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Abstract

We present results obtained in the context of generative neural models — specifically
autoencoders — utilizing standard results from coding theory. The methods are fairly
elementary in principle, yet, combined with the ubiquitous practice of Batch Normalization
in these models, yield excellent results when it comes to comparing with rival autoencoding
architectures. In particular, we resolve a split that arises when comparing two different types
of autoencoding models — VAEs versus regularized deterministic autoencoders — often
simply called RAEs (Regularized Auto Encoder). The latter offer superior performance but
lose guarantees on their latent space. Further, in the latter, a wide variety of regularizers are
applied for excellent performance — ranging from L2 regularization to spectral normalization.
We, on the other hand, show that a simple entropy like term suffices to kill two birds with
one stone — that of offering good performance while keeping a well behaved latent space.

The primary thrust of the thesis exactly consists of a paper presented at UAI 2020
on these matters, titled “Batch norm with entropic regularization turns deterministic
autoencoders into generative models”. This was a joint work with Abdullah Rashwan who
was at the time with us at Waterloo as a postdoctoral associate, and is now at Google, and
my supervisor, Pascal Poupart. This constitutes chapter 2. Extensions on this that relate
to batch norm’s interplay with adversarial examples are in chapter 3. An overall overview
is presented in chapter 1, which serves jointly as an introduction.
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Chapter 1

Introduction

Problem statements and overview

Deep generative models have, over the past decade, attained spectacular success in natural
language, computer vision and all other manners of applied machine learning tasks. One of
the premier families in this group is the Variational Auto-Encoder aka VAE [28], which
has an encoder-decoder pair of networks creating latent codes for each data instance.
These latent codes are usually coerced to follow a Gaussian distribution for the process of
generation of new data instances. Within the broader VAE class, deterministic AEs have
risen to the fore recently, with examples such as the Regularized Autoencoder [12] and
others [52]. In deterministic AEs, one core problem that pops up is the loss of control on the
shape of the latent space learnt this way, which often has to be re-estimated as it diverges
from a Gaussian. This is usually circumvented by ad hoc ex-post density estimation steps.

Approach, motivation and contribution

Our approach to making a better deterministic autoencoder relies on using batch normal-
ization [24, 23], a now-ubiquitous process in modern deep networks. The motivation is
clear from the grounds of utility - despite having recently been overtaken by competitors
such as GANs [13], the VAE remains a premier deep generative class of models, and as
such improving it has direct benefits. Further, batch normalization is used in nearly every
deep neural model, and as such requires no special cajoling to be put in. In the process,
we will also gain insights into batch normalization’s interplay with certain distributions,
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that, orthogonally to VAEs, sheds light on batch normalization itself. Remarkably, the full
extent of batch normalization’s effects still remain unclear [46] and there is debate over
whether it can help or harm [11], as such, investigating its properties forms a valid auxiliary
motive in its own right.

We contribute by improving the subclass of deterministic AEs by creating our own
variant - the Entropic Autoencoder, and we also contribute to elucidating the effects of batch
normalization in general across deep neural nets. The improvements in the autoencoding
models arise by FID scores [19], and in terms of elucidation we discuss cases of naturally
Gaussian-like distributions in deep nets with batch norm, and explore interesting properties
relating to the L2 norm of adversarial examples.

An overview of batch normalization

Normalization - in itself - is understood simply as subtracting the mean and dividing by
standard deviation in much of statistics, or simply projecting the data to some fixed range
[a, b]. As elementary as this sounds, batch normalization [24] - where the mean and variance
in question is computed over a minibatch of training examples and the data is normalized
using the same - has become an inescapable part of training neural networks over the past
decade, and when it is discarded, alternatives [56, 59, 5, 53, 2, 21] rush to take its place.
We will call this operation simply batchnorm for the practice of subtracting the minibatch
mean and dividing by the minibatch standard deviation.

And yet batch normalization is poorly understood. There is debate over whether to use
it at all, whether it is beneficial, and whether the folklore explanation of ‘internal covariate
shift’ [24, 23] holds any water. Nevertheless, this thesis does not mean to challenge the
relevance of batch normalization to training neural networks, but merely notes that in
nearly all standard architectures and methods across the empirical zoo of networks, there
exists some form of normalization. We will take this as-is, and seek to leverage this fact.

A normalization associates a distribution

Our key observation is that normalizations are not just an arbitrary choice but that
particular schemes link to particular distributions - specifically the Gibbs distribution
related to its sufficient statistic.
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For a rather contrived example, consider a model that seeks to capture P (X), the
probability of some data X. Let J denote a map from Z, of equal dimensionality as X, to
X. Then,

logP (X) = log | det J |+ logP (Z)

Suppose that P (Z) is as per N (0, I). Suppose that Z is constrained to be zero mean
and of unit variance in every direction. In this case, it is easy to see that the logP (Z) term
is a constant in every minibatch, because a Gaussian’s log likelihood function only involves
the first and second moments of the random variable.

In other words, even if we take away the explicit likelihood on the prior space Z and
simply put a constraint, along with maximizing log | det J |, the resultant optimization sees
no change. This part comes from the logP (Z) term, being a constant, having no impact
on the optimization process at all.

To see this clearly, consider removing the logP (Z) term from the optimization process
and only instead requiring that E(Zi) = 0, E(Z2

i ) = 1, while maximizing log | det J |.
Suppose two models attain the same value of logP (X). Now, observe that with the LHS
being a constant, the term log | det J | is maximal when logP (Z) is as low as possible - in
other words, − logP (Z) is as high as possible in expectation over the dataset, ergo, Z is
of maximum entropy given its constraints.

Utilizing the link

The above observation can be put to use if we know for situations where entropy can be
reliably controlled within a neural network - batchnorm layers, after all, are ubiquitous.
Where may we find such high entropy conditions ?

• Using an explicit entropic regularizer

• Inducing situations where the network is incentivized to create maximally entropic Z

While the first approach sounds simple enough, the second deserves scrutiny. When is
a representation of high entropy? Note that in general, differential entropy suffers from
interpretability issues that its discrete counterpart does not, as differential entropy changes
upon scaling the data or under bijections. Nevertheless, we heuristically claim that entropy
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rises closer to the theoretical maximum when the representation both grows smaller in
dimensionality and has complex functional maps both mapping it from data X and also
mapping it to labels Y in the context of classifier networks. These form the bedrock of
Chapter 2. Complexity here is a byword for other ways to measure the power of neural
function approximators - depth, channels, and so on.

The implications of a high dimensional Gaussian

High dimensional probability in general [54] presents many counterintuitive geometric
patterns, one of the most famous being that a Gaussian resembles a spherical distribution
in high dimensions. If we have, from the above, a reliable way to find Gaussian-like
distributions within the hidden layers of a neural network, can we efficiently exploit such
properties to explain some other phenomena ? Chapter 3 takes a stab at this with respect
to adversarial examples.

