
Decay Makes Supervised Predictive

Coding Generative

by

Wei Sun

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Wei Sun 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Predictive Coding is a hierarchical model of neural computation that approximates

backpropagation using only local computations and local learning rules. An important

aspect of Predictive Coding is the presence of feedback connections between layers. These

feedback connections allow Predictive Coding networks to potentially be generative as well

as discriminative. However, Predictive Coding networks trained on supervised classification

tasks cannot generate accurate input samples close to the training inputs from the class

vectors alone.

This problem arises from the fact that generating inputs from classes requires solving

an underdetermined system, which contains an infinite number of solutions. Generating

the correct inputs involves reaching a specific solution in that infinite solution space. But

by imposing a minimum-norm constraint on the state nodes and the synaptic weights of a

Predictive Coding network, the solution space collapses to a unique solution that is close

to the training inputs. This minimum-norm constraint can be enforced by adding decay

to the Predictive Coding equations.

Decay is implemented in the form of weight decay and activity decay. Analyses done

on linear Predictive Coding networks show that applying weight decay during training

helps the network learn weights that can generate the correct input samples from the class

vectors, while applying activity decay during input generation helps to lower the variance

in the network’s generated samples. Additionally, weight decay regularizes the values of

the network weights, avoiding extreme values, and improves the rate at which the network

converges to equilibrium by regularizing the eigenvalues of the Jacobian at the equilibrium.

iii

Experiments on the MNIST dataset of handwritten digits provide evidence that decay

makes Predictive Coding networks generative even when the network contains deep layers

and uses nonlinear tanh activations. A Predictive Coding network equipped with weight

and activity decay successfully generates images resembling MNIST digits from the class

vectors alone.

iv

Acknowledgements

I would like to thank my supervisor, Jeff Orchard, for offering me the opportunity

to work on such an interesting research project and for continuously providing me with

support and direction throughout my Master’s. I would also like to thank Tyler Jackson for

pointing out that multimodal datasets can be a problem for generative Predictive Coding,

and for providing helpful advice and code throughout my time working on this project. I

would additionally like to thank Bryan Tripp for allowing me to work on a project that

led me to discover the benefit that decay brings to Predictive Coding in the discriminative

mode. Lastly, I would like to thank Yu Gu for helping me to understand the mathematics

behind dynamical systems theory.

I would like to gratefully acknowledge the support of NVIDIA Corporation with the

donation of the Titan Xp GPU used for this research.

v

Dedication

I dedicate this thesis to Mark Luo, for his enthusiasm in neural networks, and to Alan

Zhang, for his inspiring play style in the social deception game Avalon. I also dedicate this

thesis to my supervisor, Jeff Orchard, for the knowledge and motivation he has given me

in learning about neuroscience. Thank you all for supporting me through my research.

vi

Table of Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Artificial Neural Networks . 2

1.2 Biological Plausibility of Backpropagation 8

2 Predictive Coding 11

2.1 Predictive Coding with Free Energy Principle 14

2.2 Approximation of Backpropagation . 26

3 Predictive Coding With Decay 32

3.1 Decay in the Free Energy Objective . 36

3.2 Analysis of Activity Decay During Training 38

vii

3.3 Stability Analysis of the Discriminative Mode 42

3.3.1 Linear Stability Analysis of Dynamical Systems 42

3.4 Predictive Coding Discriminative Dynamics 45

3.4.1 Stability of Predictive Coding Trained Weights 49

3.4.2 Stability of Backpropagation Trained Weights 58

4 Generating Samples From Classes 61

4.1 The Generative Process Solves An Under-determined System 64

4.2 Analysis of Generative Linear Networks . 66

4.2.1 Weight and Activity Decay . 69

4.2.2 Deep Linear and Tanh Networks . 72

4.2.3 Activity Decay Generates Unique Samples 74

4.2.4 Weight Decay Benefits Generative Quality 76

4.2.5 Are Backpropagation-trained Networks Generative? 78

4.2.6 Generating on Multimodal Datasets 79

4.3 Generating MNIST Digits . 82

4.3.1 Normalized Correlations Using Tanh 82

4.3.2 Generating The Best Looking Digits 85

viii

5 Discussion 88

5.1 Limitations of Decay . 90

5.2 Biological Plausibility of Predictive Coding 92

5.3 Conclusion . 94

References 96

APPENDICES 105

A Proof of Theorem 1 106

ix

List of Figures

1.1 Artificial Neural Network . 3

2.1 Basic Predictive Coding network . 19

2.2 Predictive Coding network with activations 21

2.3 Layered Predictive Coding network . 23

2.4 Three-layer Predictive Coding network . 27

3.1 End to end Predictive Coding Network . 36

3.2 Sympy Code for Stability Analysis . 48

3.3 Graphs of errors without weight decay training 51

3.4 Eigenvalues of Jacobian by weight decay value used 54

3.5 Graphs of errors with weight decay training 56

4.1 Generative Process On MNIST . 62

4.2 Images generated without decay . 63

x

4.3 Small network . 65

4.4 Solution space for generated samples without decay 67

4.5 Solution space for generated samples with decay 71

4.6 Generating without decay vs. generating with decay 73

4.7 Generated samples without decay and with decay using tanh 74

4.8 Generated samples from backpropagation trained network 79

4.9 Generating on a multimodal dataset . 80

4.10 Histogram of cosine similarities . 84

4.11 Generated samples on MNIST by tanh network 85

4.12 Bar graph of cosine similarities . 86

4.13 Mean MNIST digits vs generated MNIST images 87

xi

List of Tables

3.1 Eigenvalues of Jacobian without decay training 52

3.2 Sum of norms of errors after weight decay training 55

4.1 Average standard deviation of generated samples 75

4.2 Euclidean distances of generated samples 77

4.3 Cosine similarities of generated MNIST images 84

xii

Chapter 1

Introduction

Artificial neural networks (ANNs) have shown tremendous success at statistical learn-

ing due to the backpropagation learning algorithm [51]. In recent years, convolutional

neural networks (CNNs) [35] trained by backpropagation have achieved widespread suc-

cess at high-dimensional classification problems such as image recognition [29]. Generative

adversarial networks have also attained success in generating images from a latent space

[18], but not from a class vector alone.

Why might it be useful to generate a sample from a class vector? One reason is that

we may want to have a network that maps bidirectionally between particular inputs and

targets of a dataset. Such a network can be used as a part of other architectures in order to

guarantee that a segment of that architecture produces unique, invertible data mappings.

Another reason is that the neural network theoretically encodes a generative model, and

so having the network generate a sample from a class verifies the efficacy of that model.

1

In this thesis, I will show that the regularizing effect of decay decisively benefits

the process of generating salient inputs from class vectors in a type of network called

Supervised Predictive Coding. Using decay, we can design a neural network that is

both discriminative and generative, meaning that the network can discriminate the class

of an input and generate valid input samples from the class using the same set of weights.

First, we will take a look at how backpropagation works in feed-forward neural networks,

a basic type of ANN.

1.1 Artificial Neural Networks

Feed-forward neural networks are functions that map an input to an output. The

network is a directed graph that consists of multiple hierarchical layers [51]. An example

of an artificial neural network architecture is shown in Fig. 1.1.

The layer which receives the input to the function is called the input layer, while the

layer that produces the output of the function is called the output layer. Intermediate

layers between the input and output are called hidden or deep layers. Each layer consists

of neurons, which store artificial firing rates called activities. In this thesis, the term values

will be used to refer to the numerical representations of these activities.

In normal feed-forward neural networks, every neuron within a layer is connected to

every neuron within the next layer. The strength of a connection between two neurons is

called a weight, and the full matrix of connections between two adjacent layers of neurons

is called a weight matrix whose elements are termed weights. Activities entering a layer

2

Figure 1.1: Standard feed-forward neural network, taken from [64]. The input layer is at
the bottom, the output layer is the single neuron at the top, and intermediate layers are
called deep layers.

can be called an input current.

A bias b can be added to the current. The bias is often treated as additional weights

projecting from an extra neuron with constant value 1 in a preceding layer to every neuron

in the next layer.

The current arriving at a receiving layer is transformed through a function f called an

activation. The purpose of activations is to introduce nonlinearity into the network. Non-

linearities allow a neural network to perform more complex processing, such as separating

an input into multiple classes where each class occupies nonlinearly separable space. Sam-

ple activation functions are tanh, arctan, the logistic function σ, and the rectified linear

3

unit, ReLU.

ReLU(x) =


0 x < 0

x x ≥ 0

(1.1)

Denote f (l) to be the activation function for layer (l). Let w
(l−1)
i,j be the strength of the

synaptic weight connection between neuron j on layer (l−1) and neuron i on layer (l). The

feed-forward operation from a given layer of values x(l−1) with n(l−1) neurons to a receiving

neuron x
(l)
i on layer l, can be summarized as

x
(l)
i = f (l)

n(l−1)∑
j=1

w
(l−1)
i,j x

(l−1)
j + b

(l)
i

 (1.2)

This equation can be simplified by placing every variable in matrix-vector form. Here,

W (l−1) denotes the weight matrix connecting layers (l− 1) and (l), ~x(l−1) denotes a vector

of values from layer (l−1), and ~b(l) denotes a vector of biases added to the current entering

layer (l),

~x(l) = f (l)
(
W (l−1)~x(l−1) +~b(l)

)
(1.3)

A feed-forward pass is to run equation (1.3) on an input sample or batch x through every

layer of the neural network, producing the output y at the output layer.

The weights and biases of a feed-forward neural network are parameters to be learned.

The number of layers, the number of neurons in each layer, and the activation function

used at each layer are called hyperparameters which are chosen when the neural network

is initialized. Another hyperparameter, the learning rate, governs the magnitude of each

modification to the network’s weights during learning.

4

Learning the weights and biases of a feed-forward neural network is achieved using an

algorithm called backpropagation [51]. This algorithm is used for supervised learning, the

setting in which the target output for a given input is known. Backpropagation additionally

requires a cost function, C, also known as the objective or the loss, to quantify the difference

between the outputs y produced by the neural network and the targets t. Popular neural

network loss functions are mean squared error for continuous valued outputs and cross

entropy for binary vector classification, also known as one-hot classification. Indexing each

input-target pair in a dataset with i, and denoting yi as the output corresponding to target

ti, cross entropy is

C(y, t) = −
∑
i

ti log yi + (1− ti) log(1− yi) (1.4)

Backpropagation finds the gradient of the cost function with respect to each weight and

bias of the network. For the current z entering the output layer of the network, that is,

the values projecting into the output layer before being transformed by the activation, the

derivative of the loss C with respect to each component of the current zi is

∂C

∂zi
=
∂C

∂yi

dyi
dzi

(1.5)

For certain combinations of output activations and loss functions, the derivative above

simplifies to the difference yi−ti. Examples of such combinations are cross entropy loss with

logistic activation and cross entropy with the softmax activation function (not discussed

in this thesis).

Backpropagation acquires its name from the repeated application of chain rule to find

the derivative of the loss with respect to values further down the layers of the network.

5

Suppose that for layer (l), we have found ∂C

∂z
(l)
j

for all j. Denote the values of the neurons

at layer (l − 1) as x(l−1). Then we can also find ∂C

∂z
(l−1)
i

,

∂C

∂z
(l−1)
i

=
n(l)∑
j=1

dx
(l−1)
i

dz
(l−1)
i

∂z
(l)
j

∂x
(l−1)
i

∂C

∂z
(l)
j

(1.6)

We can simplify these terms. From (1.2), we can infer that, summing across j,
∂z

(l)
j

∂x
(l−1)
i

simplifies to the column w
(l−1)
·,i of the weight matrix, while

dx
(l−1)
i

dz
(l−1)
i

simplifies to the derivative

of the activation function f (l) as long as the same activation is used for all neurons at layer

(l). Therefore, treating ∂C

∂z
(l)
j

and
∂z

(l)
j

∂x
(l−1)
i

as vectors across j in equation (1.6) becomes

∂C

∂z
(l−1)
i

= f ′
(l)

(x
(l−1)
i)w

(l−1)T

·,i
∂C

∂z̄(l)
(1.7)

which in full matrix-vector form can be written as

∂C

∂z̄(l−1)
= f ′

(l)
(x̄(l−1))�W (l−1)T ∂C

∂z̄(l)
(1.8)

Notice that � is used in (1.8) to indicate a Hadamard product.

Given ∂C

∂z
(l)
j

, the derivatives of the loss with respect to the weights w
(l−1)
j,i and biases b

(l)
j

are

∂C

∂w
(l−1)
j,i

=
∂C

∂z
(l)
j

∂z
(l)
j

∂w
(l−1)
j,i

(1.9)

∂C

∂b
(l)
j

=
∂C

∂z
(l)
j

∂z
(l)
j

∂b
(l)
j

(1.10)

6

The expression
∂z

(l)
j

∂w
(l−1)
j,i

simplifies to h
(l−1)
i , and

∂z
(l)
j

∂b
(l)
j

simplifies to 1. Thus the update equa-

tions can be written as

∂C

∂w
(l−1)
j,i

=
∂C

∂z
(l)
j

h
(l−1)
i (1.11)

∂C

∂b
(l)
j

=
∂C

∂z
(l)
j

(1.12)

Each weight w
(l−1)
j,i is then incremented in the opposite direction of the derivative ∂C

∂w
(l−1)
j,i

with the aforementioned learning rate α, and similarly for the bias. That is, for all layers

(l), backpropagation performs gradient descent on the weights w
(l−1)
j,i ,

w
(l−1)
j,i ← w

(l−1)
j,i − α ∂C

∂w
(l−1)
j,i

(1.13)

and on the biases b
(l)
j ,

b
(l)
j ← b

(l)
j − α

∂C

∂b
(l)
j

(1.14)

The full learning algorithm for artificial neural networks is presented in Algorithm 1. In the

algorithm, the term epoch refers to one full pass over the training set, and the term batch

refers to the fact that the inputs are often placed in batches of a user-chosen size. For each

epoch, the batches are recreated at random from all the input-target pairs. Optionally,

the algorithm can also evaluate the total loss of the network on the training set after each

7

epoch.

Algorithm 1: Backpropagation

Initialize weights and biases;

for each epoch do

for each batch x,t in dataset do

y = feed-forward(x);

Backpropagation(y, t);

end

end

1.2 Biological Plausibility of Backpropagation

Despite the success of backpropagation, ANNs still exhibit weaknesses compared to

human intelligence, such as requiring thousands or even millions of data points in order

to learn. Human intelligence learns quickly from much fewer inputs. Trained neural net-

works are also susceptible to adversarial examples that do not easily fool humans [1]. One

popular direction of progress is thus to explore neural models that are consistent with the

architectural and computational constraints of biological brains. I will not investigate the

aforementioned weaknesses in this thesis, but I will study a more biologically plausible

model of neural computation as an alternative to backpropagation.

What does it mean for a model to be biologically plausible? I will use the criteria

defined by Whittington and Bogacz. A biologically plausible model satisfies four criteria:

local computation, local plasticity, minimal external control, and plausible architecture

8

[68].

Local computation means that the computations performed by a neuron must involve

only the values of adjacently connected neurons. Similarly, local plasticity means that the

weights of the neural network must be modified only using the values of the two neurons

whose connection strength the weight represents [68].

Minimal external control means the network must behave autonomously, performing

both inference and learning with as little external control routing information in different

ways at different times as possible [68].

Lastly, plausible architecture means the architecture of the neural network should be

consistent with the connectivity constraints that exist in the brain, and particularly the

neocortex [68].

Currently, artificial neural networks do not resemble biological neural networks because

the ANN learning algorithm, backpropagation, lacks biological plausibility. To show why

backpropagation is not biologically plausible, it is useful to imagine that a separate network

of neurons is projecting back values from the output layer. These values correspond to the

backpropagation derivative terms that are computed and used to update the feed-forward

network’s weights and biases.

First, backpropagation violates local computation because each derivative term relies

on the values of derivatives computed from many layers back. Backpropagation violates

local plasticity for the same reason, since the updates to the weights and biases of the

network rely on non-locally computed derivatives. These violations follow inherently from

the fact that backpropagation uses the chain rule, which requires values from across the

9

entire chain. It is questionable if the cerebral cortex can even compute equations at all [9].

Backpropagation also violates minimal external control, since it requires the network to

have distinct feed-forward and backpropagation phases, as shown in Algorithm 1. This im-

plies an exterior force is switching the network between its two phases, which is implausible

since all known brains are believed to be self-controlled.

Lastly, backpropagation violates plausible architecture through its use of symmetric

weights [37]. In equation (1.8), the existence of the term W (l−1)T implies that an entire

set of synaptic connection strengths must be copied onto the aforementioned separate

network projecting back backpropagation derivative terms [19]. This is known as the

weight transport problem [37].

