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Abstract

Current bridge inspection practices are outdated compared to the advanced technologies
available today, and there is significant room for improvement. For example, spalls are
inspected by visual assessment and delaminations are inspected by sounding for hollow
areas in the concrete. This yields coarse size estimation and subjective measuring, which is
exacerbated by limited funding. These limitations severely restrict inspection information
provided to an engineer, making adequate bridge management difficult and bridge repairs
expensive. Current inspection researchers are aware of this problem, and therefore there is
significant focus on applying advanced technologies to improve the accuracy and economic
efficiency of routine bridge inspections for improved bridge management.

The Structural Dynamics Identification and Control (SDIC) research lab at the Univer-
sity of Waterloo has been working to develop a process for automated end-to-end inspection
of spalls and delaminations in reinforced concrete bridges that tightens size estimation, re-
moves subjectivity, and improves accessibility. This process combines the accessibility
benefits of robotics with the detailed 3D structural modelling of state-of-the-art simulta-
neous localization and mapping (SLAM), and the accurate and objective object labeling
of state-of-the-art convolutional neural networks (CNN). Major steps required for this au-
tomated end-to-end inspection can be broadly divided into five components: 1) a mobile
data collection platform complete with lidar and camera sensors, 2) a mapping compo-
nent to fuse data from various sensors into a common reference frame, 3) a defect labeling
component to automatically label defects in images, 4) a map labeling component to se-
mantically enrich the 3D map with pixel information from images, and 5) a non-subjective
and automated defect quantification component.

The work in this thesis focuses specifically on components 3), 4), and 5). These three
components assume that data is collected by lidar and camera sensors (Component 1)
and a 3D map of the bridge structure has been generated by SLAM (Component 2). To
achieve component 3, this thesis presents an implementation of MobileNetV2/Deeplab
V3, which is a state-of-the-art pixel-wise CNN, for fully automated pixel-wise labeling of
spalls and delaminations in visual and infrared images respectively. Spalls are labeled
with 71.4% mean intersection over union (mIoU) and delaminations with 82.7% mIoU,
which is reasonable compared to same CNN’s score of 77.3% on benchmark datasets. For
component 4, an algorithm is developed based on the pinhole camera model and ray-tracing
to intelligently fuse the CNN and colour data stored in pixels with the generated 3D point
cloud. This yields a spatially accurate 3D map of the scanned structure that is colourized
and semantically enriched with defect information. This enables the last component, which
implements an algorithm to automatically extract, organize, and quantify areas for both
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spall and delamination defects present in the semantically labeled 3D map. A comparison
is performed to test the difference of using manual ground truth defect labels in the image
versus automated CNN labels, with all else held constant. The comparison showed a
defect size error of 25.9% for spalls and 13.6% for delaminations, which is proportional to
the 28.6% and 17.3% mIoU errors reported for spalls and delamintions respectively at the
image labeling step. This is evidence that this pipeline can be used for any defect area
quantification, where the optimal CNN can be chosen for automated labeling based on a
tradeoff of accuracy vs. computation requirements. Future work involves extending this
pipeline to include more defect quantification, such as crack length and crack width.
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Chapter 1

Introduction

In North America, bridges are required to undergo routine inspections while following stan-
dardized guidelines, e.g. the Ontario Structure Inspection Manual (OSIM) [39], to ensure
that they are in adequate structural and serviceable condition. Such inspections are typ-
ically performed by qualified inspectors for visual assessment of common defects such as
cracks, spalls, or delaminations. The sheer number of bridges which fall under such regu-
latory purview combined with the routine inspection frequency (typically every two years)
has resulted in a significant burden on the inspection labor force. As a majority of routine
inspection tasks are currently undertaken visually, the subjective nature of such routine
inspections calls for more repeatable, reliable, and automated methods to complement or
even replace many inspection tasks.

1.1 Routine Concrete Bridge Assessment

The goal of routine structural concrete bridge inspections is ”to ensure, within an economic
framework, an acceptable standard for structures in terms of public safety, comfort and
convenience” [39]. To achieve these goals, OSIM outlines a set of defects that can be
detected visually by a qualified inspector within arms reach of the defect. Common defects
assessed during routine bridge inspection include delamination, spalling, cracks, erosion,
scaling, disintegration, etc. These defects are detected, measured for pertinent dimensions
(e.g. area, length, width), and then reported in severity. This thesis focuses on improving
the inspection method for delamination and spalling, which are two critical defects that
are both related to each other in the way they manifest in the structure.
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1.1.1 Spalling Assessment

OSIM describes a spall as ”a fragment, which has been detached from a larger concrete
mass” [39]. Therefore, when searching for spalling an inspector must search for areas where
concrete has completely detached from the bridge structure, leaving a noticeable volume
of missing concrete (Fig. 1.1). Spalling is considered a problem for a few reasons: 1) the
concrete falling from the structure can pose a hazard to people or structures below, and
2) the loss of concrete reduces concrete cover that protects the steel rebar from corroding.
Spalling does not often represent a direct loss to strength, as it generally occurs at locations
where concrete is in tension, which is usually ignored in design calculations.

Figure 1.1: Example photos of spalls. (Photos by: Region of Waterloo)

Spalls are visually detectable as the the location of the spall will have a noticeably
different texture (e.g. aggregate concrete exposed, rough surface), will have a noticeable
depth change, and in extreme cases will have locations of exposed rebar. During inspection,
spalls are classified for severity by their area and depth of concrete removed. Following
[39], spalls can be classified as:

• LIGHT: Spalled area measuring less than 150 mm in any direction or less than 25
mm in depth.

• MEDIUM: Spalled area measuring between 150 mm to 300 mm in any direction or
between 25 mm and 50 mm in depth.

• SEVERE: Spalled area measuring between 300 mm to 600 mm in any direction or
between 50 mm and 100 mm in depth.
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• VERY SEVERE: Spalled area measuring more than 600 mm in any direction or
greater than 100 mm in depth.

1.1.2 Delamination Assessment

OSIM describes a delamination as, ”a discontinuity of the surface concrete which is sub-
stantially separated but not completely detached from concrete below or above it” [39].
This means that to detect a delamination an inspector looks for an area where concrete is
internally cracked, but not yet fully breaking off from the larger structural concrete mass.
Dalamination is a problem for a few reasons: 1) delaminations are likely to grow until
they become a spall if left without maintenance intervention, and 2) delaminations signify
internal cracking, which is likely caused by the expanding volume of the rebar that results
from corrosion.

Delaminations are often not visually detectable, as they are a subsurface defect. They
instead tend to be detected by hammer sounding or chain dragging. These methods require
the inspector to use the distinct hollow sound of delaminated concrete to estimate the
extent of the delamination. Another method is to use the change in thermal patterns
at a delaminated area to estimate the delamination area. This is possible as the smaller
delaminated mass of concrete heats/cools faster than the larger mass, resulting in different
thermal patterns when subjected to day/night heating and cooling cycle. Fig. 1.2 shows
examples of delaminations revealed by infrared imagery. Following [39] delaminations can
be classified as:

• LIGHT: Delaminated area measuring less than 150 mm in any direction.

• MEDIUM: Delaminated area measuring 150 mm to 300 mm in any direction.

• SEVERE: Delaminated area measuring 300 mm to 600 mm in any direction.

• VERY SEVERE: Delaminated area measuring more than 600 mm in any direction.

1.2 Motivation

A key aspect of current delamination and spall assessment that could be greatly improved
is area size quantification. Area size quantification can be cumbersome and fraught with
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Figure 1.2: Example delaminations showing different thermal patterns in infrared images.

human error when access is limited due to long spans, water bodies, traffic conditions,
and safety requirements. Such limitations lead inspectors to estimate the dimensions and
quantities without supporting measurements, or could lead to neglecting the defects all
together. As a result, subjectivity and variability between inspections is common [22]. Such
variability in delamination/spall areas makes comparing areas between routine inspections
(e.g. two years apart as per [39]) challenging, and prevents quantitative tracking of defect
growth over time. As well, lack of quantitative information makes asset management
decisions more challenging and hence there is an urgent need for new methods that can
produce objective, repeatable, and quantifiable defect identification in the field.

Developments in modern sensors such as high-resolution cameras and laser scanners (li-
dars) can significantly assist in overcoming current defect inspection practices. Computer
vision techniques and machine learning algorithms can be used to automatically analyze
images for defects, while lidar information can provide reference-free scale when the image
information is fused together with lidar data. Combined with robotics technologies, specif-
ically simultaneous localization and mapping (SLAM), lidar scans and images obtained
at different locations can be fused to build 3D representations of bridge assets. The core
work of this thesis is therefore focused on how state-of-the-art computer vision techniques
can be applied to process camera and lidar data, and to automate and remove subjectivity
from the area size quantification of delaminations and spalls.
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Chapter 2

Background

Traditionally, an inspector will capture photos of a detected defect to provide more infor-
mation to the inspection report. These images are supplemental, and are not the main
method of obtaining information about the severity of the defect. However, the images do
contain information necessary to automate the defect detection, localization, and quantifi-
cation process.

2.1 Images

Images are structured grid-like data of pixels that provide information about the location
photographed at a specific snapshot in time. The size, density, quality, lighting, and
more can all vary for an image, but the method in which image data is stored primarily
remains the same. To understand the characteristics that enable detection of spalls and
delaminations in images, it must first be understood how both visual images and infrared
images represent the data collected by the camera.

2.1.1 Light

Broadly speaking, images are generated by capturing light information from the 3D world at
a specific point in time. Further details on how to model this are elaborated when discussing
the Pinhole Camera Model. However, it is first necessary to cover a brief overview of light
waves, and specifically the difference between the light wavelength for the visual spectrum
of light and for infrared light.
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The visual spectrum of light consists of light wavelengths between 400nm and 750nm.
This range is named the visible spectrum because it is the range of light wavelengths that
are visible to the human eye, with a 400nm wavelength being violet, a 750nm wavelength
being red, and with a gradient of the colours of the rainbow making the values in between.
Most cameras operate in the visible spectrum for ease of human interpretation.

There exist cameras to capture other wavelengths that are be useful for certain ap-
plications, one of these wavelengths being infrared. Infrared light has slightly less energy
than red visible light. Less energy means a larger wavelength, and so infrared cameras
are generally capturing light wavelengths from 8000nm to 15000nm. This is beneficial,
as an infrared camera can provide information about the thermal emissivity of an object.
This thermal emissivity does not give absolute temperature, but can give an idea of which
objects are hotter/colder relative to a scene.

2.1.2 Visual Images

A visual image is the most common type of image, in which it captures light information
in the visible spectrum. These are typical to how one would capture an image of their
family, their pet, etc. with any standard camera (e.g. phone camera). A visual image is
typically stored as an m× n× 3 matrix of pixels, where m is the height of the image and
n is the width. The depth of the matrix is 3, as image pixels are typically stored such that
colour is represented using the red, green, blue (RGB) colour spectrum, where the colour
of each individual pixel is represented as a combination of varying intensities of red, green,
and blue. The RGB values are represented by an integer from 0 to 255, which is chosen
so that each pixel can be stored using only 8c bits of memory, where c is the number of
colour channels. It is possible to capture more detail by allocating more memory, but for
the majority of images 8 bits is adequate. Fig. 2.1 provides an example of how an RGB
visual image is built.

A spall is visible in a typical RGB visual image because the image captures the different
appearance (e.g. exposed aggregate, rough concrete, lighting changes) that are caused by
the detached concrete (Fig. 1.1). The depth discontinuity caused by a spall is not visible
in the image, as an image does not contain depth information. However, lighting effects
(e.g. shadows) caused by the discontinuity may be visible in some cases.
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Figure 2.1: Example of how a visual RGB image is stored as a combination of red, green,
and blue intensities. These intensities are combined to make the output 3 × 4 × 3 visual
image at the bottom of the figure.

2.1.3 Infrared Images

An infrared image is less common than a visual image, as it captures light in the infrared
range. Infrared images are often referred to as thermal images, as a thermal image explicitly
indicates a passive infrared sensor (i.e. does not emit any infrared energy itself, and only
sense energy from the environment). For the case of this thesis only passive infrared sensors
are used, and the terms thermal and infrared image are assumed to be the same. Infrared
images differ from a visual image, as it is typically stored as an m×n× 1 matrix of pixels.
The depth of the matrix is only one, because each pixel is a single integer between 0 and
255 that represents the thermal intensity reading of the camera. The intensities are often
stored as either white-hot (255 indicates hottest and 0 indicates coldest), or black-hot
(0 indicates hottest and 255 indicates coldest). Fig. 2.2 provides an example of how an
infrared image is built.
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A delamination is noticeable in an infrared image because a delamination has a different
heating/cooling pattern compared to the large concrete mass (Fig. 1.2). This is because
the internal discontinuities create an insulating layer, making the delaminated concrete
a smaller, separate mass. This causes the delamination to heat/cool at a different rate
than the larger mass and therefore produces a different thermal intensity when captured
by an infared camera. Because the delamination is detected by distinct local changes in
thermal intensity, it is possible to detect the heating/cooling effects the same way in either
a white-hot or black-hot infrared image.

Figure 2.2: Example of how grayscale intensities are stored to make a 3× 4× 1 grayscale
infrared image.

2.1.4 Pinhole Camera Model

With knowledge of how visual and infrared images are stored, it is also important to know
how a camera collects such data and projects a 3D world object or a feature into a 2D
grid-like array of pixels (note even though the matrix may be 3D in the case of RGB,
the third dimension is only to store colour data). This can be done by understanding the
pinhole camera model [24, 61, 4], which is a sufficient model for all cameras used in this
thesis. The pinhole camera model is derived by assuming that light from the external
environment travels through a pinhole point and then continues until it comes into contact
with the sensor of the camera. This sensor reads the light information, and after some
internal data processing it can be saved and stored in an RGB format. The way objects in
an environment (represented in world coordinates, X, Y, Z) may be projected to the sensor
(represented by u, v) is shown in Fig. 2.3. The location at which the light information is
read is often called the image plane, and the distance from this plane to the camera pinhole
is known as the focal length of the camera. The virtual image plane is the location in front
of the center that is a focal length distance in front of the pinhole, and the central point
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on this plane is the principal point. The purpose of the virtual image plane is to visually
simplify the pinhole camera model, while keeping the mathematics valid.

Figure 2.3: Pinhole camera model used to show high-level how a camera collects light
information, and to derive the equations for projecting 3D world coordinates to a 2D
virtual image plane. The model shown assumes no lens distortion. The X and u axes are
assumed to be directed out of the page. The R,P,G subscripts are used to label the red,
purple, green points to help follow which 3D point is stored where in the image plane.
The point (cx, cy, F ) is known as the principal point, and is the center of the virtual image
plane.

The image plane in Fig. 2.3 represents the location of the sensor in the case of a
physical camera. This sensor reads the light it receives and can store it as a matrix of
pixels, where each pixel contains the color information (e.g. RBG or infrared intensity).
This pinhole model is used to derive the equations necessary to project a 3D object onto
a 2D grid of pixels. To simplify this example, assume that the global points are in the
same coordinate frame as the camera (X, Y, Z coordinate frame where the pinhole of the
camera is (0, 0, 0)), and the goal is to covert a point (X, Y, Z) to a (u, v) pixel.

Consider the v coordinate of a 3D point in Fig. 2.3. We can construct a formula using
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similar the triangles property and isolate for v,

v − cy
fy

=
Y

Z
(2.1)

v =
Y

Z
∗ fy + cy (2.2)

where v is vertical location of the pixel on the image, fy is the focal length of the camera,
cy is the offset of the principal point in the vertical direction, and Y, Z describe location of
the object relative to the camera in 3D space. In the horizontal direction, the same process
can be done to get the vertical u component using

u− cx
fx

=
X

Z
(2.3)

u =
X

Z
∗ fx + cx (2.4)

where fx is the focal length of the camera (note that in all applications in this thesis
fx = fy = F ), cx is the offset of the principal point in the horizontal direction, and X,Z
describe the location of the object relative to the camera in 3D space. These two equations
can be combined into a matrix,

K =

fx 0 cx
0 fy cy
0 0 1

 (2.5)

that can then be applied to any 3D point in the camera coordinate frame using the equation,uv
1

 = K

 1

Z

XY
Z

 (2.6)

to convert a 3D point to a 2D pixel. The matrix K is known as the intrinsic camera
matrix, as it contains the internal properties of the camera that remain constant assuming
no damage or mechanical adjustments. It is often the case that fx = fy, cx = width

2
,

and cy = height
2

, meaning a manufacturer could provide these parameters. However, in
practice this matrix is obtained through checkerboard camera calibration and is essential
for combining camera data with data from other sensors such as a lidar. See appendix A.1
for details on calibrating a camera with a checkerboard to determine its intrinsic K matrix.
To use the matrix, the 3D points must be in the camera coordinate frame, which can be
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done using extrinsic properties. These extrinsic properties describe how the camera is
positioned in the world. Further details on how these properties are extracted are covered
in 3D mapping section.