Future avenues

One of the most persistent and interesting findings encountered in the course of Chapter 3
is the low L2 norm of adversarial examples. We have also found, in our investigations, cases
of flow models [45, 42] failing to fit high dimensional spherical distributions and assigning
mass to the interior of the high dimensional sphere. Given these two phenomena, it is
natural to ask if, in an efficient manner, we can fool flow models with adversarial examples
that exploit this geometric fact. I continue to experiment in this intersection.
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Chapter 2

Batch Normalization and entropic
regularization serves to turn
deterministic autoencoders to
generative models

2.1 Introduction

Modeling data with neural networks is often broken into the broad classes of discrimination
and generation. We consider generation, which can be independent of related goals like
density estimation, as the task of generating unseen samples from a data distribution,
specifically by neural networks, or simply deep generative models.

The variational autoencoder [28] (VAE) is a well-known subclass of deep generative
models, in which we have two distinct networks - a decoder and encoder. To generate
data with the decoder, a Gaussian sampling step is introduced between the encoder and
decoder, with the encoder supplying the parameters of the Gaussian. This sampling step
complicates the optimization of autoencoders. Since it is not possible to differentiate
through sampling, the process is slightly modified to allow backpropagation, and this is
termed the reparametrization trick. The sampling distribution has to be optimized to
approximate a canonical distribution such as a Gaussian. The log-likelihood objective is
also approximated. Hence, it would be desirable to avoid the sampling step.

To that effect, [12] proposed regularized autoencoders (RAEs) where sampling is replaced
by some regularization, since stochasticity introduced by sampling can be seen as a form of
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regularization. By avoiding sampling, a deterministic autoencoder can be optimized more
simply. However, they introduce multiple candidate regularizers, and picking the best one
is not straightforward. Density estimation also becomes an additional task as [12] fit a
density to the empirical latent codes after the autoencoder has been optimized.

In this work, we introduce a batch normalization step between the encoder and decoder
and add a entropic regularizer on the batch norm layer. Batchnorm fixes some moments
(mean and variance) of the empirical code distribution while the entropic regularizer
maximizes the entropy of the empirical code distribution. Maximizing the entropy of a
distribution with certain fixed moments induces Gibbs distributions of certain families (i.e.,
normal distribution for fixed mean and variance). Hence, we naturally obtain a distribution
that we can sample from to obtain codes that can be decoded into realistic data. The
introduction of a batchnorm step with entropic regularization does not complicate the
optimization of the autoencoder which remains deterministic. Neither step is sufficient
in isolation and requires the other, and we compare what happens when the entropic
regularizer is absent. Our work parallels RAEs in determinism and regularization, though
we differ in choice of regularizer and motivation, as well as ease of isotropic sampling.

The Chapter is organized as follows. In Section 2.2, we review background about
variational autoencoders and batch normalization. In Section 2.3, we propose entropic
autoencoders (EAEs) with batch normalization as a new deterministic generative model. Sec-
tion 2.4 discusses the maximum entropy principle and how it promotes certain distributions
over latent codes even without explicit entropic regularization. Section 2.5 demonstrates
the generative performance of EAEs on three benchmark datasets (CELEBA, CIFAR-10
and MNIST). EAEs outperform previous deterministic and variational autoencoders in
terms of FID scores. Section 2.6 concludes the Chapter with suggestions for future work.

2.2 Variational autoencoder

The variational autoencoder [28] (VAE) consists of a decoder followed by an encoder. The
term autoencoder [41] is in general applied to any model that is trained to reconstruct its
inputs. For a normal autoencoder, representing the decoder and encoder as D, E respectively,
for every input xi we seek:

E(xi) = zi,D(zi) = x̂i ≈ xi

Such a model is usually trained by minimizing ||x̂i − xi||2 over all xi in training set. In a
variational autoencoder, there is no fixed codeword zi for a xi. Instead, we have

zi = E(xi) ∼ N (Eµ(xi), Eσ2(xi))
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The encoder network calculates means and variances via Eµ, Eσ2 layers for every data
instance, from which a code is sampled. The loss function is of the form:

||D(zi)− xi||2 + βDKL(N (Eµ(xi), Eσ2(xi))||N (0, I))

where DKL denotes the Kullback-Leibler divergence and zi denotes the sample from the
distribution over codes. Upon minimizing the loss function over xi ∈ a training set, we can
generate samples as: generate zi ∼ N (0, I), and output D(zi). The KL term makes the
implicitly learnt distribution of the encoder close to a spherical Gaussian. Usually, zi is of
a smaller dimensionality than xi.

2.2.1 Variations on Variational autoencoders

In practice, the above objective is not easy to optimize. The original VAE formulation did
not involve β, and simply set it to 1. Later, it was discovered that this parameter helps
training the VAE correctly, giving rise to a class of architectures termed β-VAE. [20]

The primary problem with the VAE lies in the training objective. We seek to minimize
KL divergence for every instance xi, which is often too strong. The result is termed
posterior collapse [18] where every xi generates Eµ(xi) ≈ 0, Eσ2(xi) ≈ 1. Here, the latent
variable zi begins to relate less and less to xi, because neither µ, σ2 depend on it. Attempts
to fix this [26] involve analyzing the mutual information between zi, xi pairs, resulting in
architectures like InfoVAE [60], along with others such as δ-VAE [44]. Posterior collapse
is notable when the decoder is especially ‘powerful,’ i.e. has great representational power.
Practically, this manifests in the decoder’s depth being increased, more deconvolutional
channels, etc.

One VAE variation includes creating a deterministic architecture that minimizes an
optimal transport based Wasserstein loss between the empirical data distribution and
decoded images from aggregate posterior. Such models [52] work with the aggregate posterior
instead of outputting a distribution per sample, by optimizing either the Maximum Mean
Discrepancy (MMD) metric with a Gaussian kernel [16], or using a GAN to minimize this
optimal transport loss via Kantorovich-Rubinstein duality. The GAN variant outperforms
using MMD, and WAE techniques are usually considered as WAE-GAN for achieving
state-of-the-art results.
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2.2.2 Batch normalization

Normalization is often known in statistics as the procedure of subtracting the mean of
a dataset and dividing by the standard deviation. This sets the sample mean to zero
and variance to one. In neural networks, normalization for a minibatch [24] has become
ubiquitous since its introduction and is now a key part of training all forms of deep
generative models [23]. Given a minibatch of inputs xi of dimensions n with µij, σij as its
mean, standard deviation at index j respectively, we will call BN as the operation that
satisfies:

[BN(xi)]j =
xij − µij
σij

(2.1)

Note that in practice, a batch normalization layer in a neural network computes a function
of form A ◦B with A as an affine function, and B as BN. This is done during training time
using the empirical average of the minibatch, and at test time using the overall averages.
Many variations on this technique such as L1 normalization, instance normalization, online
adaptations, etc. exist [56, 59, 5, 53, 2, 21]. The mechanism by which this helps optimization
was initially termed as “internal covariate shift,” but later works challenge this perception
[46, 58] and show it may have harmful effects [11].