Since backpropagation violates all four biological plausibility criteria, artificial neu-

ral networks trained with backpropagation are biologically implausible. Why, then, does

backpropagation work so well as a learning algorithm?

In the next chapter, we will investigate another neural framework called Predictive

Coding that can approximate backpropagation learning [68]. Predictive Coding addresses

some, though not all, of the biological plausibility issues of backpropagation, and it of-

fers some interesting insights into the potential ways that biological neurons can perform

learning and computation.

My thesis aims to show that making Predictive Coding networks generate inputs from

class vectors requires solving a system that contains infinite solutions, and decay collapses

the solution space to the one that resembles the input. Using Predictive Coding, we will

create a neural network that can classify inputs and generate an input sample from classes.

10

Chapter 2

Predictive Coding

Predictive Coding (PC) is a theory of cortical computations posited to explain infor-

mation processing in the brain. It is characterized by one-to-one pairings of state nodes

and error nodes at each layer of a hierarchical neural network [47]. State nodes encode

values much like the activities in artificial neural networks, and error neurons encode the

differences between the predicted values projected down from the higher layers of the net-

work and the values of sensory input projected up from lower layers. Predictive Coding

networks also have forward and feedback connections between layers [47]. Forward connec-

tions are the weights that map values from a given layer to the next layer, while feedback

connections are the weights that map values from an upper layer to the layer below.

Predictive Coding in the brain comes from the idea that the brain encodes the causes of

sensory input as parameters of a generative model, and new sensory inputs are represented

in terms of those causes [59]. Equipped with this generative model, the brain may be able

11

to perform inference on its environment. For example, our eyes perceive an image which is

full of red and yellow light wavelengths, and our brain infers that it is looking at a sunset.

But another possible inference is that it is looking at an autumn tree. In either case, the

brain is making a prediction about what it is looking at.

Multiple different objects can give rise to the same image. Inferring the causes behind

an outcome, such as the object behind an image, is an inverse problem that tends to be ill-

posed, with multiple or zero solutions [59]. These problems require additional constraints

in order to solve, and Predictive Coding may be able to provide these constraints [59, 7,

8, 24, 47, 58].

Rao and Ballard introduced Predictive Coding in the visual cortex as a hierarchical

generative model [47]. An image seen by the brain is represented as a linear combination

of basis vectors. These basis vectors are neural activities, and they are linearly projected

to subsequent layers. The result of the multiplication can also be processed through an

activation function such as logistic. The final neural activities can be thought of as a set

of causes that together give rise to the image perceived by the brain. These activities are

the state nodes in Predictive Coding.

Rao and Ballard proposed a hierarchical neural model in which every layer represents

a set of causes. Each layer is multiplied by a synaptic weight matrix to generate another

set of causes at the layer below, until the input image is generated at the input layer. In

other words, each layer predicts the values of the activities of the layer below.

The model seeks to minimize the difference between the predictions and the actual

activities at each layer. By encoding this difference in error nodes that exist at every layer,

12

and by performing gradient descent on the values of all the errors, the model becomes able

to make accurate predictions. Gradient descent can be performed by modifying the values

of each layer’s state nodes as well as by modifying the synaptic weights connecting each

layer.

Another conception of Predictive Coding is the PC/BC-DIM model by Spratling [59,

55]. BC stands for Biased Competition and proposes that visual stimuli compete to be

represented by cortical activity [56]. This competition is achieved through excitatory feed-

forward and feedback connections between populations of neurons, along with inhibitory

lateral connections within each population [56, 10, 50].

Spratling proposes a reconciliation of biased competition and Predictive Coding [56].

Instead of excitatory feedback connections, feedback from higher layers inhibits the inputs

to a neuron [22]. The usual way to represent the inhibitory effect of feedback is to have

error nodes encode the difference between the state nodes they are directly connected to

and the feedback that they receive from the layer above. Spratling’s PC/BC-DIM model

instead uses Divisive Input Modulation [62], in which errors are calculated using division

instead of subtraction [59]. Error nodes encode the ratio between the state nodes they are

connected to and higher layer’s non-zero predictions sent down.

Many other implementations of Predictive Coding exist. Some network architectures

have leveraged the principle of Predictive Coding–that is, the existence of predictions and

errors–to perform specific vision-related tasks such as video prediction [38]. Predictive

Coding can also be used in conjunction with other neural architectures, such as LSTMs

and convolutional layers [38].

13

2.1 Predictive Coding with Free Energy Principle

We now return to this question: how does the brain solve the problem of inferring the

causes of sensory input? Friston’s Free Energy Principle explains that the brain solves

this problem using a process called minimizing the brain’s Free Energy [13]. According

to Friston, Free Energy is an information theoretic quantity that bounds the evidence for

a model of data, where data is sensory inputs and the model is encoded by the brain

[14]. Free Energy is inspired by statistical mechanics and can be thought of as the amount

of “entropy” in the brain. In other words, the process of minimizing Free Energy is the

process of minimizing entropy. But what does it mean to minimize entropy in the brain?

First, the motivation for Free Energy rests upon the fact that self-organizing biological

agents resist a tendency to disorder [14]. What this means is that biological organisms

maintain their order by restricting themselves to a limited number of states [2], and Fris-

ton’s proposal is that these states encode a generative model that predicts the conditions

of the organism’s environment. Entropy, which can be thought of as disorder, is therefore

a misprediction of the environment, which can be defined as “surprise”. Thus, minimizing

Free Energy in the brain corresponds to minimizing the surprise experienced by the brain.

According to the Free Energy Principle, the introduction of sensory stimuli induces

surprise in the brain. Cortical responses can be seen as the attempt to minimize the Free

Energy induced by that stimulus and thereby encode the most likely cause of that stimulus

[13]. Learning emerges from synaptic changes that minimize Free Energy, averaged over

all stimuli encountered [13]. This statistical view of the brain forms the basis of the

mathematics of the Free Energy Principle conception of Predictive Coding.

14

Bogacz presents an effective tutorial of the Free Energy Principle, explaining how it

can be mapped onto a population of neurons [4]. This section follows and summarizes his

tutorial.

Bogacz starts by considering an organism with some visual capability that attempts

to infer the diameter v of a food item based on the light intensity it observes. Let u

be a noisy estimate of the light intensity its visual receptor receives and let g denote a

non-linear function that relates the average light intensity of an object with the object’s

diameter [4]. For example, g(v) = v2. Next, assume that the perceived light intensity is

normally distributed with mean g(v) and variance Σu. Then the probability of observing

u given v is

p(u|v) = N (u; g(v),Σu) (2.1)

The organism is also equipped with prior knowledge on how large food items are that

it learnt from experience [4]. Assume that the animal expects this size to be normally

distributed with mean vp and variance Σp.

p(v) = N (v; vp,Σp) (2.2)

When the animal has observed a particular value of light intensity u, it is then faced with

the problem of estimating the diameter v of the food item, which can be interpreted as

computing p(v|u) [4]. It is possible to use Bayes’ theorem to compute

p(v|u) =
p(v)p(u|v)

p(u)
(2.3)

15

p(u) =

∫
p(v)p(u|v)dv (2.4)

Bogacz notes that it would be difficult for an organism to perform this computation for

two reasons. First, if g is a non-linear function, then p(v|u) will not necessarily have a

normal spread of values. Thus, representing p(v|u) requires representing infinitely many

values for each possible u rather than just representing summary statistics like mean and

variance [4]. Second, it is hard to imagine a neural circuit that can compute (2.4), which

is a normalization term that ensures all p(v|u) integrate to 1. Bogacz suggests that the

basal ganglia, a region of the brain implicated in reward-motivated decision making, can

compute the normalization term for discrete probability distributions [5], but computation

of the normalization for continuous distributions requires evaluating the integral [4]. This

would be too hard for a simple neural circuit to do.

Bogacz then proposes that the brain seeks the most likely size of the food item v

that maximizes p(v|u). Denoting this size φ, the brain then attempts to find the φ that

maximizes the probability density distribution p(φ|u). Since p(φ|u) depends on a ratio

with p(u) in the denominator and p(u) does not depend on φ, we can just find φ that

maximizes the terms p(φ) and p(u|φ) in the numerator [4]. Denote by F the logarithm of

the numerator,

F = ln p(φ) + ln p(u|φ) (2.5)

Since the natural logarithm function is monotonic, we can maximize the numerator by

maximizing F . But why do we not just maximize the numerator directly? It is because

p(φ) and p(u|φ) are normal distributions, and so the formula that represents them contains

exponentiation terms. Taking the logarithm of those terms removes the exponentiation,

16

allowing a simpler derivation of the objective function that maximizes F [4].

F = ln p(φ) + ln p(u|φ)

= ln f(φ; vp,Σp) + ln f(u; g(φ),Σu)

= ln

[
1√

2πΣp

e
− (φ−vp)2

2Σp

]
+ ln

[
1√

2πΣu

e−
(u−g(φ)2

2Σu

]
= ln

1√
2π
− 1

2
ln Σp −

(φ− vp)2

2Σp

+ ln
1√
2π
− 1

2
ln Σu −

(u− g(φ))2

2Σu

=
1

2

(
− ln Σp −

(φ− vp)2

Σp

− ln Σu −
(u− g(φ))2

Σu

)
+ C

Here, Bogacz incorporates all constant terms into a constant C, leaving only the terms

containing variables we are concerned with for maximizing F . Then, taking the derivative

of F with respect to φ [4] gets

∂F

∂φ
=
vp − φ

Σp

+
u− g(φ)

Σu

∂g

∂φ
(2.6)

Now, the computational process of finding φ that maximizes F can be expressed in terms

of a differential equation of the variable φ with respect to time t,

dφ

dt
=
vp − φ

Σp

+
u− g(φ)

Σu

∂g

∂φ
(2.7)

Here, dφ
dt

is simply set to ∂F
∂φ

. The equation can be simulated with an appropriate Euler

time step to arrive at an approximate φ that maximizes F , and in this manner, acquire

the most likely size v of the food item of interest. But how could a network of neurons

implement such a differential equation?

17

We can bring back the concept of error-encoding neurons discussed in earlier conceptions

of Predictive Coding, and denote two of the terms in the above equation as error terms,

εp =
φ− vp

Σp

(2.8)

εu =
u− g(φ)

Σu

(2.9)

Substituting these terms into (2.7) and replacing ∂g
∂φ

with g′(φ) gives

dφ

dt
= εug

′(φ)− εp (2.10)

Bogacz assumes that vp, Σp, and Σu are encoded in the strengths of the synaptic connections

since they represent prior knowledge, while φ, εu, and εp are encoded in the activity of

neurons or neural populations. Next, Bogacz derives differential equations for εu and εp

with respect to time [4],

dεp
dt

= φ− vp − Σpεp (2.11)

dεu
dt

= u− g(φ)− Σuεu (2.12)

These two equations allow each error node to converge to the values defined in (2.8) and

(2.9). This can be shown by setting (2.11) and (2.12) to 0. Figure 2.1 shows the architecture

of the Predictive Coding network that facilitates equations (2.10), (2.11), and (2.12).

It is also possible to find φ that maximizes F by changing the terms vp, Σp, and

Σu, whose values are encoded in interlayer synaptic connections. This process can be

interpreted as “learning”. As the organism experiences more and more light intensity-food

18

Figure 2.1: Predictive Coding neural network, taken from [4]. Circles denote neural nodes,
arrows indicate excitatory connections, and lines ending with circles indicate inhibitory
connections. Labels above connections denote their connection strengths and lack of label
indicates a connection strength of 1. The rectangles indicate the values that need to be
transmitted via the connections they label [4].

size relations, its knowledge, or “priors”, should change to reflect those experiences as well.

Bogacz derives updates for each of these terms,

∂F

∂vp
=
φ− vp

Σp

(2.13)

∂F

∂Σp

=
1

2

(
(φ− vp)2

Σ2
p

− 1

Σp

)
(2.14)

∂F

∂Σu

=
1

2

(
(u− g(φ))2

Σ2
u

− 1

Σu

)
(2.15)

Notice that equation (2.13) can be written as just ∂F
∂vp

= εp. This implies that the update to

the synaptic connection vp is Hebbian because it depends only on the activity of presynaptic

and postsynaptic neurons [4]. The other two equations for Σp and Σu can also be simplified

similarly. In this thesis, we will ignore changes to Σp and Σu and focus on changes to vp

19

as the main mechanism of learning.

Next, we can consider the function g. Bogacz conjectures that g is a function of two

parameters, θ and v, such that g(v, θ) = θh(v), where h(v) is some nonlinear function.

Then we can derive the following update equations by substituting θ and h into g(φ),

dφ

dt
= θεuh

′(φ)− εp (2.16)

dεp
dt

= φ− vp − Σpεp (2.17)

dεu
dt

= u− θh(φ)− Σuεu (2.18)

The update to vp can now be written as just an update to θ since h(φ) is an activation

function that does not change [4],

∂F

∂θ
= εuh(φ) (2.19)

A Predictive Coding network that facilitates equations (2.16), (2.17), (2.18), and (2.19) is

shown in Fig. 2.2.

Everything discussed thus far involves a single dimensional input, u. We can now scale

up the dimensionality of the input and also the dimensionality of our network by allowing

there to be multiple neurons per layer and also multiple layers.

The same objective function F can be used and derived for a vector of inputs and

a vector of nodes at each layer of the neural network. Bogacz shows these derivations

rigorously in his tutorial [4].

20

Figure 2.2: Predictive Coding neural network with h(φ), taken from [4]. Notice that
connection weight strengths between εu and φ are now a scalar mapping θ followed by a
nonlinear activation h or h′.

We now presume a vector ū of inputs. Let our Predictive Coding model be a hierarchical

neural network of n layers, where the input ū is at layer 0 and a hypothetical output is

at layer n − 1. For each layer i between the input and output, a vector of error nodes

ε̄(i) connects to a vector of states, φ̄(i), with connection strength 1 on the same layer. For

the interlayer connections, ε̄(i) connects to φ̄(i+1) nodes on the next layer with connection

weight strengths θ(i). The activation function for layer i is h(i)().

How does this network relate to our previous, unidimensional network? Now that we

have introduced hierarchy, we are not limited to just two sets of error nodes, εu and εp,

but rather, we have as many vectors of error nodes ε̄(i) as there are layers i. Further, we

have as many internal state nodes φ̄(i) and interlayer connection weight strengths θ(i) as

we require as well. Our update equations become [4]

dφ(i)

dt
= −ε̄(i) + h′

(i)
(φ̄(i))� θ(i−1)T ε̄(i−1) (2.20)

21

dε(i)

dt
= φ̄(i) − θ(i)h(i)(φ̄(i+1))− Σ(i)ε̄(i) (2.21)

Notice that we have done away with the different update equations we had for εp and εu

before by using internal state nodes φ̄(i) and variances Σ(i). Here, u would be denoted by

φ̄(0) and Σu would be denoted by Σ(0). The variables vp have all been replaced by θh(φ̄).

Lastly, note that since we are now dealing with vectors of nodes instead of singular nodes,

we use the Hadamard product � in (2.20).

Bogacz derives the update to the interlayer connection weight strengths θ(i) to be a

tensor product of the error nodes ε̄(i) on the lower layer with the state nodes h(φ̄(i+1)) on

the upper layer [4],

∂F

∂θ(i)
= ε̄(i)h(i)(φ̄(i+1))T (2.22)

Note that the two terms in (2.22) correspond to the two sets of nodes ε̄(i) and h(i)(φ̄(i+1))

that are presynaptic and postsynaptic neurons for the synapse represented by the con-

nection weight strength θ(i). Thus, it is a Hebbian update rule, preserving our biological

plausibility requirement to have local synaptic plasticity.

Fig. 2.3 shows a Predictive Coding network with multiple neurons per layer that facil-

itates equations (2.20), (2.21), and (2.22).

So, why do these equations matter? How do they represent effective neural learning

with respect to a given statistical learning task?

Bogacz explains this question by referring to Kullback-Leibler Divergence [31], which

is more commonly known as KL Divergence. Kullback-Leibler Divergence is a measure

of how one probability distribution q(v) is different from a second probability distribution

22

Figure 2.3: Predictive Coding neural network representing a model inferring 2 features from
2 sensory stimuli, taken from [4]. Green nodes represent the first layer in the hierarchy,
blue nodes represent the second layer, and purple nodes represent the third layer.

p(v|u) [32, 30, 4]. To simplify the following analysis, Bogacz assumes that q(v) is a delta

distribution which is∞ at v = φ and 0 everywhere else. Now, the formula for KL divergence

is

KL(q(v), p(v|u)) =

∫
q(v) ln

q(v)

p(v|u)
dv (2.23)

While any pair of distributions q(x) and p(x) could have been chosen for the KL Divergence

formula, Bogacz chooses q(v) and p(v|u) since we are interested in estimating v from

observing u. Substituting the definition of conditional probability, p(v|u) = p(u,v)
p(u)

into

equation (2.23) and following through with the derivation [4] gives

KL(q(v), p(v|u)) =

∫
q(v) ln

q(v)

p(u, v)
dv + ln p(u) (2.24)

The integral in (2.24) is actually Friston’s concept of Free Energy, and Bogacz denotes its

negative by F . Recall that F was defined as ln p(φ)+ln p(u|φ). Under certain assumptions,

23

the negative Free Energy in (2.24) is equivalent to this F [4]. We write F now as the

negative of the integral in (2.24).

