𝑁
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝐺𝑟𝑘𝑀𝐶
̅̅ ̅̅ ̅̅ ̅̅  

(ML/s) 

𝑅𝐴𝑁𝑁(𝑡𝑛)  

(ML) 

𝑅𝑘𝑀𝐶(𝑡𝑛)  

(ML) 

𝑅∗ = 5.0 ML 1054 4.00×10-6 36.77 36.62 4.53 5.00 

 

 

Figure 40: Optimal profiles and the responses, with online measurements, ∆𝑡 = 10 s, 𝑅∗ = 5.0 ML  

Note that the training data was based only on ∆𝑡 = 25 s. However, the ANNs are recursive: the 

future predictions depend only on the past predictions and the current manipulated variables, 

whereas the batch time is not an input to the ANNs. Hence, it is possible to use the ANN models 

for more frequent sampling. After decreasing the sampling interval, the ANN models tended to 

predict a faster response to temperature changes than what was actually observed from the full 

multiscale model. For this case, 𝑇𝑠𝑢𝑟𝑓(𝑡𝑛) was 1,054 K (as per Table 20), higher than 1,006 K 

obtained previously for the scenarios A-C with 𝑅∗ = 5.0 ML. The obtained 𝑅𝑘𝑀𝐶(𝑡𝑛) was 5.00 ML 

(see Table 20 and Figure 40), and 𝑅𝐴𝑁𝑁(𝑡𝑛) was even lower (4.53 ML, see Table 20). Therefore, 

decreasing the sampling interval duration to ∆𝑡 = 10 s was conducive to meeting the 𝑅∗ = 5.0 ML 

constraint. While in this case the target roughness specification was met by the plant, it should be 
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noted that the stochastic noise present at the temperatures of approximately 1,050 K (and below) 

may also produce roughness values greater than 5.0 ML. Also, it should be emphasized that 𝑅∗ = 

5.0 ML is a relatively high roughness value and that industrial applications require smoother films, 

for which situations the ANN models have demonstrated accurate predictions and reliable 

performance (see the results in sections 6.3.1-6.3.3). Note that lower roughness targets (1.8 ML 

and 3 ML) were tested for this case and satisfactory performance was observed, but the results are 

not shown here for brevity.  

6.4: ANNs for open-loop control NMPC of stochastic multiscale systems under 

uncertainty 

The study in section 6.3 did not consider the effect of parametric uncertainty on the stochastic 

multiscale system. Hence, the work described in that section was expanded upon by considering 

the effect of parametric uncertainty on the roughness observable while the effect on growth rate 

was treated as negligible. Another ANN was trained to estimate the dynamic responses of the 

standard deviation of roughness and subsequently all three ANNs (the two from section 6.3 for the 

nominal values of the observables and the new ANN obtained in this section) were employed in a 

dynamic optimization scheme to identify the optimal profiles of the manipulated variables that 

would attain the desired thin film properties at the end of the batch. The resulting profiles were 

validated using the stochastic multiscale system.  

6.4.1 Training of the ANN for standard deviation of roughness 

To identify the most accurate ANN for modeling the standard deviation of roughness, i.e. 𝜎𝑅, four 

ANN structures were considered, listed in Table 21 and Figure 41. Note that larger ANNs with 

more layers and neurons per layer were also proposed but failed to achieve a reasonable fit to the 

data and have therefore been omitted for brevity. Each ANN was a multiple-input single-output 
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autoregressive network trained in open-loop on the 10,000 s dataset comprised of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 

manipulated variables and 𝜎𝑅 target training data (described above). In order to assess the accuracy 

of ANN predictions, the mean square error (MSE) was calculated between the ANNs’ predictions 

for 𝜎𝑅 and the output of the kMC-PDE model based on the 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 signals shown in Figure 

41. The kMC-PDE model was simulated using the signals in Figure 41 for each of 500 realizations 

in 𝐸 (none of which overlapped with the 300 realizations used to generate the 10,000 s dataset for 

training the 𝜎𝑅 ANNs). Thus, the raw dataset from the kMC-PDE model for selecting the 𝜎𝑅 ANN 

structure consisted of 187,500 points (500 realizations × 375 s), processed into 375 points by 

calculating the standard deviation of roughness at each second in the signal. Since the dataset for 

𝜎𝑅 ANN structure selection was based on a greater number of realizations of 𝐸, it allowed to test 

the ANNs’ abilities to generalise and predict 𝜎𝑅 behaviour based on not-seen-before data.  

Table 21: The mean square errors in the predictions of the standard deviation of roughness generated by different ANN 

structures  

ANN structure for predicting 𝜎𝑅 MSE (ANN vs kMC-PDE model) 

1 layer, 2 neurons 0.5166 

1 layer, 5 neurons 0.4902 

2 layers, 2 neurons each (2 × 2 in Figure 41) 0.6414 

2 layers, 5 neurons each (5 × 5 in Figure 41) 0.0678 

 

It can be seen from Table 21 that the ANN which produced the lowest MSE consists of 2 hidden 

layers with 5 neurons per layer. Note that its corresponding MSE was smaller than all others by 

one order of magnitude. This observation is qualitatively corroborated by Figure 41, where the 

output of the ANN with 2 layers and 5 neurons per layer (labelled as “ANN 5 × 5 neurons” in 

Figure 41), represented by the red dotted line, matched the kMC-based output (solid black line) 

most closely. Because of its superior performance, the ANN with 2 hidden layers and 5 neurons 

per layer was chosen to be incorporated into the NMPC framework for modelling 𝜎𝑅 in this work. 

The structure of this ANN is depicted in Figure 42.  
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Figure 41: A comparison of kMC-PDE model output and different ANNs for the same temperature and precursor mole fraction 

profiles. Note that ANNs were specified by the number of neurons per hidden layer (e.g. “ANN 2 neurons” corresponds to 1 hidden 

layer with 2 neurons, “ANN 5 × 5 neurons” corresponds to 2 hidden layers with 5 neurons per layer, etc.).  

 

Figure 42: The chosen ANN structures for predicting the standard deviation of roughness. Note that the output of the ANN is 

used for autoregression via the closed-loop feedback.  
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6.4.2 Open-loop NMPC under uncertainty  

In this section, we present the results of applying the ANNs chosen in sections 6.2 and 6.4.1 for 

the shrinking horizon optimization problem of equation (81). As mentioned in section 6.1, problem 

(81) is intractable if the full kMC-PDE model under certainty is used in the optimization scheme. 

However, the presence of the statistical moments 𝜇𝐺𝑟, 𝜇𝑅, and 𝜎𝑅 (mean growth rate, mean 

roughness and standard deviation of roughness, respectively) in the formulation allowed problem 

(81) to be reformulated using ANNs as follows:  

 max
𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)   

1

𝑛
∑ 𝜇𝐺𝑟𝐴𝑁𝑁

(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖))

𝑛

𝑖=1

 

Subject to:  

ANN models 𝜇𝑅𝐴𝑁𝑁
, 𝜎𝑅𝐴𝑁𝑁

 and 𝜇𝐺𝑟𝐴𝑁𝑁
 

𝑡𝑖 = 𝑖∆𝑡;     ∆𝑡 = 25 𝑠;     ∀𝑖 = 0,1,2, … 𝑛;     𝑛 = 18 

𝜇𝑅𝐴𝑁𝑁
(𝑇𝑠𝑢𝑟𝑓(𝑡𝑛), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑛)) + 3𝜎𝑅𝐴𝑁𝑁

(𝑇𝑠𝑢𝑟𝑓(𝑡𝑛), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑛)) ≤ 𝑅∗ 

800 K ≤ 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) ≤ 1200 K  

2.5 × 10-6 ≤ 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖) ≤ 4 × 10-6  

𝑇𝑠𝑢𝑟𝑓(0) = 800 K 

𝑋𝑏𝑢𝑙𝑘(0) = 4 × 10-6 

-50 K ≤ 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖+1) − 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) ≤ 50 K 

-5 × 10-7 ≤ 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖+1) − 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖) ≤ 5 × 10-7  

(83) 

Problem (83) was solved using the second order gradient-based active-set constrained optimization 

algorithm implemented in the fmincon function in MATLAB® with the same settings as described 

in section 6.3. However, the parameter 𝜆 in Problem (83) was set to 3 in order to approximate the 

probability limit on roughness at the end of the batch (i.e. 𝑃(𝑅(𝑡𝑛) ≤ 𝑅∗)) to 99.9 %. Also, to 

expedite the calculations, active set algorithm was used in fmincon instead of interior point. That 

probability limit is considered as an industrially relevant criterion for smooth high-performance 

thin films since it would capture most thin film roughness values.  
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The NMPC optimization framework is presented in Figure 43. For both scenarios A and B 

(sections 6.4.3 and 6.4.4, respectively), it has been assumed that the online measurements are not 

available from the plant, i.e. the present work only considers the optimal control of the thin film 

deposition process in open-loop. However, it has also been assumed that any disturbances 𝑑(𝑡𝑖) 

affecting the operation of the plant (such as in scenario B, see section 6.4.4) can be measured 

online during a sampling interval and compensated for by obtaining new optimal profiles of the 

manipulated variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 using shrinking horizon NMPC in real time. This can be 

accomplished due to the computational efficiency of the ANNs for 𝜇𝑅, 𝜎𝑅 and 𝜇𝐺𝑟. Note that in 

Figure 43, 𝜇𝑅𝑘𝑀𝐶
(𝑡𝑖), 𝜎𝑅𝑘𝑀𝐶

(𝑡𝑖) and 𝜇𝐺𝑟𝑘𝑀𝐶
(𝑡𝑖) denote the values of the statistical moments of the 

observables produced by the plant  (represented here as the kMC-PDE model shown in section 

3.2) while 𝜇𝑅𝐴𝑁𝑁
(𝑡𝑖), 𝜎𝑅𝐴𝑁𝑁

(𝑡𝑖) and 𝜇𝐺𝑟𝐴𝑁𝑁
(𝑡𝑖) represent the predictions of the ANN models 

under uncertainty in  𝐸.  

