
Security Analysis of Isogeny-Based
Cryptosystems

by

Christopher Leonardi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2020

c© Christopher Leonardi 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/344915519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of contributions

I am the sole-author of chapters 1, 2, 5, and 6. Chapters 3, 4, and 7 contain materials
from the co-authored papers [18], [6], and [68], respectively.

iii

Abstract

Let E be a supersingular elliptic curve over a finite field. In this document we study public-
key encryption schemes which use non-constant rational maps from E. The purpose of
this study is to determine if such cryptosystems are secure. Supersingular Isogeny Diffie-
Hellman (SIDH) and other supersingular isogeny-based cryptosystems are considered. The
content is naturally divided by cryptosystem, and in the case of SIDH, further divided by
type of cryptanalysis: SIDH when the endomorphism ring of the base elliptic curve is
given (as is done in practice), repeated use of keys in SIDH, and endomorphism ring
constructing algorithms. In each case the relevent background material is presented to
develop the theory.

In studying the security of SIDH when the endomorphism ring of the base curve E is
known, one of the main results is the following. This theorem is then used to reduce the
security of such an SIDH instantiation to the problem of finding particular endomorphisms
in End(E).

Theorem 1. Given

1. a supersingular elliptic curve E/Fp2 such that p = N1N2 − 1 for coprime N1 ≈ N2,
where N2 is log p-smooth,

2. an elliptic curve E ′ that is the codomain of an N1-isogeny φ : E → E ′,

3. the action of φ on E[N2], and

4. a k-endomorphism ψ of E, where gcd(k,N1) = 1, and if g is the greatest integer such
that g | N2

2 and g | k, then k′ := k
g
< N1,

there exists a classical algorithm with worst case runtime Õ(k′3) which decides whether
ψ(kerφ) = kerφ or not, but may give false positives with probability ≈ 1√

p
. Further, if k′

is log p-smooth, then the runtime is Õ(
√
k′).

In studying the security of repeated use of SIDH public keys, the main result presented
is the following theorem, which proves that performing multiple pairwise instances of SIDH
prevents certain active attacks when keys are reused.

Theorem 2. Assuming that the CSSI problem is intractable, it is computationally in-
feasible for a malicious adversary, with non-negligible probability, to modify a public key
(EB, φB(PA), φB(QA)) to some (EB, R, S) which is malicious for SIDH.

iv

It is well known that the problem of computing hidden supersingular isogenies can be
reduced to computing the endomorphism rings of the domain and codomain elliptic curves.
A novel algorithm for computing an order in the endomorphism ring of a supersingular
elliptic curve is presented and analyzed to have runtime O(p1/2(log p)2).

In studying non-SIDH cryptosystems, four other isogeny-based cryptosystems are exam-
ined. The first three were all proposed by the same authors and use secret endomorphisms.
These are each shown to be either totally insecure (private keys can be recovered directly
from public keys) or impractical to implement efficiently. The fourth scheme is a novel
proposal which attempts to combine isogenies with the learning with errors problem. This
proposal is also shown to be totally insecure.

v

Acknowledgements

First and foremost, I would like to thank my supervisor David Jao for his excellent guid-
ance during my graduate studies. I am grateful for all the assistance from the members
of the Combinatorics and Optimization department administration, specifically Melissa
Cambridge. I am thankful for the helpful conversations with Alfred Menezes and David
Jackson, my department examiners Douglas Stebila and Michele Mosca, and my extenal
examiners Yu-Ru Liu and David Kohel. I would also like to thank ISARA Corporation
for providing me with excellent resources and allowing me to work on their team of post-
quantum researchers during my studies. Finally, thank you to my family for their endless
support.

vi

Table of contents

List of figures x

List of tables xi

1 Introduction 1

1.1 Organization of Work . 5

2 Elliptic Curves and Cryptography 6

2.1 Elliptic Curve Preliminaries . 6

2.1.1 Coordinates and the Group Law . 6

2.1.2 Torsion Subgroups . 8

2.1.3 Maps Between Curves . 9

2.1.4 Supersingularity . 15

2.1.5 Hilbert Class Field Theory . 17

2.1.6 Isogeny Computations . 19

2.2 Isogeny-Based Cryptography . 22

2.2.1 Ordinary Elliptic Curve Cryptography 23

2.2.2 Supersingular Elliptic Curve Cryptography 26

3 The Isogeny Problem using End(E) 33

3.1 Introduction . 33

vii

3.2 Theory of Fixed Kernels . 34

3.3 Cryptanalysis from Fixed Kernels . 39

3.4 Improvements from Isogeny Actions . 48

3.5 Test Case: j(E) = 1728 . 59

3.6 Cryptanalysis of Multi-Party Schemes . 65

4 Security of Static-Key SIDH 70

4.1 Introduction . 71

4.2 Multiple Instances of Key Establishment 73

4.3 Multiple Instances of SIDH . 77

4.4 Security Analysis and Key Size . 85

5 Cryptanalysis from Constructing Endomorphisms 89

5.1 Introduction . 89

5.2 Quaternion Preliminaries . 90

5.3 Algorithms for Computing Endomorphisms 92

5.3.1 Proposed Algorithm . 94

5.4 Runtime Analysis . 97

6 The Security of Endomorphism-Based Key Establishment 103

6.1 Introduction . 103

6.2 Protocol Overview . 104

6.3 Key-Only Cryptanalysis . 105

6.3.1 Smooth n . 106

6.3.2 Non-smooth n . 108

7 The Security of Supersingular Isogeny Learning with Errors 110

7.1 Introduction . 110

7.2 Generic Encryption Construction . 111

viii

7.3 Isogeny Encryption Construction . 113

7.3.1 Protocol . 113

7.3.2 Security Proofs . 114

7.3.3 Key Sizes and Computation Cost 117

7.4 Cryptanalysis . 118

References 120

Appendices 130

A Relating Fixed Kernels to the Endomorphism Algebra 131

B Convenient Bases 133

ix

List of Figures

2.1 Ordinary isogeny-based key exchange protocol 25

2.2 Supersingular isogeny-based key exchange protocol 27

2.3 Supersingular isogeny-based key exchange diagram 28

3.1 Commutative diagram . 35

3.2 Commutative diagram assuming ψ(kerφ) = kerφ 43

3.3 Decomposing endomorphisms . 49

3.4 Maps with known kernels . 49

3.5 Maps with known and unknown kernels . 50

3.6 Combining 3.4 and 3.5 . 50

3.7 ψ̃ fixing the kernel of φ0 . 51

5.1 Imaginary quadratic class numbers with lower bound 98

5.2 Averages of imaginary quadratic class numbers 99

x

List of Tables

5.1 Algorithms computing End(E) . 102

xi

Chapter 1

Introduction

The goal of this work is an in-depth study of the security of different supersingular isogeny-
based public-key cryptosystems. Let E be a supersingular elliptic curve over a finite field
Fp. An isogeny is a non-constant rational map from E/Fp to another elliptic curve E ′/Fp
which is also a group homomorphism between E(Fp) and E ′(Fp). If two parties wish to
establish a shared secret, they may use, among other things, a random secret isogeny with
domain E as their secret key, and the codomain of their isogeny as their public key. In this
generic framework, many distinct cryptosystems have been proposed. The main appeal of
isogeny-based cryptosystems, as opposed to the classical discrete logarithm based elliptic
curve cryptosystems, is their potential post-quantum security. This work examines some of
these proposals, and in each case, describes novel attacks, reveals insecurities, or provides
proofs of security.

Constructive applications of supersingular elliptic curve isogenies to cryptography were
first introduced by Charles, Goren, and Lauter, who proposed a cryptographic hash func-
tion [26]. The hash function takes a walk in the supersingular isogeny graph, determined
by the input, taking advantage of the random mixing property of the graph. The first
work on isogeny-based key establishment is a note published by Couveignes [36] in 2006
(written in 1997) using ordinary elliptic curves, and independently by Rostovtsev and Stol-
bunov [82], frequently referred to as the CRS scheme. By computing a multitude of prime
degree isogenies from a public ordinary elliptic curve E over a field with cryptographically
large characteristic, it is believed to be computationally difficult to determine this isogeny
from the domain, codomain, and degree. This is the basis of the CRS key establishment
scheme. The appeal of this system was that it had exponential security against quantum
adversaries, and small public-key sizes, but the downside is the computational inefficiency
of computing ordinary isogenies.

1

Around 2010, Childs, Jao and Soukharev discovered a quantum subexponential-time at-
tack on these two schemes [28], utilizing the commutativity of the ordinary elliptic curves’
endomorphism rings. Close to this time Jao and De Feo proposed a new key-exchange
scheme, later called supersingular isogeny Diffie-Hellman (SIDH), using supersingular el-
liptic curves [58]. The benefits of shifting to supersingular elliptic curves is that the compu-
tation cost is drastically less than for ordinary elliptic curves, small public-keys are retained,
and the subexponential attack of [28] does not apply (supersingular endomorphism rings
are non-commutative) making SIDH a good candidate for post-quantum cryptography.
The downside is that part of the action of the secret isogeny needs to be published for
key-exchange, meaning its security is dependent on a stronger computational assumption
than the usual isogeny problem.

Computational improvements have been made to the CRS scheme, resulting in a more
efficiently performable key-exchange called CSIDH [23]. Many signature schemes, and
other cryptographic utilities have been proposed in recent years [54, 40, 50, 4].

In 2016, NIST announced a competition (but not a competition) to standardize post-
quantum encryption and signature schemes [27]. The only isogeny-based entry was Su-
persingular Isogeny Key Exchange (SIKE) obtained by applying a Fujisaki-Okamoto-like
transformation [57] to SIDH. The initial entry consisted of three parameter sets and im-
plementation code, and is in the second round of the contest at the time of this writing.

The work in this thesis begins with Chapter 3, which introduces a novel area of crypt-
analysis by studying the relationship between the `-isogeny problem and knowledge of the
involved elliptic curves’ endomorphism rings. It has been shown that the `-isogeny prob-
lem can be solved efficiently if the endomorphism rings of both the domain and codomain
elliptic curves are known [65]. It has also been argued heuristically that when neither
of the endomorphism rings are known, the `-isogeny problem is as difficult as computing
the endomorphism rings [77]. The work in this chapter discusses the tractability of the
`-isogeny problem in the case where only the endomorphism ring of the domain elliptic
curve is known. The proposed algorithms for solving the `-isogeny problem in this chapter
also use the revealed torsion information inherent in SIDH to increase their probability of
success, making these algorithms non-generic.

The first result of Chapter 3 discusses when an endomorphism of E implies the existence
of an endomorphism on some isogenous E ′.

Proposition 1. Let k,N ∈ Z be coprime. Let E/Fq be a supersingular elliptic curve,
let R ∈ E[N], and let ψ ∈ End(E) be cyclic with order k. Suppose φ : E → E ′ is an
isogeny with kernel 〈R〉. If 〈R〉 is fixed (as a subgroup) by ψ, then there exists a cyclic

2

endomorphism on E ′ of degree k. Furthermore, this endomorphism ψ′ ∈ End(E ′) has
kernel φ(kerψ).

The converse of this proposition is also true with high probability when k <
√
p: if E

and E ′ are N -isogenous, ψ ∈ End(E) with degψ = k, and there exists an endomorphism
of E ′ with degree k, then with high probability ψ(kerφ) = kerφ. This pair of results then
forms a passive method for revealing information about kerφ, which is meant to be secret
in supersingular isogeny cryptography. An algorithm is described to learn this information.

Theorem 2. Given

1. a supersingular elliptic curve E/Fp2 such that p = N1N2 − 1 for coprime N1 ≈ N2,

2. an elliptic curve E ′ that is the codomain of an N1-isogeny φ : E → E ′, and

3. a k-endomorphism ψ of E, for some integer k where gcd(k,N1) = 1 and k < N1,

there exists a classical algorithm with worst case runtime Õ(k3) which decides whether
ψ(kerφ) = kerφ or not, but may give false positives with probability ≈ 1√

p
. Further, if k is

log p-smooth, then the runtime is Õ(
√
k).

The remainder of Chapter 3 is a study of a lower bound on the runtime of this algorithm
on SIKE parameters where no improvements on the best-known attack is found, and in
the multi-party setting where improvements are found.

Chapter 4 discusses the security of repeated use of static keys by both parties, i.e.
static-static key-exchange or non-interactive key exchange, in SIDH. The motivation for
this cryptographic primitive is to eliminate the need for key-generation in every session.
However, Galbraith et al. [53] explained why a static-static implementation of textbook
SIDH is vulnerable to a (classical) active attack. This active attack, repeated adaptively,
breaks textbook static-static SIDH. Kirkwood et al. [63] showed how a Fujisaki-Okamoto
transformation could be applied to SIDH, which would allow for one party to use a static
key securely by “indirect validation” of the other participants public key. This modification
to SIDH enables secure use of static-ephemeral key-exchange.

As mentioned, the goal of Chapter 4 is achieving secure static-static key-exchange.
We present a generic transform of a key-exchange protocol to one which is secure against
attacks of the form that broke the static-static textbook SIDH [53]. This goal is realized
by having the participants perform multiple key-exchange rounds in parallel and using a

3

key derived from all the computed shared secret values. We show that the security of this
multiple-round key-exchange protocol is no less than the original key-exchange protocol.
We formalize the attack type of [53], and prove that it no longer applies to the transformed
protocol under the assumption that a certain type of malicious public key cannot be found.
We then prove such malicious public-keys are infeasible to compute for SIDH as long as its
underlying security assumption holds (i.e. we reduce the problem of computing a malicious
key to the standard SIDH isogeny problem). Chapter 4 also contains an analysis of the
number of rounds needed for the static-static SIDH protocol at a 128-bit post-quantum
security level, key-size analysis, and a discussion of subsequent work published in this area.

The next chapter, Chapter 5, focuses on the problem of computing the endomorphism
ring of a given supersingular elliptic curve, E/Fp. The intractability of computing End(E)
is vital to the security of supersingular isogeny-based schemes. The collision resistance
and second preimage resistance of the CGL hash function [26] depend on this problem
being difficult [77, 46]. Further, the `-isogeny problem can heuristically be solved in poly-
nomial time when the endomorphism rings of both the domain and codomain curve are
known [65]. This would lead to a break of SIDH if the endomorphism ring problem were
not intractable [53] .

An endomorphism of E is an isogeny with both domain and codomain E. It is known
that the ring of endomorphism of E, called End(E), is isomorphic to some maximal order
in a quaternion algebra (ramified at p and ∞), and further this maximal order is unique
to E up to the Galois conjugacy class of the j-invariant of E. The first to study the
problem of computing End(E) for an arbitrary supersingular elliptic curve was Kohel in
his PhD thesis [64]. His approach generated a finite index subring of End(E) by find-
ing two independent cycles containing j(E) in the `-isogeny graph of supersingular elliptic
curves, as these correspond to endomorphisms of E (with `-power degree). This probabilis-
tic algorithm requires exponential storage and has an expected running time of O(p1+ε).
Heuristically, one expects this algorithm to be called O(log p) many times before the entire
endomorphism ring of E can be determined [77]. Instead of computing cycles, one may
also compute a smooth [54] (or power of ` [40]) degree isogeny between E and an elliptic
curve with a known endomorphism ring. Delfs and Galbraith’s [41] probabilistic algorithm
for this problem requires polynomial storage and has expected runtime Õ(p1/2).

Chapter 5 presents a novel algorithm for computing independent cycles containing E
in the `-isogeny supersingular elliptic curve graph. As mentioned, these cycles correspond
to endomorphisms and form a suborder of End(E) of finite index. The runtime of this
probabilistic algorithm is analyzed and shown to require polynomial storage and run in
expected time O((log p)2p1/2).

4

In 2017, Daghigh et al. [38] proposed three key-exchange protocols using elliptic curve
isogenies. The first approach uses an ordinary curve E, the private keys are randomly
generated endomorphisms of E, and the public keys are the images of the private endo-
morphisms on a public point P . A shared secret can be derived by applying one’s private
endomorphism to the other’s public point. The second approach is similar but uses a su-
persingular elliptic curve. As the endomorphisms no longer commute, the shared secret
is instead derived by constructing an isogeny. The third and final method is to have four
independent isogenies between the global parameters E and E ′ (constructed by precom-
posing four independent endomorphisms of E with an isogeny from E to E ′). The private
key is then a random isogeny from E to E ′, the public key is the image of a public point
under this isogeny, and the shared secret can be constructed via new isogenies.

We examine all three proposed methods in Chapter 6. The conclusion is that all three
are insecure when the order of P is a smooth number. Further, when the order of P is not
smooth, the first method is not post-quantum secure, and the second and third methods
only have a polynomial gap in the work of a honest participant and a malicious adversary
(that is, under the assumption that honest participants can perform their operations in a
feasible amount of time, these schemes succumb to classical attacks in a feasible amount
of time).

In Chapter 7 we present a generic public-key encryption scheme from the learning with
errors problem [80] on finitely generated groups. We then present an instantiation based
on supersingular isogenies, analyze the key sizes and computation costs, and give the usual
proofs of security. We conclude with cryptanalysis which shows that this scheme is insecure
by an application of Shor’s quantum hidden subgroup algorithm.

1.1 Organization of Work

Section 2.1 introduces the necessary mathematical background of elliptic curves over finite
fields. Section 2.2 presents the background of both ordinary and supersingular isogeny-
based cryptography. Chapter 3 studies a new cryptanalytic avenue for supersingular
isogeny-based key-exchange and its applicability to SIKE. Chapter 4 proves the security
of the novel static-static key-exchange transformation, and supersingular isogeny-based
application. Chapter 5 presents a novel algorithm for constructing (power of ` degree) en-
domorphisms of arbitrary supersingular elliptic curves over a finite field. Chapter 6 studies
the insecurity of three endomorphism-based schemes. Chapter 7 introduces and breaks the
supersingular isogeny instantiation of a generic learning with errors encryption scheme.

5

Chapter 2

Elliptic Curves and Cryptography

This chapter is an introduction to the theory of elliptic curves and isogenies, and their use
in post-quantum cryptography. A goal of this thesis is to be self-contained, so all necessary
preliminary material is presented. The material in Section 2.1 of this chapter is collected
primarily from the texts [31, 32, 51, 85].

2.1 Elliptic Curve Preliminaries

2.1.1 Coordinates and the Group Law

The central objects of isogeny-based cryptography, and the work of this thesis, are elliptic
curves. The definition we will begin with is of an elliptic curve.

Definition 2.1.1. An elliptic curve E over a field K, denoted E/K, is given by a
non-singular projective curve of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (2.1)

for a1, a2, a3, a4, a6 ∈ K, along with a base point O = O(E) = OE = ∞ = ∞E = [0, 1, 0]
which is referred to as the point at infinity.

From the coefficients of an elliptic curve in Eq. 2.1 we can define the b-invariants and

6

the c-invariants of a curve to simplify later algebra:

b2 = a21 + 4a4,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6.

Frequently this work will use affine Weierstraß equations for an elliptic curve over K
instead of projective coordinates. The (affine) long Weierstraß form can be obtained
from Eq. 2.1 by the change of coordinates x = X/Z and y = Y/Z:

Definition 2.1.2. An elliptic curve E over a field K is given by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

along with the point at infinity, where the coefficients a1, a2, a3, a4, a6 ∈ K are such that
for each point P = (x1, y1) with coordinates in K satisfying Eq. 2.2, the partial derivatives
at P (2y1 + a1x1 + a3 and 3x21 + 2a2x1 + a4 − a1y1) do not vanish simultaneously.

The last condition in Definition 2.1.2 is equivalent to the non-singular condition of
Definition 2.1.1. This change of coordinates requires that Z 6= 0. Indeed, each point
(x, y) 6= O in Weierstraß coordinate, is equivalent to (x, y, 1) in projective coordinates, and
Z = 0 for the point O.

When the characteristic of the field K is not 2 we can eliminate the xy and y terms by
the change of coordinate y 7→ 1

2
(y − a1x− a3):

E : y2 = 4x3 + b2x
2 + 2b4 + b6. (2.3)

Further, if char(K) 6= 3, then we can apply one last substitution, (x, y) 7→
(
x−3b2
36

, y
108

)
, to

obtain the short Weierstraß form:

E : y2 = x3 − 27c4x− 54c6. (2.4)

The cubic polynomial has only simple roots over K if and only if its discriminant is
non-zero. Therefore, checking the non-singularity condition (or checking that an equation
defines an elliptic curve) can be done by computing the discriminant from the coefficients.

7

Definition 2.1.3. Let E be as in Eq. 2.1, and the b-invariants be as above. The discrim-
inant of the curve E is

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Additionally, if E is an elliptic curve in short Weierstraß form, E : y2 = x3 + ax + b,
then:

∆(E) = −16(4a3 + 27b2).

Hence, a short Weierstraß form equation defines an elliptic curve if and only if

4a3 + 27b2 6= 0.

There is a well known geometrically constructed law that provides elliptic curves with
a natural group structure. A solution (x, y) ∈ K × K to the defining equation of E is
called a K-rational point of E. The set of all K-rational points form an Abelian group,
denoted E(K), with the point at infinity as the identity. The group law can be expressed by
rational polynomials with coefficients in K, enabling addition and subtraction of elliptic
curve points, as well as multiplication of a K-rational point by an integer. This last
operation can be done efficiently using the standard double-and-add technique.

2.1.2 Torsion Subgroups

Definition 2.1.4. Let E be an elliptic curve over the field K, and let P ∈ E(K). Let
m ∈ Z, and define the multiplication-by-m map

[m] : E(K)→ E(K),

[m]P = P + . . .+ P, if m ≥ 0, and

[m]P = (−P) + . . .+ (−P), if m < 0,

where −P is the group inverse of P , and the sums contain m elements.

Example 2.1.5. The map [0] is defined so that [0]P =∞ for all P ∈ E(K). The map [1]
is the identity map.

8

Definition 2.1.6. For any m ∈ Z and elliptic curve E(K), the subgroup

E[m] := {P ∈ E(K) : [m]P =∞}

is called the m-torsion subgroup of E(K). An element P ∈ E[m] is called an m-torsion
point.

This subgroup can be viewed as the kernel of [m], and points in E[m] all have order
dividing m.

Theorem 2.1.7. [98, Theorem 3.2] Let E be an elliptic curve defined over K. If char(K)
is 0 or coprime to m, then

E[m] ∼= Z/mZ⊕ Z/mZ.

The case where the characteristic of K is some prime p and m = pr is covered in
Section 2.1.4.

2.1.3 Maps Between Curves

In this section we discuss the algebraic relationships between elliptic curves.

Morphisms

The material in this section is well known, but two good sources are [51], and [88]. We
start with the most elementary maps of elliptic curves.

Definition 2.1.8. Let E and E ′ be two elliptic curves defined over K. A morphism
φ : E(K) → E ′(K) over K is a polynomial mapping with coefficients from K. If the
curves are in projective coordinates we can write

φ(X : Y : Z) = (φ0(X, Y, Z) : φ1(X, Y, Z) : φ2(X, Y, Z)),

where φ0, φ1, φ2 are homogeneous polynomials of equal degree satisfying the defining equa-
tion of E ′. Alternatively, in Weierstraß coordinates, a morphism φ is a rational map

φ(x, y) =

(
φ0(x, y, 1)

φ2(x, y, 1)
,
φ1(x, y, 1)

φ2(x, y, 1)

)
.

9

A morphism defined over field K is commonly referred to as a K-rational morphism.
Each morphism has an integer degree which will be defined later (see Definition 2.1.21),
but for now note that a degree m morphism from E to E ′ typically implies the kernel of
the morphism has cardinality m, that is, the morphism is m-to-1 from E(K) to E ′(K).

One family of morphisms is the translation morphisms. For each point P ∈ E, we
can define

τP : E → E, τP (Q) = Q+ P.

These are morphisms because the elliptic curve group law is defined by rational polynomi-
als.

Definition 2.1.9. A homomorphism φ is a morphism of elliptic curves such that

φ(P +Q) = φ(P) + φ(Q),

for all P,Q ∈ E(K). That is, φ respects the group structure of the curve.

Proposition 2.1.10. Every morphism from E → E ′ that maps O(E) to O(E ′) is a ho-
momorphism.

A translation morphism τP is not a homomorphism unless P = O, in which case it is
the trivial homomorphism between E and itself.

Definition 2.1.11. A K-isomorphism between elliptic curves is a group isomorphism
defined over K.

A useful property of elliptic curves in Weierstraß form is that all isomorphisms between
them have been classified.

Proposition 2.1.12. [85, III.1] Elliptic curves E/K : y2 = x3 + ax+ b and E ′/K : y2 =
x3 + a′x+ b′ are isomorphic over K if and only if there exists µ ∈ K∗ such that

a′ = µ2a,

b′ = µ3b.

If so, the isomorphism E → E ′ is given by (x, y) 7→ (µx, µ
3
2y).

A special case of Proposition 2.1.12 is when µ is a quadratic non-residue in K. In this
case the essential element µ

3
2 is undefined in K, and so the isomorphism is defined over

K(
√
µ) instead.

10

Definition 2.1.13. Let E/K : y2 = x3 + ax + b be an elliptic curve and char(K) 6= 2.
Then for any quadratic non-residue µ ∈ K\{O} we define the elliptic curve E(µ) : y2 =
x3 + µ2ax+ µ3b to be the quadratic twist of E by µ.

One can verify by this definition that the twist of an elliptic curve will give a non-
singular equation.

We can now define the isomorphism class of elliptic curves defined over a given field.
Further, there exists a unique quantity for each such class that we can use as a label.

Definition 2.1.14. For an elliptic curve E : y2 = x3 +ax+b defined over a field K, where
the characteristic of K is not 2 or 3, define

j(E) =
c34
∆

= 1728
c34

c34 − c26
= 1728

4a3

4a3 + 27b2
∈ K

to be the j-invariant of E.

It is simple to check, using Proposition 2.1.12 that this quantity is invariant for a K-
isomorphism class of elliptic curves. As well, the j-invariant is unique to a K-isomorphism
class when K is an algebraically closed field.

Theorem 2.1.15. [85, III.1.4] Two elliptic curves are isomorphic over K if and only if
they have the same j-invariant.

The construction of an elliptic curve for a given j-invariant is also known:

Theorem 2.1.16. [85, III.1.4] Given some j ∈ K, the following formulas determine an
elliptic curve defined over K whose j-invariant is equal to j:

(1) If j = 0, then E : y2 + y = x3,

(2) If j = 1728, then E : y2 = x3 + x,

(3) Otherwise, E : y2 + xy = x3 − 36
j−1728x− 1

j−1728 .

Observe that neither (1) nor (3) yield equations in short Weierstraß form, but as stated
earlier, when the characteristic of K is neither 2 nor 3 we can rewrite these curves as
y2 = x3 − 27c4x− 54c6 using the c-invariants c4 and c6.

It is worth noting that when j(E) = 0 or 1728 there exist twisted elliptic curves other
than quadratic twists. When j(E) = 0, one can twist by a cubic character µ and the
twisted curve is of the form y2 = x3 + µb. When j(E) = 1728 quartic twists are possible
and of the form y2 = x3 + µax [85, Prop 5.4]. In these cases, the isomorphism will be
defined over the appropriate cubic or quartic extension of K.

11

Isogenies

Definition 2.1.17. Let K be a field and E/K, E ′/K be two elliptic curves. If F is
an extension of K (possibly K or K itself), define an isogeny over F, or F-isogeny,
between E and E ′ to be a non-zero morphism

φ : E(K)→ E ′(K)

mapping O(E) to O(E ′), with coefficients from F . Two elliptic curves are defined to be
isogenous if and only if there is an isogeny φ between them.

Theorem 2.1.10 immediately shows that every isogeny is necessarily a homomorphism
between E(K) and E ′(K).

Since isomorphisms are isogenies between isomorphic curves, we can use them to define
the notion of an isomorphism of isogenies.

Definition 2.1.18. Isogenies φ1 : E → E ′ and φ2 : E → E ′′ are said to be isomorphic
isogenies if there exists an isomorphism ψ : E ′ → E ′′ such that φ2 = ψ ◦ φ1.

Definition 2.1.19. The kernel of an isogeny φ is

ker(φ) := {P | P ∈ E(K) and φ(P) = O}.

If kerφ is cyclic, then φ is called cyclic.

Recall, the form of an isogeny (2.1.8) between elliptic curves in Weierstraß form:

φ(x, y) =

(
φ0(x, y, 1)

φ2(x, y, 1)
,
φ1(x, y, 1)

φ2(x, y, 1)

)
such that φ fixes the identity. From this it is clear that the kernel of φ will be a subset
of the set of zeros of φ2 (or exactly the set of zeros of φ2 if there is no cancellation to be
made).

Definition 2.1.20. The coordinate ring of an elliptic curve E over field K is

K[E] := K[x, y]/〈y2 + a1xy + a3y − x3 − a2x2 − a4x− a6〉.

The function field of E over K is the field of fractions of K[E], denoted K(E).

12

An early observation is that all morphisms between elliptic curves over K are either
constant or surjective. We use this result to construct an injective homomorphism of
function fields from each isogeny. Let φ : E → E ′ be an isogeny, and define φ∗ : K(E ′)→
K(E) by φ∗(f) = f ◦ φ.

Definition 2.1.21. The degree of a morphism φ : E → E ′ between elliptic curves is

deg(φ) := [K(E) : φ∗(K(E ′))],

the degree of the function field extension induced by φ. A degree ` isogeny is referred to as
an `-isogeny.

Note that F -isogeny and `-isogeny is an abuse of notation, but the prefix being a field
or an integer should be clear in each context.

Definition 2.1.22. An endomorphism of an elliptic curve E/K is a homomorphism
from E/K to itself. The set of all endomorphisms is denoted EndK(E) or just End(E).

The set End(E) is a ring due to the group structure of E. Here we note that for every
m ∈ Z, the multiplication-by-m map is an endomorphism, and the degree of [m] is m2.
Therefore, for an elliptic curve E, End(E) will always contain a subring isomorphic to Z.
The kernel of the map [m] ∈ End(E) are all the points whose order divides m, and so
the denominator of the rational map of [m] must be zero at the x-coordinates of E[m].
There is a family of polynomials, called the mth-division polynomial and denoted by
ψm ∈ Z[x, y, a1, . . . , a6], indexed by m, whose zeroes are the x-coordinates of E[m]. The
division polynomials can be computed recursively using the initial values and equations:

ψ1 = 1, ψ2 = 2y + a1x+ a3, ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2

(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)

)
,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1, m ≥ 2

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ2

m+1, m ≥ 3.

As endomorphisms are group homomorphisms, they act as automorphisms of torsion
subgroups E[n] when n is coprime to their degree. By applying Theorem 2.1.7, if n is also
coprime to the field characteristic, one can view the action of an endomorphism φ ∈ End(E)
on E[n] as a 2 × 2 matrix over Z/nZ. When a basis P,Q ∈ E[n] is provided, we denote
this matrix by φ|〈P,Q〉, or when the basis is implied simply by φ|E[n].

One of the most important morphisms in the study of elliptic curves over finite fields
is the Frobenius endomorphism.

13

Example 2.1.23. Let E/Fpn be an elliptic curve. Define the pn-th Frobenius endomor-
phism πE : E(Fpn)→ E(Fpn) by (x, y) 7→ (xp

n
, yp

n
). The notation πpn is also used.

It can be shown that if K is finite, then πE is not equal to [m] for any integer m. This
implies that End(E/K) will always contain a strict subring isomorphic to Z when K is
finite.

Example 2.1.24. An elliptic curve isomorphism is an isogeny of degree 1. The pn-th
Frobenius endomorphism is an isogeny of degree pn.

For any integer ` > 0 with p - `, the Weil pairing is a bilinear form that we denote by

e` : E[`]× E[`]→ µ`,

where µ` = {x ∈ Fpn|x` = 1}. See [87, §III.8] for an in-depth discussion of the Weil pairing.
The following proposition connecting the Weil pairing and isogenies follows immediately
from [87, III.8.2].

Proposition 2.1.25. Let E be an elliptic curve and R, S ∈ E[`] for some positive integer
`. If φ : E → E ′ is an isogeny, then

e`(φ(R), φ(S)) = e`(R, S)deg(φ).

We now return to the preliminaries of isogenies by introducing dual isogenies.

Proposition 2.1.26. [85, III.6] Let φ : E1 → E2 be an isogeny. There exists a unique
isogeny φ̂ : E2 → E1 such that deg(φ) = deg(φ̂), and the composition of these two isogenies
is the multiplication-by-deg(φ) map. That is, φ ◦ φ̂ = [deg(φ)] and φ̂ ◦ φ = [deg(φ)]. This
map is defined as the dual isogeny of φ.

The following equation is useful for the dual of a composition of isogenies, φ1 : E1 →
E2, φ2 : E2 → E3:

φ̂2 ◦ φ1 = φ̂1 ◦ φ̂2.

In isogeny-based cryptography, we are interested in separable isogenies over finite fields.