F =

∫
q(v) ln

p(u, v)

q(v)
dv (2.25)

KL(q(v), p(v|u)) = −F + ln p(u) (2.26)

Recall that we assumed q(v) is a delta distribution. This allows us to write F [4] as

F =

∫
q(v) ln

p(u, v)

q(v)
dv

=

∫
q(v) ln p(u, v)dv −

∫
q(v) ln q(v)dv

= ln p(u, φ) + C1

The delta function with centre φ assumption implies that the integral of q(v) multiplied

by any function h(x) is equal to h(φ), which, in this case, is ln p(u, φ) [4]. The second

integral does not depend on φ and so cancels out when we compute the derivative of F

with respect to φ, so we denote it by a constant C1 [4].

F = ln p(u, φ) + C1 (2.27)

24

By using the fact that p(u, φ) = p(φ)p(u|φ) and ignoring C1 [4], we can then derive

F = ln p(u, φ)

= ln p(φ)p(u|φ)

= ln p(φ) + ln p(u|φ),

which is exactly the same as (2.5).

Hence, the process of minimizing Free Energy, which is equivalent to maximizing F ,

lets us find the approximate delta distribution q(v) [4]. Finding q(v) allows us to retrieve

φ, which is the reason for the whole set of equations (2.20), (2.21), and (2.22) behind our

Predictive Coding network [4].

Another way to think about the network’s inference process is by noting that, if we

maximize p(u), we are are finding a set of states in our neural network such that sensory

observations are least surprising [4]. This follows from the fact that u is the noisy estimate

of light intensity observed by our organism. Rearranging (2.26) as

ln p(u) = F +KL(q(v), p(v|u)) (2.28)

tells us that, since KL divergence is non-negative, F is a lower bound on p(u), so by

maximizing F , we maximize the lower bound on p(u) [4]. Bogacz notes, however, that an

organism actually wishes to maximize the average of p(u) across multiple trials, or multiple

attempts to find food, and so the parameters of its Predictive Coding network, which is

presumably its brain, are only modified a little bit for each trial [4]. This is similar to

25

applying weight updates with a learning rate when training artificial neural networks with

backpropagation.

2.2 Approximation of Backpropagation

Predictive Coding with the Free Energy Principle using Bogacz’s equations allows us

to design a network with a learning algorithm that approximates backpropagation. Whit-

tington and Bogacz observe that, under certain conditions, if the equations used in back-

propagation are written in a certain way and compared to the Predictive Coding equations

at equilibrium, they are equivalent [68]. Now, we review the backpropagation equations

and rewrite them.

Note that ∂C
∂zi

from (1.5) simplifies to ȳ− t̄ for certain loss and activation functions [68].

Recall that ȳ is the final output of the neural network and t̄ is the target output. One such

combination that allows for this simplification is logistic activation with cross entropy loss,

which is commonly used for classification tasks. Another common combination is softmax

activation with categorical cross entropy loss. Our assumption is therefore that a loss-

activation function combination is used such that the derivative of the loss with respect to

the current z̄ entering the top layer is equal to ȳ − t̄.

As we apply chain rule to get the derivative of the loss with respect to the hidden layers

of the network, a simple pattern emerges. For each layer with entering current z̄(l), if we

have computed ∂C
∂z̄(l) , then ∂C

∂z̄(l−1) is described in (1.6), and can be simplified to (1.8). For

a neural network of n layers, with the input at layer 0, we can write each term ∂C
∂z̄(l) of

26

Figure 2.4: A Predictive Coding network taken from [68]. During training, the inputs ū
would be fixed to the two nodes on the right, x(2), while the outputs t̄ would be fixed to the
two nodes on the left, x(0). Arrows denote excitatory connections while lines ending with
circles denote inhibitory connections. Connections without θ labels have weights fixed to
1.0.

backpropagation as follows.

∂C

∂z̄(l)
=


ȳ − t̄ l = n− 1

f ′(l)(x̄(l−1))�W (l−1)T ∂C
∂z̄(l+1) 0 < l < n− 1

(2.29)

Now, we consider how our Predictive Coding model would learn. Since we are doing

supervised learning, we have a dataset of inputs ū and targets t̄. Unlike what we had

before, we engineer our training procedure such that we present the input ū to layer n− 1

and the target t̄ to layer 0 of our Predictive Coding network. We will see the reasoning for

this later.

Fig. 2.4 shows the network described in this paragraph and the next. Note that φ is

shown as x in the figure, a switch of variable that Whittington and Bogacz make in their

27

paper on how Predictive Coding approximates backpropagation [68]. I will also be making

this variable switch, so the following explanation will be based on the variables in Fig. 2.4.

When a stimulus has been presented to the network, its error nodes will acquire non-

zero activity [4] and the values of the network’s internal state nodes x̄(1) will begin to

change. During training, the value of the state nodes x̄(0) will not change since they are

fixed to t̄. Similarly, the value of the state nodes x̄(2) should not change since they are

fixed to ū, though different implementations of holding the input to the network can exist.

At equilibrium, the error nodes ε̄(0) on layer 0 will encode the difference between the

target output and the output of the network. Let the output of the network be µ̄, and it

is equal to the values of the internal state nodes of the previous layer x̄(1) transformed by

an activation function h(0) and multiplied by the connection weight strengths θ(0).

µ̄ = θ(0)h(0)(x̄(1)) (2.30)

Hence, the error nodes ε̄(0) should equal t̄ − µ̄ at equilibrium. For every other layer, at

equilibrium, the change in each error and state neuron should equal zero. Letting φ = x

as before, we can set the left hand side in (2.20) to 0 and rearrange the equation to get

ε̄(i) = h′
(i−1)

(x̄(i))� θ(i−1)T ε̄(i−1) (2.31)

Unless the network has been trained to associate the input and the output, the error nodes

will not converge to zero [4, 68] at equilibrium. Now we can write the value of each error

28

node at equilibrium as

ε̄(i) =


t̄− µ̄ i = 0

h′(i−1)(x̄(i))� θ(i−1)T ε̄(i−1) 0 < i < n− 1

(2.32)

Compare (2.29) and (2.32). They have essentially the same mathematical terms except

with the layers reversed and with the target and network output switched in the difference

expression. To account for the switch, the weight update ∂F
∂θ(i) is added to θ(i) rather than

subtracted as in backpropagation. This also makes sense under the Predictive Coding

objective of maximizing F , the negative Free Energy, as opposed to backpropagation’s

objective of minimizing the loss C.

Now the question is whether or not those terms are actually driven by the Predictive

Coding equations to equal the backprop terms at equilibrium in practice. Whittington and

Bogacz investigate this question in their paper and find that the terms in their Predictive

Coding network actually approximate backpropagation terms under some sets of circum-

stances [68]. Since the update to weight θ(i) in the Predictive Coding network is the tensor

product ε̄(i)h(i)(x̄(i+1))T , if the Predictive Coding terms equal the backprop terms, then the

update will be the same as that used by backpropagation in (1.9).

This allows us to derive a similar learning algorithm for Predictive Coding networks as

algorithm 1 [68]. Again, notice we switch the layers where we fix the inputs and targets:

29

Algorithm 2: Predictive Coding During Learning [68]

Initialize weights;

for each epoch do

for each batch u,t in dataset do

φ(n−1) = u;

φ(0) = t;

Inference: Equations (2.20), (2.21) until convergence

Update weights: Equation (2.22)

end

end

Observe that the learning algorithm involves fixing ū and t̄ to the network. This in

effect clamps the network, preventing it from converging to an equilibrium where all the

error nodes equal 0. If either ū or t̄ are removed, then there is no clamping, and the error

nodes should all converge to 0. Bogacz shows that the equilibrium of the model is stable

[4], and so running the Predictive Coding equations should always allow the network to

converge to the equilibrium where all error nodes equal 0.

Consider also what happens when we fix only ū or t̄ to the network. Since an equilibrium

to the Predictive Coding equations always exists, fixing either ū or t̄ to the network will

cause all the internal state nodes to converge to some final value. At the other end of the

network, x̄(0) or x̄(n−1), a result is produced. Usually, x̄(0) is a class while x̄(n−1) is an input

such as an image.

Whittington and Bogacz have already shown that the Predictive Coding network is

capable of learning image classification [68]: given an image at x̄(n−1), the network predicts

30

the correct class at x̄(0). Furthermore, since their model is the first conception of Predictive

Coding that works with supervised learning, it is called Supervised Predictive Coding.

But can their network perform the other task: generating good quality images at x̄(n−1)

when presented a class in x̄(0)?

We call generating images from classes the network’s generative mode of operation [66],

and the other mode in which it predicts the class from the image the discriminative mode of

operation. In the following chapters, I will show the benefit of decay to both modes. Since

Supervised Predictive Coding is already good at being discriminative, the main benefit of

decay will be to make it generative.

In the next chapter, I will explain how decay can be introduced in two forms, weight

decay and activity decay [66], and I will present the benefits that weight decay brings to

the discriminative mode. In the chapter after that, I will show the pivotal role that both

types of decay play in solving the problem of generating inputs from class vectors.

31

Chapter 3

Predictive Coding With Decay

What possible improvements can be made to Supervised Predictive Coding? Before we

get to that, I will first discuss my implementation of Whittington and Bogacz’s network.

Since a Predictive Coding neural network is a system of differential equations, it requires

initial values in order to be numerically simulated. My convention is to set all the state

and error nodes to zero at initialization.

When values such as input images or output classes are fixed to the state nodes at the

top or bottom layers of the network, the network’s internal state and error nodes begin

to change. I simulate the differential equations that describe these changes with Forward

Euler stepping until the equilibrium is reached.

Given a network of n layers, zero-indexed, the differential equations that govern the

32

deep layers of the network, which are layers i such that 1 ≤ i ≤ n− 2, are

τ
dε(i)

dt
= x(i) −M (i)σ(x(i+1))− ν(i)ε(i) (3.1)

τ
dx(i)

dt
= α(i)W (i−1)ε(i−1) � σ′(x(i))− β(i)ε(i) (3.2)

Notice that instead of using one weight matrix θ(i) for forward and backward computations

between layer (i) and layer (i+ 1), I use matrix M (i) for the mapping from layer (i+ 1) to

layer (i) and matrix W (i−1) for the mapping from layer (i − 1) to layer (i). This resolves

the problem of having symmetric weights, and using separate weights M and W still allows

the network to achieve excellent performance. Similar to weight initialization in feedback

alignment [37], I use random initialization of M and W.

For the other variables, x(i) denotes the vector of state nodes of layer i, ε(i) is the

corresponding vector of error nodes for layer i, σ is an activation function such as tanh on

x(i), ν(i) is a scalar variance parameter that I always set to 1 to simplify my experiments,

the � operator represents the Hadamard product, and τ is a time constant.

The variables α(i) and β(i) are binary valued gatekeepers used to simplify the compu-

tational aspect of the network switching between modes of operation. The variable α(i)

controls values being projected up to x(i) from lower layers, while β(i) controls values sent

down to x(i) from error nodes ε(i) on the same layer. During learning, when the network is

clamped, α(i) = 1 and β(i) = 1 to allow state nodes x(i) to receive values from above and

below for all i. The other two modes of operation are discussed later.

The equations for the input and output layers of the network are slightly different.

33

Exceptions are that equation (3.2) applies to the state nodes of layer (n− 1) and equation

(3.1) applies to the error nodes of layer (0). It is the state nodes on layer (0) of the network

and the error nodes on layer (n− 1) of the network that differ for reasons specified below.

The output of the network is the predicted class of the input and can be retrieved from

the state nodes at layer (0) of the network at equilibrium. For the update to state nodes

x(0), we simply take the negative of the corresponding error nodes ε(0) on that layer since

there is no further layer below,

τ
dx(0)

dt
= −β(0)ε(0) (3.3)

The input to the network is held in a vector termed stim, which stands for stimulus.

For image classification, you can think of stim as the physical photons hitting the retina

cells, while the cells starting from the retina correspond to the nodes of layer (n− 1).

Importantly, stim and the nodes of layer (n−1) have the same dimensions. The update

equation for the error nodes of layer (n− 1) is

τ
dε(n−1)

dt
= x(n−1) − stim− ν(n−1)ε(n−1) (3.4)

Now, we can discuss the settings of α and β in the network’s other modes of operation.

In discriminative mode, all α and β are set the same as the clamped mode except that

α(n−1) = 0 in order that the state nodes x(n−1) exclusively receive input from stim. This

is so that x(n−1) converges to the values of stim and so at equilibrium the output of the

network is achieved from the correct setting of the input to the network. Note that there

34

is no need to set α(0) = 0 because there is no layer projecting values up from below x(0).

In generative mode, all α and β are set to the same as the clamped mode, but now

β(0) = 0 to prevent the state nodes x(0) that have been set to the values of class labels

from changing, β(n−1) = 0 to prevent the state nodes x(n−1) from receiving information

from the error nodes that they are connected to that normally convey values from the now

zero-valued stim container, and α(n−1) = 1 to allow state nodes x(n−1) to change to the

inputs generated by the classes.

During learning, which is the network’s clamped mode, I update the weights M (i) and

W (i) in each time step using the gradients in (2.22). With asymmetric weights, the updates

to M (i) and W (i) are transposes of each other,

γ
dM (i)

dt
= ε(i−1) ⊗ σ(x(i)) (3.5)

γ
dW (i)

dt
= σ(x(i))⊗ ε(i−1) (3.6)

The variable γ is a time constant similar to τ, but not necessarily equal since the synaptic

changes in biological neural networks likely happen at a different rate than that of the

changes to activities of nodes. It follows that my Predictive Coding training regime differs

from that presented in algorithm 2 because it performs a weight update after every time

step, rather than only after the state and error nodes have converged to equilibrium.

Fig. 3.1 summarizes the variables in my network, showing how they all connect together

in a hierarchy of layers.

35

n - 2 n - 1 n - 1n - 2

n - 2

n - 2

0

0
1100

Figure 3.1: End to end schematic of my neural network. Notice how during learning, the
class labels, Y, are fixed to the state nodes at layer 0, while the inputs, X, are placed in
a container stim (dashed line circle) and “fed” into the error nodes on layer (n − 1). An
example α is shown gating values fed up to state nodes and a sample β is shown gating
values fed down to state nodes.

3.1 Decay in the Free Energy Objective

Recall that the objective of the Predictive Coding network is to maximize F , which

can be defined as the sum of the negative of all the error nodes squared.

F = −
n−1∑
i=0

1

2
‖ε(i)‖2 (3.7)

Under the Whittington and Bogacz conception of Predictive Coding, the main relation

that exists between nodes of the networks at equilibrium is

ε(i) =
x(i) −M (i)σ(x(i+1))

Σ(i)
(3.8)

This relation follows from fixing state nodes and setting all the differential equations for

the error nodes (i.e. (3.1)), to zero.

The error nodes comprise half of the nodes in the Predictive Coding network. The

other half consists of state nodes, and the remaining parameters of the network are the

interlayer connection weights. Observe that the network’s objective function only penalizes

36

the error nodes. What happens if we penalize all the parameters of the network? We can

introduce constants λx > 0, λM > 0, and λW > 0 for each of those parameters and write a

new objective function,

F = −
n−1∑
i=0

1

2
‖ε(i)‖2 −

n−1∑
i=0

λx‖x(i)‖2 −
n−2∑
i=0

λM‖M (i)‖2 −
n−2∑
i=0

λW‖W (i)‖2 (3.9)

Taking the derivative of (3.9) with respect to each parameter yields a slightly different set

of update equations for the state nodes and weights. The state nodes x(i) now have a decay

term in their update, −λxx(i). This term λxx
(i) is activity decay, a phenomena related to

spike-frequency adaptation in which the neuronal firing rate decreases for a stimulus of

constant intensity [45]. Similarly, the weights have a decay in their updates, −λMM (i) and

−λWW (i).

