
Improving post-quantum
cryptography through cryptanalysis

by

John Schanck

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Mathematics

Waterloo, Ontario, Canada, 2020

© John Schanck 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/344915407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining committee membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Chris Peikert, Associate Professor,
Department of Computer Science and Engineering,
University of Michigan

Supervisor: Michele Mosca, Professor,
Department of Combinatorics and Optimization,
University of Waterloo

Internal Member: Alfred Menezes, Professor,
Department of Combinatorics and Optimization,
University of Waterloo

Internal-External Member: Richard Cleve, Professor,
School of Computer Science,
University of Waterloo

Other Member(s): Douglas Stebila, Associate Professor,
Department of Combinatorics and Optimization,
University of Waterloo

ii

Author’s declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of contributions

The introduction, interstitial material, Chapter 4, and the conclusion were authored solely
by myself. Chapter 2 was jointly authored with Samuel Jaques; the published version
is available at https://doi.org/10.1007/978-3-030-26948-7 2. Chapter 3 was jointly
authored with Martin Albrecht, Eamonn Postlethwaite, and Vlad Gheorghiu. More detailed
statements of contributions precede Chapters 2 and 3.

iv

https://doi.org/10.1007/978-3-030-26948-7_2

Abstract

Large quantum computers pose a threat to our public-key cryptographic infrastructure.
The possible responses are:

1. Do nothing; accept the fact that quantum computers might be used to break widely
deployed protocols.

2. Mitigate the threat by switching entirely to symmetric-key protocols.

3. Mitigate the threat by switching to different public-key protocols.

Each user of public-key cryptography will make one of these choices, and we should not
expect consensus. Some users will do nothing—perhaps because they view the threat as
being too remote. And some users will find that they never needed public-key cryptography
in the first place.

The work that I present here is for people who need public-key cryptography and want
to switch to new protocols. Each of the three articles raises the security estimate of a
cryptosystem by showing that some attack is less effective than was previously believed.
Each article thereby reduces the cost of using a protocol by letting the user choose smaller
(or more efficient) parameters at a fixed level of security.

In Part 1, I present joint work with Samuel Jaques in which we revise security estimates
for the Supersingular Isogeny Key Exchange (SIKE) protocol. We show that known quantum
claw-finding algorithms do not outperform classical claw-finding algorithms. This allows
us to recommend 434-bit primes for use in SIKE at the same security level that 503-bit
primes had previously been recommended.

In Part 2, I present joint work with Martin Albrecht, Vlad Gheorghiu, and Eamonn
Postelthwaite that examines the impact of quantum search on sieving algorithms for
the shortest vector problem. Cryptographers commonly assume that the cost of solving
the shortest vector problem in dimension d is 2(0.265...+o(1))d quantumly and 2(0.292...+o(1))d

classically. These are upper bounds based on a near neighbor search algorithm due to Becker–
Ducas–Gama–Laarhoven. Naively, one might think that d must be at least 483(≈ 128/0.265)
to avoid attacks that cost fewer than 2128 operations. Our analysis accounts for terms in
the o(1) that were previously ignored. In a realistic model of quantum computation, we
find that applying the Becker–Ducas–Gama–Laarhoven algorithm in dimension d > 376 will
cost more than 2128 operations. We also find reason to believe that the classical algorithm
will outperform the quantum algorithm in dimensions d < 288.

v

In Part 3, I present solo work on a variant of post-quantum RSA. The original
pqRSA proposal by Bernstein–Heninger–Lou–Valenta uses terabyte keys of the form
n = p1p2p3p4 · · · pi · · · p231 where each pi is a 4096-bit prime. My variant uses terabyte keys
of the form n = p2

1p
3
2p

5
3p

7
4 · · · p

πi
i · · · p225287

20044 where each pi is a 4096-bit prime and πi is the i-th
prime. Prime generation is the most expensive part of post-quantum RSA in practice, so
the smaller number of prime factors in my proposal gives a large speedup in key generation.
The repeated factors help an attacker identify an element of small order, and thereby allow
the attacker to use a small-order variant of Shor’s algorithm. I analyze small-order attacks
and discuss the cost of the classical pre-computation that they require.

vi

Acknowledgements

Thanks to Cary, my love, for her friendship, kindness, and strength; for sharing these years
with me; for demonstrating honesty and courage, an unpretentious intellect, and the power
of community. I am humbled by her love.

Thanks to my family. My mother, Nancy, for her encouragement, love, and enthusiasm.
My father, John, for his good humor—and for at least one memorable lesson in mathematics.
Thanks to Julie, David, Cady, Matt, Max, Reid, Rory, Sarah, Axton, Grace, Ian, Mary
Catherine, and Laura for filling our holidays with good meals and good company.

Thanks to everyone who has mentored me over the course of my formal education, but
especially: Steve Isaacs of Liberty Corner Computing; Bill Dewees and David Zimmerman of
Conestoga High School; Lee Spector, Herb Bernstein, and Stephen Banzaert of Hampshire
College; Scott Kaplan and Catherine McGeoch of Amherst College; William Whyte and
Jeffrey Hoffstein of NTRU Cryptosystems; and Ian Goulden of the University of Waterloo.
You have each given me precious gifts. I can only hope that I am able to pass these gifts
forward to future generations of learners. If I do, it will be with you in mind as role models.

Thanks to everyone who has welcomed me into the crypto community. Thanks to Alfred
Menezes and Douglas Stebila for many enjoyable conversations. Thanks to Michael Naehrig
for career advice. Thanks to Peter Schwabe for hosting me in Nijmegen, Andreas Hülsing
for hosting me in Eindhoven, and J. F. Biasse for hosting me in Tampa. Thanks to the
organizers and attendees of the Dagstuhl seminar series on quantum cryptanalysis and the
AIM workshop on quantum algorithms for analysis of public-key crypto.

Thanks to everyone who made this thesis possible. Thanks to Michele Mosca for
advising me and supporting my research. Thanks to my co-authors: Martin Albrecht, Vlad
Gheorghiu, Sam Jaques, and Eamonn Postlethwaite. Thanks to the anonymous conference
reviewers (even #2). Thanks to Emma McKay, Travis Morrison, Sam Jaques, and Cary for
comments on drafts. Thanks to the staff and volunteers of the Queen Street Commons cafe
and the Kitchener Public Library—two true “palaces for the people” where many pages of
this thesis were written. Thanks to the IQC staff, especially Chin Lee. Thanks to Dave
Mackey of UW Counselling Services.

Thanks to everyone on May Place and nearby: Emma, Tamara, Gage and Evie, Katie,
Rayne, Patt, and Barb. Thanks to everyone who came to one of our May Day parties.
Thanks to “Casper the friendly dog” for trying so hard to live up to his name. Thanks to
Vic for inviting us to a birthday party, Todd whose birthday it was, and Gordon whose
house the party was at. Special thanks to Dan, Michelle, Violet, and Alex for treating us
like family. Thanks to everyone who made Kitchener our home. ♥

vii

Dedication

For rock and roll legend

Jimmy Schanck

viii

Table of contents

1 Introduction 1

1 Information is physical,
but computation is technological . 2

2 Our technological prospects . 9

3 Our habits . 12

2 SIKE 16

1 Introduction . 19

2 Machine models . 21

3 Cost analysis: Quantum random access . 32

4 Cost analysis: Johnson vertex data structure 34

5 Cost analysis: Claw-finding by quantum walk 39

6 Application: Cryptanalysis of SIKE . 45

7 Conclusions and future work . 49

3 NTRU and LWE 53

1 Introduction . 56

2 Preliminaries . 58

3 Filtered quantum search . 64

4 Circuits for popcount . 67

5 The accuracy of popcount . 70

ix

6 Tuning popcount for NNS . 72

7 Cost estimates . 81

A Caps and wedges . 88

B Toffoli counts and circuit width . 89

C The choice of adder . 90

D Additional figures . 91

E Location of supplemental materials . 91

4 RSA 93

1 Introduction . 95

2 Factoring with Coppersmith’s Technique 98

3 The cost of lattice attacks. 102

4 Shor’s Algorithm. 103

5 The cost of period finding. 104

6 Multi-power pqRSA . 105

7 Conclusion . 108

5 Conclusion 110

1 Assumptions redux . 111

2 Recommendations for quantum cryptanalysis 112

Bibliography 113

Appendix: Other work by the author 127

x

Chapter 1

Introduction

Thermodynamics arose out of attempts to
understand the limits on the efficiency of steam
engines. Information theory arose out of the
effort to understand channel capacity limitations.
These models have motivated an attempt to do the
same thing for the computer.

Rolf Landauer (1981)

1

1 Information is physical,

but computation is technological

Any algorithmic cryptosystem can be broken with the help of a sufficiently powerful
computer. Part of our role as cryptographers is, therefore, to make predictions about which
computers can be built and which computations can be performed. To do this we make
physical, technological, and economic assumptions.

We should periodically re-evaluate these assumptions—especially when there are dra-
matic changes in our understanding of the physics or technology of computation.

To a crude approximation, which ignores the significant social component of our practice,
the process by which we come to believe that an algorithmic cryptosystem is secure is:

1. we fix a machine model;

2. we determine the smallest machine (in that model) that breaks the system in a
reasonable amount of time; and then

3. we argue that even this smallest machine cannot be built.