 

Figure 43: Open-loop ANN-based NMPC framework with measured disturbance 𝑑(𝑡𝑖). 
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6.4.3 Scenario A: dynamic optimization  

In this scenario, the ANNs were used within the gradient-based constrained optimization algorithm 

presented in Problem (83) to find the optimal time-dependent control action profiles that would, 

according to the ANN predictions, satisfy the final roughness targets 𝑅∗ of 3.0 ML and 2.52 ML. 

Once obtained, the profiles were used to run the plant until the end of the batch (450 s) in the 

presence of uncertainty in the parameter 𝐸 (see equation (82)). This control scheme has been 

presented in Figure 43, but in this scenario there was no disturbance affecting the plant. To test the 

performance of the optimal control profiles under uncertainty, the plant was simulated with the 

NMPC-generated 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 profiles using 500 different realizations of the uncertain 

parameter 𝐸 that were not used for ANN training. That is, the profiles obtained from Problem (83) 

for this scenario were used to run the batch operation 500 times. The results are presented in Table 

22 and in Figures 44 and 45. Note that in Table 22, 𝜇𝐺𝑟̅̅ ̅̅̅ is the average nominal growth rate value 

that the optimization framework of Problem (81) sought to maximize. The mean square error 

(MSE) was used as metric to estimate process performance and has been calculated over the entire 

450 s batch time. Table 22 compares the predictions made by the ANNs embedded in the NMPC 

framework to the output generated by the kMC-PDE model.  

Table 22: Comparison of ANN-based predictions and plant outputs 

 R* = 3.00 ML R* = 2.52 ML 

 ANN kMC ANN kMC 

𝜇𝐺𝑟̅̅ ̅̅̅ 35.91 35.80 34.53 34.42 

𝜇𝑅(t = 450 s) 2.31 2.33 2.03 2.06 

MSE 𝜇𝑅 3.94 3.61 

𝜎𝑅(t = 450 s) 0.23 0.22 0.16 0.17 

MSE 𝜎𝑅 0.52 0.49 

𝜇𝑅(t = 450 s) + 3𝜎𝑅(t = 450 s) 3.00 2.99 2.52 2.57 

CPU time (s) 2.28×101 3.06×104 1.68×101 3.04×104 
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Figure 44: Time-dependent profiles of the manipulated variables and the statistical moments of the roughness observable for R* 

= 3.00 ML. 

 

Figure 45: Time-dependent profiles of the manipulated variables and the statistical moments of the roughness observable for R* 

= 2.52 ML. 
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As shown in Table 22 and Figures 44 and 45, the ANN-based predictions agree closely with 𝜇𝐺𝑟̅̅ ̅̅̅, 

𝜇𝑅 and 𝜎𝑅 for the overall plant response obtained from the 500 batch runs. For example, the 

average nominal growth rate values 𝜇𝐺𝑟̅̅ ̅̅̅ predicted by ANNs were only 0.3% greater than their 

corresponding kMC values (see Table 22). The discrepancies between ANN and kMC-based 

values of 𝜇𝑅 and 𝜎𝑅 at t = 450 s (i.e. final batch time) became slightly larger for R* = 2.52 ML 

than for R* = 3.00 ML, but even for R* = 2.52 ML the differences were not larger than 6% (e.g. 

see the predictions for 𝜎𝑅  at t = 450 s in Table 22). However, the MSE (mean square error) values 

were smaller for R* = 2.52 ML than for 3.00 ML, e.g. in the case of 𝜇𝑅 the MSE over the 450 s 

batch time was 3.94 for R* = 3.00 ML, as opposed to 3.61 for R* = 2.52 ML, a 9.1 % decrease.  

By comparing the Figures 44 and 45, it can be seen that the profiles of 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 changed 

according to the R* value. For R* = 3.00 ML (Figure 44), 𝑋𝑏𝑢𝑙𝑘 remained at its maximum value 

during the entire batch and the final value of 𝑇𝑠𝑢𝑟𝑓 was 1190 K. For R* = 2.52 ML (Figure 45), 

𝑋𝑏𝑢𝑙𝑘 was decreased almost to its minimum allowed value (2.52×10-6) during the last three 

sampling intervals (376 s – 450 s) and the final 𝑇𝑠𝑢𝑟𝑓 was 1200 K (higher than for R* = 3.00 ML). 

Therefore, the ANN-based NMPC scheme was able to correctly adjust the manipulated variables 

based on the specified R* value and drive the plant to the optimal desired target.  

For both R* targets, the ANNs required 3 orders of magnitude less CPU time than the 

corresponding kMC-PDE implementation of the optimal profiles under uncertainty (e.g. for R* = 

3.00 ML, 22.8 s was needed for ANNs to identify the optimal profiles for 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) and 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖), 

but 3.06×104 s was needed to implement them on the kMC-PDE model under uncertainty, see 

Table 22). Also, for both R* values, the CPU time for optimization was shorter than the duration 

of the sampling interval (25 s). Since the ANNs were able to efficiently provide accurate estimates, 
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they are a promising approach to perform optimal control of stochastic multiscale systems under 

uncertainty.  

6.4.4 Scenario B: rejection of measured disturbance  

To further test the performance of the optimal control profiles obtained from the ANNs developed 

in this framework, we present a variation of scenario A (R* = 2.52 ML), where we studied the 

effect of large measured disturbances (𝑑(𝑡𝑖) in Figure 5) in both manipulated variables. Using the 

same optimization procedure as in section 5.1, we added a disturbance that was not considered 

during ANN training. At 76 s (sampling interval 𝑖 = 4), disturbances to both the temperature and 

the precursor mole fraction were introduced. The disturbances were 3 times greater than the 

maximum allowed amount during data generation and training, i.e. the change in 𝑇𝑠𝑢𝑟𝑓 was 150 K 

and the change in 𝑋𝑏𝑢𝑙𝑘 was -1.5×10-6. The disturbance in 𝑋𝑏𝑢𝑙𝑘 was held constant for one 

sampling interval (until 100 s), but the disturbance in 𝑇𝑠𝑢𝑟𝑓 was held constant for a larger period 

of time, i.e. five sampling intervals (until 200 s). Since it was assumed that the NMPC framework 

can detect measured disturbances (as per Figure 43), shrinking horizon optimization was 

conducted once at the beginning of the batch horizon and every sampling interval whenever a 

disturbance in either of the two manipulated variables was detected by NMPC. The results have 

been summarized in Table 23 and Figures 8 and 9. Note that the definitions of quantities listed in 

Table 3 are the same as for Table 2. As in scenario A, 500 batch runs were performed using the 

optimal control profiles obtained from this scenario; each batch run corresponded to a particular 

realization in the uncertain parameter 𝐸. 
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Table 23: Comparison of ANN-based predictions and the results from the full kMC-PDE model for the case with disturbances in 

𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 

 R* = 2.52 ML 

 ANN kMC 

𝜇𝐺𝑟̅̅ ̅̅̅ 32.42 32.35 

𝜇𝑅(t = 450 s) 2.03 2.06 

MSE 𝜇𝑅 36.7 

𝜎𝑅(t = 450 s) 0.16 0.17 

MSE 𝜎𝑅 0.97 

𝜇𝑅(t = 450 s) + 3𝜎𝑅(t = 450 s) 2.52 2.57 

CPU time (s) 9.83×101 3.08×104 

 

 

Figure 46: Time-dependent profiles of the manipulated variables (with disturbances) and the statistical moments of the 

roughness observable for R* = 2.52 ML. 
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Figure 47: The distribution of roughness values at the end of the batch produced after validating the 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 profiles 

with disturbances using the full kMC-PDE model (R* = 2.52 ML). 