τ
dx(i)

dt
= α(i)W (i−1)ε(i−1) � σ′(x(i))− β(i)ε(i) − λxx(i) (3.10)

τ
dx(0)

dt
= −β(0)ε(0) − λxx(0) (3.11)

γ
dM (i)

dt
= ε(i) ⊗ σ(x(i+1))− λMM (i) (3.12)

γ
dW (i)

dt
= σ(x(i+1))⊗ ε(i) − λWW (i) (3.13)

What can be the effects of these decay terms? Weight decay [49] is a well-known

regularization technique. In artificial neural networks, weight decay is usually formulated

as a penalty for large weight and bias parameters in the loss function. Given a loss function

C(x, t; θ) for inputs x, targets t, and weights and biases θ, a minimum-norm penalty for

37

parameters θ can be introduced into the loss,

C(x; θ) = C(x, t; θ) + λ‖θ‖2 (3.14)

This new cost function changes the backpropagation update to

θi ← θi − α
∂C

∂θi
− 2λθi (3.15)

The benefits of weight decay in artificial neural networks are numerous, including better

generalization to unseen data points from test datasets [16] and even reducing classification

error on the training dataset [29]. Can similar benefits be seen from adding weight and

activity decay to Predictive Coding networks?

Weight decay has a clear effect on Predictive Coding training by altering the update

to the weights, dM(i)

dt
and dW (i)

dt
, when λM > 0 and λW > 0. We will see that weight decay

confers significant benefits to Predictive Coding networks in this chapter and the next.

But first, we will analyze the impact of activity decay on training.

3.2 Analysis of Activity Decay During Training

In this section, I will explain how activity decay has a detrimental effect on training.

First, I will show that the error nodes ε(i) do not go to zero during training. We will use a

proof by contradiction. Then, I will demonstrate how non-zero error nodes cause activity

decay to negatively impact training.

38

Consider a 2-h-3 network, where the hidden layer contains h state nodes x(1) and h

error nodes ε(1). The network uses linear activations σ and has an activity decay of λx on

x(1). During training, inputs X and output classes Y are fixed to the network’s 3-node

layer and 2-node layer respectively. At the input layer, α = 0 and β = 1. As a result,

x(2) receives no input from the hidden layer, so it is only updated via its connecting error

nodes ε(2). At the class layer, β = 0, so x(0) receives no update. For all other nodes, α = 1

and β = 1.

The equations that govern the network during training are

τ
dε(2)

dt
= x(2) −X − ν(2)ε(2) (3.16)

τ
dx(2)

dt
= −ε(2) (3.17)

τ
dε(1)

dt
= x(1) −M (1)σ(x(2))− ν(1)ε(1) (3.18)

τ
dx(1)

dt
= W (0)ε(0) � σ′(x(1))− ε(1) − λxx(1) (3.19)

τ
dε(0)

dt
= x(0) −M (0)σ(x(1))− ν(0)ε(0) (3.20)

τ
dx(0)

dt
= 0 (3.21)

To start the proof by contradiction, we assume that all error nodes are 0 at the equilib-

rium during training. At the equilibrium, (3.16) equals 0 which implies x(2) = X. Setting

(3.18) to 0 and with the assumption that ε(1) = 0 gives us

x(1) = M (1)σ(X) (3.22)

39

We are interested in finding all the constraints on x(1). Since σ is linear, equation (3.22)

gives exactly h constraints on x(1), so currently, x(1) is fully determined. But are there

additional constraints on x(1)? Observe that since the class Y is fixed to x(0), x(0) = Y .

Setting (3.20) to 0 and with the assumption that ε(0) = 0 gives,

Y = M (0)σ(x(1)) (3.23)

Since M (0) is a 2×h matrix, there are now two additional constraints on x(1). Given linear

σ, the system is overdetermined with two extra constraints. There only exists a solution

for x(1) if the constraints in (3.23) are consistent with the constraints in (3.22), but there

is no reason to assume this is ever the case. But we also know that the network is stable

[4], so an equilibrium solution for x(1) must exist. By contradiction, the assumption that

all the error nodes ε(i) are 0 at the equilibrium during training must be false.

This result holds as long as the class layer has j > 0 nodes. In fact, the class layer

always imposes j additional constraints on x(1) than the number of variables in x(1), so a

linear network with at least one hidden layer will always be overdetermined. Training will

therefore find an equilibrium solution for x(1) that compromises between all the constraints

on x(1). This compromise solution will almost never make all the error nodes go to zero,

though the errors can get very close to zero.

Assume that the network has been trained via the regular Predictive Coding training

process without any decay. Then its errors will be zero on average at the equilibrium.

Consider (3.19) at equilibrium. With the error nodes ε(1) and ε(0) being zero on average,

40

the largest term in (3.19) would be λxx
(1). Enforcing equilibrium, we get in (3.19) that

λxx
(1) = 0 (3.24)

The only solution for (3.24) is if x(1) = 0. However, as long as Y is not all zeros, the network

cannot map x(1) to Y if x(1) is all zeros, and so x(1) takes on at least some non-zero values.

Due to λx > 0, the state nodes x(1) are pushed towards zero, pulled away from their

former equilibrium point. This pulling affects the error nodes by drawing them away from

zero. These non-zero errors accumulate in weight matrices M and W , and can cause them

to grow unstably. But the unbounded growth can be counter-balanced by weight decay,

which during training will yield a unique, low-error equilibrium for the network, as well as

unique weights [66].

This analysis provides us with two findings. First, using linear networks, the errors

will almost never fully reach zero during training due to the overdetermined hidden layers.

This result is not necessarily a deal breaker; Predictive Coding networks are still capable

of learning input-output associations to a high degree of accuracy [68]. Second, activity

decay is detrimental to learning, and only weight decay should be applied during training.

In the next chapter, I will present the benefit of activity decay outside the training context.

Now that I have examined the effect of decay on training, we can next examine the

effect of decay on the discriminative and generative modes. In the rest of this chapter, I

will show that weight decay training improves the network’s convergence to equilibrium

in the discriminative mode. The equilibrium of the discriminative mode is where the

network decides the class of the input, so it is important that the network can converge to

41

equilibrium in a reasonable amount of time. The effect of decay on the generative mode

will be explored in the next chapter.

3.3 Stability Analysis of the Discriminative Mode

For simplicity, I restrict my analysis of the discriminative mode to the case of linear

networks, where every activation function σ used in the network is linear. The analysis

is far more difficult if activation functions are non-linear, as then multiple equilibria can

exist. That analysis will be relegated to future work.

Dynamical systems analysis is a useful tool to analyze the stability of the network.

Note that Bogacz proved that the network is always stable [4]. What I aim to do is show

that, with a bad choice of hyperparameters, the network will take a long time to reach the

equilibrium. Introducing decay can alleviate this problem even with bad hyperparameters.

3.3.1 Linear Stability Analysis of Dynamical Systems

Consider a system of differential equations of two variables, x and y.

ẋ = f(x, y) (3.25)

ẏ = g(x, y) (3.26)

Here, f and g can be any function. Importantly, note that at the equilibrium (x̄, ȳ),

f(x̄, ȳ) = g(x̄, ȳ) = 0 since the values of x and y no longer change. Now, consider adding

42

some small perturbation (X, Y) to (x̄, ȳ) from their equilibrium points. Then we can use

Taylor’s theorem to create an approximation of f(X + x̄, Y + ȳ),

ẋ = f(x̄, ȳ) +
1

2

[
∂f
∂x

(x̄, ȳ) ∂f
∂y

(x̄, ȳ)

]X
Y

+O(X2, Y 2) (3.27)

ẏ = g(x̄, ȳ) +
1

2

[
∂g
∂x

(x̄, ȳ) ∂g
∂y

(x̄, ȳ)

]X
Y

+O(X2, Y 2) (3.28)

Both f(x̄, ȳ) and g(x̄, ȳ) will equal 0. We can more succinctly write equations (3.27) and

(3.28) in matrix form,

ẋ
ẏ

 =
1

2

∂f∂x(x̄, ȳ) ∂f
∂y

(x̄, ȳ)

∂g
∂x

(x̄, ȳ) ∂g
∂y

(x̄, ȳ)


X
Y

+O(X2, Y 2) (3.29)

Equation (3.29) tells us that the dynamics of (x, y) are largely determined by the Jacobian,

their first derivative matrix. The order O(X2, Y 2) terms do not contribute significantly to

the approximation as the perturbation from (x̄, ȳ) gets smaller. Now, we can use matrix

exponentiation to uncover how the Jacobian determines the stability of the system near

its equilibrium.

Consider the following system, where a, b, c, d can take any value:

ẋ
ẏ

 =

a b

c d


x
y

 (3.30)

43

Denote the 2 × 2 matrix in (3.30) as A. Differential equations theory tells us that the

solution to this system, which we denote as ~x(t) (the variable y is included in ~x(t)), is ceAt

for some constant c [41]. The matrix exponential function is defined in this manner: if A

is an n × n diagonal matrix with r1, r2, . . . , rn down its main diagonal, then eAt is the

diagonal matrix with er1t, er2t, . . . , ernt down its main diagonal [41]. If A is not a diagonal

matrix, then it can be diagonalized into the form PDP−1 where D is a diagonal matrix if

P exists such that A = PDP−1. The values of the diagonal of D will be the eigenvalues

of A. Experimentally, for the Predictive Coding equations, the matrix is almost always

diagonalizable.

Ignoring t as a scalar, we can write the Taylor expansion of ePDP
−1

as

ePDP
−1

= I + PDP−1 +
1

2!
[PDP−1]2 +

1

3!
[PDP−1]3 + . . .

= I + PDP−1 +
1

2!
PD2P−1 +

1

3!
PD3P−1 + . . .

= P

[
I +D +

1

2!
D2 +

1

3!
D3 + . . .

]
P−1

= PeDP−1

Let r1 = α + iβ and r2 = α − iβ be eigenvalues of (3.30). These two eigenvalues will be

along the diagonal of the matrix D in PeDtP−1, derived above. The eigenvalues of D are

mapped into the space of A via pre- and post-multiplication by P and P−1 respectively.

Thus, the eigenvalues r1 and r2 determine the stability of (3.30) by affecting eAt.

The important value here is α, since e(iβ)t = sin βt + i cos βt, which is sinusoidal and

so eαt primarily determines whether the system is stable. If α > 0, then the system is

44

unstable and will diverge from the equilibrium. If α < 0, then the system is stable and

will “spiral” towards the equilibrium. Even if the eigenvalues are not complex, the sign of

α still determines the stability behaviour.

Since (3.29) takes a form similar to (3.30), putting our knowledge of the effect of α

together with those two equations tells us that the stability of the Jacobian in (3.29) is

determined by the eigenvalues of the Jacobian. Thus, to determine if a linear dynamical

system is stable around its equilibrium, we will need the eigenvalues of the Jacobian at

equilibrium. In the next section, I consider the Predictive Coding equations in a form

similar to (3.30) and investigate their stability.

3.4 Predictive Coding Discriminative Dynamics

I will now show that the Predictive Coding equations with linear activations can be put

in a form similar to (3.29) since the change to each variable is just a linear combination of

every other variable. For this analysis, I consider a linear 2-3-4 network, which means a

network with 2 state and 2 error nodes at layer 0, 3 state and 3 error nodes at layer 1, and

4 state and 4 error nodes at layer 2. In total, there are 18 variables: 9 state nodes and 9

45

error nodes. First, the equations for each variable individually are shown below.

ẋ
(0)
0 = −β(0)

0 e
(0)
0 (3.31)

ẋ
(0)
1 = −β(0)

1 e
(0)
1 (3.32)

ẋ
(1)
0 = −β(1)

0 e
(1)
0 + α

(1)
0

1∑
i=0

e
(0)
i W

(0)
i,0 f

′
(
x

(1)
0

)
(3.33)

ẋ
(1)
1 = −β(1)

1 e
(1)
1 + α

(1)
1

1∑
i=0

e
(0)
i W

(0)
i,1 f

′
(
x

(1)
1

)
(3.34)

ẋ
(1)
2 = −β(1)

2 e
(1)
2 + α

(1)
2

1∑
i=0

e
(0)
i W

(0)
i,2 f

′
(
x

(1)
2

)
(3.35)

ẋ
(2)
0 = −β(2)

0 e
(2)
0 + α

(2)
0

2∑
i=0

e
(1)
i W

(1)
i,0 f

′
(
x

(2)
0

)
(3.36)

ẋ
(2)
1 = −β(2)

1 e
(2)
1 + α

(2)
1

2∑
i=0

e
(1)
i W

(1)
i,1 f

′
(
x

(2)
1

)
(3.37)

ẋ
(2)
2 = −β(2)

2 e
(2)
2 + α

(2)
2

2∑
i=0

e
(1)
i W

(1)
i,2 f

′
(
x

(2)
2

)
(3.38)

ẋ
(2)
3 = −β(2)

3 e
(2)
3 + α

(2)
3

2∑
i=0

e
(1)
i W

(1)
i,3 f

′
(
x

(2)
3

)
(3.39)

46

ė
(0)
0 = x

(0)
0 −

2∑
i=0

f
(
x

(1)
i

)
M

(0)
i,0 − e

(0)
0 (3.40)

ė
(0)
1 = x

(0)
1 −

2∑
i=0

f
(
x

(1)
i

)
M

(0)
i,1 − e

(0)
1 (3.41)

ė
(1)
0 = x

(1)
0 −

3∑
i=0

f
(
x

(2)
i

)
M

(1)
i,0 − e

(1)
0 (3.42)

ė
(1)
1 = x

(1)
1 −

3∑
i=0

f
(
x

(2)
i

)
M

(1)
i,1 − e

(1)
1 (3.43)

ė
(1)
2 = x

(1)
2 −

3∑
i=0

f
(
x

(2)
i

)
M

(1)
i,2 − e

(1)
2 (3.44)

ė
(2)
0 = x

(2)
0 − stim0 − e(2)

0 (3.45)

ė
(2)
1 = x

(2)
1 − stim1 − e(2)

1 (3.46)

ė
(2)
2 = x

(2)
2 − stim2 − e(2)

2 (3.47)

ė
(2)
3 = x

(2)
3 − stim3 − e(2)

3 (3.48)

Equations (3.31)-(3.48) can be written in Sympy, where the change with respect to

time of all 18 variables is stored in an 18-vector, and the differential equations for each

variable is stored in a corresponding 18-vector. Then we can compute the Jacobian, the

18 × 18 matrix of derivatives of each variable with respect to every other variable. The

code for computing the Jacobian, using roughly similar indexing conventions as in equations

(3.31)-(3.48), is shown in Fig. 3.2.

Since I am interested in analyzing the stability of the network near equilibrium, the

values that will be substituted into each variable of the Sympy Matrix will be those of

the PC network nodes at equilibrium given an input fixed into the stim container. The

47

Figure 3.2: Equations (3.31)-(3.48) in a Sympy (sp) Matrix, ready to have values substi-
tuted into each variable. Note that the values in the weight matrices are retrieved through
array indexing, and this is done because the entire weight matrix is stored as a single
variable such as W0, the weights that map error nodes from layer 0 to layer 1.

48

experiments in the next section will show that the capacity of the network to converge to

equilibrium is dependent on the eigenvalues of the Jacobian of the above matrix, and that

these eigenvalues are greatly improved through the introduction of decay into the network.

3.4.1 Stability of Predictive Coding Trained Weights

Before the main experiment, we do a preliminary experiment to see how the network

converges with a bad hyperparameter choice.

I start by creating a dataset with four-dimensional inputs and two-dimensional outputs.

The inputs are created by sampling two random four-dimensional vectors where each value

is drawn from a uniform distribution on [−0.5, 0.5) and multiplying the result by 3. The

classes are the identity 2× 2 matrix, so the first input vector corresponds to the [1, 0] one-

hot class and the second input vector corresponds to the [0, 1] one-hot class. Additional

training points are created by sampling noise drawn from a normal distribution with 0

mean and variance 0.2 until 300 training points have been created.

Next, I train a Predictive Coding network for 10 epochs without weight decay or activity

decay. For each input batch, which consisted of 30 data points, I clamped the input sample

and output class to the network and ran the Predictive Coding equations for 5 seconds of

time (recall that τ and γ are all in units of seconds) using τ = 0.2, γ = 0.08, and a time

step of 0.001. The bad hyperparameter choice here is τ = 0.2. From prior experiments, I

know that this value is too large to allow for fast convergence times on this dataset.

Once the network is trained to classify the training dataset with perfect accuracy, I

generate another input vector which uses a linear combination of the rows of the two input

49

vectors with some normal-sampled noise added. This ambiguous input is meant to be a

data point somewhere between the two input vectors, and so it is very likely to be a point

that the network has not been trained on before. It also does not have a corresponding class

value. What I am interested in is seeing how the network converges on such an ambiguous

input.

While this input point is fixed to the stim container, I simulate the Predictive Coding

equations in the discriminative mode with τ = 0.2 for 10 seconds and time steps of

0.001 and observe the norm of the values of each state and error node in each time step.

No decay is used in the state node updates.