The similar triangle formulation of these equations also highlights the limitations of
information collected using a camera. Specifically, it shows how it is relatively simple to
project from 3D to 2D, but impossible to transform 2D to 3D using a single image because
of the scale ambiguity that is caused by the Z coordinate. That is, all 3D points along
a linear ray extending from the camera center and through a (u, v) pixel will have the
same values for X

Z
and Y

Z
, therefore mapping the same (u, v) pixel location in 2D. For this

reason, the 3D point corresponding to a u, v pixel can be determined up to a scale factor
of s, where the 3D point is s[X Y 1]T . This is why it is not possible to estimate depth
from a single image alone.

2.2 Computer Vision

With knowledge of how data is collected by a camera and stored in an image, the next
step is to automate the extraction of information within the image. This is done using
image processing and computer vision. Computer vision is different from image process-
ing, as computer vision involves analyzing the image for certain information (e.g. object
detection). Image processing is a broader concept that covers all techniques to process an
image (e.g. sharpening, denoising, etc.), and in many cases can work as part of a computer
vision algorithm (e.g. noise removal before object detection). In this thesis, some image
processing is used but the focus is specifically on computer vision techniques for detecting
and localizing a defect in an image. More broadly, the goal is automatic image-based object
detection and localization.

In the computer vision community, there are two types of approaches that are used to
automatically process image data for detecting and locating objects of interest: knowledge-
driven methods and data-driven methods. Both these methods make use of image convo-
lution—a core concept in computer vision—but use it in a different manner. Knowledge-
driven methods are based on the known characteristics of the object of interest. For
example, this knowledge may include known colours (e.g. RGB pixel values to search for
are known) and shapes of the objects of interest in the images. Knowledge based methods
will often include human-input rules for determining which features in images correspond
to which objects. The second approach falls under data-driven methods, which rely on
large quantities of labeled image data to train deep prediction networks. Once these net-
works have been trained to detect and localize the objects of interest based on the input
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data, they can then be used to detect and localize those objects on new data sets. These
methods require large labeled datasets and significant processing resources to train the
networks. Data-driven methods have become the method of choice for many computer vi-
sion based object recognition applications, and have have consistently dominated computer
vision competitions since a data-driven network first won the Imagenet challenge in 2012
[28]. However, it is still important to understand knowledge-driven methods to understand
how data-driven methods work.

2.2.1 Image Convolution

Before discussing knowledge-driven versus data-driven methods it is important to under-
stand their main building block —image convolution. Image convolution is the process of
moving a kernel over each valid pixel in the image and calculating a new value for that
pixel based on the properties of the kernel. Mathematically, the image convolution for a
location (i, j) in an image can be given by equation

S(i, j) = (K ~ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.7)

where ~ is the convolution operation, S is the output of the convolution, I is the original
image and K is the m× n convolution kernel. However, in this formula it is evident that
the indices (i − m, j − n) into the input image I decrease as the indices (m,n) into the
kernel K will increase. This provides no benefit to filtering an image, and complicates
the implementation. As a result, while the term is often still called convolution, cross-
correlation is actually what is implemented in most computer vision programming libraries.
It is given by the equation

S(i, j) = (K ~ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.8)

where the only change is the subtraction of m,n from i, j turns into addition. This
makes the location for which to index into the image and the kernel both grow as val-
ues m,n increase. This is more intuitive, and therefore most libraries implement cross-
correlation. However, these libraries will still call the operation convolution even though
cross-correlation is what is implemented [21]. In this thesis, image convolution will refer
to the method of cross correlation presented in Equation 2.8. Fig. 2.4 shows an example
this cross-correlation being applied to an small sample image tensor. Notice that the filter
decreases the size of the original image, but this is often negligible in practice as image have
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large dimensions relative to the decrease in size. The size reduction can also be prevented
by padding additional values (e.g. zeros, or reflected values) around the edges of the image
before convolution.

Figure 2.4: Image convolution with a 2× 2 kernel and a 3× 4 image. (Courtesy of [21])

Image convolution is the core building block of many knowledge-driven and data-driven
methods of computer vision. The key difference is that in knowledge-driven methods
the kernel weights are carefully constructed by computer vision experts to extract some
information of interest, whereas in data-driven methods the kernel weights are randomly
initialized and then learned by the algorithm using an iterative approach. More detail is
provided when discussing these specific methods.
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2.2.2 Knowledge-Driven Computer Vision

There are numerous knowledge-driven methods for object detection and localization within
computer vision. For understanding these methods, a good algorithm to analyze is edge
detection and localization using canny edge detection [6]. This algorithm makes use of
image convolution and other mathematical techniques to detect edges, making it a good
example for understanding how knowledge-drive methods use image convolution to extract
information from an image.

Recall in the case of knowledge-driven methods, the convolution kernel weights are
defined based on known desirable properties or information to extract. In this case, it
is known that an edge in an image appears as a sharp change in image intensity causing
a clear disparity between neighbouring pixels. This can be due to lighting change (e.g.
shadow), colour change (e.g. red to blue), or depth change (e.g. foreground to background
object). For this reason, the kernel to detect edges is a kernel that estimates the horizontal
(Gx) or vertical (Gy) derivative of the image at each valid pixel location, as a high value of
the derivative is a likely indicator of an edge. For canny edge detection, the common kernel
used for derivative calculation is the sobel kernel (Fig. 2.5). When using a kernel such as
the sobel, it is likely that the image will also contain noise that may cause random high
derivatives to be present at areas that are not edges. Therefore, in canny edge detection
the image is first filtered using a Gaussian kernel (e.g. Fig 2.6) to reduce noise effects. A
Gaussian kernel essentially takes a Gaussian-weighted average around the pixel of interest,
which can smooth out noise. The size of this filter and the rate of weight dropoff from the
center to the outer edges can affect the amount of noise removed, but can also reduce the
change in intensity locations that should be classified as edges in the original image, so the
decision on filter size and weights is best made by an expert in computer vision.

Figure 2.5: Sobel derivative kernels. Left: horizontal derivative (vertical edge detection).
Right: vertical derivative (horizontal edge detection).
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Figure 2.6: Common 3× 3 Gaussian filter for image noise removal.

After noise removal and gradient calculations, there are two convolved images left over
—the convolved image representing the gradient in the x direction (Gx) and the convolved
image representing the gradient in the y direction (Gy). The overall edge gradient matrix,
G, and the gradient direction matrix, Θ, can then be calculated using these two images by
using equations,

G =
√
G2
x +G2

y (2.9)

Θ = tan−1 (
Gy

Gx

) (2.10)

where all operations are performed element-wise (i.e. on each set of corresponding pixels
at location (u, v) in Gx and Gy. With G and Θ calculated, the gradient magnitude and
direction are now estimated at each pixel location.

The next steps for canny edge detection are to use non-maximum suppression to thin
the edges, and then a hysteresis thresholding technique to segment out the edges. These are
advanced techniques are not important to understanding the rest of the work presented in
this thesis so explicit detail is left out. However, the central idea is that the high derivative
values could indicate an edge. The issue then arises, how large a derivative is high enough
to indicate an edge? This threshold is a human input (hysteresis thresholding requires
two human inputs), and the optimal value can vary depending on the image. Therefore,
this knowledge-driven method could be considered as only semi-automated as there is need
for human intervention. This requirement of human input is true for a large amount of
knowledge-driven methods.

After all steps of the canny edge detection algorithm are complete, the result is a
binary mask that detects and localizes edges in the image. It is clear from the example,
Fig. 2.7, that even with a Gaussian filter there is still significant noise causing erroneous
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edge predictions. In addition, it is clear that it is extremely difficult to distinguish an
edge caused by a crack, a shadow, a depth change, etc, because intensity disparity between
neighbouring pixels contains no further detail other than that an edge is present. This
limitation makes it difficult to use canny edge detection alone in applications, as it does
not distinguish the cause of the edge. It is common for knowledge-driven methods to adjust
and/or augment such an algorithm to only detect edges caused by a specific phenomenon
(e.g. cracks). However, many of these methods are shown to work on a specific dataset,
but fail when the data does not fit specific boundary conditions. This limits the use of
knowledge-driven methods in application, and motivates the use of data-driven methods
as an alternative.

Figure 2.7: Canny edge detection example. Left: original image. Right: result.

2.2.3 Data-Driven Computer Vision

The current state-of-the-art for data-driven object detection and localization in images is
a Convolutional Neural Network (CNN). A CNN is a type of neural network that uses
the image convolution (Fig. 2.4) in place of a typical fully connected layer. The main
difference between the image convolution used in a CNN vs a knowledge-driven method
is that instead of using pre-programmed kernel weights, the kernel weights for a CNN are
randomly initialized and then learned by the network to extract the necessary information.

In a CNN, numerous different kernels are stacked with other image processing tech-
niques such as maximum pooling filters (a form of image filtering, where the pixel is
assigned the maximum value in a pixel area around it, e.g. 3x3). This enables a CNN to
extract features and combine different feature information to foster object detection and
localization. For example, a CNN to classify if an image contains a dog might see the
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first few layers of the network learn to extract features such as edges, corners, circles, etc.
Subsequent layers can then learn how these features combine to depict common broader
features of a dog such as fur, tail, four legs, and snout. The final layers of the network
then learn a liklihood that an image contains a dog based on the broader features that it
found. If the likelihood is above a threshold (often 0.5), then the image contains a dog.
AlexNet [28] provides one of the first and most basic illustrations of CNN in Fig. 2.8 that
was used for such object classification.

Figure 2.8: AlexNet network architecture showing how a 224× 224× 3 input image is first
filtered and max pooled then classified in 1 of 1000 categories using fully-connected dense
layers. (Courtesy of [28])

The next key question for these networks is how are the network weights (specifically
Kernel weights for a CNN) actually learned? The kernel weights used for convolution op-
erations in a CNN are learned using a technique known as back-propagation, which makes
use of the fact that the convolutional operator is a linear operation and is therefore differ-
entiable. The back-propagation algorithm compares the output of the network generated
with its current weights to the correct output. The correct output is provided by manually
labeled examples (e.g. giving a network a picture with a dog and indicating to it that it
should label the image as having dog), which makes this method of training supervised
learning. After comparison, the next step is to update the weights of the kernels in the
network to achieve a prediction that is closer to the correct output. This method is called
back-propagation because the updates to the weights propagate backwards through the
network using partial derivatives. Back-propagation is generally combined with a gradient
descent method, which is an iterative method that steps the error function value towards
a minimum at each step.

For a mathematical example of back-propagation and gradient descent, consider a two
step process of updating the weights in a kernel. First, consider mean squared error (MSE)
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as a loss function

J(θ) =
1

2

∑
(f(x, θ)− y)2 (2.11)

where J(θ) is the loss, θ are the weights of the convolution kernels, x is the input image
and y is the correct output. This function gives the sum of the squared errors between
the output from example inputs x and corresponding labels y. Second, The derivative of
this function can be taken with respect to each θi value to find the direction of fastest
movement. This direction can then be used to apply the best calculated update to each
kernel weight using the formula

θi = θi − α
δ

δθi
J(θ) (2.12)

where θi is a specific kernel weight, α is a constant that scales the learning rate, and δ
δθi
J(θ)

is the partial derivative of the MSE loss function with respect to θi. This two step process
is repeated until the total error does not change with updates or a set number of maximum
iterations is reached.

This process of back-propagation and gradient descent can be extended to more com-
plex loss functions or update functions to improve training time and accuracy. Currently,
issues such as avoiding local minimums, improving training time, and improving weight
distributions are active areas of research. However, the methods always build upon the gen-
eral concepts of of back-propagation and gradient descent updating. Further information
about robust training methods can be found in [21].

To train a CNN using supervised learning following back-propagation and gradient-
descent, one must know the required structure of the network output to be able to produce
labeled example data. Specifically, for the case of object detection and localization, it is im-
portant to know how the detection and location information is represented. There are two
common CNN-based techniques to achieve this in an image: a region-based convolutional
neural network (R-CNN) technique and a semantic pixel-wise segmentation (sometimes
referred to as semantic segmentation CNN technique). R-CNNs [48, 47] detect and locate
objects by outputting the coordinates of a labeled bounding box around the detected object
of interest (Fig. 2.9a). Semantic segmentation CNNs [10, 2] present a structured grid-like
data output, with the same pixel density of the original image. The output is a mask where
each pixel is individually classified into a category, which yields pixel-level location accu-
racy (Fig. 2.9b). Clearly, such pixel-wise segmentation information is significantly richer
compared to R-CNNs, however at the cost of added computational complexity and effort.
To get a better picture of this, an overview of popular R-CNNs and semantic segmentation
CNNs is provided.
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(a) Bounding Boxes [48] (b) Segmented Image [2]

Figure 2.9: R-CNN and CNN for Segmentation Examples.

Region-based Convolutional Neural Networks

There exist many R-CNN algorithms that produce good results on standardized data sets
for object detection and localization. [48] presented a R-CNN algorithm called Faster
R-CNN, which works by generating rectangular regions of interest (ROIs) in an image
using a Region Proposal Netowork (RPN), and running the classification algorithm from
[20] on each ROI. This yields object detection and localization via bounding boxes. ROI
generation is important to this method, as too many regions mean low computational
efficiency. The RPN algorithm in [48] improves on traditional methods of region proposals,
namely sliding window methods. Sliding window region proposal involves running the
classification portion of an R-CNN on each cell in a sub-grid of the image. For example, a
300×300 image can be made into a 10×10 grid of 30×30 cells, and then the classification
can be run on each 30×30 cell to see if an object is present. The sliding window technique
yields excessive iterations of the classification algorithm, and is therefore computationally
inefficient. Faster R-CNN allows for real-time bounding box classification and localization,
as the RPN suggests less sub-image regions for the classification algorithm to be run on.
The main drawback of Faster R-CNN and similar R-CNN networks is they only provides
bounding box level localization, which may not accurate enough for some applications.
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Semantic Segmentation Convolutional Neural Networks

Fully Convolutional Networks (FCN) [52] introduced the use of convolutional networks for
semantic segmentation (Fig. 2.10). FCNs contain no densely connected layers in their
architecture, which are the matrix multiplication layers of a basic neural network. This
makes every layer a convolutional layer, yielding the name FCN. [52] presented three differ-
ent networks for segmentation: FCN-32s, FCN-16s, and FCN-8s. These networks combine
coarse information from higher layers with fine information from lower layers, with FCN-
32s incorporating the least fine data from higher layers, and FCN-8s incorporating the
most. Intuitively, it would seem that FCN-8s would have higher accuracy but worse com-
putation, as it incorporates more data than FCN-16s and FCN32s. This trade-off between
accurate, dense pixel-wise classification, and computational efficiency was demonstrated
empirically. When analyzing the affects of maintaining fine-detailed from previous layers,
FCN-8s achieved a 3.3% better mean intersection over union (mIoU) score than FCN-32s,
but trained 40% slower than FCN-32s. This evidence supports the intuitive trade off of
computation versus accuracy when using CNNs. The more detail that is in the network,
the more accurate the network can potentially be. However, the more detail that is in the
network, the more computational power that is required to train it.