As shown in Table 3 and Figure 8, the measured disturbances to the manipulated variables caused 

the predictions of ANNs to deviate from the results of kMC. For example, the MSE values in Table 

3 were substantially greater than those reported in Table 2. For 𝜇𝑅, the MSE in Table 3 was an 

order of magnitude greater than the values reported in Table 2 (R* = 2.52 ML). Figure 8 illustrates 

the significant increase in MSE since the ANN for 𝜇𝑅 was not able to accurately capture the 

dynamic response of the plant to the disturbance between t = 76 s and t = 200 s (i.e. the time 

interval at which the disturbance entered the plant). For 𝜎𝑅, the MSE in Table 3 was approximately 

2 times greater than the corresponding values in Table 2 (R* = 2.52 ML), and a deviation due to 

the disturbances is also observed from Figure 8 (i.e. within the 76 s – 200 s interval). Nevertheless, 

the ANN-based NMPC was able to reject the disturbances and drive the system to the specified 

R* target while also attempting to maximize the average nominal growth rate  𝜇𝐺𝑟̅̅ ̅̅̅ by temporarily 

lowering 𝑇𝑠𝑢𝑟𝑓 and raising 𝑋𝑏𝑢𝑙𝑘 once the disturbances stopped acting on the plant. Furthermore, 

the total CPU times required by shrinking horizon optimization and the implementation of the 
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optimal profiles on the plant under uncertainty indicate the efficiency of the ANN models. As 

shown in Table 3, the total CPU time for ANN-based optimization was still 3 orders of magnitude 

lower than the CPU time for implementing the optimal profiles on the plant. 

At t = 450 s, 98.4% of the roughness values generated through implementing the optimal profiles 

using kMC-PDE model under uncertainty were less than R* = 2.52 ML, as shown in Figure 9. This 

illustrates that the ANN-based approach used in Problem (20) for approximating the probability 

limit 𝑃(𝑅(𝑡𝑛) ≤ 𝑅∗) produces adequate results, since the distribution in Figure 9 is nonlinear. In 

the cases where this approach would not be adequate, more data from a first-principles model (or 

actual plant data) would be required to have an accurate representation of the shape of the 

observables in the ANN training data. Additional ANNs could then be trained to capture higher-

order moments if needed (e.g. skewness, kurtosis, different modes for multi-modal distributions, 

etc.). Such moments can be obtained from various density estimation methods, e.g. Bayesian 

approach, Metropolis-Hastings algorithm, density-based statistical data models, particle filtering, 

and other methods.210–212  

6.5: ANN model discrimination via parameter estimation for closed-loop NMPC of 

stochastic multiscale systems under uncertainty  

While the approach described in section 6.4 considered parametric uncertainty, it could not 

accommodate for any online measurements that could be collected from the plant. In order to 

enable the closed-loop NMPC of the thin film deposition system, an ANN was trained on each of 

the 300 signals of the second dataset described in section 6.2 to predict 𝑅 using the ANN for 

nominal roughness identified on the 400,000-point dataset (described in section 6.2) as the initial 

condition for each new ANN. Consequently, the 300 ANNs trained to predict 𝑅 under different 

realizations of 𝐸 all used the structure shown in Figure 24. The same training methodology was 
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employed for developing these ANNs as the one discussed above regarding ANN training on the 

400,000-point dataset. Once trained, the set of 300 ANNs (which hereafter shall be referred to as 

set J) was used in the estimation of the true value of 𝐸 in the thin film production process.  

6.5.1 Parameter Estimation 

The estimation of the uncertain parameter realization was accomplished by comparing the 

measurements of roughness obtained from the process, i.e. 𝑅𝑘𝑀𝐶, to the predictions of roughness 

generated by the set J comprised of 300 ANNs, i.e. 𝑅𝐴𝑁𝑁𝐽
. The same signal in the input variables 

𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 was provided to the process and to the ANNs, and the results were compared 

according to the criteria discussed further in this work. 

In order to extract the information from the process that would allow for an accurate estimation of 

the realization in 𝐸, and, consequently, accurate ANN-based predictions of the observables, the 

following considerations were taken into account during input signal design. The signal needs to 

be time-varying and with sufficient frequency content, i.e. slow and fast changes in the input 

(manipulated) variables. This is required to capture the dynamic responses of the observables 

under different combinations in the manipulated variables. Furthermore, the signal should include 

positive and negative changes in the input variables so that 𝑅𝑘𝑀𝐶 would contain information about 

the roughness observable’s responses to both types of changes in the inputs.  In addition, to mimic 

the industrial setting, the magnitudes of the manipulated variables in the signal were constrained 

to the range that promoted thin film growth, i.e. relatively low 𝑇𝑠𝑢𝑟𝑓 and relatively high 𝑋𝑏𝑢𝑙𝑘 

values. Furthermore, the length of the input signals employed in parameter estimation needs to be 

relatively short because the industrial process needed to spend the maximum possible amount of 

time manufacturing the product. Based on these considerations, several input signals for 𝑇𝑠𝑢𝑟𝑓 and 
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𝑋𝑏𝑢𝑙𝑘 were designed and studied in this work, as shown in the Results and Discussion section 

below.  

Two standard statistical modeling techniques were used for estimating 𝐸: maximum likelihood 

estimation (MLE) and mean square error (MSE). MLE is used to estimate parameter values that 

maximize the probability of obtaining the observed data from an assumed statistical model 213–215. 

On the other hand, MSE is a traditional method in regression analysis for assessing the goodness-

of-fit of models proposed to explain the observed data 216. Therefore, these two criteria were used 

to assess the magnitude of the differences between the measured 𝑅𝑘𝑀𝐶 and the predictions 

generated by the 𝑅𝐴𝑁𝑁𝐽
 set of neural networks, where the same input signal was provided to the 

process and to the J set of ANNs. The ANN that produced the smallest deviations from 𝑅𝑘𝑀𝐶 

according to the MLE and MSE criteria was chosen as the data-driven model for predicting the 

correct input values for satisfying the thin film product requirements. The corresponding 

realization of 𝐸 used in ANN training was considered to be an estimate of the true uncertain 

parameter value 𝐸 in the thin film production process and can be used to control the properties of 

the thin film for the rest of the batch.  

The Maximum Likelihood Estimation (MLE) criterion considered the conditional probability of 

obtaining ANN-based predictions of the roughness observable given the observed measurements 

from the process represented by the kMC-PDE model:  

 max
𝐽   𝑝𝑅𝐴𝑁𝑁|𝑅𝑘𝑀𝐶

(𝑅𝐴𝑁𝑁𝐽
(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)) |𝑅𝑘𝑀𝐶 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖))) (84) 

The solution to this problem yields 𝑗∗, i.e. the index of the best-fit ANN (ranging from 1 to 300 

for the set J) and the conditional probability 𝑝𝑅𝐴𝑁𝑁|𝑅𝑘𝑀𝐶
 is given by:  
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𝑝𝑅𝐴𝑁𝑁|𝑅𝑘𝑀𝐶
= ∏ 𝑝𝑖

𝐾

𝑖=1

(𝑅𝐴𝑁𝑁𝐽
(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖))) (85) 

where 𝐾 is the number of measurements collected during the identification from the process and 

𝑝𝑖 is the probability of obtaining 𝑅𝐴𝑁𝑁𝐽
(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)), i.e. the roughness value predicted 

by each ANN in the set J, from the normal probability density function with its mean located at 

the roughness measurement 𝑅𝑘𝑀𝐶 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)), denoted as 𝑅𝑘𝑀𝐶,𝑖 for short, and unit 

standard deviation, i.e. 𝒩(𝑅𝑘𝑀𝐶,𝑖, 1). Note that the normal distribution shape is assumed to 

adequately approximate the true nonlinear distribution of the roughness measurements that occurs 

due to the stochastic noise present in the multiscale process.  

In addition to MLE, the Mean Square Error (MSE) criterion has also been considered for 

estimating the true 𝐸 realization and identifying the corresponding ANN that is most likely to 

predict the correct responses in roughness:  

 
min

𝐽

1

𝐾
∑ (𝑅𝐴𝑁𝑁𝐽

(𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)) − 𝑅𝑘𝑀𝐶 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)))
2

𝐾

𝑖=1

 (86) 

which also produces 𝑗∗, i.e. the index of the best-fit ANN and of the corresponding estimate of the 

true 𝐸 value.  

6.5.2 ANN discrimination  

In order to perform parameter estimation and ANN discrimination, several input signals (depicted 

in Figure 48) were designed according to the considerations mentioned in the previous section. For 

all signals, the number of measurements, i.e. 𝐾 in equations (21) and (22), was set to 5. 

Consequently, the signal length was 125 s, which was sufficient to implement several changes in 

the input (manipulated) variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 and observe the appropriate responses in the 
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roughness observable. The 𝑅𝑘𝑀𝐶 values were collected at the end of every sampling interval ∆𝑡, 

i.e. every 25 s. In order to promote thin film growth while observing process responses to the 

provided signals, the range of 𝑇𝑠𝑢𝑟𝑓 values has been limited to [800 K, 900 K] and the range of 

𝑋𝑏𝑢𝑙𝑘 values was limited to [3×10-6, 4×10-6].  