Definition 2.1.27. Let φ : E/K → E ′/K be an isogeny between elliptic curves. If K(E)
is a separable (inseparable, purely inseparable, resp.) field extension of φ∗(K(E ′)), then we
say φ is separable (inseparable, purely inseparable, resp.).

14

Theorem 2.1.28. [85, III.5.5] Let E be an elliptic curve defined over a field Fq of char-
acteristic p. The isogeny m+ nπE, for m,n ∈ Z, is separable if and only if p - m.

The following result shows where our early “definition” of degree came from:

Proposition 2.1.29. [85, II.2.6] Let φ be a separable isogeny. Then, deg(φ) = | ker(φ)|.

For elliptic curves defined over a finite field, Tate has shown that being isogenous is
equivalent to having the same cardinality.

Theorem 2.1.30. [92] (Tate’s Isogeny Theorem) Let E and E ′ be elliptic curves defined
over some finite field Fpn. Then E and E ′ are isogenous over Fpn if and only if

|E(Fpn)| = |E ′(Fpn)|.

This leads to the main isogeny theorem that we will need.

Theorem 2.1.31. [51, 9.6.19] Let E be an elliptic curve over K. Let G ⊂ E(K) be a
finite subgroup that is defined over K (i.e., σ(P) ∈ G for all P ∈ G and σ ∈ Gal(K/K)).
Then there is a unique (up to isomorphism) elliptic curve E ′ over K, and a unique (up to
isomorphism) isogeny φ : E → E ′ over K such that ker(φ) = G.

The unique elliptic curve E ′ from Theorem 2.1.31 is denoted by E/G, or φ(E). For a
fixed integer `, the `th-modular polynomial is a bivariate integral polynomial ψ`(x, y)
such that the roots of ψ`(j(E), y) are exactly the j-invariants of the elliptic curves which
are `-isogenous to E.

The standard way of computing E ′, φ, or φ(P) for some P ∈ E(K) is to use Vélu’s
formulas [95], which involves calculating a summation over all the elements of that subgroup
G = ker(φ) (see Section 2.1.6). The security of isogeny-based cryptography depends on the
cardinality of these kernels, so the subgroup G must be large which makes Vélu’s formulas
impractical. However, as we will see in Section 2.2.2 the cardinality of G will be chosen
to be a power of a small prime (2 or 3) and so we can apply Vélu’s formulas to compute
isogenies efficiently in such cases, as explained and optimized in [47].

2.1.4 Supersingularity

Let E/K be an elliptic curve defined over a field of characteristic p. A group of interest is
the group of the p-torsion points, E[p]. In fact, the structure of p-torsion points directly
determines the type of endomorphism ring of E/K.

15

Definition 2.1.32. Let B be a Q-algebra that is finitely generated over Q (B can be non-
Abelian). An order R of B is a subring of B that is finitely generated as a Z-module and
satisfies R⊗Z Q = B.

Theorem 2.1.33. [85, V.3.1] Let K be a field of prime characteristic p, and let E/K be
an elliptic curve. For each integer r ≥ 1 let

πr : E → E(pr)

be the pr-th Frobenius map.

The following are equivalent:

(i) E[pr] = {O} for all r ≥ 1.

(ii) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.

(iii) End(E) is an order in a quaternion algebra.

(iv) π̂r is purely inseparable for all r ≥ 1.

If the equivalent conditions do not hold, then

E[pr] = Z/prZ, for all r ≥ 1,

and End(E) is an order in an imaginary quadratic field extension of Q.

If the above conditions hold, then we say the curve E is supersingular, otherwise we
say E is ordinary. The term supersingular is unrelated to the notion of singular curves,
and instead refers to how elliptic curves with these endomorphism rings are uncommon.
Part (ii) of Theorem 2.1.33 states that all supersingular elliptic curves can be defined
over Fp2 , and this will be useful in the cryptanalysis of supersingular isogeny cryptography
(Section 2.2.2).

A direct consequence of Theorem 2.1.33 (i) is that isogenies preserve the type of elliptic
curve and so we can discuss supersingular elliptic curve isogenies and ordinary elliptic curve
isogenies.

Theorem 2.1.34. Let φ : E1 → E2 be an isogeny. E1 is supersingular if and only if E2 is
supersingular. E1 is ordinary if and only if E2 is ordinary.

Since the elliptic curves discussed in this work are primarily supersingular it is worth
counting the number of supersingular elliptic curves over K.

16

Theorem 2.1.35. [85, V.4.1(d)] Let K be a finite field of characteristic p ≥ 3. There is
one supersingular elliptic curve in characterstic 3, and for p ≥ 5 the number of supersin-
gular elliptic curves up to K-isomorphism is

⌊ p
12

⌋
+

0, p ≡ 1 mod 12,

1, p ≡ 5 mod 12,

1, p ≡ 7 mod 12,

2, p ≡ 11 mod 12.

2.1.5 Hilbert Class Field Theory

The following section requires knowledge of Hilbert class fields and their general theory,
and so a brief introduction is provided here (the sources of this subsection are [30] and
[85]).

Let L be a number field. The set of algebraic integers in L form a ring, denoted OL,
called the ring of integers of L.

Theorem 2.1.36. [30,Theorem 4.4.2] The ring OL is a free Z-module of rank [L : Q].

Definition 2.1.37. An integral ideal is a Z-submodule a ⊂ OL such that for every
α ∈ OL and a ∈ a we have αa ∈ a.

Definition 2.1.38. A fractional ideal a ⊂ L is a non-zero submodule of L such that
there exists a non-zero integer α with αa an integral ideal of OL.

We would like to have a group structure for fractional ideals. The full ring of integers
OL will serve as the identity. We define the product of fractional ideals a, b as:

ab := {∑ ij | i ∈ a, j ∈ b} .

Note this operation is Abelian. We make use of the following theorem to define inverses:

Theorem 2.1.39. [30,Theorem 4.6.14] If a is a fractional ideal of OL and if we set

a−1 := {α ∈ L | αa ⊂ OL},

then aa−1 = a−1a = OL.

17

Lastly, we say that two fractional ideals are equivalent if they differ by a non-zero
element of L. Now we can define the class group ofOL to be the finite group of equivalence
classes of fractional ideals with the above operation. We denote this group by CL(OL) =
CL(OL) and define the class number as h(OL) := |CL(OL)|.

Since integral ideals of OL are modules of maximal rank [30, Theorem 4.6.3], the quo-
tient OL/a is a finite ring. In the case where this quotient ring is an integral domain we
say that a is a prime ideal of OL.

Definition 2.1.40. Let p be a prime number and p a prime ideal of OL. Then p is said
to be a prime ideal above p if p ∩ Z = pZ.

Theorem 2.1.41. [30,Theorem 4.8.3] Let p be a prime number. There exist positive inte-
gers ei such that

pOL =
∏
i

peii ,

where the pi are all the prime ideals above p.

Definition 2.1.42. Depending on the structure of the product in Theorem 2.2.8 we give the

prime number p different names. If pOL = p, then p is said to be inert. If pOL =
n∏
i=1

pi,

where n = [L : Q] and all the pi’s are different, then p said to split completely. If ei ≥ 2
for some i, then p is ramified.

We end this section with another look at the Frobenius endomorphism. For elliptic
curves defined over Q, the m-torsion points have coordinates in Q. Each element of the
Galois group Gal(Q/Q) fixes the m-torsion points of E, ∀m ∈ Z. By Theorem 2.1.7, since
char(Q) = 0, we know that E(Q)[m] ∼= Z/mZ×Z/mZ and so the group of homomorphisms
from E[m] to itself is GL2(Z/mZ). We define the map

RE,m : Gal(Q/Q)→ GL2(Z/mZ)

as the mod m representation attached to E. While the particular matrix associated
with RE,m(σ) depends on the choice of basis for E[m], its determinant and trace are
invariants.

Let p be prime and p be a prime ideal above p. There are Frobenius elements σp ∈
Gal(Q/Q) defined by the property that

σp(α) ≡ αp mod p

for all α ∈ Q. Evaluating RE,m at σp gives a matrix in GL2(Z/mZ). We conclude with the
following theorem.

18

Theorem 2.1.43. For all m ≥ 1, Trace(RE,m(σp)) ≡ t mod m, where t is the trace of the
Frobenius endomorphism.

2.1.6 Isogeny Computations

This section describes a few algorithms that are commonly used within isogeny-based
cryptography.

Vélu’s Formula

In 1971, Jacques Vélu provided explicit formulas to compute isogenies in time proportional
to half the cardinality of its kernel [95]. Later work [47] optimized this result for the case
when the cardinality of the kernel is a power of a small prime number. Below are the
formulas and algorithms for these computations.

Using the notation in Vélu’s paper: let E : y2 = x3 +ax+ b be an elliptic curve defined
over an algebraically closed field K, let F be a finite subgroup of E, and let f : E → E ′

be the isogeny with kernel F .

For a point P = (xP , yP) 6= O on E, define the following quantities:

gxP = 3x2P + a,

gyP = −2yP ,

uP = (gyP)2,

vP =

{
gxP , [2]P =∞,
2gxP , otherwise.

In order to distinguish points in F from their inverse we define F2 to be the non-trivial
points of order 2 in F , and we define R to be a subset of (F\{O})\F2 such that

R ∩ (−R) = ∅ and (F\{O})\F2 = R ∪ (−R).

Setting S = F2 ∪R, we can define

f(x, y) =

(
x+

∑
P∈S

vP
x− xP

− uP
(x− xP)2

, y −
∑
P∈S

uP
2y

(x− xP)3
+ vP

y − yP − gxPgyP
(x− xP)2

)
,

19

for points (x, y) /∈ F , and f(x, y) = O when (x, y) ∈ F . Further, the equation for the
image curve is given by

E ′ : y2 = x3 +

(
a− 5

∑
P∈S

vP

)
x+

(
b− 7

∑
P∈S

uP + xPvP

)
.

From these formulas it is plain to see that this computation is inefficient for cryptograph-
ically secure kernel sizes, requiring Õ(|F |) operations in K. Suppose that | ker(f)| = `n

for prime ` and n ≥ 1. De Feo and Jao [47] show how we can compute f in O(n`) time
instead of the runtime O(`n) from Vélu’s formula.

Let Q1 be a point in F with order `. Applying Vélu’s formula to the subgroup 〈Q1〉 of
E will give an isogeny

f1 : E → E/〈Q1〉.
Then the image of F under f1 will have size `n−1. If we then find a point Q2 in f1(F) ⊂
E/〈Q1〉 with order `, we can perform this procedure for a second time to determine

f2 : E/〈Q1〉 → (E/〈Q1〉)/〈Q2〉,

and codomain. Iterating this n times gives n isogenies, f1, f2, . . . , fn whose composition
is the desired isogeny f with kernel F . The codomain of f is the elliptic curve E ′ =
(. . . ((E/〈Q1〉)/〈Q2〉) . . .)/〈Qn〉. Additionally, see [47, §4.2] for optimal implementation
details.

Recent work by Bernstein et al. [9] gave an asymptotic improvement on implementation
of Vélu’s formula, achieving Õ(

√
|F |) operations in K. If |F | is prime, then the runtime

is more efficient than regular Vélu’s formula around |F | ≈ 100.

Bröker’s Algorithm

For the purposes of isogeny-based cryptography, we need to be able to efficiently find a
supersingular elliptic curve over Fpn with trace t of the pn-Frobenius endomorphism, for a
given pn and t. In 2009, Reinier Bröker solved this computational problem [19] and this
section is based on that work. The existence of such a curve is guaranteed by the following
result of Waterhouse:

Theorem 2.1.44. [99, 4.1] There exists a supersingular elliptic curve E over Fpn with trace
t of the pn-Frobenius endomorphism πE if and only if one of the following holds:

20

(a) if n is even and one of the following is true:

(i) t = ±2
√
pn,

(ii) t = ±√pn and p 6≡ 1 mod 3,

(iii) t = 0 and p 6≡ 1 mod 4;

(b) if n is odd and one of the following is true:

(i) t = 0,

(ii) t = ±√2pn and p = 2,

(iii) t = ±√3pn and p = 3.

The cases which are relevant in the context of supersingular isogeny-based cryptography
are when t = 0. The first step is to construct a supersingular curve over Fp as a reduction
of a curve in characteristic 0 using the following result of Deuring.

Theorem 2.1.45. [67, 13.12] Let E be an elliptic curve defined over a number field L
whose endomorphism ring is the maximal order OK in an imaginary quadratic field K.
Let p be a prime ideal of L, and let p be a prime number such that p - ∆(E) and p is above
p. Then E/(L/〈p〉) is supersingular if and only if p does not split in K.

From the theory of complex multiplication we have that the j-invariant of E generates
the Hilbert class field H of K. That is,

H = K[x]/〈PK〉 = K(j(E)),

where PK is the minimal polynomial of j(E) over Q. The polynomial PK can be explicitly
computed efficiently [20] and its degree is equal to the Hilbert class number hK . If p is inert
in OK , then the roots of PK ∈ Fp[x] are supersingular j-invariants. As j(E) ∈ Fp2 [85,
V.3.1], the polynomial PK splits over Fp2 . The following lemma due to Bröker gives a
condition for the degree hK of PK to be odd, and since each of the factors of PK have
degree 1 or 2, this condition is sufficient for PK ∈ Fp[x] to have a root in Fp.

Lemma 2.1.46. [19, 2.3] Let K be an imaginary quadratic field with odd class number hK.
Then, K = Q(i), or K = Q(

√
−2), or K = Q(

√−q) with q prime and congruent to 3
modulo 4.

Combining these results, Bröker gives an algorithm for constructing a supersingular
elliptic curve over Fp.

21

Algorithm 2.1.47.
Input: a prime number p.

Output: a supersingular elliptic curve over Fp.

1. If p = 2, return y2 + y = x3.

2. If p ≡ 3 mod 4, return y2 = x3 − x.

3. Let q ≡ 3 mod 4 be the smallest prime with −q a non-quadratic residue mod p.

4. Compute PK ∈ Z[x] for K = Q(
√−q).

5. Compute a root j ∈ Fp of PK ∈ Fp[x].

6. If q = 3, return y2 = x3 − 1. Otherwise, set a← 27j
4(1728−j) ∈ Fp and return

y2 = x3 + ax− a.

Let q = pn be a prime power and let t be a trace of the Frobenius endomorphism of the
form described in Theorem 2.1.44. From Algorithm 2.1.47, we compute a supersingular
elliptic curve E over Fp. Let E ′/Fq be E defined over Fq, and let t′ be the trace of the
Frobenius endomorphism of E ′(Fq).

Lemma 2.1.48. [19, 3.1] If n is odd, then t′ = 0. If n ≡ 0 mod 4, then t′ = 2
√
q.

Otherwise, n ≡ 2 mod 4, and t′ = −2
√
q.

If p 6≡ 1 mod 4, then a twist by a primitive fourth root of unity i ∈ Fq will give curves
with Frobenius trace ±2

√
q and 0. If p 6≡ 1 mod 3, then a twist by a primitive sixth root

of unity ζ6 ∈ Fq will give curves with Frobenius trace ±2
√
q, and ±√q. If p ≡ 1 mod 12,

then a twist by −1 suffices. By Theorem 2.1.44 we know that these are the only three
cases.

2.2 Isogeny-Based Cryptography

This section will cover the two types of isogeny-based cryptography, the computational
problems their security depend on, and their susceptibility to known attacks. Recall the
definitions for ordinary and supersingular curves in Section 2.1.4 are based on the p-torsion
points of the curve when defined over a finite field of characteristic p.

22

2.2.1 Ordinary Elliptic Curve Cryptography

The first public-key cryptosystems based on the intractability of constructing an isogeny
between two known elliptic curves are due to Couveignes [36] and Stolbunov [89] indepen-
dently, using ordinary curves. Couveignes introduced the notion of a Hard Homogeneous
Space (HHS) to generalize the discrete logarithm problem and showed how it can be used
for key exchange and authentication schemes.

Definition 2.2.1. Let G be a finite, Abelian group. Then a homogeneous space H for
G is a set that is acted on by G such that |H| = |G| and the action is simply transitive (for
all h0, h1 ∈ H there exists a unique g ∈ G such that g · h0 = h1). For h1, h2 ∈ H denote
the unique element g ∈ G with g · h1 = h2 by δ(h1, h2).

This definition alone is not enough to produce a cryptographic scheme. As in the
setting of the discrete logarithm problem over a finite field, we require that the basic group
operations are efficiently computable while the inverse of the action is not.

Definition 2.2.2. [36] Let H be a homogeneous space for G, and suppose the elements of
G and H are represented by strings (not necessarily uniquely).

Suppose the following computations are efficient:

(i) the group operation of G,

(ii) inverting an element of G,

(iii) testing membership in G and H,

(iv) testing equality in G and in H,

(iv) finding a random element in G with uniform probability,

(v) computing g · h for all g ∈ G and h ∈ H.

Further suppose these two problems are computationally difficult:

(vi) given h1, h2 ∈ H compute δ(h1, h2),

(vii) given h1, h2, h3 ∈ H compute the unique h4 ∈ H with δ(h1, h2) = δ(h3, h4).

Then we say H is a hard homogeneous space.

This basic setup allows us to create cryptosystems based on the action of isogenies on
ordinary elliptic curves defined over finite fields. Let E be an ordinary elliptic curve over
Fpn . Recall from Section 2.1.4 that O := End(E) is an order in an imaginary quadratic

23

field extension over Q, say K = Q(
√

∆(E)) = O⊗ZQ. If we assume that the discriminant
∆(E) is square-free, then O is the maximal order, OK , in K. From the theory of complex
multiplication [86, II.1.5], the ideal class group of OK induces a simply transitive action
on the set of elliptic curves isogenous to E.

Definition 2.2.3. [86,Chapter 2 - Section 1] Define ELL(O) to be the quotient space
{E/C with O ∼= End(E)}/{isomorphisms over C}.

By Theorem 2.1.15, we can associate each element of ELL(O) with a j value. Cou-
veignes and Stolbunov independently observed that if we set

G = CL(OK) = ideal class group of OK , and H = ELL(OK),

then there is an action

∗ : CL(OK)× ELL(OK)→ ELL(OK)

that satisfies the conditions of the hard homogeneous space definition. Some of the neces-
sary material to confirm this as true has been given in Theorem 2.1.15, Section 2.1.3, and
Section 2.1.5, however [86, Chapter 2 - Section 1] is the recommended source for details
(specifically Proposition 1.2). Lercier and Morain [69] is an early source for computing
the action required in condition (v) of Definition 2.2.2 while [17] details a more efficient
computation.

Figure 2.2.1 details the ordinary isogeny key exchange protocol, where the public pa-
rameters are CL(OK), ELL(OK), and x ∈ ELL(OK).

In 2018, the authors of [23] propose a new key establishment protocol using supersin-
gular elliptic curves over a field Fp. While not technically ordinary elliptic curve cryptog-
raphy, the endomorphism rings EndFp(E) over this base field are isomorphic to imaginary
quadratic orders, instead of the usual quaternion orders to which EndFp(E) are isomorphic.
The above theory of class group actions can then be applied, and by setting p to be one less
than the product of many small primes, a technique borrowed from SIDH, the resulting
protocol is a much more efficient variant of the CRS scheme [36] [82] called Commutative
Supersingular Isogeny Diffie-Hellman, or CSIDH.

Security and the Ordinary Isogeny Graph

As one would expect, the underlying computational problems of this ordinary elliptic curve
isogeny scheme arise from conditions (vi) and (vii) of Definition 2.2.2. Let p be prime and
q = pn.

24

Alice Bob

Input: − Input: −
a←$ CL(OK) b←$ CL(OK)

mA ← a ∗ x mB ← b ∗ x
mA

mB

kA ← a ∗mB kB ← b ∗mA

Output: kA Output: kB

1

Figure 2.1: Ordinary isogeny-based key exchange protocol

Problem 2.2.4. Let E1/Fq and E2/Fq be ordinary elliptic curves with |E1(Fq)| = |E2(Fq)|.
Compute an Fq-isogeny φ : E1 → E2.

Problem 2.2.5. Let E1/Fq, E2/Fq and E3/Fq be ordinary elliptic curves with |E1(Fq)| =
|E2(Fq)| = |E3(Fq)|. Let [α] ∈ CL(OK) be such that [α] ∗ E1 = E2. Compute the unique
(up to Fq-isomorphism) elliptic curve E4 = [α] ∗ E3.

The fastest known classical algorithm for solving Problem 2.2.4 is probabilistic with
a worst-case and average-case of O(q1/4+o(1) log2(q) log(log(q))) [55]. This result is an im-
provement over [52] and is achieved by taking a pseudorandom walk in the isogeny-graph
and using the easily computable small degree isogenies more often than larger degree iso-
genies.

With a quantum computer the most efficient algorithm [29] for the same problem has

a subexponential running time of Lq(
1
2
,
√
3
2

) under the Generalized Riemann Hypothesis,
where

LN(α, c) := exp[(c+ o(1))(lnN)α(ln lnN)1−α].

The authors propose reducing the problem to an instance of the Abelian hidden shift
problem, and then using Kuperberg’s quantum algorithm [66] which applies here because
the reduction will be an injective hidden shift problem [29, 4.1].

As for the CSIDH protocol, much work has gone into adapting and improving the
quantum algorithm of [29], with mixed results [11] [59] [75] [14].

25

2.2.2 Supersingular Elliptic Curve Cryptography

In 2011, De Feo, Jao and Plût [47] proposed a cryptosystem from supersingular elliptic
curve isogenies. The central difference in the supersingular setting is that the endomor-
phism ring of the curve is non-Abelian (see Theorem 2.1.33, (iii)). The authors overcome
this difficulty by having the participating members of the key-exchange send additional
information about the isogeny: the image of four points on the curve.

Setup: Let p be a fixed prime number of the form p = `eAA `
eB
B f ± 1, where `A and `B

are distinct primes, and f is some small prime. The typical choices are `A = 2 and `B = 3.
Let E/Fp2 be a supersingular elliptic curve with E[`eAA] and E[`eBB] defined over Fp2 . Let
PA, QA, PB, QB ∈ E(Fp2) be four points such that 〈PA, QA〉 = E[`eAA] and 〈PB, QB〉 =
E[`eBB] (by Theorem 2.1.7 each of these torsion subgroups require two points to generate).

Alice chooses two random elements mA, nA ∈ Z/`eAA Z, not both divisible by `A, and
computes the point RA := [mA]PA + [nA]QA and the isogeny

φA : E → EA

such that ker(φA) = 〈RA〉. Additionally, Alice computes the images of the E[`eBB] gener-
ators; φA(PB), φA(QB) ∈ EA(Fp2). Similarly, Bob computes a random linear combination
RB (chosen so that not both mB and nB are divisible by `B) of PB and QB, the isogeny

φB : E → EB

with kernel 〈RB〉, and the points φB(PA), φB(QA) ∈ EB(Fp2). Alice and Bob’s secret keys
are the numbers mA, nA and mB, nB, respectively.

Using an unsecured channel, Alice sends (EA, φA(PB), φA(QB)) to Bob, and Bob sends
(EB, φB(PA), φB(QA)) to Alice. The shared secret elliptic curve can now be computed by
both parties. Alice computes the point SA := [mA]φB(PA) + [nA]φB(QA) ∈ EB(Fp2) and
the isogeny from EB with kernel generated by SA,

φ′A : EB → EBA.

Similarly, Bob computes SB := [mB]φA(PB) + [nB]φA(QB) ∈ EA(Fp2) and

φ′B : EA → EAB

such that ker(φ′B) = 〈SB〉. The two curves EAB and EBA are isomorphic over Fp2 , in
particular they have equal j-invariants, and so the shared secret key is j(EAB) = j(EBA).

26

Alice Bob

mA, nA ←$Z`
eA
A

mB , nB ←$Z`
eB
B

RA ← [mA]PA + [nA]QA RB ← [mB]PB + [nB]QB

φA : E → E/〈RA〉 φB : E → E/〈RB〉
φA(PB), φA(QB) φB(PA), φB(QA)

EA, φA(PB), φA(QB)

EB , φB(PA), φB(QA)

SA ← [mA]φB(PA) + [nAφB(QA) SB ← [mB]φA(PB) + [nB]φA(QB)

φ′
A : E/〈RB〉 → (E/〈RB〉)/〈SA〉 φ′

B : E/〈RA〉 → (E/〈RA〉)/〈SB〉
jA ← j((E/〈RB〉)/〈SA〉) jB ← j((E/〈RA〉)/〈SB〉)

1

Figure 2.2: Supersingular isogeny-based key exchange protocol

Figure 2.2.2 details the supersingular isogeny key exchange protocol. Here E,PA, QA, PB,
and QB are all public parameters.

The SIDH key-exchange protocol can be made into a public-key encryption scheme
in the following way. Let the setup be as above except include a hash function family
H = {Hk : k ∈ K} indexed by a finite set K, where each Hk is a function from Fp2 to the
message space {0, 1}w. Let key generation be the same except with an additional k ∈R K
included in the public and private keys.

Encryption: Given a public key (EA, φA(PB), φA(QB), k) and message m ∈ {0, 1}w,
choose two random mB, nB ∈R Z/`eBB Z not both divisible by `B, and compute

h = Hk(j(EAB)),

c = m⊕ h.

The ciphertext is (EB, φB(PA), φB(QA), c).

Decryption: Given a ciphertext (EB, φB(PA), φB(QA), c) and a private key(mA, nA, k),
compute the j-invariant j(EAB) and set

h = Hk(j(EAB)),

m = h⊕ c.

The plaintext is m.

27

E

E/〈S〉

E/〈R〉

E/〈S,R〉

ker
(φ2)

=
〈S〉

ker(φ
3) = 〈R〉

ker(ψ
3) = 〈φ

2(R)〉

ker
(ψ2)

=
〈φ3(

S)
〉

��
��

��
��
�*

��
��

��
��
�*

?

HHHHHHHHHj

HHHHHHHHHj

6

1

Figure 2.3: Supersingular isogeny-based key exchange diagram

Security and the Supersingular Isogeny Graph

Listed below are the security assumptions under which the security of supersingular isogeny-
based cryptosystems can be proven. The corresponding security theorems are included
here, and the proofs can be found in [47]. Figure 2.3 helps explain why these are the
underlying security assumptions.

The CSSI problem is perhaps the most important isogeny problem discussed in this
body of work.

Problem 2.2.6 (Computational Supersingular Isogeny (CSSI) Problem). Let E0 be a
supersingular elliptic curve over Fp2 where p = N1N2−1 is a prime such that gcd(N1, N2) =
1, and let φA : E0 → EA be an isogeny whose kernel is generated by 〈PA + [rA]QA〉, for
some rA ∈ Z/N1Z and basis PA, QA for E0[N1]. Given E0, PA, QA, EA and the action of
φA on E0[N2], find rA.

For the sake of provable security of cryptosystems, other isogeny problems have been
described [4, 58] including the supersingular decisional and computational Diffie-Hellman
Problems. The following isogeny problems were originally stated in [47].

Problem 2.2.7 (SSDDH). Given a tuple sampled with probability 1/2 from one of the
following two distributions:

1. (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), generated via the SIDH protocol
where

EAB ∼= E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

28

2. (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where everything except EC is
generated via the SIDH protocol and

EC ∼= E0/〈[m′A]PA + [n′A]QA, [m
′
B]PB + [n′B]QB〉,

where m′A, n
′
A ∈R Z/`eAA Z are not both divisible by `A, and m′B, n

′
B ∈R Z/`eBB Z are

not both divisible by `B,

the Supersingular Decision Diffie-Hellman problem is to determine from which distribution
the tuple is sampled.

Problem 2.2.8 (SSCDH). Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA +
[nA]QA〉, and let φB : E → EB be an isogeny whose kernel is 〈[mB]PB + [nB]QB〉, where
mA, nA (respectively mB, nB) are randomly chosen from Z/`eAA Z (respectively Z/`eBB Z) and
are not both divisible by `A (respectively `B). Given the curves EA, EB and the points
φA(PB), φA(QB), φB(PA), φB(QA), the Supersingular Computational Diffie-Hellman prob-
lem is to find the j-invariant of E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.

SSDDH reduces to SSCDH in the obvious way, and the converse is true as well [93]:
by adaptively solving the SSDDH problem (with the isogeny degree input as a parameter)
one may compute the isogeny which solves the SSCDH problem in runtime a polynomial
of log p. Both the decisional and computational Diffie-Hellman assumptions depend on the
CSSI problem in the obvious way.

We now provide the security theorems for these two cryptosystems. But before we do,
as the public-key security definitions have not been stated yet in this work, we give those
first. In the coming three definitions, let ε(n) be any real-valued function such that for
every polynomial f(n), there exists an integer N such that

ε(n) <
1

f(n)
,

for all n > N . Similarly, poly(n) is any real-valued function such that for some polynomial
f(n), one has poly(n) < f(n) for all n > N . A cryptosystem is said to be KP, OW-CPA,
or IND-CPA, if for each choice of poly(n) there exists a choice of ε(n) for which the
definition holds.

Definition 2.2.9. A public-key cryptosystem is key private, or KP, if for any security
parameter λ, for any probabilistic Turing machine A which terminates after time poly(λ),

29

and any randomly chosen (pubkey, privkey) pair produced by the key generation function
G on input λ,

Prob(A(pubkey) = privkey) < ε(λ),

when the probability is over the joint probability distribution of output of G and the random
choices of A.

Definition 2.2.10. A public-key cryptosystem is one way, or OW-CPA, if for any
fixed (pubkey, privkey) pair produced by the key generation function G on input of security
parameter λ, and random message m,

Prob(A(pubkey, E(m)) = m) < ε(λ),

for any probabilistic Turing machine A which terminates after time poly(λ), and the prob-
ability is over the joint probability distribution of random choises of m, and the random
choices made by the encryption function E, and the random choices of A.

Definition 2.2.11. A public-key cryptosystem is indistinguishable under chosen
plaintext attack, or IND-CPA, if there exists no probabilistic Turing machine A which
terminates after time poly(λ) and for which, given a fixed (pubkey, privkey) pair, and a
ciphertext c = E(mb) for b ∈ {0, 1} chosen uniformly at random, where m0 and m1 are
messages chosen by A after receiving the public key, can determine the value of b in the
sense that ∣∣∣∣Prob (A(pubkey, c) = b)− 1

2

∣∣∣∣ < ε(λ).

We now return to the topic of the security of supersingular isogeny-based cryptography.
The following theorems from Jao, De Feo, Plût [47] pertain to the security of SIDH key-
exchange and encryption.

Theorem 2.2.12 ([47], 6.1). Under the SSDDH assumption, the key agreement proto-
col above is session-key secure in the authenticated-links adversary model of Canetti and
Krawczyk [22].

Theorem 2.2.13 ([47], 6.2). If the SSDDH assumption holds, and the hash function family
H is entropy-smoothing, then the public-key cryptosystem above is IND-CPA.

For any field K with char(K) = p > 0 and non-empty set of prime L with p /∈ L, define
the supersingular isogeny graph X(K,L) where each vertex is a K-isomorphism class of
elliptic curves defined over K (vertices have an associated, unique j-invariant), and the

30

edges are equivalence classes of degree ` isogenies defined over K for ` ∈ L, connecting
isogenous curves. Given a path on X(K,L) connecting say j1 and j2, an explicit starting
curve with j-invariant j1 must be chosen before the isogeny can be computed (see the
canonical elliptic curve associated to each j in Section 2.1.16). Once this is done, the
isogeny can be computed by composing each isogeny (edge) in the path [21].

If E1 and E2 are such that j(E1) = j1 and j(E2) = j2, then the isogeny computed in
this way may have codomain elliptic curve isomorphic to E2 in which case the composition
of isogeny and isomorphism will give the correct isogeny. This differs from the ordinary
isogeny graph where two elliptic curves in the same equivalence class (vertex) may be
quadratic twists of each other.

By Theorem 2.1.33.(ii) every supersingular curve has j-invariant in Fp2 , so setting
K = Fp2 gives the full supersingular isogeny graph of L-isogenies. The authors of [41]
instead set K = Fp and look at this restricted graph; below is their main result. First, let

h(θ) denote the Hilbert class number of Q(
√
θ), and (a

b
) denote the Legendre symbol for

quadratic residues.

Theorem 2.2.14. [41, Theorem 2.7] Let p > 3 be prime.

(a) If p ≡ 1 (mod 4), then there are h(−4p) Fp-isomorphism classes of supersingular
elliptic curves over Fp, all with the endomorphism ring Z[

√−p]. From each vertex there
is exactly one outgoing Fp-rational 2-isogeny, and two outgoing `-isogenies for every prime
` > 2, ` ∈ L such that (−p

`
) = 1.