2.3 The entropic autoencoder

Instead of outputting a distribution as VAEs do, we seek an approach that turns deterministic
autoencoders into generative models on par with VAEs. Now, if we had a guarantee that, for
a regular autoencoder that merely seeks to minimize reconstruction error, the distribution
of all zi’s approached a spherical Gaussian, we could carry out generation just as in the
VAE model. We do the following: we simply append a batch normalization step (BN as
above, i.e. no affine shift) to the end of the encoder, and minimize the objective:

||x̂i − xi||2 − βH(zi), x̂i = D(zi), zi = E(xi) (2.2)

where H represents the entropy function and is taken over a minibatch of the zi. We recall
and use the following property: let X be a random variable obeying E[X] = 0, E[X2] = 1.
Then, the maximum value of H(X) is obtained iff X ∼ N (0, 1). We later show that even
when no entropic regularizer is applied, batch norm alone can yield passable samples when
a Gaussian is used for generation purposes. However, for good performance, the entropic
regularizer is necessary.
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2.3.1 Equivalence to KL divergence minimization

Our method of maximizing entropy minimizes the KL divergence by a backdoor. Generally,
minibatches are too small to construct a meaningful sample distribution that can be
compared - in DKL - to the sought spherical normal distribution without other constraints.
However, suppose that we have the following problem with X being a random variable
with some constraint functions Ck e.g. on its moments, with the expectations being over
whatever density defines X:

maxH(X), E[Ck(X)] = ck, k = 1, 2, . . .

In particular let the two constraints be E[X] = 0, E[X2] = 1 in the above formulation
i.e. k = 1, 2 with C1 being the identity function and C2 the squaring function. Consider a
‘proposal’ distribution Q that satisfies EQ[X] = 0, EQ[X2] = 1 and also a maximum entropy
distribution P that is the solution to the optimization problem above. In our setup, P can
be thought of as the target distribution and Q the distribution the encoder is learning. The
cross entropy of P with respect to Q is

EQ[− logP (X)]

In our case, P is a Gaussian and − logP (X) is a term of the form aX2 + bX + c.
In expectation of this w.r.t. Q, EQ[X], EQ[X2] are already fixed. Thus for all proposal
distributions Q, cross entropy of P w.r.t. Q - written as H(Q,P ) obeys

H(Q,P ) = H(Q) +DKL(Q||P )

Pushing up H(Q) thus directly reduces the KL divergence to P , as the left hand side
is a constant. Over a minibatch, every proposal Q identically satisfies the two moment
conditions due to normalization. Unlike KL divergence, involving estimating and integrating
a conditional probability (both rapidly intractable in higher dimensions) entropy estimation
is easier, involves no conditional probabilities, and forms the bedrock of estimating quantities
derived from entropy such as MI. Due to interest in the Information Bottleneck method
[51] which requires entropy estimation of hidden layers, we already have a nonparametric
entropy estimator of choice - the Kozachenko Leonenko estimator [31], which also incurs
low computational load and has already been used for neural networks. This principle of
“cutting the middleman” builds on the fact that MI based methods for neural networks
often use Kraskov-like estimators [32], a family of estimators that break the MI term into
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H terms which are estimated by the Kozachenko-Leonenko estimator. Instead, we directly
work with the entropy.

2.3.2 The Kozachenko-Leonenko estimator

The Kozachenko-Leonenko estimator [31] operates as follows. Let N ≥ 1 and X1, . . . , XN+1

be i.i.d. samples from an unknown distribution Q. Let each Xi ∈ Rd.

For each Xi, define Ri = min ||Xi−Xj||2, j 6= i and Yi = N(Ri)
d. Let Bd be the volume

of the unit ball in Rd and γ the Euler-mascheroni constant ≈ 0.577. The Kozachenko
Leonenko estimator works as follows:

H(Q) ≈ 1

N + 1

N+1∑
i=1

log Yi + logBd + γ

Intuitively, having a high distance to the nearest training example for each example pushes
up the entropy via the Yi term. Such “repulsion”-like nearest neighbour techniques have
been employed elsewhere for likelihood-free techniques such as implicit maximum likelihood
estimation [37, 36]. In general, the estimator is biased with known asymptotic orders
[8] - however, when the bias stays relatively constant through training, optimization is
unaffected. The complexity of the estimator when utilizing nearest neighbours per minibatch
is quadratic in the size of the batch, which is reasonable for small batches.

2.3.3 Generalization to Gibbs distributions

A distribution that has the maximum entropy under constraints Ck as above is called
the Gibbs distribution of the respective constraint set. When this distribution exists,
we have the result that there exist Lagrange multipliers λk, such that if the maximum
entropy distribution is P , logP (X) is of the form

∑
λkCk. For any candidate distribu-

tion Q, EQ[Ck(X)] is determined solely from the constraints, and thus the cross-entropy
EQ[− logP (X)] is also determined. Our technique of pushing up the entropy to reduce KL
holds under this generalization. For instance, pushing up the entropy for L1 normalization
layers corresponds to inducing a Laplace distribution.

2.3.4 Parallels with constant variance VAEs

One variation on VAEs is the constant variance VAE [12], where the term Eσ2 is constant
for every instance xi. Writing Mutual Information as MI, consider transmitting a code via
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the encoder that maximizes MI(X, Y ) where X is the encoder’s output and Y the input to
the decoder. In the noiseless case, Y = X, and we work with MI(X,X).

For a discrete random variable X, MI(X,X) = H(X). If noiseless transmission was
possible, the mutual information would depend solely on entropy. However, using continuous
random variables, our analysis of the constant variance autoencoder would for σ2 = 0 yield
a MI of ∞, between the code emitted by the encoder and received by the decoder. This at
first glance appears ill-defined.

However, suppose that we are in the test conditions i.e. the batch norm is using a
fixed mean and variance and independent of minibatch. Now, if the decoder receives
Y , MI(X, Y ) = H(X) − H(X|Y ). Since (X|Y ) is a Dirac distribution, it pushes the
mutual information to ∞. If we ignore the infinite mutual information introduced by the
deterministic mapping just as in the definition of differential entropy, the only term remaining
is H(X), maximizing which becomes equivalent to maximizing MI. We propose our model
as the zero-variance limit of present constant variance VAE architectures, especially when
batch size is large enough to allow accurate estimations of mean and variance.

2.3.5 Comparison to prior deterministic autoencoders

Our work is not the first to use a deterministic autoencoder as a generative one. Prior
attempts in this regard such as regularized autoencoders (RAEs) [12] share the similarities of
being deterministic and regularized autoencoders, but do not leverage batch normalization.
Rather, these methods rely on taking the constant variance autoencoder, and imposing a
regularization term on the architecture. This does not maintain the KL property that we
show arises via entropy maximization, rather, it forms a latent space that has to be estimated
such as via a Gaussian mixture model (GMM) on top of the regularization. The Gaussian
latent space is thus lost, and has to be estimated post-training. In contrast to the varying
regularization choices of RAEs, our method uses the specific Max Entropy regularizer forcing
a particular latent structure. Compared to the prior Wasserstein autoencoder (WAE) [52],
RAEs achieve better empirical results, however we further improve on these results while
keeping the ability to sample from the prior i.e. isotropic Gaussians. As such, we combine
the ability of WAE-like sampling with performance superior to RAEs, delivering the best of
both worlds. This comparison excludes the much larger bigWAE models [52] which utilize
ResNet encoder-decoder pairs.