Our physical assumptions are inherent in our choice of machine model. Our technological
assumptions arise from our need to assign costs, with physical units, to the components
of our machine model. And our economic assumptions constrain the resources that our
imagined adversaries might obtain.

This thesis presents several detailed cost estimates for attacks on public-key cryptosys-
tems. These cost estimates track quantities that have been ignored previously, quantities
that are small asymptotically, and quantities that (one could say) are tedious to keep track
of. I have engaged in this work because I think that practical cryptography is important,
and I think that these particular analyses are impactful. Naturally, I have searched for tools
that might make my life easier—because no matter how important I think cryptography is,
I do not want to do tedious work.

The tools that I have found are are not standard. To use them means to revise our
machine models; to go back to Step 1 and speak frankly with each other about whether the
assumptions we have made are good ones. The work below proposes some small revisions
to quantum machine models. I hope to convince you that these revisions are reasonable.

2

1.1 Physical assumptions

If cryptographers do not agree on a machine model, then cryptography fractures into
multiple competing theories. The field is currently divided into at least two theories; the
notable point of rupture being Deutsch’s 1985 introduction of the quantum-mechanical
description of the state of a computation.

Cryptographers working in the “pre-quantum” theory judge the efficiency of a com-
putation by the number of steps that it takes on a Turing machine. They are thereby
working (perhaps implicitly) with the physical assumptions that were laid out by Turing
in 1937 [35]. Cryptographers working in the “post-quantum” theory also count Turing
machine steps, but the tapes of their Turing machines are quantum mechanical and their
physical assumptions are (perhaps implicitly) those of Deutsch [15].

Fredkin and Toffoli list Turing’s physical assumptions as locality: “the speed of
propagation of information is bounded”; finiteness: “the amount of information which
can be encoded in the state of a finite system is bounded”; and reliability: “it is possible
to construct [physical devices] which perform in a recognizable and reliable way the logical
functions AND, NOT, and FAN-OUT” [20].

Deutsch assumes locality and finiteness in precisely the same sense. He extends the
notion of reliability to include certain quantum mechanical processes.

There are conflicts within the pre-quantum and post-quantum theories, and I will return
to these later. What is more interesting, however, is how similar they are. Why have these
two theories, these two sets of physical assumptions, risen to prominence and not others?

Post-reversible cryptography? Papers by Bennett [10], Fredkin–Toffoli [20], Benioff [7,
8], and Feynman [16] provided successively more realistic models of dissipationless compu-
tation. The later models suggest physically reversible processes that circumvent Landauer’s
bound [24] on the energetic cost of computation. In these models there is no sense in which
the energy consumed by a computation (or even the time it takes1) must grow with the
number of logical steps that it performs. Why did we not see cryptography cleave into
“pre-reversible” and “post-reversible” theories?

There could have been lively debates between pre-reversible and post-reversible cryp-
tographers. A notable exchange in the pages of Physical Review Letters shows us how

1As early as 1982 Deutsch wrote that “the laws of physics impose no fundamental bound on the rate
at which information can be processed” [14]. This holds up today—the widely cited Margolus–Levitin
theorem gives a limit on how quickly a quantum system can transition between orthogonal states [26], but
Jordan has shown that this does not impose a limit on the rate of computation itself [24].

3

this might have gone. Porod–Grondin–Ferry–Porod [30] took the position of our imagined
pre-reversible camp. They argued that protecting a computational system against thermal
noise would require dissipation proportional to operation count. They were quickly rebuked.

� Toffoli: “the second principle of thermodynamics per se does not impose a lower
bound [on dissipation per operation] higher than zero, and no bounds higher than zero
have been compellingly suggested by anyone on fundamental physical grounds” [33].

� Benioff: “the idealized existence of [Hamiltonian models of Turing machines] demon-
strates that one cannot use purely quantum mechanical arguments [...] to deny the
existence of models which dissipate no energy” [9].

The debate continued. Porod et al. insisted that noise was inherent and not, as they
accused Toffoli and Benioff of assuming, “a technological detail” [31]. They had a point.
Shortly thereafter Zurek wrote a remarkable paper demonstrating the devastating effect of
noise on the Fredkin–Toffoli model [38]. But in that same paper Zurek writes: “Reversible
computation is compatible with the laws of physics. The quantum spin computers of Benioff
and Feynman prove that it can be arbitrarily fast and dissipationless” [38].

The physical possibility of dissipationless and arbitrarily fast error-corrected quantum
mechanical computers remains open.

The role of physical assumptions We might say that cryptographers are taking sides
in the physicists’ debate by choosing not to develop a post-reversible theory. But an
equally satisfying explanation is that cryptographers are comfortable dismissing reversible
computation on practical, technological, grounds. They would not be alone. Even Toffoli
admits that “no one that I know believes in practical, physical computation that is exactly
dissipationless” [33], and Jordan admits that it “seems unlikely” that the universe allows
for arbitrarily fast computation [24].

Cryptographers are not disciplinarily bound to use the most powerful machine model
that physics allows. They are free to pick and choose from physical constraints and to
supplement their reasoning with stronger assumptions. If it seems strange that a post-
quantum theory has risen to prominence while a post-reversible theory has not, the reason
is likely that the post-quantum theory is supported by (at least the prospect of) realistic
computer technology.

4

1.2 Economic assumptions

As intellectually satisfying as it would be to reason from physical assumptions alone,
cryptographers cannot yet do so. If cryptographers want to work on key encapsulation,
digital signatures, pseudorandom generators, or one-way functions—and claim that their
protocols have some relevance to communications security—then they will need economic
and technological assumptions.

Their economic assumptions could be mild. Freeman Dyson famously speculated about
the resources that might be available to technologically advanced civilizations [17]. He
took our own solar system as a model: “The quantities of matter and energy which might
conceivably become accessible to us within the solar system are [2100 grams] (the mass of
Jupiter) and [288 joules per second] (the total energy output of the Sun).” He suggested
that Jupiter, re-arranged into a two-meter thick shell revolving about the sun at twice
Earth’s distance, could be used to harvest the solar radiation. Of course, building this
device would be difficult: “the energy required to disassemble and rearrange a planet of
the size of Jupiter is about [2123 joules], equal to the energy radiated by the sun in 800
years” [17].

The mass of the planets and the energy output of the sun are physical facts that are
known to good precision. A cryptographer might put a mild economic assumption—that
the solar resources are the only resources available to an attacker—to good use. E.g., for
at least the next 800 years, there will be no 2100 gram memories and no 288 watt attack
machines. A less conservative cryptographer might base their predictions on the mass of
the moon (286 g) and the solar energy that strikes Earth’s surface (256 W [34]), or even
smaller quantities.

Economic assumptions are not sufficient, though. Cryptographers need technological
assumptions to translate “bits of memory” to grams and “operations” to energy, and this
is messy business. The past century of technological progress has been exceptional in a
way that presumably prohibits extrapolation. If we are going to make mistakes in setting
assumptions, they will most likely be here.

We should learn from past failures, pay close attention to technological prospects, and
take advantage of the few hard physical constraints of which we are aware.

1.3 Algorithmic assumptions

Cryptographers are careful to adorn their security claims with the phrase “against known
algorithms.” They rarely expand this to “against known technologies.”

5

Algorithmic assumptions play an privileged role in theory: they help to establish
the existence of problem instances that are easy to generate but hard to solve. From
the perspective of practice, however, an algorithm is a technology and an algorithmic
assumption is a technological assumption. While it is true that cryptosystems sometimes
fall to stunning algorithmic advances, cryptosystems more often fall to a combination of
new technologies. Let’s consider some examples.

Claim In 1977, Rivest, Shamir, and Adleman suggested that the use of 663-bit composite
numbers would provide “a margin of safety [for factoring based cryptosystems] against
future developments” [32]. They assumed that factoring an integer n costs E1(n) operations
where

E1(n) = exp
(√

lnn ln lnn
)
. (1)

They assumed that one operation takes one microsecond. They concluded that factoring a
663-bit integer would take 3.8 billion years.

Attack In 2005, a 663-bit RSA modulus was factored by Bahr, Boehm, Franke, and
Kleinjung [5]. They used the number field sieve, an algorithm whose cost is exponential in
(lnn)1/3+o(1).

Claim In 1978, McEliece suggested that a cryptosystem based on the difficulty of decoding
certain binary linear codes of length 1024 and dimension 524 to distance 50 would be “quite
secure” [27]. He estimated one attack as having “a work factor of [...] about 1019 ≈ 265”.

Attack In 2008, Bernstein, Lange, and Peters claimed an improved attack with a cost of
260.1 bit operations. They demonstrated their attack by performing the computation [12].

At first glance, these failures2 are of very different kinds. McEliece underestimated the
extent to which technology would improve. Rivest, Shamir, and Adleman were caught off
guard by an extraordinary, superpolynomial, algorithmic advance.

2It is reasonable to ask whether these were failures at all. Putting aside advances in algorithms and
other technologies, there would be no great mystery if a cryptosystem was called “quite secure” in 1978 and
“hopelessly insecure” in 2020. The role of cryptography has changed, as have our expectations. Nevertheless,
it can be instructive to apply the standards of today to the recommendations of the past. By today’s
standards, these were poor recommendations.