What I should expect to see is that the norm of the values of the error nodes go to

zero as F is maximized while the norm of the values of the state nodes become stable at

some constant. The results are displayed in Fig. 3.3. Note that the norm of ε(2) is always

zero after each time step since these nodes always fully transmit information from the stim

container to the state nodes x(2) in the discriminative mode where α(n−1) = 0, so the graph

of ε(2) is not shown (it would just be blank).

Even after ten thousand time steps, the error nodes ε(0) and ε(1) fail to reach zero, and

the state nodes x(0) and x(1) have not yet plateaued to a constant value. The state nodes

x(2) have plateaued since they just converge quickly to the values at the stim container

(i.e. the input vector fixed to the network). The sum of the norms of all the error nodes is

0.0428. This suggests the network is not close to the equilibrium.

Fortunately, we already know what the equilibrium values of the network will be. Why

is that?

50

0 2 4 6 8 10
Time (s)

0.0

0.2

0.4

0.6

0.8

No
rm

 o
f N

od
e

Va
lu

es

x(0)

x(0)
0

x(0)
1

0 2 4 6 8 10
Time (s)

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

No
rm

 o
f N

od
e

Va
lu

es

e(0)

e(0)
0

e(0)
1

0 2 4 6 8 10
Time (s)

0.20

0.15

0.10

0.05

0.00

0.05

No
rm

 o
f N

od
e

Va
lu

es

x(1)

x(1)
0

x(1)
1

x(1)
2

0 2 4 6 8 10
Time (s)

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

No
rm

 o
f N

od
e

Va
lu

es
e(1)

e(1)
0

e(1)
1

e(1)
2

0 2 4 6 8 10
Time (s)

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

No
rm

 o
f N

od
e

Va
lu

es

x(2)

x(2)
0

x(2)
1

x(2)
2

x(2)
3

Figure 3.3: Graphs of the norms of each layer’s state and error nodes with respect to time
during discriminative mode of operation. Ten thousand time steps were taken in total.

51

Consider the relation between state and error nodes in (3.8). If we want all the error

nodes to be zero, we simply set all state nodes x(i) to M (i)σ(x(i+1)). This can be done

iteratively starting from the state nodes x(2) for this network. The benefit of knowing

the equilibrium is that we can directly observe the eigenvalues of the Jacobian at the

equilibrium.

Using the matrix outlined in Fig. 3.2, I can compute the Jacobian at the equilibrium

with the values of the network’s parameters at equilibrium, and then numerically solve for

the eigenvalues of the Jacobian. The results are shown in table 3.1.

Table 3.1: Eigenvalues of the Jacobian of a non-decay trained Predictive Coding network
at equilibrium.

Eigenvalue Real Component Imaginary Component
1 -0.5000 4.855
2 -0.5000 -4.855
3 -0.5000 3.763
4 -0.5000 -3.763
5 -0.0412 0
6 -0.0861 0
7 -0.9139 0
8 -0.9588 0
9 -0.5000 0.7987
10 -0.5000 -0.7987
11 -0.5000 0.9102
12 -0.5000 -0.9102
13 -0.5000 0.8494
14 -0.5000 -0.8494
15 -0.5000 0.8707
16 -0.5000 -0.8707
17 -0.5000 0.8660
18 -0.5000 -0.8660

52

Notice that the real components of eigenvalues 5 and 6 are −0.0412 and −0.0861 re-

spectively, which are relatively close to 0. For some constant c > 0, the function ce−0.0412t

goes to 0 very slowly as t increases. So, despite being a stable system, the Predictive Cod-

ing network will be slow at converging to equilibrium. This is what we observe in Fig. 3.3

with the errors going towards zero very slowly in ten thousand time steps.

Importantly, the network is a trained Predictive Coding network, which means the

weights have learned the 4-to-2 classification task with a hundred percent accuracy. If the

weight matrices have a high norm, they may contribute to the existence of extreme-valued

eigenvalues in the Jacobian at equilibrium such as those that are close to 0.

What if we now train the network with decay? We know that decay helps to regularize

the weights in artificial neural networks, punishing weights with extreme values and pushing

the optimization landscape towards weights with less extreme values. Adding weight decay

should result in better eigenvalues that are further away from zero.

I hypothesize that adding decay to Predictive Coding networks will improve the eigen-

values of the Jacobian of the network equations at equilibrium such that, with increasing

decay, the maximum eigenvalue decreases, approaching -0.5.

Experimental Setup: I trained ten networks using the same hyperparameters out-

lined in the initial experiment of this section, except for the decay hyperparameters. An

increasing weight decay is applied starting from λM = λW = 0.003 up to λM = λW = 0.03

at steps of 0.003. Activity decay is fixed at λx = 0.0 for all networks, since for linear

networks, I avoid applying activity decay during training.

After each network is trained, I create an ambiguous input which I fix to the network’s

53

0.000 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.030
Weight Decay Used During Training

0.5

0.4

0.3

0.2

0.1

0.0
Re

al
 C

om
po

ne
nt

 o
f M

ax
im

um
 E

ig
en

va
lu

e

Eigenvalues of Jacobian of Equilibrium After Training

Figure 3.4: Real components of the eigenvalues of the Jacobian of the Predictive Coding
network at equilibrium in discriminative mode with an input fixed after training with
specified weight decay.

stim container and compute the eigenvalues of the Jacobian of the network at the equi-

librium point in discriminative mode. The equilibrium is found by setting all the state

nodes to the values they would be at when the error nodes are zero with the ambiguous

input fixed. The eigenvalue with the highest real component is recorded.

Next, starting from every state and error node at zero, I simulate the network in

discriminative mode with the ambiguous input fixed and see if it reaches the equilibrium

computed earlier. To verify that it reaches the equilibrium, I record the sum of the norms of

all the network’s error nodes after 10 simulation seconds with a time step of 0.001 seconds.

If the sum is around 0.001 or less, then the network is reasonably close to equilibrium.

Results: Fig. 3.4 displays the maximum eigenvalue of the Jacobian of the equilibrium

of the PC equations with an input fixed in the discriminative mode of operation after

54

training. When there is no weight decay during training (λM = λW = 0.0), the real

component of the maximum eigenvalue is close to zero, at −0.0439. As the value of the

weight decay used during training increases, the maximum eigenvalue decreases. At a

weight decay of λM = λW = 0.018 and above, the maximum eigenvalue stays at −0.5,

which is ideal for convergence to equilibrium.

Table 3.2: Sums of the norms of the error nodes after ten simulation seconds in discrimi-
native mode after weight decay training.

Weight Decay Used During Training Norms of Error Nodes
0.000 0.0429
0.003 0.0015
0.006 0.0010
0.009 0.0006
0.012 0.0005
0.015 0.0005
0.018 0.0004
0.021 0.0004
0.024 0.0004
0.027 0.0004
0.030 0.0003

These results are consistent with my hypothesis that increasing weight decay will im-

prove the eigenvalues of the Jacobian at equilibrium until all the real components of the

eigenvalues are at −0.5. But does this result in better convergence of the network’s nodes

to equilibrium?

Table 3.2 displays the sums of the norms of the error nodes of the Predictive Coding

network after it has been simulated in the discriminative mode of operation with an input

fixed to its stim container for each weight decay value used during training. A lower sum

55

0 2 4 6 8 10
Time (s)

0.0

0.2

0.4

0.6

0.8

No
rm

 o
f N

od
e

Va
lu

es

x(0)

x(0)
0

x(0)
1

0 2 4 6 8 10
Time (s)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

No
rm

 o
f N

od
e

Va
lu

es

e(0)

e(0)
0

e(0)
1

0 2 4 6 8 10
Time (s)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

No
rm

 o
f N

od
e

Va
lu

es

x(1)

x(1)
0

x(1)
1

x(1)
2

0 2 4 6 8 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
No

rm
 o

f N
od

e
Va

lu
es

e(1)

e(1)
0

e(1)
1

e(1)
2

0 2 4 6 8 10
Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

No
rm

 o
f N

od
e

Va
lu

es

x(2)

x(2)
0

x(2)
1

x(2)
2

x(2)
3

Figure 3.5: Graphs of the norms of each layer’s state and error nodes with respect to time
during discriminative mode of operation after training with weight decay λM = λW = 0.03.
Ten thousand time steps were taken in total.

56

is better since it implies that the error nodes have mostly gone to zero and so the network

is close to equilibrium.

As soon as a weight decay value of 0.003 is used, the sum decreases by more than an

order of a magnitude. Weight decay training significantly regularizes the parameters of the

network, making it much easier for the error nodes to converge to zero when the network

is classifying an input.

The graphs of the norms of each of the network node values by time step are shown

in Fig. 3.5, this time using a network trained with a weight decay of 0.03. Unlike before,

all the error nodes now converge relatively close to 0, and all the state nodes succeed in

reaching a constant value.

These results fortify the theoretical relation discussed earlier between the eigenvalues

of the Jacobian of the network equations at equilibrium and the capability of the network

to converge to the equilibrium. With eigenvalues whose real components are all at −0.5,

the network converges smoothly, and weight decay training is the catalyst for improving

all the eigenvalues.

On this simple dataset, the problem of convergence to equilibrium can certainly be

mitigated in a simpler way by choosing a better set of hyperparameters, such as a smaller

time constant τ. But this fix may not work on more complex, higher-dimensional datasets,

or on different network topologies such as convolutional layers [35] applied to a Predictive

Coding architecture. For those datasets and networks, weight decay may be necessary to

facilitate convergence to equilibrium.

The goal of this experiment is to show that weight decay has a regularizing effect on

57

the weights of Predictive Coding networks, just like it does in artificial neural networks.

We will see in the next chapter that this regularization entails a much more important

benefit for the generative mode of operation of Predictive Coding.

3.4.2 Stability of Backpropagation Trained Weights

Before closing this chapter, I want to consider what happens if we train an artificial

neural network with backpropagation, and then import the trained weights into a Predictive

Coding neural network. Why is this something worth considering? Since Supervised

Predictive Coding approximates backpropagation, a trained Predictive Coding network

should, under certain conditions, have theoretically similar weights as an artificial neural

network trained with backpropagation on the same data. However, similar does not imply

exact. If there are differences, how would they manifest?

Using the same dataset as in the previous section, I trained an artificial neural network

with linear activations and mean squared error loss using backpropagation with a learning

rate of 0.01 and no decay for 500 epochs with a batch size of 30. The neural network

successfully learns the classification task and achieves 100% accuracy. Then, I imported

those network weights into a Predictive Coding neural network. The transpose of each

of the artificial neural network’s weight matrices are used for W (i), the Predictive Coding

feedback weight matrices. Finally, I simulate the Predictive Coding equations in the dis-

criminative mode of operation with an ambiguous input fixed. I run this setup multiple

times starting from many different initial weights.

The results are similar to a Predictive Coding neural network trained without weight

58

decay. As before, the error nodes fail to converge to zero after ten simulation seconds. The

sum of the squares of the error nodes after ten thousand time steps falls between 0.0196

and 0.1375. This is comparable to the 0.0428 found for Predictive Coding weights trained

without decay earlier. The maximum eigenvalue found for the Jacobian of its equilibrium

was −0.0185, which is also quite high. Now, what happens when we apply weight decay

during backpropagation training?

After training with a decay of 0.003, the sum of the squares of the error nodes after ten

thousand time steps in discriminative mode becomes a value between 0.0001 and 0.0004,

a major improvement over training without decay. With this decay value, the maximum

eigenvalue has also reached −0.5. However, using a decay higher than 0.007 makes the

network fail to learn the classification task.

We must note that the weight decay used in backpropagation training does not have

the same units as the weight decay used in Predictive Coding training, as the former is an

update per batch while the latter is an update for each time step. We will generally need

to use a lower weight decay value for backpropagation training than the values we use for

λM and λW in Predictive Coding training.

What might be responsible for any differences between backpropagation-trained weights

imported into PC networks and Predictive Coding-trained weights?

One simplistic explanation for why differences can emerge is that Predictive Coding

training integrates many tiny, potentially opposing values across its state nodes, error

nodes, and weights over time. By updating weights in small increments over thousands of

time steps, Predictive Coding explores the optimization landscape differently than back-

59

propagation would. Predictive Coding may cross a different set of pivotal bottlenecks [16]

that converge into different valleys. I find experimentally that, starting from the same ini-

tial weights, the resulting weights after training for Predictive Coding and backpropagation

are indeed different.

60

Chapter 4

Generating Samples From Classes

The presence of feedback connections in Predictive Coding networks suggests generative

capabilities [66]. What I mean by generative capabilities is that the network should be

able to generate inputs when provided the class labels of a dataset. This should be possible

because the feedback connections in predictive neural networks carry information from the

output layer of the network to the input layer. Since I am using a reversed hierarchy, the

class labels are provided to layer (0) of the network, the inputs are provided to layer (n−1)

of the network, and feedback connections send information about the class from layer (0)

up to layer (n− 1).

Why does this specific generative capability matter? Generative networks have the

potential to be better at discriminative tasks because they can represent the different

features of inputs before classification occurs [23]. Currently, autoencoders can generate

inputs from latent space [3], but not from a class label alone. The original conception

61

Class

10

600 600

784

χ(0) ε(0) χ(1) χ(2) χ(3)ε(1) ε(2) ε(3)

M(0) M(1) M(2)

W(0) W(1) W(2)

Figure 4.1: An illustration of the generative mode of operation in a 10-600-600-784
Predictive Coding network for MNIST. The class vector is fixed to x(0) and the network
equations are allowed to run to equilibrium. At the equilibrium, the generated image is
contained in the state nodes x(3). The stim container is not included.

of Predictive Coding focused on regenerating natural images that the network has been

exposed to from a set of latent causes [47], but it also does not generate from a class label.

A class label is often smaller and one-hot, containing far less information than a latent

space. Priming each layer of the Predictive Coding network with states consistent with

the desired input can also help it generate inputs [21], but this still does not address the

challenge of generating inputs from a class alone.

62

To start, I train a 10-600-600-784 PC network with logistic activations on MNIST with

Adam [28, 66] to achieve 98% test accuracy on the MNIST dataset. Then, I investigate

if the trained network can generate MNIST images from the class labels. To do this, I

clamp the MNIST class vectors to the bottom layer of the network, run the network in

generative mode, and examine the image generated at the state nodes in the top layer.

The generative process for this network is shown in Fig. 4.1.

Recall that in the generative mode of operation, α(i) = 1 for 1 ≤ i ≤ n−1, and β(0) = 0,

β(n−1) = 0, β(j) = 1 for all 1 ≤ j ≤ n − 2. The setting of all α to 1 allows information

to flow steadily up the network from the class label. Setting β(0) = 0 prevents updates

to the state nodes x(0) on layer (0) where the class is contained. The input is generated

in the state nodes x(n−1), so setting β(n−1) = 0 prevents x(n−1) from receiving top-down

information. Thus, in Fig. 4.1, the error nodes at the top layer, ε(3), would not send any

top-down information to x(3), as x(3) is where the image is being generated.

The results of input generation from MNIST class vectors are shown in Fig. 4.2. It

turns out that the trained network generates images that do not look like digits at all.

Why is that?

Figure 4.2: Images generated by the network trained on MNIST, taken from [66]. The
top row shows a sample of each digit class, while the bottom row shows the corresponding
generated image of that class. These generated images do not resemble actual digits.

63

4.1 The Generative Process Solves An Under-determined

System

Consider a Predictive Coding network with two layers in which the input layer has m

nodes, the output layer has n nodes, and the dataset has r different classes, with r ≤ n < m.

In other words, there are more input nodes than output nodes, and so more distinct inputs

than classes. Thus, the feedforward weight matrix, M (0), has dimensions n×m. Figure 4.3

illustrates an example in which m = 3 and n = 2.

Next, consider the state of the network after the end of training. The goal of training is

to learn an M (0) that maps inputs X to output classes Y . When the network has learned

this mapping, then the relation

Y = M (0)σ(X) (4.1)

must be satisfied. It follows that during the discriminative mode of operation, the network

nodes will change until

x(0) = M (0)σ(x(1)). (4.2)

Note that (4.2) follows from the equilibrium of (3.4) and (3.1) by setting stim to the input

X as well as ε(0) and ε(1) to 0. Recall that we can set ε(0) and ε(1) to 0 since they will equal

0 at the equilibrium in the discriminative mode.