In general, for all VAE and RAE-like models, the KL/Optimal Transport/Regularization
terms compete against reconstruction loss and having perfect Gaussian latents is not always
feasible, hence, EAEs, like RAEs, benefit from post-density estimation and GMM fitting.

11



The primary advantage they attain is not requiring such steps, and performing at a solid
baseline without it.

2.4 The maximum entropy principle and regularizer-

free latents

We now turn to a general framework that motivates our architecture and adds context.
Given the possibility of choosing a distribution Q ∈ D that fits some given dataset X
provided, what objective should we choose? One choice is to pick the maximum likelihood
estimate:

QMLE = arg max
Q∈D

EX̄ [LLQ(X)]

where LLQ(X) denotes the log likelihood of an instance X and EX̄ indicates that the
expectation is taken with the empirical distribution X̄ from X , i.e. every point X is
assigned a probability 1

|X | . An alternative is to pick the maximum entropy solution or
maxent:

QMAXENT = arg max
Q∈D

H(Q) (2.3)

subject to Ti(Q) = Ti(X ) (2.4)

Where H is the entropy of Q, and Ti(Q) are summary statistics of Q that match the
summary statistics over the dataset. For instance, if all we know is the mean and variance
of X , the distribution Q with maximum entropy that has the same mean and variance is
Gaussian. This so-called maximum entropy principle [3] has been used in reinforcement
learning [61], natural language processing [4], normalizing flows [39], and computer vision
[48] successfully. Maximum entropy is in terms of optimization the convex dual problem of
maximum likelihood, and takes a different route of attacking the same objective. We will
shorten maximum entropy to maxent for ease of reference.

2.4.1 The maxent principle and deterministic autoencoders

Now, consider the propagation of an input through an autoencoder. The autoencoder may
be represented as:

X ≈ D(E(X))
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where D, E respectively represent the decoder and encoder halves. Observe that if we add a
BatchNorm of the form A ◦B with A as an affine shift, B as BN (as defined in Equation
2.1) to E - the encoder - we try to find a distribution Z after B and before A, such that:

• E[Z] = 0, E[Z2] = 1

• B ◦ E(X) ∼ Z, A ◦ D(Z) ∼ X

Observe that there are two conditions that do not depend on E ,D: E[Z] = 0, E[Z2] = 1.
Consider two different optimization problems:

• O, which asks to find the max entropy distribution Q, i.e., with max H(Q) over Z
satisfying EQ[Z] = 0, EQ[Z2] = 1.

• O′, which asks to find D, E , A and a distribution Q′ over Z such that we maximize
H(Q′), with EQ′ [Z] = 0, EQ′ [Z2] = 1, B ◦ E(X) ∼ Z,A ◦ D(Z) ∼ X,Z ∼ Q′.

Since O has fewer constraints, H(Q) ≥ H(Q′). Furthermore, H(Q) is known to be
maximal iff Q is an isotropic Gaussian over Z. What happens as the capacity of D, E rises
to the point of possibly representing anything (e.g., by increasing depth)? The constraints
B ◦ E(X) ∼ Z,A ◦ D(Z) ∼ X,Z ∼ Q′ effectively vanish, since the functional ability to
deform Z becomes arbitrarily high. We can take the solution of O, plug it into O′, and find
E ,D, A that (almost) meet the constraints of B ◦ E(X) ∼ Z,A ◦ D(Z) ∼ X,Z ∼ Q′. If the
algorithm chooses the max entropy solution, the solution of O′ - the actual distribution
after the BatchNorm layer - approaches the maxent distribution, an isotropic Gaussian,
when the last three constraints in O affect the solution less.

2.4.2 Natural emergence of Gaussian latents in deep narrowly
bottlenecked autoencoders

We make an interesting prediction: if we increase the depths of E ,D and constrain E to
output a code Z obeying E[Z] = 0, E[Z2] = 1, the distribution of Z should - even without
an entropic regularizer - tend to go to a spherical Gaussian as depth increases relative to
the bottleneck. In practical terms, this will manifest in less regularization being required at
higher depths or narrower bottlenecks. This phenomenon also occurs in posterior collapse
for VAEs and we should verify that our latent space stays meaningful under such conditions.
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Under the information bottleneck principle, for a neural network with output Y from
input X, we seek a hidden layer representation for Z that maximizes MI(Z, Y ) while
lowering MI(X,Z). For an autoencoder, Y ≈ X. Since Z is fully determined from X
in a deterministic autoencoder, increasing H(Z) increases MI(Z,X) if we ignore the ∞
term that arises due to H(Y |X) as Y approaches a deterministic function of X as before
in our CV-VAE discussion. Increasing H(Z) will be justified iff it gives rise to better
reconstruction, i.e. making Z more entropic (informative) lowers the reconstruction loss.

Such increases are likelier when Z is of low dimensionality and struggles to summarize
X. We predict the following: a deep, narrowly bottlenecked autoencoder with a batch
normalized code, will, even without regularization, approach spherical Gaussian-like latent
spaces. We show this in the datasets of interest, where narrow enough bottlenecks can yield
samples even without regularization, a behaviour also anticipated in [12].

2.5 Empirical experiments

2.5.1 Baseline architectures with entropic regularization

We begin by generating images based on our architecture on 3 standard datasets, namely
MNIST [35], CIFAR-10 [33] and CelebA [38]. We use convolutional channels of [128, 256, 512, 1024]
in the encoder half and deconvolutional channels of [512, 256] for MNIST and CIFAR-10
and [512, 256, 128] for CelebA, starting from a channel size of 1024 in the decoder half. For
kernels we use 4× 4 for CIFAR-10 and MNIST, and 5× 5 for CelebA with strides of 2 for
all layers except the terminal decoder layer. Each layer utilizes a subsequent batchnorm
layer and ReLU activations, and the hidden bottleneck layer immediately after the encoder
has a batch norm without affine shift. These architectures, preprocessing of datasets, etc.
match exactly the previous architectures that we benchmark against [12, 52].

For optimization, we utilize the Adam optimizer. The minibatch size is set to 100, to
match [12] with an entropic regularization based on the Kozachenko Leonenko estimator [31].
In general, larger batch sizes yielded better FID scores but harmed speed of optimization.
In terms of latent dimensionality, we use 16 for MNIST, 128 for CIFAR-10 and 64 for
CelebA. At most 100 epochs are used for MNIST and CIFAR-10 and at most 70 for CelebA.

In Figure 2.1, we present qualitative results on the MNIST dataset. We do not report the
Frechet Inception Distance (FID) [19], a commonly used metric for gauging image quality,
since it uses the Inception network, which is not calibrated on grayscale handwritten digits.
In Figure 2.1, we show the quality of the generated images for two different regularization
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weights β in Eq. 2.2 (0.05 and 1.0 respectively) and in the same Figure illustrate the quality
of reconstructed digits.

Figure 2.1: Left: Generated MNIST images with β = 0.05 in Eq. 2.2. Middle: Generated
MNIST images with β = 1.0 in Eq. 2.2. Right: Reconstructed MNIST images with β = 1.0
in Eq. 2.2.