6

It is true that the number field sieve reduced the cost of factoring 663-bit numbers. But
Rivest, Shamir, and Adleman also underestimated the extent to which technology would
improve. To see how, we can apply their technological assumptions and reasoning to the
cost function for the number field sieve suggested by NIST in 2019 [6, Appendix D],

E2(n) = exp
(
1.923(lnn)1/3(ln lnn)2/3 − 4.69

)
. (2)

Doing so, we estimate the time to factor a 663-bit number as 1.1 million years, a factor of
E1(663)/E2(663) ≈ 211.6 less than the 3.8 billion years estimated by Rivest, Shamir, and
Adleman. The 663-bit factorization reported by Bahr–Boehm–Franke–Kleinjung took less
than 100 years of CPU time. This is still 213.4 times less than our revisionist estimate, and
the difference is largely due to Rivest, Shamir, and Adleman’s assumption of a 1 MHz clock
rate. In other words, the failure of RSA-663 was as much a failure to predict technological
advances as it was a failure to predict algorithmic advances.

Similarly, while technological advances certainly enabled the Bernstein–Lange–Peters
attack, the failure of the original McEliece parameters was in a large part due to algorithmic
advances as well. McEliece arrived at his “work factor of [...] 265” estimate by what we
might now call a conservative analysis. In 1987, Adams and Meijer put the work factor
of the same attack at 280.7 [2]. In 1988, Lee and Brickell claimed an improved attack
with a work factor of 269.6 [25]. In 1998, Canteaut and Sendrier claimed a “certainly still
infeasible” attack with a cost of 264.2 bit operations [13]. And in 2008, Bernstein, Lange,
and Peters improved this to 260.1 bit operations. There was a million fold reduction from
the Adams–Meijer estimate to the Bernstein–Lange–Peters estimate. All of it was due to
algorithmic techniques that only yield polynomial factor improvements asymptotically.

It may well be that the algorithmic techniques that broke these systems could not have
been predicted. The technological advances, on the other hand, were predictable. In fact,
they were predicted.

1.4 Technological assumptions

When Adams and Meijer revisited McEliece’s analysis in 1987, they concluded that the
parameter set “appears to be fairly secure.” They justified this by saying that the cost of
the attack (280.7 bit operations) was “significantly higher” than the cost of an attack on
the US Data Encryption Standard, DES. This comparison with DES is revealing. In 1977,
Diffie and Hellman [16] had argued that the 56-bit DES cipher offered an inadequate level
of security. With extraordinary attention to existing computer technology, they argued

7

that for $20 000 000 one could build a machine that would break DES in 12 hours. They
projected a decrease in cost to $200 000 by 1987.

Not all of Diffie and Hellman’s assumptions have held up. Notably, they were writing
before physically realistic models of reversible computing had been constructed, and they
were of the opinion that “quantum mechanical and thermodynamic considerations rule
out exhaustive searches on keys of several hundred bits” [16]. Yet their estimates were
sound, as evidenced by public demonstrations of attacks on DES in the mid-90s. Their
ultimate recommendation that “a 128-bit or larger key is needed to preclude exhaustive
search” holds up even today.

Contemporary cryptosystems continue to use complex economic and technological as-
sumptions to justify security at the 128-bit level. Let’s take the widely deployed X25519
key exchange protocol as an example.

X25519 can be broken, using Pollard’s rho algorithm, at a cost of about 2125 elliptic
curve point additions [11]. In his 2006 security analysis of the scheme, Bernstein estimates
technological facts like “a modern CPU costs about 26 dollars” and “one can fit [about 210

parallel rho] circuits into the same amount of circuitry as a modern CPU.” He calculates
that a billion-dollar machine operating for a year could compute 280 elliptic curve point
additions. While this would suffice to compute a 160-bit elliptic curve discrete logarithm,
Bernstein notes that it would only have a 2−90 chance of breaking X25519. He concludes
that, while “one must adjust these estimates as chip technology improves,” the X25519
“security level will remain comfortable for the foreseeable future” [11].

Bernstein’s analysis is part of a long history of cost estimates for the rho method. In
1996, van Oorschot and Wiener presented a parallel variant of the rho method and gave
detailed hardware designs for several applications [36]. They reason from a 1993 hardware
design for curve arithmetic from Agnew–Mullin–Vanstone [3]. This design performs one
point addition every 50µs on a chip with an area of 1 mm2. Van Oorschot and Wiener
estimate that an attacker with a billion dollar budget could compute 270 point additions
per year.3

The technological assumptions made by van Oorschot–Wiener are quite modest, presum-
ably because they were challenging a security claim rather than predicting the capabilities of
future attackers. The Agnew–Mullin–Vanstone design assumes a 1.5 µm fabrication process

3I am extrapolating for easier comparison with Bernstein’s estimate. The original estimate is 260 point
additions in 32 days with a ten million dollar hardware budget.

8

(a technology from 1981). Bernstein’s estimate follows a hardware design from Franke–
Kleinjung–Paar–Pelzl–Priplata–Šimka–Stahlke [19], which assumes a 130 nm fabrication
process (a technology from 2001). Moore–Dennard scaling4 predicts a factor of 210.5 gap
between the van Oorschot–Wiener and Bernstein estimates. A factor 27 of this is due to an
increase in the number of transistors per millimeter at constant price and a factor 23.5 is
due to an increase in clock rate at constant power density.

2 Our technological prospects

We can use a Moore–Dennard model to update Bernstein’s estimate for 2020 technology.
Dennard-type frequency scaling slowed significantly at 65 nm processes. So I will assume
Moore–Dennard scaling from 130 nm to 65 nm and then Moore scaling alone to 7 nm. Scaling
the Franke–Kleinjung–Paar–Pelzl–Priplata–Šimka–Stahlke design to 65 nm gives a factor
≈ 23 increase in point additions per second at a fixed hardware and power budget. Scaling
further to a modern 7 nm process gives a 26.5 factor increase in transistor count at a fixed
hardware budget. This crude model suggests that an adversary who could buy a 280 point
addition per year device in 2001 could buy a 289.5 point addition per year device in 2020.
Whether they could power it is a different question—their energy expenditures would be
26.5 times greater.

Are 289.5 point additions per year plausible? The largest cryptanalytic machine in
operation is, arguably, Bitcoin. It is composed of thousands of volunteer-run computers,
which are commonly referred to as “mining rigs” or “miners.” The overall architecture of
the machine is strikingly similar to what a cryptanalyst would design for a parallel collision
search: each miner iterates through inputs to SHA-256 looking for pre-images of certain
distinguished strings. They report any pre-images that they find to a distributed database.
The miners’ method of iteration differs from what is done in the van Oorschot–Wiener
algorithm, but not in a way that significantly affects circuit size.

As of January 1, 2020 Bitcoin computes approximately 226 terahashes per second.5

One terahash is roughly 240 invocations of the SHA-256 hash function. One invocation of

4Moore-Dennard scaling is the silicon industry trend of exponentially increasing transistor count and
clock rate at constant price ($) and constant power (W) per square millimeter. For sufficiently large devices,
scaling linear features down by a factor of

√
2 will double transistor count per square millimeter and will

reduce energy-per-switching by a factor of
√

2. For small devices this reduction in energy-per-switching
breaks down.

5https://www.blockchain.com/charts/hash-rate

9

https://www.blockchain.com/charts/hash-rate

SHA-256 is roughly 217 logic gates.6 Ignoring growth in the network, it is reasonable to
assume that Bitcoin will perform on the order of 291 SHA-256 evaluations, or 2108 logic
gates, in 2020.

If we assume that a circuit for SHA-256 is the same size as a circuit for an elliptic curve
point addition, and we assume that Bitcoin enthusiasts have made a one billion dollar
investment in hardware, then the current size of Bitcoin suggests that 289.5, or even 291,
point additions per year are indeed possible.

How many more point additions per year are plausible? In 2020, Bitcoin will use
on the order of 77 TW h of electricity,7 which is about one third of one percent of global
electricity consumption. Its energy usage is a significant barrier to further scaling.

Its physical size is also a barrier. Bitcoin generates about 11 thousand tons (233.4 g) of
electronic waste per year,8 much of it old mining hardware that has been made obsolete.
Since most of the mining is done by new machines, 11 thousand tons is a good estimate for
the weight of a machine as powerful as Bitcoin.

Global electronic waste production is about 50 million tons (245.5 g) per year, and is
only expected to grow to twice that by 2050.9 The types of things we throw away lag a
bit behind the types of things that we produce, but it’s not so hard to imagine change.
We could cut back on televisions, cell phones, and refrigerators and make Bitcoin mining
hardware instead.

An 11 million ton machine, made of state-of-the art 2020 hardware, would perform
on the order of 2101 SHA-256 evaluations per year, or 2118 logic gates per year. It would
consume energy on par with the current global electricity supply. It would have a roughly
2−54 chance of finding a SHA-256 collision in the process. A similar amount of hardware
would have a similar chance of breaking X25519 in one year.

Building and powering this 11 million ton machine would take a massive, shameful, and
nauseating re-alignment of capital. We should not build this device, but we should also not
assume that our adversaries are constrained by good morals. Nor should we assume that
computing hardware will not improve.

6Based on Steven Goldfeder’s MPC circuits: http://stevengoldfeder.com/projects/circuits/
sha2circuit.html

7Based on the Cambridge Bitcoin Electricity Consumption Index, https://www.cbeci.org/. See also:
https://digiconomist.net/bitcoin-energy-consumption.

8https://digiconomist.net/bitcoin-electronic-waste-monitor/
9Based on the 2019 World Economic Forum Global E-Waste Report: http://www3.weforum.org/docs/

WEF A New Circular Vision for Electronics.pdf.