Figure 2.10: FCN architecture overview. (Courtesy of [52])

This trade off between computation and accuracy led the dominant research in CNNs for
pixel-wise segmentation towards improving accuracy, or improving computation efficieny
while maintatining high accuracy. [2] presents another CNN for pixel-wise segmentation,
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which uses an encoder-decoder structure to attempt to improve accuracy while maintaining
computational efficiency (Fig. 2.11). The main idea is that pertinent information from
the input image can be encoded in a tensor with smaller spatial resolution, pixel-wise
labeled, and then decoded back to the original image resolution. In SegNet, max-pooling
indices are saved during the encoder layers and transferred to decoder layers to improve the
segmentation resolution and performance. This structure enables SegNet to better capture
smaller objects compared to other methods. However, many of the object boundaries
produced by SegNet are not smooth, showing that improvements are still possible.

Figure 2.11: SegNet architecture overview. (Courtesy of [2])

In terms of achieving the best possible accuracy, there are many algorithms that achieve
close to state-of-the-art. One example is [44], who developed an improved network structure
called Global Convolutional Network (GCN) (Fig. 2.12). GCN boasted state of the art
results on the two most dominant datasets. It produced a mean intersection over union of
82.2% on PASCAL VOC 2012 and 76.9% on Cityscapes. This is not the highest accuracy
at the time of writing, but is typical of what accuracy is produced by state-of-the-art
networks for semantic pixel-wise segmentation. Hundreds of different architectures exist,
but for purposes of applying CNNs these numbers give an estimate on the accuracy values
that can be expected.

CNN Selection

As illustrated above, much CNN research focuses on incrementally improving the state-of-
the-art accuracy or computational efficiency benchmarks on popular data sets. However,
many of the networks are nearly indistinguishable by these metrics, and thus selecting a
CNN to implement for a given application is difficult. The main takeaway is that all of the
popular networks that have shown good results on benchmark data sets will likely produce
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Figure 2.12: GCN architecture overview. (Courtesy of [44])

similar results for a specific application. They key is to select any reasonable network
that suits the requirements of the application and focus on proper implementation of the
network.
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Chapter 3

Literature Review

Significant research work currently exists related to the application of computer vision
techniques to augment defect detection and quantification in images. Specifically, crack
detection has been researched extensively. This literature review focuses on computer
vision for detection of cracks, spalls, and delaminations as there are common elements to
the process irrespective of defect type. In general, the algorithms for detecting defects are
not compared on an accepted standardized data set, as such a data set does not exists at
the time of writing this thesis. Therefore, the reviews focus on algorithm limitations rather
than the actual reported accuracy numbers.

Localization and quantification have been studied relatively less compared to detection.
This is because images lack physical scale required to localize the defect on the structure
(e.g. is it on a beam? girder? etc.) and to calculate a physical measurement of the defect
(e.g. length in meters, area in square meters). However, state-of-the-art in sensing and
robotics has made integrating localization and quantification with cameras more easily
accessible, and these methods are also covered.

3.1 Knowledge-Driven Defect Analysis

Knowledge-driven methods for defect analysis have been researched longer than data-driven
methods due to fewer computational requirements. Until 2012, these methods were the
primary way of assessing defects from images. As a result of the extensive work, knowledge-
driven methods may be considered a solved problem for most common defects, as it is
currently considered that their accuracy results have approached an upper limit that is
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not able to compete with data-driven methods. However, it is extremely important to
study how these methods can be applied to assess defects to be able to understand how
data-driven methods can be properly implemented.

Cracks are the most heavily researched defect from a knowledge-driven point of view.
Therefore, various algorithms exist, and can identify cracks with reasonable accuracy and
precision. For example, [41] implemented a crack detection and crack tracking algorithm
to detect and localize cracks in images. Images were first processed using a median filter,
then the median filtered image was subtracted from the original image with the idea that
the areas of largest difference were crack candidates. Morphological operations (i.e. pro-
cessing images based on shapes) were then applied to crack candidates to facilitate crack
segment connectivity. The next step was the tracing algorithm, in which a ”seed” pixel
with maximum probability of being a crack is selected, then traced bi-directionally using
pixel intensities to determine which nearby pixel is most likely also part of a crack. The
major flaw with this method is that the median filter and tracing algorithm rely heavily
on pixel intensities, making it likely to fail in images with artifacts that can interfere with
intensity values. For example, the algorithm could miss a crack that is hidden under a
dark shadow, or classify a thin shadow as a crack.

Spall detection is less researched than cracks, as they are not as obvious to detect in
images. [18] proposed a method for spall detection and assessment on concrete columns.
They first isolated the spall region by a local entropy-based thresholding algorithm. Next,
a global adaptive thresholding algorithm, template matching, and morphological opera-
tions were used in measuring the depth of spalling into the column and length of spalling
along the column. This approach was found to overestimate the extent of a spall, as some-
times it considers large cracks as continuation of spall region. In addition, this method is
limited to low-entropy photos, as background noise could interfere with detection. Despite
this, limited further research has been done to detect spalls using knowledge-driven image
processing approaches.

Little research exists to assess delaminations from a knowledge-driven point of view.
This is likely because assessment requires infrared imagery, which is less of a developed
field of research. However, it would be possible to develop a knowledge-based algorithm for
delamination detection, the simplest being to just use a grayscale threshold to segment out
the lighter/darker delaminations. Similar to other defect detection methods, this leaves a
lot of room for potential error as other entities may appear lighter/darker in the image as
well.
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3.2 Hybrid Defect Analysis

As computation and efficiency of data-driven methods improved, computer vision research
started to move towards machine learning. This boom happened around 2012 when [28]
showed that a deep learning algorithm could achieve significantly better results on image
classification. The structural inspection computer vision application community started
working shortly after with hybrid methods utilizing both knowledge-driven and data-driven
techniques for defect analysis. These methods provide a balance between understanding the
characteristics of the defect, while also being able to remove many of the scene-dependent
input threshold values that limit the ability for pure knowledge-driven methods to gener-
alize to many applications.

For cracks, [46] proposed a hybrid method that used an image pixel intensity histogram-
based analysis to identify regions of the image with cracks, as it was observed that his-
tograms for 30x30 pixel regions containing cracks were wider. This is due to the large
number of dark crack pixels contrasting light grey concrete pixels. Generating localized
pixel intensity histograms is the knowledge-driven component. For the data-driven com-
ponent, instead of using user-inputted rules to classify region histograms as a crack (e.g.
classifying histograms wider than a certain threshold as a crack), a support vector ma-
chine algorithm was trained to automatically classify the region histograms as cracked/not
cracked. This method was shown to perform better than a pure knowledge-based canny
edge detection, but is still highly dependent on the environment (for example, a shadow
over half of the region could also cause a histogram to be wide and resemble a crack).
The authors admit that research needs to be done to test the ability of the algorithm to
generalize.

[32] developed a state of the art solution for general damage detection that works
well under varied lighting conditions. Their system first applies an automatic clustering
method for segmentation. Clustering was tried using two different methods: Canny’s edge
detection method (knowledge-driven), and K-Means clustering technique (data-driven).
K-means clustering was found to have better results. After segmentation, a machine learn-
ing classifier was shown to perform better than previous classification benchmarks. This
method is more robust to shadows and changing environments, as the machine learning
algorithm can be trained to recognize common sections incorrectly classified by the seg-
mentation algorithm. For example, machine learning algorithms can learn that a shadow
may have straighter edges compared to jagged cracks, after both were detected during
segmentation. This algorithm provides evidence that the problem of general damage de-
tection of can be considered a solved problem, depending on the size of damage and quality
of image. Accuracy could be marginally improved, but the larger need is for an overall
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inspection algorithm that can take the damage estimates from general images and present
location and size statistics.

[42] presented an automated procedure for detecting delaminations in concrete bridge
decks using infrared thermography. They first created a mosaic of thermal images of a
bridge deck using a stitching algorithm (knowledge-driven). This mosaic was then seg-
mented and objective thresholds identified using a K-Means clustering method (data-
driven), to identify delamination locations based on changes in heating patters. This
algorithm can create a condition map that effectively identifies delaminations within the
bridge decks, but, although data-driven, the k-means clustering algorithm still requires hu-
man input for selecting the number of categories for clustering. This limits the algorithm
to being only semi-automated.

3.3 Data-Driven Defect Analysis

Most recently, data-driven CNNs have received traction amongst structural inspection com-
munity predominately for classifying images as containing a defect/no defect, but also for
defect localization in an image. These networks are being widely used for augmenting civil
infrastructure condition assessment in applications such as inspection and monitoring [54].
Specifically with regards to structural defect detection and/or localization, R-CNNs have
been used more frequently for infrastructure inspection applications compared to semantic
segmentation CNNs. These networks yield accurate prediction results, particularly when
high-quality images of a defect are taken with minimal background noise, but provide only
bounding-box localization of the area of interest. Research in semantic segmentation CNNs
is more limited, but these provide more detailed localization predictions of the defect in
the image.

As with knowledge-driven methods, cracks are the most researched defect for visual
assessment using data-driven computer vision. [7] developed an R-CNN algorithm for
detecting cracks in high-resolution images. This method is computationally inefficient,
as it uses 256x256 pixel sliding window approach to classify each region as cracked/not
cracked. The algorithm reported a high accuracy, but results were only tested on similar
images, and thus it was not proven to generalize to varying environments. [8] also used
Faster R-CNN [48] for assessing five defect types (four steel defects and concrete cracking).
This algorithm is more efficient than [7], and showed good test results for concrete cracks
(Fig. 3.1a). However, it was limited to images of two bridges and a building complex. In
addition, this study primarily focused on steel bridges.
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[60] proposed a method of semantic segmentation of cracks using CNNs (CrackNet),
which automates crack detection on 3D asphalt surfaces (Fig. 3.1b) using a fully convo-
lutional network. This network reported good accuracy, but the method is less efficient
than common state-of-the-art for semantic segmentation as it does not incorporate any
data encoding/decoding techniques. [59] implemented a similar CNN that improved upon
the computational efficiency by using convolutions and transposed convolutions for the
encoder/decoder architecture, but had worse accuracy than CrackNet. [1, 40] also present
semantic segmentation CNNs for crack detection and localization, but again merely present
improved accuracy and/or efficiency on their specific dataset. This highlights one of the
current issues with machine machine learning research: the battle for the highest accuracy
deters from the application (in this case crack inspection), which all of these networks are
arguably sufficient for.

(a) Faster R-CNN on cracks [7] (b) CrackNet [60]

Figure 3.1: Crack assessment results.

Applying CNNs to defects other than cracks is still uncommon. [34] presents a pixel-
wise CNN that is trained to label spalls along with cracks, holes, and efflorescence. Focusing
on spalls, the network achieves reasonable accuracy (> 80% mean intersection over union)
but is trained and tested on carefully taken images of defects that contain few potential
adversarial examples (based on examples shown). This method therefore works well if
images are taken by trained inspectors, but will likely not perform as well with lower-
quality images of defects. Larger data sets with more adversarial examples (examples that
are likely to cause incorrect classification) are still required for spalls.

At the time of writing this thesis, the only work done to automate the detection of
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delaminations in infrared images using a CNN is the work presented here. [37] presents
a lightweight CNN algorithm to automatically pixel-wise label delaminations in infrared
images collected of bridge girders and soffits. Similar to the spalling research, this method
obtains good results but is limited in data set size and network size (due to computational
limitations), so will likely not generalize to all different delaminations unless retrained.
Larger data sets with more adversarial examples are still required for delaminations.

3.4 Robotics and Visual Defect Assessment

The majority of the work done in assessing defects using computer vision focuses on ob-
taining high accuracy for labeling the defects in images. It is less common that the work
considers the localization of the defect (e.g. is it on a girder? where along the girder is it?),
and the quantification of a defect (e.g. if it is a spall, how big is the spall?). However, some
work does attempt to address these issues using robotics and neural networks specifically,
or with robotics and just general computer vision techniques.

3.4.1 Robotics and Neural Networks

[26] attempted to solve the localization problem by proposing the use of unmanned aerial
vehicles (UAV) to collect images, and a R-CNN for data processing and damage analysis.
UAVs are often equipped with a GPS, which creates the potential to geo-tag each image to
provide an better estimate of defect location. This is limited, as many concrete structures
(specifically the underside of bridges) create a GPS denied environment, thus preventing
the UAV from properly navigating and from producing geo-tagged images. Hence, the
inspection coverage would be limited to areas where GPS is available.

[34] attempted to solve the quantification problem by pre-calibrating a laser range finder
with a camera using linear regression models to estimate the conversion of image pixel scale
to physical area. This was shown to provide area estimates for cracks, spalls, efflorescence,
and holes. However, such an approach is not practical when used for mapping large areas
with mobile platforms, where it is difficult to satisfy the bounds or conditions implied in
such pre-calibrated models. As well, if there is more than one surface in the image the
range-finder cannot detect the distance to both surfaces, so the calibration will only be
valid for one surface.
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3.4.2 General Computer Vision and Robotics

Terrestrial laser scanners (TLS) have often been used to quantify defects in previous studies,
e.g., [33, 35, 31, 57, 58]. TLS provide high-density colourized 3D representations of a
structure, which can be useful for some aspects of structural engineering. For example,
a stationary scanner can be placed on a construction site and run each day for accurate
daily progress inspection. However, TLS are expensive and time consuming to employ
and do not offer the same advantages in terms of mobility and speed such as drones or
mobile ground vehicles. In a bridge inspection setting, these mobility limitations make full
coverage difficult and time consuming. In addition, TLS are often proprietary products
that do not provide access to raw data, therefore making it difficult to customize and
automate defect inspection processes.

In terms of using mobile data collection platforms, much of the published literature
focuses on the use of drones to collect image data, e.g., [15, 11] and creating 3D models using
photogrammetric techniques, mostly structure from motion (SfM), e.g., [25]. However,
defect quantification for bridge inspection using using SfM is fraught with challenges as
images of bridges tend to be difficult to stitch as the structure lacks distinct features (e.g.
flat and monotone concrete or asphalt), and the majority of the surrounding area is not
static (e.g. vegetation, water, vehicles), which makes it difficult to match features between
images. Mobile ground vehicles have been used in the following studies related to bridge
inspections, e.g., [29, 19, 43, 45]. The process of building colourized and semantically
labelled maps and with defect quantification have not been the focus of these studies.
Other mobile platforms such as bridge climbing robot have been shown to be effective for
carrying out inspections in steel bridges [30]; in the aforementioned study, the primary
focus is on magnetic platform development and defect detection in images and not on
building colourized or semantically enriched maps, and automated defect quantification.

3.5 Thesis Contributions

Significant work has been undertaken applying computer vision to structural inspections,
but this does not mean that using computer vision for concrete defect inspection is a
solved problem. Computer vision itself is still rapidly improving in terms of accuracy,
computational efficiency, and adding physical meaningful/scale to images. This thesis
aims to take the state-of-the-art in computer vision and apply it to structural assessment
of spalls and delaminations to improve the traditional practices of routine bridge inspection.
The contributions of this thesis are:

29



• A semi-automated defect labeling tool for rapid labeling of images for training se-
mantic segmentation CNNs (Section 4.3.1)

• Implementation of MobileNetV2 and Deeplab V3 semantic segmentation CNN for
pixel-wise labeling of delaminations and spalls (Section 4.3.2)

• Occlusion-aware labeling of a 3D point cloud using image colour data and CNN defect
labels to enrich defect detection with defect localization (Section 4.4)

• An objective and repeatable procedure for automatic defect area quantification from
a semantically labeled point cloud (Section 4.5)

• Analysis of the effects of errors in image defect labeling on real-scale defect size
quantification in a point cloud (Section 5.3)
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Chapter 4

Methodology

The proposed methodology for automating delamination and spall area size quantification
can be broadly divided into five components, represented by the block diagram shown in
Fig. 4.1. These components consist of a mobile data collection platform complete with
multiple sensors, a mapping component to fuse data from various sensors into a common
reference frame in order to generate a 3D map and pose trajectory, a defect labeling
component to automatically detect and label defects in images, a map labeling component
to semantically enrich the map 3Dwith colour and pixel information from images, and
finally the defect quantification component. The data collection platform and the the
mapping are outside the scope of this thesis. However, the general overview of these
components with key details required to understand the aspects relevant to this thesis,
namely defect labeling, map labeling, and defect quantification, are explained for the sake
of completeness.

4.1 Data Collection

The primary data required to implement the proposed automated defect assessment pro-
cedure is spatial data from a laser scanner (e.g. lidar) for mapping and visual data from
cameras for defect labeling. Fusing the data from these sensors via map labeling provides
the necessary geometry and colourization to be able to detect, locate, and quantify defects.