Figure 2.2: Generated images on CelebA

We move on to qualitative results for CelebA. We present a collage of generated samples
in Figure 2.2. CIFAR-10 samples are presented in Figure 2.3. We also seek to compare,
thoroughly, to the RAE architecture. For this, we present quantitative results in terms of
FID scores in Table 2.1 (larger version in the additional results Section). We show results
when sampling latent codes from an isotropic Gaussian as well as from densities fitted to
the empirical distribution of latent codes after the AE has been optimized. We consider
isotropic Gaussians and Gaussian mixture models (GMMs). In all cases, we improve on
RAE-variant architectures proposed previously [12]. We refer to our architecture as the
entropic autoencoder (EAE). There is a tradeoff between Gaussian latent spaces and
reconstruction loss, and results always improve with ex-post density estimation due to
prior-posterior mismatch.
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Figure 2.3: Generated images on CIFAR-10, under four different regularization weights
(top left β = 0.5, top right β = 0.7, bottom left β = 0.05, bottom right β = 0.07).

Details on previous methods

In the consequent Tables and Figures, VAE/AE have their standard meanings. AE-L2
refers to an autoencoder with only reconstruction loss and L2 regularization, 2SVAE to the
Two-Stage VAE as per [7], WAE to the Wasserstein Autoencoder as per [52], RAE to the
Regularized Auto-encoder as per [12], with RAE-L2 referring to such with a L2 penalty,
RAE-GP to such with a Gradient Penalty, RAE-SN to such with spectral normalization.
We use spectral normalization in our EAE models for CelebA, and L2 regularization for
CIFAR-10.

Qualitative comparison

While Table 2.1 captures the quantitative performance of our method, we seek to provide a
qualitative comparison as well. This is done in Figure 2.4. We compare to all RAE variants,
as well as 2SVAE, WAE, CV-VAE and the standard VAE and AE as in Table 2.1. Results
for CIFAR-10 and MNIST appear later in the additional results Section.

2.5.2 Gaussian latents sans entropic regularization

A surprising result emerges as we make the latent space dimensionality lower while ensuring
a complex enough decoder and encoder. Though we discussed this process earlier in the
context of depth, our architectures are convolutional and a better heuristic proxy is the
number of channels while keeping the depth constant. We note that all our encoders share
a power of 2 framework, i.e. channels double every layer from 128. Keeping this doubling
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CIFAR-10 CelebA
Architectures(Isotropic) FID Reconstruction FID Reconstruction
VAE 106.37 57.94 48.12 39.12
CV-VAE 94.75 37.74 48.87 40.41
WAE 117.44 35.97 53.67 34.81
2SVAE 109.77 62.54 49.70 42.04
EAE 85.26(84.53) 29.77 44.63 40.26
Architectures(GMM) FID Reconstruction FID Reconstruction
RAE 76.28 29.05 44.68 40.18
RAE-L2 74.16 32.24 47.97 43.52
RAE-GP 76.33 32.17 45.63 39.71
RAE-SN 75.30 27.61 40.95 36.01
AE 76.47 30.52 45.10 40.79
AE-L2 75.40 34.35 48.42 44.72
EAE 73.12 29.77 39.76 40.26

Table 2.1: FID scores for relevant VAEs & VAE-like architectures. Scores within parentheses
for EAE denote regularization on a linear map. Isotropic denotes samples drawn from
latent spaces of N (0, I). GMM denotes sampling from a mixture of 10 Gaussians of full
covariance. These evaluations correspond to analogous benchmarking for RAEs [12]. Larger
version in additional results Section.
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Figure 2.4: Qualitative comparisons to RAE variants and other standard benchmarks on
CelebA. On the left, we have reconstructions (top row being ground truth GT) , the middle
has generated samples, the right has interpolations. From top to bottom ignoring GT: VAE,
CV-VAE, WAE, 2SVAE, RAE-GP, RAE-L2, RAE-SN, RAE, AE, EAE. Non-EAE Figures
reproduced from [12]

structure, we investigate the effect of width on the latent space with no entropic regularizer.
We set the channels to double from 64, i.e. 64, 128, 256, 512 and correspondingly in the
decoder for MNIST. Figure 2.5 shows the samples with the latent dimension being set to 8,
and the result when we take corresponding samples from an isotropic Gaussian when the
number of latents is 32.

There is a large, visually evident drop in sample quality by going from a narrow
autoencoder to a wide one for generation, when no constraints on the latent space are
employed. To confirm the analysis, we provide the result for 16 dimensions in the Figure as
well, which is intermediate in quality.

The aforesaid effect is not restricted to MNIST. We perform a similar study on CelebA
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Figure 2.5: Variation in bottleneck width causes massive differences in generative quality
without regularization. From left to right, we present samples (from N (0, I) for 8, 16, 32
dimensional latent spaces)

taking the latent space from 48 to 128, and the results in Figures 2.6 and 2.7 show
a corresponding change in sample quality. Of course, the results with 48 dimensional
unregularized latents are worse than our regularized, 64 dimensional sample collage in
Figure 2.2, but they retain facial quality without artifacts. FID scores (provided in caption)
also follow this trend.

Figure 2.6: Generated images on CelebA with a narrow bottleneck of 48, unregularized.
The associated FID score was 53.82.

In our formulation of the MaxEnt principle, we considered more complex maps (e.g.,
deeper or wider networks with possibly more channels) able to induce more arbitrary
deformations between a latent space and the target space. A narrower bottleneck incentivizes
Gaussianization - with a stronger bottleneck, each latent carries more information, with
higher entropy in codes Z, as discussed in our parallels with Information Bottleneck-like
methods.

We present a similar analysis between CIFAR-10 AEs without regularization. Unlike
previous cases, CIFAR-10 samples suffer from the issue that visual quality is less evident to
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Figure 2.7: Generated images on CelebA with latent dimensions of 128, also unregularized.
This associates a FID score of 64.72.

the human eye. These Figures are presented in Figures 2.8 and 2.9. The approximate FID
difference between these two images is roughly 13 points (≈ 100 vs ≈ 87). While FID scores
are not meaningful for MNIST, we can compare CelebA and CIFAR-10 in terms of FID
scores (provided in Figure captions). These back up our assertions. For all comparisons,
only the latent space is changed and the best checkpoint is taken for both models - we have
a case of a less complex model outperforming another that can’t be due to more channels
allowing for better reconstruction, explainable in MaxEnt terms.

Figure 2.8: Generated images on CIFAR-10 with unregularized latent dimension of 128.
The FID score is 100.62, with L2 regularization.

20



Figure 2.9: Generated images on CIFAR-10 with unregularized latent dimension equal to
64. The FID score associated with this checkpoint is 87.45, trained using L2 regularization.
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Additional results

We present additional qualitative results that provide further insight into comparisons to
RAE architectures, detailed on the next page.

We add in this page general notes on the training of EAEs, as requested by UAI 2020
reviewers and for general perusal of would-be EAE practitioners. In particular, across
extensive experiments, we noted the following empirical trends and heuristics which we
choose to pass on for the sake of ease of implementation.

• Results for all EAEs that use the Kozachenko-Leonenko or similar KNN based
entropy estimators can be improved in general by using ≥ 2 neighbours per minibatch.
However, we do not recommend this. Performance gains from this are slight, and for
most applications, using 1 suffices.