10

http://stevengoldfeder.com/projects/circuits/sha2circuit.html
http://stevengoldfeder.com/projects/circuits/sha2circuit.html
https://www.cbeci.org/
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-electronic-waste-monitor/
http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Future computer technologies The energy efficiency of mining hardware has improved
dramatically. However, the gains have been modest since the first application-specific mining
chips were introduced. The BITMAIN BM1382 chip, introduced in 2014 and built with
a 28 nm fabrication process, consumes 770 J/THash. The newer BITMAIN BM1397 chip,
introduced in 2019 and built with a 7 nm process, consumes 40 J/THash. This significantly
outpaces silicon industry projections, and we can infer that most of the improvement is due
to application-level design changes.

If one could divert the 256 watts of solar energy that reach Earth’s surface to BM1397
chips, with perfect efficiency, one could perform 2115.7 SHA-256 evaluations per year
(0.025 THash/J × 256 J/s × 225 s). More efficient chips are needed to reach 2128 SHA-256
evaluations per year.

The IEEE International Roadmap for Devices and Systems’ More Moore team projects
an 18% generation-to-generation reduction in energy-per-switching for the six generations
of fabrication processes scheduled between 2020 and 2034 [22, Section 4.3]. This would lead
to an overall 3× improvement in efficiency by 2034. Hence, in the near future, we will have
chips that could reach 2118 SHA-256 evaluations per year if given all 256 watts of available
solar energy.

Would a further thousand fold increase in efficiency render SHA-256 insecure?

No. The physical size of the device would be prohibitive, as would acquiring the energy.
A machine weighing 11 billion tons and composed of 40 J/PHash mining rigs would only
perform 2121 SHA-256 evaluations per year. This machine would weigh as much as a
thousand years of electronic waste. It would consume an amount of electricity that is on
par with global supply. And if its material substance was extracted from the Earth using
the same processes that have brought us the BM1397, the human suffering and ecological
devastation caused by its construction would be unspeakable. It would still only have a
2−14 chance of finding a SHA-256 collision in one year.

Even a machine that is a million times larger than Bitcoin and made out of chips
that are a thousand times more efficient than the BM1397 would be unlikely to find a
SHA-256 collision. Chips a thousand times more efficient than the BM1397 would still have
switching energies that are orders of magnitude above Landauer’s bound. Still, I know of
no technology that promises a thousand fold improvement.

11

3 Our habits

The physicist David Mermin writes that “A bad habit is something you do, without being
fully aware of it, that makes life harder than it needs to be. It is a bad habit of physicists
to take their most successful abstractions to be real properties of our world” [28].

At the beginning of this chapter I mentioned that we, as cryptographers, have some
freedom in choosing our physical assumptions. We do not have to discard the possibility
of public key cryptography just because there are spacetimes with closed timelike curves
(where P = PSPACE [1, 4]). We do not even have to form an opinion about whether our
spacetime has closed timelike curves. Technological and economic assumptions protect us
from the rough edges of established physical theory, and they allow us to construct efficient
cryptosystems. Making these assumptions is a good habit.

We have habits that make life difficult as well. We conflate abstract machines with real
machines. We have held on, for too long, to a dream of making technology-independent
predictions. And we have ignored some of the few hard physical constraints that are known.

As we revise our security analyses to deal with quantum adversaries, we would do well
to incorporate new physical constraints into our machine models—even if these constraints,
like constraints on reversibility, are conjectural.

We might start by re-examining the following features.

� Zero-cost quantum storage. The notion that wires in a quantum circuit incur no
cost per unit time.

� Unit-cost random access memory. The notion that an arbitrary element of a
memory can be queried at a cost that does not grow with the memory size.

� Unit-cost quantum accessible classical memory (qRAM). The notion that an
arbitrary superposition of the elements of a memory can be constructed at a cost that
does not grow with the memory size.

� Zero-cost classical computation. The notion that classical computation can be
ignored when costing quantum algorithms.

The papers below raise issues around the use of non-volatile quantum memory (Chapter 2),
quantum accessible classical memory (Chapter 3), and free classical computation (Chapter 4).
In Chapter 5, I conclude with several concrete recommendations that I hope will move us
closer to more realistic machine models.

12

Before we move on, let’s pause to consider the cost of large classical memories. It will
be useful to have a sense for these in our later discussions of quantum memory and qRAM.

3.1 Large classical memories

Shopping for a high-end micro-SD card can give you a sense of the near-term limits of large
memories. A micro-SD card is small and light: just 15 mm× 11 mm× 1 mm and 0.5 g. You
could fit one comfortably in this rectangle:

But if you want to pack a lot of chips into a small area you will stand them on end, .
This orientation has a footprint of just 23.5 mm2.

The five boroughs of New York City lie on about 800 km2 (249.5 mm2) of land. A 15 mm
thick shell of 246 micro-SD cards would occupy about the same area. This is a large, but
not inconceivable, amount of electronics, with a mass on par with the electronic waste
produced world-wide in one year.

The high-end micro-SD cards available today hold an impressive terabyte of data (243

bits). A New York City-sized memory of these chips would have a capacity of 289 bits. I
doubt that there is the political will to build a memory this large—even at one cent per chip
the device would cost about a trillion dollars—but I see no obvious physical or technological
barriers.

Large memory computations The idle power draw of a micro-SD card is on the order
of milliwatts. The power draw for 246 cards, if we imagine a parallel computation that
requires all of the cards to be powered simultaneously, would be on the order of gigawatts.

Sorting is a good example of a memory intensive computation.10 Wiring 246 micro-SD
cards to support a random access algorithm like quicksort would be expensive (cf. Wiener’s
notion of the “full cost” of a cryptanalytic attacks [37]). But it is worth noting that
micro-SD cards already contain microcontrollers for reading and writing their contents.
Adding circuitry for communication between neighboring cards would not add much cost.
Adding circuitry for each card to perform some simple computation would also not add
much cost.

10Sorting is also the bottleneck in simulating quantum circuits [21, Section 3.2-3.3].

13

The cost of sorting 246 one-terabyte integers on a two-dimensional mesh is ≈ 2112 bit
operations (roughly 246 ·

√
246 parallel comparison steps each of which is followed by a

routing step that moves 243 bits).

Bitcoin’s power draw is also on the order of gigawatts and it performs a similar number
of bit operations in one year. The bit operations in a large mesh sort, which push data across
millimeters of wire, are slower and more energetically expensive than the bit operations
in a hash function evaluation. So we can expect that sorting 246 one terabyte integers,
with current technology, would take longer than one year. Sorting 289 bits worth of smaller
integers would take even longer.

For the sake of comparison, the world record for energy efficient sorting is currently
held by the KioxiaSort machine of Sano–Mahmoud–Suzuki.11 KioxiaSort uses 216.4 J to sort
one terabyte worth of 110-byte values. The process takes 9 minutes. The energetic cost of
sorting 246 separate one-terabyte data sets is already 10 TW h. This could be performed
in one year by running KioxiaSort 216 times sequentially on 230 parallel machines. The
hardware cost would be tens or hundreds of billions of dollars (ignoring the cost of idle
storage). The energetic cost and time do not include the cost of merging 246 sorted one
terabyte lists, which would be the stage at which data is moved over many kilometers.

Future memory technology Putting aside the cost of computing with a large memory,
how large of a memory might we make in the future?

The flash memory in a micro-SD card is composed of cells. Each cell stores a small
number of bits, say 4, in the threshold voltage state of a single transistor. There are a
variety of cell designs, and any given design can be fabricated at a variety of sizes using
different fabrication techniques. Older “two-dimensional” cells can be scaled down to about
15 nm on a side using current processes. They cannot be scaled down much further, as
statistical fluctuations in the number of stored electrons on the transistor’s gate would limit
their reliability. The terabyte micro-SD cards on the market today are based on “three-
dimensional” cells which are about 100 nm on a side. The benefit of these three-dimensional
cells is that they can be layered. Current high-end chips have 96 layers.

The IRDS More Moore roadmap [22] is somewhat optimistic about future flash memory
scaling: more layers may be possible, maybe 256; and some amount of area scaling may
also occur, especially as the limits of vertical scaling are reached. Both lead to greater
memory density. But this trend cannot continue forever. A petabyte (253 bit) micro-SD
card would push the physical limits of flash memory technology. It would require something

11See http://sortbenchmark.org/ and http://sortbenchmark.org/KioxiaSort2019.pdf.

14

http://sortbenchmark.org/
http://sortbenchmark.org/KioxiaSort2019.pdf

like 1024 layers of cells that are 15 nm on a side, and these cells would have to store 8 bits
each. There are emerging memory technologies that might replace flash, but nothing in the
roadmap promises significantly greater density.

A New York City-sized layer of petabyte micro-SD cards would only hold 299 bits. A 15
millimeter thick shell of petabyte micro-SD cards around the Earth—the surface area of
which is about a million times larger than that of New York City—would only hold 2119

bits. A 15 kilometer thick shell of petabyte micro-SD cards around the Earth would only
hold 2139 bits (and it would have a mass comparable with that of the Moon).

I say “only” in each case because cryptographers commonly consider much larger
memories. The attack used to evaluate the security of Frodo-976 in [29] requires12 a memory
of at least 2168.2 bits. A memory this large cannot be built on Earth (compare with “2139”
above). A memory this large cannot even be built in our solar system: an 800 year long
project to disassemble Jupiter and turn it into a thin shell of petabyte micro-SD cards
revolving about the sun would only yield a memory of 2153 bits.