Figure 48 illustrates that the MLE and MSE methods produce equivalent estimates of the uncertain 

parameter regardless of the input signal. For each of the input signals 1-4 shown in Figure 48, the 

thin film multiscale model was simulated using 500 realizations in 𝐸 that did not share any 

datapoints with the 300 𝐸 realizations used to train 𝑅𝐴𝑁𝑁𝐽
. Using the MLE and MSE techniques, 

for each of the 500 realizations (i.e. the true values of 𝐸) an estimate was identified among the 300 

𝐸 realizations that corresponded to 𝑅𝐴𝑁𝑁𝐽
. The percent relative errors between the MLE/MSE 

estimates and the true realizations of 𝐸 have been calculated for each input signal and their 

probability distributions have been presented in Figure 48. Despite the different shapes of input 

signals 1-4, the percent relative errors in the estimates of 𝐸 were between -5% and 2% in all cases 

without any significant differences in the shapes of the probability distributions. Furthermore, the 

estimates of 𝐸 generated by MSE and MLE were similar, as can be seen from their respective 

probability distributions in Figure 48 (represented by blue and yellow bars, respectively).  

The mean percent relative error in the estimation of 𝐸 was approximately -2% for all signals (as 

per the probability distributions in Figure 48), which did not adversely affect the ANN-based 

predictions of the observables since 𝐺𝑟𝑘𝑀𝐶 was insensitive to parametric uncertainty while the 

stochastic noise present in 𝑅𝑘𝑀𝐶 made the effect of the -2% relative error on ANN selection and 

𝑅𝑘𝑀𝐶 prediction accuracy negligible. In addition, a deviation is expected since the set ANN models 

were developed using realizations in 𝐸 that are likely to be different from the true realization in 𝐸. 
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Since the shapes of the signals and the choice between MLE and MSE did not affect the quality of 

𝐸 estimation, signal 1 and the MLE method were employed in the scenarios considered in the next 

section. Note that other input signals were tested presenting the same results, but these are not 

shown here for brevity. 

Figure 49 further illustrates the validity of the assumption used in our application of the MLE 

method regarding the ability of the normal distribution to adequately approximate the actual shape 

of the distribution of roughness measurements at different time intervals. The thin film deposition 

model was run under three different realizations in 𝐸 (at the nominal value and at one standard 

deviation away from the mean) using input signal 1 (shown in Figure 48). At each realization of 

𝐸, the model was simulated 300 times to assess the noise in the 𝑅𝑘𝑀𝐶 measurements. This noise 

seems to follow a Gaussian distribution under various 𝐸 realizations and different measurement 

timepoints, as per Figure 49, thereby corroborating the validity of the MLE approach to ANN 

discrimination.  
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Figure 48: Different shapes of the input signals do not appear to significantly impact the accuracy of uncertain parameter 

estimates. Also, ANN discrimination by the MSE and MLE methods produce equivalent results.  
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Figure 49: The measurements of roughness, reported in monolayers (ML), approximate to be normally distributed at different 

realizations of uncertainty and at different sampling times.  

6.5.3 Closed-loop NMPC under uncertainty  

In this section, we present a framework to manufacture thin films that user-defined properties 

under uncertainty in the production process. As presented above, the parameter estimation method 

can be used to identify an ANN model that can predict with sufficient accuracy the response in the 

observables due to changes in the input signals (i.e. 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘). The resulting ANN model 

can be embedded within a nonlinear shrinking horizon optimization problem like that shown in 



163 
 

equation (81) to seek for the optimal control actions in the manipulated variables that can produce 

a thin film with specific (desirable) properties at the end of the batch. As already mentioned, 

problem (81) is intractable if the full kMC-PDE model under certainty is used in the gradient-

based optimization scheme because of its associated computational cost and the inherent stochastic 

noise in its observables. However, the reliance on the dynamic behavior of the observables 𝑅 and 

𝐺𝑟 in the formulation allowed problem (81) to be reformulated using ANNs as follows:  

 max
𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖)   

1

𝑛
∑ 𝐺𝑟𝐴𝑁𝑁 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑖), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖))

𝑛

𝑖=1

 

Subject to:  

ANN model for roughness chosen via MLE, 𝑅𝐴𝑁𝑁𝑗∗   

ANN model for the nominal growth rate, 𝐺𝑟𝐴𝑁𝑁  

𝑡𝑖 = 𝑖∆𝑡;     ∆𝑡 = 25 𝑠;     ∀𝑖 = 0,1,2, … 𝑛;     𝑛 = 18 

𝑅𝐴𝑁𝑁 (𝑇𝑠𝑢𝑟𝑓(𝑡𝑛), 𝑋𝑏𝑢𝑙𝑘(𝑡𝑛)) ≤ 𝑅∗ 

800 K ≤ 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) ≤ 1200 K  

1 × 10-6 ≤ 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖) ≤ 4 × 10-6  

𝑇𝑠𝑢𝑟𝑓(0) = 800 K 

𝑋𝑏𝑢𝑙𝑘(0) = 4 × 10-6 

-50 K ≤ 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖+1) − 𝑇𝑠𝑢𝑟𝑓(𝑡𝑖) ≤ 50 K 

-5 × 10-7 ≤ 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖+1) − 𝑋𝑏𝑢𝑙𝑘(𝑡𝑖) ≤ 5 × 10-7  

(87) 

Problem (87) was solved using the same methods as described in section 6.4.2 with the active set 

algorithm used in the fmincon function. However, in the scenarios presented below the final 

roughness target (R*) was set to 2.18 ML as an industrially relevant criterion for smooth high-

performance thin films since the ideal thin film roughness is 1 ML.2  

The NMPC optimization framework is presented in Figure 50. It has been assumed that the online 

measurements of 𝑅 and 𝐺𝑟 are available from the process. It has been assumed that any 

disturbances 𝑑(𝑡𝑖) affecting the operation of the thin film deposition process can be detected online 

during a sampling interval through the measurements and compensated for by obtaining new 
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optimal profiles of the manipulated variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 using the shrinking horizon NMPC 

framework in real time. This can be accomplished due to the computational efficiency of the ANNs 

for 𝑅𝐴𝑁𝑁 and 𝐺𝑟𝐴𝑁𝑁. Note that in Figure 50, 𝑅𝑘𝑀𝐶(𝑡𝑖) and 𝐺𝑟𝑘𝑀𝐶(𝑡𝑖) denote the values of the of 

the observables produced by the process (represented here as the kMC-PDE model shown earlier) 

while 𝑅𝐴𝑁𝑁(𝑡𝑖) and 𝐺𝑟𝐴𝑁𝑁(𝑡𝑖) represent the predictions of the ANN models under time-invariant 

uncertainty in  𝐸.  

 

Figure 50: Closed-loop ANN-based NMPC framework with disturbance 𝑑(𝑡𝑖) acting on the process. 

 

6.5.4 Scenario A: Online closed-loop optimization 

In this scenario, the ANNs were used within the gradient-based constrained optimization algorithm 

presented in problem (87) to find the optimal time-dependent control action profiles that would, 

according to the ANN predictions, cause the produced thin film to satisfy the final roughness target 

𝑅∗ of 2.18 ML. Three different realizations of the uncertain parameter 𝐸 were used in the thin film 

production process: 16,151, 16,988 and 17,852 cal/mol. Note that these realizations are 

approximately equal to the nominal 𝐸 from equation (82) and to the 𝐸 values one standard 

deviation away from the nominal value. Thus, the ability of the ANN discrimination method to 
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identify the best-fit ANN via equation (84) was tested under the most likely realizations of 𝐸 as 

per equation (82).  

Since different realizations of 𝐸 were employed, ANN discrimination had to be performed for each 

realization. Once the appropriate ANN was identified, closed-loop shrinking horizon NMPC 

shown in (23) was solved to determine the control actions that enable thin films to satisfy 𝑅∗ at the 

final batch time of 450 s. This workflow has been schematically shown in Figure 51 and the results 

are summarized in Table 24 and Figure 52. Note that in this scenario it was assumed that the 

disturbance shown in Figure 43 is not acting on the process. Also, note that in Table 24, 𝐺𝑟̅̅̅̅  is the 

average growth rate value achieved by the process that the optimization framework of Problem 

(87) sought to maximize.  
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Figure 51: The workflow for performing NMPC under uncertainty in the 𝐸 parameter.  