• We recommend using at least 3 conv-deconv layers in the encoder and decoder for
any autoencoding pair for all three datasets for best FID scores.

• For both CIFAR and CelebA, we recommend a minimum latent size of 32.

• For CIFAR-10 in particular, learning rate decay is critical when using the Adam
optimizer. We use an exponential decay with a decay rate ≥ 0.98. It should be noted
that [12] use a more complex schedule that involves looking at the validation loss. We
did not require such.

• Good samples emerge early - samples for all three datasets generated by epoch 10 as
evaluated by a human eye are highly predictive of eventual best performance in terms
of FID. As such, it is recommended to periodically generate samples and visually
inspect them.

Preprocessing datasets

Here, we detail the pre-processing of datasets common to our methods and the methods we
benchmark against. We carry out no pre-processing for CIFAR-10. For MNIST, we pad
with zeros to reach 32× 32 as the shape. For CelebA, pre-processing is important and can
vastly change FID scores. We perform a center-crop to 140× 140 before resizing to 64× 64.
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Details of following material

In Table 2.2 below, we present a larger version of the FID results from Table 2.1 in the
main Chapter. In Figures 2.10 and 2.11 below, we also present qualitative results including
reconstruction and interpolations on the latent space that serve to show that the latent
spaces obtained by EAEs are meaningful. These experiments on latent spaces mirror [12].
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CIFAR-10 CelebA
Architectures(Isotropic) FID Reconstruction FID Reconstruction
VAE 106.37 57.94 48.12 39.12
CV-VAE 94.75 37.74 48.87 40.41
WAE 117.44 35.97 53.67 34.81
2SVAE 109.77 62.54 49.70 42.04
EAE 85.26(84.53) 29.77 44.63 40.26
Architectures(MVG) FID Reconstruction FID Reconstruction
RAE 83.87 29.05 48.20 40.18
RAE-L2 80.80 32.24 51.13 43.52
RAE-GP 83.05 32.17 116.30 39.71
RAE-SN 84.25 27.61 44.74 36.01
AE 84.74 30.52 127.85 40.79
AE-L2 247.48 34.35 346.29 44.72
EAE 80.07 29.77 42.92 40.26
Architectures(GMM) FID Reconstruction FID Reconstruction
VAE 103.78 57.94 45.52 39.12
CV-VAE 86.64 37.74 49.30 40.41
WAE 93.53 35.97 42.73 34.81
2SVAE N/A 62.54 N/A 42.04
RAE 76.28 29.05 44.68 40.18
RAE-L2 74.16 32.24 47.97 43.52
RAE-GP 76.33 32.17 45.63 39.71
RAE-SN 75.30 27.61 40.95 36.01
AE 76.47 30.52 45.10 40.79
AE-L2 75.40 34.35 48.42 44.72
EAE 73.12 29.77 39.76 40.26

Table 2.2: FID scores for relevant VAEs and VAE-like architectures. Scores within paren-
theses for EAE denote a regularization on a linear map. Isotropic denotes samples drawn
from a latent space of N (0, I). GMM denotes sampling from a mixture of 10 Gaussians
of full covariance. These evaluations correspond to analogous benchmarking for RAEs
[12]. Alongside FID values appearing in Table 2.1 of the main Chapter, we add results
obtained when a Multivariate Gaussian (MVG) i.e. N (µ,Σ) of full covariance is used for
ex-post density estimation. Note that values for reconstruction are not changed by change
of density estimators.
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Figure 2.10: Qualitative comparisons to RAE variants and other standard benchmarks
on CIFAR-10. On the left, we have reconstructions (top row being ground truth GT),
the middle has generated samples, the right has interpolations. From top to bottom
ignoring GT: VAE, CV-VAE, WAE, 2SVAE, RAE-GP, RAE-L2, RAE-SN, RAE, AE, EAE.
Non-EAE Figures reproduced from [12]
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Figure 2.11: Qualitative comparisons to RAE variants and other standard benchmarks on
MNIST. On the left, we have reconstructions (top row being ground truth GT) , the middle
has generated samples, the right has interpolations. From top to bottom ignoring GT: VAE,
CV-VAE, WAE, 2SVAE, RAE-GP, RAE-L2, RAE-SN, RAE, AE, EAE. Non-EAE Figures
reproduced from [12]
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2.6 Conclusions

The VAE has remained a popular deep generative model, while drawing criticism for
its blurry images, posterior collapse and other issues. Deterministic encoders have been
posited to escape blurriness, since they ‘lock’ codes into a single choice for each instance.
We consider our work as reinforcing Wasserstein autoencoders and other recent work in
deterministic autoencoders such as RAEs [12]. In particular, we consider our method of
raising entropy to be generalizable whenever batch normalization exists, and note that it
solves a more specific problem than reducing the KL between two arbitrary distributions
P,Q, examining only the case where P,Q satisfy moment constraints. Such reductions can
make difficult problems tractable via simple estimators.

We had initially hoped to obtain results via sampling from a prior distribution that
were, without ex-post density estimation, already state of the art. In practice, we observed
that using a GMM to fit the density improves results, regardless of architecture. These
findings might be explained in light of the 2-stage VAE analysis [7], wherein it is postulated
that single-stage VAEs inherently struggle to capture Gaussian latents, and a second stage
is amenable. To this end, we might aim to design a 2-stage EAE. Numerically, we found
such an architecture hard to tune, as opposed to a single stage EAE which was robust to
the choice of hyperparameters. We believe this might be an interesting future direction.

We note that our results improve on the RAE, which in turn improved on the 2SVAE
FID numbers. Though the latest GAN architectures remain out of reach in terms of FID
scores for most VAE models, 2SVAE came within striking distance of older ones, such as
the vanilla WGAN. Integrating state of the art techniques for VAEs as in, for instance,
VQVAE2 [43] to challenge GAN-level benchmarks could form an interesting future direction.
Quantized latent spaces also offer a more tractable framework for entropy based models
and allow us to work with discrete entropy which is a more meaningful function. As noted
earlier, we do not compare to the ResNet equipped bigWAE models [52], which are far
larger but also deliver better results (up to 35 for CelebA).

The previous work on RAEs [12], which our method directly draws on deserves spe-
cial addressal. The RAE method shows that deterministic autoencoders can succeed at
generation, so long as regularizers are applied and post-density estimation is carried out.
Yet, while regularization is certainly nothing out of the ordinary, the density estimation
step robs RAEs of sampling from any isotropic prior. We improve on the RAE techniques
when density estimation is in play, but more pertinently, we keep a method for isotropic
sampling that is rigorously equivalent to cross entropy minimization. As such, we offer
better performance while adding more features, and our isotropic results far outperform
comparable isotropic benchmarks.
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Chapter 3

Batch normalization, radial
contraction and implications

3.1 Introduction

Let us begin by stating upfront that the results in this Chapter merely, as of now, reflect
some interesting and consistent observations on the norms of adversarial examples. In the
present state, this result is not sufficient to distinguish between adversarial and normal
examples, due to significant overlap despite clear average differences. This caveat should be
kept in mind when perusing the rest of the Chapter that these results are interesting but
do not, as of this moment, have a clear use case. However, they are nevertheless deemed
relevant enough to the core thrust of the thesis to be included.