In the generative mode of the network, the class labels are fixed to x(0), so x(0) = Y , as

64

χ0(0) ε0(0)

χ1(0) ε1(0)

χ0(1)

χ1(1)

χ2(1)

ε0(1)

ε1(1)

ε2(1)

Y0

Y1

X0

X1

X2

β0(0)

α0(1)

β1(0)

α1(1)

α2(1)

β0(1)

β1(1)

β2(1)

W(0)

M(0)

Figure 4.3: Small PC Network with m = 3, and n = 2.

well as α(1) = 1, β(1) = 0, and β(0) = 0. The resulting system of differential equations is

τ
dx(1)

dt
= W (0)ε(0) � σ′(x(1)) (4.3)

ε(1) = 0 (4.4)

x(0) = Y (4.5)

τ
dε(0)

dt
= x(0) −M (0)σ(x(1))− ν(0)ε(0) (4.6)

At equilibrium, (4.3) equals zero. As long as σ′(x(1)) 6= 0, it must be that W (0)ε(0) = 0. Now

notice that W (0) has dimensions 3× 2, and ε(0) is a vector of length 2. These dimensions

imply that ε(0) = 0 because the matrix system is over-determined. Thus, the first three

equations are all solved, and the only remaining unsolved constraint on the equilibrium

65

comes from (4.6). Setting (4.6) to equilibrium state, where ε(0) = 0, gives

M (0)σ(x(1)) = Y (4.7)

From before, we know that x(1) = X is a solution. However, is this the only solution?

Even though the network quickly converges to a state where x(1) satisfies (4.7), and the

error nodes reach very small values, I find experimentally that x(1) is typically not close to

X [66].

Using the fact that M is a 2 × 3 matrix and x(1) is a 3-vector, if M is fixed, then we

are solving for the 3 variables of x(1) from 2 equations. The process of finding x(1) thus

involves solving an under-determined system with an infinite number of possible solutions

for x(1).

To further understand the problem, we can consider a linear network where all activa-

tion functions are the identity function.

4.2 Analysis of Generative Linear Networks

In a linear network, all activation functions σ(x) ≡ x. Thus, (4.7) becomes

M (0)x(1) = Y . (4.8)

Suppose that x(1) = x̄ is a solution to (4.8). Then, for any scalar c, x(1) = x̄ + cx̂ is

also a solution if x̂ ∈ null(M (0)) (i.e. x̂ is in the nullspace of M (0)). Since (4.8) is under-

66

2 1 0 1

x(1)
0

3

2

1

0

1

x(1
)

1

Figure 4.4: A demonstration of generated samples by Dr. Orchard, and the corresponding
solution space, taken from [66]. The clusters of red and yellow dots show the training sam-
ples for the two classes. The shaded squares show the 300 generated samples, each started
from a different initial network state. Note that the figure depicts a 2-D projection of a
3-D space, with the x-axis corresponding to the 0-dimension and the y-axis corresponding
to the 1-dimension of the state nodes at the input layer.

determined, we know that a non-trivial x̂ exists that solves (4.8). In other words, this linear

network has an infinite number of x(1) states that yield zero error nodes at equilibrium.

Experimentally, I find that the vast majority of these states correspond to input samples

x(1) that do not resemble inputs from the training set.

Dr. Orchard demonstrated the non-uniqueness of solution states x(1) in Fig. 4.4 for the

network shown in Fig. 4.3. The network was initialized with random values in the state and

error nodes. Then, we set the class vector Y to either [1, 0] or [0, 1] and run the network

in generative mode to equilibrium with the appropriate α and β parameters. Each class

vector generates a different sample, and the spread of those samples is shown in Fig. 4.4.

67

The solution spaces are shown as dotted lines, and both pass through the input clusters.

The black squares along the dotted lines are the samples generated by the network. Most

of them do not fall within the input clusters, even though the network’s equilibrium state

yields very small values in the error nodes ε(0) [66].

It is looking bad for the generative mode of operation of Supervised Predictive Coding.

Fortunately, hope is not yet lost. The following theorem, proven by Dr. Orchard [43, 66],

shows that linear networks can still be generative.

Theorem 1. Given a matrix of r linearly-independent m-vectors,

X = [X1| · · · |Xr] ∈ Rm×r

and a corresponding matrix of n-vectors,

Y = [Y1| · · · |Yr] ∈ Rn×r

with r ≤ n < m, there is an n×m matrix,

A =


A1

...

An


such that the minimum 2-norm solution x∗ to Ax = Yi is x∗ = Xi. Moreover, the jth row

of A is the minimum 2-norm solution of aX = Y for a ∈ R1×m.

The proof of this theorem is written in Appendix A.

68

Using the theorem, it follows that applying a minimum 2-norm constraint to (4.8)

collapses the solution spaces for M and x to unique solutions, and the unique solution for

x will be close to the training input. To apply the theorem to our neural networks, we do

two things. First, during training, we solve for the rows of M (0) by finding the minimum

2-norm solution of

M (0)X = Y

Once M (0) is found, we can generate an input sample corresponding to the output class

vector Yi by finding the minimum 2-norm solution x(1) of

M (0)x(1) = Yi .

4.2.1 Weight and Activity Decay

Dr. Orchard’s proof of Theorem 1 shows that the minimum 2-norm solution can be

attained using singular value decomposition. Another way to approximate the minimum

2-norm solution is to solve the system defined by the Predictive Coding equations itera-

tively while including a term in the objective function that penalizes for the 2-norm of the

solution.

Suppose the linear system Ax = y is under-determined, so A has more columns than

rows. We can solve that linear system by minimizing the 2-norm error [66],

min
x
‖Ax− y‖2

2 .

69

As long as A is full-rank, that is its rows are linearly independent, there is a non-zero x

that yields an error of zero. Adding the penalty term for the 2-norm of x gives

min
x

[
‖Ax− y‖2

2 + λ‖x‖2
2

]
,

where λ > 0 is a regularization constant that sets the weight of the penalty term. Solving

this optimization problem by gradient descent yields the updates,

dx

dt
∝ −AT (Ax− y)− λx (4.9)

In the context of our neural network, the penalty term can be applied to both x(1) and M (0)

simultaneously [66]. Importantly, notice that this update is very similar to the Predictive

Coding equations with weight decay applied, (3.10), (3.12), and (3.13), that had been

derived for stability analysis. The equations are shown again below fitted to the two-layer

network used for our analysis.

τ
dx(1)

dt
= α(1)W (0)ε(0) � σ′(x(1))− β(1)ε(1) − λxx(1) (4.10)

γ
dM (0)

dt
= ε(0) ⊗ σ(x(1))− λMM (0) (4.11)

γ
dW (0)

dt
= σ(x(1))⊗ ε(0) − λWW (0) (4.12)

Compare (4.9) with (4.10). A and AT are replaced by M and W , ε(0) is exactly (Ax− y),

β(1) = 0, and the similarity between the decay terms is obvious.

Dr. Orchard demonstrates in Fig. 4.5 the same experiment whose results were displayed

70

1 0 1 2 3

x(1)
0

3

2

1

0

1

x(1
)

1

Figure 4.5: Generated samples using decay by Dr. Orchard, taken from [66]. Compare this
figure to Fig. 4.4. The black squares are actually many shaded squares superimposed on
top of each other. Note that the plot depicts a 2-D projection of a 3-D space, with the
x-axis corresponding to the 0-dimension and the y-axis corresponding to the 1-dimension
of the state nodes at the input layer.

in Fig. 4.4, but using a weight decay of 0.05 for M (0) and W (0) during training and an

activity decay of 0.05 for the state nodes x(1) during input generation. Note that W (0), the

feedback weight matrix, is very important to the generative mode. It uses the information

in the error nodes ε(0) to update x(1), pushing those state nodes towards the appropriate

set of values that would allow M (0) to map them down to the fixed class vector at x(0).

Since ε(0) eventually goes to 0, this update gradually gets smaller and smaller until x(1)

stabilizes to the values of the generated samples.

Notice that the generated samples (the black squares) in Fig. 4.5 are much closer to

the cluster centroids than the samples generated by the PC-non-decay network, depicted

in Fig. 4.4.

71

4.2.2 Deep Linear and Tanh Networks

Can adding decay to the Predictive Coding equations improve the generative capabili-

ties of deep Predictive Coding networks?

The answer is yes [66]. In the next couple of sections, I will show on a dataset that decay

benefits both the training and input generation modes of Predictive Coding networks.

To do this, Dr. Orchard and I created a small dataset consisting of three 10-D vectors,

each created by drawing 10 uniformly-distributed random numbers from the range [−1, 1].

These three vectors acted as the exemplars v for each of three classes. The classes were

one-hot vectors in 3-D. A dataset of 300 training samples was created by adding Gaussian

noise (mean of 0, standard deviation of 0.1) to the class exemplars.

Experimental Setup: Dr. Orchard and I used the dataset to train a network with 3

output nodes, 5 hidden nodes, and 10 input nodes (3-5-10). For each trial, we trained our

network for five epochs, fixing each input/target pair for 4 seconds to allow the network

to hopefully reach equilibrium. We set τ to 0.05 seconds, and γ to 0.1 seconds.

After training, we ran the network in generative mode for 10 simulation seconds on all

300 of the one-hot class vectors in the dataset, starting from a random initial network state

each time; the initial x and ε values were drawn from a Gaussian distribution with mean

0 and a standard deviation of 1. We performed this training-testing procedure on two

networks: one PC-non-decay network (λM = λW = λx = 0), and one PC-decay network

(λM = λW = 0.05, λx = 0.01).

Results: Figure 4.6 shows the generated samples for the two different networks. The

samples generated by the PC-non-decay network shown in (a) exhibit a wide dispersion,

72

6 4 2 0 2 4 6 8

x(2)
0

4

2

0

2

4

x(2
)

1

(a) PC-non-decay Linear Network

6 4 2 0 2 4 6 8

x(2)
0

4

2

0

2

4

x(2
)

1

(b) PC-decay Linear Network

Figure 4.6: Dr. Orchard’s generated samples, verified by myself. For (a), the PC-non-decay
network was trained without weight decay, and the samples were generated from the one-
hot class vectors without any activity decay. For (b), the PC-decay network was trained
using weight decay of 0.05, and the samples were generated from the one-hot class vectors
using an activity decay of 0.01. Note that the plot depicts a 2-D projection of a 10-D
space, with the x-axis corresponding to the 0-dimension and the y-axis corresponding to
the 1-dimension of the state nodes at the input layer.

while those generated by the PC-decay network are tightly packed close to the centre of

the corresponding cluster.

Even though the theorem is technically only valid for linear networks, we were interested

to see if the decay also helped nonlinear networks generate samples that were similar to

the training inputs. We re-ran the above experiment (with the 3-5-10 architecture), but

using tanh activation functions. The results are shown in Fig. 4.7. Again, the PC-decay

network generated input samples that were much more similar to the training inputs than

the PC-non-decay network.

The next two experiments were designed to isolate the effect of each type of decay on

generative PC networks. To start, we will show that activity decay significantly reduces

73

4 2 0 2 4

x(2)
0

3

2

1

0

1

2

x(2
)

1

(a) PC-non-decay Tanh Network

4 2 0 2 4

x(2)
0

3

2

1

0

1

2

x(2
)

1

(b) PC-decay Tanh Network

Figure 4.7: Generated samples by tanh 3-5-10 networks on the same dataset as that used
in Fig. 4.6. For (a), the PC-non-decay network was trained without weight decay, and
the samples were generated from the one-hot class vectors without any activity decay. For
(b), the PC-decay network was trained using weight decay of 0.05, and the samples were
generated from the one-hot class vectors using an activity decay of 0.01. Note that the plot
depicts a 2-D projection of a 10-D space, with the x-axis corresponding to the 0-dimension
and the y-axis corresponding to the 1-dimension of the state nodes at the input layer.

the variance of generated samples.

4.2.3 Activity Decay Generates Unique Samples

For this experiment, Dr. Orchard and I consider three different linear networks: an

untrained network, a network trained without weight decay, and a network trained with

weight decay.

Experimental Setup: For the untrained network, we randomly assigned weights in

M (i) using a Gaussian distribution with 0 mean and standard deviation of 1/(2
√
N) where

N is the number of nodes in layer i. We then set W (i) to be the transpose of M (i) to ensure

that the products M (i)W (i) were symmetric positive semi-definite. For the decay trained

74

Table 4.1: Average standard deviation of generated samples

Network No Activity Decay Activity Decay
Untrained 0.796 0.0048

Trained without Weight Decay 0.817 0.0048
Trained with Weight Decay 0.823 0.0055

network, we used a decay of λM = λW = 0.05. Both trained networks classified the dataset

with 100% accuracy.

Each of those three types of networks was tested in generative mode, starting with a

random state in which the initial x and ε values were drawn from a Gaussian distribution

with mean 0 and standard deviation of 1. We clamped the bottom layer, x(0), to a chosen

class vector and ran the network for 10 seconds with a time step of 0.001 seconds. After

generating 100 samples for each of the 3 classes, we recorded the standard deviation of

each of the 10 input nodes, x(2). Since there are 3 classes and 10 input nodes, we tabulated

30 standard deviations for each network. We then computed the mean of the 30 standard

deviations and used that as a measure of variation in the network’s generated samples.

The generative part of this experiment was performed under two different conditions.

In the first condition, the networks were run in generative mode without activity decay

(λx = 0). In the second condition, the networks were run with an activity decay of

λx = 0.05.

Results: The results are shown in Table 4.1. For all three networks, applying activity

decay reduces the standard deviation of the generated samples by orders of magnitude.

Moreover, when using activity decay, the standard deviation of the generated samples

75

asymptotically approaches zero. That is, the generated samples converge on unique solu-

tions when using activity decay.

But are the generated samples similar to the training inputs? That is the topic of the

next experiment.

4.2.4 Weight Decay Benefits Generative Quality

While activity decay helps the generative phase converge to a unique solution, that

solution may not resemble the inputs from the training dataset. In this section, Dr. Orchard

and I show that weight decay during training is a key factor that enables PC networks to

generate samples close to the training inputs.

Experimental Setup: I trained a linear PC-decay network (λM = λW = 0.05) and

a linear PC-non-decay network (λM = λW = 0) on the dataset from the previous section.

Both types of networks also used the 3-5-10 architecture described in the previous section.

During training, I used τ = 0.02 and γ = 0.1, I clamped each input/target pair for 5

seconds, used a time step of 0.001 seconds, and trained for 10 epochs with a batch size of

20. I repeated the training starting from 10 different initial sets of weights. The weights for

M (i) and W (i) were each sampled from a Gaussian distribution with 0 mean and standard

deviation of 1/(2
√
N), where N is the number of nodes in layer i. This process gave us 20

networks in total, 10 trained with weight decay, and 10 trained without weight decay.

After training, the class vectors were fixed to each network while they were run in

generative mode with a time step of 0.001 seconds and an activity decay of λx = 0.01. To

improve stability in the non-decay-trained networks, τ was set to 0.2 since these networks

76

Table 4.2: Euclidean distances of generated samples

Network Minimum Average Maximum
Weight Decay Training 0.2216 0.4076 0.6333

No Weight Decay Training 5.032 100.9 691.8

had large weight matrix norms. The decay-trained networks did not require increasing

τ in order for them to be stable. To verify equilibrium, I checked that dx(i)

dt
< 0.001 and

dε(i)

dt
< 0.001 for all layers i in the decay networks. The non-decay networks were sometimes

unstable even with the increased τ. For these unstable networks, I stopped running them

after 10.0 seconds.

I computed the Euclidean distance of each generated sample to its corresponding pro-

totype, the centroid of each class. For each network type (i.e. trained with weight decay

or trained without weight decay), I generated 1 sample for each of the 3 classes, yielding

a total of 30 generated samples per network type. I recorded the average, minimum, and

maximum distances across the 30 generated samples.

Results: The results are shown in Table 4.2. The networks trained with weight de-

cay generated samples that were much closer to the class prototypes than the non-decay

networks. Their generated inputs yielded distances less than 1.0, placing the generated

samples well within the distribution of training inputs, like that shown in Fig. 4.6(b). The

networks trained without weight decay generated samples that were unique (thanks to

activity decay), but much further from the class prototypes.

77

4.2.5 Are Backpropagation-trained Networks Generative?

Are artificial neural networks trained by backpropagation with weight decay also gen-

erative?

Experimental Setup: I trained a 3-2 neural network with identity activations using

a learning rate of 0.01, weight decay of 0.01, and no bias for 500 epochs with a batch

size of 30 on a similar dataset as that shown in Fig. 4.4 and Fig. 4.5. It achieved 100%

classification accuracy.

I imported the learned weights into a 2-3 Predictive Coding network and ran the network

in generative mode with an activity decay of λx = 0.01 for 10 simulation seconds with

τ = 1.0 and a time step of 0.001.

Results: The results are shown in Fig. 4.8. The average Euclidean distance between

the generated samples and the exemplar vectors is 0.7976, which is nearly double that of

the average from using Predictive Coding with weight decay in Table 4.2. Visually, we

see that the generated inputs are slightly distant from the cluster centroids. This result is

fairly consistent across 10 different datasets and across a range of sensible weight and bias

decay values of between 0 and 0.05.