(b) If p ≡ 3 (mod 4), then there are two cases. In both cases each vertex has two
`-isogenies for every prime ` > 2, ` ∈ L such that (−p

`
) = 1. Additionally, in both cases

there are two “levels” to the graph defined as the “surface” and the “floor” of the graph.
The endomorphism ring of every vertex on the surface is isomorphic to the order Z[1+

√
−p

2
],

while the endomorphism ring of every vertex on the floor is isomorphic to the order Z[
√−p].

(i) If p ≡ 7 (mod 8), then each level has h(−p) vertices. The surface and the floor
are connected 1 : 1 with 2-isogenies, and on the surface there are also two 2-isogenies from
each vertex to other vertices on the surface.

(ii) If p ≡ 3 (mod 8), then there are h(−p) vertices on the surface and 3h(−p)
vertices on the floor. The surface and the floor are connected 1 : 3 with 2-isogenies.

A consequence of this theorem is an algorithm to solve the supersingular isogeny prob-
lem over Fp with a classical running time of O(p1/4) (assuming the Generalized Riemann
Hypothesis), and the full supersingular isogeny problem over F̄p in O(p1/2). Given two
vertices of the graph (j-invariants) representing E and EA, take isogenies to the surface if

31

necessary and then perform a random walk using isogenies of degree 2eA/2 from each vertex
until a collision, j′, is found. Choose an elliptic curve E ′ with j(E ′) = j′. The isogeny
from E to EA will be the composition of each isogeny in the walk from E to E ′ and the
dual of each isogeny in the walk from E ′ to EA.

Another consequence of this result is a quantum algorithm for the full supersingular
isogeny problem (that is, over the base field Fp2 instead of Fp) [12]. The first step is:
given two supersingular elliptic curves over Fp2 , use Grover’s algorithm to find isogenous
elliptic curves defined over Fp. This computation has a quantum runtime of O(p1/4).
Then, using Theorem 2.2.14 and the algorithm of [41], the isogeny between these to elliptic
curves defined over Fp can be computed classically in O(p1/4). This gives a path in the
supersingular isogeny graph and so the composition of each directed isogeny (dual isogenies
give opposite directions) in the path will give the correct output (up to isomorphism) with
a total quantum runtime of O(p1/4).

Formally, the problem of finding a collision in a graph can be formulated in the following
way:

Problem 2.2.15 (Claw Problem). Given function f : A→ C, g : B → C with |A| = |B|,
find a pair (a, b) ∈ A×B such that f(a) = g(b).

A solution to this complexity problem using quantum computers was shown to be
optimal in the black-box model [91], with runtime O(3

√
|A||B|). We can apply this to

theSIDH setting. The degree of the isogeny between E and Alice’s elliptic curve EA is
2eA , so let A be the set of all isogenies of degree 2eA/2 from E and let B be the set of
all isogenies of degree 2eA/2 from EA. Here C will be the set of all elliptic curves E ′

defined over Fp2 with |E(Fp2)| = |E ′(Fp2)| (see Theorem 2.1.30). The sets A and B have
equal cardinality and so the algorithm [91] applies. Hence, there is a quantum attack in

O(
3
√

2eA/22eA/2) = O(2eA/3) = O(p1/6) against supersingular isogeny schemes.

More recent work [61] has shown that instantiating Tani’s claw finding algorithm [91]
requires a greater quantum gate count than previously thought. Combined with more
thourough classical cryptanalysis [1] [35] suggests that claw-finding attacks may in fact be
slower than generic van Oorschot-Wiener collision finding algorithms (optimized for SIDH
contexts) for this problem.

32

Chapter 3

The Isogeny Problem using End(E)

Portions of this chapter were published in Bottinelli et al. [18]. The contents of this chapter
represent my contribution to that work.

This chapter presents novel algorithms for passively solving the CSSI problem, and
therefore the SSCDH and SSDDH problems as well. In addition to providing the action of
φA on E0[N2] in the CSSI problem, some parameter choices in isogeny-based cryptography
schemes provide End(E) as well. All results in this chapter will rely on knowledge of
End(E) (or some subring), so in fact, the algorithms presented solve a potentially easier
problem. However, no asymptotic improvements have been made on solving this variant
of the CSSI problem compared to the original. Later sections will use the action of φA
on E0[N2] to achieve efficiency improvements to the mentioned CSSI solving algorithms,
and to multi-party variants of CSSI. We then analyze these algorithms to determine their
optimal runtimes, and compare to the best-known algorithms for the CSSI problem.

3.1 Introduction

Supersingular isogeny-based public-key cryptosystems, such as SIDH, typically involve an
smooth-degree isogeny as a secret key, the codomain elliptic curve as a public key, and
have their security based on the SSDDH problem. While there seems to be only one
active attack on SIDH [53], there are numerous passive attacks [91] [12] [76] [39]. The
active attack showed that the repeated use of keys (static keys) in SIDH is insecure, but
the passive attacks have not been able to find an algorithm for solving CSSI with a better
runtime than those described in the original SIDH paper [58], which have a classical runtime

33

of O(p1/4) and a quantum runtime of O(p1/6), where p is the field characteristic. In fact,
under further analysis of those mentioned algorithms, the estimated runtimes and hence
the estimated security of SIDH have increased [61] [1] [35].

This chapter introduces a passive algorithm for solving the CSSI problem. The high-
level idea for this algorithm, presented formally in Section 3.3, is to determine some high-
order bits of a secret key using a test which succeeds with some non-negligible probability.
The test can then be altered using this new information to continuously test lower-order
bits of the secret key, and eventually the entire secret key can be revealed from this process.
This test itself is therefore a subroutine, described in Section 3.2, which takes as input an
endomorphism of the starting elliptic curve and the public codomain elliptic curve, and
outputs a Boolean depending on if the kernel subgroup of the secret isogeny between these
two elliptic curves is fixed by the input endomorphism.

In order to determine if the input endomorphism fixes the secret kernel or not, we
develop theory showing that if the kernel is fixed, then the codomain elliptic curve will
have a similar endomorphism. The converse is true–if a similar endomorphism exists on the
codomain curve, then the secret kernel is fixed–with overwhemling probability assuming the
degree of the endomorphism is not too great relative to p. The efficiency of this subroutine
test is then examined and quantified, and then improved upon in Section 3.4 using the
action of φA on E0[N2], as this information is provided in the CSSI problem setup.

By establishing an oracle to find endomorphisms of the starting elliptic curve satisfying
degree and action constraints, we can then reduce the CSSI problem (and others) to the
problem of realizing this oracle. However, Sections 3.5 and 3.6 study the realization of
this oracle when the starting curve has j-invariant 1728, and prove that the CSSI solving
algorithm requires Õ(p1/4) computations, giving no speedup over the literature. Section 3.6
also explores the adaptation of this attack to multi-party variantions of SIDH and demon-
strates asymptotic improvements in those cases. The improvements to the multi-party
setting are due to the greater ratio of public torsion information to p.

3.2 Theory of Fixed Kernels

In this section we develop the basic theory for this chapter. The following proposition is
the foundation for all other results in this chapter.

Proposition 3.2.1. Let k,N ∈ Z be coprime. Let E/Fq be a supersingular elliptic curve,
let R ∈ E[N], and let ψ ∈ End(E) be cyclic with order k. Suppose φ : E → E ′ is an

34

isogeny with kernel 〈R〉. If 〈R〉 is fixed as a subgroup (or stabilized) by ψ, then there exists
a cyclic endomorphism ψ′ on E ′ of degree k. Furthermore, the kernel of ψ′ is φ(kerψ).

Proof. Let ψ′ be the isogeny with domain E ′ and kernel φ(kerψ), and let φ′ be the isogeny
with domain ψ(E) and kernel ψ(kerφ). As gcd(k,N) = 1, Figure 3.1 commutes.

By assumption ψ fixes 〈R〉, and so

kerφ′ = ψ(kerφ) = ψ(〈R〉) = 〈R〉 = kerφ.

It follows from Theorem 2.1.31 that φ′ ∼= φ, and so E∗ ∼= E ′. Hence, ψ′ : E ′ → E∗ ∼= E ′

which implies that ψ′ ∈ End(E ′) and is of the claimed degree k. Since kerψ is cyclic, and
gcd(k,N) = 1, it follows that φ(kerψ) is cyclic as well.

E E ′

E E∗

φ

ψ ψ′

φ′

Figure 3.1: Commutative diagram

See Appendix A for a digression relating Proposition 3.2.1 to Lemma 42.2.9 of [96].

The converse to Proposition 3.2.1 is also relevant. While the converse is not true in
general, it is shown in Lemma 3.2.2 that the number of supersingular k-endomorphisms
can be asymptotically bounded above by a function of only k, and therefore the probability
that an arbitrary supersingular endomorphism ring contains a cyclic element of degree k
decreases as p grows. Hence, when k is suitably small compared to p, the existence of
a cyclic k-endomorphism on E ′ heuristically implies that, with overwhelming probability,
kerφ is fixed by ψ.

Lemma 3.2.2. The number of j-invariants (supersingular or ordinary) over Fp which are
cyclically k-isogenous to themselves is O(k log log k), for k ≥ 3.

Notice that the characteristic of the finite field p is absent from this formula.

Proof. The value in question can be computed as the number of roots of the classical kth-
modular polynomial, ψk(x, x). This is then bounded by degψk(x, x) ≤ 2µ(k) [72, Theorem

35

6.1], where µ(k) = k
∏
p|k

(
1 + 1

p

)
is the Möbius function. We now show that µ has the

claimed asymptotic growth.

If φ(k) = k
∏
p|k

(
1− 1

p

)
is Euler’s totient function, then note that

µ(k)φ(k) = k2
∏
p|k

(
1 +

1

p

)(
1− 1

p

)
≤ k2,

which implies µ(k) ≤ k2

φ(k)
. If k ≥ 3, then φ(k) > k

eγ log log k+ 3
log log k

[81, Theorem 15], and

the result follows.

Under the assumption that these cyclic k-endomorphisms are randomly distributed
among the supersingular isomorphism families, Lemma 3.2.2 gives an approximation of
eγk log log k
bp/12c on the probability that an arbitrary supersingular elliptic curve admits a k-

endomorphism.

The combination of Proposition 3.2.1 and Lemma 3.2.2 leads to the first main theorem
of this chapter. If an endomorphism ψ of E is known, then the algorithm from Theorem
3.2.3 serves as an offline test of whether the kernel of an unknown isogeny φ with domain
E is fixed by an endomorphism ψ.

Theorem 3.2.3. Given

1. a supersingular elliptic curve E/Fp2 such that p = N1N2 − 1 for coprime N1 ≈ N2,

2. an elliptic curve E ′ that is the codomain of an N1-isogeny φ : E → E ′, and

3. a k-endomorphism ψ of E, for some integer k where gcd(k,N1) = 1 and k < N1,

there exists a classical algorithm with worst case runtime Õ(k3) which decides whether
ψ(kerφ) = kerφ or not, but may give false positives with probability ≈ 1√

p
. Further, if k is

log p-smooth, then the runtime is Õ(
√
k).

When refering to an integer k as being B-smooth, for some real value B, we mean the
standard definition that each of the prime factors of k is less than or equal to B. The
runtime of the algorithm mentioned in Theorem 3.2.3 will arise frequently in this section,
and so we provide it as a lemma.

36

Lemma 3.2.4. Given a prime p, two supersingular elliptic curves E/Fp2, E ′/Fp2, and an
integer k, there exists a classical algorithm to check if E and E ′ are k-isogenous with worst-
case runtime Õ(k3) and best-case runtime Õ(

√
k), which happens when k is log(p)-smooth.

Proof. The following are two approaches to testing if E is k-isogenous to E ′:

1. computing an extension field Fq/Fp2 such that E[k] ⊂ E(Fq) and then computing all
k-isogenies with domain E and checking if any codomains are isomorphic to E ′, or
even better applying a meet-in-the-middle strategy if k factors nicely to test if the
curves are k-isogenous, and

2. computing the classical kth-modular polynomial ψk(x, y) and testing whether or not
ψk(j(E), j(E ′)) = 0.

Consider first the computational problem of finding and constructing an appropriate
field extension. This step requires an irreducible polynomial f(x) for which the extension
field Fp2 [x]/〈f(x)〉 contains the x and y-coordinates of the points in E[k]. One approach is
to use an upper bound of k2−1 on the extension degree needed for these points to exist, and
to compute an arbitrary irreducible polynomial with that degree. A more efficient approach
is to use division polynomials. Factoring the kth-division polynomial over Fp2 will give many
irreducible polynomials of equal degree which will give an appropriate field extension to
contain all x-coordinates of E[k]. The degree of the kth-division polynomial in x is k2−1

2

when k is odd, and k2−4
2

when k is even [98, Lemma 3.5]. Computing the kth-division

polynomial using the recursive formula from Section 2.1.3 requires Õ(k2) operations and
O(k2) space (see [84, §5.1]). Therefore, by [62], finding a root of this polynomial takes
Õ(k3) time. However, when k is, say B-smooth, this field can be constructed as a tower of
extensions, which only takes O(B log k) time. A quadratic extension of this field will then
be guaranteed to contain the y-coordinates as well, and thus all of E[k].

Next we assume the appropriate field extension has been constructed. Now the goal is
to test if E/Fq is k-isogenous to E/Fq. When k is prime, constructing all k-isogenies with
domain E using Vélu’s formulas involves computing the k + 1 isogenies of prime degree k
and domain E. Prime degree isogenies currently require O(k) operations to compute [95].
This case, therefore, gives us the worst-case bound of O(k2), as there are approximately
k such isogenies to check. When k is not prime, claw-finding methods can be applied to
improve performance. In the case where k = k1k2 for some log p-smooth positive integers k1
and k2 each approximately of size

√
k, classical claw-finding will require computing O(k1)

many isogenies of degree k1 and computing O(k2) isogenies of degree k2 [58, 5.1], and

37

O(
√
k) space. When k is log p-smooth, the isogeny computations themselves are O(log k)

which is negligible. Thus, the worst-case for testing for k-isogenies (assuming the extension
field is computed) is when k is prime where the runtime is Õ(k2), and the best case is when
k is log p-smooth where the runtime is Õ(

√
k).

Observe that if k is small (say, less than 100, 000 [90]) testing for k-isogenies can be
performed by checking if the tuple (j(EA), j(EA)) is a root of the kth-modular polynomial.
However, this approach scales very poorly.

Proof of Theorem 3.2.3. The algorithm of Lemma 3.2.4 can be used with the prime p =
N1N2− 1, integer k, and supersingular elliptic curve E ′/Fp2 , to test if E ′ is k-isogenous to
itself. We then output True if E ′ is k-isogenous to itself, and False otherwise.

If there are no k-isogenies from E ′ to itself, then there are no k-endomorphisms, so
ψ(kerφ) 6= kerφ by the contrapositive of Proposition 3.2.1. The algorithm outputs False
in this case which coincides with the correct answer. If the algorithm from Lemma 3.2.4
does find a k-endomorphism of E ′, the algorithm outputs True, but there is a chance that
ψ(kerφ) 6= kerφ. By Lemma 3.2.2, this false positive occurs with probability ≈ eγk log log k

bp/12c =

Õ
(

1√
p

)
since k < N1 ≈ √p by assumption. The runtime of this algorithm follows directly

from Lemma 3.2.4.

The result of Theorem 3.2.3 raises two main questions:

1. is it likely that a k-endomorphism exists for E when k is small enough to make this
algorithm practical?

2. how much information can be learned by determining whether ψ(kerφ) = kerφ or
not?

In particular, the algorithm from Theorem 3.2.3 works best when k is small and ψ fixes
approximately half of all subgroups in E[N].

The remainder of the chapter is organized as follows: We examine the basic uses of
Theorem 3.2.3 in Section 3.3. Section 3.4 discusses improvements when the action of φ
is known; in particular the runtimes of the algorithms in Theorems 3.3.4 and 3.3.5 can
be improved. Section 3.5 considers instantiating Oracle 3.3.3 on the supersingular elliptic
curve with j-invariant 1728 when combined with the improvements of Section 3.4. Finally,
Section 3.6 analyzes when the instantiation will be sufficient to affect the cryptanalysis of
supersingular isogeny-based schemes.

38

3.3 Cryptanalysis from Fixed Kernels

In this section we will assume the existence of an oracle which outputs endomorphisms
which fix a non-negligible proportion of subgroups in some E[N], and show that knowing
if ψ(kerφ) = kerφ is sufficient to solve the SSDDH and CSSI problems. Additionally, we
will discuss extracting more torsion images of secret isogenies from endomorphisms, even
when the kernels of the secret isogenies themselves remain unknown.

First, we introduce a definition for the proportion of fixed N -subgroups of the endo-
morphism. These are appropriately called the N -eigenspaces of the endomorphism, as they
are the eigenspaces of vectors when viewing the action of the endomorphism as a 2 × 2
matrix on the N -torsion subgroup. We focus on the subgroups of the form P + [r]Q, for a
basis P,Q of E[N] because this form is simpler to work with and contains most subgroups.

Definition 3.3.1. Let ψ ∈ End(E) be an endomorphism of some supersingular elliptic
curve E/Fp. For an integer N which is not divisible by p, and a basis P,Q for E[N],
define

EigP,QN (ψ) = {X ∈ E[N] : ∃r ∈ Z/NZ, X = P + [r]Q, and ∃λ ∈ (Z/NZ)∗, ψ(X) = [λ]X}.

Observe that EigP,QN (ψ) contains only points which generate subgroups which are fixed
by ψ. Indeed, if Y ∈ 〈X〉, then ∃ m ∈ Z/NZ : [m]X = Y , and so

ψ(Y) = [m]ψ(X) = [mλ]X = [λ]Y ∈ 〈X〉.
Further, if X ∈ EigP,QN (ψ), then |〈X〉| = |ψ(〈X〉)|. Lastly, note that if ψ fixes all subgroups
in E[N], then |EigP,QN (ψ) | = N .

We also introduce the following notation for the entire set of generators of subgroups
of order N of the form P + [r]Q.

Notation 3.3.2. Let E(Fp2) be an elliptic curve, N an integer, and P,Q a basis for E[N].
Set EP,Q[N] := {P + [r]Q ∈ E[N] : r ∈ Z/NZ}.

Observe that for all N ∈ Z, |EP,Q[N]| = N , and for all ψ ∈ End(E) and bases P,Q
we have EigP,QN (ψ) ⊆ EP,Q[N]. We now introduce the oracle that will be used in our two
reductions.

Oracle 3.3.3.
Input: p = N1N2−1, a supersingular elliptic curve E, an integer `, a set S ⊂ E[N1], and
a basis P,Q for E[N1].

Output: A generator K0 ∈ E(Fp) of the kernel of a cyclic endomorphism ψ of E such
that the following constraints hold:

39

1. |K0| ≤ N1,

2. gcd (|K0|, N1) = 1,

3.
∣∣∣EigP,QN1

(ψ)
∣∣∣ ≥ 1

`
|S|, and

4.
∣∣∣EP,Q[N1] \ EigP,QN1

(ψ)
∣∣∣ ≥ 1

`
|S|,

or ⊥ if no endomorphism satisfying these constraints exists.

The choice of ` will usually be O(log p) in the instances of Oracle 3.3.3 discussed in this
chapter, and when performing cryptanalysis on SIDH, ` = `A. The set S will usually start
as EP,Q[N1] and iteratively become smaller as we search for generator of a secret isogeny.

The conditions 3 and 4 guarantee that a non-negligible proportion of subgroups will be
fixed by the output endomorphisms when ` ∈ O(log p), and likewise for the subgroups that
will not be fixed. Lemma 3.2.4 can be used to determine the runtime of searching for an
endomorphism with degree |K0|. Combining these facts, Oracle 3.3.3 can be used to solve
both the SSDDH and the CSSI problems, as we will now exhibit.

Theorem 3.3.4. Let E0/Fp2 be a supersingular elliptic curve such that p = `eAA `
eB
B − 1

for distinct primes `A and `B. When given access to an O as in Oracle 3.3.3, such that
O succeeds for a non-negligible proportion of sets S, there exists a (classical) distinguisher

for the SSDDH problem with advantage
1

`2A
, which makes O(1) calls to O, and runs in

worst-case time Õ
(
`3eAA

)
. Further, if the endomorphisms all have log p-smooth degree, then

the runtime is Õ
(√

`eAA

)
.

Proof. We will describe an algorithm A with access to Oracle 3.3.3 with non-negligible
advantage in solving the SSDDH problem. The algorithm A takes in the following input
to the SSDDH problem:

p, E0, PA, QA, PB, QB, EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), E ′,

where E ′ is either the shared secret EAB or a randomly generated EC which is `eAA `
eB
B -

isogenous to E0. Let A pass p, E0, `A, S = EP,Q
0 [`eAA], and the basis PA, QA to Oracle 3.3.3,

and receive some endomorphism ψ of E0 that fixes some of the points in S as output.
Letting A apply the algorithm from Theorem 3.2.3, with input E0, EA, and ψ, reveals if
ψ (kerφA) = kerφA.

40

Observe, the set {φB(X) ∈ EB(Fp2) : X ∈ EigP,Q
`
eA
A

(ψ)} ⊂ EB[`eAA] can be determined

by decomposing EigP,Q
`
eA
A

(ψ) into PA and QA and using φB(PA) and φB(QA). Let A pass

p, EB, `B, φB(EigP,Q
`
eA
A

(ψ)) and the basis φB(PA), φB(QA) to Oracle 3.3.3, and receive some

endomorphism ψ̃ of EB that fixes some of φB(EigP,Q
`
eA
A

(ψ)) as output. Letting A apply the

algorithm from Theorem 3.2.3, with input EB, E
′, and ψ̃, reveals if ψ̃ fixes the kernel of

the isogeny from EB to E ′.

With probability 1
`A

, the endomorphism ψ does not fix EigP,Q
`
eA
A

(ψ) (condition 4 of Or-

acle 3.3.3), and in that case it follows from Theorem 3.2.3 that kerφA 6⊂ EigP,Q
`
eA
A

(ψ). If

moreover ψ̃ does fix the kernel of the isogeny from EB to E ′, which occurs with condi-
tional probability 1

`A
(condition 3 of Oracle 3.3.3), then it follows from Theorem 3.2.3

that φB(kerφA) ⊂ EigP,Q
`
eA
A

(ψ̃). This contradicts the previous sentence because EigP,Q
`
eA
A

(ψ̃) ⊂
φB(EigP,Q

`
eA
A

(ψ)). In this case, where ψ does not fix the kernel and ψ̃ does, it follows that

E ′ must not be EAB. The distinguisher A for the SSDDH problem may then use this
information to gain the claimed advantage in distinguishing between EAB and EC with the
mentioned runtime following from Theorem 3.2.3.

Oracle 3.3.3 can also be iterated to solve the CSSI problem.

Theorem 3.3.5. Suppose we are given a starting supersingular elliptic curve E0/Fp2 such
that p = `eAA `

eB
B − 1 for distinct primes `A and `B, the image of an `eAA -degree isogeny

EA = φA(E0), and access to an O as in Oracle 3.3.3, such that O fails only for a negligible
proportion of sets S. Then there exists a (classical) algorithm which outputs kerφA with
non-negligible probability, makes m = O (log `eAA) queries to O, and runs in worst-case time
Õ
(
`3eAA ·m

)
. Further, if the endomorphisms all have log p-smooth degree, then the runtime

is Õ
(√

`eAA ·m
)

.

The algorithm for Theorem 3.3.5 is presented now, and the proof will follow.

Algorithm 3.3.6.
Input: E0, p, EA, and access to Oracle 3.3.3 denoted O.

Output: kerφA or ⊥.

1. Let 〈P,Q〉 = E0[`
eA
A].

41

2. Let S0 = EP,Q
0 [`eAA], and i = 0.

3. Call O with (p, E0, `A, Si, P,Q) :

If O outputs ⊥, then return ⊥.

Else, obtain ψi from O from Oracle 3.3.3.

4. Let X = Si ∩ EigP,Q
`
eA
A

(ψi) and Y = Si \ EigP,Q`eAA (ψi).

5. Use the algorithm in Theorem 3.2.3 with input E0, p, EA, and ψi to determine if
ψi(kerφA) = kerφA or not.

6. If ψi(kerφA) = kerφA, then let Si+1 = X, otherwise if ψi(kerφA) 6= kerφA, then let
Si+1 = Y .

7. Increment i and repeat Steps 3 to 7 until |Si| = 1.

8. Return Si.

Proof of Theorem 3.3.5. We analyze the success probability and runtime of Algorithm 3.3.6.
Let σ1 be the fraction of sets S ⊆ EP,Q

0 [`eAA] for which O will succeed. By hypothesis we
can write σ1 > 1 − 1

c log p
, for some constant c. Hence, with probability σ1, the reduction

makes it to Step 7 instead of outputting ⊥.

Note that at the end of Step 6, |Si+1| ≤ 1
`A
|Si| for all i. Let m = dlog `eAA e. Then

|Sm| ≤
1

`mA
|S0| ≈

`eA−1A (`A + 1)

`eAA
≈ 1.

This implies that O(m) calls to O are required. The success probability of Algorithm 3.3.6
is therefore σm1 . Since m ≈ 1

2
log p, we have σm1 ≈

(
1− 1

2cm

)m
which approaches 1

e1/2c
as p

grows.

Step 6 runs in Õ(`3eAA) or Õ(
√
`eAA) time depending on if the degree of ψ is a smooth

number or not.

These two theorems show how outputs from Oracle 3.3.3, that is, endomorphisms which
fix a large proportion of subgroups in E0[`

eA
A], can be used to solve different isogeny prob-

lems. In each theorem, only the existence of the endomorphisms on EA, namely those ψ′

which correspond to the output from Oracle 3.3.3, are being used with Theorem 3.2.3 to
infer information about kerφA. However the endomorphism ψ′ itself is discovered in the

42

process (see the proofs of Theorem 3.2.3 and Lemma 3.2.4). We propose a technique which
uses the explicit endomorphism ψ′ on EA to determine the images of torsion points under
φA other than those in the SSDDH and CSSI problems. We discuss the idea underlying
our methods in the simplest case: when the endomorphisms have the easiest form to work
with.

Let E be a supersingular elliptic curve and consider some ψ ∈ End(E) and φ : E → E ′

satisfying ψ(kerφ) = kerφ. Recall Proposition 3.2.1 and Figure 3.1. By our kernel-fixing
assumption, we can reillustrate the figure as in Figure 3.2.

E E ′

E E ′

φ

ψ ψ′

φ

Figure 3.2: Commutative diagram assuming ψ(kerφ) = kerφ

Examining Figure 3.2, one would expect the action of ψ on E to be similar to the action
of ψ′ on E ′. This is exactly what we aim to show.

Recall the notation φ|E[N] representing the isogeny φ restricted to the subgroup E[N],
and similarly φ|〈P,Q〉 for independent points P and Q. Write

φ|〈P,Q〉 = (a bc d) ,

where φ(P) = [a]P + [c]Q and φ(Q) = [b]P + [d]Q. We start with a basic preliminary
lemma.

Lemma 3.3.7. Let φ : E → E ′ be a separable isogeny and let {P,Q} be a basis for E[N],
where N, deg φ and p are pairwise coprime. Then E ′[N] = 〈φ(P), φ(Q)〉.

Proof. As |E[N]| = N2 and deg φ are coprime, we have kerφ ∩ E[N] = {∞}. Applying
the first isomorphism theorem on the restricted isogeny φ|E[N], we find that

φ(E[N]) ∼= E[N]

ker
(
φ|E[N]

) ∼= E[N].

There is only one subgroup of E ′ of this form, namely E ′[N]. Thus, φ(E[N]) ∼= E ′[N].

43

In Propoisiton 3.3.8 we show that the action of ψ on E[N] is similar (i.e. conjugate) to
the action of ψ′ on E ′[N].

Proposition 3.3.8. Let E0/Fp2 be a supersingular elliptic curve such that p = N1N2 − 1
for coprime N1 and N2. Let φ : E → E ′ be a separable isogeny and ψ ∈ End(E) such that
ψ(kerφ) = kerφ. Let ψ′ ∈ End(E ′) be the endomorphism from Proposition 3.2.1. Suppose
{P,Q} is a basis for E[N] for some N ≥ 2, and N1, N, p, and degψ are all pairwise
coprime. Let ψ|〈P,Q〉 = M for some matrix M . Then, M ∈ GL2(Z/NZ), and

ψ′|〈φ(P),φ(Q)〉 = M.

Proof. The invertibility of M follows from the fact that the action of ψ ◦ ψ̂ = N1 · I2×2
(with respect to all bases of E[N]) and gcd(N1, N) = 1.

By Lemma 3.3.7, we know that E ′[N] = 〈φ(P), φ(Q)〉. Let

M =

(
m11 m12

m21 m22

)
.

Then,

φ ◦ ψ ◦ φ̂ (φ(P)) = φ ◦ ψ ([N1]P)

= [N1]φ(ψ(P))

= [N1]φ([m11]P + [m21]Q)

= [m11N1]φ(P) + [m21N1]φ(Q).

Similarly,
φ ◦ ψ ◦ φ̂ (φ(Q)) = [m12N1]φ(P) + [m22N1]φ(Q).

Therefore, (
φ ◦ ψ ◦ φ̂

)∣∣∣
〈φ(P),φ(Q)〉

= N1M.

Since ψ(kerφ) = kerφ, we have
φ ◦ ψ = ψ′ ◦ φ,

which implies
φ ◦ ψ ◦ φ̂ = ψ′ ◦ φ ◦ φ̂ = ψ′ ◦ [N1].

44

Therefore,

N1M =
(
φ ◦ ψ ◦ φ̂

)∣∣∣
〈φ(P),φ(Q)〉

= ([N1] ◦ ψ′)|〈φ(P),φ(Q)〉

= N1|〈φ(P),φ(Q)〉 ·
(
ψ′|〈φ(P),φ(Q)〉

)
= N1 ·

(
ψ′|〈φ(P),φ(Q)〉

)
.

As N1 is invertible modulo N , dividing both sides of the above equality by N1 gives the
proposed statement.

To recap, if ψ preserves kerφ, then by Proposition 3.3.8, the matrix of ψ (with respect
to {P,Q}) is equal to the matrix of ψ′ (with respect to {φ(P), φ(Q)}). We are interested
in the converse:

• Does the equation
ψ|〈P,Q〉 = ψ′|〈P ′,Q′〉 (3.1)

reveal anything about the relationship between {P,Q} and {P ′, Q′}?

• Furthermore, can we use this relationship to deduce information about the action of
φ on E0[N]?

We answer these questions in the affirmative in the case where the action is a diagonal
matrix. First, Proposition 3.3.9 equates such P ′ and Q′ from Eq. 3.1 to scalars of φ(P)
and φ(Q). Second, Proposition 3.3.10 equates such P ′ and Q′ to ±φ(P) and ±φ(Q) when
Eq. 3.1 can be satisfied twice, by two distinct pairs (where ψ and ψ′ would be one such
pair) of endomorphisms.

Proposition 3.3.9. Let the setup be the same as in Proposition 3.3.8. Further, suppose
N is prime, and the matrix ψ|〈P,Q〉 = M is diagonal. If {R, S} is some basis of E ′[N] such
that ψ′|〈R,S〉 = M , then there exist α, β ∈ Z/NZ such that φ(P) = [α]R and φ(Q) = [β]S.

Proof. We will show that both φ(P) and R are eigenvectors of M of the same eigen-
value, and similarly both φ(Q) and S are eigenvectors of M of the same eigenvalue. Since
ψ(kerφ) = kerφ, ψ′ exists by Proposition 3.2.1. By Proposition 3.3.8 we know there exists
some basis (namely (φ(P), φ(Q))) such that ψ′|E′[N] = M , and further, by the proof, for
any other basis of E ′[N] the matrix ψ′|E′[N] is similar to M .

45

Let M = [a 0
0 d]. Proposition 3.3.8 states that ψ′ acts as M with respect to the basis

{φ(P), φ(Q)}, and so φ(P) and φ(Q) are eigenvectors of M of eigenvalue a and d, re-
spectively. But we also have that R and S are eigenvectors of M of eigenvalue a and
d, respectively, by assumption. This implies φ(P) = [α]R and φ(Q) = [β]S for some
α, β ∈ Z/NZ as N is prime.

We are concerned with the computational cost of determining the action of a secret
isogeny φ : E → E ′. Proposition 3.3.9 tells us that by searching for a basis on a prime
torsion subgroup of E ′ such that an endomorphism ψ′ ∈ End(E ′) behaves like the corre-
sponding endomorphism φ ∈ End(E) (the correspondence arising from Proposition 3.2.1),
we can infer how φ acts up to scalar multiples. Given how ψ′ acts with respect to any basis
for E[N], it is simple linear algebra to find the basis to make ψ′ act with the same matrix
as ψ, and so the computational cost of this step is small.

Next, we assume further that we have two distinct endomorphisms, ψ1, ψ2 ∈ End(E),
which fix the kernel of some isogeny φ to examine what benefit this gives to the goal of
determining the action of φ.