To enable the collection of data for inspection, The Structural Dynamics Identification
and Control (SDIC) research lab developed a mobile platform capable of operating in harsh
terrains, including under bridges [9, 38]. The platform used is an unmanned ground vehicle

31
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Figure 4.1: Block diagram of the automated inspection pipeline. Red boxes represent work
done primarily by other lab members. Blue boxes represent work presented in this thesis.

(UGV) produced by Clearpath Robotics, from Kitchener, Ontario. The platform is called
the Husky (Fig. 4.2), and is capable of reaching 1 m/s velocity with four rubber pneumatic
tires, a self-weight of 50 kg and payload of 75 kg.

To enable data collection, the husky platform is equipped with:

• two Flir Blackfly red-green-blue (RGB) cameras with wide FOV (185 degrees)

• one Flir Blackfly RGB camera with narrow FOV (40 degrees) lens

• one Flir ADK Infrared (IR) camera

• two Velodyne VLP16 lidars

• one Swift Nav Real-time Kinematic (RTK) GPS

• one Xsens MTI-30 inertial measurement unit (IMU)

For the work in this thesis, the Flir Blackfly RGB camera with narrow FOV is used for
visual image data, the Flir ADK Infrared (IR) camera is used for infrared image data, and
the two Velodyne VLP16 lidars are used for spatial data. An on-board computer is used
to control the data collection, to run the sensor drivers, and to control the husky UGV.
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Figure 4.2: Husky Inspection platform. (Photos by: Nicholas Charron)

Automated inspections require the data collected from different sensors to be integrated,
both spatially and temporally. Key aspects to being able to fuse the information obtained
from different sensors are synchronous sensor measurements and accurate calibrations. To
achieve these, hardware for time-synchronization hardware and sensor calibrations (intrin-
sic and extrinsic parameters) have been undertaken. Time-synchronization is achieved by
a custom printed circuit board (PCB) developed to control the sensor capture rates to
consistent time intervals. This is done by sending a hardware trigger signal from the PCB
to different sensors synchronously. For example, consider a lidar scanning at 10Hz and
a camera capturing photos at 1Hz. Time-synchronization in this situation is achieved by
sending the hardware trigger signal at time intervals to ensure that the camera consis-
tently captures an image every 10th lidar scan. Therefore, every 10th lidar scan has an
identical timestamp to a captured image. This time-synchronization is necessary for fusing
data from different sensors that are mounted on a mobile platform. The custom PCB was
developed by other lab members, and further details are available in [9].

Calibration is separated into extrinsic and intrinsic calibration. Intrinsic calibration
focuses on calibrating the internal parameters of a single sensor. These intrinsic parameters
are used to abstract the raw sensor data into a format that is more intuitive to a user. The
Velodyne VLP16 lidars are intrinsically calibrated on purchase, and their collected data
is provided as 3D points relative to the lidar center. The Flir Blackfly RGB camera and
the Flir ADK Infrared (IR) camera must be calibrated for their intrinsic camera matrix
2.5 to understand how the (u, v) pixels were obtained from a 3D environment. These
intrinsic parameters are calculated using the Matlab camera calibration toolbox [4] for
calibration of a single camera using the common checkerboard target method. Camera
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intrinsic calibration details are outlined in appendix A.1. The Blackfly RGB camera is
calibrated using the basic checkerboard target shown in 4.3a. The Flir ADK Infrared
camera is calibrated using a custom checkerboard shown Fig. 4.3b as a target. This target
can be used for infrared calibration as the flat black paint (high emissivity) and aluminum
(low emissivity) have high contrast in emitted energy in the infrared band.

(a) Vision camera target (b) IR camera target. (c) Lidar target.

Figure 4.3: Custom calibration targets.

Extrinsic calibration involves finding the transformation from points in one sensor’s
coordinate frame to another coordinate frame. This is calculated using a transformation
matrix, given by 
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where rij are the 3x3 rotation matrix coefficients for transforming the point and tx, ty, tz
represent the translation information for transforming the point. This transformation
matrix enables the transformation of data in one sensor’s coordinate frame to another
sensor’s. The extrinsic calibration between the RGB and the infrared cameras is refined
using the Matlab stereo camera calibration toolbox [4]. Further details on stereo camera
calibration are presented in appendix A.2. For this thesis, the same checkerboard for
calibration of the infrared camera intrinsic data is also used for stereo calibration (Fig.
4.3b), as it displays the checkerboard pattern in both the infrared and vision images, taken
synchronously.

The vision camera to lidar calibration is first estimated visually and then refined using
the square target shown in Fig. 4.3c. Scans are taken with the camera and the vertical
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lidar directed at the stationary square target. The points in the 3D point cloud generated
from the individual lidar scans are then projected onto the image plane using the cam-
era to lidar transformation matrix, the camera intrinsic matrix, and the pinhole camera
model. These points are overlaid onto the image to visually determine the accuracy of the
extrinsic calibration. The transformation matrix is then manually adjusted for rotation
and translation until the location of the target in the lidar scan visually aligns precisely
with the location of the target in the image. However, more information than just the
transformation matrix is required to adequately transform points from an image to a lidar,
since the image data is 2D and the lidar data is 3D. This is one of the contributions of this
thesis, and will be covered in Section 4.4.

4.2 3D Mapping

The 3D mapping portion of this work involves taking all the spatial data collected from the
two Velodyne VLP16 lidars and aggregating it into one 3D representation of the scanned
structure. The main technical challenge is that the vehicle is often moving while the scans
are collected, so the data during each scan is collected in different coordinate frames. In
order to combine all the scans, the scans need to be transformed into the same coordinate
frame. This can be achieved by knowing the exact location that each scan was taken, and
the transformation matrices (in the form of 4.1) required to transform the data between
different locations.

The algorithms used to solve the 3D mapping problem in this automated inspection
procedure come from the concept of simultaneous localization and mapping (SLAM), for
which comprehensive studies are available [14, 60, 56, 53]. The SLAM algorithms used for
this work are outside the scope of the work undertaken by the author and are therefore
not described in detail in this thesis. Readers can refer to [9, 38] for in-depth review of
how 3D mapping is performed for this application. However, it is important to describe
a conceptual overview of SLAM and 3D mapping to understand how image information
(pixel information and output from computer vision techniques) can be fused with a 3D
map for reference-free scale in images. This understanding can be achieved with a high-
level overview of coordinate transformations, and an understanding of how a 3D map is
stored after completion.

The first aspect to understand is coordinate transformations. These are the same as
the coordinate transformation discussed in calibration (Equation 4.1), and are represented
as transformation matrices. In calibration this is used to transform between the coordinate
frames of two different sensors (e.g. lidar to camera), but in the case of localization it can

35



also be used to transform data from the same sensor into the same coordinate frame if that
sensor has moved (e.g. transform data from the lidar obtained at point B to the coordinate
frame of the lidar when it was at point A). Performing this transformation is relatively
simple, but the complexity arises in the calculation of the transformation matrix. This
is where SLAM is required, as it estimates these transformation matrices for the robot
platform (and therefore the lidar, since its pose is static with respect to the platform)
as it moves. This enables every lidar scan to be transformed into the coordinate frame
of the original scan. Once all the scans are converted to the same coordinate frame, an
aggregated 3D map of the scanned structure can be obtained. More post-processing is
usually undertaken to remove noise and to further refine the maps, and information is
presented in [9].

The second important aspect is to understand how a 3D map is stored. The output of
SLAM in this application is a 3D map of a concrete structure (mapping aspect) and the
location of the robot at the time of each sensor measurement (localization aspect). The
3D map is a collection of points with just (x, y, z) spatial data that represents the scanned
structure. Any additional semantic data (e.g. colour, defect presence) is added during
map labeling. The localization is a set of poses (position and orientation of the robot)
with (x, y, z, φ, θ, ψ) points at each time a sensor reading was taken. Using the calibration
and localization it is possible to know the pose of the camera in the same coordinate frame
as the generated 3D map at each time an image was captured. The 3D map and the pose
of the camera at the time an image is captured are subsequently used to fuse image data
with lidar data for automated defect assessment.

4.3 Defect Labeling

Defect labeling is a critical step for estimating the area/size of a defect and its accuracy
determines the quality of area measurement results. It is possible to consider defect labeling
using camera data, lidar data, or both. However, given the significant research in computer
vision for object detection/localization, and the fact the the camera data contains more
dense and valuable information for detection of visual defects (specifically delaminations
and spalls), defects were chosen to be labeled using image data alone.

Defect labeling in the image requires a method of labeling which pixels represent a
defect (e.g. spall/delamination) and which represent background (e.g. sound concrete,
sky, ground). This is achieved by using a binary image mask, which is a binary image with
the same pixel density (e.g. same height and width) as the original image, but with binary
pixels (1 or 0) to represent defect (1) or background (0). There are many ways to obtain
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these masks, and this thesis will cover both manual labeling and automated labeling via a
CNN.

4.3.1 Manual Labeling

One option for labeling a defect is to manually select which pixels in the image represent
a defect or no defect. Manual labeling can be used with the proposed inspection pipeline,
but eliminates full-automation from the defect labeling step. Therefore, manual labeling is
not used in the final procedure, but is a key step towards training a state-of-the-art CNN
to automate defect labeling.

To train a CNN to detect objects in images at a pixel level, each training image needs
all the pixels to be labeled as one of the classes. In this case, only two classes are used and
therefore a binary image mask can be used for each case of:

• Infrared Images: (0) sound concrete, and (1) delamination

• Visual Images: (0) sound concrete, and (1) spall

Semantic pixel-wise image labeling is a tedious task, even with only two classes. To assist
with fast labeling, a graphical user interface (GUI) was created in MATLAB [36]. The goal
of this GUI is to be generic enough that it can be used to label images for delamination
and spall defects, but could be extended to label any number of defect types on concrete
bridges (e.g. cracks). This GUI makes use of basic image processing techniques to provide
an initial estimate of the defect locations, then provides tools to manually fine-tune the
labeling.

Fig. 4.4 shows the process used to provide the initial estimate of the pixel labels
for the delamination defect, prior to manual editing. First, the image is converted to
grayscale (m×n×1 image with pixel values between 0 and 255) if it is not already in that
format. This is required as a grayscale thresholding technique is used to generate the binary
image mask that estimates the defect segmentation. The grayscale thresholding value can
be adjusted between 0 and 255 by using the slidebar to select the desired thresholds of
grayscale intensities to include. By default, the thresholding sets all pixel values below a
certain grayscale threshold to 1, and the rest to 0 (e.g. if the threshold is 100, all grayscale
values below 100 are set to 1, and all grayscale values above 100 are set to 0). For example,
spalls may appear as darker than surrounding concrete, so setting a low threshold to include
only dark pixels as a defect will give a good initial estimate of which pixels are spalls.
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Figure 4.4: Flowchart of the image processing techniques used to simplify manual pixel-
wise image labeling. Blue blocks represent inputs, yellow blocks represent image processing
techniques, green blocks represent outputs, and red blocks represent manual tasks.
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However, not all defects are always the darkest in the image. The GUI’s complement
binary switch option allows the user to switch the thresholding to set the grayscale val-
ues above the set threshold to a value of 1 in the binary mask estimate. For example,
a delamination may appear lighter than the surrounding concrete, so the user can acti-
vate the complement binary switch and set a high threshold to segment only the lightest
delamination pixels to be part of the mask estimate representation of the defects in the
image.

The other two image processing filters used for refining the binary mask are the connec-
tivity, and median filters. Each of these filters is applied using a sliding adjuster to change
the controlling attribute of the filter. The connectivity filter removes pixel clusters below
a certain threshold value (e.g. if the filter is set to 100 pixels, all pixel clusters smaller
than 100 are removed). This is because noise tends to be scattered, and not a part of
large connected clusters, whereas defects tend to be large blocks of connected pixels. The
median filter passes a filter over the image that replaces the pixel with the median value
within a n × n window around the pixel. The sliding adjuster changes the size, n, of the
filter. The median filter removes jagged edges and makes for a more smooth image mask,
with a larger value of n providing more smoothing. The value of n is therefore adjusted to
find a desirable balance of smoothed defect boundaries while still maintaining the original
defect shape. Fig. 4.5a shows the graphical interface for the image labeler. The top image
shows the use of the thresholding, connectivity, and median filter on an infrared image to
estimate the delamination mask.

These image processing techniques provide a good pixel-wise estimate of defect locations
(right side of Fig. 4.5a), but have several shortcomings. First, artifacts in the image will be
included during thresholding and cannot be removed by other filters. For example, shadows
may cause certain sections of the image to appear as dark or as light as the defect, causing
them to be included as a defect in the binary mask. Shadows are an example of an object
that often requires manual removal from the mask. Second, small gaps in the detected
defect area cannot be corrected by the connectivity or median filters, but should be closed
in order to make the defect a single entity. These examples outline the limitations of these
image processing methods and outline the need for manual alterations to the mask (4.5b).
The manual alteration step allows for areas to be added or removed by drawing freehand,
rectangular, or polygonal shapes. This is typical as to what is provided by a generic labeling
tool, but the fact that the binary mask estimate is already provided significantly reduces
the amount of time spent on the manual drawing step. Appendix C provides an in-depth
example of labeling an image from start to finish.

The described labeling approach allows for accurate and rapid labeling, which is nec-
essary to be able to generate a large and accurately labeled data set. This approach has
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(a) Sliders to adjust the threshold used for each image processing technique.
Adjust until desired delamination mask estimate is obtained.

(b) GUI tools to manually adjust image mask after estimate. Areas can be
added or removed using freehand, rectangular, or polygonal shapes.

Figure 4.5: Matlab labeling GUI interface
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also been tested for labeling cracks, spalls, corrosion stains, and exposed reinforcement in
concrete structures. It can be used as part of the inspection process if manual labeling is
preferred for its high accuracy at the cost of loss of automation, but can also be used to de-
velop training data for a fully automated labeling method for a more rapid and automated
inspection procedure.

4.3.2 Automated Labeling

To fully automate the inspection procedure of spalls and delaminations, a fully automated
method of labeling spalls and delaminations in images is required. A concrete spall is easily
detectable in an image as it contains clear visual features, which can be extracted using
image processing and machine learning techniques. Delaminations, however, are not easy
to detect in the visible spectrum, but can be detected in the infrared spectrum images as
subsurface voids create noticeable variations in thermal conductivity.

A convolutional neural network (CNN) is a state-of-the-art machine learning tool for
automatic labeling of data in an image. A CNN is a type of neural network that uses
the convolution operator in place of typical fully connected network layers. CNNs are
commonly applied to analyze inputs that have a grid-like data structure, such as images
[21], which are used in this application. A CNN for pixel-wise segmentation of an image
takes a single image as an input, and outputs a mask with the same pixel density as the
original image. The pixel elements in the output mask are integers that represent the
defect label (e.g. for spall or delamination the mask is: 0 - no defect, 1 - defect). There
is no mathematical limit to the number of classification categories, but the amount chosen
can affect the quality of results.

The proposed inspection methodology is arranged such that any manual or automated
defect labeling method that produces a pixel-wise mask can be used. Therefore, at the
defect labeling step it is possible to integrate with any pixel-wise labeling technique of
choice, including manual labeling using the presented MATLAB labeling tool. It would
also be possible to integrate with any of the defect labeling CNNs presented in [59, 40,
1, 34]. The choice of image labeling method depends on the specific computation and
accuracy requirements of the desired defect assessment. For example, one could use a
computationally efficient CNN with slightly lower accuracy for frequent routine inspections
and a more robust, computationally expensive CNN that achieves high accuracy for a more
detailed infrequent inspection.

For proof of the entire inspection process concept, it is necessary to implement a fully-
automated network to show that the inspection process as a whole can be fully-automated.
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This network must obtain reasonable accuracy, and foster reasonable quantification sizes.
In this thesis, the CNN implemented is MobileNetV2 [51] as a feature extractor with
Deeplab V3 [10] to perform semantic pixel-wise segmentation of defects in images. This
network architecture is a pixel-wise CNN, which was developed to prioritize time-efficiency
and minimize hardware requirements, while maintaining reasonable accuracy. This network
architecture is chosen for this application since it is computationally efficient, but still
competitive with the deeper networks that produce the current state-of-the-art in accuracy.
Additionally, the results from the CNN are intended to be fused with lidar data, which
downsamples the resolution. In other words, the fine details of the defect geometry are
limited by the lidar resolution, not the image resolution.