A similar attack on the lower-security Frodo-640 parameter set requires at least 2120.6

bits. It is difficult to imagine placing this amount of memory on Earth, even if one assumes
(as we have with our petabyte micro-SD cards) that memory density will improve by a
factor of a thousand over current technologies. To fit 2120.6 bits of memory in New York
City, one would need to assume a factor of a billion increase in density instead.

In the chapters that follow, we will see a classical algorithm that outperforms a quantum
algorithm if it has a sufficiently large memory (Chapter 2) and a quantum algorithm that
outperforms a classical algorithm if it has a sufficiently large memory (Chapter 3). A
security analysis that involves these algorithms will, in some cases, involve a discussion
about whether or not a memory of a certain size can be built. I hope that the points of
reference given here can serve as a starting point in that discussion.

12For a lattice in dimension d, it is reasonable to assume that sieving algorithms store(
I3/4((d− 1)/2, 1/2)

)−1
= 2(0.2075···+o(1))d vectors where Ix(a, b) is the regularized incomplete beta function.

See Chapter 3. Each vector is at least d bits. For Frodo-976 take d = 746. For Frodo-640 take d = 520.

15

Chapter 2

SIKE

Mathematical models of computation are abstract
constructions, by their nature unfettered by
physical laws. However, if these models are to
give indications that are relevant to concrete
computing, they must somehow capture, albeit in
a selective and stylized way, certain general
physical restrictions to which all concrete
computing processes are subjected.

Tommaso Toffoli (1980)

16

Context

Parallel collision search is one of the great success stories of cryptanalysis. Its theoretical
analysis translates into real improvements in the cost of attacks. And, as we saw in the
introduction, cryptanalysts have been reasonably successful in predicting the problem
instances that can be solved with it.

Do quantum computers improve on this well understood and predictable attack?

In 1997, Brassard, Høyer, and Tapp gave an application of Grover’s algorithm to collision
search. Their algorithm finds a collision in a 2-to-1 function f : [N]→ [N]. It uses N1/3+o(1)

bits of quantum accessible classical memory and N1/3+o(1) queries to f . In 2003, Grover
and Rudolph questioned the practical significance of this algorithm. In 2009, Bernstein
drew an explicit comparison with the cost of the van Oorschot–Wiener algorithm.

Parallel collision search can also be used to find a claw between a pair of functions, i.e.
given f, g : [N] → [N] parallel collision search can be used to find some (x, y) such that
f(x) = g(y). A quantum algorithm for the claw finding problem was given by Tani. This
algorithm uses N1/3+o(1) bits of quantum memory (rather than quantum accessible classical
memory) and N1/3+o(1) queries to f and g.

Samuel Jaques and I question the practical significance of Tani’s algorithm below.
The argument we make is stronger than the argument made by Grover–Rudolph and by
Bernstein, because quantum memory is a stronger resource than qRAM. We find that in the
standard quantum circuit model known quantum collision search algorithms apply N1/2+o(1)

gates.

The standard quantum circuit model assigns zero cost to the identity gate. This is
inconsistent with current designs for quantum computers and with dissipative quantum
error correction in general. Jaques and I therefore argue that a “depth-width” metric, which
is closely related to the cost metrics that are used by quantum computing experimentalists,
is favorable to a gate count metric. In the depth-width metric, our N1/2+o(1) claim is
relatively easy to establish.

Why do we not use the depth-width metric for classical RAM model computation? The
SRAM in a computer’s CPU caches needs a continuous power supply. The DRAM in its
main memory is effectively indistinguishable from a large parallel computer (as illustrated
by “RowHammer” side-channel attacks,1 and even more strikingly by the “ComputeDRAM”

1Kim, Yoongu, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. “Flipping bits in memory without accessing them: An experimental study

17

project2). But it is at least possible to build a classical computer that has only non-volatile
memory. The paper tape of a Turing machine is non-volatile, as is the flash memory in a
micro-SD card. So, other problems with the RAM model aside, zero-cost storage is neither
physically nor technologically unrealistic.

Like dissipationless and arbitrarily fast computation, non-volatile quantum memory
may be physically possible. However, its use in the quantum circuit model is an historical
accident rooted in analogy rather than empiricism. Deutsch did not assume reliable non-
volatile quantum memory when he proposed the quantum Turing machine. The assumption
was introduced later, and it may represent a physical impossibility.

Does the choice between gate cost and depth-width cost matter? Jaques and I find a
small gap between the gate and depth-width cost of Tani’s algorithm. In a very recent
paper,3 Jaques and Schrottenloher raise the stakes substantially: they claim an exponential
gap between the gate and depth-width costs of a different collision finding algorithm.

Detailed statement of contributions

Section 2 was primarily written by myself, with editorial contributions from Samuel Jaques.
Sections 3 and 5 were primarily written by Samuel Jaques, with editorial contributions by
myself. We made equal contributions to Section 4 and 6. Samuel Jaques contributed the
TikZ diagrams of Figures 1 and 2. We made equal contributions to the software.

of DRAM disturbance errors.” ACM SIGARCH Computer Architecture News 42, no. 3 (2014): 361-372.
https://dl.acm.org/doi/pdf/10.1145/2678373.2665726

2Gao, Fei, Georgios Tziantzioulis, and David Wentzlaff. “ComputeDRAM: In-memory compute using
off-the-shelf DRAMs.” In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 100-113. 2019. https://dl.acm.org/doi/pdf/10.1145/3352460.3358260

3https://eprint.iacr.org/2020/424.pdf

18

https://dl.acm.org/doi/pdf/10.1145/2678373.2665726
https://dl.acm.org/doi/pdf/10.1145/3352460.3358260
https://eprint.iacr.org/2020/424.pdf

Quantum cryptanalysis in the RAM model:

Claw-finding attacks on SIKE

Samuel Jaques John M. Schanck

Abstract We introduce models of computation that enable direct comparisons be-
tween classical and quantum algorithms. Incorporating previous work on quantum
computation and error correction, we justify the use of the gate-count and depth-
times-width cost metrics for quantum circuits. We demonstrate the relevance of
these models to cryptanalysis by revisiting, and increasing, the security estimates
for the Supersingular Isogeny Diffie–Hellman (SIDH) and Supersingular Isogeny Key
Encapsulation (SIKE) schemes. Our models, analyses, and physical justifications have
applications to a number of memory intensive quantum algorithms.

1 Introduction

The US National Institute of Standards and Technology (NIST) is currently stan-
dardising post-quantum cryptosystems. As part of this process, NIST has asked
cryptographers to compare the security of such cryptosystems to the security of
standard block ciphers and hash functions. Complicating this analysis is the diversity
of schemes under consideration, the corresponding diversity of attacks, and stark
differences in attacks on post-quantum schemes versus attacks on block ciphers and
hash functions. Chief among the difficulties is a need to compare classical and quantum
resources.

NIST has suggested that one quantum gate can be assigned a cost equivalent to
Θ(1) classical gates [34, Section 4.A.5]. However, apart from the notational similarity
between boolean circuits and quantum circuits, there seems to be little justification
for this equivalence.

Even if an adequate cost function were defined, many submissions rely on proxies for
quantum gate counts. These will need to be re-analyzed before comparisons can be
made. Some submissions use query complexity as a lower bound on gate count. Other
submissions use a non-standard circuit model that includes a unit-cost random access
gate. The use of these proxies may lead to conservative security estimates. However,

1. they may produce severe security underestimates — and correspondingly large
key size estimates — especially when they are used to analyze memory intensive
algorithms; and

19

2. they lead to a proliferation of incomparable units.

We aim to provide cryptographers with tools for making justified comparisons between
classical and quantum computations.

1.1 Contributions

In Section 2 we review the quantum circuit model and discuss the role that classical
computers play in performing quantum gates and preserving quantum memories. We
then introduce a model of computation in which a classical random access machine
(RAM) acts as a controller for a memory peripheral such as an array of bits or an
array of qubits. This model allows us to clearly distinguish between costly memory
operations, which require the intervention of the controller, and free operations, which
do not.

We then describe how to convert a quantum circuit into a parallel RAM (PRAM)
program that could be executed by a collection of memory peripheral controllers.
The complexity of the resulting program depends on the physical assumptions in the
definition of the memory peripheral. We give two sets of assumptions that lead to
two distinct cost metrics for quantum circuits. Briefly, we say that G quantum gates
arranged in a circuit of depth D and width (number of qubits) W has a cost of

� Θ(G) RAM operations under the G-cost metric, which assumes that quantum
memory is passively corrected ; and

� Θ(DW) RAM operations under the DW -cost metric, which assumes that
quantum memory is actively corrected by the memory peripheral controller.

These metrics allow us to make direct comparisons between quantum circuits and
classical PRAM programs.

In the remainder of the paper we apply our cost metrics to algorithms of cryptographic
significance. In Section 6 we review the known classical and quantum claw-finding
attacks on the Supersingular Isogeny Key Encapsulation scheme (SIKE). Our analysis
reveals an attack landscape that is shaped by numerous trade-offs between time,
memory, and RAM operations. We find that attackers with limited memory will
prefer the known quantum attacks, whereas attackers with limited time will prefer
the known classical attacks. In terms of the SIKE public parameter p, there are low-
memory quantum attacks that use p1/4+o(1) RAM operations, and there are low-depth
classical attacks that use p1/4+o(1) RAM operations. Simultaneous time and memory
constraints push the cost of all known claw-finding attacks higher. We are not aware

20

of any attack that can be parameterized to use fewer than p1/4+o(1) RAM operations,
although some algebraic attacks may also achieve this complexity.