As discussed earlier, Predictive Coding training does many weight updates across thou-

sands of time steps. This training strategy means that PC nets may explore the optimiza-

tion landscape differently than backpropagation would. In this experiment, it would seem

that Predictive Coding training with weight decay outperforms backpropagation training

with weight decay at attaining weights that can generate an accurate sample from the class

vectors.

78

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x(1)
0

1.5

1.0

0.5

0.0

0.5
x(1

)
1

Inputs generated by backprop weights in PC net

Figure 4.8: Inputs generated from classes by a PC network with weights imported from a
backpropagation-trained neural network with decay. Note that this is a 2D projection of a
3D space, with the x-axis corresponding to the 0-dimension and the y-axis corresponding
to the 1-dimension of the state nodes at the input layer.

4.2.6 Generating on Multimodal Datasets

So far, the experiments show that PC networks can generate good quality inputs on

datasets where each class corresponds to one Gaussian cluster. On datasets where classes

are multimodal, can PC networks generate good inputs?

Experimental Setup: To find out, I designed a multimodal Gaussian dataset con-

taining two classes, shown in Fig. 4.9. One class corresponds to the red dots and one

class corresponds to the yellow dots. The red class is associated with two Gaussian clus-

ters, while the yellow class is associated with one Gaussian cluster. Using this dataset, I

trained two networks with 10 input nodes, 5 hidden nodes, and 2 output nodes using back-

propagation. One network was trained without decay, and another network was trained

79

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x(1)
8

1.0

0.5

0.0

0.5

x(1
)

3
Inputs Generated By No-Decay Trained Network

Yellow Class
Red Class

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x(1)
8

1.0

0.5

0.0

0.5

x(1
)

3

Inputs Generated By Decay Trained Network

Yellow Class
Red Class

Figure 4.9: Inputs generated by networks trained on a multimodal dataset where one of
the classes corresponds to two clusters. The square is an input generated from the red
class vector, while the star is an input generated from the yellow class vector. The x-axis
is the value of the state node x

(1)
8 , while the y-axis is the value of the state node x

(1)
3 .

with a backpropagation weight decay of 0.004. Both networks used linear activations and

started from the same initial weights. I used backpropagation instead of Predictive Coding

training because the goal of this experiment is to show the effect of decay training on a

multimodal dataset, so the type of learning algorithm used does not matter much as long

as the algorithm facilitates the use of decay. Both networks were trained for 20 epochs

with a learning rate of 0.01 and a batch size of 4, attaining 100% classification accuracy.

After backpropagation training, the weights were imported into a 2-5-10 Predictive

Coding network with τ = 0.2. The networks were simulated for 20 seconds using a time

step of 0.001 and an activity decay of λx = 0.01 in generative mode with the red and yellow

class vectors fixed to the networks.

Results: The generated samples are shown in Fig. 4.9. The inputs generated by the

network trained without decay are not close to the true clusters. For the decay-trained

network, notice that it generates a good input sample for the yellow class, but chooses a

80

mean point between the two clusters for the red class. This result is consistent across ten

different trials, and it also occurs with Predictive Coding training.

When a class is associated with more than one cluster, Predictive Coding generates

samples between those clusters rather than samples that land in one of the clusters. This

property is a result of the fact that Predictive Coding assumes that inputs of each class

come from a unimodal Gaussian distribution. Therefore, Predictive Coding networks will

associate each class with a unimodal Gaussian even if that class is multimodal. The mean

of the unimodal Gaussian will be a point between all the Gaussian clusters of that class.

I have observed that in datasets with multimodal classes and input clusters that are not

all linearly separable, Predictive Coding networks struggle to succeed at both generating

good quality inputs and classifying perfectly. In order to get the network to generate good

samples from the classes on these datasets, we are sometimes forced to use a weight decay

value that prevents the network from attaining 100% classification accuracy.

Our next set of experiments focus on MNIST. Like in the multimodal dataset, the

MNIST digits do not seem to be from unimodal Gaussian distributions. I expect that, for

each MNIST class, the network will generate an intermediate image, reflecting a blend of

various forms present in the digit class. MNIST is also not completely linearly separable.

Thus, I expect that training with a weight decay that allows our network to generate good

images may result in a trade-off in classification accuracy.

81

4.3 Generating MNIST Digits

Now, we can revisit the MNIST dataset to see if adding decay allows the network to

generate digit-like samples.

Note that the major issue with MNIST is that it is not an invertible Gaussian dataset

since each digit cannot be delineated into separable Gaussian clusters. Additionally, by

using the non-linear tanh function in my neural networks during training, Theorem 1’s

preconditions are violated and so its results may not apply. To recap, Theorem 1 states

that it is possible to obtain the unique, minimum norm weights that map X to Y on

linear, single-layer networks. Nevertheless, I want to see if decay makes Predictive Coding

networks attain good generative capabilities on MNIST.

4.3.1 Normalized Correlations Using Tanh

Experimental Setup: I trained two types of 10-600-784 Predictive Coding networks

with tanh activations on 1000 digits of MNIST. One network type was trained using weight

decay (λM = λW = 0.05), and the other network type did not use any weight decay

(λM = λW = 0). I used time constants of τ = 0.2 and γ = 0.8 for both types of networks.

This was repeated over 20 trials. Each pair of decay/non-decay networks was initialized

with the same weights, so 20 sets of initial weights were used in total.

After training, each network generated a sample for each of the 10 digit classes, starting

from a network state in which all activities were set to zero. The samples were generated

by running the Predictive Coding equations for each network for 60 simulation seconds

82

using a time step of 0.002 seconds with an activity decay of 0.05.

To quantify the quality of the generated samples, I used the normalized correlation

between the generated sample x and an exemplar vector v, also known as Cosine Similarity,

Corr(x, v) =
x · v
‖x‖‖v‖

.

The exemplar vector for this experiment is the mean MNIST digit of the corresponding

class. Since there are 10 different digits, 2 types of networks, and 20 trials, this yields 400

cosine similarity values, 200 for each network type.

Results: Fig. 4.10 shows a histogram of the cosine similarities. The networks trained

without decay generate images that display much lower cosine similarities, in the range

of [−0.1, 0.2), with the majority of them being around 0.0, indicating no correlation with

the mean digit of each class. The networks trained with decay generate images with

cosine similarities in the range of [0.2, 0.7]. This suggests they are strictly better at image

generation from the class vector than the non-decay networks.

Table 4.3 displays the average cosine similarity and maximum cosine similarity for

the decay-trained and non-decay-trained networks. The average similarity of 0.0098 for

the images generated by the non-decay networks is consistent with the noisy images we

observed in Fig. 4.2. Those images exhibit virtually no identifiable relation to digits.

The images generated by the decay-trained networks exhibit some correlation with the

mean MNIST digit with an average of 0.4274, though this is not very close to 1.0. One

reason for this could be the high dimensionality of MNIST, at 784 dimensions, compared

to just the 10 dimensions I had used for the linear 3-5-10 network experiments. It is much

83

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cosine Similarity

0

20

40

60

80

100

120
Fr

eq
ue

nc
y

Without Decay
With Decay

Figure 4.10: Histogram of cosine similarities between the PC-net generated images and
the mean MNIST digit of each class

more difficult to arrive at the precise solution when solving an under-determined system

with hundreds of free variables. Another reason could be that I only trained on 1000

randomly chosen digits of MNIST rather than the full training dataset. Since the networks

were not exposed to the full dataset, they could not really learn the weights that would

map to the states close to the mean of each MNIST digit. A third reason could be the use

of tanh activation functions in my network, which is nonlinear.

Table 4.3: Average and maximum cosine similarities of PC net-generated MNIST digits

Network Average Cosine Similarity Max Cosine Similarity
Non-Decay Net 0.0098 0.1170

Decay Net 0.4274 0.6081

84

Figure 4.11: Generated samples, taken from [66]. (top row) Sample digits from the training
set. (middle row) Samples generated without decay. (bottom row) Samples generated with
weight and activity decay.

4.3.2 Generating The Best Looking Digits

The previous experiment only trained on 1000 MNIST digits. I am interested in ex-

amining how the networks would fare at image generation if trained on the entire MNIST

training set of 50,000 digits.

Experimental Setup: Dr. Orchard and I trained two 10-600-600-784 Predictive Cod-

ing networks for 10 epochs on the full training set of 50,000 MNIST samples. One was

trained with decay, and the other was trained without decay. To be exact, the network used

tanh activation functions for each layer, had 784 input nodes, two hidden layers with 600

nodes each, and an output layer with 10 nodes. After training, we fixed the 10 class vec-

tors to each network and ran them in generative mode. We used the parameters τ = 0.08,

γ = 0.8, λM = λW = 0.05, and ran them in generative mode with λx = 0.001 for 60 seconds

at a time step of 0.002.

Results: Fig. 4.11 shows samples generated by a PC network trained without decay,

85

0 1 2 3 4 5 6 7 8 9
Digit Class

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Without Decay
With Decay

Figure 4.12: Bar graph of cosine similarities between the PC-net generated images and the
mean MNIST digit for each digit class

along with samples generated by a decay-trained network. Even though the networks used

a nonlinear activation function, the network with decay generates samples that resemble

digits. In addition, the decay network achieved 85% accuracy within the top two classes.

Fig. 4.12 plots the cosine similarity individually for each of the ten digit classes. As

before, the similarity is measured relative to the average MNIST digit for each class. The

average cosine similarity across the ten classes for the no-decay net is 0.019 and 0.6682 for

the decay net.

The decay net’s images have much higher cosine similarities for each class than the

non-decay net’s. This result is consistent with the visual observation that the decay net’s

generated digits shown in Fig. 4.11 are much closer to what each class’s digit looks like

than the non-decay net’s. The decay net’s digits are recognizable, but the non-decay net’s

86

Figure 4.13: Mean MNIST digits (top row). Samples generated by the decay-trained PC
network (bottom row).

digits look like noise. The noisy images have almost no observable correlation with the

mean digits of each class.

As an interesting observation, the top row in Fig. 4.13 shows what the mean MNIST

digits actually look like. They are somewhat wispy and look surprisingly similar to the

images generated by the decay net, only with starker contrasts. This visual similarity

may arise from the fact that a PC network implicitly associates each class to a Gaussian

distribution. The mean of a class’s distribution is close to the average across all the inputs

for that class. In other words, the PC-decay network constructs a Gaussian for each class,

with a mean close to the average digit for that class.

The Predictive Coding network thus tends to generate the mean of each digit from the

class vector rather than a particular digit.

87

Chapter 5

Discussion

In this thesis, I have presented Predictive Coding networks as an alternative to back-

propagation that achieves similar statistical learning results. Dr. Orchard and I showed

that Supervised Predictive Coding is not generative by default, and our analysis pinpoints

the reason behind this observation: the generative problem is under-determined, so there

are many states consistent with the network constraints that are not necessarily close to

the input samples we wish to generate.

Dr. Orchard proved a theorem for linear networks that tells us we can generate samples

resembling the training inputs by imposing a minimum 2-norm constraint on the network’s

weight matrices and on the network’s state nodes. This constraint is implemented by

adding weight decay to the network’s update equations for its forward weights M and

feedback weights W during training, and by adding activity decay to the network’s update

equations for its state nodes x during input generation.

88

The theorem can be recursively applied for deep linear networks by treating every pair

of adjacent layers x(i+1) and x(i) with connection weights A as a linear system Ax(i+1) = x(i).

We showed experimentally that adding decay allows deep networks as well as networks with

nonlinear tanh activations to become generative. Additionally, training with weight decay

pushes all the eigenvalues of the Jacobian of the equilibrium of the network equations in

discriminative mode towards −0.5. This has the effect of making the network converge to

equilibrium in less time steps when the network classifies an input.

One interesting quality I had mentioned observing about the generated digits is that

they do not resemble any particular digit from the training images, but look more like

the mean of each digit. This is because, during training, the network learns to associate

multiple samples from each class to a one-hot class vector. In order to accomplish this, the

network adjusts its synaptic weights such that its weight matrices map multiple different

points from the 784-dimensional digit space to the same class. Those learned weights

represent a compromise between all the digits it has seen since it needs to associate every

one of them with the correct class.

During generation, the class is fixed while the same weights are used to build up im-

ages at the input layer, so the generated digits will reflect the compromise that the weights

have learned. Without priors on the network’s state nodes, the network generates a com-

promised, average-looking digit rather than a particular digit from the training sample.

Perhaps this is similar to the way human brains conceptualize an essential shape for each

digit they have learned. Under average conditions, this shape does not change; we prefer to

draw a specific 6 rather than a different 6 every time we write down that number. Maybe

we tend to visualize the same 6 as well. However, this is philosophical conjecture, and

89

more data from neuroscience would be necessary to back up this conjecture.

There are a couple more questions worth asking: what are the limitations of these

discoveries, and are Predictive Coding networks actually biologically plausible?

5.1 Limitations of Decay

One limitation is that adding a high decay negatively impacts classification accuracy on

certain datasets [66]. As discussed earlier, MNIST digits are multimodal and non-linearly

separable.

On our constructed, invertible datasets, like the ones shown in Fig. 4.5 and Fig. 4.6,

PC-decay networks were able to both generate good quality inputs and classify every data

point correctly. Those datasets were made by adding Gaussian noise to a number of class

prototypes. But on MNIST, our chosen decay of λM = λW = 0.05 that allowed the network

to generate good digits seemed to exhibit a reduction in accuracy of about 5% to 10%,

compared to the same network trained without decay. As we decrease the decay rate,

the network climbs in classification accuracy, but generates images that look less like the

training images.

The drop in accuracy could also be due to the extra penalties in the objective function,

F = −
n−1∑
i=0

1

2
‖ε(i)‖2 −

n−1∑
i=0

λx‖x(i)‖2 −
n−2∑
i=0

λM‖M (i)‖2 −
n−2∑
i=0

λW‖W (i)‖2 (5.1)

Here, (5.1) is a repeat of (3.9). By including norms of the state nodes and weight matrices

in the objective, the network may be sacrificing accuracy for smaller state nodes and lower

90

weight matrices to achieve a compromise between all the terms in (5.1). One way to fix this

could be to lower λ over time. Another way to fix this is to reformulate the objective as

a constrained optimization problem in which we minimize ‖x‖2, ‖M‖2, and ‖W‖2 subject

to ‖ε‖ = 0, so that it is a priority that all the error nodes always reach 0 [66].

Whittington and Bogacz used a slightly different algorithm than ours in their code

[68] during learning. They alternately update all the state nodes (x) and all the error

nodes (ε). This strategy takes advantage of the bipartite graph structure between state

and error nodes in Predictive Coding networks, with observable improvements in the speed

of the network’s convergence to equilibrium [66]. I have not yet investigated how decay

would perform if used in this accelerated convergence strategy, but I expect that decay

would yield similar results as it did in our continuous-time simulations of the Predictive

Coding differential equations. Whittington and Bogacz also implemented Adam [28] in

their learning algorithm [68], and work needs to be done to determine how decay would

work when using Adam with the predicting coding equations.

Note that Theorem 1 does not mention the feedback weights W . Experimentally, Dr.

Orchard and I find that excluding the decay term for W often causes the learning to become

unstable, resulting in weights that soar to infinity or infinitesimally small values [66]. Since

it is not clear why this happens, it is worth investigating in future work.

For future work, Dr. Orchard and I could investigate the degree to which generative

Predictive Coding networks are susceptible to adversarial attacks. Can the internal er-

rors generated by a mismatch between input and classification protect the network from

catastrophic misclassification of adversarially-perturbed inputs?

91

5.2 Biological Plausibility of Predictive Coding

We revisit the four biological plausibility criteria created by Whittington and Bogacz

[68] I had used to judge backpropagation.

Local Computation: State and error nodes in Predictive Coding networks perform

all their computations, as shown in their update equations (3.1), (3.2), (3.3), and (3.4),

using values from the nodes they are directly connected to. This criteria is satisfied even

with activity decay, since decay only subtracts the value of the state node itself.

Local Synaptic Plasticity: Synaptic weights in Predictive Coding networks are

changed using only values from the state and error nodes the synapse connects, as shown

in the weight update equations (3.5) and (3.6). This criteria is satisfied even with weight

decay, since decay only subtracts the value of the synaptic weight itself.

Minimal External Computation: The Predictive Coding network can autonomously

switch between discriminative, generative, and clamped modes of operation based on

whether or not an input is held to the input layer, a class is held to the output layer,

or both.

Plausible Architecture: Whittington and Bogacz note that Predictive Coding does

not yet fulfill this criteria [68].

First, the one-to-one connections between state and error nodes at each layer have not

been observed in the brain [68]. There is, however, evidence that neurons in the visual

cortex can encode an error signal [11]. It may be possible that states and errors exist

simultaneously in a neuron [20], and the mechanism behind whether a neuron currently

92

encodes state or error is still unknown.