Proposition 3.3.10. Let E be a supersingular elliptic curve over Fp2, let φ : E → E ′ be
a separable isogeny, and N a prime coprime to deg φ. Given ψ1, ψ2 ∈ End(E) such that

1. ψi(kerφ) = kerφ for i = 1, 2,

2. ψ′1, ψ
′
2 are the endomorphisms of E ′ corresponding repsectively to ψ1, ψ2 from Propo-

sition 3.2.1,

3. ψ1 acts on E[N] as a diagonal matrix M1 with respect to a basis {P1, Q1},

4. ψ2 acts on E[N] as a diagonal matrix M2 with respect to a basis {P2, Q2},

5. degψ1, degψ2 each are pairwise coprime with N, deg φ and p, and

6. P2 = [γ]P1 + [δ]Q1 for some integers γ, δ ∈ (Z/NZ)∗,

there exists an algorithm which can determine the tuple (φ(P1), φ(Q1)) up to a sign, from
the input of E,E ′, ψ1, ψ2, ψ

′
1, ψ

′
2, with runtime Õ(N3).

By “up to a sign” here we mean that either (φ(P1), φ(Q2)) or (−φ(P1),−φ(Q2)) will be
output.

46

Proof. We give a proof by presenting the claimed algorithm followed by a justification of
its correctness and analysis of its runtime.

Algorithm 3.3.11.
Input: E,E ′, N , bases {P1, Q1}, {P2, Q2} of E[N], ψ1, ψ2 ∈ End(E), and ψ′1, ψ2 ∈ End(E)
as defined in the statement of the proposition.

Output: ±(φ(P1), φ(Q1)).

1. For i = 1, 2: find a basis {Ri, Si} of E ′[N] such that the action of ψ′i on E ′[N] with
respect to a basis {Ri, Si} is Mi.

2. Determine γ, δ ∈ (Z/NZ)∗ such that P2 = [γ]P1 + [δ]Q1.

3. Without loss of generality (by switching R2 and S2 if necessary) it is possible to find
γ′, δ′ ∈ (Z/NZ)∗ such that R2 = [γ′]R1 + [δ′]S1.

4. Evaluate the Weil pairings g = eN (P1, Q1) and h = eN (R1, S1).

5. Solve the discrete log for x in gN1 = hx.

6. Solve α2 ≡ δγ′

δ′γx mod N for α ∈ (Z/NZ)∗.

7. Set β ≡ α−1x mod N .

8. Return φ(P1) = [α]R1, φ(Q1) = [β]S1.

We now justify the correctness of Algorithm 3.3.11. By Proposition 3.3.9, there exist
α, β ∈ (Z/NZ)∗ such that φ(P1) = [α]R1 and φ(Q1) = [β]S1. Observe

φ(P2) = [γ]φ(P1) + [δ]φ(Q1) = [γα]R1 + [δβ]S1,

and by Proposition 3.3.9 there is some integer ε such that

φ(P2) = [ε]R2 = [εγ′]R1 + [εδ′]S1.

By comparing coefficients we see that

ε = αγγ′−1 = βδδ′−1,

47

which implies α =
(
δγ′

δ′γ

)
β. The Weil pairing gives us our second equation relating α and

β by applying Proposition 2.1.25:

eN (φ(P1), φ(Q1)) = eN(P1, Q1)
N1 = gN1 ,

and,
eN (φ(P1), φ(Q1)) = eN (R1, S1)

αβ = hx.

Therefore, x = αβ can be computed by solving discrete log as described in Step 5. Substi-
tuting for β from the previous equation in terms of α, we get the expression for α2 in Step 6.
Hence, we obtain two solutions ±(α, β), and the result follows. The cost of Steps 2–6 is
dominated by the cost of constructing the extension field defining E[N], which is Õ(N3)
by the proof of Lemma 3.2.4.

3.4 Improvements from Isogeny Actions

With motivation from the public key encryption scheme SIDH, we consider the case when
φ|G is known for some subgroup G ⊂ E(Fp2). When this information is public it becomes
easier to compute endomorphisms on E ′ = E/ kerφ. It has been shown that the cost of
computing endomorphisms on E ′ can be reduced by a factor of |G| when φ|G is known [76].
This section shows how to improve this factor to |G|2.

Consider the setup of Theroem 3.2.3: let N , g and k be integers, and suppose End(E),
φ(E[g]), where φ : E → E ′ has degree N , and ψ ∈ End(E) with degree k, which fixes kerφ,
are known. By Theorem 3.2.3, there exists ψ′ ∈ End(E ′) with kernel φ(kerψ). Further,
suppose g2 | k, and write k = g2k′. This section will show that it is then drastically more
computationally simple to find the g2 component of kerψ′ on E ′ than was outlined in the
proof of Theorem 3.2.3. We begin with a definition.

Definition 3.4.1. Suppose ψ is a cyclic endomorphism of E. A triangular decompo-
sition of ψ with respect to g is a triple of cyclic isogenies ψ0, ψ1, ψ2, where

1. ψ0 and ψ1 have degrees dividing g,

2. ψ = ψ̂0 ◦ ψ2 ◦ ψ1, and

3. if gcd(g, degψ2) 6= 1, then degψ0 = degψ1 = g.

48

A triangular kernel of ψ with respect to g is a triple of torsion points denoted by ∆ψ =
(K0, K1, K2), which generate the kernels of the corresponding isogenies of a triangular
decomposition, that is, kerψi = 〈Ki〉. Furthermore, let k′ = |K2|.

This representation has the advantage that only the extension field containing the k′-
torsion points is needed to write the kernel, instead of the g2k′-torsion points. This is
because K0, K1 ∈ E[g]. Notice that K0, K1 and K2 could theoretically all be trivial.

Notation 3.4.2. Let ψ0, ψ1, ψ2 denote a triangular decomposition of ψ with respect to g.
Let E0, E1 and E2 denote the images of ψ0, ψ1, ψ2, respectively, as illustrated in Figure 3.3.
Then, up to isomorphism, E0

∼= E2.

E ψ

E

E1

E0
∼= E2

ψ1

ψ0
ψ2

Figure 3.3: Decomposing endomorphisms

We wish to study a passive adversary’s ability to transfer ψ on E over to a corresponding
potential endomorphism on E ′, using the isogenies in the triangular decomposition of ψ
(so that they can test if Alice’s private key is an eigenvector of ψ). In order to calculate
the corresponding objects on E ′, we introduce notation for additional isogenies.

Notation 3.4.3. Let ψ′0 be the isogeny with domain E ′ and kernel φ(kerψ0), and φ0 be the
isogeny with domain E0 and kernel ψ0(kerφ). Let the image elliptic curves be E ′0,? = ψ′0(E

′)
and set E ′0 = φ0(E0), as illustrated in Figure 3.4.

Since deg φ0 and deg φ are relatively prime, E ′0
∼= E ′0,?.

E E ′

E0 E ′0
∼= E ′0,?

φ

ψ0

ψ′0

φ0

Figure 3.4: Maps with known kernels

49

Notation 3.4.4. We decompose the isogeny with domain E ′ and kernel equal to φ(kerψ2 ◦
ψ1) as ψ′2 ◦ ψ′1, where kerψ′1 = φ(kerψ1) and kerψ′2 = ψ′1 ◦ φ(kerψ2). Let φ2 be the isogeny
with domain E2 whose kernel is ψ2 ◦ ψ1(kerφ). Denote the images by E ′1 = ψ′1(E

′), E ′2,? =
ψ′2(E

′
1) and E ′2 = φ2(E2).

Note that degψ′1 = degψ1 (which implies, degψ′1 | g), and degψ′2 = degψ2. Since
degψ2 ◦ ψ1 and deg φ are relatively prime, E ′2,?

∼= E ′2 as shown in Figure 3.5.

E E ′

E1 E ′1

E2 E ′2
∼= E ′2,?

φ

ψ1

ψ′1

ψ2

ψ′2

φ2

Figure 3.5: Maps with known and unknown kernels

We now see that the knowledge of φ(E[k]) can be used to calculate ψ′0 and ψ′1. Putting
the previous two diagrams together gives us Figure 3.6.

E E ′

E1 E ′1

E0
∼= E2 E ′2

E ′0

φ

ψ1

ψ0

ψ′1

ψ′0
ψ2 ψ′2

φ2

φ0

Figure 3.6: Combining 3.4 and 3.5

The goal is to adapt the results of Theroem 3.2.3 to incorporate the addition of torsion
information. The following lemma is analogous to Proposition 3.2.1.

50

Lemma 3.4.5. Suppose gcd(k,N) = 1. If ψ(kerφ) = kerφ, then E ′1 is k-isogenous to E ′0
via the isogeny ψ′2 described above.

Proof. Suppose kerφ = 〈R〉. Choose a triangular decomposition of ψ as follows:

ψ = ψ̂0 ◦ ψ2 ◦ ψ1.

Let ψ̃ = ψ2 ◦ ψ1 ◦ ψ̂0. Then ψ̃ is an endomorphism of E0. Moreover,

ψ̃(ψ0(R)) = ψ2 ◦ ψ1 ◦ ψ̂0(ψ0(R))

= ψ2 ◦ ψ1([degψ0]R)

= [degψ0]ψ2 ◦ ψ1(R)

= ψ0(ψ̂0 ◦ ψ2 ◦ ψ1)(R)

= ψ0(ψ(R)).

However, as R generates a subgroup which is fixed by ψ, say ψ(R) = [λ]R for some integer
λ satisfying gcd(λ,N) = 1, this and the above equation imply

ψ̃(ψ0(R)) = [λ]ψ0(R).

Thus 〈ψ0(R)〉 is fixed by ψ̃.

Recall that 〈ψ0(R)〉 is the kernel of the isogeny φ0 on E0, see Figure 3.7. Therefore, we
can apply Proposition 3.2.1, proving the existence of an endomorphism ψ̃′ on E ′0, where
ker ψ̃′ = φ0(ker ψ̃). Let φ′0 be the isogeny on E0 with kernel ψ̃(kerφ0). Since gcd(k,N) = 1,
the following equation holds: φ′0 ◦ ψ̃ ∼= ψ̃′ ◦ φ0.

E0 E ′0

E0 E ′0

φ0

ψ̃

ψ̃′

φ′0

Figure 3.7: ψ̃ fixing the kernel of φ0

It remains to be shown that E ′0
∼= E ′2, that is, the codomain of φ′0 is isomorphic to E ′0.

51

Similar to the above we find

kerφ′0 = ψ̃(kerφ0)

= ψ2 ◦ ψ1 ◦ ψ̂0(〈ψ0(R)〉)
= ψ2 ◦ ψ1(〈[degψ0]R〉)
= [degψ0](ker(φ2))

= ker(φ2).

Then,

E ′2 = φ2(E2) ∼= φ′0(E0)

∼= φ′0 ◦ ψ̃(E0) ∼= ψ̃′ ◦ φ0(E0) ∼= E ′0.

Thus E ′0 and E ′2 are isomorphic. Finally, ψ′2 is a k-isogeny between E ′1 and E ′2, which
implies E ′1 and E ′0 are k-isogenous.

Now that Lemma 3.4.5 is proven, it is clear how to improve the algorithm in Theo-
rem 3.2.3 in the case when the action on some E[g] is also provided for some g | N2

2 .

Theorem 3.4.6. Given

1. a supersingular elliptic curve E/Fp2 such that p = N1N2 − 1 for coprime N1 ≈ N2,
where N2 is log p-smooth,

2. an elliptic curve E ′ that is the codomain of an N1-isogeny φ : E → E ′,

3. the image of φ on E[N2], and

4. a k-endomorphism ψ of E for some integer k where gcd(k,N1) = 1, and if g is the
greatest integer such that g | N2

2 , and g | k, then k′ := k
g
< N1,

there exists a classical algorithm with worst case runtime Õ(k′3) which decides whether
ψ(kerφ) = kerφ or not, but may give false positives with probability ≈ 1√

p
. Further, if k′

is log p-smooth, then the runtime is Õ
(√

k′
)

.

52

Proof. We start by describing the algorithm referred to in the theorem, thereby showcasing
its existence, and subsequently analyze its running time and success probability to prove the
theorem. The probability of a false-positive (the algorithm outputing that ψ(kerφ) = kerφ
when that is not the case), can be approximated using the mixing properties of the isogeny
graph.

Algorithm 3.4.7.
Input: E, p,N1, N2, E

′, φ(E[N2]), and a triangular kernel (with respect to g) for ψ :
(K0, K1, K2).

Output: True or False.

1. Use φ(E[N2]) to compute φ(K0) and φ(K1).

2. Compute the isogenies ψ′0, and ψ′1 with respective kernels 〈φ(K0)〉 and 〈φ(K1)〉 (see
Figure 3.6).

3. For all k′-isogenies from E ′0, check if their codomain has j-invariant j(E ′1).

4. If such an isogeny is found, then return True, otherwise return False.

First, we discuss the success probability. If Algorithm 3.4.7 returns False, then kerφ
is not fixed by ψ by the contrapositive of 3.4.5. Suppose Algorithm 3.4.7 returns True.
Notice that the total number of non-backtracking isogenies from E ′0 of degree k′, if we write
the factorization k′ =

∏
1≤i≤r

qeii , is

∏
1≤i≤r

(qi + 1)qei−1i .

Also, we know that there are approximately p
12

isomorphism classes of supersingular elliptic
curves in an isogeny graph. From these two pieces of information we deduce that the
probability that there is a cyclic k′-isogeny between E ′0 and E ′1 is no more than

12

p

∏
1≤i≤r

(qi + 1)qei−1i .

This probability is negligible since k′ < N1 ≈ √p. Therefore, under this assumption on k′,
if there is a k′-isogeny from E ′0 to E ′1, then the kernel subgroup is fixed by ψ.

Next, we discuss the runtime. Steps 1 and 2 are efficient in p since N2 is log p-smooth.
The analysis of verifying when E ′0 and E ′1 are k′-isogenous is identical to the proof of
Theorem 3.2.3. Thus, the worst case is when k′ is prime, with runtime O(k′3).

53

In Section 3.5 we demonstrate that supersingular elliptic curves with j-invariant 1728
likely do not have an endomorphism which satisfies the conditions of Theorem 3.4.6 (for
instance, those in the Round 1 submission of SIKE). However, in Section 3.6 we give
heuristic arguments as to why such endomorphisms may exist in multi-party variants of
SIDH, such as group key-exchange [50, 4].

Algorithm 3.4.7 will be a subroutine in the following reduction (Theorem 3.4.10) of
computational problems. That reduction will assume an oracle which outputs triangular
kernels of endomorphisms, and then uses Algorithm 3.4.7 with each of those endomor-
phisms. We start by presenting the oracle which we will use in our reduction.

As mentioned previously, it is useful for the oracle to output a triangular kernel, instead
of the kernel, to avoid unnecessary extension fields. Since we are no longer discussing a
single k′-isogeny, with k′ ≤ N1, but potentially multiple isogenies from repeated calls to
an oracle, we instead use K ≤ N1 to denote the upper bound on all such k′. We now
introduce the oracle that will be used in our two reductions.

Oracle 3.4.8.
Input: p = N1N2−1, a supersingular elliptic curve E, integers K and `, a set S ⊂ E[N1],
and a basis P,Q for E[N1].

Output: The triangular kernel (K0, K1, K2) of a cyclic endomorphism ψ of E such that
the following constraints hold:

1. |K2| ≤ K,

2. gcd (|K2|, N1) = 1,

3.
∣∣∣EigP,QN1

(ψ)
∣∣∣ ≥ 1

`
|S|, and

4.
∣∣∣EP,Q[N1] \ EigP,QN1

(ψ)
∣∣∣ ≥ 1

`
|S|,

or ⊥ if no endomorphism satisfying these constraints exists.

Theorem 3.4.9. Suppose we are given a supersingular elliptic curve E/Fp2 such that
p = N1N2 − 1 for coprime N1 ≈ N2, where N2 is log p-smooth, and access to an O as in
Oracle 3.4.8 such that O succeeds for a non-negligible proportion of sets S when K = N1

and ` = O(log p). Then there exists a (classical) distinguisher for the SSDDH problem with

advantage
1

`2
, which makes O(1) calls to O, and runs in worst-case time Õ (K3). Further,

if the endomorphisms returned by O all have log p-smooth degree, then the runtime is

Õ
(√

K
)

.

54

Proof. The distinguisher in question is exactly that described in the proof of Theorem 3.3.4,
except calls to Oracle 3.3.3 are replaced by Oracle 3.4.8.

The next theorem is the main reduction of this section: from Oracle 3.4.8 to the CSSI
problem.

Theorem 3.4.10. Given

1. a starting supersingular elliptic curve E/Fp2 such that p = N1N2− 1 for coprime N1

and log p-smooth N2,

2. the image of an N1-degree isogeny E ′ = φ(E),

3. the action of φ on E[N2], and

4. access to an O as in Oracle 3.4.8 such that O fails only for a negligible proportion
of sets S when K = N1,

there exists a (classical) algorithm which outputs kerφ with non-negligible probability, makes
m = O (logN1) queries to O, and runs in worst-case time Õ (K3 ·m). Further, if the en-

domorphisms returned by O all have log p-smooth degree, then the runtime is Õ
(√

K ·m
)

.

We now present the algorithm that is referred to in Theoerem 3.4.10. Algorithm 3.4.11
iteratively reduces the size of the search space, which is denoted Si at the ith iteration, for
a generator of kerφ.

Algorithm 3.4.11.
Input:

1. E, p,N1, N2, such that p = N1N2 − 1 and E is supersingular over Fp2,

2. the action of φ on E[N2],

3. E ′, where φ : E → E ′, and

4. access to an O as in Oracle 3.4.8 denoted O.

Output: A generator of kerφ, or ⊥.

1. Let P,Q be a basis for E[N1], set S0 = EP,Q[N1], and set i = 0.

55

2. Set K = N1.

3. Call O with p, E,K, and Si.

If O outputs ⊥, then return ⊥.

4. While O outputs a solution:

Halve K and call O. Let K be the last value where O did not output ⊥.

Let (K0, K1, K2) be the triangular kernel output of O called with p, E,K, and Si.

5. Let X = Si ∩ EigP,QN1
(ψ) and Y = Si \ EigP,QN1

(ψ).

6. Use Algorithm 3.4.7 with input E, p,N1, N2, E
′, φ(E[N2]), and a triangular kernel

(with respect to g) for ψ, (K0, K1, K2), to determine whether R ∈ X or R ∈ Y .

7. If R ∈ X, then let Si+1 = X. Otherwise if R ∈ Y , then let Si+1 = Y .

8. Increment i and repeat Steps 2 to 7 until |Si| = 1.

9. Return Si.

We now analyze Algorithm 3.4.11, thereby proving Theorem 3.4.10.

Proof. (of Theorem 3.4.10) The proof consists of analyzing the success probability and
runtime of Algorithm 3.4.11. In particular, we show that in the setting of Theorem 3.4.10,
Algorithm 3.4.11 runs in time O(K3 · poly(log p)).

Let σ1 be the fraction of sets S ⊆ EP,Q[N1] for which there exists a non-negligible
proportion of K ∈ {0, 1, . . . , N1} for which O will succeed. By hypothesis σ1 is exponen-
tially close to 1. Hence, with probability σ1, the reduction makes it to Step 7 instead of
outputting ⊥.

Note that in Step 5, X and Y partition Si, and each have size at least 1
`
|Si|. Step 6

then removes a part of Si with at least this size. Therefore, for all i, at the end of Step 6,
we have that |Si+1| ≤ `−1

`
|Si|. Let C = poly(log p) and m = d logN1−logC

− log `−1
`

e. Then

log |Sm| ≤ log

((
`− 1

`

)m
N1

)
= m log

`− 1

`
+ logN1

≈ logN1−logC
− log `−1

`

log
`− 1

`
+ logN1

= logC.

56

This implies that to ensure |Sm| ≤
(
`−1
`

)m
N1 has polynomial size, O(m) calls to O are

required. Therefore, we expect there to be at least O(log p) many iterations of Steps 2 to
7.

Step 4 performs a binary search using O. The search for the minimum K takes logN1

calls. By the statement of Theorem 3.4.6, Step 6 will terminate with high probability,
say σ2, in worst case time Õ(K3). Therefore, since Steps 2 to 7 happen O(log p) many
times, Algorithm 3.4.11 terminates in worst-case time K3 · poly(log p), and succeeds with
probability (σ1σ2)

O(log p) which is non-negligible (by analysis similar to that in the proof of
Theorem 3.3.5).

Before we end this section, it is important to note (and will come up in Section 3.6
and the end of Section 3.5) that there exists a potential tradeoff for the endomorphisms
output by Oracle 3.4.8. In particular, the tradeoff is between the proportion of the set S
that is fixed and the number of queries to Oracle 3.4.8 in Algorithm 3.4.11. Consider the
following modified oracle.

Oracle 3.4.12.
Input: p = N1N2 − 1, a supersingular elliptic curve E, an integer K, a set S ⊂ E[N1], a
basis P,Q for E[N1], and ρ ∈ (0, 1

2
].

Output: The triangular kernel (K0, K1, K2) of a cyclic endomorphism ψ of E such that
the following constraints hold:

1. |K2| ≤ K,

2. gcd (|K2|, N1) = 1,

3.
∣∣∣S ∩ EigP,QN1

(ψ)
∣∣∣ ≥ ρ|S|, and

4.
∣∣∣E[N1] \ EigP,QN1

(ψ)
∣∣∣ ≥ ρ|S|,

or ⊥ if no endomorphism satisfying these constraints exists.

Oracle 3.4.12 can be used similarly to Oracle 3.4.8, as seen in the following theorem.

Theorem 3.4.13. Given

57

1. a starting supersingular elliptic curve E/Fp2 such that p = N1N2− 1 for coprime N1

and log p-smooth N2,

2. the image of an N1-degree isogeny E ′ = φ(E),

3. the action of φ on E[N2], and

4. access to an O as in Oracle 3.4.12, such that for an overwhelming fraction of sets S,
O succeeds for a non-negligible proportion of K ∈ {0, . . . , N1} and ρ ∈

(
0, 1

2

)
,

there exists a (classical) algorithm which outputs kerφ with non-negligible probability, makes

m = O
(

logN1

− log(1−ρ)

)
queries to O, and runs in worst-case time Õ (K3 ·m). Further, if the

endomorphisms output from O all have log p-smooth degree, then the runtime is Õ
(√

K ·m
)

.

Proof. Instead of rewriting Algorithm 3.4.11 with slight changes, we present only the steps
which need modifying:

1. In Step 3 include ρ in the call to O (Oracle 3.4.12),

2. Replace Step 4 with:

While O outputs a solution:

Halve K and call O.

Let K be the last value where O did not output ⊥.

While ρ ≤ 1/2, and O outputs a solution:

Double ρ and call O.

Let ρ be the last value for which O did not output ⊥.

Let (K0, K1, K2) be the triangular kernel output of O called with p, E,K, and Si.

Similar analysis from the proof of Theorem 3.4.10 holds with m =
⌈
logN1−logC
− log(1−ρ)

⌉
for some

C = poly(log p), as at the end of Step 6, |Si+1| ≤ (1− ρ)|Si| for all i.

The remainder of this chapter studies the feasibility of Oracle 3.4.8. In Section 3.5 we
describe the set of endomorphisms that can be output by Oracle 3.4.8 for the isomorphism
class of supersingular elliptic curves with j-invariant 1728. In Section 3.6 we give heuristic
analyses for the existence of such endomorphisms in a multiparty setting (see [50, 4]).

58

3.5 Test Case: j(E) = 1728

The focus of this section will be to determine the difficulty of instantiating Oracle 3.4.8 on
supersingular elliptic curves with j-invariant 1728. Eq. 3.6 will provide an if and only if
for the criterion required for an output of Oracle 3.4.8. We begin with some background
on such curves.

In any field with prime characteristic p satisfying p ≡ 3 mod 4 it is well-known that
elliptic curves with j-invariant 1728, those with short Weierstrass equation

E : y2 = x3 + ax

for a ∈ F∗p, are supersingular. If E is supersingular with j-invariant 1728 over Fp, then the

field contains some element i ∈ Fp\Fp such that i2 = −1, and further the elliptic curve has
the two following endomorphisms:

π : E → E, (x, y) 7→ (xp, yp),

ι : E → E, (x, y) 7→ (−x, i · y).

The enodmorphism ring of E is isomorphic to the maximal order

End(E) ∼= Z
〈

1, ι,
1 + π

2
,
ι+ ι ◦ π

2

〉
in the quaternion algebra ramified at p and ∞ [78, p 368–369].

We now consider the problem of instantiating Oracle 3.4.8 on this isomorphism class
of elliptic curves. As Oracle 3.4.8 restricts the degree and the action of the output en-
domorphisms, these are the two problems we address. First, recall that the degree of an
endomorphism is equal to the norm of the associated quaternion element. From this, we
see the following.

Lemma 3.5.1. Let E/Fp be a supersingular elliptic curve with j-invariant 1728. For
variables w, x, y, z ∈ Z, let ψ be the endomorphism

ψ = [w] + [x]ι+ [y]
1 + π

2
+ [z]

ι+ ι ◦ π
2

.

Then,

deg(ψ) = w2 + x2 +

(
p+ 1

4

)
(y2 + z2) + wy + xz.

59

Proof. This is a straightforward calculation of the quaternion norm:

[degψ] = ψ ◦ ψ̂

=

(
[w] + [x]ι+ [y]

(
1 + π

2

)
+ [z]

(
ι+ ι ◦ π

2

))
·
(

[w]− [x]ι+ [y]

(
1− π

2

)
+ [z]

(−ι− ι ◦ π
2

))
= [w2] + [wy] + [x2] + [xz] +

(
p+ 1

4

)(
[y2] + [z2]

)
=

[
w2 + wy + x2 + xz +

(
p+ 1

4

)(
y2 + z2

)]
,

where the second to last equality follows from the fact that the maps corresponding to
coefficients [yz] and [zy] are negatives of one another.

Next, we discuss the computational cost of determining the action of a fixed endomor-
phism.

Lemma 3.5.2. Let N be a natural number, and E/Fp a supersingular elliptic curve with
End(E) ∼= Z〈b1, b2, b3, b4〉. For variables w, x, y, z ∈ Z, the action of any endomorphism

[w]b1 + [x]b2 + [y]b3 + [z]b4

on E[N] can be written as a 2× 2-matrix M(w, x, y, z) whose entries are linear in the four
variables. In the worst case, this can be done in Õ(N3) time, and in Ω(log2 p) when N is
log p-smooth.

Proof. We prove Lemma 3.5.2 by describing an algorithm that returns the required output
and analyzing its runtime. Consider the factorization of N =

∏
1≤i≤r

qeii .

Algorithm 3.5.3.
Input: A supersingular elliptic curve E, a basis {b1, b2, b3, b4} of End(E), w, x, y, z ∈ Z,
N ∈ Z, and optionally a basis {P,Q} for E[N].

Output: A 2× 2-matrix M(w, x, y, z) whose entries are linear in the four variables and a
basis {P,Q} for E[N] if it was not provided.

1. If P,Q is not given, find a basis {P,Q} of E[N] ⊂ E/Fp2.

60

2. Calculate bi(P) and bi(Q) for i = 1, . . . , 4. Solving the discrete logarithm for these
values, in terms of P and Q, gives the action of bi on E[N] which we can write as a
matrix Mi.

3. Calculate M = wM1 + xM2 + yM3 + zM4, where w, x, y, z are integer variables.

4. Return P,Q,M .

The most difficult part of Algorithm 3.5.3 is constructing the field extension in Step 1.
Once the extension is constructed, the arithmetic in that extension is efficient in N and
p. Recall that Step 1 has runtime Õ(N3) in the case where E[N] is not defined over Fp2 ,
as seen in the proof of Lemma 3.2.4. The best-case scenario for constructing the basis in
Step 1 takes Ω(log2 p) when N is log p-smooth or the N -torsion is defined over a small field
extension (see Lemma 3.2.4).

Step 2 has runtime O
(∑

1≤i≤r
ei(logN +

√
qi)
)

[79], which is always less than the runtime

in Step 1.

With Algorithm 3.5.3 we see how to compute the action of a generic basis of End(E)
on an arbitrary torsion subgroup. When applying this to supersingular elliptic curves with
j-invariant 1728, certain endomorphisms can have their action on certain torsion subgroups
represented by 2×2 matrices whose entries are linear in only two variables. Indeed, consider
the subring (and rank 4-submodule)

O0
∼= Z 〈1, ι, π, ι ◦ π〉 ⊂ Z

〈
1, ι,

1 + π

2
,
ι+ ι ◦ π

2

〉
.

Then for any ψ = [w] + [x]ι + [y]π + [z]ι ◦ π ∈ O0, the norm equation of the subring O0

gives
deg(ψ) = w2 + x2 + p

(
y2 + z2

)
.

Additionally, let P,Q ∈ E[N] be a basis for some integer N , and suppose that Q = ι(P) =
π(P) (this assumption will be studied in Appendix B). Then a simple calculation shows
that the matrix computed in Algorithm 3.5.3 on the input E, {1, ι, π, ι ◦ π}, w, x, y, z,N ,
and the basis P,Q, is [

w − z −x+ y
x+ y w + z

]
.

If, instead, the entire endomorphism ring is used, then the action of ψ = [w] + [x]ι +

[y]
1 + π

2
+ [z]

ι+ ι ◦ π
2

is slightly more involved. Again, if we let P,Q ∈ E[N] be a basis

61

for some integer N , and suppose that Q = ι(P) = π(P) (again, see Appendix B), then the

matrix computed in Algorithm 3.5.3 on the input E,

{
1, ι,

1 + π

2
,
ι+ ι ◦ π

2

}
, w, x, y, z,N ,

and the basis P,Q, is [
w + y−z

2
−x+ y−z

2

x+ y+z
2

w + y+z
2

]
.

We now examine when a matrix of this above form will satisfy constraints 3 and 4 of
Oracle 3.4.8. Lemma 3.5.5 characterizes the eigenvectors of this matrix of the form [1r]
when N is a prime power. In particular, it calculates the number of eigenvectors of that
form (which is the value we need to bound from below for the constraints of Oracle 3.4.8
to be satisfied).

Lemma 3.5.4. Let M be the matrix [
a b
c d

]
over the ring Z/`eZ. Then [1r] is an eigenvector of M if and only if −br2 +(d−a)r+ c ≡ 0
mod `e.

Proof. If [1r] is an eigenvector, then there exists some λ ∈ Z/`eZ such that the following
equations hold:

a+ rb = λ, and c+ rd = λr.

Substituting gives
c+ rd ≡ λr ≡ ar + br2 mod `e,

and the forward direction follows.

Conversely, suppose −br2 + (d− a)r+ c ≡ 0 mod `e. Then, dr+ c ≡ br2 + ar mod `e,
and so

[a bc d] [1r] =
[
br+a
dr+c

]
=
[

br+a
ar+br2

]
= (br + a) [1r] .

So [1r] is an eigenvector of M .

Lemma 3.5.5. Let M be the matrix [
a b
c d

]
over the ring Z/`eZ and suppose it has the eigenvector [1r]. Let

• ν denote the largest natural number such that `ν | b, `ν | d− a, and ν ≤ e,

62

• α, β denote the numbers such that b = `νβ and d− a = `να,

• ε denote the largest natural number such that `ε | α− 2βr and ε ≤ e−ν
2

, and

• γ = e− ν − ε.

With these notations,

• if ` | β, then [1x] is an eigenvector of M if and only if x = r+y`γ for some y ∈ Z/`eZ,
and

• if ` - β, then [1x] is an eigenvector of M if and only if x = r + y`γ or x = −r +
αβ−1 + y`γ for some y ∈ Z/`eZ.

Proof. By Lemma 3.5.4, [1z] is an eigenvector of M if and only if −bz2 + (d− a)z + c ≡ 0
mod `e. Suppose that [1

r+z] is an eigenvector of M . Then,

− b(r + z)2 + (d− a)(r + z) + c ≡ 0 mod `e. (3.2)

Since [1r] is an eigenvector of M , we know that

−br2 + (d− a)r + c ≡ 0 mod `e,

and so we can subtract this from Eq. (3.2) to conclude that [1
r+z] is an eigenvector of M

if and only if
(d− a)z − b(2rz + z2) ≡ 0 mod `e.

Equivalently, [1
r+z] is an eigenvector of M if and only if

z(α− β(2r + z)) ≡ 0 mod `e−ν . (3.3)

Suppose that ` | β. Then ` - α, and so the vector [1
r+z] is an eigenvector of M if and

only if z ≡ 0 mod `e−ν . Equivalently, since ε = 0, [1x] is an eigenvector of M if and only
if it is of the form

[
1

r+y`γ
]
, for some y ∈ Z/`eZ.