Table 24: Thin film properties that resulted from ANN-based NMPC 

 (a) E = 16,151 cal/mol (b) E = 16,988 cal/mol (c) E = 17,852 cal/mol 

𝐺𝑟̅̅̅̅  35.88 ML/s 35.63 ML/s 35.56 ML/s 

𝑅𝑘𝑀𝐶(t = 450 s) 2.15 ML 2.28 ML 2.38 ML 

𝐸 estimate  

(% relative error) 
15,974 cal/mol (-1.1 %) 16,589 cal/mol (-2.4 %) 17,362 cal/mol (-2.74 %) 
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Figure 52: The ANN-based NMPC was able to drive the plant towards the imposed roughness target under various uncertain 

parameter realizations. The roughness target is shown by the horizontal dotted line in the right-hand plots. Note that the insets in 

the right-hand plots show the behaviour of roughness achieved by the process during the final sampling interval.  

As shown in Table 24, the estimates of the uncertain parameter 𝐸 agreed closely with the true 𝐸 

realizations, with the largest relative error of only -2.74 % for the case with true 𝐸 being 17,852 

cal/mol. Note that in the present approach, ANNs were not trained for the 𝐸 realizations that were 

used to run the thin film process. Thus, a deviation between the true 𝐸 and the ANN model that 

considers a realization in 𝐸 (closer to the true 𝐸) is expected. Furthermore, the final thin film 

roughness was close to the imposed target of 2.18 ML in all cases. However, it was satisfied only 

for the lowest realization of the uncertain parameter (case (a) in Table 24 and Figure 52a), while 

the larger uncertain parameter realizations caused the final film roughness to exceed ANN 
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predictions, likely due to greater stochastic noise present at those 𝐸 values. The average growth 

rate values 𝐺𝑟̅̅̅̅  were similar regardless of the uncertain parameter realization since the growth rate 

is insensitive to this kind of parametric uncertainty, as discussed earlier. However, the 𝐺𝑟̅̅̅̅  values 

did decrease slightly at larger uncertain parameter realizations because the ANN-based NMPC 

adjusted 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 according to the uncertainty realizations in order to meet the imposed 

thin film roughness target.  

Figure 52 summarizes the time trajectories of the input variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘, as well as the 

observables of the thin films, i.e. 𝑅 and 𝐺𝑟. The time trajectories of the inputs include signal 1 (see 

Figure 48) used for ANN discrimination (from 0 s to 125 s in Figure 52), and the subsequent 𝑇𝑠𝑢𝑟𝑓 

and 𝑋𝑏𝑢𝑙𝑘 values determined by the ANN-based online NMPC framework. It is noteworthy that 

the time trajectories of the inputs changed depending on the realization of 𝐸. The greater the 

uncertain parameter realization, the higher the final 𝑇𝑠𝑢𝑟𝑓 and the lower the final 𝑋𝑏𝑢𝑙𝑘. Therefore, 

if uncertainty were to be ignored and instead the ANN for nominal 𝐸 were to be used, the input 

variables’ profiles generated by NMPC would be suboptimal – for 𝐸 realizations below the 

nominal, 𝐺𝑟̅̅̅̅  achieved by the process would not be at its maximum possible value, while for 𝐸 

realizations above the nominal, the target 𝑅∗ would be substantially overestimated by NMPC and, 

consequently, not met by the thin film process.  

In all cases, the thin film roughness was decreased to match or closely approach the imposed 

roughness target. This target is indicated in the plots of Figure 52 by the horizontal dotted line. 

The insets in the right-hand plots of Figure 52 demonstrate that during the final sampling interval, 

the roughness observable was at the target or close to it but exhibited noise due to the stochastic 

nature of the process. Thus, even though Table 24 indicated that the final roughness target was 
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satisfied only in scenario (a), Figure 52 showed that in scenario (b) the thin film roughness in the 

last sampling interval was also at the imposed target during that interval (see the inset plot for 

scenario (b)). In scenario (c), during the last sampling interval the thin film roughness tended to 

be above the imposed target while exhibiting noise. This is likely due to larger noise present at 

higher realizations in 𝐸, which caused the ANNs trained on the data generated at such 𝐸 values to 

average out the stochastic noise, creating a slight mismatch between the process and the ANN 

predictions. However, this issue can likely be resolved by training the ANNs on larger datasets. In 

all cases, ANN-based NMPC required less CPU time than the sampling interval duration (25 s). 

Thus, the ANNs were able to efficiently provide accurate estimates of the observables online, and 

hence they are a promising approach to perform online control of stochastic multiscale systems 

under uncertainty.  

6.5.5 Scenario B: Disturbance rejection 

To further test the performance of the ANN-based NMPC framework, we studied the effect of 

large unexpected changes in the input variables 𝑇𝑠𝑢𝑟𝑓 and 𝑋𝑏𝑢𝑙𝑘 (portrayed as 𝑑(𝑡𝑖) in Figure 43) 

on the ability of ANN-based NMPC to achieve the specified targets in the observables despite the 

unexpected behaviour of the inputs during operation (i.e. reject the disturbances). Using the same 

optimization procedure and roughness target as described earlier, we added large asynchronous 

disturbances of different durations early and late in the batch process. Note that the magnitudes of 

the disturbances performed for this scenario were not considered during ANN training; 𝑇𝑠𝑢𝑟𝑓 was 

perturbed by 200 K and 𝑋𝑏𝑢𝑙𝑘 was changed by 2×10-6 (i.e. both disturbances were four times larger 

than what was used for ANN training).  

Disturbance 1 occurred shortly after the best-fit ANN was identified by MLE, i.e. early in the 

shrinking horizon optimization which commenced at 126 s: 𝑇𝑠𝑢𝑟𝑓 was perturbed at 175 s for 50 s 
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(i.e. for two sampling intervals), and 𝑋𝑏𝑢𝑙𝑘 was perturbed at 200 s for 25 s (for one sampling 

interval). Disturbance 2 occurred late in the batch: 𝑇𝑠𝑢𝑟𝑓 was perturbed at 426 s for 25 s, and 𝑋𝑏𝑢𝑙𝑘 

was perturbed at 451 s for 50 s. The time trajectories of the inputs as well as the responses in the 

observables are shown in Figure 53. Note that the results in Figure 53 were obtained using 𝐸 

realization of 16,151 cal/mol. Other uncertain parameter realizations were considered, but omitted 

for brevity, since the ANN performance is somewhat similar.  

 

Figure 53: The ANN-based NMPC was able to reject disturbances in the manipulated variables that were 4 times larger than what 

was seen in the training dataset. Note that the insets in the right-hand plots show the behaviour of roughness achieved by the 

process during the final sampling interval.  

It can be seen from Figure 53 that in both disturbance cases the asynchronous disturbances of 

different durations in both input variables were successfully rejected by the ANN-based NMPC. 

Disturbance 1 occurred before the ramp up in 𝑇𝑠𝑢𝑟𝑓 would normally begin, and the NMPC adjusted 

both manipulated inputs back to the values that would promote the maximum growth rate (i.e. 800 

K and 4×10-6) before proceeding to increase 𝑇𝑠𝑢𝑟𝑓 to meet the thin film roughness requirement. 

Disturbance 2 took place after the normal ramp up in 𝑇𝑠𝑢𝑟𝑓, but the NMPC successfully adjusted 
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both manipulated variables to promote growth rate of the thin film as much as possible within the 

limited remaining time in the batch. As depicted by the insets in the right-hand plots of Figure 53, 

the thin film roughness exhibited stochastic noise in the last sampling interval but it satisfied the 

imposed 𝑅∗ target.  

6.6 Chapter Summary 

In these studies, multiple-input single-output nonlinear autoregressive artificial neural networks 

(ANNs) with external input were developed to predict the responses of a stochastic multiscale 

chemical engineering system and subsequently conduct online shrinking horizon nonlinear model 

predictive control (NMPC). A model of thin film formation by chemical vapour deposition was 

used as the case study. The manipulated variables were the substrate temperature and the inlet 

precursor mole fraction, whereas the response variables of interest were the thin film roughness 

and growth rate.  

First, the ANNs were applied to the process at nominal conditions (no parametric uncertainty). 

Next, two approaches were considered when the process was subject to uncertainty. In the first 

approach, ANNs were used to predict the responses of statistical moments of the observables and 

subsequently conduct open-loop NMPC. In the second approach, ANNs were trained under 

various time-invariant realizations of the uncertain parameter to predict the dynamic responses of 

the observables that corresponded to the realizations. Maximum likelihood and minimum mean 

square error were used to perform parameter estimation and the identification of the corresponding 

best-fit ANN. The ANN was then used in closed-loop shrinking horizon NMPC.  

The ANN models captured system behaviour under uncertainty accurately and provided orders-

of-magnitude computational savings over implementing the optimal profiles on the full stochastic 

multiscale model. Furthermore, the ANN models were able to reject and compensate for the 
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disturbances (also under uncertainty) to the manipulated variables that were three to four times 

greater than what was seen in the ANN training data. The results show that ANNs are an effective 

technique to accurately capture the behaviour of stochastic multiscale systems under uncertainty 

emerging in relevant industrial applications; therefore, they can be used for online control and 

optimization applications.  
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Chapter 7: Conclusions & Recommendations 

In order to improve industrial product quality, stochastic multiscale models attempt to explicitly 

account for the stochastic phenomena that occur at the microscale and use this information to 

inform device-relevant domain sizes (i.e. macroscale calculations). Since these models couple 

micro and macro scales and incorporate non-closed-form expressions to represent the microscale, 

their computational cost is quite high, and their observables exhibit stochastic noise that 

propagated from the microscale calculations.  