Adversarial examples xadv are commonly defined as data instances which lie only ε in
some norm (usually L∞) from an actual data instance xreal. To a human observer, ε is
small and xreal, xadv share the same label, yet to a classifier network, this is not the case.
Since their initial discovery [50], they have spurred research in both attacking (generation
of adversarial data instances) and defending neural networks against the same.

The common variants of generating adversarial images rely on gradient steps. One of
the earliest and most effective attacks is the Fast Gradient Sign Method (FGSM) [14], and
a far more effective variant can be found via Projected Gradient Descent (PGD) [40] . For
defense, methods include adversarial training, in which adversarial images are fed to the
network. Adversarial training, though expensive, is one of the best ways to defend. Many
defenses have been shown to give a false sense of security by obfuscation of gradients [1].
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Various models of defense rely on ‘inspecting’ the image to determine whether it
is adversarial or not, and filtering correspondingly. A representative for this angle is
PixelDefend [49]. In this method, we use a generative model which assigns likelihoods to
data instances. The assumption is that adversarial examples possess lower likelihoods in
comparison to real ones.

Can such models of inspection or filtering be used while working with the latent
representations created by the data instances instead of in the raw image domain? This
approach has the advantage of working with a space of much lower dimensionality compared
to the input space, making building our generative model much easier. Therefore, it makes
sense to look at the representations induced by adversarial examples, which we will call
adversarial representations henceforth.

In this Chapter, we show that after batch normalization, adversarial representations
tend to exhibit much lower L2 norms than the representations of original instances. This
is of potential interest if we view the instances as obeying a Gaussian likelihood, and as
such, adversarial instances actually being likelier. We also put this result in the context of
a possible explanation via the relation between Gaussians, batch normalization, and the
geometry of Gaussians in high dimensions.

3.1.1 Gaussians, entropy and batchnorm

Suppose that in the process of training, the sample means and standard deviations in a pre-
BN layer converge to actual sample statistics. After the batchnorm layer, the representation
vector Z satisfies (a la Chapter 2):

E(Zi) = 0, E(Z2
i ) = 1

Under the above constraints, the maximum entropy of Z is attained iff Z ∼ N (0, I).
The distribution over Z resembles a Gaussian (in KL divergence) as entropy rises - if
P = N (0, I) and Z obeys above two constraints, with Z ∼ Q, writing H(Q) as the entropy
of Z which is ∼ Q, we have:

H(Q,P ) = H(Q) +DKL(Q||P )

where H(Q,P ) is EQ[− logP (Z)] - a constant over any Q that generates random
variables Z satisfying these moment constraints, since the expectation of EQ[− logP (Z)] is
wholly determined by EQ[Z], EQ[Z2] when P is the isotropic Gaussian.
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3.2 Geometry of adversarial representations

Consider a real data instance xreal, and let us create xadv from it via FGSM or PGD. Our
experiments (discussed further below) demonstrate that xadv produces a d-dimensional
representation Zadv (post batchnorm) which obeys ‖Zadv‖2 < ‖Zreal‖2, often significantly.

3.2.1 Relation to gaussianization

We claim that the above is explainable if we assume that Z are distributed ∼ N (0, Id).
For high d, the Gaussian distribution has almost all of its support over a thin shell [54] -
the random variable ‖Z‖2 is tightly concentrated around

√
d. Given two representations

ZA, ZB of different classes A,B on the surface of a hypersphere of radius
√
d, an adversarial

example’s representation Zadv seeks to move from ZA towards ZB approximately along the
chord joining them. Movement along a chord brings the representation ‘inside’ the sphere
(Figure 3.1). Analogous cases arise for L2 constrained representation learning [55].

We note that if the sphere is thought of as a manifold, previous works have discussed
adversarial examples moving ‘off’ the manifold. Relatively less attention has been devoted
to whether they move ‘inside’ the manifold, however.

3.2.2 Circumstances of Gaussianization

We assume above that Z ∼ N (0, Id), or, since Z follows a batch norm, equivalently that
H(Z) is high. The information bottleneck formulation of deep networks states deep nets
seek to achieve intermediate representations Z lowering MI(X,Z) where X is the input,
and raise MI(Y, Z) where Y is the output, where MI is the mutual information between two
random variables. We recall that H, the entropy, is the expected value of − logP (X) over
instances X generated from a data distribution X and the mutual information MI(X, Y ) is
H(Y )−H(Y |X).

Assuming that the deep network is deterministic - an assumption that can accommodate
batch norm layers so long as they are set to use population statistics over minibatch ones
at test time - we note that MI(X,Z) is H(Z) − H(Z|X), where the latter term is an
undefined quantity as Z is a deterministic function of X. If we treat it as a constant and
focus on H(Z), raising H(Z) ‘raises’ the MI. This is justified iff the corresponding rise
in entropy improves classification accuracy wrt Y , as seen in the MI(Y, Z) term which is
H(Y )−H(Y |Z). The first term, H(Y ) is a constant given the dataset, but the latter term
H(Y |Z) falls as classification accuracy rises.
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Figure 3.1: In the image above, P,Q are latent representations of actual images, while R
lies on the chord joining them and has lower radial distance from the center

Such a tradeoff is thus likely when Z is low-dimensional and struggles to summarize
X to improve Y . Narrow layers succeeding BatchNorm layers might be expected to have
distributions close to Gaussians, especially as X grows more complex (such as switching to
CIFAR-10 from MNIST).

Further, note that if we have Z ∼ as a Gaussian, X as the data, and Y is the label, the
space of functions must be large enough to convert X to Z and then again to Y , wherein
the distributions of X, Y are inherently unknown. In practical terms, increasing the space of
functions largely boils down to adding more depth both before and after the batchnormed
layer.

3.3 Empirical results

We create two separate classes of architectures for MNIST and CIFAR-10. The architectures
for MNIST are similar to LeNet, while that of CIFAR-10 is similar to stacking VGG blocks.
This is done in order to make sure our architectures are similar to popular models. For
both CIFAR and MNIST, one model resembles a CNN, and the other is a CNN with a
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MNIST CIFAR-10

CNN x ∈ R28×28×1

→ C10 → MP2 → ReLU
→ C20 → MP2 → ReLU
→ Flatten→ L320

→ BN→ ReLU
→ LW → BN→ ReLU
→ L10 → Logsoftmax

x ∈ R32×32×3

→ C32 → MP2 → ReLU
→ C64 → MP2 → ReLU
→ C128 → MP2 → ReLU
→ Flatten→ L2048

→ BN→ ReLU
→ LW → BN→ ReLU
→ L10 → Logsoftmax

AE-CNN x ∈ R28×28×1

→ C10 → MP2 → ReLU
→ C20 → MP2 → ReLU
→ Flatten→ L320

→ BN→ ReLU
→ LW → BN→ ReLU
→ LW ′ → BN→ ReLU
→ L10 → Logsoftmax

x ∈ R32×32×3

→ C32 → MP2 → ReLU
→ C64 → MP2 → ReLU
→ C128 → MP2 → ReLU
→ Flatten→ L2048

→ BN→ ReLU
→ LW → BN→ ReLU
→ LW ′ → BN→ ReLU
→ L10 → Logsoftmax

Table 3.1: Architectural details for the experiments. One extra layer is added for performance
after the bottleneck in AE-CNN. L denotes a linear layer, MP a MaxPool layer. The BN
layers contain affine shifts (attached separately as a linear layer, not shown). LW denotes a
linear layer of width W . We list the values used for W,W ′ : W = 30, 40, 50 is used for both
MNIST and CIFAR-10 for CNN. For CIFAR-10, we additionally use 120, 160, 200 and for
MNIST 90, 120, 150. For W ′ = 100, we use 10, 20, 30, 40 for both MNIST and CIFAR-10.
W ′ = 320 for MNIST has W = 40, 80, 120, 160 and for CIFAR-10 as 50, 100, 150, 200.

narrow bottleneck and one extra layer, to resemble autoencoder-like compression and test
our hypothesis. Architectural details appear in Table 3.1. All models are trained using the
Adam optimizer with a learning rate of 0.001 and checkpointed every 5 epochs.