The main network details are explained in Appendix B, and full details are available in
[51, 10]. Some specific adjustments are made to suit this specific inspection application, and
are outlined here. First, the input size is adjusted to a 512x640 image for the delamination
labeling and a 512x640x3 image for the spall labeling. Second, the final output layer of
the network is programmed to be a pixel-wise softmax activation, given by the equation

zi =
exp(xi)∑n
j=1 exp(xj)

(4.2)

This is used to convert the i ∈ {1, ..., n} output values (xi) for each label category to a
score between 0 and 1 (zi) [21]. This is applied to each pixel individually. The closer the
value is to 1 for a given category (e.g. defect or no defect), the more confident the network
is that the pixel belongs to that specific category.

Restricting the scores of each pixel to be between 0 and 1 enables the model to be
trained using the categorical cross entropy (CCE) loss function, given by the equation

J = −
n∑
i=1

yilog(zi) (4.3)

This is used to minimize the loss (J) across all label categories (i ∈ {1, ..., n}) given the
output of the network with the current weights (zi). This also depends on yi, which is a
binary label indicating if the pixel does (yi = 1) or does not (yi = 0) belong to class i [21].
The loss is calculated on a pixel-wise basis. CCE is chosen because it harshly penalizes
areas that should be labeled as defect but aren’t. This is critical, as since defects tend to
be sparse in the image, labeling all pixels as no defect could easily give the appearance of
high accuracy. This loss function specifically prevents that error from occurring.

For this thesis, the network is trained using the ADAM optimizer [27], with a learning
rate of 0.003, a β1 of 0.9, and β2 of 0.99. This optimizer is similar to stochastic gradient
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descent, but with a more intelligent update to avoid local minimums. The ADAM optimizer
algorithm is detailed in appendix A.3. The batch size used is 4 (this is limited by computer
hardware), and the number of training epochs is 250. Random image transformations are
used at the start of each training epoch to help prevent overfitting. Before each epoch, the
training images are shuffled and random transformations are applied to the training images.
These randomized image transformations include: flip horizontal, flip vertical, rotation,
width and height shift, and zoom. Random transformations ensures a high likelihood that
the network will not see the exact same image twice during training, which is crucial for
limiting overfitting when training on smaller datasets.

Computer Hardware

A CNN approach to pixel-wise segmentation requires significant computational resources
to ensure training the CNN is possible at a reasonable speed. Specifically, the graphics
processing unit (GPU) is crucial for training a neural network. A GPU is preferred over
a typical central processing unit (CPU) for training a neural network because a GPU
contains thousands of small computing cores, making them specialized at performing par-
allel operations. A typical CPU in an average computer contains 4 to 8 large computing
cores, making them specialized at rapidly performing single ordered operations. A CPU
therefore can perform a single operation faster, but a GPU can perform more operations
synchronously. Training a neural network involves a large amount of simple operations,
such as matrix multiplications and additions, that can be performed in parallel. The abil-
ity to perform these operations in parallel results in the GPU significantly outperforming
the CPU for training neural networks. Additional software is also developed for GPUs to
make them specialized for the parallel operations required in training a neural network.
For this work, a custom built computer with an Nvidia GTX 1080 TI GPU programmed to
take advantage of Nvidia’s CUDA and cuDNN software for accelerated training of neural
networks was used. This is a significant improvement over the majority of computers, but
still has limitations in training time, network size, and batch size.

The first limitation is training time. Most large networks have access to multiple GPUs
or to GPU clusters for training which further accelerates training time. With only one
GPU, testing a change takes long periods of time, but does not place hard limitations on
the quality of the results. The next two limitations - network size and batch size - are
based on the limitation of the GPU memory. This is because when training, the batch
size and network size are limited by the GPU memory. In this case the GTX 1080 TI has
11GB of memory, which is one of the main factors in choosing to use the MobileNet V2 and
Deeplab V3 CNN, as it requires less computational load relative to state-of-the-art CNNs.
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In addition, the training batch size was limited to only 4 images. This is a limitation, as
a larger batch size often yields faster training convergence, and better avoidance of local
minimums and overfitting when training. However, it is sufficient for the proof of concept
presented, as the goal is not to achieve the most accurate network but rather to show that
automated inspections can be performed with any desired network.

4.4 Map Labeling

The literature review makes it evident that most research applying CNNs to defect in-
spection focuses on defect detection in images, rather than on the quantification of the
defect in physical scale. This is because the scale ambiguity resulting from images being
a projection of a 3D scene onto a 2D plane makes it difficult to estimate real-world scale
from images alone. This work focuses on combining defect information in images with
lidar spatial data to enable reference-free defect scale-determination from data obtained
using the mobile data collection platform. The proposed method for combining image and
lidar data uses ray-tracing for map labeling that is able to distinguish which pixel should
be labeled with image data when an occlusion is present. This algorithm uses the robot
extrinsic calibrations, camera intrinsic calibrations, and robot trajectory coordinate trans-
formations provided from SLAM to add colour and CNN information to a generated 3D
map. This information can be transferred to the cloud using the continuous (x, y, z, φ, θ, ψ)
pose estimate from the SLAM process, and the camera positions relative to the robot from
the calibration process. The transformation between the robot frame and the map frame
is exported automatically during the mapping process each time an image is captured.

To label the cloud, coordinate transformation can be used to map 3D cloud coordinate
points to an image pixel that captured that 3D point. The colour data from the image pixel
can then be assigned to the corresponding point in the point cloud. One basic method for
mapping cloud points to image pixels is the projection method, where the 3D cloud points
are projected to the image plane (i.e. to u, v coordinates). This would be done using the
pinhole camera model [55] combined with the transformation from the map frame to the
camera frame. Once converted, the projected points can be labeled based on their location
relative to the pixels on the image plane. The projection from 3D coordinates to a pixel
coordinate can be done using Eq. 4.4:

s
[
u v 1

]T
= K

[
RCM tCM

]
Pk
M (4.4)

where s is a scaling constant, u, v are the integer pixel coordinates on the image plane,
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K is the intrinsic matrix (Equation 2.5), RCM and tCM are the respective 3x3 rotation
and 3x1 translation matrices that correspond to the transformation from the map frame
(FM) to the camera frame (FC), and Pk

M is a homogeneous coordinate (X, Y, Z, 1). Pk
M is

the kth homogeneous coordinate point in the point cloud, presented in the map frame FM.

A few problems arise when using this projection process alone for map labeling. First,
this method does not account for occlusions, which becomes an increasingly bigger issue
as the cloud size and complexity increase. For example, points on different surfaces (e.g.
point on girder and soffit) may project to the same pixel location on the image plane, but
the image can only see one of those planes if one is behind the other (Fig. 4.6). This occurs
because of the scale ambiguity of the pinhole camera model. Thus, the projection method
is extended to an alternative approach, where points on the image plane are mapped to
corresponding points on the 3D point cloud using the inverse of the pinhole camera model.

Figure 4.6: Example showing how occlusions can cause incorrect labels. Both the bridge
soffit and girder points will project to the same u, v pixel, causing the soffit to be erroneously
labeled with the colour information of the girder. Therefore, the method of projecting a 3D
point to the 2D plane is not adequate for transferring colour information from the image
to the point cloud.

This map labeling process iterates through all (u, v) pixels of all images taken. The
first step of this process is to remove distortion in the current image. This is done using
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Eq. 4.5 and the distortion parameters obtained during camera intrinsic calibration [24].

ũ = u(1 + k1r
2 + k2r

4) + 2p1uv + p2(r
2 + 2u2)

ṽ = v(1 + k1r
2 + k2r

4) + 2p2uv + p1(r
2 + 2v2)

r2 = u2 + v2
(4.5)

where, ũ, ṽ are the distorted image coordinates, k1, k2 are the radial distortion coefficients,
and p1, p2 are the tangential distortion coefficients.

The second step is to convert the un-distorted pixel coordinates on the current image
plane to points in the camera coordinate frame. To do so, the inverse of the camera
matrix, K, is taken and pre-multiplied on both sides of equation 4.6 to isolate Pu,v

C - the
coordinates of the (u, v)th pixel point in the camera frame FC for the current image. Note
that equation 4.6 differs from equation 4.4 since the points are being calculated in the
camera frame, therefore RCM and tCM are not applied. Isolating for Pu,v

C yields equation
4.7. Also, notice that equation 4.6 is iterated through each (u, v)th pixel as opposed to
equation 4.4, which is iterated through each individual point in the cloud.

s
[
u v 1

]T
= KPi,j

C (4.6)

Pi,j
C =

[
x y z

]T
= K−1s

[
u v 1

]T
= s

[
u− cx
fx

v − cy
fy

1

]T
(4.7)

The scaling constant, s, is equal to the distance from the camera optical center to the
image plane in this application, and is obtained by multiplying the focal length in pixels
by the physical pixel size, which is generally known from the camera manufacturer.

Once the u, v points are represented in the camera coordinate frame, it is possible
to convert the coordinates of the camera optical center—located at (0,0,0) in the camera
frame—and the pixel 3D coordinates (Pu,v

C ) to the map coordinate frame. This is done using
the transformation between the camera and the robot frame, TCR, and the transformation
from the robot frame to the map frame, TMR. A linear ray direction vector can then
be calculated by subtracting the camera optical center from the pixel point on the image
plane. The ray is extended in the calculated direction until this contacts with (or comes
within a specified threshold distance of) a point on the point cloud, as illustrated in Fig.
4.7.

For each pixel, the calculated ray is extended incrementally and a KD tree search
algorithm [3] is performed at each iteration to check if the endpoint of the ray is within
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Figure 4.7: Point cloud colourization illustration
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a specified distance threshold from a point in the point cloud. This process is accelerated
in two ways. First, by eliminating all points in the cloud which are not located within the
image plane (i.e. have u, v coordinates outside of the active area) when projected using
the camera model in equation 4.4. This ensures that the search does not check points
irrelevant to the current image. Second, the rays are incrementally extended by a distance
equal to the distance between the ray endpoint and the closest point on the reduced cloud.
After each ray extension, if a point is found to be within the threshold distance from the
ray endpoint, then that point is assigned the colour and CNN information of the pixel.
Otherwise, the ray is extended. This process continues until the current pixel is successfully
mapped to a cloud point, or until a set number of maximum iterations is reached. This
incremental ray extension and contact check process is necessary, instead of immediately
colourizing the closest point to a pixel, because the closest point may not necessarily be
along the path of the ray. This algorithm thus ensures that the cloud point coloured is the
first point that the ray contacts, which mimics the path light would actually take from the
point to the camera sensor.

The last aspect of the point cloud labeling method is an image blending technique. Since
the image is significantly more dense than the point cloud, it likely that multiple pixels
may map to the same point. Hence, the algorithm should have a method of determining
which pixel contains the most relevant information (e.g. colour, CNN labele) when multiple
pixels ray-tace to the same 3D point in the point cloud. In the case of this algorithm, the
technique used is to take the pixel information that comes from when the principal point
of the virtual image plane is closest to the 3D point being labeled in the point cloud. In
other words, the image information captured when the camera was physically closest to
the 3D point being labeled will be given priority when assigning pixel information. The
idea behind this approach is that the highest quality image data should come from the
closest camera pose. This also helps remove distortion effects, as the closest points to the
camera pose are often the points near the center of the image where there is less distortion.
Fig. 4.8 shows the improvement obtained by using closest distance blending. Algorithms
1 (setup), 2 (functionality) summarize the of the ray-tracing colourization process.

This colourization process can be done automatically with both the vision and the
infrared images. Fig. 4.9 shows a bottom view of the coloured point cloud using both
cameras. Note that the vision images are in colour, but the lack of exposure under the
bridge and the fact that only concrete is photographed makes the colourized point cloud
primarily gray. In both sets of colourized clouds, the colourized portions depict a concrete
girder running in the approximate centre of the colourized portion, with concrete deck
soffit on either side.
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(a) With closest distance blending (b) With no blending

Figure 4.8: Comparison of the ray-tracing technique with blending vs. no blending.

Algorithm 1 Raytrace Map Labeling - Setup

Input Description
img original image matrix
mask binary image mask
i image number
I set of all image, mask, index groups, (img,mask, i)
T iMC transformation at time image i was captured, from camera frame to map frame
Oi
C camera optical center in camera frame coordinates for image i

K, s camera intrinsic matrix and scale coefficient (camera focal length in meters)
Mf n by 6 matrix of map points, (x, y, z, dist, colour, defect)
α distance threshold for determining contact
β maximum number of iterations per pixel

1: for point ∈Mf do
2: point[dist]←∞ . initialize closest point distances to infinity
3: point[colour]← (0, 0, 0) . initialize colour of points to black
4: point[defect]← (0) . initialize defect presence to no defect
5: end for
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Algorithm 2 Raytrace Map Labeling - Functionality

See Algorithm 1 for input descriptions and setup

1: for (img,mask, i) ∈ I do
2: Oi

M ← T iMC ∗Oi
C . convert camera optical center in Fc to FM for image i

3: for u← 1 to width(img) do
4: for v ← 1 to height(img) do
5: P u,v

M ← T iMC ∗K−1 ∗ s
[
u v 1

]
. convert pixel point from Fc to FM

6: φr ← P u,v
M −Oi

M . calculate ray direction unit vector
7: PE

M ← P u,v
M . initialize the ray endpoint in the map frame

8: while true do
9: point← arg min(distance(PE

M ,Mf )) . calculate the closest point
10: Dc ← min(distance(PE

M ,Mf )) . calculate the closest point distance
11: if Dc < α then
12: cur dist← |euclidean(Oi

M , point)|
13: if cur dist < point[dist] then
14: point[dist]← cur dist . update closest point distance
15: point[colour]← img[u, v] . update colour
16: point[defect]← mask[u, v] . update defect info
17: else continue . continue to next pixel
18: end if
19: else if iteration > β then continue . continue to next pixel
20: end if
21: PE

M ← PE
M + φr ∗Dc . extend ray by distance to closest point

22: end while
23: end for
24: end for
25: end for
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(a) Cloud colourized with vision camera (b) Cloud colourized with IR camera

Figure 4.9: 3D point clouds showing bottom up view of a bridge girder and soffit.

51



4.5 Defect Quantification

Given a 3D point cloud map labeled with semantic defect information, it is possible to
automate the size quantification of the defects in the point cloud. This size estimation can
be any metric, but the metric of interest for spalls and delaminations considered is the
defect area. The defect area quantification process presented follows a five-step process
outlined in Fig. 4.10.

Figure 4.10: Five-step process for quantifying individual defect areas.

The first step involves identifying and extracting points within the point cloud that are
labeled representing defects of interest. This is done by creating a new point cloud with
only points representing defect geometry. For example, if delamination is the defect of
interest then the new point cloud will be only points labeled as delamination (Fig. 4.11).
The second step segments the remaining points representing defects into individual point
clouds. That is, each defect is associated with its own distinct sub-point cloud to represent
its geometry. This segmentation process is done using an euclidean cluster extraction
algorithm presented in [49]. Fig. 4.12a shows an example of a segmented delamination
point cloud.

The third step estimates the defect boundary by calculating the 2D concave hull bor-
dering the defect. To do this, the sub-cloud is first filtered to remove noise using random
sampling consensus (RANSAC) [17]. RANSAC removes noise by randomly selecting 3
points from the data, fitting a 3D plane to the 3 points, and counting the number of data
points within a user-specified threshold distance from the plane. The plane that has the
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(a) Semantically labeled point cloud (b) Delamination-only extract point cloud

Figure 4.11: Example of extracting defect information from semantically labeled point
cloud.

most inliers is considered the plane that best fits the defect area, and all outlier points
for that plane are removed. Once outliers are removed, a 2D concave hull can then be
extracted using the inlier points. For this work, the concave hull is extracted using the
Point Cloud Library implementation [50]. Fig. 4.12b shows an example of a concave hull
for a delamination point cloud.