The noise present in the observables complicates the application of standard uncertainty 

quantification methods such as Power Series and Polynomial Chaos Expansions (PSE and PCE, 

respectively) which rely on accurate observable values to identify the PSE and PCE expressions. 

However, uncertainty must be accounted for in order to make sure that the products of stochastic 

multiscale systems meet imposed quality requirements. Furthermore, the noise levels in the 

observables need to be estimated and controlled in order to make PSE and PCE predictions 

repeatable and trustworthy. In addition, the high computational cost of stochastic multiscale 

models impedes the usefulness of their accurate results because these models cannot be used 

directly for online optimization and model predictive control of the physical systems they 

represent.  

The work presented in this thesis sought to contribute to the solution of these challenges by 

comparing the performance of PSE and PCE for uncertainty quantification in stochastic multiscale 

systems, applying Multilevel Monte Carlo (MLMC) sampling to estimate the noise in the 

observables and improve uncertainty quantification, and training Artificial Neural Networks 

(ANNs) to conduct uncertain parameter estimation and robust control of stochastic multiscale 

systems in the presence of uncertainty.  
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7.1: Summary of Contributions 

The comparison of the performance of PCE and PSE for stochastic multiscale systems showed that 

PCE with coefficients calculated by the nonintrusive spectral projection (NISP) method appears 

to be more vulnerable to noise in stochastic multiscale systems than the least squares technique. 

Increasing the number of NISP roots could improve the accuracy with which PCE could capture 

the mean of the distribution. Also, PSE appeared to be the most robust to noise in stochastic 

multiscale systems.  

PSE that used centered order finite differences calculated based on 3 realizations of uncertain 

parameters was more accurate than PCE NISP with 3 roots, which can indicate greater 

computational efficiency of PSE for achieving the same level of accuracy. However, a 50% step 

in the uncertain parameter realizations was necessary to achieve accurate PSE performance. Such 

a large perturbation may not be physically realizable in all stochastic multiscale systems. PSE also 

appears to be more efficient than PCE with coefficients calculated by the least squares method 

because the latter needs many realizations of the uncertain parameters to do a proper fit of the 

coefficients.  

The noise inherent in stochastic multiscale systems requires duplicate simulations when gathering 

the data for PSE and PCE. Heuristic rules are used to determine the number of duplicates. 

However, MLMC sampling can be used with stochastic multiscale systems to help control the 

precision in the identification of uncertainty quantification expressions by tuning its root mean 

square error tolerance 𝜖. It is recommended to initially set 𝜖 to 5% of the expected value of the 

observable and adjust the value as necessary. However, it should be noted that MLMC capabilities 

differ for continuous systems (e.g. classical chemical engineering models comprised of closed-

form equations such as simulations of a wastewater treatment plant or a distillation column) and 
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for stochastic multiscale systems (e.g. chemical vapour deposition and catalytic pore models). In 

the latter case, a lower bound on the achievable 𝜖 value exists because of the inherent stochastic 

noise. Also, the accuracy with which the actual distribution of the observable will be captured 

ultimately depends on the choice of the uncertainty quantification method (e.g. PSE with centered 

order finite differences and sensitivities obtained using 50% perturbations in the uncertain 

parameter, PCE with coefficients calculated using least squares approximation with a large number 

of realizations/points, PCE NISP with a varying number of roots, etc.).  

The advantage of data-driven models such as ANNs over PSE, PCE and MLMC is their ability to 

predict dynamic responses of the observables. In the presented work, ANN models captured the 

behaviour of the stochastic multiscale system under uncertainty accurately and provided orders-

of-magnitude computational savings over implementing the optimal profiles on the full stochastic 

multiscale model. ANNs were also successfully used to approximate uncertain parameter 

realizations via maximum likelihood estimation. Furthermore, the ANN models were able to reject 

and compensate for the disturbances (also under uncertainty) that were three to four times greater 

than what was seen in the ANN training data. These results show that ANNs are an effective 

technique to accurately capture the behaviour of stochastic multiscale systems under uncertainty; 

therefore, they can be used for online control and optimization applications. 

7.2: Recommendations for Further Research 

The findings and conclusions from the presented studies imply that the following work can 

potentially be conducted to further extend this research and fill additional knowledge gaps.  

• Unlike PSE and PCE, MLMC does not require a priori knowledge or assumption of the 

shape of the parametric uncertainty. However, only Gaussian uncertain parameter 
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distributions have been predominantly considered in this work for the application of 

MLMC sampling in stochastic multiscale systems. Thus, it would be of interest to compare 

the performance of the uncertainty quantification techniques for non-Gaussian uncertain 

parameters. 

• Furthermore, one of the conclusions indicated that the choice of the uncertainty 

quantification technique ultimately determines the accuracy with which the shape of the 

distribution of the observables is captured. MLMC has been applied to improve the 

precision with which PCE NISP expansions for stochastic multiscale systems are identified 

and should therefore be applied to construct other uncertainty quantification expressions 

(e.g. PSE) for uncertainty analysis in stochastic multiscale systems to extend the work of 

Chapter 5.  

• In addition, it is recommended to use MLMC directly to calculate higher order statistical 

moments of the observables (e.g. standard deviation, skewness, kurtosis) and compare the 

results to the predictions generated by PSE/PCE.  

• The stochastic multiscale models considered in this research relied on a number of 

simplifying assumptions. For example, the chemical vapour deposition model assumed that 

the gas concentration in the boundary layer above the substrate (i.e. in the macroscale 

portion of the multiscale model) was spatially invariant. The catalytic pore reactor model 

relaxed this assumption by using the multigrid (“gap-tooth”) approach towards coupling 

the two scales (continuum and discrete), but it nevertheless assumed that the concentration 

of macroscale components varies only with respect to the length of the catalytic pore. 

Furthermore, on-lattice kMC was used in both models to represent the microscale. This 

research showed that when MLMC is applied to stochastic multiscale models, the 
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implementation of the application differs depending on the underlying stochastic 

multiscale model. Thus, it is recommended to consider multiscale models that relax the 

mentioned simplifying assumptions, apply MLMC to them and show how multiscale 

model complexity affects the implementation of MLMC sampling. For instance, models 

that have the following attributes could be examined in subsequent research: 

multidimensional spatial gradients in the coupling boundary condition, off-lattice kMC or 

MD represents the microscale with more simultaneous events and reactions, more than two 

scales are coupled, coarse-graining is used to access larger temporal and spatial domains 

rather than only coupling through the boundary conditions.  

• ANNs showed great promise in their application to stochastic multiscale systems. 

However, their major drawback is the requirement for generating large training datasets 

from stochastic multiscale systems, which can be computationally expensive, especially 

under uncertainty. To lessen the computational burden, it is recommended to apply ANNs 

to predict the dynamic behaviour of PSE sensitivities and PCE coefficients. This approach 

could yield predictions of observables’ distributions and the ability to calculate statistical 

moments of the observables of arbitrary order while substantially diminishing the 

computational cost associated with generating ANN training data. However, one potential 

area of difficulty with this research will be the determination of how many duplicate 

simulations should be conducted at each realization of the uncertain parameters to make 

sure that the effects of stochastic noise in the observables are averaged out. 

• One of the approaches that considered ANNs for controlling stochastic multiscale systems 

under uncertainty relied on open-loop control and used ANNs to predict the statistical 

moments of the distributions of the observables to account for uncertainty. Online 
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measurements from the plant were not used to improve the ANN-based estimations in real 

time because a single datapoint collected at a time could not improve the accuracy with 

which the statistical moments were predicted. It is therefore recommended to devise a 

scheme where ANNs can approximate the statistical moments of the observables and 

inform those estimates using measurements from the plant. For example, the measurements 

could be incorporated into a kernel density estimation scheme, the statistical moments 

could be estimated from the assumed kernel’ shape and then serve as initial conditions for 

ANN-based estimations of the mean (as well as standard deviation, skewness, etc.) of the 

observables.   

• In addition, the presented work with ANNs for control under uncertainty considered only 

time-invariant Gaussian parametric uncertainty. It is recommended to relax these 

assumptions to further improve the realism of the considered scenarios. For instance, time-

varying parametric uncertainty could be considered, in which case maximum likelihood 

estimation could be carried out several times in the shrinking horizon optimization scheme 

to make sure that the ANN used for online control remains the most appropriate choice for 

the current uncertain parameter realization. Multiparameter uncertainty and non-Gaussian 

distributions should also be considered. Furthermore, other sources of uncertainty (e.g. 

model structure error) should be considered in addition to parametric uncertainty.   