One interesting direction to continue from here is to remove the one-to-one pairings of

state and error nodes in general. Any state node can be connected to any other state or

error node through synaptic weights not necessarily equal to 1, and similarly for the error

nodes. This direction involves heavy investigation into how the Predictive Coding equations

would have to be reformulated to accommodate the removal of one-to-one pairings. The

new equations will implicate extensive theoretical and experimental analysis of whether

such a network would still be able to achieve statistical learning.

While Whittington and Bogacz’s model uses symmetric weights [68], our model uses

asymmetric weights, avoiding the weight transport problem [37]. That is a plus for biolog-

ical plausibility for us!

Another problem with the biological plausibility of Predictive Coding is more subtle

and relates to the values encoded within error nodes. Whittington and Bogacz note that

error nodes can be either positive or negative, but biological neurons cannot have negative

activity [68]. They propose that error nodes are biological rectified linear neurons [6], and

that one can associate zero activity in error nodes with the baseline firing rate of those

neurons [68].

However, in their words, such an approximation would require the neurons to have a

high average firing rate, so that they rarely produce a firing rate close to 0, and thus rarely

become nonlinear [68]. Although the interneurons in the cortex often have higher average

firing rates, the pyramidal neurons typically do not [40, 68]. Since much of the cortex

consists of pyramidal neurons [27], Predictive Coding may not yet be the right model of

93

the cerebral cortex.

Another way to fix the problem of negative activity is to assume that error nodes are

not singular neurons. Both state and error nodes may be populations of neurons, a subset

of which fires inhibitory activities representing negative values, and another subset fires

excitatory activities representing positive values. The sum of inhibitory and excitatory

activity in the population represents the positive or negative value encoded in an error

node.

5.3 Conclusion

Predictive Coding is an insightful, biologically inspired framework of neural computa-

tion that can attain backpropagation learning. I have added two forms of decay, weight

decay and activity decay, to the supervised learning formulation of Predictive Coding.

Weight decay helps to regularize the weight matrices of Predictive Coding networks, al-

lowing the network to converge to equilibrium more quickly during input classification.

Combining weight and activity decay allows Predictive Coding networks to simultaneously

classify inputs and generate inputs from classes, an achievement that paves the way for

future work on bidirectional learning of associations.

Our next step may involve developing new, biologically plausible neural learning al-

gorithms and gathering data in neuroscience to verify that the outputs of that algorithm

are consistent with the computations performed in the brain. The destination to artificial

general intelligence will also require advances in neuromorphic computing. Currently, my

94

Predictive Coding model learns much more slowly compared to ANNs trained by backprop-

agation. Neuromorphic computing leverages the local computation aspects of Predictive

Coding networks with hardware modelled after biological neural networks, allowing Pre-

dictive Coding to be simulated much more efficiently. Other biologically plausible models

of neural computation will also be able to enjoy similar benefits from neuromorphic com-

puting.

I hope that as these advances are made, Predictive Coding and other biologically in-

spired frameworks of neural computation will shine in the spotlight as a path forward.

95

References

[1] N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer

vision: A survey. IEEE Access, 2018.

[2] W. R. Ashby. Principles of the self-organizing system. In H. Von Foerster and Jr.

G. W. Zopf, editors, Principles of Self-Organization: Transactions of the University

of Illinois Symposium, pages 255–278, 1962.

[3] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings

of ICML Workshop on Unsupervised and Transfer Learning, July 2012.

[4] R. Bogacz. A tutorial on the free-energy framework for modelling perception and

learning. Journal of Mathematical Psychology, 76:198–211, 2017.

[5] R. Bogacz and K. Gurney. The basal ganglia and cortex implement optimal decision

making between alternative actions. Neural Computation, 19:442–477, 2007.

[6] R. Bogacz, E. M. Moraud, A. Abdi, P. J. Magill, and J. Baufreton. Properties of

neurons in external globus pallidus can support optimal action selection. PLoS Com-

putational Biology, 12(7), 2016.

96

[7] A. Bubic, D. Y. von Cramon, and R. I. Schubotz. Prediction, cognition, and the brain.

Frontiers in Human Neuroscience, 4:1–15, 2010.

[8] A. Clark. Whatever next? predictive brains, situated agents, and the future of cogni-

tive science. Behavioral and Brain Sciences, 36:181–204, 2013.

[9] F. Crick. The recent excitement about neural networks. Nature, 337:129–132, 1989.

[10] R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Annual

Review of Neuroscience, 18:193–222, 1995.

[11] D. Eriksson, T. Wunderle, and K. Schmidt. Visual cortex combines a stimulus and

an error-like signal with a proportion that is dependent on time, space, and stimulus

contrast. Frontiers in Systems Neuroscience, 6(26), 2012.

[12] B. A. Richards et al. A deep learning framework for neuroscience. Nature Neuro-

science, 22(11):1761–1770, 2019.

[13] K. Friston. A theory of cortical responses. Philosophical Transactions Of The Royal

Society B, 360(1456):815–836, 2005.

[14] K. Friston. The free-energy principle: a rough guide to the brain? Trends In Cognitive

Sciences, 13(7):293–301, 2009.

[15] K. Friston and S. Kiebel. Predictive coding under the free-energy principle. Philo-

sophical Transactions Of The Royal Society B, 364(1521):1211–1221, 2009.

97

[16] A. Golatkar, A. Achille, and S. Soatto. Time matters in regularizing deep networks:

Weight decay and data augmentation affect early learning dynamics, matter little near

convergence. In Neural Information Processing Systems, December 2019.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, fourth edition, 1996.

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Neural Information

Processing Systems, December 2014.

[19] S. Grossberg. Competitive learning: from interactive activation to adaptive resonance.

Cognitive Science, 11:23–63, 1987.

[20] J. Guerguiev, T. P. Lillicrap, and B. A. Richards. Towards deep learning with segre-

gated dendrites. eLife, 6(e22901), 2017.

[21] K. Han, H. Wen, Y. Zhang, D. Fu, E. Culurciello, and Z. Liu. Deep predictive coding

network with local recurrent processing for object recognition. In Neural Information

Processing Systems, December 2018.

[22] G. F. Harpur and R. Prager. Development of low entropy coding in a recurrent

network. Network: Computation in Neural Systems, 7:277–284, 1996.

[23] G. E. Hinton. To recognize shapes, first learn to generate images. Progress in Brain

Research, 165:535–547, 2007.

98

[24] Y. Huang and R. P. Rao. Predictive coding. WIREs Cognitive Science, 2(5):580–593,

2011.

[25] J.M. Hupe, A. C. James, B. R. Payne, S. G. Lomber, P. Girard, and J. Bullier. Cortical

feedback improves discrimination between figure and background by V1, V2 and V3

neurons. Nature, 394(6695):784–787, 1998.

[26] R. R. Johnson and A. Burkhalter. A polysynaptic feedback circuit in rat visual cortex.

The Journal of Neuroscience, 17(18):7129–7140, 1997.

[27] E. R. Kandel, J. H. Schwartz, T. M. Jessel, S. A. Siegelbaum, and A. J. Hudspeth.

Principles of Neural Science. McGraw-Hill Education, New York City, New York,

fifth edition, 2012.

[28] D. P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference on Learning Representations, May 2015.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Neural Information Processing Systems, December

2012.

[30] S. Kullback. Information Theory and Statistics. John Wiley and Sons Inc., Hoboken

New Jersey, 1959.

[31] S. Kullback. Letters to the editor. The American Statistician, 41(4):338–341, 1987.

[32] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Math-

ematical Statistics, 22(1):79–86, 1951.

99

[33] M. E. Larkum, W. Senn, and H.-R. Luscher. Top-down dendritic input increases the

gain of layer 5. Cerebral Cortex, 14(10):1059–1070, 2004.

[34] S. Laughlin. Coding efficiency and visual processing. In M. Pointon C. Blakemore,

K. Addler, editor, Vision: Coding and Efficiency, chapter 2, pages 25–31. Cambridge

University Press, Cambridge, UK, 1990.

[35] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Shape, Contour and Grouping in

Computer Vision. Springer-Verlag, Berlin Heidelberg, first edition, 1999.

[36] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In

T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information

Processing Systems 13, pages 556–562, 2001.

[37] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic

feedback weights support error backpropagation for deep learning. Nature Communi-

cations, 7:13276 EP, 2016.

[38] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video

prediction and unsupervised learning. In International Conference on Learning Rep-

resentations, April 2017.

[39] J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE, 63:561–

580, 1975.

[40] K. Mizuseki and G. Buszaki. Preconfigured, skewed distribution of firing rates in the

hippocampus and entorhinal cortex. Cell Reports, 4(5), 2013.

100

[41] R. K. Nagle and E. B. Saff. Fundamentals of Differential Equations. The Benjamin-

Cummings Publishing Company, Inc., Redwood City, CA, second edition, 1989.

[42] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Research, 37(23):3311–3325, 1996.

[43] J. Orchard, W. Sun, and N. Liu. Why aren’t all predictive coding networks generative?

In Neural Information Processing Systems, December 2019.

[44] D. O’Shaughnessy. Linear predictive coding. IEEE Potentials, 7:29–32, 1988.

[45] S. P. Peron and F. Gabbiani. Role of spike-frequency adaptation in shaping neuronal

response to dynamic stimuli. Biological Cybernetics, 100(6), 2009.

[46] W. A. Phillips. On the cognitive functions of intracellular mechanisms for contextual

amplification. Brain and Cognition, 112:39–53, 2017.

[47] R. P. Rao and D. H. Ballard. Predictive coding in the visual cortex: A functional inter-

pretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–

87, 1999.

[48] L. Reddy, N. Tsuchiya, and T. Serre. Reading the mind’s eye: decoding category

information during mental imagery. NeuroImage, 50(2):818–825, 2011.

[49] R. D. Reed and R. J. Marks II. Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. A Bradford Book, Cambridge, MA, 1999.

101

[50] J. H. Reynolds, L. Chelazzi, and R. Desimone. Competitive mechanisms subserve

attention in macaque areas V2 and V4. Journal of Neuroscience, 19(5):1736–1753,

1999.

[51] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986.

[52] Z. Shao and A. Burkhalter. Different balance of excitation and inhibition in forward

and feedback circuits of rat visual cortex. The Journal of Neuroscience, 16(22):7353–

7365, 1996.

[53] Y. Singer, Y. Teramoto, B. D. B. Willmore, J. W. H. Schnupp, A. J. King, and N. S.

Harper. Sensory cortex is optimized for prediction of future input. eLife, 7:e31557,

2018.

[54] L. L. Solbakken and S. Junge. Online parts-based feature discovery using competitive

activation neural networks. In Proceedings of the International Joint Conference on

Neural Networks, pages 1466–1473, July 2011.

[55] M. W. Spratling. Predictive coding as a model of biased competition in visual selective

attention. Vision Research, 48(12):1391–1408, 2008.

[56] M. W. Spratling. Reconciling predictive coding and biased competition models of

cortical function. Frontiers in Computational Neuroscience, 2(4):1–8, 2008.

[57] M. W. Spratling. Predictive coding as a model of response properties in cortical area

V1. The Journal of Neuroscience, 30(9):3531–3543, 2010.

102

[58] M. W. Spratling. Predictive coding. In D. Jaeger and R. Jung, editors, Encyclopedia

of Computational Neuroscience, pages 1–5. Springer, New York, NY, 2014.

[59] M. W. Spratling. A review of predictive coding algorithms. Brain and Cognition,

112:92–97, 2017.

[60] M. W. Spratling and M. H. Johnson. Dendritic inhibition enhances neural coding

properties. Cerebral Cortex, 11(12):1144–1149, 2001.

[61] M. W. Spratling and M. H. Johnson. Preintegration lateral inhibition enhances unsu-

pervised learning. Neural Computation, 14(9):2157–2179, 2002.

[62] M. W. Spratling, K. De Meyer, and R. Kompass. Unsupervised learning of overlapping

image components using divisive input modulation. Computational Intelligence and

Neuroscience, 2009(381457):1–19, 2009.

[63] M. V. Srinivasan, S. B. Laughlin, and A. Dubs. Predictive coding: A fresh view of

inhibition in the retina. Proceedings of the Royal Society of London, Series B Biological

Sciences, 216:427–459, 1982.

[64] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-

chine Learning Research, 15:1929–1958, 2014.

[65] S. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, Cambridge, 1994.

[66] W. Sun and J. Orchard. A predictive coding network that is both discriminative and

generative. Neural Computation, 32(10), 2020.

103

[67] S. V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. John Wiley

and Sons Inc., Hoboken, New Jersey, second edition, 2000.

[68] J. C. R. Whittington and R. Bogacz. An approximation of the error backpropagation

algorithm in a predictive coding network with local hebbian synaptic plasticity. Neural

Computation, 29(5):1229–1262, 2017.

104

APPENDICES

105

Appendix A

Dr. Orchard’s Proof of Theorem 1

Theorem 1: Given a matrix of r linearly-independent m-vectors,

X = [X1| · · · |Xr] ∈ Rm×r

and a corresponding matrix of n-vectors,

Y = [Y1| · · · |Yr] ∈ Rn×r

with r ≤ n < m, there is an n×m matrix,

A =


A1

...

An



106

such that the minimum 2-norm solution x∗ to Ax = Yi is x∗ = Xi. Moreover, the jth row

of A is the minimum 2-norm solution of aX = Y for a ∈ R1×m.

Proof. Consider the system XTAT = Y T , with r equations and m unknowns. Let the

columns of X be linearly independent. Let yj be the jth row of Y . Then XTATj = yTj .

This system is under-determined, since r < m. Thus, there are infinitely many solutions.

However, we can seek the minimum-norm solution for ATj using a technique called singular

value decomposition, or SVD [17].

Let UΣV T = XT . Here, U is an r × r orthogonal matrix, which is a square matrix

whose rows and columns are orthonormal, meaning that any pair of rows or columns dot

product to zero and they are all unit vectors. V T is r ×m with orthonormal rows. Σ is a

diagonal r × r matrix containing the r non-zero singular values of the decomposition.

The minimum 2-norm solution of XTATj = yTj is

ATj = V Σ−1UTyTj .

We can construct all n columns of AT using AT = V Σ−1UTY T .

Our goal is to show that X is a solution of AX = Y . Substituting the above expression

107

for A, followed by the SVD for XT , we get

AX = Y UΣ−1V TX

= Y UΣ−1V T
(
V ΣUT

)
= Y UUT since V TV = I and Σ−1Σ = I

= Y since UUT = I

Thus, X is a solution of AX = Y .

Now, we want to show that each column of X is the minimum 2-norm solution. Consider

the ith column of X, and suppose we find a different solution, Xi + x̃, where x̃ 6= 0. Then,

A (Xi + x̃) = Yi

AXi + Ax̃ = Yi

Yi + Ax̃ = Yi

Ax̃ = 0

Thus, x̃ ∈ null(A), which tells us that V T x̃ = 0. But XT = UΣV T , so x̃ ∈ null(XT) too.

Thus, Xi ⊥ x̃, meaning they are orthogonal and dot product to 0.

Consider ‖Xi + x̃‖. Since Xi ⊥ x̃, they form the non-hypotenuse edges of a right angle

108

triangle, and so we can use Pythagoras to deduce the following:

‖Xi + x̃‖2 = ‖Xi‖2 + ‖x̃‖2

‖Xi + x̃‖2 > ‖Xi‖2 since x̃ 6= 0

=⇒ ‖Xi + x̃‖ > ‖Xi‖

Therefore, Xi is the minimum 2-norm solution to Ax = Yi.

109

	List of Figures
	List of Tables
	Introduction
	Artificial Neural Networks
	Biological Plausibility of Backpropagation

	Predictive Coding
	Predictive Coding with Free Energy Principle
	Approximation of Backpropagation

	Predictive Coding With Decay
	Decay in the Free Energy Objective
	Analysis of Activity Decay During Training
	Stability Analysis of the Discriminative Mode
	Linear Stability Analysis of Dynamical Systems

	Predictive Coding Discriminative Dynamics
	Stability of Predictive Coding Trained Weights
	Stability of Backpropagation Trained Weights

	Generating Samples From Classes
	The Generative Process Solves An Under-determined System
	Analysis of Generative Linear Networks
	Weight and Activity Decay
	Deep Linear and Tanh Networks
	Activity Decay Generates Unique Samples
	Weight Decay Benefits Generative Quality
	Are Backpropagation-trained Networks Generative?
	Generating on Multimodal Datasets

	Generating MNIST Digits
	Normalized Correlations Using Tanh
	Generating The Best Looking Digits

	Discussion
	Limitations of Decay
	Biological Plausibility of Predictive Coding
	Conclusion

	References
	APPENDICES
	Proof of Theorem 1