Suppose next that ` - β. Then Eq. (3.3) can be rewritten as

z(αβ−1 − 2r − z) ≡ 0 mod `e−ν . (3.4)

If z satisfies Eq. (3.4), then one of two cases holds:

z ≡ αβ−1 − 2r mod `γ, and

z ≡ 0 mod `ε,

63

or

z ≡ 0 mod `γ, and

z ≡ αβ−1 − 2r mod `ε.

Therefore, [1x] is an eigenvector of M if it is of the form
[

1
r+y`γ

]
or
[

1
−r+αβ−1+y`γ

]
, for some

y ∈ Z/`eZ.

Conversely, suppose still that ` - b, and that x = r + y`γ or x = −r + αβ−1 + y`γ,
for some y ∈ Z/`eZ. It is straightforward to show that in each case the vector [1x] is an
eigenvector of M from the definitions of α, β, and γ.

Corollary 3.5.6. Let M be the matrix [
a b
c d

]
over the ring Z/`eZ. Then, using the notation of Lemma 3.5.5, the number of `e-eigenvectors
of M is 0, `e−γ or 2`e−γ.

We now examine conditions 3 and 4 of Oracle 3.4.8 under the above assumptions.

Theorem 3.5.7. Let E be a supersingular elliptic curve with j(E) = 1728, let N1 = `e,

and let S = EP,Q[`e]. If ψ = [w] + [x]ι + [y]
1 + π

2
+ [z]

ι+ ι ◦ π
2

∈ End(E) satisfies the

output conditions of Oracle 3.4.8, then

`e−2 | x, `e−2 | y, and `e−2 | z,

or if ` = 2, then
`e−2 | 2x, `e−2 | y, and `e−2 | z.

Proof. Let

M =

[
a b
c d

]
be the matrix corresponding to the action of ψ on E[`e], and let ν, ε, and γ be as in
Lemma 3.5.5. Consider the conditions from Oracle 3.4.8:∣∣∣EigP,Q`e (ψ)

∣∣∣ ≥ 1

`
|S|, and

∣∣∣EP,Q[`e] \ EigP,Q`e (ψ)
∣∣∣ ≥ 1

`
|S|.

64

Following Corollary 3.5.6, we need

`e−γ ≥ 1

`
|S| = `e−1.

Therefore, e − γ ≥ e − 1 must be satisfied. Substituting the bound of ε ≤ e− ν
2

into the

definition of γ we see that e−2 ≤ ν and ε ≤ 1. Hence, for conditions 3 and 4 of Oracle 3.4.8
to be satisfied, we need e− 2 ≤ ν.

Since M must have at least one eigenvector for the condition 3 to be satisfied (as this
was used by assumption in Lemma 3.5.5), by Lemma 3.5.4 there must exist r such that

− br2 + (d− a)r + c ≡ 0 mod `e. (3.5)

By definition of ν, we also see that `e−2 | b, d − a. Combining these modular restrictions
with Eq. 3.5 , we see that `e−2 | c as well. Recall from the discussion after Lemma 3.5.2
that

M =

[
w + y−z

2
−x+ y−z

2

x+ y+z
2

w + y+z
2

]
.

Thus
`e−2 | −x+ y−z

2
, `e−2 | z, and `e−2 | x+ y+z

2
,

and the statement follows.

Finally, we combine Theorem 3.5.7 with the degree equation (see Lemma 3.5.1). Recall

p = N1N2 − 1. In order for an endomorphism ψ = [w] + [x]ι + [y]
1 + π

2
+ [z]

ι+ ι ◦ π
2

to satisfy the conditions of Oracle 3.4.8, we must have some integers x̃, ỹ, z̃ such that
x = `e−2x̃, y = `e−2ỹ, and z = `e−2z̃. Furthermore, the following equation must hold:

w2 + `2e−4x̃2 + `2e−4
(
p+1
4

) (
ỹ2 + z̃2

)
+ `e−2wỹ + `2e−4x̃z̃ = k, (3.6)

where, if g is the greatest integer such that g | k and g | `2e, then k′ := k
g
< K and

gcd(k′, `) = 1.

3.6 Cryptanalysis of Multi-Party Schemes

Section 3.5 turns an algebraic problem—do special endomorphisms exist for an isomor-
phism class of elliptic curves—into an arithmetic problem—do there exist solutions to

65

Eq. 3.6. A useful quality of this reformation is that there are clear lower bounds to so-
lutions of quadratic equations. In this section we study Eq. 3.6 for different values of
the right-hand side k. These different values of k correspond to a different number of
participants in a multi-party variant of SIDH [50, 4].

We begin by presenting such a lower bound for the quadratic equation in Eq. 3.6 and
relate it to endomorphisms.

Lemma 3.6.1. Assume the following:

1. E(Fp2) has j-invariant 1728, where p = N1 · · ·Nr − 1,

2. ∀i, j ∈ {1, . . . , r} we have Ni ≈ Nj, and N1 = `e,

3. ψ = [w0]+[x0]ι+[y0]
1+π
2

+[z0]
ι+ιπ
2

is an endomorphism on E of degree k, for integers

w0, x0, y0 and z0, where if g is the greatest integer such that g | (N2 · · ·Nr)
2 and g | k,

then k′ := k
g

satisfies gcd(k′, `) = 1,

4. at least one of y0 and z0 is nonzero, and

5. `µ | x0, y0, z0 for a positive integer µ.

Then k′ has a lower bound of approximately `2(µ+e)−re.

Proof. If the point (w0, x0, y0, z0) = (w, x, y, z) is a solution to

w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz = gk′,

then (w1, x1, y1, z1) = (2w0 + y0, 2x0 + z0, y0, z0) is a solution to

w2 + x2 + p(y2 + z2) = 4gk′.

As `µ | x1, y1, z1, we can let (w1, x1, y1, z1) = (w2, `
µx2, `

µy2, `
µz2). Then (w2, x2, y2, z2) is a

solution to
w2 + `2µx2 + `2µp(y2 + z2) = 4gk′.

Following the transformations above, since at least one of y0 and z0 is non-zero, at least
one of y2 or z2 is non-zero. Then,

k′ ≥ `2µp
4g
≈ `2(µ+e)−re,

since p ≈ `re and g ≈ `2(r−1)e.

66

We now recall constraint 1 of Oracle 3.4.8. As the runtime of the algorithms in The-
orems 3.4.9 and 3.4.10 depends on the bound K, which corresponds to k′ in Eq. 3.6, we
need to examine the different values of the lower bound for k′ and compare these to the
runtimes of the best known kernel-finding algorithms.

Proposition 3.6.2. The algorithm in Theorem 3.4.9 in the r-party case has a lower bound

on its best-case runtime of Õ
(
`

(4−r)e
2
−2
)

.

Proof. Consider an endomorphism ψ = [w0] + [x0]ι + [y0]
1+π
2

+ [z0]
ι+ιπ
2

on E of degree k,

where if g is the greatest integer such that g | (N2 · · ·Nr)
2 and g | k, then k′ := k

g
satisfies

gcd(k′, `) = 1. If there is a convenient basis {P,Q} of E[`], then ψ acts as the matrix M0

with respect to {P,Q}. Let ν, ε, and γ be defined as in Lemma 3.5.5 with respect to M0,
and let µ be defined as in Lemma 3.6.1 (that is, `µ | x0, y0, z0).

By Theorem 3.5.7, µ ≥ e−2. Then, by Lemma 3.6.1, k′ ≥ `2(e−2+e)−re = `(4−r)e−4. The
theorem statement then follows from the best-case runtime in Theorem 3.4.9.

Corollary 3.6.3. The algorithm in Theorem 3.4.9 in the 2-party case has a lower bound
on its best-case runtime of Õ (`e−2). Similarly, in the 3-party case it has a lower bound on
its best-case runtime of Õ

(
`
e
2
−2). No lower bound is imposed by this work on the runtime

in the r-party case for r ≥ 4.

In both of these cases, the algorithm in Theorem 3.4.9 is worse than the best known-
algorithms for SSDDH. However, the algorithm can be improved. We now show that the
value 1

`
in constraints 3 and 4 of Oracle 3.4.8 forms a tradeoff with the value of k′, which

can be utilized to achieve a faster algorithm in these cases. We now study the runtime
of the algorithm in Theorem 3.4.13 in the multi-party setting. As constraints 3 and 4 of
Oracle 3.4.12 do not impose such strict size requirements on the partition of S, we have
more freedom to tradeoff between k′ and the number m of oracle calls. We start with a
lemma analogous to Theorem 3.5.7.

Lemma 3.6.4. Suppose the matrix

M =

[
a b
c d

]
=

[
w + y−z

2
−x+ y−z

2

x+ y+z
2

w + y+z
2

]
has at least one eigenvector of the form [1r]. Then `ν | x, y, z if and only if `ν | b, d− a.

67

Proof. The forward direction is straightforward. Conversely, if `ν | d−a, then `ν | z. Since
`ν | b, showing that `ν | c would yield `ν | x, y. Since M has an eigenvector, by Lemma 3.5.4
we have

br2 + (a− d)r − c ≡ 0 mod`e.

Then, since `ν | b, d− a, we see that `ν | c.

Proposition 3.6.5. The algorithm in Theorem 3.4.13 in the r-party case has a lower

bound on its best-case runtime of Õ
(
`

(3−r)e
2

)
.

Proof. Let

M =

[
a b
c d

]
=

[
w + y−z

2
−x+ y−z

2

x+ y+z
2

w + y+z
2

]
be the matrix representation of the action of some ψ ∈ End(E) returned by Oracle 3.4.12,
and let ν and ε be as in Lemma 3.5.5 with respect to M .

Increasing ν increases the runtime (see Theorem 3.5.7), but this is not true of ε. The
optimal value for ε is therefore e−ν

2
(as this increases the eigenspace with no additional cost

to the algorithm). Then, by Corollary 3.5.6, there are at least `ν+ε = `
e+ν
2 eigenvectors

(there cannot be 0 eigenvectors, by the constraints on the output of Oracle 3.4.12). From
this we see that the expected number of calls to Oracle 3.4.12 before a single kernel-fixing
endomorphism is found is 1

2
`
e−ν
2 . Hence, if m is the expected number of calls to the oracle

(as in Theorem 3.4.13), we have m ≥ 1
2
`
e−ν
2 .

By the definition of ν in Lemma 3.5.5, `ν | b, d− a. By Lemma 3.6.1, `ν | x, y, z. Then,
by Lemma 3.6.4, k is at least `2(ν+e)−re = `2ν+2e−re. Thus the expected runtime for the
algorithm in Theorem 3.4.13 has the lower bound

m
√
k ≥ `

e−ν
2

√
k ≥ `

e−ν
2 `ν+e−

re
2 = `

(3−r)e+ν
2 .

This is optimal when ν = 0.

Corollary 3.6.6. The algorithm in Theorem 3.4.13 in the 2-party case has a lower bound
on its best-case runtime of Õ

(
`
e
2

)
. Similarly, in the 3-party case it has a lower bound on

its best-case runtime of Õ
(
`
e
4

)
.

Proof. The runtime in the 2-party case can be obtained by substituting r = 2 into Propo-
sition 3.6.5. When analyzing the runtime for the 3-party case, we must note that the

68

lower bound of k′ from Lemma 3.6.1 is actually max{1, `2(µ+e)−re}, where r = 3. Then the
runtime of the algorithm in Theorem 3.4.13 in the best case is

m
√
k ≥ `

e−ν
2

√
max{1, `2(ν+e)−3e} = max{` e−ν2 , ` ν2 }.

This is optimal when ν = e
2
, which gives the runtime Õ

(
`
e
4

)
.

69

Chapter 4

Security of Static-Key SIDH

Portions of this chapter were published in Azarderakhsh, Jao, Leonardi [6]. The contents
of this chapter represent my contribution to that work.

Some key agreement protocols leak information about secret keys if dishonest partici-
pants use malformed public keys. We formalize these protocols and attacks, and present
a generic transformation that can be made to such key agreement protocols to resist such
attacks. In the transformed protocol each party generates k different keys and the two
parties perform key agreement using all k2 combinations of their individual keys. We con-
sider this transformation in the context of various post-quantum key agreement schemes
and analyze the attacker’s success probabilities (which decrease exponentially in k and de-
pend on the details of the underlying key agreement protocol) to determine the necessary
parameter sizes for 128-bit security. Our transformation increases key sizes by a factor of
k and computation times by k2, which represents a significant cost—but nevertheless still
feasible as k will be logarithmic in the security parameter. Our transformation is partic-
ularly well-suited to supersingular isogeny Diffie-Hellman, in which one can take k = 113
instead of the usual k = 256 at the 128-bit quantum security level.

This work initiated a potential path forward towards solving the open problem of
securing long-term static-static key exchange against quantum adversaries. Additional
work on this subject has been performed by other authors. To give a complete picture of
the state of this topic we discuss here a summary of that work.

After the publication of this work in the International Conference on Selected Areas in
Cryptography 2017 [6], Jao and Urbanik [94] published an impovement at MathCrypt 2018.
The nature of this improvement is to take advantage of the non-trivial automorphisms of
the supersingular elliptic curves with j-invariants 0 and 1728 to the effect of decreasing

70

the value of k in the k-SIDH protocol. The end result is a lower value of k needed for the
participants, k = 18 is proposed by the authors for ` = 11, resulting in a more efficient
scheme. The Jao-Urbanik scheme still retains security against the form of attack discussed
in this chapter, namely active attacks using malicious public keys as in [53].

Dobson et al. published an adaptive attack to totally break the 2-SIDH protocol [44],
that is k-SIDH when k = 2, using the same techniques as [53]. The attack can be imple-
mented against the generic k-SIDH protocol, but as shown in this chapter, the complexity
of that algorithm grows exponentially with k and is not deployable for the values of k
proposed here.

Most recently, Basso et al. [8] describe an adaptive and active attack on the Jao-Urbanik
variant of k-SIDH, adapting the previous attacks [53, 44] for this variant protocol. The
authors of [8] are able to reduce the number of queries needed in these active attacks,
achieving an algorithm which requires O(32k/3) queries to break the Jao-Urbanik variant.
The result of the work in [8] is that the k-SIDH protocol described in this chapter and [6]
is more efficient at the same level of security when compared to the Jao-Urbanik variant.

4.1 Introduction

In Asiacrypt 2016, Galbraith, Petit, Shani, and Ti [53] introduced an active attack against
the supersingular isogeny-based cryptosystem of De Feo, Jao, and Plût [47], which circum-
vents all extant (at the time) direct validation techniques. The attack allows an adversary
who interacts with a static key over multiple rounds of key exchange to efficiently compute
the private key corresponding to the static key over multiple sessions. When communicat-
ing, the participants in an SIDH key exchange each publish a supersingular elliptic curve
and two points on the curve. By manipulating the values of the two points, the attacker
can learn one bit of information about the other participant’s private key (depending on
whether or not the key exchange operation succeeds using the manipulated points), and
then repeat this process over additional sessions to learn additional private key bits. As
stated in [53], a countermeasure to their attack was already available in the earlier work
of Kirkwood et al. [63], who proposed so-called “indirect key validation” using a Fujisaki-
Okamoto type transform [49] in order to allow the honest participant to detect whether
or not the other party is manipulating points. Unfortunately, this countermeasure re-
quires the untrusted party to disclose their SIDH private key to the verifier, precluding the
use of SIDH as a drop-in replacement for Diffie-Hellman or other protocols that support
static-static key exchange using direct key validation.

71

Although [53] specifically targets SIDH, similar attacks apply against all other post-
quantum encryption schemes submitted to NIST. No currently known post-quantum scheme
achieves secure static-static key exchange without the use of ephemeral keys or indirect
validation techniques that would expose one’s key in the static-static setting. Major lattice-
based key establishment schemes such as “A New Hope” [2] and “Frodo” [15] achieve only
passive security and are intended and designed to be used with ephemeral keys. Peik-
ert’s Ring-LWE based scheme [74] is a key encapsulation mechanism that uses a Fujisaki-
Okamoto type transform to achieve IND-CCA security [74, §5]. In Peikert’s scheme, the
encrypting participant must reveal their random coins to the decrypting participant, and
so one member must use an ephemeral key. The Module-LWE key exchange Kyber [16,
§5] has at least one party using an ephemeral key, and both parties using both a static
and ephemeral key in the authenticated variant. In Niederreiter hybrid encryption [97,
§3.1], the error vector is revealed and used to derive the shared symmetric key. Similarly,
in McEliece encryption [73], although the error vector is not explicitly used in decryption,
it is trivial to compute once the message is determined, and therefore one party must use
an ephemeral key.

In this work we present a new generic transformation that takes any key establish-
ment protocol satisfying certain security properties (see Definition 4.2.3) and converts it
into a different protocol that is immune to attacks of the form presented in [53]. In our
transformation, each party generates k different key pairs and publishes for their public
key the list of k individual public keys. During key agreement, two parties compute k2

different shared secrets obtained by performing shared key agreement with each of their
keys in all possible combinations, and use a key derivation function on the shared secrets to
derive a final shared key. Under this scheme, any use of an invalid public key will, with all
but negligible probability, cause at least one of the k2 shared secret computations to fail,
which neutralizes the attack of [53]. Moreover, the number of possible failure outcomes is
exponential in k, making it impossible for an attacker to predict a likely failure outcome
in advance and lie about the value of their final shared key in order to salvage the attack
of [53].

The necessary value of k depends on the details of the original protocol with which
we started. The easiest (and worst) case is where each invalid key attempt in the original
protocol leads to one of two possible (invalid) shared secret computations on the part of
the honest party, depending on the value of one of the bits in the honest party’s private
key. In this case, one simply needs k ≈ ` to achieve `-bit classical security, and k ≈ 2` in
the quantum case to account for Grover search. However, if there are more possible invalid
outcomes, then the attacker’s job is harder, and (as a designer) we can use a smaller value
of k while still achieving `-bit security. For example in Section 4.4 we perform a detailed

72

analysis of SIDH and conclude that a value of k = 113 is sufficient to achieve 128-bit
quantum security. While a key size penalty of a factor of O(`) and performance penalty
of a factor of O(`2) might seem untenable, we point out that our scheme is far from the
worst in this regard compared to some recently published articles such as [10].

In Section 4.2 we present our security theorem which states that, for SIDH and other
suitable protocols, our transformation is secure in the sense that finding even a single
invalid key resulting in a successful key exchange (in the sense that the attacker can guess
the shared secret computed by the honest party under this invalid key) is equivalent to
breaking the passive security of the original un-transformed protocol. We recognize and
emphasize that our security reduction falls short of a full proof of active security, as it only
shows that attacks of the type that involve feeding an honest party invalid keys must fail,
and not that arbitrary attacks must fail.

4.2 Multiple Instances of Key Establishment

We begin with a review of the format for key agreement protocols. The content of this
paper focuses on two participants establishing a shared secret key that depends on inputs
from both members; it does not address authentication.

Definition 4.2.1. We let KE be a key establishment function (the requirements of which
will be stated shortly). A key agreement protocol, KA, for Alice and Bob using KE consists
of the phases:

0. Setup: Both members obtain a valid copy of the global parameters, gp.

1. Key Generation: Alice generates a secret key sA and public key pA, likewise Bob
generates sB and pB.

2. Communication: Alice obtains pB and Bob obtains pA.

3. Key Establishment: Alice computes KE(gp, pB, sA) and likewise Bob computes
KE(gp, pA, sB).

4. Verification: If applicable, each participant test the validity of the others public key.
Alice and Bob verify that they have computed the same shared secret. If they have
not, communication is terminated.

73

For the verification step to succeed, clearly the key establishment function KE has the
requirement that these two outputs are equal when the participants operate honestly. Addi-
tionally, the following values must be computationally infeasible to compute: a secret key
from its corresponding public key, a secret key s from KE(gp, p, s), and KE(gp, pB, sA)
from gp, pB, and pA.

Note, this protocol is incomplete as it does not state how Alice and Bob check if they
computed the same secret in the verification phase. However this step of the protocol will
become explicit below, and the security of our choice will be examined in detail. We now
formally state and analyze the security of performing multiple simultaneous instances of
key agreement. First is the attack model that will be used throughout.

Definition 4.2.2. Consider the attack model on a key agreement protocol where Bob may
use a specially chosen public key/private key (pB, sB) and additionally act dishonestly in
the verification phase.

Following [53, §3] we define a two types of oracles that we will consider Bob having
access to once per verification phase:

1. Oracle1(pB) = KE(gp, pB, sA), which corresponds to Bob somehow obtaining the
output of Alice’s key establishment function.

2. Oracle2(pB, h
′) returns 1 if h′ = KE(gp, pB, sA), and returns 0 otherwise, which

corresponds to Alice either terminating or continuing a session after she and Bob
performed verification in which Bob used some h′ as his secret.

Suppose Bob chooses pB in such a way that a response from a type (1) oracle, or a
response of 1 from a type (2) oracle, will reveal κ(pB) bits of Alice’s secret key to Bob (where
κ(·) returns non-negative integers). Then the output of Oracle1(pB) follows some discrete
probability distribution (as those κ(pB) bits vary); denote the corresponding probability mass
function by χKE(pB, ·), where the second input domain is the space of ciphertexts. Likewise
for the type (2) oracle, let χKE(pB, h

′) denote the probability that Oracle2(pB, h
′) = 1, where

the probability is taken over the space of ciphertexts in the second input domain.

In protocols where these attacks apply, a malicious Bob will typically know the distri-
bution χKE(pB, ·) (loosely speaking, if pB is “close” to the actual public key derived by sB,
then KE(gp, pB, sA) will be “close” to KE(gp, pA, sB)). Then Bob can use the values of h′

for which χKE(pB, h
′) > 0 and have Alice respond as a type (2) oracle during verification

which reveals those κ(pB) bits of her private key when he guesses h′ correctly. Our goal is

74

to modify key agreements susceptible to such attacks so that we can bound all probabilities
in χKE(·) arbitrarily from above. We first need to define a specific type of key agreement
protocol.

Definition 4.2.3. Let KA be a key agreement protocol which uses the key establishment
function KE(gp, ·, ·), for some global parameters gp. If Bob has a public key/secret key pair
(pB, sB) for KA and is given two public keys p1 and p2 (derived from some secret keys s1, s2
which are unknown to Bob), then KE(gp, pB, s1) = KE(gp, p1, sB) and KE(gp, pB, s2) =
KE(gp, p2, sB) by requirement of KE. A public key which has been altered in any way will
be referred to as modified. A modified public key p∗ that is guaranteed to satisfy:

1. p∗ passes all validation tests Alice performs in the verification phase,

2. κ(p∗) > 0,

3. KE(gp, p∗, s1) = KE(gp, pB, s1), and

4. KE(gp, p∗, s2) = KE(gp, pB, s2),

will be called malicious. If it is computationally infeasible for Bob to modify his public
key to some malicious p∗ then we will say KA is irreducible.

While it might be reasonable that a malformed public key could be chosen in such a way
that it successfully performs key establishment with one known public key, constructing a
malformed key to succeed simultaneously on two public keys poses a harder computational
problem, as we will exhibit in Section 4.3. It is for this reason that conditions 3 and 4 are
included in Definition 4.2.3.

We can now define our key agreement transformation. With the above general frame-
work for a key agreement in mind, consider the following variant.

Definition 4.2.4. Let KE be a key establishment function as above, let k be a positive
integer, and let H be a random oracle. Consider the following key agreement process
between Alice and Bob, called k −KA:

0. Setup: Both members obtain a valid copy of the global parameters, gp.

1. Key Generation: Alice generates k secret key/public key pairs (sAi, pAi), 1 ≤ i ≤ k.
Likewise Bob generates (sBi, pBi) for 1 ≤ i ≤ k.

75

2. Communication: Alice initiates communication and sends all k of her public keys
to Bob. Bob then sends all k of his public keys to Alice.

3. Key Establishment: Alice computes zi,j ← KE(gp, pBi, sAj) for every pair 1 ≤
i, j ≤ k, then computes

h← H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

Similarly, Bob computes z′i,j ← KE(gp, pAj, sBi) for each pair 1 ≤ i, j ≤ k, and then
computes

h′ ← H(z′1,1, . . . , z
′
1,k, z

′
2,1, . . . , z

′
2,k, . . . , z

′
k,1, . . . , z

′
k,k).

4. Verification: If applicable, Alice and Bob test the validity of each others public keys.
Alice and Bob verify that h is equal to h′ as follows: Alice sends H(H(h)) to Bob,
and Bob responds with H(h′). Alice checks that H(h) = H(h′) and Bob checks that
H(H(h′)) = H(H(h)). Either party terminates the session if their verification fails.

When Alice and Bob perform honestly, it is clear that they will share the same key and
verification will pass on both ends. We now present our main theorem which explains how
the parameter k can affect the security of the protocol from attacks of the type mentioned
in Definition 4.2.2.

Theorem 4.2.5. Let KA be an irreducible key agreement protocol which uses the key
establishment function KE(gp, ·, ·), for some global parameters gp. Let p∗ be a modified
public key with κ(p∗) > 0 that passes all validity tests of KA, and let ρ denote the largest
probability in the image of χKE(p∗, ·). Suppose that in k-KA one of the k parts to Bob’s
public key is p∗. If Bob has access to a type (1) oracle for k-KA, then the largest probability
in the image of χk-KA(pB, ·) is ρk−1.

In k-KA Bob has access to a type (2) oracle (see Definition 4.2.2) in the form of Alice
sending H(H(h)) (or H(h) if the roles are reversed) as he can guess at the preimage and
check his guess. However we are assuming that Bob has access to a type (1) oracle, that is
he somehow recovers h from Alice during verification, which provides the adversary with
greater capabilities. We now prove Theorem 4.2.5.

Proof. During the k-KA session, denote by (pA1, sA1), . . . , (pAk, sAk) the keys generated by
Alice and likewise (pB2, sB2), . . . , (pBk, sBk) the keys generated by Bob, along with pB1 = p∗

(without loss of generality). Bob can potentially learn about Alice’s secret keys during the

76

verification phase. Alice will compute z1,j ← KE(gp, p∗, sAj) and zi,j ← KE(gp, pBi, sAj)
for every 2 ≤ i ≤ k and 1 ≤ j ≤ k. She then computes

h← H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

We are assuming Bob has access to a type (1) oracle, and so he has obtained h from
Alice. As H is a random oracle, in order to determine any information about Alice’s secret
keys Bob must guess at the preimage of h. Bob can easily compute zi,j = KE(gp, pAj, sBi)
for all 2 ≤ i ≤ k, 1 ≤ j ≤ k. Therefore determining the preimage relies completely on Bob’s
ability to find z1,j = KE(gp, p∗, sAj) for every 1 ≤ j ≤ k, each of which is an instance of the
original KA protocol, however he is only able to test a guess for the tuple (z1,1, . . . , z1,k)
instead of each one individually. By assumption, KA is irreducible and p∗ is modified with
κ(p∗) > 0 and passes all applicable validity tests. It follows that KE(gp, pAj, sB1) is not
guaranteed to be equal to KE(gp, p∗, sAj) = z1,j for more than one value of j. Bob can
therefore be certain of no more than one value of z1,j before testing guesses.

Note that if Bob guesses (x1, . . . , xk) = (z1,1, . . . , z1,k), then the probability of success
is unaffected by his previous guesses. Therefore the probability that each of Bob’s guesses
of z1,j is bounded above by ρ, except for possibly the one value which can be forced to be
KE(gp, pAj, sB1) by Bob’s choice of p∗. Since the type (2) oracle only returns 1 if all k
instances are correct, Bob’s maximum probability of success on any guess is ρk−1.

More than the theorem’s result, the proof shows that the probability that a guess
(x1, . . . , xk) is equal to (z1,1, . . . , z1,k) is the product that each individual xj is equal to z1,j,
1 ≤ j ≤ k, with the exclusion of no more than one j by the irreducibility assumption.

4.3 Multiple Instances of SIDH

In this section we will apply the previous theory to the SIDH key agreement protocol to
enable secure use of static keys. We then estimate the expected amount of work required
to break our transformation in this case.

Regarding Definition 4.2.1, the SIDH protocol as defined in 2.2.2 is incomplete since it
does not state how Alice and Bob check if they computed the same secret in the verification
phase. This step is made explicit when we apply our multiple instances model.

For general background on elliptic curves and SIDH refer to Chapter 2. Let the field
characteristic be p = 2m3n− 1. In the original SIDH scheme [47] the key generation phase

77

produces two values, say α1 and α2 (not both divisible by 2) as Alice’s private key, her
isogeny φA has kernel 〈[α1]PA + [α2]QA〉, and she takes the analogous linear combination
during the key establishment phase. However, through a change of variables one can always
obtain kernel 〈PA+[α]QA〉 or 〈[α]PA+QA〉 since at least one of α1 or α2 is invertible modulo
2m. Throughout the remainder of this work we assume without loss of generality that we
fall into the former case because it simplifies our analysis.

The SIDH key establishment protocol relies on the difficulty of the CSSI computation
problem (see Problem 2.2.6). As mentioned, this Diffie-Hellman type protocol is susceptible
to an active attack if Alice uses the same private key in different sessions [53, §3]. We
describe this attack now. Note a similar attack applies when the torsion subgroups are not
powers of 2 and 3.

Instead of using the public key (EB, φB(PA), φB(QA)) when communicating with Alice,
a dishonest Bob can send

(EB, R, S) = (EB, [θ]φB(PA), [θ](φB(QA) + [2m−1]φB(PA))),

where θ is chosen such that e2m(R, S) = e2m(PA, QA)3
n
. This modified public key is certain

to pass the validation methods in [34, §9]. The parity of Alice’s private key α can then
be determined as follows. The subgroup computed by Alice during key establishment is
〈R + [α]S〉. When α is even this subgroup is equal to 〈φB(PA) + [α]φB(QA)〉, but the
subgroup will be different when α is odd. Therefore, if Bob performs his half of the key
establishment honestly and uses the shared secret key EA/〈φA(PB) + [β]φA(QB)〉 during
verification, then he can determine the parity of α based on Alice terminating the session
or not. This attack can be extended adaptively to learn each bit of α efficiently and
without detection when using the described validation methods. An indirect validation
technique [63] is available which prevents the attack, but at the cost of Bob revealing his
private key so that Alice can verify the message he sends was computed honestly, which
also causes Alice to perform twice as many computations as in SIDH.

This active attack suggests that static keys can no longer be used for SIDH key exchange
unless the other party is using an ephemeral key. In addition, it requires that all holders
of static keys must double their computational costs, recomputing the other participant’s
message in order to verify the validity of the message.

We now apply the multiple instances model of Section 4.2 to create a k-KA scheme
based on supersingular isogenies. For the security proof of Theorem 4.2.5 to apply we need
to show that SIDH is irreducible as defined in Definition 4.2.3. We first address the case
where a malicious Bob scales his public torsion points by some invertible element.

78

Lemma 4.3.1. Suppose Alice and Bob participate in an instance of SIDH key agreement
and that Bob uses the dishonest public key

p∗ = (EB, [µ]φB(PA), [µ]φB(QA))

for some µ coprime to order of PA and QA. Then p∗ is not a malicious key in the sense
of Definition 4.2.3.

Proof. Denote the order of Alice’s torsion subgroup by `mA and Bob’s by `nB. The verification
phase of SIDH consists of checking that the two torsion points are independent, have the
correct order, satisfy the Weil pairing condition, and that both parties compute the same
shared secret key. The order and independence conditions follow immediately from the
assumption that `A and µ are coprime. By Proposition 2.1.25 and the bilinearity of the
Weil pairing,

e`mA ([µ]φB(PA), [µ]φB(QA)) = e`mA (PA, QA)µ
2`nB .

Therefore p∗ passes the Weil pairing test if and only if µ2 ≡ 1 mod `mA . Lastly, if we denote
Alice’s private key by α, then

〈[µ]φB(PA) + [α] ([µ]φB(QA))〉 = 〈[µ] (φB(PA) + [α]φB(QA))〉
= 〈φB(PA) + [α]φB(QA)〉,

where the second equality follows from µ being coprime to `A.

This shows that if Bob modifies his public key in this way, then Alice will compute the
same shared secret independent of her private key. Therefore no more information about
her private key can be leaked by Alice accepting (or rejecting if µ2 6≡ 1) than is already
leaked when Bob performs honestly. Hence, κ(p∗) = 0 and this modification does not result
in a malicious public key.

It is worth noting that if Bob scales his two torsion points by different scalers, say µ1

and µ2, then they will no longer generate the same subgroup under Alice’s private key
by the independence of φB(PA) and φB(QA), again resulting in a public key which is not
malicious. Now we can prove that isogenies lend themselves to the transform of Aection 4.2.

Theorem 4.3.2. Under the assumption that the CSSI problem is intractable, it is compu-
tationally infeasible for a malicious Bob with non-negligible probability to modify his public
key (EB, φB(PA), φB(QA)) to some p∗ = (EB, R, S) which is malicious for SIDH.