• In this work, closed-loop ANN-based control showed that the ANNs can benefit from real-

time measurements provided as initial conditions for the next iteration of shrinking horizon 

optimization. However, the ANNs remained oblivious to any discrepancies between their 

forecasts and the measurements, particularly in the high-noise regimes. Thus, one area of 

further research is to consider using active learning (i.e. real-time retraining of ANNs) to 
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improve ANN-based predictions of any measurements of the observables obtained from 

the process in real-time. This approach would be similar in spirit to using real-time user 

behaviour data that modern recommendation engines (e.g. YouTube, Netflix, etc.) use to 

improve their accuracy.  

• In this research, ANNs were trained using synthetic data obtained from mathematical 

models. It would be beneficial to develop ANNs using experimental data or compare the 

predictions of the trained ANNs to experiments to assess the accuracy of the synthetic 

training data approach. Alternatively, synthetic and experimental data could be combined 

prior to training the ANNs. 

• Interpretable ANNs remain an area of research in many fields (e.g. image recognition, 

natural language understanding, etc.). Technical disciplines such as chemical engineering 

can have an advantage over the more widely studied and commercialized applications of 

ANNs because many first-principles models exist that could inform the ANNs regarding 

the significance of correlations between the manipulated variables and the observables. 

These first-principles models could be leveraged to develop hybrid approaches that 

integrate first-principles models with ANNs and yield interpretable ANNs where different 

weights and biases have clear physical significance.  

• This work attempted to capture uncertainty in the observables by using ANNs to predict 

statistical moments. Other approaches for considering uncertainty in the output of ANNs 

exist, but they tend to involve manipulations of the output data (e.g. bootstrapping). An 

unexplored area of research (which is related to interpretable ANNs) is the assessment of 

the impact of the uncertainty of ANN weights and biases on the variability of ANN 

predictions. Thus, it is recommended to attempt to capture uncertainty in the 
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observables/ANN predictions through the uncertainty/confidence intervals in the ANN 

weights.  

• Similar to the recommendation for MLMC sampling, more sophisticated stochastic 

multiscale models should be considered in further research involving ANN-based control 

schemes. In fact, while those models would be even more computationally expensive than 

those considered in this research, their most computationally intensive parts could in 

principle be replaced with ANN-based predictors. Thus, hybrid multiscale models could 

be developed where ANN substitute the most computationally intensive scales. Such 

models could be sufficiently accurate and fast to be directly incorporated into online 

optimization and model predictive control under uncertainty, and therefore assist in 

devising approaches for optimal design and control of stochastic multiscale systems and 

their products.  
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Appendix A. Supplementary Material for the Robust Optimization Study 

in Section 3.4 

Table A1: Data for the 𝑅𝑃𝑆𝐸 model (equation (34)): roughness at the nominal values of uncertain parameters, and the 

sensitivities, calculated at various temperatures. 

 
Temperature, 𝑻 (K) 

 600 K 700 K 800 K 900 K 1000 K 1100 K 

𝑹(𝝁𝑬, 𝝁𝑬𝒎
, 𝝁𝑿) 92.5102 47.7179 17.5399 7.4081 3.9160 2.5437 

𝝏𝑹/𝝏𝑬 5.0617 9.7125 4.1002 1.4541 0.5562 0.2550 

𝝏𝑹/𝝏𝑬𝒎 1.6280 3.0911 0.8754 0.3331 0.0969 0.0626 

𝝏𝑹/𝝏𝑿 2.6318 1.7086 0.7459 0.0876 0.0988 0.0445 

𝝏𝟐𝑹/𝝏𝑬𝟐 -1.5096 -0.0785 0.4598 0.1854 0.0440 0.0212 

𝝏𝟐𝑹/𝝏𝑬𝒎
𝟐  -0.3099 -0.0514 -0.1972 -0.0008 0.0070 0.0090 

𝝏𝟐𝑹/𝝏𝑿𝟐 -0.4319 -0.6350 -0.1025 0.0035 -0.0041 0.0001 

𝝏𝟐𝑹/𝝏𝑬𝝏𝑬𝒎   -0.5477 0.1933 0.2915 0.0241 0.0379 0.0131 

𝝏𝟐𝑹/𝝏𝑬𝝏𝑿 -0.1301 0.1825 0.0058 0.0341 0.0404 0.0082 

𝝏𝟐𝑹/𝝏𝑬𝒎𝝏𝑿 0.0352 -0.0455 -0.0571 -0.0097 -0.0131 0.0085 

 

Table A2: Expansion coefficients for the 𝑅𝑃𝐶𝐸 model (equation (35)), calculated by the Least Squares method at various 

temperatures. 

 
Temperature, 𝑻 (K) 

 600 K 700 K 800 K 900 K 1000 K 1100 K 

𝜷𝟎 92.2250 47.0025 16.7636 7.1764 3.8494 2.5277 

𝜷𝟏 4.9884 9.8531 3.9404 1.3764 0.5807 0.2624 

𝜷𝟐 1.7706 2.8549 1.1212 0.3035 0.1018 0.0514 

𝜷𝟑 2.4158 1.3973 0.5136 0.1255 0.0732 0.0325 

𝜷𝟒 -0.9987 0.4040 0.4479 0.1126 0.0638 0.0275 

𝜷𝟓 -0.3482 0.2189 -0.0681 0.0143 -0.0007 -0.0002 

𝜷𝟔 -0.1118 -0.1178 0.0367 0.0024 0.0036 -0.0015 

𝜷𝟕 -0.9178 0.2940 0.3257 0.0380 0.0166 0.0025 

𝜷𝟖 0.0180 0.3129 0.1354 -0.0203 0.0575 0.0102 

𝜷𝟗 -0.0575 0.0635 0.1780 -0.0317 0.0093 -0.0064 
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Table A3: Expansion coefficients for the 𝑅𝑃𝐶𝐸 model (equation (35)), calculated by the NISP method at various temperatures. 

 
Temperature, 𝑻 (K) 

 600 K 700 K 800 K 900 K 1000 K 1100 K 

𝜷𝟎 92.5102 47.7179 17.5399 7.4081 3.9160 2.5437 

𝜷𝟏 5.0617 9.7125 4.1002 1.4541 0.5562 0.2550 

𝜷𝟐 1.6280 3.0911 0.8754 0.3331 0.0969 0.0626 

𝜷𝟑 2.6318 1.7086 0.7459 0.0876 0.0988 0.0445 

𝜷𝟒 -1.5096 -0.0785 0.4598 0.1854 0.0440 0.0212 

𝜷𝟓 -0.3099 -0.0514 -0.1972 -0.0008 0.0070 0.0090 

𝜷𝟔 -0.4319 -0.6350 -0.1025 0.0035 -0.0041 0.0001 

𝜷𝟕 -0.5477 0.1933 0.2915 0.0241 0.0379 0.0131 

𝜷𝟖 -0.1301 0.1825 0.0058 0.0341 0.0404 0.0082 

𝜷𝟗 0.0352 -0.0455 -0.0571 -0.0097 -0.0131 0.0085 

 

Table A4: Data for the 𝑇ℎ𝑃𝑆𝐸 model (equation (36)): thickness at the nominal values of uncertain parameters, and the 

sensitivities, calculated at various temperatures. 

 
Temperature, 𝑻 (K) 

 600 K 700 K 800 K 900 K 1000 K 1100 K 

𝑻𝒉(𝝁𝑬, 𝝁𝑬𝒎
, 𝝁𝑿) 1938.9827 1865.1597 1800.8498 1740.3520 1678.6961 1605.4975 

𝟏𝟎𝟒(𝝏𝑻𝒉/𝝏𝑬) 0.8677 0.9574 6.0272 20.1923 58.2664 151.2352 

𝟏𝟎𝟒(𝝏𝑻𝒉/𝝏𝑬𝒎) 0.7155 -2.2469 -4.4035 -17.4068 -50.3718 -112.2404 

𝟏𝟎−𝟕(𝝏𝑻𝒉/𝝏𝑿) 96.8234 93.1537 89.9285 87.0212 84.3023 81.2821 

 

Table A5: Expansion coefficients for the 𝑇ℎ𝑃𝐶𝐸 model (equation (37)), calculated by the Least Squares method at various 

temperatures. 

 
Temperature, 𝑻 (K) 

 600 K 700 K 800 K 900 K 1000 K 1100 K 

𝜷𝟎 1938.4198 1864.9606 1800.3728 1740.2908 1678.1673 1604.1333 

𝜷𝟏 -0.0031 0.0972 0.2916 1.4520 3.9306 8.9868 

𝜷𝟐 0.0292 -0.0437 -0.0487 -0.4156 -1.2233 -2.4541 

𝜷𝟑 96.8002 93.0870 89.9020 87.1028 84.3194 81.3022 

 

Table A6: Expansion coefficients for the 𝑇ℎ𝑃𝐶𝐸 model (equation (37)), calculated by the NISP method at various temperatures. 