Step four represents the generated concave hull in a new coordinate frame so that the
main object geometry (i.e. the defect area to be calculated) is in the X, Y coordinate
plane. This is done by transforming the coordinate system using the properties of the dot
and cross products to reconstruct the Z axis such that it is parallel to the normal vector
of the plane fit using RANSAC (Algorithm 3).

The final step in the process is calculating the defect area using the transformed 3D
defect point cloud. Since the sub-cloud is in a coordinate frame where the normal vector is
the same direction as the Z axis, the geometry representing the defect area is represented
in the X, Y plane. This enables calculating a tight area of the defect of interest (e.g.
delamination or spall) using the surveyor’s area formula [5], given by the equation

Area =
1

2

(∣∣∣∣x0 x1
y0 y1

∣∣∣∣+

∣∣∣∣x1 x2
y1 y1

∣∣∣∣+ · · ·+
∣∣∣∣xn−2 xn−1
yn−2 yn−1

∣∣∣∣+

∣∣∣∣xn−1 x0
yn−1 y0

∣∣∣∣) (4.8)

where each point on the hull is a point (xn, yn). The final area calculated will be in the
same units as used to define the point cloud. For example, if a point (x, y, n) in the point
cloud is defined using meters, then this method will report the area of the point cloud in
meters.
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Algorithm 3 Coordinate Frame Transformation

Input Description
C Matrix of points representing the 3D defect point cloud
n The normal vector of the plane fit to the 3D defect point cloud, C

1: x0 ← [1, 0, 0] . Initialize the original X axis
2: ynew ← x0×n

||x0×n|| . Calculate and normalize new Y axis

3: xnew ← n×ynew

||n×ynew|| . Calculate and normalize new Y axis
4: znew ← n

||n|| . Calculate and normalize new Z axis
5:

6: for p ∈ C do
7: pt ← p . Create temporary point
8: p[x]← pt · xnew . Update X component
9: p[y]← pt · ynew . Update Y component
10: p[z]← pt · znew . Update Z component
11: end for
12:

13: return C . Return transformed 3D defect point cloud
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(a) Point cloud delamination geometry (b) Blue points represent 2D boundary hull

Figure 4.12: Example of segmented defect and its 2D boundary hull.
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Chapter 5

Results

No public data sets exist to validate the proposed inspection pipeline. Therefore, an entire
inspection data set is collected for testing the effectiveness of the automated defect labeling,
and the entire automated inspection process as a whole. The defects of concern for testing
are area defects commonly found in concrete bridges, namely spalls and delaminations.
Other defects such as cracks can also be addressed using the same approach, but due to
the nature of defects in the available dataset, the methodology is limited to spall and
delamination defects only.

5.1 Data Sets

The data set used for proof of the presented inspection methodology concept as a whole
was collected on April 12, 2018 at the Northfield Drive bridge over the Conestogo River
(Woolwich, Ontario, Canada). This is a beam/girder reinforced concrete highway bridge
that is partially over water and partially over land (Fig. 5.1). It was constructed in 1960
and supports two lanes of traffic in a rural area. The bridge is in relatively poor condition
due to its age, and contains significant sections of spalling and delamintion on the concrete
girders and soffit. The data was collected on a sunny afternoon after a relatively cold
and wet morning, making for good conditions for detecting delaminations with an infrared
camera (due to large temperature variations in a short period of time).

The data set was collected by driving the mobile platform underneath the the bridge in
a straight path parallel to one of the above bridge girders to collect lidar and image data.
This data collection took approximately 60 seconds and resulted in a 15.6m long portion
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of the concrete girder and surrounding soffit being mapped for inspection purposes. The
data set contains no information about other parts of the bridge (e.g. piers or top of deck).
The data set contained sufficent lidar data for dense 3D mapping of the girder and soffit.
In addition, a total of 60 infrared spectrum images and 60 visual spectrum images were
captured of the girder and soffit area for colourization and defect detection. These images
contained primarily delamination and spall defects, respectively, as they are the dominant
defects present on the bridge girders and soffit. The presence of delaminations and spalls
in these images was verified by comparing the defects in the images to a 2018 inspection
of the same bridge.

Mapped 
Girder

Figure 5.1: Northfield Drive bridge over the Conestogo River. (Photos by: Nicholas Char-
ron)

5.1.1 Defect Labeling Data sets

The data sets for defect labeling are broken into two subsets —a training set and a vali-
dation set. The training set consists of images used to train the weights of the CNN, and
the validation set consists of different images that are used to validate that the network
can make accurate predictions on images not seen during training. CNNs are usually im-
plemented with a random organization of training/validation/test data set split (e.g. 60%
train / 20%validation / 20% test). However, in this application the data sets are specifically
set up so that the training data is a collection of bridge images and the validation data is
a collection of images of a specific bridge (i.e. the Northfield drive bridge), not included
in the training data set. No test set is included, as the amount of images is limited, and
the focus is not on testing the accuracy capabilities of the network but rather on proving
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the network can be used for spalling and delamination labeling. The split of training and
validation data sets is specifically organized to show that the network can be training on
images of random bridges, and then adequately generalize to a new bridge.

For training the CNN to label delaminations, 436 infrared images were captured of
four other beam/girder reinforced concrete bridges. All images were labeled using the
aforementioned manual labeling tool for use as the training set. These images were captured
in variable conditions, at varying times of day, at different times in the year, and under
different weather conditions to ensure a variety of appearances of the delaminations. The 60
infrared spectrum images captured by the mobile platform during the girder scan are used
as the validation set for CNN. The manual pixel-wise delamination labels of these 60 images
are verified by a ground truth delamination inspection report performed by professional
inspectors (independently), and made available to the research lab by the owner. The
ground-truth image labels are used here to generate a target value to achieve based on
inspection results (in terms of defects) and it is assumed that the inspectors measured and
reported the results accurately. Furthermore, estimating the true values for delamination
under field conditions is extremely difficult and hence the statements regarding errors and
what is meant by ground-truth must be interpreted in this context. The images in both
the training and validation datasets were collected using a FLIR VUE Pro and Flir ADK
cameras with a spectral bands in the range of of 8 - 15 µm (8000− 15000 nm, as outlined
as the wavelength of interest for infrared cameras).

For training the CNN to label spalls, 540 visual spectrum images were captured from
several beam/girder reinforced concrete bridges in the regions of Waterloo and Toronto,
Ontario. Some images in this training set were obtained by professional inspectors during
routine visual inspections, while others were obtained by the members of the SDIC research
lab. This dataset consists of images captured in variable conditions, and at different times
of the year to ensure a variety of spall conditions. All images were labeled using the
aforementioned manual labeling tool for use as the training set. The 60 visual spectrum
images captured by the mobile platform during the girder scan described previously are
used as the validation set for the CNN. The pixel-wise spall labels of these 60 images are
verified by a ground truth spall inspection report performed by professional inspectors
(independently), and made available to the authors by the owner. The images in the spall
training dataset were taken using various cameras, including phone cameras, and the Flir
cameras on-board the described platform.

CNNs for semantic pixel-wise segmentation are often evaluated based on mean inter-
section over union (mIoU), given by the equation

mIoU =
TP

TP + FP + FN
(5.1)
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where TP is true positives, FP is false positives, and FN is false negatives. To the knowl-
edge of the authors, no standardized data set or previous studies exist to compare mIoU
or other CNN accuracy metrics to automatically label spalls or delaminations. There-
fore, an alternative method is proposed, where the defect labeling method is validated by
comparing its mIoU accuracy metric achieved when implementing the network on a delam-
ination and spall data set compared to its performance implementing it on a benchmark
data set. The presented network methodology has been tested on the Pascal VOC 2012
[16] benchmark data set for pixel-wise object segmentation, and achieved a mIoU score
of 77.3%. Therefore, for this application the CNN is considered validated if it is able to
achieve approximately 77.3% mIoU accuracy for pixel-wise segmentation of delaminations
and spalls.

5.1.2 Defect Quantification Dataset

For validating the automated defect quantification process as a whole, all of the collected
data was used to generate a 3D point cloud map of the scanned 15.6m length of the concrete
bridge girder and soffit. The lidar data was used with SLAM to generate the unlabelled
3D map. The final map contains semantic labels from using the map labeling method to
fuse information from the pixel-wise defect labeling step (i.e. using either ground truth or
CNN image labels) to the map. A labeled 3D map enables the use of the presented area
calculation procedure for automated quantification of defect sizes.

To assess the accuracy of the automated defect quantification, the quantification method-
ology is performed twice on the generated map. One iteration uses the ground truth image
labels (i.e. manual defect labels using the MATLAB labeling GUI) and the other uses
the CNN image labels (i.e. CNN predicted defect labels). In this work, the ground truth
image labels are considered to yield ground truth defect areas with this quantification
process. This consideration is justified by: (1) the true defect areas can never be known
due to subjectivity and limitations with measurements, (2) an analysis of accuracy of the
3D point cloud shows approximately 1cm point location error at the girder of interest
[9], which is negligible compared to defect sizes, and (3) a comparison performed between
the delamination and spall areas from a 2018 inspection report of the bridge performed
by professional inspectors and the areas from ground truth image labels. The inspection
comparison showed that for both inspections the defects were in the same location on the
bridge girder/soffit, and that area estimates were within the same order of magnitude.
Further detail in the comparison is not possible, as the 2018 inspection report only reports
coarse bounding-box areas for both delaminations and spalls due to the time and accessi-
bility limitations of human inspection. Therefore, the areas obtained from fusing ground
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truth image labels with the 3D map are the best possible estimate of ground truth areas
for validating the defect areas from fusing CNN image labels with the 3D map.

5.2 Defect Labeling

In this thesis the target of the defect labeling step is: 1) to show that the network can be
trained on images of random bridges and generalize to a bridge not seen in the training
data, and 2) to achieve similar object segmentation mIoU accuracy as when the network
is trained and evaluated on the Pascal VOC 2012 [16] benchmark data set, but with
delaminations and spalls as the object classes to be segmented. These targets are chosen
as the network has already proven success on benchmark data sets, so in this thesis the
focus is on application of the network towards defect inspection.

Table 5.1 summarizes the training and validation results for pixel-wise labeling of de-
laminations. The comparison shows that the delamination object segmentation results
slightly exceed the results achieved when implementing the network on the Pascal VOC
2012 object segmentation data set. This is likely because of a few reasons. First, all images
in the delamination training and validation data sets are obtained using infrared cameras
with similar characteristics (FLIR VUE Pro and Flir ADK). This causes there to be little
variability in mechanical characteristics that affect how an image captures scene data, and
no variability in the spatial density that the images are stored. This yields less variability
between all images in the data set than normally seen in a benchmark data set. Second,
infrared images contain less potentially adversarial features compared to visual images.
Infrared images of concrete bridges generally only contain mute concrete background with
some hot/cold areas due objects such as pipes, or delaminations. The objects that are
present tend to not resemble a delamination patch, making it easier for the algorithm to
distinguish what hot/cold areas should be labeled as a delamination.

Fig. 5.2 displays the results of the network on four of the images in the validation set.
These examples show that the network performs well at finding delaminated areas, and
the error is largely confined to the finer details around the boundaries of delaminations.
This boundary error is likely due to the shallowness/simplicty of the network used. A more
deep/complex CNN may be able to improve on these boundary errors by maintaining more
information from earlier layers at the cost of more computation (e.g. the tradeoff of using
FCN-8s versus FCN-32s). However, this is likely not necessary for defect area calculations
as 1) it is difficult to adequately label boundaries, so some errors may be from human label
error, and 2) conventional inspection techniques being used today (e.g. hammer sounding,
chain dragging) tend to report even coarser details (e.g. only bounding box areas). In
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terms of the ultimate application of defect assessment the delamination predictions by the
CNN are considered adequate.

Figure 5.2: Infrared delamination prediction results. All rows show images with a large
amount of delaminations. In general, the network does well to distinguish what is a de-
lamination, but struggles with fine details and small delaminations.

Table 5.1 also shows the results of training and validation on the spall data set compared
to the benchmark performance achieved by the network on the Pascal VOC 2012 data set.
The mIoU shows that the spall network achieves comparable results on the validation
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set when compared to the performance of the same network on benchmark data sets,
but the training set achieved better results than the validation. This indicates there is
some overfitting to the spall training data set, despite using the same setup as for the
delamination training. This is evidence that the data set is causing overfitting for a few
reasons. First, the spalls data set did not consist of images only of bridges. Many of the
images in the training dataset were of spalls on other concrete structures. Second, spalls
have large range of appearances. The spall can have smooth or jagged edges, have exposed
rebar or no exposed rebar, be under low or high lighting conditions, etc. This variability of
appearances makes it more difficult for the network to learn the characteristics of a spall.
This problem detecting true positives compounds into more false positives, as there is a
large set of objects that may look similar to a spall (e.g. dirty patch on concrete). To
alleviate these accuracy limitations data set should be larger and more diverse to cover all
the varieties of spalls that may be observed by the network.

Fig. 5.3 displays the results of the network on four of the images in the validation set.
Similar to the delaminations, the errors in these images are confined to the fine details at the
boundaries of the spalls, with only a few small areas of spalls being erroneously classified
entirely. As is the same case with delamination inspection, the fine details are often
ignored during routine spall inspections, so this still presents a significant improvement over
conventional visual approaches being used today. Therefore, for the ultimate application
of defect assessment the spall predictions by the CNN are considered adequate. If higher
accuracy is required for a specific application, it is always possible to implement a deeper
network in the future.

It is worth noting that there exist CNNs for pixel-wise labeling of structural defects
that report similar or better mIoU (80-85%) than reported here for delaminations and
spalls [1, 34]. However, the reasons for such differences can be attributed to a number of
factors such as difference in the network complexity, difference in data sets, or difference
in the complexity of defect appearance. For example, in the case of [34], the data set
consists of images where the defect is central and large in the image. This creates easier
conditions for labeling than if the defect images are captured by a mobile platform. For
these reasons, making direct comparisons between different implementations and defects
could be misleading if using only accuracy metrics. Additionally, the accuracy of the
network should be viewed in terms of the application requirements for which the results
above present significant improvement over current practice.
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Figure 5.3: Visual spall prediction results. The first two rows show examples of clear and
large spalls. The third row shows an example of a thin/small spall area. The fourth row
shows an example where there is significant potential for false positives. In general, the
network does well to distinguish what is a spall, but struggles with fine details and small
spalls.
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Table 5.1: Network evaluation metric results.

Dataset Split CCE mIoU

Delamination Train 0.013 83.7%

Val 0.056 82.7%

Spall Train 0.018 81.4%

Val 0.019 71.4%

Pascal VOC 2012 Benchmark n/a 77.3%

[16] [51]

5.3 Defect Quantification

One of the main contributions of this thesis is the ability to provide quantitative information
about defects, which requires all steps presented in the methodology. However, a major
limitation in the quantification information is the quality of image labeling results. To date,
there has been little effort directed towards studying how errors from using an automated
image labeling method (e.g. CNN) transfer to errors in calculating quantitative defect
information. To this end, this thesis presents a comparison of the quantification information
provided using the presented methodology for assessing delaminations and spalls when
using ground truth labels (i.e. manual lables with MATLAB GUI) versus CNN predicted
labels at the image labeling step. The target of this approach is to show that errors at
the image labeling step are consistent with errors in defect quantification. This will show
that the automated inspection process provides accurate results that are limited only by
the accuracy of the defect image labels.

To compare the results of ground truth labels and CNN labels, the quantification
methodology is performed twice on the created validation data set for each defect; once
using the 60 ground truth labeled images for map labeling, and once using the 60 CNN
labeled images for map labeling (these 60 images are from the robot scan of the bridge
girder and soffit, and are the validation set for the automated spall and delamination image
labeling), while all other variables remained constant. This results in a consistent 3D map
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(i.e. same point locations and colors), but different defect labels. The inspection process
is run for four iterations (two for each defect).

The 3D point cloud and the area extraction method parameters are held constant
at euclidean clustering threshold = 7.5cm and RANSAC outlier threshold = 1cm across
all iterations. The clustering threshold of 7.5cm in this application is user-defined and
problem-specific. With this threshold, 3D points closer than 7.5cm from each other are
considered to represent the same defect. This threshold provided a good balance between
not falsely excluding points from clusters, while still sufficiently separating the defects for
these data sets. The input of 7.5cm can be adjusted (and should be adjusted) based on
specific inspection needs and repair procedures for the case under study. For example, it
may need to be set smaller (e.g. 5cm) for crack defects. The RANSAC outlier threshold of
1cm is based on the accuracy of the sensors, which is +/- 1cm for a 3D point. Therefore,
anything further than 1cm away is considered an outlier.