79

Proof. Let p = `mA `
n
Bf ± 1 be prime, let E be an elliptic curve defined over Fp2 , and let

PA, QA, PB and QB be points on E(Fp2) such that 〈PA, QA〉 = E[`mA] and 〈PB, QB〉 = E[`nB].
Alice has some public key/secret key pair

φA1 : E → EA1 = E/〈PA + [α1]QA〉, α1 ∈ Z/`mAZ.

Bob knows the global parameters p, PA, QA, PB and QB, and receives the public key
(EA1, φA1(PB), φA1(QB)) from Alice. By the assumption of intractability of the CSSI prob-
lem, it should be infeasible for Bob to compute α1. The goal of our proof is to show that
if Bob can violate the definition of irreducibility by computing p∗ in the statement of the
theorem, then he can compute α1 efficiently which violates the CSSI assumption.

Bob uses the SIDH key generation algorithm twice, to generate

α2 ∈ Z/`mAZ, φA2 : E → EA2 = E/〈PA + [α2]QA〉, and

β ∈ Z/`nBZ, φB : E → EB = E/〈PB + [β]QB〉.
Suppose for contradiction that Bob is able to modify (EB, φB(PA), φB(QA)) to some ma-
licious public key (EB, R, S), violating irreducibility as stated in Definition 4.2.3. That
is:

• (EB, R, S) passes all validation tests,

• j(EB/〈R + [α1]S〉) = j(EB/〈φB(PA) + [α1]φB(QA)〉),

• j(EB/〈R + [α2]S〉) = j(EB/〈φB(PA) + [α2]φB(QA)〉), and

• κ(EB, R, S) > 0.

Since we cannot fully characterize public keys with κ(p∗) > 0 in this setting, we instead use
the condition that (R, S) 6= ([µ]φB(PA), [µ]φB(QA)) for some µ coprime to `A. By Lemma
4.3.1 these public keys satisfy κ(p∗) = 0, so we are assuming a potentially weaker condition
than κ(p∗) > 0 by excluding only public keys of this type.

To simplify notation for the remainder of this proof we set ` = `A . The subgroups
〈R + [α1]S〉 and 〈R + [α2]S〉 are guaranteed to be kernels of isogenies from E to elliptic
curves isomorphic to EA1 and EA2 respectively by the j-invariant requirements. For the
first subgroup one of two cases is true:

i The isogeny with kernel 〈R+[α1]S〉 is isomorphic to the isogeny with kernel 〈φB(PA)+
[α1]φB(QA)〉,

80

ii The isogeny with kernel 〈R + [α1]S〉 is not isomorphic to the isogeny with kernel
〈φB(PA) + [α1]φB(QA)〉.

Likewise, there are two cases for α2 and the isogeny to EA2. For the remainder of the
proof we assume that both isogenies fall into case (i) as our reduction only applies in this
situation. This point will be examined in greater detail in the runtime analysis at the end
of the proof. This distinction of cases must be made as it is possible for the two isogenies
to be non-isomorphic and yet the torsion points R and S (or some scaling of them) still
satisfy all the requirements of the verification phase, including the Weil pairing test that
e`m(R, S) = e`m(PA, QA)`

n
B (see [53, §3.2] for details).

Suppose the isogeny with kernel 〈φB(PA) + [αi]φB(QA)〉 is isomorphic to that of 〈R +
[αi]S〉 for both i ∈ {1, 2}. Then the two subgroups themselves are equal for each i. It
follows that their generators must then differ by a scalar multiple coprime to the order of
the subgroup. We can then write

[λi](φB(PA) + [αi]φB(QA)) = R + [αi]S, (4.1)

for some λi ∈ Z/`mZ coprime to `m (i.e. coprime with `), for both i ∈ {1, 2}.
Since ` is a small prime, the elliptic curve discrete log problem is tractable on EB[`m]

using Pohlig-Hellman [79] and the Weil or Tate pairing (see [5, §3.2] and optimization [33,
§4-5]). Solving two instances of the two-dimensional ECDLP provides a, b, c, d ∈ Z/`mZ
such that

R = [a]φB(PA) + [b]φB(QA), and S = [c]φB(PA) + [d]φB(QA). (4.2)

Substituting these decompositions into (4.1) and rearranging we obtain

[λ1](φB(PA) + [α1]φB(QA)) = [a+ α1c]φB(PA) + [b+ α1d]φB(QA).

The points PA and QA are independent—there does not exist t ∈ Z/`mZ such that PA =
[t]QA. Therefore φB(PA) and φB(QA) are independent as well. Comparing coefficients of
φB(PA) implies that λ1 ≡ a + α1c mod `m. Comparing coefficients of φB(QA) then gives
the congruence

b+ α1d ≡ λ1α1 ≡ (a+ α1c)α1 mod `m. (4.3)

Similar analysis of the subgroups associated with α2 result in the congruence

b+ α2d ≡ (a+ α2c)α2 mod `m. (4.4)

Rearranging (4.3) and (4.4) gives

cα2
1 + (a− d)α1 − b ≡ 0 mod `m, and cα2

2 + (a− d)α2 − b ≡ 0 mod `m.

81

Therefore α1 and α2 are solutions to the quadratic congruence relation

cx2 + (a− d)x− b ≡ 0 mod `m. (4.5)

Bob has the ability to construct this polynomial. One approach to solving this equation
comes from the assumption that α1 and α2 are simple roots modulo ` (this is the same
assumption required in Hensel’s lemma) as it implies α1 − α2 is invertible modulo `m. By
subtracting (4.4) from (4.3) and multiplying the result by (α1 − α2)

−1 mod `m we obtain

d ≡ a+ c(α1 + α2) mod `m, (4.6)

and it follows that
b ≡ −cα1α2 mod `m. (4.7)

Therefore, if `r | c, then `r | a− d and `r | b too. If c ≡ 0 mod `m, then b ≡ 0 and a ≡ d
mod `m, which contradicts the assumption that (EB, R, S) is malicious by Lemma 4.3.1.

From the malicious public key (EB, R, S), Bob can now efficiently solve for α1 and α2

using the following process:

1 Compute the discrete log coefficients a, b, c, d ∈ Z/`mZ as above.

2 Write c = `rg for some g indivisible by ` and 0 ≤ r < m.

3 Let K = g−1
a− d
`r

mod `m−r and L = −g−1 b
`r

mod `m−r, where the inverse of g is

computed modulo `m−r.

4 α1 and α2 are roots of the quadratic x2 + Kx + L ≡ 0 mod `m−r by (4.5). Solve for
all roots of this polynomial modulo `m−r.

5 For each root, u, extend it to an integer mod `m, say u′, and test if it is equal to
α1. This test can be performed by computing the image curve of the isogeny with
〈PA + [u′]QA〉 ⊂ E(Fp2) as its kernel and comparing its j-invariant with j(EA1) (the
image curve of the isogeny with 〈PA + [α1]QA〉 as its kernel).

What remains is to analyze the computational cost of this reduction and the probability
of success. For this analysis, we need to know the likelihood of our assumptions, the
probable size of the value r, and the number of roots of the quadratic congruence.

The first assumption is that the subgroup associated to the points R and S is the
same as the isogeny kernel in the SIDH instance. The existence of multiple isogenies of

82

degree `m between two fixed supersingular elliptic curves is possible, but unlikely under
the Galbraith et al. heuristic of [53, §4.2]. For instance there can exist multiple isogenies
of degree ` from one j-invariant, j0, to another and this occurs exactly when the classical
modular polynomial ψ`(j0, x) has repeated roots in x. The set of possible roots grows with
p and yet its degree in x is fixed by `+ 1, so this situation unlikely for large p.

Next we examine the value r when α1 ≡ α2 mod `. When ` = 2, we have that r ≥ 3
whenever m > 3. From the distribution of multiples of ` in Z/2mZ, we have r = j for
3 ≤ j < m with probability 1

2j−2 , and the probability that r = m (i.e. c = 0) is 1
2m−3 . When

` is odd, only r ≥ 1 is guaranteed. For Z/`mZ with odd `, we have r = j for 1 ≤ j < m
with probability 1

`j
, and the probability that r = m is 1

2m−1 . Hence, it is most likely that
r = 3 or 4 when ` = 2, and r = 1 or 2 when ` is an odd prime.

Lastly, we look at the number of solutions to (4.5). If α1 6≡ α2 mod ` and ` - c,
then there are exactly two solutions modulo `m, namely α1 and α2. Letting r be the `-adic
valuation of c as above, the number of solutions to this quadratic congruence is 2`r, namely

αi + z`m−r−1, 0 ≤ z ≤ `r − 1, i ∈ {1, 2}.

Even though the number of roots to check grows exponentially in r, the probability of each
successive value of r occurring decreases exponentially (see the previous paragraph).

When α2 is chosen to be congruent to α1 modulo `, b and d are not necessarily of the
form (4.6) and (4.7). This makes solving for α1 much harder, and in some cases, impossible.
However, this only happens with probability 1

`
. By the previous paragraph we see that if

Bob counts the number of roots of (4.5) modulo `m−r before solving for α1, then verifying
there are less than `r+1 of them can serve to test for when α1 ≡ α2 mod `. If the test
fails then Bob can reuse the key generation algorithm until the private key provided is
incongruent to the initial α2, and then repeat the process above (he never has to run this
process more than twice).

We conclude that if Bob can violate this irreducibility condition, then he can efficiently
solve the CSSI problem.

Combining Theorem 4.3.2 with the fact that there are currently no know attacks on
SIDH that involve modified elliptic curves (as opposed to modified torsion points) we
conclude that SIDH is irreducible for all known modified public keys. We now give an
explicit statement of the k-SIDH protocol.

Setup: A preimage resistant hash function H, a prime number p = 2m3nf ± 1, a
supersingular elliptic curve E/Fp2 , and four points PA, QA, PB, QB ∈ E(Fp2) such that
〈PA, QA〉 = E[2m] and 〈PB, QB〉 = E[3n].

83

Key Generation: Upon input of 0, the key generation function computes, for 1 ≤ i ≤
k:

αi ←R Z/2mZ,
φAi : E → EAi = E/〈PA + [αi]QA〉,

(Ri, Si)← (φAi(PB), φAi(QB)).

The key generation function then outputs the private key (α1, . . . , αk) and the public key
(EA1, R1, S1), . . . , (EAk, Rk, Sk). The recipient checks that the order of each Ri and Si is
3n to ensure no faults were induced.

Upon input of 1 the key generation function computes, for 1 ≤ j ≤ k:

βj ←R Z/3nZ,
φBj : E → EBi = E/〈PB + [βj]QB〉,

(Uj, Vj)← (φBj(PA), φBj(QA)).

The key generation function then outputs the private key (β1, . . . , βk) and the public key
(EB1 , U1, V1), . . . , (EBk , Uk, Vk). The recipient checks that the order of each Uj and Vj is
2m to ensure no faults were induced.

Communication: Bob initiates conversation and sends his public key to Alice. Alice
responds with her public key.

Key Establishment: For each 1 ≤ i, j ≤ k, Alice computes

zi,j = j(EBj/〈Uj + [αi]Vj〉),

and then she calculates the hash

h = H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

Similarly, for each 1 ≤ i, j ≤ k, Bob computes

z′i,j = j(EAi/〈Ri + [βj]Si〉),

and calculates the hash

h′ = H(z′1,1, . . . , z
′
1,k, z

′
2,1, . . . , z

′
2,k, . . . , z

′
k,1, . . . , z

′
k,k).

Verification: Alice verifies that for each 1 ≤ j ≤ k the pair Uj and Vj are independent
points of order 2m on the curve EBj [34, §9]. Additionally Alice verifies that e2m(Uj, Vj) =

84

e2m(PA, QA)3
n
. Likewise Bob verifies that each pair Ri and Si are independent points of

order 3n on the curve EAi and that e3n(Ri, Si) = e3n(PB, QB)2
m

. Alice sends H(H(h))
to Bob who verifies it is equal to H(H(h′)). Bob sends H(h′) to Alice who verifies it is
equal to H(h). If they have different secret keys, or any of the public key pairs fail the
verification, then the session is terminated. Otherwise they continue communication with
h = h′ as their shared secret key.

4.4 Security Analysis and Key Size

Before the security of k-SIDH can be properly analyzed we need the following simple result.
As before, let ` = `A denote the prime defining Alice’s torsion subgroup. Recall that an
`m-degree isogeny can be expressed uniquely as a composition of m `-degree isogenies. The
following result tells us that, given the shared j-invariant and Alice’s public key, Bob is
unable to determine the final `-isogeny in the composition of Alice’s isogeny (under the
CSSI assumption).

Theorem 4.4.1. Suppose Alice and Bob perform the standard SIDH key agreement protocol
as described Section 2.2.2. In the key establishment phase Alice computes a secret isogeny
φA : EB → EBA of degree `m (` ∈ {2, 3}) as the composition of m isogenies of degree `, say
φA = φm ◦ · · · ◦φ1. Let φ′ = φm−1 ◦ · · · ◦φ1 be the isogeny whose image curve is ` isogenous
to EAB, say φ′ : EB → E ′. Bob also knows the curve EBA by performing his half of the key
establishment. If Bob has access to an efficient, deterministic algorithm which produces E ′

from E,EA, EB, EBA and `m, then Bob can efficiently solve the CSSI problem.

Proof. The elliptic curve E ′ is ` isogenous to EBA. Given E ′ Bob can then determine φm
as there are only ` + 1 choices which he can test exhaustively. Repeated iterations of the
procedure, replacing the target curve adaptively and decreasing the exponent of the degree
iteratively by 1, will return each `-isogeny in the composition. This procedure will reveal
φA, breaking CSSI.

The security of this scheme is based on the amount of work Bob must do in the proof
of Theorem 4.2.5 to compute the preimage of h. There are two benchmarks that we could
use when choosing k: the expected number of hashes Bob will compute before correctly
hashing the preimage, or the number of hashes before the solution is found with probability
1
2
. The former is asymptotically greater in our case, and so it is irrelevant when setting a

security level.

85

The runtime depends on the order Bob guesses at solutions, so we always assume he
does so optimally. We index Bob’s guesses by i, and denote the associated probability of
success by Pi. The proof of Theorem 4.2.5 shows that for Bob to determine the preimage
of h he must correctly guess at least k − 1 independent samples from some distribution.
We now determine that distribution for SIDH.

In the attack of Galbraith et al. [53], the public key with the greatest ratio of re-
vealed bits of Alice’s private key to probability of success that Bob could use is p∗ =
(EB, φB(PA), φB(QA) + [`m−1]φB(PA)). Bob knows the shared key that Alice computes
were he to participate honestly,

j0 = j(EA/〈φA(PB) + [β]φB(QA)〉),

and when using this dishonest p∗ he knows Alice will compute either j0 or some other
j-invariant which is `2-isogenous to j0. With overwhelming probability there are `(` + 1)
distinct isomorphism families which are `2-isogenous to any isomorphism family (not rep-
resented by the j-invariant 0 or 1728). Combining this fact with the Theorem 4.4.1 shows
that k-SIDH exhibits the following probability distribution for each of Bob’s k guesses:{

1

2
,

1

2`(`+ 1)
, . . . ,

1

2`(`+ 1)

}
,

where
1

2`(`+ 1)
occurs `(`+1) times. For example, if ` = 2, then the honestly computed j-

invariant, j0, occurs with probability 1
2
, and there are six j-invariants which are 4-isogenous

to j0 each occurring with probability 1
12

.

The guess that maximizes Bob’s probability of success is j0 for each of the k−1 unknown

values, resulting in P1 =
1

2k−1
. The next most likely outcomes are those with j0 for k − 2

of the values and one of the other `(`+ 1) j-invariants, each occurring with probability

Pi =
1

2k−2 · (2`(`+ 1))
for 2 ≤ i ≤ (k − 1)(`(`+ 1)) + 1.

From this we calculate r, the number of hashes that Bob computes before his probability

of success is 1
2

by solving
1

2
=

r∑
i=1

Pi.

The first step is to collect all guesses with the same probability of success, that is, those
which select the same number of j0. To achieve this we change from the variable r, the

86

total number of guesses Bob makes, to t which represents the quantity of non-j0 elements
in Bob’s choice. They are related by

r =
t∑
i=0

(
k − 1

i

)
(`(`+ 1))i

as each term in the summand is the number of possibilities with i non-j0 elements. There-
fore,

r∑
i=1

Pi =
t∑
i=0

1

2k−1−i(2`(`+ 1))i

(
k − 1

i

)
(`(`+ 1))i =

1

2k−1

t∑
i=0

(
k − 1

i

)
,

and this final sum equals 1
2

exactly when t = k−2
2

(if k is odd then the sum needs one half

times the
(
k−1
k−1
2

)
term) by the symmetry of the binomial coefficient. This implies that the

number of hashes required by Bob to learn the first bit of each of Alice’s k secret keys is

r =

k−2
2∑
i=0

(
k − 1

i

)
(`(`+ 1))i. (4.8)

If ` = 2, then k = 60 gives r = 2130; for ` = 3, 2131 hashes is achieved by k = 50.

When considering security against a quantum enabled adversary, one would expect
a quadratic speedup because the runtime of Grover’s algorithm [56] on a non-uniform
distribution is still O(

√
N) when searching for one item, where N is the size of the do-

main [13]. The domain for k-SIDH when Bob uses a malicious public key is all possible
preimages to Alice’s hash. Considering an initial state of each possible preimage (where
each preimage is a collection of qubits representing the associated j-invariants) all with
amplitude 1√

(2(`(`+1))k−1)
, and searching for an element of the marked set (the collection

of qubits corresponding to the correct preimage) gives a quantum algorithm with runtime
π
4
2
k−1
2 (`(` + 1))

k−1
4 and requires at least (2(`(` + 1))k−1 qubits. We then calculate the

minimal k such that Bob is required to compute 2128 quantum operations before success-
fully calculating the preimage of Alice’s hash, which would reveal k bits of her secret key.
Setting k = 113 is required when ` = 2, and k = 94 suffices when ` = 3.

These choices of k are based on the currently best known attack that satisfy Definition
4.2.2. There is the possibility that other attacks will be discovered such as modifying the
elliptic curve in a public key instead of the torsion points, or perhaps stronger attacks
using modified torsion points. However, if such attacks are discovered, the generality of
the Theorem 4.2.5 shows that only a recalculation of k is needed to adapt as these qualify
as malicious public key attacks.

87

To achieve a specified level of security for k-SIDH each individual SIDH instance must
also meet that security level. Using the compression techniques of [33, §7], at the 128-bit
quantum security (or 192-bit classical security) level a k-SIDH pubic key requires 37 kb
when ` = 2 and 31 kb when ` = 3.

Regarding future work, the proposed k-instances model applies to key agreement schemes
in which the resulting shared secret is dependent on input from both parties (not encap-
sulation methods) where the use of static keys may reveal private keys to a malicious
participant. We have seen that this transformation applies to SIDH [53], but one may ask
if it also applies to lattice based schemes. The ring-LWE key agreement protocol by Ding
et al. [43] satisfies the criterion of being susceptible to such an active attack [48]. However,
the scheme of Ding et al. is interactive and so it is not immediately clear how to model it
as the key-establishment protocols of Definition 4.2.1.

The computational costs of k-SIDH are naively k2 that of standard SIDH, in which par-
ties simply perform k2 independent SIDH operations. Economies of scale could be realized
in an optimized implementation using (for example) SIMD, since the key establishments
can be organized into k groups of k such that all SIDH operations in a group have one half
in common.

k-SIDH only addresses the problem of dishonest users who manipulate elliptic curve
points. It does not address the case where the curves themselves are manipulated. It may be
worth examining whether approaches like k-SIDH can help protect against attacks involving
manipulated curves. Another interesting problem comes from the heuristic assumption
from [53, §4.2] which was used in the proof of Theorem 4.3.2. Although this assumption
seems plausible in light of the Ramanujan property of the supersingular `-isogeny graph,
a proof would be preferable, perhaps under a standard assumption such as GRH. Similar
results have been achieved in the ordinary case [60].

We conclude with a summary of the work in this chapter. We presented a new key
agreement model which performs k2 simultaneous key agreements and defends against a
specific class of active adversaries when certain assumptions about the underlying key
agreement protocol are satisfied. We showed that supersingular isogeny key agreement
satisfies these assumptions provided its computational problem is intractable. Using this
new model, we determined that performing 60 · 50 = 3000 simultaneous instances of SIDH
will protect both participants from leaking any information of their secret key against these
active adversaries with classical capabilities, and 113 · 94 = 10622 suffices for protection
against quantum adversaries.

88

Chapter 5

Cryptanalysis from Constructing
Endomorphisms

Portions of this chapter were published in Eisentraeger et al. [46]. The contents of this
chapter represent my contribution to that work.

We present an algorithm for computing non-trivial endomorphisms of a supersingular
elliptic curve over Fp2 . We then analyze its expected runtime and find it to be Õ(

√
p).

We then discuss how to use this algorithm as a subroutine to compute the full endomor-
phism ring of elliptic curves again with runtime in Õ(

√
p), and compare it to the other

endomorphism computing algorithms.

5.1 Introduction

Let Bp,∞ be a quaternion algebra ramified exactly at p and ∞, and let O be a maximal
order of Bp,∞. For any supersingular elliptic curve E/Fp, the endomorphism ring End(E) is
isomorphic to some maximal order O of Bp,∞. Deuring gave a correspondence [42] between
left-ideal classes of O and the endomorphism rings of supersingular elliptic curves over Fp
up to Galois conjugacy of their j-invariants. As all supersingular j-invariants are defined
over Fp2 , there are no more than 2 isomorphism classes of supersingular elliptic curves in
each Galois conjugacy class.

The security of supersingular isogeny-based schemes depends on the intractibility of
the `-isogeny problem, which is the problem of determining an isogeny φ : E → E ′ with
`-power degree when given only E and E ′. The intractibility of the `-isogeny problem

89

in turn depends on the intractability of computing End(E) from a random supersingular
elliptic curve E. This is because the `-isogeny problem can heuristically be solved in
polynomial time when the endomorphism rings of both the domain and codomain curves
are known [65]. As the `-power degree in SIDH is small compared to p, the isogeny output
by the algoritm of [65] will also be the solution to the corresponding CSSI problem with
high probability [53, Algorithm 2].

The first to study the problem of computing End(E) for a supersingular elliptic curve
was Kohel in his PhD thesis [64]. The algorithms in his work find two independent cycles
containing j(E) in the `-isogeny graph of supersingular elliptic curves, which correspond
to endomorphisms of E of `-power degrees. These independent endomorphisms generate a
finite index subring of End(E). This algorithm performs a breadth-first search of the graph
to find cycles, and so it has an expected running time of O(p1+ε) and requires exponential
storage. Heuristically, one expects this algorithm to be called O(log p) many times before
the entire endomorphism ring of E can be determined [45].

An improvement to the problem of computing endomorphisms was presented in [41],
by taking a depth-first search in a graph with many prime degree isogenies (instead of only
the `-graph), which ran in O(p1/2(log p)2) time and required polynomial space. Again,
O(log p) many calls could be used to then determine End(E) entirely.

We present a probabilistic algorithm for finding cyclic endomorphisms of supersingu-
lar elliptic curves with prime power degrees which takes advantage of a symmetry in the
`-isogeny graph. We prove a runtime of O(p1/2(log p)2) with probability 1 − O(1/p), and
polylog p space requirements. While this work does not represent the fastest currently
known attack on supersingular isogeny-based cryptosystems, it is the fastest known algo-
rithm for attacking such schemes by way of computing endomorphism rings.

5.2 Quaternion Preliminaries

Assume throughout that p is a prime, and p 6= 2, 3.

A is a quaternion algebra over Q when it is a central, simple algebra of dimension 4 over
Q. That is, there exists a ring homomorphism from Q→ A which is an isomorphism to the
centre of A, and gives A the structure of a 4-dimensional vector space over Q, and there
are no non-trivial two-sided ideals of A. A lattice, Λ, of A is a finitely generated Z-module
which contains a basis for A over Q, i.e., Λ⊗Q = A. An order of A is a lattice containing
1. An ideal of an order of A is defined in the usual way, and they are therefore lattices not
necessarily containing 1. The norm of an ideal is defined as N(I) = gcd(α : α ∈ I).

90

For any prime q, define Aq = A⊗Q Qq, and A∞ = A⊗Q R. If Aq is a division algebra,
then q is said to ramify; otherwise Aq

∼= M2(Qq) and q is said to split. Given a finite set
of places where A ramifies, there exists a unique quaternion algebra up to isomorphism of
algebras.

There exists an equivalence relation on maximal orders of a quaternion algebra.

Definition 5.2.1. Two maximal orders, O and O′, have the same type if there exists
some quaternion α ∈ A∗ such that αOα−1 = O′. Similarly, two left-ideals, I and J , of a
maximal order are equivalent if there exists some quaternion α ∈ A∗ such that Iα = J .

Let Bp,∞ be the unique quaternion algebra over Q which is ramified only at p and ∞.
Deuring [42, §10.2] proved a bijection between the two-sided ideal classes for each type of
maximal order in Bp,∞ and the supersingular j-invariants over F̄p. Additionally,

Theorem 5.2.2. [42, §10.2] Let O be a maximal order of Bp,∞. There exists one or two
supersingular j-invariants such that the elliptic curves it represents have endomorphism
ring isomorphic to O. If the prime ideal over p in O is principal, then the associated j is
Fp-rational; otherwise the two associated j’s are Fp conjugates in Fp2.

Kohel showed a categorical equivalence between the category whose objects are left
ideal classes of a maximal quaternion order and morphisms are ideal homomorphisms, and
the category whose objects are supersingular j-invariants and morphisms are isogenies [64,
§5.3]. Specifically, let k be a field of characteristic p with q element, let O be a maximal
order in Bp,∞ with an element of reduced norm q, and let E0/k be a supersingular elliptic
curve with endomorphism ring isomorphic to O. Let Sk be the category with objects (E, π)
where E is a supersingular elliptic curve, π is the Frobenius endomorphism relative to k,
and morphisms

(E1, π1)→ (E2, π2)

are homomorphisms ψ : E1 → E2 such that ψ ◦π1 = π2 ◦ψ. Let MO,q be the category with
objects consisting of (I, φ) where I is a projective right module of rank one over O, φ an
endomorphism of I of reduced norm q, and morphisms

(I1, φ1)→ (I2, φ2)

consisting of homomorphisms ψ : I1 → I2 such that ψ ◦ φ1 = φ2 ◦ ψ. Then the functor
I from Sk to MO,q, taking (E, π) to (Hom(E0, E), τπ) where τπ is the homomorphism of
Hom(E0, E) to itself given by left composition by π is a full and faithful equivalence from
Sk to MO,q [64, Theorem 45, Proposition 49].

91

This correspondence leads to a graph similar to the isogeny graph; the graph of max-
imal orders in A with a vertex set of maximal orders up to type, and an edge set of ideals
with norm ` up to equivalence. When the correspondence between an ideal and an isogeny
is known, the ideal norm can be computed as the degree of the isogeny. A recent result
has shown that given two maximal orders, O0 and O1, one can efficiently (assuming GRH)
find a smooth ideal I whose left order is O0 and whose right order is O1 [65]. Further
analysis of this algorithm [53] has shown that if the endomorphism rings of the supersin-
gular elliptic curves E0 and E1 are known and embedded as maximal orders into the same
quaternion algebra, then the previously mentioned algorithm is likely to solve the isogeny
problem underlying the supersingular isogeny-based key agreement protocol SIDH. There-
fore, improvements to endomorphism ring construction algorithms lead to faster attacks
on SIDH. An even more recent result showed that computing the endomorphism ring leads
to breaking the CSIDH cryptosystem as well [24].

5.3 Algorithms for Computing Endomorphisms

There have been few results on computing endomorphisms of a fixed supersingular j-
invariant. The first was the PhD thesis of Kohel [64, §7]. As there is an isomorphism
between End(E) and some maximal quaternion order, an endomorphism α can be viewed
as a quaternion. Kohel then proves that the class number of Z[α] is equal to the number of
isomorphism families of supersingular elliptic curves (counted with multiplicity) containing
an endomorphism with both trace and norm equal to that of α. This motivates the following
theorem.

Theorem 5.3.1. [64, 84] Let α and β be two endomorphisms of a supersingular E that
intersect only at E. Suppose that their norms are `h1 and `h2 respectively, where h1 is
the class number of Z[α] and h2 is the class number of Z[β]. Then End(E) is determined
uniquely by the embedding of Z〈α, β〉.

This theorem in turn motivates an algorithm for computing four endomorphisms which
are linearly independent over Z. The idea is to construct the entire supersingular `-isogeny
graph for some small integer ` and then to use brute force to find two distinct cycles, both
containing the vertex j(E), corresponding to endomorphisms α and β that satisfy the class
group conditions of the above theorem. The runtime of this algorithm is O(p3/2+ε) and
O(p1+ε), for any ε > 0, for the deterministic and the probabilistic versions respectively.

In Eisenträger et al. [45, Proposition 8] a heuristic transformation was presented for
turning an algorithm which finds endomorphisms into an algorithm which determines the

92

entire endomorphism ring. The analysis states that End(E) can be output after O(log p)
calls to the endomorphism finding algorithm. This implies that the algorithms of Kohel
will determine End(E) completely after O(log p) iterations.

Cervino [25] applied the theory of ternary quadratic forms associated to the norm of
a maximal order to construct a Ω(p2+ε) time algorithm for constructing a correspondence
between every supersingular j-invariant and every maximal order type in characteristic p.

McMurdy [71] gave an algorithm which computes an isogeny φ from E to an elliptic
curve E ′ with a known endomorphism ring. This can be used to determine End(E) via
Kohel or Deuring’s correspondence. The ring End(E ′) will correspond to a maximal order
O′ ⊂ Bp,∞, and φ will correspond to a right-ideal of O′, some I. The maximal order O
corresponding to End(E) can then be computed as the left order of I, a computation which
can be done efficiently with linear algebra. The runtime of this algorithm has not been
publicly examined.

Delfs and Galbraith [41] gave a O(p1/4) algorithm for constructing an isogeny between
two supersingular elliptic curves defined over Fp, the base field, with logarithmic space
required. This can be turned into a O(p1/2) algorithm for constructing endomorphisms of
an elliptic curve E by finding two paths from E to elliptic curves with j-invariants defined
in Fp, and then solving the isogeny problem between them with the algorithm of Delfs
and Galbraith. The degree of the output endomorphism will be smooth, but not a prime
power. The transformation of [45] can then be used to determine End(E) with O(log p)
calls to the above endomorphism constructing algorithm.

A second application of the Delfs and Glabraith algorithm for constructing an isogeny
between two elliptic curves defined over Fp is as follows: find one path from E to an
elliptic curve E0 with j-invariant in Fp, then solve for an isogeny between E0 and one of
the elliptic curves with a known endomorphism ring which also has j-invariant in Fp. The
composition of the two isogenies gives one from E to one with a known endomorphism
ring. Then, similar to McMurdy, End(E) can be computed from this data. Algorithms
have been presented for this task when the paths are smooth [54] or a power of ` [40]. The
runtime analysis for this combination of ideas has not been yet examined to the best of
my knowledge.

The following theorem from Bank et al. [7] is also relevant to the study of constructing
End(E) from finding cycles. Let E(j) denote an elliptic curve with j-invariant j.

Theorem 5.3.2. [7, 5.1] Suppose two cycles in the `-isogeny graph G(p, `) both contain
the same path between vertices E(j1) and E(j2). Let α and β be the corresponding endo-
morphisms of E(j1). If the path between E(j1) and E(j2) passes through additional vertices,
or if jp1 6= j2, then {1, α, β, αβ} is not a basis for End(E(j1)).

93

5.3.1 Proposed Algorithm

From Theorem 5.3.1 we see that if a j-invariant j1 is a part of a cycle in the `-isogeny
graph corresponding to an endomorphism α, but the Galois conjugate of j1 is not in the
same cycle, then log` degα cannot be equal to the class number of Z[α]. We prove this in
Theorem 5.3.5. This motivates an algorithm for finding cycles such that for all j-invariants
in the output cycle, the Galois conjugate of that j-invariant is also in the cycle. We describe
such an algorithm in this subsection.

Let σ ∈ Gal(Fp2/Fp) be non-trivial and denote σ(j) by j.

Lemma 5.3.3. Let j1, j2 be `-isogenous j-invariants of two supersingular elliptic curves.
Then j1 and j2 are also `-isogenous.

Proof. Suppose Ei has j-invariant ji. Let G ⊂ E1 such that φ : E1 → E2 with kerφ = G,
|G| = `. Denote by π the pth Frobenius map of E1. Then π(G) ⊂ E

(p)
1 , and φ(p) : E

(p)
1 →

E
(p)
2 with degree ` and kernel π(G). Noting that j(E

(p)
i) = j(Ei) concludes the proof.

Note that the ji’s above can be either in Fp or Fp2 . This leads to two non-trivial cases.
If both ji’s are in Fp2 , then their conjugates are also `-isogenous to one another. If j1 ∈ Fp
is `-isogenous to j2 ∈ Fp2/Fp, then j1 is also `-isogenous to j2.