 
Temperature, 𝑻 (K) 

 600 K 700 K 800 K 900 K 1000 K 1100 K 

𝜷𝟎 1938.3899 1864.9083 1800.4599 1740.3914 1678.4797 1605.2348 

𝜷𝟏 0.2607 -0.0013 0.3555 1.5475 3.7608 9.4523 

𝜷𝟐 -0.0523 -0.1731 -0.1319 -0.2733 -1.3659 -2.8026 

𝜷𝟑 96.9351 93.2996 89.8683 87.1507 84.3482 81.1791 
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Table A7: Polynomial models that were used to fit 𝑅𝑃𝑆𝐸 model coefficients (equation (34)) to temperature. 

𝝎(𝑻) 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 

𝑹(𝝁𝑬, 𝝁𝑬𝒎
, 𝝁𝑿) 1.2010E+03 -3.4574E+00 3.3304E-03 -1.0706E-06 

𝝏𝑹/𝝏𝑬 4.6214E-02 -4.6256E-05 -3.4773E-08 3.5411E-11 

𝝏𝑹/𝝏𝑬𝒎 2.5767E-01 -7.2410E-04 6.7986E-07 -2.1305E-10 

𝝏𝑹/𝝏𝑿 6.8642E+08 -2.1143E+06 2.1686E+03 -7.3960E-01 

𝝏𝟐𝑹/𝝏𝑬𝟐 6.4850E-05 -1.8156E-07 1.7049E-10 -5.3614E-14 

𝝏𝟐𝑹/𝝏𝑬𝒎
𝟐  1.1660E-04 -3.4570E-07 3.4126E-10 -1.1214E-13 

𝝏𝟐𝑹/𝝏𝑿𝟐 3.1455E+14 -1.0869E+12 1.2189E+09 -4.4632E+05 

𝝏𝟐𝑹/𝝏𝑬𝝏𝑬𝒎  -4.6273E-06 3.1129E-08 -4.5408E-11 1.9064E-14 

𝝏𝟐𝑹/𝝏𝑬𝝏𝑿 9.8003E+04 -2.7842E+02 2.6515E-01 -8.4488E-05 

𝝏𝟐𝑹/𝝏𝑬𝒎𝝏𝑿 1.5682E+05 -4.5883E+02 4.4764E-01 -1.4554E-04 

 

Table A8: Polynomial models that were used to fit 𝑅𝑃𝐶𝐸 model coefficients (equation (35)) to temperature. The PCE coefficients 

were calculated by the Least Squares method. 

𝝎(𝑻) 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 

𝜷𝟎 1.1475E+03 -3.2793E+00 3.1358E-03 -1.0006E-06 

𝜷𝟏 2.6371E+02 -7.6244E-01 7.3860E-04 -2.3928E-07 

𝜷𝟐 7.3837E+01 -2.1054E-01 2.0054E-04 -6.3738E-08 

𝜷𝟑 4.2851E+01 -1.2578E-01 1.2331E-04 -4.0324E-08 

𝜷𝟒 4.6319E+01 -1.3820E-01 1.3760E-04 -4.5657E-08 

𝜷𝟓 -1.7766E+01 5.4587E-02 -5.5617E-05 1.8796E-08 

𝜷𝟔 6.5862E+00 -2.0160E-02 2.0522E-05 -6.9447E-09 

𝜷𝟕 4.3286E+01 -1.2995E-01 1.2984E-04 -4.3156E-08 

𝜷𝟖 5.2842E+01 -1.6611E-01 1.7312E-04 -5.9792E-08 

𝜷𝟗 4.7772E+01 -1.4740E-01 1.5088E-04 -5.1238E-08 

 

Table A9: Polynomial models that were used to fit 𝑅𝑃𝐶𝐸 model coefficients (equation (35)) to temperature. The PCE coefficients 

were calculated by the NISP method. 

𝝎(𝑻) 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 

𝜷𝟎 1.1163E+03 -3.1650E+00 3.0030E-03 -9.5086E-07 

𝜷𝟏 2.3114E+02 -6.5464E-01 6.2152E-04 -1.9747E-07 

𝜷𝟐 1.1904E+02 -3.6069E-01 3.6446E-04 -1.2263E-07 

𝜷𝟑 3.9673E+01 -1.0980E-01 1.0099E-04 -3.0826E-08 

𝜷𝟒 9.1414E+00 -1.9762E-02 1.3028E-05 -2.3642E-09 

𝜷𝟓 -3.0509E+01 9.1772E-02 -9.1740E-05 3.0484E-08 

𝜷𝟔 -2.0067E+01 6.1225E-02 -6.2037E-05 2.0874E-08 

𝜷𝟕 5.0958E+01 -1.5565E-01 1.5807E-04 -5.3333E-08 

𝜷𝟖 9.6069E-01 -4.4839E-03 6.3096E-06 -2.7459E-09 

𝜷𝟗 -1.1345E+01 3.5312E-02 -3.6593E-05 1.2613E-08 
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Table A10: Polynomial models that were used to fit 𝑇ℎ𝑃𝑆𝐸 model coefficients (equation (36)) to temperature. 

𝝎(𝑻) 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 

𝑻𝒉(𝝁𝑬, 𝝁𝑬𝒎
, 𝝁𝑿) 2.3271E+03 -6.5352E-01 0 0 

𝝏𝑻𝒉/𝝏𝑬 -1.0048E-01 4.2207E-04 -5.8770E-07 2.7224E-10 

𝝏𝑻𝒉/𝝏𝑬𝒎 5.5743E-02 -2.3859E-04 3.4070E-07 -1.6286E-10 

𝝏𝑻𝒉/𝝏𝑿 1.1478E+09 -3.0619E+05 0 0 

 

Table A11: Polynomial models that were used to fit 𝑇ℎ𝑃𝐶𝐸 model coefficients (equation  (37)) to temperature. The PCE 

coefficients were calculated by the Least Squares method. 

𝝎(𝑻) 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 

𝜷𝟎 2.3277E+03 -6.5483E-01 0 0 

𝜷𝟏 -4.0804E+01 1.7762E-01 -2.5758E-04 1.2476E-07 

𝜷𝟐 6.3642E+00 -3.0104E-02 4.7482E-05 -2.4923E-08 

𝜷𝟑 1.1464E+02 -3.0455E-02 0 0 

 

Table A12: Polynomial models that were used to fit 𝑇ℎ𝑃𝐶𝐸 model coefficients (equation  (37)) to temperature. The PCE 

coefficients were calculated by the NISP method. 

𝝎(𝑻) 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 

𝜷𝟎 2.3263E+03 -6.5289E-01 0 0 

𝜷𝟏 -4.4144E+01 1.9497E-01 -2.8432E-04 1.3754E-07 

𝜷𝟐 1.5260E+01 -6.6049E-02 9.4340E-05 -4.4779E-08 

𝜷𝟑 1.1511E+02 -3.0958E-02 0 0 
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Appendix B. Parameter Definitions for the Catalytic Pore Model 

Table B1: Catalytic pore model parameter values (adapted from Chaffart, D., & Ricardez-Sandoval, L. A. (2017). Robust 

dynamic optimization in heterogeneous multiscale catalytic flow reactors using polynomial chaos expansion. Journal of Process 

Control, 60, 128–140. https://doi.org/10.1016/j.jprocont.2017.07.002 

<sup>10</sup><sup>10</sup><sup>10</sup><sup>10</sup><sup>10</sup> 

Parameter Symbol Value and Unit 

Pore length ℒ 1 µm 

Pore radius 𝜌 50 nm 

Fluid velocity 𝜈 0.01 m/s 

Diffusion coefficient for species i 𝐷𝑖  5.3×10-9 m2/s 

Initial concentration, species A 𝐶𝐴,𝑖𝑛 241 mmol/L 

Initial concentration, species B 𝐶𝐵,𝑖𝑛 241 mmol/L 

Initial concentration, species C 𝐶𝐶,𝑖𝑛 0 M 

Surface model adsorption constant, species A 𝑘𝑎,𝐴 1 molecule/(M·site·s) 

Surface model adsorption constant, species B 𝑘𝑎,𝐵 1 molecule/(M·site·s) 

Surface model desorption constant, species A 𝑘𝑑,𝐴 1×1010 molecules/(site·s) 

Surface model desorption constant, species B 𝑘𝑑,𝐵 1×1010 molecules/(site·s) 

Activation energy of desorption, species A 𝐸𝑑,𝐴 95,000 J/mol 

Activation energy of desorption, species B 𝐸𝑑,𝐵 100,000 J/mol 

Surface model reaction constant 𝜅 2×106 molecules/(site·s) 

Activation energy of reaction 𝐸𝑟 57,000 J/mol 

Temperature 𝑇 460 K 

Number of catalyst sites per lattice 𝑁𝑡𝑜𝑡𝑎𝑙  900 sites 

Number of chemical species 𝑛𝜏(𝑥, 𝜌) 3 species 
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