Fig. 5.4 shows the difference between quantifying delaminations using ground truth
labels and using CNN labels for the defect labeling step. The figure plots the intersection
points (points labeled delamination by both manual and automated labeling) on top of the
union points (points labaled delamination by manual or automated labeling). From this, it
is possible to qualitatively see that the delamination locations are nearly identical in both
iterations. Table 5.2 quantitatively outlines the comparison between the delaminations
obtained in the two cases. These comparisons are based on automated matching, and only
delamination areas with greater than 50 points representing its geometry are considered.
Empirical testing showed clusters of less than 50 points do not contain enough information
to be assessed. This limit could be reduced if the point cloud has a higher point density.
Recall the mIoU of the infrared images in the validation set is 82.7% (error = 17.3%).
Many of the calculated defects reported similar error rates between ground truth and CNN
label area calculations. The overall defect area error of 13.6% is similar to the overall mIoU
error, with the minor difference likely due to discrepancy between how error is calculated
for pixels versus for an area metric. Minor differences in the error may also be caused by
the point cloud causing down sampling of the dense image data.

The main outlier in area calculations is delamination 4, with a percentage error of 50.6%.
On closer observation, this error is primarily due to the defect segmentation step. In this
case, the points representing delamination 4 in the 3D map labeled with CNN predictions
are sparse. As a result, the segmentation threshold of 7.5cm caused a significant number
of points to not be included in the geometry of delamination 4 for the CNN inspection.
This is the danger of using a hard threshold for segmentation, as the selected value may
not be optimal for all cases. However, better defect labeling or a more dense point cloud
would make the results of the segmentation step more consistent. The remaining defects
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associated with relatively large errors are small defects. This is not surprising, however, as
the absolute errors of these smaller defects are still small, and the CNN label information
still provides valuable information. The error rate of the smaller defects could likely be
improved by increasing the spatial density of the point cloud, but using a deeper/more
accurate CNN would be the best option for improving these small defects. Recall that
the network implemented is good at general localization of the defect but struggles with
the fine labeling around borders. When defects are small, the fine labeling becomes far
more important. This presents a decision for the inspector, as it may be okay that smaller
delaminations are not as accurately depicted during routine inspection, but may be critical
for a in-depth inspection.

Table 5.2: Delamination size results (sizes in cm2).

Label ID Ground Truth Size CNN Size error % error
1 7877 6986 891 11.3%
2 6922 6257 665 9.6%
3 4681 4082 599 12.8%
4 2013 1836 177 8.8%
5 1452 717 735 50.6%
6 2203 1898 305 13.8%
7 1887 1857 30 1.6%
8 2154 1676 478 22.2%
9 1329 1356 -26 2.0%
10 737 753 -15 2.1%
11 1374 1077 297 21.6%
12 921 957 -37 4.0%
13 724 404 320 44.2%
14 622 503 119 19.1%
15 709 302 407 57.5%
16 200 243 -43 21.7%
17 318 320 -2 0.8%

Total 36122 31224 4898 13.6%

Fig. 5.5 shows the difference between spall areas using ground truth labels and CNN
labels at the image labeling step. Similar to delaminations, the intersection spall labels are
plotted on top of the union spall labels. The figure shows qualitatively that the locations of
the spalls are nearly identical for both labeling methods. The only notable error appears at
defect 5, where the CNN labeled data appears much sparser than the manual labeled data.
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Figure 5.4: Extracted delaminations labeled on the 3D point cloud representation of the
15.6m long section of the bridge girder (horizontal across the middle of the image) and
soffit scanned by the robot platform. Red points represent points labeled as delamination
in both ground truth and CNN labeling. Blue points represent points represent points
labeled in only one of the methods.

The quantitative results of the automated defect quantification algorithm for assessing
spalling are reported in Table 5.3. Only spalls with geometry representation of greater
than 50 points are listed in the table. Recall the mIoU of the infrared images in the
validation set is 71.4% (error = 28.6%). Similar to the delamination results, most spalls
have an error comparable to the mIoU error of the validation set of the CNN. However, the
overall error of this dataset is large, primarily because of spall 5. This error is contributed
by an insufficient number of points (less than 50) in the CNN label inspection iteration to
represent the geometry of spall 5. This could be seen as a limitation of setting a minimum
number of points threshold for which cluster are considered spalls. However, even lowering
the cluster threshold would likely result in significant error. Therefore, the best solution to
alleviate errors of this nature is still a more dense 3D map or a deeper CNN. This is again
an inspector decision, as spall 5 is small enough that it could be seen as low importance.
Additionally, in Fig. 5.5 it is still evident that there are some points labeled as spall
in this area from the CNN, so a review of the visual data still enables an inspector to
indicate an abnormality. An inspector could therefore rerun the inspection after manual
fine-tuning the image label of that spall, or mark that a small spall exists that cannot
be accurately measured at this time but should be checked in subsequent inspections. If
spall 5 is removed for error calculations, the overall area error is 25.9%, which is again
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comparable to the validation set error.

Table 5.3: Spall size results (sizes in cm2).

Label ID Ground Truth Size CNN Size error % error
1 3277 2573 705 21.5%
2 531 473 58 10.9%
3 533 387 145 27.3%
4 531 178 353 66.5%
5 394 0 394 100%

Total 5266 3611 1655 34.0%
Total-5 4872 3611 1261 25.9%
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Figure 5.5: Extracted spalls labeled on the 3D point cloud representation of the 15.6m long
section of the of the bridge girder (horizontal across the middle of the image) and soffit
scanned by the robot platform. Red points represent points labeled as spalling in both
hand labeling and CNN labeling. Blue points represent points represent points labeled in
only one of the methods.

The results of the two analyses show that the mIoU results of the CNN image labeling
method transfers to similar quantification accuracy of delamination and spall areas when
using the presented methodology. Compared to current routine inspection methods, the
accuracy of the quantitative inspection results could be considered adequate. However, this
conclusion should not be generalized to all defects, such as cracks, which contain more fine
details for quantification (e.g. crack width) than delaminations and spalls. In this case, it
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is unclear if errors in the CNN will be comparable to quantification errors, as limitations in
the map density may cause other significant errors. This could be a subject of a separate
research study.

69



Chapter 6

Conclusions

The work presented in this thesis outlines how state-of-the-art computer vision techniques
can be applied to processed camera and lidar data to semi- or fully-automate the area
size quantification of delaminations and spalls and remove some of the subjectivity of
traditional inspections. This is made possible through a five-step process of:

1. Data collection using an unmanned ground vehicle mounted with well calibrated
sensors, specifically lidar and camera sensors.

2. Processing of lidar data with SLAM algorithms to create a spatial representation of
the scanned structure via a 3D map.

3. Semi- or fully-automated labeling of defects in the collected images using a manual
labeling tool (for best accuracy) or semantic segmentation CNN (for full automation
and improved time efficiency).

4. Transfer of image data (pixel colour and CNN label) onto the 3D point cloud using
an occlusion-aware ray-tracing technique to augment the pinhole projection method.

5. An automated area calculation algorithm for calculating defect areas in real-world
scale given a 3D point cloud enriched with semantic defect information.

The overall methodology is shown to be capable of performing delamination and spall
detection and quantification to a level of accuracy that can compete with current inspec-
tion practices. Several key insights to success can be learned from developing the overall
inspection process:
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• The semi-automated defect labeling tool developed in MATLAB is essential for build-
ing adequately large labeled data sets. The method increases the pace of labeling,
and also provides an initial guess of defect locations based on image properties, which
can potentially limit the subjectivity of human labeling.

• It is possible to replicate the accuracy of state-of-the-art CNNs (specifically Mo-
bileNetV2 and Deeplab V3 semantic segmentation CNN) for pixel-wise labeling of
delaminations and spalls. The main limitation is the ability to develop a large enough
data set for adequate training. However, this is evidence that the structural engi-
neering discipline can save time by implementing any state-of-the-art CNN, rather
than developing entirely novel neural networks.

• Labeling a 3D point by projecting to 2D and assigning it with the information con-
tained in the corresponding 2D pixel is not adequate because of occlusions. This
could cause defects to appear multiple times on different parts of a structure. Al-
ternatively, a ray-tracing method that extends a ray from the camera through the
virtual image until contact with the 3D point cloud is able to label 3D points with
pixel information in a manner robust to occlusions, which is essential to accurate
results.

• Use of a semantically labeled 3D point cloud creates the opportunity for repeat-
able and non-subjective defect area quantification. Some parameter settings (e.g.
euclidean clustering threshold) may cause slightly different results, but these param-
eters can still be held constant during subsequent inspections to maintain consistency.
This enables better tracking of defect growth over time, and presents a significant im-
provement on traditional practices, where defect area is shown to be subjective based
on inspector. The inspector does not need to be entirely removed, as the inspector
can also visually review the semantically labeled 3D point cloud to qualitatively verify
the results of the automated inspection process.

• The main source of error of the proposed inspection process is in the automated
labeling of the images, as error rates in image defect labeling are consistent with
error rates of the physical defect areas. Error rates in image defect labeling can
always be improved with more cost investment (more computation or manual labour
cost), giving the engineer a decision the amount of resources to allocate to image
labeling based on the severity/importance of the inspection.

Despite the improvement on the repeatability and accuracy of current defect inspection,
the presented inspection process has limitations. First, The presented process is only
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shown to be accurate for delaminations and spalls and not for other defects such as cracks.
However, extending this approach to other defects can follow the same process provided
appropriate data sets are available. Second, there is a lack of extensive defect (specifically
delamination and spall) data sets available for training and inference, limiting the ability
to adequately train neural networks. Pixel-wise CNNs are still relatively new in the field
of defect assessment, and the tedious nature of data labeling makes training data limited.
Over time this can be resolved through open source data sharing from other researchers
and performance comparisons with other networks. From a practical standpoint, this can
also be improved by having inspectors manually fine-tune CNN labels, as this still presents
an improvement in time-efficiency until a large enough data set is obtained. Finally, the
data collection platform used to collect the pertinent data for this thesis is a ground
vehicle, which was chosen primarily based on risk and regulatory constraints, and payload
restrictions. Therefore no testing has been done on data acquired from other platforms
such as drones and hand-held units. However, all of the algorithms developed and applied
in this thesis (CNN, map labeling, area extraction), as well as the SLAM algorithm are
designed to be platform agnostic. That is, they depend only on the form of the collected
data, and can be implemented regardless of the platform employed to collect the data. The
main limitation is the expense of mounting lidar and camera sensors to other platforms.

There are success and limitations of the work detailed in this thesis, but overall the
automated inspection process presents stepping stone towards bringing state-of-the-art
robotics and computer vision into bridge inspection. The current state of bridge inspection
is outdated and economically inefficient, as visual inspections are fraught with human
errors and are limited by accessibility, and manual inspection labour is expensive. A move
towards these technologies presents a significant opportunity to improve accuracy, while
also cutting costs of inspection. In addition, reducing the effort of manual inspection frees
inspectors and engineers to allocate more of their time towards intelligent deterioration
prevention and maintenance techniques. More research should continue to be done to push
automated bridge inspections towards being a mainstream practice.
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Appendix A

Further Algorithm Details

A.1 Checkerboard Single Camera Calibration

A.1.1 Process Overview

An overview of the process of checkerboard camera calibration using [4] can motivate the
derivation of the mathematics. To calibrate a camera with a checkerboard, the user must
provide images of the checkerboard target at numerous angles and skews (e.g. Fig. A.1a).
In each image, a corner detection technique can be used (e.g. Harris corner detection [23])
to determine the actual (u, v) location of all the corners on the checkerboard (Fig. A.1b).
This is a relatively easy knowledge-driven computer vision task, as the checkerboard has
distinct features to distinguish it from background noise.

The next step is to set the coordinate frame of the checkerboard in world coordinates.
This is done by setting one of the outside corner points as (0, 0, 0) and then assuming the
checkerboard is flat along the Z axis such that Z = 0 for all points. The real-world distance
of the squares and the number of squares is an input to the calibration, and therefore the
coordinates of all corners can be calculated.

This setup outlines the inputs to the the checkerboard camera calibration process,
which are the (u, v) coordinates of the checkerboard corners in all calibration images and
the (X, Y, Z) world coordinates of the checkerboard corners (which are defined to be the
same for every image). The goal of the mathematics is therefore to solve for the rotation,
R, and translation ,t, that describes the location of the camera relative to the checkerboard
in each image, and the intrinsic matrix, K, that minimizes the error between the (u, v)
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(a) Checkerboard calibration image (b) Detected checkerboard corners

Figure A.1: Example of a typical image used during checkerboard camera calibration.

corners detected using computer vision and the (u, v) coordinates of the corresponding 3D
(X, Y, Z) points projected to the 2D image plane.

The output of the camera calibration provides the calculated locations of the checker-
board relative to the image via R, t, as shown in Fig. A.2a. The main metric for evaluating
the calibration is the reprojection error, which is the pixel distance between the the com-
puter vision detected corners and the 3D projected corners. This can be shown for each
image to help determine which images best contribute to the calibration (Fig. A.2b). In
general, the lower the reprojection error, the more accurate the calculated K matrix is.

This overview describes camera calibration as a black box by only explaining the re-
quired inputs and the expected outputs. The next section details the mathematics on how
the K matrix is actually calculated.

A.1.2 Derivation

[61] presents the derivation for checkerboard camera calibration. To begin, recall that the
pinhole camera model for projecting a 3D world coordinate point to the 2D image plane
is given by the equation

s
[
u v 1

]T
= K

[
R t

] [
X Y Z 1

]T
(A.1)

where the goal is to project a world coordinate point,
[
X Y Z 1

]T
, to an image pixel,[

u v 1
]T

. R and t are the extrinsic rotation (3× 3) and translation (3× 1) that define
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(a) Estimated checkerboard locations (b) Calibration reprojection errors

Figure A.2: Example of a typical image used during checkerboard camera calibration.

how the camera is oriented relative to the 3D space around it. K, is known as the camera
intrinsic matrix and is given by

K =

fx γ cx
0 fy cy
0 0 1

 (A.2)

where fx, fy describe the focal length of the camera and cx, cy describe the location of the
principal point. Note that γ is also included. This represents the skew coefficient between
the x and y axes, but is 0 for all applications in the thesis and therefore not included. γ
is only included here for derivation completeness. The parameters of the intrinsic matrix
are static (assuming no internal mechanical changes of the camera). These parameters ate
the subject of interest during checkerboard camera calibration.

[61] presents the mathematics for intrinsic camera calibration using a flat checkerboard
target. The first step is to assume that the target is flush with the Z axis of the world
coordinates such that Z = 0 for all points. This simplifies the pinhole equation to

s
[
u v 1

]T
= K

[
r1 r2 r3 t

] [
X Y 0 1

]T
(A.3)

where r1, r2, r3 are column vectors representing the three columns of the rotation matrix.
It is evident that r3 can be ignored by setting the checkerboard to be on the plane such
that Z = 0 for all points, therefore simplifying the equation to

s
[
u v 1

]T
= K

[
r1 r2 t

] [
X Y 1

]T
(A.4)
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This now resembles a 3× 3 homography transformation, H, where

s
[
u v 1

]T
= H

[
X Y 1

]T
; H = K

[
r1 r2 t

]
(A.5)

Given an image of the checkerboard, a homography, denoted as H =
[
h1 h2 h3

]
, can be

estimated. Equation A.5 can then be written as[
h1 h2 h3

]
= λK

[
r1 r2 t

]
(A.6)

where λ is an arbitrary scalar. By properties of a rotation matrix, r1 and r2 must be
orthonormal, leaving the fundamental constraints on the intrinsic parameters as

hT1 K−TK−1h2 = 0 (A.7)

hT1 K−TK−1h1 = hT2 K−TK−1h2 (A.8)

where K−T = (K−1)T = (KT )−1. In practice, K is solved for by using a closed-form
solution solution, followed by a nonlinear optimization technique.