Lemma 5.3.4. Let C be a cycle in the supersingular `-isogeny graph corresponding to an
endomorphism α of a vertex j. There exists a cycle in the supersingular `-isogeny graph C
whose ordered vertex set is exactly the conjugates of the ordered vertex set of C. The cycle
C corresponds to an endomorphism β of the vertex j. Further, the degree and trace of β
are equal to the degree and trace of α, respectively.

Proof. Let α ∈ End(E) where j(E) = j. The existence of C follows from Lemma 5.3.3, and
by that proof it follows that ker β = πE(kerα). We can identify β with an element of the

endomorphism algebra End(E(p))⊗Q. We claim that in this algebra, β =
πE ◦ α ◦ πE(p)

p
.

As ker

(
πE ◦ α ◦ πE(p)

p

)
= πE(kerα) and deg β = deg

πE ◦ α ◦ πE(p)

p
= degα, this claim

follows, as does this Lemma’s claim on the degree of β. It remains to show that Tr(β) =
Tr(α). Observe,

Tr(β) = Tr

(
πE ◦ α ◦ πE(p)

p

)
=

1

p
Tr(πE ◦ α ◦ πE(p)) =

1

p
(πE ◦ α ◦ πE(p) + πE ◦ α̂ ◦ πE(p))

=
1

p
πE ◦ Tr(α) ◦ πE(p) =

Tr(α)

p
πE ◦ πE(p) = Tr(α).

94

Theorem 5.3.5. Let α be an endomorphism of a supersingular j-invariant j0, correspond-
ing to a cycle in the `-isogeny graph. Suppose the cycle of α contains some j-invariant j′,
but does not contain j′. Then, |Cl (Z[α])| > log` (degα).

Proof. Let C be the cycle in the `-isogeny graph corresponding to α. We know that
C contains at least one vertex in Fp2/Fp, namely j′. Let α be the endomorphism from
Lemma 5.3.4, with corresponding cycle C. As C contains some vertex in Fp2/Fp, it follows
that C 6= C.

The class number of Z[α] counts the number of vertices in the `-isogeny graph which
are contained (with multiplicity) on a cycle with degree and trace equal to that of α. We
have exhibited above a cycle, C, which shares these properties with C, but is not equal to
C. Therefore, |Cl (Z[α]) | ≥ 2 log` (degα).

Corollary 5.3.6. Let α be an endomorphism of a supersingular elliptic curve E with
j-invariant j0, corresponding to a cycle in the `-isogeny graph. Suppose the cycle of α
contains some j-invariant j′, but does not contain j′. Then, ∀β ∈ End(E) there exist at
least two maximal orders of Bp,∞, one of which is isomorphic to End(E), which contain an
embedding of Z〈α, β〉.

The proposed algorithm of this section uses the following idea. Let E(Fp2) be an
arbitrary supersingular elliptic curve, with j-invariant j0, and let ` be any prime other
than p. We define the terminating vertices of the supersingular `-isogeny graph to be
those j-invariants that satisfy either

i) j ∈ Fp, or

ii) j ∈ Fp2/Fp, and j is adjacent to j in the `-isogeny graph.

Let P1 = [j0, j1, . . . , jk] be a non-backtracking path in the `-isogeny graph starting from
j0 and ending at some terminating vertex jk and containing no other terminating vertices.
If jk ∈ Fp, then define P2 = [jk−1, . . . , j1, j0]. By Lemma 5.3.3 P1 concatenated with P2

still represents a walk in the isogeny-graph, and since there are no terminating vertices in
P1 other than jk we see the concatenation P1‖P2 is in fact a path. If jk 6∈ Fp, then define
P2 = [jk, jk−1, . . . , j1, j0]. Similarly, the concatenation P1‖P2 is a non-backtracking path
from j0 to its conjugate.

One can repeat this process to find a vertex disjoint path P3‖P4 from P1‖P2. Then the

path P1‖P2‖P̂4‖P̂3 represents an endomorphism α of E, where P̂i denotes the vertices of Pi

95

taken in reverse order. See Algorithm 5.3.7 for the formal treatment. If the paths P1 and
P3 are obtained using depth-first search, the storage cost can be kept low, so we examine
the expected length of a path before a terminating vertex is found so that depth-first seach
can be used (see Section 5.4). The expected length (by Theorem 5.4.4) of the cycles will
also be examined in Section 5.4.

Algorithm 5.3.7.
Input: Primes p and ` 6= p, a bound B > 0, and a supersingular j ∈ Fp2.

Output: a simple cycle in the `-isogeny graph containing j.

1. P1 ← Depth-first search of depth B terminating at a vertex of Type (i) or (ii)

2. If P1[#P1] ∈ Fp, then

3. P2 ← [P1[#P1 − 1], . . . , P1[1], j]

4. Else

5. P2 ← [P1[#P1], . . . , P1[1], j]

6. P3 ← Depth-first search of depth B, avoiding P1∪P2, terminating at a vertex of Type
(i) or (ii)

7. If P3[#P3] ∈ Fp, then

8. P4 ← [P3[#P3 − 1], . . . , P3[1], j]

9. Else

10. P4 ← [P3[#P3], . . . , P3[1], j]

11. Return P1‖P2‖P3‖P4

Algorithm 5.3.7 can easily be adapted to exclude certain vertices. For instance, when
called a second time to find an endomorphism independent from the first output, a list of
j-invariants can be passed and ignored in the two steps which perform depth-first searches.

As proposed, the cycles output by the above algorithm do not backtrack and ensures
that if any j-invariant is in the cycle, then so is its complex conjugate. This suggests
that fewer endomorphisms output from this algorithm are needed to construct the full
endomorphism ring than generic endomorphisms.

96

5.4 Runtime Analysis

We now attempt to analyze the runtime of Algorithm 5.3.7. In particular, we need the
quantity of terminating vertices. Then, under the assumption that they are uniformly
distributed, we can estimate the value of the bound B for the depth-first searches in
Steps 1 and 6, and we can calculate the expected degree of the output endomorphisms. In
fact, by the recent analysis of Arpin et al. [3, §4.3], the j-invariants in Fp will be discovered
by a depth-first search in fewer steps than expected for a random subgraph due to their
additional structure.

First, we recall the number of supersingular elliptic curves with j-invariants defined over
Fp, as these are the first type of terminating vertex. Let Sp be this set of supersingular
j-invariants defined over Fp.

Lemma 5.4.1. [41, Eq.1] [37, 14.18] Let h(d) be the class number of the imaginary
quadratic field Q(

√
d). The number of supersingular j-invariants in Fp is

1
2
h(−4p) p ≡ 1 mod 4

h(−p) p ≡ 7 mod 8

2h(−p) p ≡ 3 mod 8

.

The class number can be bounded [30, Exercise 5.27 (b)] by h(d) < 1
π

√
|D| ln |D|,

where D is the discriminant of the imaginary quadratic field. Stricter asymptotic bounds
are known assumng a generalized Riemann hypothesis on Dirichlet L-functions [70], with
unknown constant c2, where γ is the Euler–Mascheroni constant:(

(1 + o(1))π

12eγ

) √
|D|

log log |D| ≤ h(D) ≤ c2
√
|D| log log |D|.

From this, we see that |Sp| = O
(√

p log(log(p))
)
, and |Sp| = Ω

(√
p

log(log(p))

)
. See Fig-

ures 5.1, 5.2 for experimental evidence. Either h(−p) or h(−4p) is used depending on the
congruence of p mod 4.

The next value we need to bound is the number of supersingular j-invariants which are
`-isogenous to their own conjugate j-invariant. This is related to the questions posed in
Arpin et al. [3]; specifically Theorem 5.4.2 answers the lower-bound part of [3, Question
3].

97

Figure 5.1: Imaginary quadratic class numbers with lower bound

0 0.2 0.4 0.6 0.8 1

·104

0

20

40

60

80

100

120

140

160

Primes p

Class Numbers

|Cl(p)|
π
√
x

12eγ log(log(x))

1

98

Figure 5.2: Averages of imaginary quadratic class numbers

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

400

500

600

700

800

900

Primes p

Class Numbers Averaged

|Cl(p)| average in intervals of 500√
x log(log(x))

π
√
x

12eγ log(log(x))

1

99

Theorem 5.4.2. Assume ` < p/4. Let

S = {j ∈ Fp2/Fp : j is supersingular and `-isogenous to j}.

Under GRH, there exists a constant C > 0 (depending on `) such that |S| > C

√
p

log(log(p))
.

The proof of this Theorem is not my work, and therefore is omitted. See the proof of
Theorem 3.9 in Eisentraeger et al. [46].

An upper bound on |S| is given in Lemma 6 of Charles, Goren, and Lauter [26] as
√
` ·

Õ
(√

p
)
, or more specifically as

√
`|CL(p)|. From this, we see that |S| = O

(√
`p log(log(p))

)
,

and |S| = Ω
(√

p

log(log(p))

)
. Experimental data can be found in §5 of Arpin et al. [3].

By combining Theorem 5.4.2 and Lemma 5.4.1 we can compute the asysmptotic growth
of the set of terminating vertices. Let S = Sp ∪ S be the set of terminating vertices. Then

|S| = O
(√

`p log(log(p))
)
,

|S| = Ω

(√
p

log(log(p))

)
.

We appeal to the following result on Ramanujan graphs to determine the expected depth
of a walk in the `-isogeny graph before a terminating vertex is found by depth-first search,
as this is the value of B in Algorithm 5.3.7.

Proposition 5.4.3. Let p > 3 be prime, and let ` 6= p also be prime. Let S be any subset
of vertices of the `-isogeny graph over Fp not containing 0 or 1728. Then a random walk
of length at least

log

(
p

6
√
|S|

)

log

(
`+ 1

2
√
`

)
lands in S with probability at least 6|S|

p
.

Proof. See Lemma 2.1 of Jao, Miller, Venkatesan [60].

100

A quick calculation with the set S of terminating vertices shows that, assuming ` is a
constant, a walk of length approximately

log

(
p3/4√

log(log(p))

)

will end in the set S with probabilty at least

(
√
p log(log(p)))−1 .

We can now prove the runtime of, and expected degree of endomorphisms output by,
Algorithm 5.3.7.

Theorem 5.4.4. Let j be the j-invariant of a supersingular elliptic curve E/Fp, and set

B = Θ

(
log

(
p3/4√

log(log(p))

))
.

Under GRH, repeating Algorithm 5.3.7 with an excluded list of j-invariants, and with input
B above computes two cycles in the `-isogeny graph through j that generate an order in
the endomorphism ring of E in time O

(√
p(log p)2

)
, as long as the two cycles do not pass

through the vertices 0 or 1728, which occurs with probability 1 − O(1/p). The algorithm
requires polylog p space.

The proof of this Theorem is not my work, and therefore is omitted. See the proof of
Theorem 3.7 in Eisentraeger et al. [46].

In light of Theorem 5.4.4, an important question to ask is: once an order of End(E) is
found, how can the entirety of End(E) be computed? In [45, Proposition 8], they give a
heuristic argument as to why O(log p) endomorphisms are sufficient to determine the whole
of End(E). In [46], the authors examine the constructed order locally, determine a finite list
of maximal orders which may be End(E), and then exhaustively check which is the correct
endomorphism ring of E using the methods of Galbraith, Petit, and Silva [54]. The result
of [46] is that heuristically only a constant number of calls to Algorithm 5.3.7 is sufficient
to then construct End(E). This reduces the runtime of computing the endomorphism ring
from a subring by a factor of log p.

To conclude this chapter we present Table 5.1 comparing the current known algorithms
for computing endomorphisms.

101

Table 5.1: Algorithms computing End(E)
Algorithm Output Runtime Space Required
Kohel [64] a suborder of End(E) O(p1+ε) O(p)

Cervino [25] End(E) for all E Ω(p2+ε) ?
McMurdy [71] End(E) ? ?

Delfs, Galbraith [41] some α ∈ End(E) O(p1/2(log p)2) polylog p
[41] and [45] End(E) O(p1/2(log p)3) polylog p
This work a suborder of End(E) O(p1/2(log p)2) polylog p

Eisenträger et al. [46] End(E) O(p1/2(log p)2) polylog p

102

Chapter 6

The Security of
Endomorphism-Based Key
Establishment

Portions of this chapter were presented in the poster session of MathCrypt 2018. The
contents of this chapter and that work are entirely my own.

Recently three Diffie–Hellman type key-exchange protocols based on elliptic curve endo-
morphism rings were proposed by Daghigh, Khodakaramian Gilan, and Seifi Shahpar [38].
The authors show how their novel idea can be applied to either ordinary or supersingular
elliptic curves over a finite field, which is what differentiates the first two methods.

We show that each of these proposed schemes are either insecure (classically in two
cases, and using quantum computations in the third) or impractical, depending on param-
eter selection. In particular, the protocols use a torsion point P ∈ E[n], and we show
that the shared key can be efficiently computed when n is a smooth integer and that the
key-exchange protocols are infeasible otherwise.

6.1 Introduction

Building off the idea of supersingular isogeny-based key-exchange [47], the creators of these
new schemes [38] propose using the image of elliptic curve torsion points under random
endomorphisms to create a random walk in the isogeny graph, with the goal of creating a
key-exchange resistant to quantum attacks. The first method uses endomorphisms of an

103

ordinary elliptic curve, the second uses endomorphisms of a supersingular elliptic curve,
and the third uses isogenies between two supersingular elliptic curves.

Previously known cryptanalysis did not appear to immediately apply to these schemes.
The security appeared to be based on the weaker assumption of computing the endomor-
phism ring of supersingular or ordinary elliptic curves over a finite field. While they were
never implemented publicly, a preliminary assessment would indicate no worse runtime or
key size than SIDH for the second and third methods, which would suggest that these
schemes may be valid post-quantum candidates.

Section 6.2 describes the protocols and the implementation details as stated in the
original work. Section 6.3 then cryptanalyzes the three proposed methods. The work is
divided into two cases, depending on whether or not the order of a globally published
elliptic curve point is smooth.

We show that the second and third proposed methods can be broken by classical attacks
when the torsion point has smooth order, and otherwise it is computationally infeasible
for the honest participants to determine the shared key. For the remaining method, again
depending on the smoothness of the torsion points order, there is either a classical attack
with a polynomial running time or a quantum polynomial-time attack (both running times
are in terms of the logarithm of the characteristic of the base field).

6.2 Protocol Overview

In this section we briefly review the three key-exchange methods [38] that will later be
cryptanalyzed. As stated in the original work, the first and second protocol are essentially
the same but for ordinary and supersingular elliptic curves respectively, while the third
generalizes the second.

Method 1: Let E be an ordinary elliptic curve over a finite field Fq, πq the qth Frobenius
endomorphism, and P ∈ E[n] for some integer n. Alice’s private key is m0,m1 ∈ Z, and
Bob’s is n0, n1 ∈ Z. Their corresponding public keys are φA(P) = ([m0] + [m1]πq)(P) and
φB(P) = ([n0] + [n1]πq)(P), respectively. The points φA(φB(P)) and φB(φA(P)) are equal
because E is ordinary, and so this point is used as the shared key:

s = φA(φB(P)) = φB(φA(P)).

Method 2: Let E be a supersingular elliptic curve over a finite field Fq, {1, α1, α2, α3}
a set of generators of End(E), and P ∈ E[n] for some integer n. Alice’s private key

104

is m0,m1,m2,m3 ∈ Z, and Bob’s is n0, n1, n2, n3 ∈ Z. Their corresponding public keys
are φA(P) = ([m0] + [m1]α1 + [m2]α2 + [m3]α3)(P) and φB(P) = ([n0] + [n1]α1 + [n2]α2 +
[n3]α3)(P), respectively. The points φA(φB(P)) and φB(φA(P)) are no longer equal because
E is supersingular, so the endomorphisms do not commute in general. However

E/〈P, φ̂A(φB(P))〉 ∼= E/〈P, φ̂B(φA(P))〉

by [38, Prop. 3.1]. Alice and Bob can then use the j-invariant as their shared key:

s = j(E/〈P, φ̂A(φB(P))〉) = j(E/〈P, φ̂B(φA(P))〉).

Method 3: Let E be a supersingular elliptic curve over a finite field Fq, {φ0, φ1, φ2, φ3} a set
of isogenies in Hom(E,E ′), and P ∈ E[n] for some integer n (see below for details). Alice’s
private key is m0,m1,m2,m3 ∈ Z, and Bob’s is n0, n1, n2, n3 ∈ Z. Their corresponding
public keys are φA(P) = ([m0]φ0 + [m1]φ1 + [m2]φ2 + [m3]φ3)(P) and φB(P) = ([n0]φ0 +
[n1]φ1 + [n2]φ2 + [n3]φ3)(P), respectively. Then once again,

E/〈P, φ̂A(φB(P))〉 = E/〈P, φ̂B(φA(P))〉,

by [38, Prop. 3.1]. Therefore both Alice and Bob can compute the shared key

s = j(E/〈P, φ̂A(φB(P))〉) = j(E/〈P, φ̂B(φA(P))〉).

To construct the four isogenies in the setup of method 3 the authors propose using any
isogeny ψ : E → E ′ and the set {1, α1, α2, α3} of generators for End(E), then publishing

φ0 = ψ, φ1 = ψ ◦ α1, φ2 = ψ ◦ α2, φ3 = ψ ◦ α3.

The integer n is given no restrictions in any of the methods. The private keys in each
method are integers, but only their values modulo n are relevant, and therefore can be
sampled from Z/nZ. In Section 6.3 we show these protocols are either insecure or infeasible
in practice.

6.3 Key-Only Cryptanalysis

We divide the cryptanalysis of the three protocols into two parts depending on whether
the parameter n is a smooth integer or not. In each case, we only need the public-key in
each scheme to determine the private key.

105

Note that in methods 2 and 3 we can assume the factorization of n is public. This
is because in these two schemes the shared key requires Alice to compute an isogeny of
degree n:

E/〈P 〉 → (E/〈P 〉) /〈φ̂A ◦ φB(P)〉.
Regardless, it is easy to determine if n is smooth.

6.3.1 Smooth n

We first assume the integer n is a smooth integer. Write n =
k∏
i=1

`eii for prime numbers `i

less than some bound B. We show how, given two public keys, one can efficiently compute
the shared key in each of the three key-exchange methods. First, we look at method 2.

Recall that in method 2 Alice’s private key is m0, m1, m2, m3 ∈ Z and her pub-
lic key is φA(P) = ([m0] + [m1]α1 + [m2]α2 + [m3]α3)(P). The endomorphisms αi are
given in the protocol setup, 0 ≤ i ≤ 3. A passive adversary therefore knows the points
P, α1(P), α2(P), α3(P), and Alice’s public key φA(P). Note all of these points still have
smooth order. Then for each 1 ≤ i ≤ k the adversary can solve for each z0, z1, z2, z3
modulo `eii by applying the Pohlig-Hellman algorithm [79] using the target point φA(P)
and the base points P, α1(P), α2(P), α3(P). Once this is solved for each `eii , the Chinese
remainder theorem can be used to determine values z0, z1, z2, z3 ∈ Z/nZ.

Denote by CRT(L1, L2) the Chinese remainder theorem which takes as input two lists
of non-negative integers of equal length k, L1 = [r1, . . . , rk] and L2 = [q1, . . . , qk], and

outputs the unique non-negative integer z less than
k∏
i=1

qi which satisfies z ≡ ri mod qi for

each i = 1, . . . , k.

Algorithm 6.3.1.

Input: P ∈ E[n], φA(P), generators {1, α1, α2, α3} for End(E), n =
k∏
i=1

`eii .

Output: z0, z1, z2, z3 ∈ Z/nZ such that φA(P) = ([z0] + [z1]α1 + [z2]α2 + [z3]α3)(P).

1. For i = 1, . . . , k :

2. R←
[∏
r 6=i

`err

]
φA(P)

3. ai, bi, ci, di ← 0

106

4. For j = 1, . . . , ei :

5. Q← [`ei−ji] (R− [ai]P − [bi]α1(P)− [ci]α2(P)− [di]α3(P))

6. Try sj, tj, uj, vj ∈ Z/`iZ until:

7. Q = [sj]P + [tj]α1(P) + [uj]α2(P) + [vj]α3(P)

8. ai ← ai + sj`
j−1
i

9. bi ← bi + tj`
j−1
i

10. ci ← ci + uj`
j−1
i

11. di ← di + vj`
j−1
i

12. z0 ← CRT({ai}ki=1, {`eii }ki=1)

13. z1 ← CRT({bi}ki=1, {`eii }ki=1)

14. z2 ← CRT({ci}ki=1, {`eii }ki=1)

15. z3 ← CRT({di}ki=1, {`eii }ki=1)

16. Return z0, z1, z2, z3

There is no guarantee that zi = mi for any of the 0 ≤ i ≤ 3. However, what we have
found is some endomorphism

φZ = [z0] + [z1]α1 + [z2]α2 + [z3]α3

such that φZ(P) = φA(P). It follows from the definition of a key exchange protocol that
if two distinct private keys generate the same public key, then they will agree on every
possible shared key. We make this explicit in our case anyway with the following result,
which shows that the endomorphism φZ is enough to determine the key Alice shares with
anyone else, say Bob.

Proposition 6.3.2. Let E be an elliptic curve over a finite field K, P ∈ E(K), and let
φ, φA, φB be three endomorphisms of E. If φ(P) = φA(P), then

〈P, φ̂(φB(P))〉 = 〈P, φ̂A(φB(P))〉.

The proof is similar to that of [38, Prop. 3.1].

107

Proof. Let α ∈ End(E) be arbitrary Let k =Tr(α) = α + α̂ ∈ Z. Then

〈P, α̂(P)〉 = 〈P, [k]P − α(P)〉 = 〈P, α(P)〉.

Applying this twice gives

〈P, φ̂(φB(P))〉 = 〈P, φ̂B(φ(P))〉 = 〈P, φ̂B(φA(P))〉 = 〈P, φ̂A(φB(P))〉.

This procedure consists the of Pohlig-Hellman algorithm, the Chinese remainder the-
orem, and then Velu’s formula [95] on a point of order n. All three can be performed in
polynomial time in B. This removes the possibility of n being a smooth integer in method
2.

This process can be easily modified to attack method 3 as well. In this case Alice’s
public key is φA(P) = ([m0]φ0+[m1]φ1+[m2]φ2+[m3]φ3)(P). Since P and each φi are given
in the protocol setup, we simply change the base points when applying the Pohlig-Hellman
algorithm to φi(P) = (ψ ◦αi)(P), 0 ≤ i ≤ 3. Similarly, in method 1, the base points are P
and πq(P), and we are only looking for two coefficients instead of four. Therefore n should
not be smooth in any of the three schemes.

6.3.2 Non-smooth n

We now assume that n is not smooth. Let ` be the largest prime factor of n. The order of
the point φ(P) divides n, since P ∈ E[n]. Computing the isogeny, or even the coefficients
of the codomain curve for

E/〈P 〉 → (E/〈P 〉) /〈φ(P)〉,
requires a summation over O(`) many elements of Fq, when using Velu’s formula [34], and

O(
√
`) using the work of Bernstein et al. [9] (see Section 2.1.6).

The shared key must be feasibly computable for honest participants. Therefore O(
√
`)

is a feasible amount of work in methods 2 and 3, and hence O(n) is feasible as well
because by assumption n = poly(`). In this case, we may brute force the private key
m0,m1,m2,m3 ∈ Z/nZ, searching for the combination that generates Alice’s public key.
As shown by Proposition 6.3.2 knowledge of the integers modulo n is sufficient to recreate
Alice’s side of the shared key computation. Brute force of this integer requires O(n4) oper-
ations, and so there is only a polynomial gap between the work done by honest participants
and an eavesdropper.

108

Combining this with the previous subsection shows that methods 1, 2 and 3 are insecure
when n is smooth, and Alice and Bob cannot efficiently compute the shared key when
n is not smooth in methods 2 and 3. Method 1 however does not rely on an isogeny
computation, so we have not yet described a flaw in the case with ordinary elliptic curves
and a non-smooth choice for n.

Recall, method 1 has Alice using the private key m0,m1 ∈ Z and public key φA(P) =
([m0]+[m1]πq)(P) ∈ E(Fq) for some point P ∈ E[n]. Since the qth Frobenius endomorphism
can be evaluated by anyone, the inversion of key-generation can be interpreted as solving
a two-dimensional elliptic curve discrete logarithm problem: given P ∈ E[n] find some
integers α0, α1 such that

φA(P) = [α0]P + [α1]πq(P).

This discrete log problem is over an Abelian group and so it can be solved in polynomial
runtime by a quantum computer using Shor’s algorithm [83]. Note that we have no guar-
antee that αi = mi for either i ∈ {0, 1}, but we can once again appeal to Proposition 6.3.2
to see this is sufficient information to invalidate the security of this key-exchange scheme.

This work shows that none of the three suggested endomorphism-based key exchange
schemes [38] is a candidate for a post-quantum scheme. Further, two of the three methods
(2 and 3) are not resistant to classical attacks under the assumptions that the runtime for
computing isogenies is asymptotically exponential in the largest prime dividing the size of
the kernel (as in Velu’s formula), and that honest participants must have the ability to
compute the shared key.

109

Chapter 7

The Security of Supersingular
Isogeny Learning with Errors

Portions of this chapter were published by Leonardi and Ruiz-Lopez [68]. The contents of
this chapter represent my contribution to that work.

This chapter proposes and subsequently proves the total insecurity of a generalized
learning with errors instantiation from supersingular isogenies. We first describe a public-
key cryptosystem based on the learning with errors problem, and prove its correctness. We
then instantiate the protocol with supersingular isogenies, and prove it to be OW-CPA
when it is KP. Lastly, we show that this protocol is not KP against a quantum-enabled
adversary.

7.1 Introduction

Lattice-based encryption and digital signature schemes are major candidates in post-
quantum cryptography. Regev introduced the Learning with Errors (LWE) problem [80]
to cryptography when he described the problem of finding solutions to a system of linear
equations with noise, which has become a standard assumption in lattice-based cryptog-
raphy, along with an IND-CPA public-key cryptosystem. In that work, samples are lattice
points, and errors are vectors with small norm.

We generalize the concept of both a lattice and an error. This chapter presents an en-
cryption scheme based on the problem of learning a homomorphism between two algebraic
objects when given samples of input with noisy output (that is, the output is modified by

110

some error term). In generalizing the LWE problem, we need a notion of size so that the
chosen noise does not completely hide the output, and an efficient way of removing the
noise. Our proposal uses finitely generated groups as these have a natural metric (Cayley
distance), and we propose using a secret normal subgroup N C H from which to draw
noise. A decrypter could then remove noise by computing the quotient H/N .

In the pursuit of examining the security of supersingular isogeny-based cryptosystems,
this Chapter presents and cryptanalyzes a new encryption scheme modelled after LWE
schemes, but implemented with isogenies. Specifically, we instantiate the idea using su-
persingular elliptic curves over a finite field with a large characteristic and isogenies with
smooth degree as in Jao, De Feo [58]. The isogeny actions then behave like “modding out”
by a secret subgroup during decryption. The hope is that the resulting encryption scheme
is secure under lattice and isogeny assumptions.

This chapter is organized as follows: Section 7.2 introduces the generic encryption
scheme using finitely generated groups and normal subgroups for noise. Section 7.3 then
details the supersingular isogeny-based instantiation, along with security proofs and basic
analysis. The chapter concludes with Section 7.4 which describes both a classical attack
and a quantum attack which totally break the isogeny instantiation.

7.2 Generic Encryption Construction

Let G,H and K be finitely generated groups, and let η and χ be probability distributions
over G and H respectively such that both distributions can be sampled from efficiently.
The following public-key cryptosystem construction uses integer parameters t and ` that
will be discussed later.

KeyGen(1λ) : Choose efficiently computable homomorphisms φ : G→ H and ψ : H → K.
For i ∈ {1, ..., t} compute

(gi, φ(gi)hi) ∈ G×H,
where gi is sampled from η and hi is sampled from χ restricted to ker(ψ) ≤ H. The secret
key, SK, is a description of φ and ψ. The public key, PK, is the set

{(gi, φ(gi)hi)) : i = 1, ..., t} ⊂ G×H,

together with a public element τ ∈ H\ ker(ψ).

111

Enc(µ, PK) : For a message µ ∈ {0, 1} and public key PK, choose a word of length `,
w = w1 · · ·w` uniformly at random from the alphabet {1, . . . , t} and return

(g, h) =

(∏̀
i=1

gwi ,

(∏̀
i=1

φ(gwi)hwi

)
τµ

)
∈ G×H.

Dec(g, h, SK) : Compute ν = ψ(φ(g))−1ψ(h) and return 0 if ν = 1K , and return 1 if
ν 6= 1K .

Correctness : If encryption and decryption are perform correctly, then:

ν = ψ

(
φ

(∏̀
i=1

gwi

))−1
ψ

((∏̀
i=1

φ(gwi)hwi

)
τµ

)

=

(∏̀
i=1

ψ (φ (gwi))

)−1(∏̀
i=1

ψ (φ (gwi))ψ (hwi)

)
ψ (τµ)

=

(∏̀
i=1

ψ (φ (gwi))

)−1(∏̀
i=1

ψ (φ (gwi))

)
ψ (τµ)

= ψ (τµ) .

Since τ 6∈ ker(ψ) and µ ∈ {0, 1}, it follows that ψ(τµ) = 1K if and only if µ = 0.

Observe that since the word w is chosen uniformly at random, the value of ` in the
interval [0, . . . , t] will follow a Gaussian distribution.

The underlying computational problems of this encryption scheme are the following.

Problem 7.2.1. Given a public key of t samples {(gi, φ(gi)hi) : i = 1, . . . , t} ⊂ G × H,
where gi ←η G and hi ←χ ker(ψ), and τ ∈ H\ ker(ψ), compute generators for φ or ψ.

Problem 7.2.2. Given T samples of encryptions of known messages µj ∈ {0, 1} with
unknown words wj = wj1 · · ·wj`j chosen uniformly at random from the alphabet {1, . . . , t}: `j∏

i=1

gwji ,

 `j∏
i=1

φ(gwji)hwji

 τµj

 ∈ G×H, j = 1, . . . , T,

determine if a given (g, h) ∈ G×H is an encryption of some chosen µ ∈ {0, 1} or drawn
uniformly at random from G×H with probability greater than 1/2.

112

7.3 Isogeny Encryption Construction

The above scheme can clearly be instantiated with elliptic curves groups over finite fields,
and isogenies as the morphisms. That scheme will be presented in this section, along with
security proofs, and analysis of key size and computation cost.

7.3.1 Protocol

Some changes have been made when translating the previous framework to that of isogenies
with the goal of optimizing the message size/computation cost ratio. To allow for efficient
isogeny computations, consider primes of the special form, p = 2m3nf − 1, similar to that
of supersingular isogeny key exchange [47]. The encrypter uses the 2m torsion subgroups
for efficiency, while the decrypter uses the 3n torsion subgroups. For convenience, we call
the following encryption scheme Supersingular Isogeny Learning with Errors (SILWE).

Setup: Let p = 2m3nf − 1 be prime, for any small prime f . Fix a supersingular elliptic
curve E0 with #E0(Fp2) = (p + 1)2 and two points R0, S0 ∈ E0[3

n] such that 〈R0, S0〉 =
E0[3

n]. Fix t ∈ N.

Key Generation: Choose (k1, k2, k3, k4) ∈R (Z/3nZ)4, where k1 and k2 are not both
divisible by 3, and the same condition for k3 and k4, to be the private key. Compute

φ : E0 → E1, ker(φ) = 〈[k1]R0 + [k2]S0〉,

and points P1, Q1 ∈ E1[2
m], R1, S1 ∈ E1[3

n] such that 〈P1, Q1〉 = E1[2
m] and 〈R1, S1〉 =

E1[3
n]. Compute

ψ : E1 → E2, ker(ψ) = 〈[k3]R1 + [k4]S1〉.
Verify that ψ does not backtrack along the path of φ. If it does backtrack, then choose
new k3 and k4 and repeat this last step; otherwise compute ψ(P1) and ψ(Q1). Choose 2t
points at random:

X1, . . . , Xt ∈R E0(Fp2),

Y1, . . . , Yt ∈R ker(ψ) ⊂ E1[3
n].

For each 1 ≤ i ≤ t, compute the image of the Xi’s under φ. The public key is:

P1, Q1 and tuples (Xi, φ(Xi) + Yi), for 1 ≤ i ≤ t.

113

Encryption: Encode the message M into (M1, M2) ∈ (Z/2mZ)2, where M1 and M2

are not both divisible by 2. Choose a random subset J ⊆ {1, . . . , t}, and compute the
ciphertext:

c =

(∑
i∈J

Xi,

(∑
i∈J

φ(Xi) + Yi

)
+ [M1]P1 + [M2]Q1

)
∈ E0(Fp2)× E1(Fp2).