We build toward our analysis of SIKE by considering the cost of prerequisite quantum
data structures and algorithms. In Section 4 we introduce a new dynamic set data
structure, which we call a Johnson vertex. In Section 5 we analyze the cost of
quantum algorithms based on random walks on Johnson graphs. We find that data
structure operations limit the range of time-memory trade-offs that are available in
these algorithms. Previous analyses of SIKE [20, 21] ignore data structure operations
and assume that time-memory trade-offs enable an attack of cost p1/6+o(1). After
accounting for data structure operations, we find that the claimed p1/6+o(1) attack
has cost p1/3+o(1).

In Section 6.3, we give non-asymptotic cost estimates for claw-finding attacks on
SIKE-n (SIKE with an n-bit public parameter p). This analysis lends further support
to the parameter recommendations of Adj et al. [1], who suggest that a 434-bit p
provides 128-bit security and that a 610-bit p provides 192-bit security. Adj et al.
base their recommendation on the cost of memory-constrained classical attacks. We
complement this analysis by considering depth-constrained quantum attacks (with
depth < 296). Under mild assumptions on the cost of some subroutines, we find that
the best known depth-limited quantum claw-finding attack on SIKE-434 uses at least
2143 RAM operations. Likewise, we find that the best known depth-limited quantum
claw-finding attack on SIKE-610 uses at least 2232 RAM operations.

Our methods have immediate applications to the analysis of other quantum algo-
rithms that use large quantum memories and/or classical co-processors. We list some
directions for future work in Section 7.

2 Machine models

We begin with some quantum computing background in Section 2.1, including the
physical assumptions behind Deutsch’s circuit model. We elaborate on the circuit
model to construct memory peripheral models in Section 2.2. We specify classical
control costs, with units of RAM operations, for memory peripheral models in Section
2.3. On a first read, the examples of memory peripherals given in Section 2.4 may be
more informative than the general description of memory peripheral models in Section
2.2. Section 2.4 justifies the cost functions that are used in the rest of the paper.

21

2.1 Preliminaries on quantum computing

Quantum states and time-evolution. Let Γ be a set of observable configura-
tions of a computer memory, e.g. binary strings. A quantum state for that memory is
a unit vector |ψ〉 in a complex euclidean space H ∼= CΓ. Often Γ will have a natural
cartesian product structure reflecting subsystems of the memory, e.g. an ideal n-bit
memory has Γ = {0, 1}n. In such a case, H has a corresponding tensor product
structure, e.g. H ∼= (C2)⊗n. The scalar product on H is denoted 〈·|·〉 and is Hermitian
symmetric, 〈φ|ψ〉 = 〈ψ|φ〉. The notation |ψ〉 for unit vectors is meant to look like the
right “half” of the scalar product. Dual vectors are denoted 〈ψ|. The set {|x〉 | x ∈ Γ}
is the computational basis of H. The Hermitian adjoint of a linear operator A is
denoted A†. A linear operator is self-adjoint if A = A† and unitary if AA† = A†A = 1.

One of the postulates of quantum mechanics is that the observable properties of a
state correspond to self-adjoint operators. A self-adjoint operator can be written as
A =

∑
i λiPi where λi ∈ R and Pi is a projector onto an eigenspace with eigenvalue

λi. Measurement of a quantum state |ψ〉 with respect to A yields outcome λi with
probability 〈ψ|Pi |ψ〉. The post-measurement state is an eigenvector of Pi.

Quantum computing is typically concerned with only two observables: the configura-
tions of the memory, and the total energy of the system. The operator associated to
the memory configuration has the computational basis vectors as eigenvectors; it can
be written as

∑
x∈Γ λx |x〉〈x|. If the state of the memory is given by |ψ〉 =

∑
x∈Γ ψx |x〉,

then measuring the memory configuration of |ψ〉 will leave the memory in configu-
ration x with probability |〈x|ψ〉|2 = |ψx|2. The total energy operator is called the
Hamiltonian of the system and is denoted H. Quantum states evolve in time according
to the Schrödinger equation4

d

dt
|ψ(t)〉 = −iH |ψ(t)〉 . (1)

Time-evolution for a duration δ yields |ψ(t0 + δ)〉 = Uδ |ψ(t0)〉 where Uδ = exp (−iHδ).
Note that since H is self-adjoint we have U †δ = exp (iHδ) so Uδ is unitary. In general,
the Hamiltonian of a system may vary in time, and one may write H(t) in Eq. 1. The
resulting time-evolution operator is also unitary. The Schrödinger equation applies
only to closed systems. A time-dependent Hamiltonian is a convenient fiction that
allows one to model an interaction with an external system without modeling the
interaction itself.

Quantum circuits. Deutsch introduced the quantum circuit model in [15]. A
quantum circuit is a collection of gates connected by unit-wires. Each wire represents

4Here we are taking Planck’s constant equal to 2π, i.e. ~ = 1.

22

the motion of a carrier (a physical system that encodes information). A carrier has
both physical and logical (i.e. computational) degrees of freedom. External inputs
to a circuit are provided by sources, and outputs are made available at sinks. The
computation proceeds in time with the carriers moving from the sources to the sinks.
A gate with k inputs represents a unitary transformation of the logical state space of
k carriers. For example, if the carriers encode qubits, then a gate with k inputs is
a unitary transformation of (C2)⊗k. Each gate takes some non-zero amount of time.
Gates that act on disjoint sets of wires may be applied in parallel. The inputs to any
particular gate must arrive simultaneously; wires may be used to delay inputs until
they are needed.

Carriers feature prominently in Deutsch’s description of quantum circuits [15, p. 79],
as does time evolution according to an explicitly time-dependent Hamiltonian [15,
p. 88]. However, while Deutsch used physical reasoning to justify his model, in
particular his choice of gates, this reasoning was not encoded into the circuit diagrams
themselves. The gates that appear in Deutsch’s diagrams are defined entirely by the
logical transformation that they perform. Gates, including the unit-wire, are deemed
computationally equivalent if they enact the same logical transformation. Two gates
can be equivalent even if they act on different carriers, take different amounts of
time, etc. Computationally equivalent gates are given the same representation in
a circuit diagram. Today it is common to think of quantum circuits as describing
transformations of logical states alone.

2.2 Memory peripheral models

The memory peripheral models that we introduce in this section generalize the circuit
model by making carriers explicit. We depart from the circuit model as follows:

1. We associate a carrier to each unit-wire and to each input and output wire of
each gate. Wires can only be connected if they act on the same carrier.

2. We assume that the logical state of a computation emerges entirely from the
physical state of its carriers.

3. Our unit-wire acts on its associated carrier by time evolution according to a
given time-independent Hamiltonian for a given duration.

4. We interpret our diagrams as programs for classical controllers. Every gate
(excluding the unit-wire) represents an intervention from the controller.

In sum, these changes allow us to give some physical justification for how a circuit is
executed, and they allow us to assign different costs depending on the justification

23

provided. In particular, they allow us to separate free operations — those that are
due to natural time-independent evolution — from costly operations — those that are
due to interventions from the classical controller.

Our model has some potentially surprising features. A unit-wire that acts on a
carrier with a non-trivial Hamiltonian does not necessarily enact the logical identity
transformation. Consequently, wires of different lengths may not be computationally
equivalent in Deutsch’s sense. In fact, since arbitrary computations can be performed
ballistically, i.e. by time-independent Hamiltonians [16, 28, 24], the unit-wire can
enact any transformation of the computational state. We do not take advantage of
this in our applications; the unit-wires that we consider in Section 2.4 enact the logical
identity transformation (potentially with some associated cost).

A carrier, in our model, is represented by a physical state space H and a Hamiltonian
H : H → H. To avoid confusion with Deutsch’s carriers, we refer to (H, H) as a
memory peripheral.

Definition 2.1. A memory peripheral is a tuple A = (H, H) where H is a finite
dimensional state space and H is a Hermitian operator on H. The operator H is
referred to as the Hamiltonian of A.

The reader may like to keep in mind the example of an ideal qubit memory Q = (C2, 0).

Parallel wires carry the parallel composition of their associated memory peripherals.
The memory peripheral that results from parallel composition of A and B is denoted
A⊗ B. The state space associated with A⊗ B is HA ⊗HB, and the Hamiltonian is
HA⊗ IB + IA⊗HB. We say that A and B are sub-peripherals of A⊗B. We say that a
memory peripheral is irreducible if it has no sub-peripherals. The width of a memory
peripheral is the number of irreducible sub-peripherals it contains.

A quantum circuit on n qubits may be thought of as a program for the memory
peripheral Q⊗n. Programs for other memory peripherals may involve more general
memory operations.

Definition 2.2. A memory operation is a morphism of memory peripherals f : A→ B
that acts as a quantum channel between HA and HB, i.e. it takes quantum states on
HA to quantum states on HB.

The arity of a memory operation is the number of irreducible sub-peripherals on which
it acts. If there is no potential for ambiguity, we will refer to memory operations as

24

gates. Examples of memory operations include: unitary transformations of a single
state space, isometries between state spaces, state preparation, measurement, and
changes to the Hamiltonian of a carrier.