3.3.1 Radial contraction

Given the data instance X, we calculate Z which is the representation of X after passing
through the layer LW , normalized to zero mean and unit variance but not affine-shifted.
Now, observe that the classification loss - in this case negative log likelihood on the log
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MNIST W #〈∇ZL,Z〉 < 0 #〈∇ZL,Z〉 ≥ 0
Normal 30 8432 1568
CNN 40 8378 1622

50 7407 2593
90 7504 2496
120 7885 2115
150 7286 2714

AE 10 9073 927
CNN 20 9826 174

30 9838 162
40 9861 139
40 9826 174
80 9809 191
120 9680 320
160 9801 199

Table 3.2: Gradient inner products for datasets for MNIST, gray for W ′ = 320

softmax outputs - is a function of Z (by feeding it forward), and if moving Z towards the
origin increased this, then the gradient of the loss wrt Z i.e. ∇ZL would obey 〈∇ZL,Z〉 ≤ 0.
This is empirically verified for both MNIST and CIFAR in Tables 3.2 and 3.3. The above
property is especially obeyed for bottlenecked architectures.

The above result indicates - but does not necessarily show - that moving X towards
the loss direction (via FGSM/PGD) creates Z of lower L2 norms. We now move on to the
actual statistics of adversarial representations.

3.3.2 L2 norms of adversarial representations

From the above, we can see that AE-like bottlenecking strongly promotes representations Z
which obey 〈∇ZL,Z〉 ≤ 0. We now show the average squared L2 norms of Z and adversarial
representations of the same, obtained via FGSM and PGD for all architectures. In all these
cases, ε = 0.01 for CIFAR-10, and 0.03 for MNIST. The point is to choose a reasonably
small ε, since our arguments about adversarial representations rely on them being close to
real ones.

Overall, we see a consistent pattern of lower squared L2 norm when adversarial instances
are used to generate the representations, in Tables 3.5, 3.7, 3.4 and 3.6.
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CIFAR-10 W #〈∇ZL,Z〉 < 0 #〈∇ZL,Z〉 ≥ 0
Normal 30 5453 4547
CNN 40 5288 4712

50 5208 4792
120 5034 4966
160 4874 5126
200 4716 5284

AE 10 8157 1843
CNN 20 8775 1225

30 8840 1160
40 8982 1018
50 8593 1407
100 8220 1780
150 8304 1696
200 7507 2493

Table 3.3: Gradient inner products for CIFAR-10, gray for W ′ = 320

3.3.3 Pairwise comparisons of L2 norms

In this segment, we seek to find out if for corresponding pairs xreal, xadv, most latent pairs
Zreal, Zadv reflect ‖Zreal‖2 ≥ ‖Zadv‖2. Note that this is not equivalent to stating anything
about the average of ‖Zreal‖2, ‖Zadv‖2, which can be skewed by massive outliers in either
direction. We test this on the AE-CNN architecture for MNIST of W = 40,W ′ = 100
which exhibits a slanted ratio for 〈∇ZL,Z〉 < 0. We plot the L2 norm of the adversarial
representations vis-a-vis real ones in Figure 3.2. The resultant trend can be seen to be a
consistent one.
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Width Normal FGSM PGD
10 5.26 3.91 3.31
20 19.05 12.46 11.22
30 40.24 21.67 22.49
40 47.06 23.26 26.86
50 66.48 34.73 35.27
100 105.09 61.91 71.83
150 162.62 103.89 111.54
200 215.80 176.28 211.01

Table 3.4: CIFAR-10 L2 norms vs different widths W , gray for W ′ = 320

Width Normal FGSM PGD
10 3.71 2.32 2.12
20 7.69 4.94 4.76
30 11.43 8.00 7.46
40 15.72 10.58 10.94
40 15.06 10.31 9.79
80 31.20 22.35 23.09
120 46.75 35.41 34.8
160 60.11 44.8 44.19

Table 3.5: MNIST L2 norms vs different widths W , gray for W ′ = 320

Width Normal FGSM PGD
30 40.77 16.97 26.71
40 45.05 18.58 25.59
50 59.61 28.96 38.81
120 135.81 91.18 116.90
160 166.47 112.29 142.46
200 208.27 186.99 280.37

Table 3.6: CIFAR CNN, L2 norms on varying W
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Width Normal FGSM PGD
30 11.16 8.45 8.38
40 14.65 11.60 11.55
50 18.96 16.15 15.77
90 33.32 27.73 26.03
120 44.72 38.61 36.25
150 57.66 49.76 46.03

Table 3.7: MNIST CNN, L2 norms on varying W

Figure 3.2: Pairwise comparisons of norms, MNIST

36



Chapter 4

Conclusion

The key theme of the works presented herein over the thesis is that batch normalization, in its
choice of sufficient statistics, presents a hidden inductive bias towards Gaussian distributions.
The idea that choosing some sufficient statistics biases us towards some distributions is not
new, and such ideas are used to formulate, for instance, exponential families [17] and Gibbs
distributions [10]. However, the usage of suitable entropic regularizers that exploit this
relation is, to our knowledge, novel. This yields direct improvements for some models, as in
the case of the entropic autoencoder presented.

More interestingly, examining situations where high entropy is incentivized, we gain
insight into how this kind of entropic regularization might arise by itself without consciously
put in as part of the optimization, thus, we can glean insight into the inductive bias of
using batch normalization over any other choice. Such hidden biases may in general lead to
further insights down the road.

We would like to conclude by noting that though these relations to distributions are
most readily exploitable for generative models which use the distribution in question for a
sampling step, as in the case of aggregate posterior methods, [52, 12], they can be used
to work with classifier models as well. This is the direction Chapter 3 attempts to head
in. However, as we mention straight away in the Chapter, this direction of the work
remains in progress. It is hoped we can soon refine these findings into a solid use case,
from merely interesting observations. This revolves around possibly using the L2 norm as
a diagnostic tool to detect adversarial examples solely from their latent representations,
for instance, analogous to PixelDefend [49], or using the L2 norm as a surrogate loss to
generate adversarial examples for adversarial training, for the reverse role of being the
attacker.
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