Decryption: Given a ciphertext c = (c1, c2), compute

Z = ψ(c2 − φ(c1)).

Using the knowledge of ψ(P1), ψ(Q1) solve the two dimensional elliptic curve discrete
logarithm problem

Z = [M ′
1]ψ(P1) + [M ′

2]ψ(Q1),

for M ′
1 and M ′

2. An efficient algorithm for solving the elliptic curve discrete log problem
in two dimension is given in [33, §4, 5]. Then recover the message M from (M ′

1, M
′
2).

Note that P1 and Q1 are independent in E1[2
m] and ψ has degree 3n, so ψ(P1) and

ψ(Q1) are independent in E2[2
m]. Therefore the discrete logarithm exists and is unique,

so (M ′
1, M

′
2) = (M1, M2).

7.3.2 Security Proofs

The goal of this section is to prove that SILWE is OW-CPA assuming that it is KP. Let
λ be the security parameter and select a prime p = 2m3nf − 1 ≈ 26λ. Let E0 be as in the
setup of SILWE. We start by defining the following distributions.

Definition 7.3.1. Let PK = (P1, Q1, (Xi, φ(Xi) + Yi)i) be a public key for SILWE. Let
DSIPK be the uniform distribution on the possible encryptions of the message 0:

DSIPK =

{(∑
i∈J

Xi,
∑
i∈J

φ(Xi) + Yi

)
: J ⊂ {1, . . . , t}

}
.

114

Definition 7.3.2. Let PK = (P1, Q1, (Xi, φ(Xi) + Yi)i) be a public key for SILWE, and
let φ, ψ be the isogenies derived from the corresponding private key. Let DSIPK be the
uniform distribution on the following set:

DSIPK = {(X,φ(X) + Y) : X ∈ E0(Fp2), Y ∈ ker(ψ)} .

The following proposition tells us that SILWE is OW-CPA if DSIPK is difficult to
distinguish from random. We then prove that DSIPK looks random by reducing the problem
to showing DSIPK looks random, which we achieve by reducing the problem to the KP
problem.

Proposition 7.3.3. Let PK = (P1, Q1, (Xi, φ(Xi) + Yi)
t
i=1) be a public key for SILWE.

If DSIPK is indistinguishable from the uniform distribution on E0(Fp2) × E1(Fp2), then
encryption is OW-CPA.

Proof. Suppose the algorithm APK can decrypt messages successfully with probability at
least ε > 1

(log p)e
, for some integer e, and runs in time bounded above by T . Now we define

BPK to be the following algorithm for distinguishing DSIPK from the uniformly random
distribution.

Let (c1, c2) be a given sample from either DSIPK or uniformly random on E0(Fp2) ×
E1(Fp2). Let r = O((log p)γ), for some γ > e. Choose r pairs (u1,i, u2,i) ∈R (Z/2mZ)2 for
i = 1, . . . , r and compute

z = (c1, c2 + [u1,i]P1 + [u2,i]Q1).

Then run APK on all r pairs. If APK(z) = (u1,i, u2,i), then BPK(c1, c2) returns DSIPK . Let
BPK(c1, c2) return the uniform distribution on E0(Fp2)× E1(Fp2) otherwise.

Assuming the decryption oracle APK returns a random pair when given a non-valid
ciphertext, we can compute the probability of success for the distinguisher. BPK only fails
when APK fails for all r random pairs, or when APK returns a false positive (outputting
the correct (u1,i, u2,i) by chance). Therefore BPK fails with probability (1− ε)r + r

22m
. We

have 22m ≈ p, and by the assumption ε > 1
(log p)e

we have (1 − ε)r < (1 − 1
(log p)e

)r, and so

the success probability of BPK is non-negligible by the choice of r. B runs in time Õ(Tr)
as all the elliptic curve point addition computations are negligible.

We now aim to show that DSIPK is indistinguishable from uniform, under the assump-
tion that SILWE is KP.

115

Lemma 7.3.4. Let PK = (P1, Q1, (Xi, φ(Xi) + Yi)
t
i=1) be a public key for SILWE. There

does not exist a polynomial time algorithm for distinguishing between DSIPK and DSIPK.

Proof. Let
τX : E(Fp2)→ E(Fp2), Y 7→ X + Y,

be the translation-by-X map. The result follows from the linearity of φ, the fact [87,
III.3.6]:

∀X ∈ E(Fp2), τX is an isomorphism,

and that kerψ is closed under addition.

Proposition 7.3.5. Let PK = (P1, Q1, (Xi, φ(Xi) + Yi)
t
i=1) be a public key for SILWE. If

inverting key generation is intractable (that is, finding ker(φ) or ker(ψ) from PK is hard),
then DSIPK is indistinguishable from the uniform distribution on E0(Fp2)× E1(Fp2).

Proof. Suppose the algorithm APK can distinguish between samples from the uniform
distribution on E0(Fp2)×E1(Fp2) and DSIPK with advantage ε in time T . By Lemma 7.3.4,
APK is also a distinguisher for the uniform distribution on E0(Fp2)×E1(Fp2) and DSIPK .
Let (c1, c2) = (X, φ(X) + Y) ∈R DSIPK .

We start by choosing a random point P ∈ E0[3
n] and finding an integer ` such that

[`]P ∈ ker(φ), 0 ≤ ` < 3n. Iterating this procedure correctly will reveal the kernel of φ
in log λ steps as we will show momentarily. We first demonstrate that evaluating APK on
the input (c′1, c2) = (c1 + [r]P, c2), for r ∈ Z, leaks information about ker(φ) and ker(ψ).
Suppose [r]P ∈ ker(φ). Then,

(c′1, c2) = (X + [r]P, φ(X) + Y)

= (X + [r]P, φ(X) + φ([r]P) + Y)

= (X + [r]P, φ(X + [r]P) + Y) ∈ DSIPK .

Suppose next that [r]P /∈ ker(φ). Then,

(c′1, c2) = (X + [r]P, φ(X) + Y)

= (X + [r]P, φ(X) + φ([r]P)− φ([r]P) + Y)

= (X + [r]P, φ(X + [r]P) + (Y − φ([r]P))).

Observe that c2−φ(c′1) = Y −φ([r]P) ∈ ker(ψ) if and only if φ([r]P) ∈ ker(ψ). Therefore,
when [r]P /∈ ker(φ), the sample is from DSIPK if and only if φ([r]P) ∈ ker(ψ).

116

Combining these two cases, we see that if P is added to some c1 from (c1, c2) ∈ DSIPK ,
then the distinguisher APK returns DSIPK if and only if P ∈ ker(φ) or φ(P) ∈ ker(ψ).

By the definition of φ and ψ their kernels are in the 3n torsion subgroup of their
respective elliptic curve domains. Recall that the kernel of the dual isogeny φ̂ is generated
by φ(E0[3

n]), and so if P /∈ ker(φ), then φ(P) ∈ ker(φ̂). Due to the non-backtracking
requirement of ψ in key generation, ker(φ̂) ∩ kerψ = {∞E1}. Therefore, if P /∈ ker(φ),
then φ(P) /∈ ker(ψ). Hence, on input (c1 + P, c2), APK returns DSIPK if and only if
P ∈ ker(φ).

We now explain how to iterate this process to efficiently learn ker(φ). The nine 3-torsion
points of E0 can then all be computed from the divison polynomial and checked with APK
to learn which three (namely ∞ and ±[3n−1]([k1]R0 + [k2]S0)) are in the kernel of φ. This
process can then be repeated iteratively to compute [3n−i]([k1]R0 + [k2]S0) for i = 1, . . . , n
as follows: given the point [3n−i]([k1]R0 + [k2]S0), find the nine 3n−i−1-torsion points U
that satisfy [3]U = ±[3n−i]([k1]R0 + [k2]S0), and then use APK as above to test which are
in the kernel.

After n ≈ 1
2

log p iterations this process returns a generator for the kernel of φ. Note
that the samples used can be reused in subsequent steps, and so this procedure succeeds
with high probability when t ≥ 1

ε
. With φ known, ψ can easily be found by constructing

the points c2 − φ(c1) = Y ∈ ker(ψ).

Corollary 7.3.6. If SILWE is KP, and subset sum is intractable on E0(Fp2) and E1(Fp2),
then SILWE encryption is OW-CPA.

We later show 7.4 is not KP, and hence not OW-CPA.

7.3.3 Key Sizes and Computation Cost

The work in this subsection follows closely the analysis of the original supersingular isogeny
public-key encryption scheme [47]. Further optimizations have been made [33, 34], but as
this scheme is shown to be insecure in Section 7.4, that effort will not be put in here.

Key sizes : Private keys can be stored as 2dn log2 3e+ 2 bits, since the points [k1]R0 +

[k2]S0 can be expressed as
[
k1
k2

]
R0+S0 or R0+

[
k2
k1

]
S0. Points can be stored using only the

x and z projective coordinates, and x-coordinates are in Fp2 while z-coordinates require
only a single bit. Therefore public keys can be stored with (2t+ 2)(2dlog2 pe+ 2) bits.

117

Computation cost : Key generation requires two isogeny computations and two basis
generations; see [34, 100] for efficient methods for these tasks. The remaining key genera-
tion operations are t point additions and sampling of random points. Encryption needs only
approximately t/2 + 2 point additions, making it the most efficient step in this protocol.
Decryption requires two isogeny computations and one discrete logarithm computation.
Note that the isogenies φ and ψ have already been computed by the decrypter, and their
images on bases can be precomputed. Therefore, the two isogeny computations in decryp-
tion can be substituted for more two discrete logarithms. When this improvement is made,
only key generation contains isogeny computations.

7.4 Cryptanalysis

In this section we show that the encryption scheme defined in 7.3 is totally insecure. We
divide the cryptanalysis into two parts, depending on the value t (the number of tuples
given in the public keys).

First, let us assume that t ≤ 4. We will show that encyption is not one-way under a
key-only attack, i.e. ciphertexts can be decrypted by any eavesdropper with access to the
public key. Let

c = (c1, c2) =

(∑
i∈J

Xi,

(∑
i∈J

φ(Xi) + Yi

)
+ [M1]P1 + [M2]Q1

)

be a ciphertext. Since t ≤ 4, it follows that there are fewer than 16 possibilities for the
subset J ⊆ {1, . . . , t}. A full list of possible values for c1 can then easily be computed, and
compared to the ciphertext to determine the subset J used in encryption. The value

[M1]P1 + [M2]Q1 = c2 −
(∑

i∈J

φ(Xi) + Yi

)

can be computed, and the message can be found from this. Hence, when t ≤ 4, a key-
only message-recovery attack can be efficiently launched against this encryption scheme,
showing it is not OW-CPA.

Second, and lastly, assume that t > 4. Again, we will totally break this encryption
scheme by showing that it is not one-way under a key-only attack. In this case, we will
recover part of the private key, kerψ, which enables decryption.

118

Recall,
E0(Fp2) ∼= Z/2mZ× Z/2mZ× Z/3nZ× Z/3nZ.

It follows that for any points A1, . . . , At ∈ E0(Fp2), there exists a non-trivial solution to

a1, . . . , at ∈ Z : [a1]A1 + · · ·+ [at]At =∞,

because t > 4. Consider the function

f : Zt → E0(Fp2),

(a1, . . . , at) 7→
t∑
i=1

[ai]Xi.

Shor’s algorithm [83] can be used with this input to solve for a non-zero element of ker(f),
say some (b1, . . . , bt). Similarly, since discrete logarithms are easy in the groups Z/2mZ
and Z/3nZ using the methods of Pohlig-Hellman [79], a classical approach to finding such
a solution (b1, . . . , bt) exists as well. Then,

t∑
i=1

[bi](φ(Xi) + Yi) =
t∑
i=1

[bi]Yi ∈ kerψ.

This random element of kerψ can be computed directly from the public key, and therefore
generates the entirety of kerψ ⊂ E1[3

n] with probability 2/3. Hence, this encryption
scheme is not KP when t > 4. It is important to note here that, in the second case (t > 4),
the attack works only because the elliptic curve groups are Abelian.

119

References

[1] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez, Alfred Menezes,
and Francisco Rodŕıguez-Henŕıquez. On the cost of computing isogenies between
supersingular elliptic curves. Cryptology ePrint Archive, Report 2018/313, 2018.
https://eprint.iacr.org/2018/313.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange—A New Hope. In 25th USENIX Security Symposium (USENIX Secu-
rity 16), pages 327–343, Austin, TX, 2016. USENIX Association.

[3] Sarah Arpin, Catalina Camacho-Navarro, Kristin E. Lauter, Joelle Lim, Kristina
Nelson, Travis Scholl, and Jana Sotáková. Adventures in supersingularland. arXiv
preprint arXiv:1909.07779, 2019.

[4] Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev. Practical su-
persingular isogeny group key agreement. IACR Cryptology ePrint Archive, 2019:330,
2019.

[5] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher
Leonardi. Key compression for isogeny-based cryptosystems. In Proceedings of the
3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC ’16,
pages 1–10. ACM, 2016.

[6] Reza Azarderakhsh, David Jao, and Christopher Leonardi. Post-quantum static-
static key agreement using multiple protocol instances. In International Conference
on Selected Areas in Cryptography, pages 45–63. Springer, 2017.

[7] Efrat Bank, Catalina Camacho-Navarro, Kirsten Eisentraeger, Travis Morrison, and
Jennifer Park. Cycles in the supersingular `-isogeny graph and corresponding endo-
morphisms, 2018.

120

https://eprint.iacr.org/2018/313

[8] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte
Weitkämper. On adaptive attacks against Jao-Urbanik’s isogeny-based protocol.
Cryptology ePrint Archive, Report 2020/244, 2020. https://eprint.iacr.org/

2020/244.

[9] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. Cryptology ePrint Archive, Report
2020/341, 2020. https://eprint.iacr.org/2020/341.

[10] Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-quantum
RSA. Cryptology ePrint Archive, Report 2017/351, 2017. http://eprint.iacr.

org/2017/351.

[11] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jacobson. A note on the
security of CSIDH. In International Conference on Cryptology in India, pages 153–
168. Springer, 2018.

[12] Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algorithm for
computing isogenies between supersingular elliptic curves. In Progress in Cryptology
– INDOCRYPT 2014, volume 8885 of Lecture Notes in Computer Science, pages
428–442. Springer International Publishing, 2014.

[13] David Biron, Ofer Biham, Eli Biham, Markus Grassl, and Daniel A. Lidar. Gen-
eralized Grover search algorithm for arbitrary initial amplitude distribution. In 1st
NASA Conference on Quantum Computing and Quantum Communications, 1998.

[14] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 493–522. Springer, 2020.

[15] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! prac-
tical, quantum-secure key exchange from LWE. In Proc. 23rd ACM Conference on
Computer and Communications Security (CCS) 2016. ACM, October 2016.

[16] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure
module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634, 2017.

121

https://eprint.iacr.org/2020/244
https://eprint.iacr.org/2020/244
https://eprint.iacr.org/2020/341
http://eprint.iacr.org/2017/351
http://eprint.iacr.org/2017/351

[17] A. Bostan, François Morain, Bruno Salvy, and Éric Schost. Fast algorithms for com-
puting isogenies between elliptic curves. Mathematics of Computation, 77(263):1755–
1778, 2008.

[18] Paul Bottinelli, Victoria de Quehen, Chris Leonardi, Anton Mosunov, Filip Pawlega,
and Milap Sheth. The Dark SIDH of Isogenies. Cryptology ePrint Archive, Report
2019/1333, 2019. https://eprint.iacr.org/2019/1333.

[19] Reinier Bröker. Constructing supersingular elliptic curves. J. Comb. Number Theory,
1:269–273, 2009.

[20] Reinier Bröker, Juliana Belding, Andreas Enge, and Kristin E. Lauter. Computing
Hilbert class polynomials. Algorithmic Number Theory Symposium, VIII:282–295,
2008.

[21] Reinier Bröker, Dennis Charles, and Kristin E. Lauter. Evaluating large degree isoge-
nies and applications to pairing based cryptography. In Pairing-Based Cryptography
- Pairing 2008, volume 5209 of LNCS, pages 100–112, 2008.

[22] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 453–474. Springer, 2001.

[23] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In International Con-
ference on the Theory and Application of Cryptology and Information Security, pages
395–427. Springer, 2018.

[24] Wouter Castryck, Lorenz Panny, and Frederik Vercauteren. Rational isogenies from
irrational endomorphisms. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 523–548. Springer, 2020.

[25] Juan Marcos Cerviño. On the correspondence between supersingular elliptic curves
and maximal quaternionic orders. Mathematisches Institut Georg-August-Universität
Göttingen Seminars Summer Term 2004 (Universitätsverlag Göttingen), pages 53–
60, 2004.

[26] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash func-
tions from expander graphs. Journal of CRYPTOLOGY, 22(1):93–113, 2009.

122

https://eprint.iacr.org/2019/1333

[27] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on post-quantum cryptography. NIST IR 8105,
February 2016.

[28] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time, 2010. Preprint available at http://arxiv.
org/abs/1012.4019.

[29] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. J. Math. Cryptol, 8:1–29, 2014.

[30] Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, 1993.

[31] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman and Hall/CRC, 2005.

[32] Ian Connell. Elliptic curve handbook. http://www.math.mcgill.ca/connell/public/,
1999.

[33] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David
Urbanik. Efficient compression of SIDH public keys. Cryptology ePrint Archive,
Report 2016/963, 2016.

[34] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient Algorithms for Super-
singular Isogeny Diffie-Hellman, pages 572–601. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

[35] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia.
Improved classical cryptanalysis of SIKE in practice. Cryptology ePrint Archive,
Report 2019/298, 2019. https://eprint.iacr.org/2019/298.

[36] Jean-Marc Couveignes. Hard homogenous spaces. http://eprint.iacr.org/2006/291/,
2006.

[37] David A. Cox. Primes of the form x2 + ny2. a wiley-interscience publication, 1989.

[38] Hassan Daghigh, Ruholla Khodakaramian Gilan, and Fatemeh Seifi Shahpar. Diffie-
Hellman type key exchange protocols based on isogenies. Bulletin of the Iranian
Mathematical Society, 43(4):77–88, August 2017.

123

https://eprint.iacr.org/2019/298

[39] Luca De Feo, Cyril Hugounenq, Jérôme Plût, and Éric Schost. Explicit isogenies in
quadratic time in any characteristic. LMS Journal of Computation and Mathematics,
19(A):267–282, 2016.

[40] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay
functions from supersingular isogenies and pairings. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 248–277.
Springer, 2019.

[41] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersingular
elliptic curves over Fp. In Designs, Codes and Cryptography, volume 78, pages 425–
440, 2016.

[42] Max Deuring. Die typen der multiplikatorenringe elliptischer funktionenkörper. Abh.
Math. Sem., 14:197–272, 1941.

[43] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange
scheme based on the learning with errors problem. Cryptology ePrint Archive, Report
2012/688, 2012. http://eprint.iacr.org/2012/688.

[44] Samuel Dobson, Steven D. Galbraith, Jason LeGrow, Yan Bo Ti, and Lukas Zobernig.
An adaptive attack on 2-SIDH. Cryptology ePrint Archive, Report 2019/890, 2019.
https://eprint.iacr.org/2019/890.

[45] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: reductions
and solutions. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 329–368. Springer, 2018.

[46] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer
Park. Computing endomorphism rings of supersingular elliptic curves and connec-
tions to pathfinding in isogeny graphs. arXiv preprint arXiv:2004.11495. To Appear
in ANTS 2020, 2020.

[47] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014.

[48] Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085, 2016. http://eprint.iacr.org/

2016/085.

124

http://eprint.iacr.org/2012/688
https://eprint.iacr.org/2019/890
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085

[49] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology
– CRYPTO ’99: 19th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 1999, Proceedings, pages 537–554, 1999.

[50] Satoshi Furukawa, Noboru Kunihiro, and Katsuyuki Takashima. Multi-party key
exchange protocols from supersingular isogenies. In 2018 International Symposium
on Information Theory and Its Applications (ISITA), pages 208–212, 2018.

[51] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge Univer-
sity Press, 2012.

[52] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the GHS Weil
descent attack. In Advances in Cryptology - EUROCRYPT 2002, volume 2332 of
LNCS, pages 29–44, 2002.

[53] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security
of supersingular isogeny cryptosystems. Cryptology ePrint Archive, Report 2016/859,
2016. http://eprint.iacr.org/2016/859.

[54] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols and
signature schemes based on supersingular isogeny problems. In ASIACRYPT (1),
pages 3–33. Springer, 2017.

[55] Steven D. Galbraith and Anton Stolbunov. Improved algorithm for the isogeny prob-
lem for ordinary elliptic curves. Applicable Algebra in Engineering, Communication
and Computing, 24(2):107–131, 2013.

[56] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proc.
ACM STOC, 1996.

[57] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages 341–
371. Springer, 2017.

[58] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19–34. Springer, 2011.

[59] David Jao, Jason LeGrow, Christopher Leonardi, and Luis Ruiz-Lopez. A
subexponential-time, polynomial quantum space algorithm for inverting the CM
group action. Journal of Mathematical Cryptology, 2018.

125

http://eprint.iacr.org/2016/859

[60] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Expander graphs
based on GRH with an application to elliptic curve cryptography. J. Number Theory,
129(6):1491–1504, 2009.

[61] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, pages 32–61, Cham, 2019. Springer
International Publishing.

[62] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM J. Comput., 40:1767–1802, 2008.

[63] Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley, Jerome A. Solinas,
and David Tuller. Failure is not an option: Standardization issues for post-quantum
key agreement. Workshop on Cybersecurity in a Post-Quantum World, 2015.

[64] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California at Berkeley, 1996.

[65] David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion `-isogeny path problem. LMS Journal of Computation and Mathematics,
17(A):418–432, 2014.

[66] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing, 35:170–188, 2005.

[67] Serge Lang. Elliptic Functions, volume 112 of Graduate Texts in Mathematics.
Springer, 1987.

[68] Christopher Leonardi and Luis Ruiz-Lopez. Homomorphism learning problems and
its applications to public-key cryptography. CFAIL 2019, 2019.

[69] Reynald Lercier and François Morain. Counting the number of points on elliptic
curves over finite fields: strategies and performances. In Advances in Cryptology -
EUROCRYPT ’95, volume 921 of LNCS, pages 79–94. Springer, 1995.

[70] John E. Littlewood. On the class-number of the corpus P(
√
−k). Proceedings of the

London Mathematical Society, s2-27(1):358–372, 1928.

[71] Ken McMurdy. Explicit representation of the endomorphism rings of supersingular
elliptic curves, 2014.

126

[72] James S. Milne. Modular functions and modular forms. University of Michigan
lecture notes, 1997.

[73] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC—McEliece: New McEliece Variants from Moderate Density Parity-Check
Codes. In IEEE International Symposium on Information Theory - ISIT 2013, pages
2069–2073, 2013.

[74] Chris Peikert. Lattice Cryptography for the Internet, pages 197–219. Springer Inter-
national Publishing, 2014.

[75] Chris Peikert. He gives C-sieves on the CSIDH. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 463–492.
Springer, 2020.

[76] Christophe Petit. Faster algorithms for isogeny problems using torsion point images.
In ASIACRYPT, 2017.

[77] Christophe Petit and Kristin E. Lauter. Hard and easy problems for supersingular
isogeny graphs. IACR Cryptology ePrint Archive, 2017:962, 2017.

[78] Arnold Pizer. An algorithm for computing modular forms on γ0(n). 1980.

[79] Stephen Pohlig and Martin Hellman. An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance. In IEEE Transactions on
Information Theory, volume 24, pages 106–110, 1978.

[80] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM), 56(6):1–40, 2009.

[81] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions
of prime numbers. Illinois J. Math., 6(1):64–94, 03 1962.

[82] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on iso-
genies. IACR Cryptol. ePrint Arch., 2006:145, 2006.

[83] Peter Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997.

[84] Igor E. Shparlinski and Andrew V. Sutherland. On the distribution of Atkin and
Elkies primes for reductions of elliptic curves on average. LMS Journal of Computa-
tion and Mathematics, 18(1):308–322, 2015.

127

[85] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.

[86] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves. Number
151 in Lecture Notes in Mathematics. Springer, 1994.

[87] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2 edition, 2009.

[88] Benjamin Smith. Mappings of elliptic curves. Webpage, 2008.

[89] Anton Stolbunov. Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves. NISK, pages 97–109, 2009.

[90] Andrew V. Sutherland. On the evaluation of modular polynomials. The Open Book
Series, 1(1):531–555, Nov 2013.

[91] Seiichiro Tani. Claw finding algorithms using quantum walk. Theoretical Computer
Science, 410:5285–5297, 2009.

[92] John Tate. Endomorphisms of Abelian varieties over finite fields. Inventiones math-
emticae, 2(2):134–144, 1966.

[93] David Urbanik and David Jao. SoK: The problem landscape of SIDH. In Proceedings
of the 5th ACM on ASIA Public-Key Cryptography Workshop, APKC ’18, pages 53–
60, New York, NY, USA, 2018. ACM.

[94] David Urbanik and David Jao. New techniques for SIDH-based NIKE. Journal of
Mathematical Cryptology, 14(1):120 – 128, 2020.

[95] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sc. Paris., 273:238–241,
1971.

[96] John Voight. Quaternion algebras. Version v0, 9, 2018.

[97] Ingo von Maurich, Lukas Heberle, and Tim Güneysu. IND-CCA Secure Hybrid
Encryption from QC-MDPC Niederreiter, pages 1–17. Springer International Pub-
lishing, 2016.

[98] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. Chap-
man and Hall/CRC, 2008.

[99] William C. Waterhouse. Abelian varieties over finite fields. Annales scientifiques de
l’École Normale Supérieure, 2(4):521–560, 1969.

128

[100] Gustavo Zanon, Marcos A. Simpĺıcio Jr., Geovandro C. C. F. Pereira, Javad
Doliskani, and Paulo S. L. M. Barreto. Faster isogeny-based compressed key agree-
ment. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April
9-11, 2018, Proceedings, volume 10786 of Lecture Notes in Computer Science, pages
248–268. Springer, 2018.

129

Appendices

130

Appendix A

Relating Fixed Kernels to the
Endomorphism Algebra

We present here a remark on the relationship between Proposition 3.2.1 and Lemma 42.2.9
of [96]. The lemma of Voight is as follows. Let Bp,∞ be the quaternion algebra ramified at
exactly p and ∞. Let E(Fp) be a supersingular elliptic curve with End(E) ∼= O ⊂ Bp,∞.
Let I ⊂ O be a non-zero integral left O-ideal. Define

E[I] :=
⋂
α∈I

kerα,

and denote by φI the isogeny φI : E → EI , where EI = E/E[I].

Lemma A.0.1. The ring homomorphism

ι : End(EI) ↪→ Bp,∞,

ι(β) = φ−1I βφI =
1

deg φI
φ̂IβφI

is injective and ι(End(EI)) = OR(I), the right order of I.

The proof of Lemma A.0.1 can be found in [96] on page 772, as the proof of Lemma
42.2.9. To relate Lemma A.0.1 to Proposition 3.2.1 we first need the following lemma.

Lemma A.0.2. Let the setup be as in Proposition 3.2.1. The endomorphism

ι := φ ◦ ψ ◦ φ̂ ∈ End(E ′)

annihilates the subgroup E ′[N].

131

Proof. Let P ∈ E ′[N] generate the ker φ̂, and let Q ∈ E ′[N] be linearly independent of P
and of full order. It is clear that ι(P) =∞E′ , so we must show that ι also annihilates Q.

Since ι(E ′[N]) = kerφ, and Q 6∈ ker φ̂, we have that φ̂(Q) ∈ kerφ and is of full order.
But ψ fixes kerφ, so ψ ◦ φ̂(Q) ∈ kerφ.

Lemma 42.2.9 of [96] states that, given an element β ∈ End(EI) and an isogeny φI :
E0 → EI , the quantity

φ−1I βφI =
1

deg φI

(
φ̂IβφI

)
corresponds to an element of the quaternion algebra, isomorphic to End(E0)⊗Q, but not
necessarily to an element of End(E0). Proposition 3.2.1 and Lemma A.0.2 state that if
β fixes the kernel subgroup of φI and these two isogenies have coprime degrees, then the
above composition is in fact an element of End(E0).

132

Appendix B

Convenient Bases

We examine the construction of a basis P,Q of a supersingular E(Fp2) with j(E) = 1728
such that Q = ι(P) = π(P), where ι is the distortion map

ι : E → E, (x, y) 7→ (−x, i · y),

for some i ∈ Fp\Fp with i2 = −1, and π is the Frobenius endomorphism

π : E → E, (x, y) 7→ (xp, yp).

Lemma B.0.1. Let P be a point on E(Fp2). The following are equivalent

1. π(P) = ι(P),

2. P = (ui, v(1− i)) for some u, v ∈ Fp, and

3. u− u3 = −2v2 for u, v ∈ Fp.

Proof. We start by proving the first and second items are equivalent. Let P = (r+ ui, v+
si) ∈ E(Fp2), for r, u, v, s ∈ Fp, and assume π(P) = ι(P). Then π(P) = (r−ui, v− si) and
ι(P) = (−r − ui,−s+ vi). Hence, r = 0 and s = −v, and we can write P = (ui, v(1− i)).

Next, suppose P = (ui, v(1− i)) for some u, v ∈ Fp. Then

π(P) = (−ui, v(1 + i)) = (−(ui), (i)(v(1− i))) = ι(P).

Now we prove the second item is equivalent to the third. Suppose P = (ui, v(1 − i))
for some u, v ∈ Fp. Then

(ui)3 + (ui) = (v(1− i))2

133

implying that
−2v2 = u− u3.

Lastly, let u, v ∈ Fp satisfy u− u3 = −2v2. Then

(ui)3 + (ui) = −i(u3 − u) = −i(−2v2) = 2iv2 = (v(1− i))2,

so there is a point (ui, v(1− i)) on E(Fp2).

Example B.0.2. We give an example of a basis of the form {P, ιP} = {P, π(P)} for the
Round 1 SIKE subission’s power of 3 torsion subgroup. Consider the prime p = 23723239−1
and elliptic curve E : y2 = x3 + x. Let

P = (570556479520931242046188854123607496106560164061907466550384438849978105

317427915430702852898083512987673860531431396211577428396652625840972800081

121950020629423752030609821533127797086914328692076275754730669931633440054

111 · i, 170529679711570871948934177887081253029965384490684199363468409357092

795616015244936108185015599117514645468695608544218109856248721923973057187

123901749477184914154433309844493495718071811551302575552223407602899906055

523667 + 1018418806205773438102883405997972406839742426105838697075272126969

758614506646360156677471154546759610990774292323165816709405572780063041998

697334486940233979179268564560348986490401288096337567765953462758389897275

9596053164 · i).

Then P has order 3239, satisfies the condition of Lemma B.0.1 (so ι(P) = π(P)), and
{P, π(P)} is a basis for E[3239]. Thus, by the discussion in Section 3.5, with respect to this
basis for E[3239], endomorphisms of the form

ψ = [w] · [1] + [x] · ι+ [y] · [1]+π
2

+ [z] · ι+ιπ
2
.

act as the matrix
[
w+ y−z

2
−x+ y−z

2

x+ y+z
2

w+ y+z
2

]
on E[3239].

134

	List of figures
	List of tables
	Introduction
	Organization of Work

	Elliptic Curves and Cryptography
	Elliptic Curve Preliminaries
	Coordinates and the Group Law
	Torsion Subgroups
	Maps Between Curves
	Supersingularity
	Hilbert Class Field Theory
	Isogeny Computations

	Isogeny-Based Cryptography
	Ordinary Elliptic Curve Cryptography
	Supersingular Elliptic Curve Cryptography

	The Isogeny Problem using `39`42`"613A``45`47`"603AEnd(E)
	Introduction
	Theory of Fixed Kernels
	Cryptanalysis from Fixed Kernels
	Improvements from Isogeny Actions
	Test Case: j(E)=1728
	Cryptanalysis of Multi-Party Schemes

	Security of Static-Key SIDH
	Introduction
	Multiple Instances of Key Establishment
	Multiple Instances of SIDH
	Security Analysis and Key Size

	Cryptanalysis from Constructing Endomorphisms
	Introduction
	Quaternion Preliminaries
	Algorithms for Computing Endomorphisms
	Proposed Algorithm

	Runtime Analysis

	The Security of Endomorphism-Based Key Establishment
	Introduction
	Protocol Overview
	Key-Only Cryptanalysis
	Smooth n
	Non-smooth n

	The Security of Supersingular Isogeny Learning with Errors
	Introduction
	Generic Encryption Construction
	Isogeny Encryption Construction
	Protocol
	Security Proofs
	Key Sizes and Computation Cost

	Cryptanalysis

	References
	Appendices
	Relating Fixed Kernels to the Endomorphism Algebra
	Convenient Bases