In order to define state preparation and measurement it is convenient to introduce a
void peripheral 1. State preparation is a memory operation of the form 1→ A, and
measurement is a memory operation of the form A→ 1. The reader may assume that
1 = (C, 0) in all of our examples.

Networks of memory operations can be represented by diagrams that are almost
identical to quantum circuits. Memory peripherals must be clearly labelled, and
times must be given for gates, but no other diagrammatic changes are necessary. An
example is given in Figure 1.

Just as it is useful to specify a gate set for quantum circuits, it is useful to define
collections of memory peripherals that are closed under parallel composition and
under sequential composition of memory operations. The notion of a symmetric
monoidal category captures the relevant algebraic structure. The following definition
is borrowed from [13, Definition 2.1] and, in the language of that paper, makes a
memory peripheral model into a type of resource theory. The language of resource
theories is not strictly necessary for our purposes, but we think this description may
have future applications.

Definition 2.3. A memory peripheral model is a symmetric monoidal category
(C, ◦,⊗, 1) where

� the objects of C are memory peripherals,

� the morphisms between objects of C are memory operations,

� the binary operation ◦ denotes sequential composition of memory
operations,

� the binary operation ⊗ denotes parallel composition of memory
peripherals and of memory operations, and

� the void peripheral 1 satisfies A⊗ 1 = 1⊗ A = A for all A ∈ C.

2.3 PRAM controllers for memory peripheral models

A memory peripheral diagram can be viewed as a program that tells a classical
computer where, when, and how to interact with its memory. We will now specify a
computer that executes these programs.

25

• I

Z T •
|+〉 •

Peripheral: A B C

Duration: δ1 δ2 δ3 δ4 δ5

(a) A memory peripheral diagram with A = A1 ⊗A2, B = A1 ⊗A2 ⊗B3, and C = C1 ⊗A2 ⊗B3

(numbered top to bottom). The memory peripheral changes from A to B in the second time
step because of the new qubit. The change from B to C in the third time step is marked by a
carrier change that enacts the logical identity gate. Note that truly instantaneous changes are
not possible, but the δi could be very small.

Controller one

1. APPLY “CNOT” (1,2)

2. no op.

3. APPLY “A1 to C1” (0,1)

4. no op.

5. no op.

6. no op.

7. APPLY “CNOT” (2,1)

8. no op.

Controller two

1. no op.

2. STEP

3. no op.

4. no op.

5. APPLY “CZ” (3,2)

6. APPLY “T” (0,2)

7. no op.

8. no op.

Controller three

1. APPLY “INIT” (0,3)

2. no op.

3. no op.

4. STEP

5. no op.

6. no op.

7. no op.

8. STEP

(b) A PRAM program for the memory peripheral diagram of Fig. 1a using the notation of
Section 2.3.

• e−iH
C1 (δ3+δ4)

e−iH
A2δ2 Z T •

|+〉 • e−iH
B3 (δ4+δ5)

(c) A quantum circuit for the memory peripheral diagram of Fig. 1a. Note that the I gate is
absent, and explicit time-evolution with respect to the wire Hamiltonians has been added.

Figure 1: Three representations of a quantum algorithm.

26

Following Deutsch, we have assumed that all gates take a finite amount of time, that
each gate acts on a bounded number of subsystems, and that gates that act on disjoint
subsystems can be applied in parallel. Circuits can be of arbitrary width, so a control
program may need to execute an unbounded number of operations in a finite amount
of time. Hence, we must either assume that the classical control computer can operate
arbitrarily quickly or in parallel.

We opt to treat controllers as parallel random access machines (PRAMs). Several
variants of the PRAM exist [26]. The exact details of the instruction set and concur-
rency model are largely irrelevant here. For our purposes, a PRAM is a collection
of RAMs that execute instructions in synchrony. Each RAM executes (at most) one
instruction per time step. At time step i each RAM can assume that the other RAMs
have completed their step i− 1 instructions. We assume that synchronization between
RAMs and memory peripherals is free.

We assign a unique positive integer to each wire in a diagram, so that an ordered
collection of k memory peripherals can be identified by a k-tuple of integers. We use a
k-tuple to specify an input to a k-ary gate. The memory operations that are available
to a controller are also assigned unique positive integers.

We add two new instructions to the RAM instruction set: APPLY and STEP. These
instructions enable parallel and sequential composition of memory operations, respec-
tively. APPLY takes three arguments: a k-tuple of addresses, a memory operation,
and an (optional) k-tuple of RAM addresses in which to store measurement results.
STEP takes no arguments; it is only used to impose a logical sequence on steps of the
computation

When a processor calls APPLY the designated memory operation is scheduled to be
performed during the next STEP call. In one layer of circuit depth, each RAM processor
schedules some number of memory operations to be applied in parallel and then one
processor calls STEP. If memory operations with overlapping addresses are scheduled
for the same step, the behaviour of the memory peripheral is undefined and the
controller halts. This ensures that only one operation is applied per subsystem per
call to STEP.

A quantum circuit of width W can be converted into O(W) RAM programs by
assigning gates to processors according to a block partition of {1, . . . ,W}. The
blocks should be of size O(1), otherwise a single processor could need to execute
an unreasonable number of operations in a fixed amount of time. If a gate involves
multiple qubits that are assigned to different processors, the gate is executed by the
processor that is responsible for the qubit of lowest address. We have provided an
example in Figure 1b.

To apply a multi-qubit gate, a RAM processor must be able to address arbitrary

27

memory peripherals. This is a strong capability. However, each peripheral is involved
in at most one gate per step, so this type of random access is analogous to the
exclusive-read/exclusive-write random access that is typical of PRAMs.

The cost of a PRAM computation. Every RAM instruction has unit cost,
except for the placeholder “no operation” instruction, no op, which is free. The cost
of a PRAM computation is the total number of RAM operations executed.

2.4 Examples of memory peripheral models

Here we give three examples of memory peripheral models. Example 2.4.1 is clas-
sical and primarily an illustration of the model. It shows that our framework can
accommodate classical memory without changing the PRAM costs. Example 2.4.2 is
a theoretical self-corrected quantum memory that justifies the G-cost. Example 2.4.3
is a more realistic actively-corrected quantum memory that justifies the DW -cost.

2.4.1 Non-volatile classical memories.

A non-volatile bit-memory can store a bit indefinitely without periodic error correction
or read/write cycles. As a memory peripheral, this can simulate other classical
computation models and gives the expected costs.

Technologies. The historically earliest example of a non-volatile bit memory is
the “core memory” of Wang and Woo [41]. A modern example is Ferroelectric RAM
(FeRAM). The DRAM found in common consumer electronics requires a periodic
read/write cycle, which should be included in a cost analysis. While there may be
technological and economic barriers to using non-volatile memory at all stages of the
computing process, there are no physical barriers.

Hamiltonian of a memory cell. A logical bit can be encoded in the net
magnetization of a ferromagnet. A ferromagnet can be modelled as a collection of
spins. Each spin is oriented up or down, and has state |↑〉 or |↓〉. The self-adjoint
operator associated to the orientation of a spin is σz = |↑〉〈↑| − |↓〉〈↓|; measuring |↑〉
with respect to σz yields outcome +1 with probability 1, and measuring |↓〉 yields
outcome −1 with probability 1.

In the d-dimensional Ising model of ferromagnetism, Ld spins are arranged in a regular
square lattice of diameter L in d-dimensional space. The Ising Hamiltonian imposes

28

an energy penalty on adjacent spins that have opposite orientations:

HIsing = −
∑
(i,j)

σ(i)
z ⊗ σ(j)

z .

In 1936 [35] Peierls showed that the Ising model is thermally stable in dimensions
d ≥ 2. The two ground states, all spins pointing down and all spins pointing up, are
energetically separated. The energy required to map the logical zero (all down) to
logical one (all up) grows with L, and the probability of this happening (under a
reasonable model of thermal noise) decreases with L. The phenomenon of thermal
stability in dimensions 2 and 3 provides an intuitive explanation for why we are able
to build classical non-volatile memories like core-memory (see also [14, Section X.A]).

Memory peripheral model. A single non-volatile bit, encoded in the net mag-
netization of an L × L grid of spins, can be represented by a memory peripheral
BL = ((C2)⊗L

2
, HIsing). From a single bit we can construct w-bit word peripherals

WL,w = B⊗wL .

Turing machines, boolean circuits, PRAMs, and various other classical models can
be simulated by controllers for word memory peripheral models. The only strictly
necessary memory operations are those for reading and writing individual words.

2.4.2 Self-correcting quantum memories.

A self-correcting quantum memory is the quantum analogue of a non-volatile bit
memory. The Hamiltonian of the carrier creates a large energy barrier between logical
states. At a sufficiently low temperature the system does not have enough energy for
errors to occur.

The thermal stability of the Ising model in d ≥ 2 spatial dimensions seems to have
inspired Kitaev’s search for geometrically local quantum stabilizer codes [27]. The
two-dimensional toric code that Kitaev defined in [27] is not thermally stable [2].
However, a four-dimensional variant is thermally stable [14, 3]. The question of
whether there exists a self-correcting quantum memory with a Hamiltonian that is
geometrically local in < 4 spatial dimensions remains open.