Closed-Form Solution

For the closed form-solution, let

B = K−TK−1 =

B11 B12 B13

B12 B22 B23

B13 B23 B33

 =


1
f2x

− γ
f2xfy

cyγ−cxfy
f2xfy

− γ
f2xfy

γ2

f2xf
2
y

+ 1
f2y

−γ(cyγ−cxfy)
f2xf

2
y
− cy

f2y
cyγ−cxfy
f2xfy

−γ(cyγ−cxfy)
f2xf

2
y
− cy

f2y

(cyγ−cxfy)2
f2xf

2
y

+
c2y
f2y

+ 1


(A.9)

Note that B is symmetric, and can be defined by a 6D vector

b =
[
B11 B12 B22 B13 B23 B33

]T
(A.10)

Let the ith column vector of H be hi =
[
hi1 hi2 hi3

]T
. Then,

hTi Bhj = vTijb (A.11)

where

vij =
[
hi1hj1 hi1hj2 + hi2hj1 hi2hj2 hi3hj1 + hi1hj3 hi3hj2 + hi2hj3 hi3hj3

]T
(A.12)
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The two fundamental constrains in equations A.7 and A.8 can be rewritten as[
vT12

(v11 − v22)
T

]
b = 0 (A.13)

If n images of the checkerboard are observed, stacking equation A.13 n times yields

Vb = 0 (A.14)

where V is a 2n × 6 matrix. The solution to equation A.14 is the eigenvector of VVT

associated with the smallest eigenvalue. Once b is estimated, it is possible to compute
intrinsic matrix K. See [61] for details. Once K is known, the extrinsic parameters can be
computed from equation A.5.

Maximum Likelihood Estimation

The solution from the closed-form solution can then be refined using a maximum likelihood
equation. This equation is used to solve for K given n images of the checkerboard with p
relevant points (i.e detectable corners). To solve for K, a maximum likelihood estimate is
obtained by minimizing the function,

n∑
i=1

p∑
j=1

||mi,j − m̂(K,Ri, ti,Mj)||2 (A.15)

Where m =
[
u v

]T
, M =

[
X Y Z

]T
, and m̂ is equation A.5 used for projecting a

3D point on the flat checkerboard plane to a 2D pixel. This equation requires an initial
estimate, which is the K, {Ri, ti|i = 1, ..., n} from the closed-form solution. The correct
u, v values for mi,j are found by using any corner detection algorithm to detect the corners
of the checkerboard pattern.

Distortion

[61] also presents how to augment this calibration to include lens distortion, specifically
radial distortion, which is present in the cameras used in this thesis. In general, the first
two terms of radial distortion are adequate, where

ũ = u(1 + k1r
2 + k2r

4)
ṽ = v(1 + k1r

2 + k2r
4)

r2 = u2 + v2
(A.16)
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where ũ, ṽ the distorted image coordinates and k1, k2 are the coefficients of the radial
distortion. This can be incorporated into A.15, to yield a new maximum likelihood estimate
of

n∑
i=1

p∑
j=1

||mi,j − m̂(K, k1, k2,Ri, ti,Mj)||2 (A.17)

where m̂(K, k1, k2,Ri, ti,Mj) is the projection of point Mj in image i according to equation
A.5 followed by distortion correction via A.16.

A.2 Checkerboard Stereo Camera Calibration

A.2.1 Process Overview

To calibrate a stereo camera with a checkerboard, the user must provide image pairs of
the checkerboard target at numerous angles and skews captured by each camera (Fig.
A.3). It is critical for stereo calibration that the checkerboard does not move between the
capturing image pairs (i.e. the global coordinates of the checkerboard must be identical for
image pairs). Similar to single camera calibration, a corner detection technique is used to
determine the actual (u, v) location of all the corners on the checkerboard in both images.

Figure A.3: Example of a typical image pair used during checkerboard stereo camera
calibration. Note the identical posture of the man holding the checkerboard indicates the
images were taken synchronously, ensuring consistent checkerboard location.

The next step is to set the coordinate frame of the checkerboard in world coordinates,
which is done similar to single camera calibration. For each checkerboard location, an
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outside corner point is set as (0, 0, 0) and the checkerboard is assumed flat along the Z
axis such that Z = 0 for all points. The real-world distance of the squares and the number
of squares is an input to the calibration, and therefore the coordinates of all corners can
be calculated. The world coordinates do not depend on the camera, and are set once per
stereo image pair.

Stereo calibration also requires the intrinsic matrix of the cameras to be provided. If not
provided, the algorithm can calculate the intrinsic information by first performing single
camera calibration on the images for each camera independently. However, the setup of
the checkerboard to optimize single camera calibration versus stereo camera calibration
may differ, so it is best to provide the intrinsic matrices.

This setup outlines the inputs to the the checkerboard stereo camera calibration pro-
cess, which are the (u, v) coordinates of the checkerboard corners, the (X, Y, Z) world
coordinates of the checkerboard corners for all image pairs, and the intrinsic matrices of
the cameras. The goal of the mathematics is therefore to solve for the rotation, R, and
translation ,t, that describes the location of camera 2 relative to camera 1 that minimizes
the error between the (u, v) corners detected using computer vision on an image captured
by camera 1 and the (u, v) coordinates from transforming a corresponding 3D (X, Y, Z)
point in the coordinate frame of camera 2 to the 2D image plane of camera 1.

The output of the camera calibration provides the static transformation Tc1,c2, which
outlines the rotation and translation information from camera 2 to camera 1 in a single
matrix

Tc1,c2 =


r11 r12 r13 tx
r21 r22 r33 ty
r31 r32 r33 tz
0 0 0 1

 (A.18)

This is the matrix that the mathematics seeks to solve for.

A.2.2 Derivation

The mathematics of stereo camera calibration build upon single camera calibration. For
stereo camera calibration, the checkerboard is still flat, but is captured while in the same
location by two different cameras. The world coordinates of the checkerboard are de-
fined the same as the single camera calibration, and the intrinsic matrix, K, is known for
both the cameras (via previous single camera calibration). The equation to solve for the
transformation between cameras therefore becomes

s
[
u v 1

]T
c1

= Kc1Tc1,c2

[
R t

]
c2

[
X Y Z 1

]T
c2

(A.19)
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where Tc1,c2 is the transformation matrix from a 3D point in camera 2’s coordinate frame to
camera 1’s coordinate frame. Since the intrinsic parameters of both cameras are known, it is
possible to calculate

[
R t

]
c2

using equation A.5 based on camera 2’s intrinsic calibration.
The only unknown in the equation is Tc1,c2 (see equation A.18), which represents the
rotation and translation information for converting a point in the coordinate frame of
camera 2 to the coordinate frame of camera 1. This transformation matrix can be solved
for for a checkerboard with p corners by minimizing equation

n∑
i=1

p∑
j=1

||mc1,i,j − m̂(Tc1,c2,Mj)||2 (A.20)

where m̂ is equation A.19 with world checkerboard coordinate Mj in image i being used to
solve for Tc1,c2. This equation can be solved for a transformation in either direction, but is
generally solved converting from camera 2 to camera 1. The correct u, v values for mi,j are
found by using any corner detection algorithm to detect the corners of the checkerboard
pattern in camera 1.

A.3 ADAM Optimizer

This work used an implementation of the ADAM optimizer [27] to train the CNN. This
optimizer is similar to the basic gradient descent method for training a neural network.
The ADAM optimizer builds on basic gradient descent by computing individual adaptive
learning rates using estimates of the first and second moments of the gradients. These first
and second moments of the gradients work by incorporating previous calculated gradients
into the update equation to help avoid local minimums. The full algorithm for ADAM is
summarized in algorithm 4.
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Algorithm 4 ADAM Optimizer [27]

Input Description
α Stepsize
β1, β2 Exponential decay rates for the moment estimates
f(θ) Stochastic objective function with parameters θ
θ0 Initial parameter vector
ε 10−7, used to avoid divide by zero error

1: m0 ← 0 . Initialize first moment vector
2: v0 ← 0 . Initialize second moment vector
3: t← 0 . Initialize timestep
4:

5: while θt not converged do
6: t← t+ 1
7: gt ← ∇θft(θt−1) . Get gradients w.r.t. stochastic objective timestep t
8: mt ← β1 ·mt−1 + (1− β1) · gt . Update biased first moment estimate
9: vt ← β2 · vt−1 + (1− β2) · g2t . Update biased second raw moment estimate
10: m̂t ← mt

1−βt
1

. Compute bias-corrected first moment estimate

11: v̂t ← vt
1−βt

2
. Compute bias-corrected second raw moment estimate

12: θ ← θt−1 − α · m̂t√
v̂t+ε

. Update parameters
13: end while
14:

15: return θt . Resulting parameters
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Appendix B

Network Architecture

The convolutional neural network implemented in this work is MobileNetV2 [51] as a
feature extractor with Deeplab V3 [10] to perform semantic pixel-wise segmentation of
defects in images. The complete details of each network are outlined in their respective
papers, but details are also outlined here.

B.1 MobileNetV2

MobileNetV2 uses depthwise separable convolutions, which are a key building block for an
efficient neural network. These are used in tandem with a pointwise convolution to replace
full convolutional layers with a more efficient layer. A depthwise convolution applies a
kernel to only one channel of the tensor such that the resulting image is the same size. For
example, if the input is a 50 × 50 × 6 tensor, the depthwise convolution may be 6 k × k
kernels that are applied to each channel of the tensor separately. The output is therefore 6
50× 50 tensors that are stacked to be 50× 50× 6. A pointwise convolution is a 1× 1× di
kernel that is applied over the entire depth, di, of the input tensor. The resulting tensor
will have a depth, dj, depending on the number of kernel filters used. For example, if 10
1× 1× 6 kernels are applied to a 50× 50× 6 tensor, the output is 50× 50× 10.

Standard convolution on an hi × wi × di tensor with dj k × k kernels results in a
computational cost of

hi · wi · di · dj · k · k (B.1)

as all dj kernels will required k · k operations at each location in the original tensor. Con-
versely, depthwise seperable convolutions empirically work as well as standard convolution
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but with less operations. The depthwise convolution involves k2(hi ·wi · di) operations and
yields a hi × wi × di tensor. The pointwise convolution is dj(hi · wi · di) operations, which
when added to the depthwise operations yields a total of number of operations defined as

hi · wi · di(k2 + dj) (B.2)

The reduction of computational cost is proportional to k2. In MobileNetV2, k = 3 for all
depthwise convolutions, and therefore is estimated to reduce computional cost by approx-
imately 8 or 9 times.

MobileNetV2 also uses linear bottleneck layers, as empirical evidence shows that using
linear layers prevents non-linearities (e.g. relu) from destroying too much information
[51]. The linear bottleneck can be viewed as a pointwise convolution, but with a linear
activation function. The basic convolutional block of MobileNetV2 is called a bottleneck
residual block, and is summarized in Table B.1 and illustrated in Fig. B.1.

Table B.1: Bottleneck residual block used in MobileNetV2 [51]. Transforms an input tensor
with k channels, to k′ channels using a stride s and expansion factor t. Note that it is
common for s = 1, which makes the input and ouput tensors of the depthwise operation
the same size.

Input Operator Output
h× w × k 1x1 conv2d, ReLU6 h× w × (tk)
h× w × (tk) 3x3 dwise s=s, ReLU6 h

s
× w

s
× (tk)

h
s
× w

s
× (tk) linear 1x1 conv2d h

s
× w

s
× k′

B.2 Deeplab V3

Deeplab V3 uses a convolutional layer know as an atrous convolution to foster accurate
pixel-wise labeling. This atrous convolution uses a dilation rate to indicate a separation
between learnable parameters in the kernel. That is, an atrous convolution skips pixels in
the kernel to get a larger field of view when applying a a smaller convolution filter. For
example, Fig. B.2 shows the difference between a 3 × 3 convolution and a 3 × 3 atrous
convolution with a dilation rate of 2. The atrous convolution covers a 5 × 5 area for the
same amount of computation as the regular convolution.
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Figure B.1: MobilenetV2 Bottleneck residual block architecture.

Figure B.2: Left: Regular 3× 3 convolution kernel. Right: 3× 3 atrous convolution with
dilation rate=2. Blank squares are ignored by the kernel.
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B.3 Combined Final CNN

The bottleneck residual block and atrous convolution are the building blocks to be able
to implement MobileNetV2 and Deeplab V3 for pixel-wise labeling of spalls and delami-
nations. There are a few other important concepts to note before understanding the full
network architecture. First, the rectified linear unit (relu) activation function given by

relu(x) = max(0, x) (B.3)

and the relu6 actication function given by

relu6(x) = max(6, relu(x)) (B.4)

are used to provide non-linearities to the CNN. In addition, batch normalization (BN)
and bilinear upsampling are also used at locations throughout the network architecture.
Batch normalization applies a transformation that maintains the mean activation close to
0 and the activation standard deviation close to 1 [12]. This batch normalization is used
to prevent gradients from ”blowing up” to large values, as this can limit the ability of the
neural network to work as an aggregate of functions.

Bilinear upsampling upscales the spatial density of the image using bilinear interpo-
lation to fill in the missing data between pixels. This is required as, even though all
tensors are padded so the output size is the same as the input size, a stride of 2 causes
the dimensions of the input tensor to be halved. This reduction in dimensions improves
computation by reducing the number of operations performed at each layer. The bilinear
upscaling is used to ensure the output tensor has the same density as the input image,
which is mandatory for pixel-wise labeling. With this knowledge, it is possible to describe
the entire network, as is done in Table B.2
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Table B.2: Full summary of the neural network implemented for classifying spalls and
delaminations. The network begins with MobileNetV2 as a feature extractor, where t
is the expansion ratio, c is the number of filters, n is the number of times the layer is
used, and s is the stride. Note that when n > 1, s > 2, the stride is only used the first
iteration, and then reverted to 1. The layers with a dilation rate perform atrous depthwise
convolution instead of regular depthwise convolution. This is for the purpose of pixel-wise
classification. The network then splits into two branches that extract information from
different scales. These branches are then concatenated and each pixel is classified as a
defect (spall/delamination) or no defect using a softmax activation.

MobileNetV2 feature extraction
Input Operator t c n s

512× 640× C conv2d, BN, relu6 - 32 1 2
256× 320× 32 bottleneck res block 1 16 1 1
256× 320× 16 bottleneck res block 6 24 2 2
128× 160× 24 bottleneck res block 6 32 3 2
64× 80× 32 bottleneck res block 6 64 4 1
64× 80× 64 bottleneck res block with dilation=2 6 96 4 1
64× 80× 96 bottleneck res block with dilation=2 6 160 3 1
64× 80× 160 bottleneck res block with dilation=4 6 320 1 1

Branches for atrous spatial pyramid pooling
Input Operator kernel c

64× 80× 320 (branch 1) average pooling 32× 40 -
2× 2× 320 conv2d, BN, relu 1× 1 256
2× 2× 256 bilinear upsampling 32× 40 -

64× 80× 320 (branch 2) conv2d, BN, relu 1× 1 256

Branch concatenation and final classification
Input Operator kernel c

2− (64× 80× 256) concatenate branches 1,2 - -
64× 80× 512 conv2d 1× 1 256
64× 80× 256 bilinear upsampling 8× 8 2
512× 640× 2 softmax - -
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Appendix C

Labeling Example
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Figure C.1: Figure showing the thresholding step for manual labeling of delaminations in
an infrared photo (left). The complement switch has been activated to set the label of
pixels lighter than the grayscale threshold as 1 (i.e. defect). The delaminations appear
strong in the mask (right), but there is significant noise and other objects still labeled as
defect using thresholding alone.
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Figure C.2: Figure showing the size filter step for removing small pixel clusters from the
binary mask. All the noise has been removed from the background of the image, but there
are still large objects (e.g. edge of concrete girder) that are labeled as defect in the image
mask.
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Figure C.3: Figure showing the median filter step for smoothing out edges in the binary
mask. This smoothing also fills in any small noise that is within the defect area. However,
manual intervention is still needed in some cases.
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Figure C.4: Figure showing the final mask (red shows defect pixel labels) overlayed over
the original image after manual intervention. Manual intervention was able to remove
objects that appeared bright but were not a delamination and was also able to fill in any
remaining gaps in the delamination areas.
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