In two spatial dimensions, various “no-go theorems” suggest that self-correcting
quantum memories may not exist. For example, a stabilizer code defined on a two-
dimensional lattice of qubits cannot self-correct [11]. Brown et al. [12] summarize
generalizations of this no-go result and survey the remaining avenues toward self-
correcting memory in low dimensions.

29

At present, a model of quantum computation that assumes non-volatile memory, i.e.
a free identity gate, and < 4 spatial dimensions is making a physical assumption
about the existence of two- or three-dimensional self-correcting memories. Here we
will simply ignore geometric locality and write down a memory peripheral for the four-
dimensional toric code. Because real devices are limited to three spatial dimensions,
this is purely a theoretical example.

Memory peripheral model. The Hamiltonian for the four-dimensional toric
code can be found in [14, Section X.B]. We will denote it Htoric. Like the four-
dimensional Ising Hamiltonian it is defined on L4 spins arranged in a square lattice.
The memory peripheral Qtoric = (CL4

, Htoric) can serve as a drop-in replacement for
the ideal qubit memory peripheral Q for the purpose of describing the unit-wire.

To execute arbitrary quantum computations on a collection of logical qubits encoded
in Qtoric peripherals, we need memory operations for a universal gate set, initialization,
and measurement. Initialization and Clifford+T gates are described for the two-
dimensional toric code in [14, Section IX] and the four-dimensional versions are similar.
A measurement procedure for the four-dimensional toric code is in [14, Section X.B].
Treating any of these procedures as a single memory operation will mask some classical
control cost that is polynomial in L. Treating the T gate as a single memory operation
masks the use of an additional memory peripheral to hold a resource state.

Cost function. A quantum circuit on n qubits can be converted into a memory
peripheral diagram for Q⊗ntoric and then interpreted as a PRAM program. In this way
we can assign a cost, in units of RAM operations, to the quantum circuit itself. Each
wire in the quantum circuit is assigned a length in the memory peripheral diagram.
The quantum circuit and memory peripheral diagram are otherwise identical. Each
gate in the diagram (including state-preparation and measurement gadgets, but not
unit-wires) is expanded into at least one APPLY instruction. The wires themselves
incur no RAM cost, but one STEP instruction is needed per layer of circuit depth for
synchronization. The number of STEP instructions is no more than the number of
APPLY instructions. The following cost function, the G-cost, is justified by assuming
that each gate expands to O(1) RAM operations.

Definition 2.4 (G-cost). A logical Clifford+T quantum circuit that uses G gates (in
any arrangement) has a G-cost of Θ(G) RAM operations.

Remark 2.1. The depth and width of a circuit do not directly affect its G-cost, but
these quantities are often relevant in practice. A PRAM controller for a circuit that

30

uses G gates in an arrangement that is D gates deep and W qubits wide uses O(W)
RAM processors for Ω(D) time. Various G-cost-preserving trade-offs between time
and number of processors may be possible. For example, a circuit can be re-written so
that no two gates are applied at the same time. In this way, a single RAM processor
can execute any G gate circuit in Θ(G) time. This trade-off is only possible because
self-correcting memory allows us to assign an arbitrary duration to a unit-wire.

2.4.3 Actively corrected quantum memories.

It should be possible to build quantum computers even if it is not possible to build
self-correcting quantum memories. Active error correction strategies are nearing
technological realizability; several large companies and governments are currently
pursuing technologies based on the surface code.

Memory peripheral model. When using an active error correction scheme,
a logical Clifford+T circuit has to be compiled to a physical circuit that includes
active error correction. We may assume that the wires carry the ideal qubit memory
peripheral Q. A more detailed analysis might start from the Hamiltonians used in
circuit QED [9].

Memory operations. The compiled physical circuit will not necessarily use the
Clifford+T gate set. The available memory operations will depend on the physical
architecture, e.g. in superconducting nano-electronic architectures one typically has
arbitrary single qubit rotations and one two-qubit gate [42].

Cost function. We can assume that every physical gate takes Θ(1) RAM op-
erations to apply. This may mask a large constant; a proposal for a hardware
implementation of classical control circuitry can be found in [32]. A review of active
quantum error correction for the purpose of constructing memories can be found in
[39].

An active error correction routine is applied, repeatedly, to all physical qubits regardless
of the logical workload. If we assume that logical qubits can be encoded in a constant
number of physical qubits, and that logical Clifford+T gates can be implemented
with a constant number of physical gates, then the above considerations justify the
DW -cost for quantum circuits.

31

Definition 2.5 (DW-cost). A logical Clifford+T quantum circuit that is D gates
deep, W qubits wide, and uses any number of gates within that arrangement has a
DW -cost of Θ(DW) RAM operations.

Remark 2.2. In contrast with the G-cost, there are no DW -cost preserving trade-offs
between time and number of processors when constructing a PRAM program from a
quantum circuit. A circuit of depth D and width W uses Θ(W) processors for time
Θ(D).

Technologies. Fowler et al. provide a comprehensive overview of the surface code
[17]. Importantly, to protect a circuit of depth D and width W , the surface code
requires Θ(log2(DW)) physical qubits per logical qubit. The active error correction is
applied in a regular cycle (once every 200ns in [17]). In each cycle a constant fraction
of the physical qubits are measured and re-initialized. The measurement results are
processed with a non-trivial classical computation [18]. The overall cost of surface
code computation is Ω(log2(DW)) RAM operations per logical qubit per layer of
logical circuit depth. Nevertheless, future active error correction techniques may bring
this more in line with the DW -cost.

3 Cost analysis: Quantum random access

Our memory peripheral models provide classical controllers with random access to
individual qubits. A controller can apply a memory operation — e.g. a Clifford+T
gate or a measurement — to any peripheral in any time step. However, a controller
does not have quantum random access to individual qubits. A controller cannot call
APPLY with a superposition of addresses. Quantum random access must be built from
memory operations.

In [4], Ambainis considers a data structure that makes use of a “random access gate.”
This gate takes an index i, an input b, and an R element array A = (a1, a2, . . . , aR).
It computes the XOR of ai and b:

|i〉 |b〉 |A〉 7→ |i〉 |b⊕ ai〉 |A〉 . (2)

Assuming that each |aj〉 is encoded in O(1) irreducible memory peripherals, a random
access gate has arity that grows linearly with R. If the underlying memory peripheral
model only includes gates of bounded arity, then an implementation of a random access
gate clearly uses Ω(R) operations. Beals et al. have noted that a circuit for random
access to an R-element array of m-bit strings must have width Ω(Rm) and depth

32

Ω(logR) [5, Theorem 4]. Here we give a Clifford+T construction that is essentially
optimal5.

Rather than providing a full circuit, we will describe how the circuit acts on |i〉 |0〉 |A〉.
The address is logR bits and each register of A is m bits. We use two ancillary arrays
|A′〉 and |A′′〉, both initialized to 0. The array A′ holds R address-sized registers and
O(R) additional qubits for intermediary results, a total of O(R logR) qubits. The
array A′′ is O(Rm) qubits.

We use a standard construction of R-qubit fan-out and R-qubit parity due to Moore
[33]. The fan-out is a tree of O(R) CNOT gates arranged in depth O(logR). Parity
is fan-out conjugated by Hadamard gates. We also use a logR-bit comparison circuit
due to Thapliyal, Ranganathan, and Ferreir [40]. This circuit uses O(logR) gates in
depth O(log logR).

Our random access circuit acts as follows:

1. Fan-out address: Fan-out circuits copy the address i to each register of A′. This
needs a total of logR fan-outs, one for each bit of address. These can all be
done in parallel.

2. Controlled copy: For each 1 ≤ j ≤ R, the boolean value A′[j] = j is stored in the
scratch space associated to A′. The controller knows the address of each register,
so it can apply a dedicated circuit for each comparison. Controlled-CNOTs are
used to copy A[j] to A′′[j] when A′[j] = j. Since A′[j] = j if and only if j = i,
this copies A[i] to A′′[i] but leaves A′′[j] = 0 for j 6= i.

3. Parity: Since A′′[j] is 0 for j 6= i, the parity of the low-order bit of all the A′′

registers is equal to the low-order bit of just A′′[i]. Likewise for the other m− 1
bits. So parallel R-qubit parity circuits can be used to copy A′′[i] to an m-qubit
output register.

4. Uncompute: The controlled copy and fan-out steps are applied in reverse,
returning A′′, A′, and the scratch space to zero.

The entire circuit can be implemented in width O(Rm+R logR). Step 1 dominates
the depth and Step 2 dominates the gate cost. The comparison circuits use O(R logR)
gates with depth O(log logR). To implement the controlled-CNOTs used to copy A[i]
to A′′[i] in constant depth, instead of O(m) depth, each of the R comparison results
can be fanned out to (m − 1) qubits in the scratch space of A′′. This fan-out has
depth O(logm).

5Actually, here and elsewhere, we use a gate set that includes Toffoli gates and controlled-swap gates.
These can be built from O(1) Clifford+T gates.

33

The total cost of random access is given in Cost 1. Observe that there is more than a
constant factor gap between the G- and DW -cost.

Cost 1 Random access to R registers of m bits each.

� Gates: O(Rm+R logR)

� Depth: O(logm+ logR)

� Width: O(Rm+R logR)

4 Cost analysis: Johnson vertex data structure

We expect to find significant gaps between the G- and DW -costs of algorithms that
use a large amount of memory. Candidates include quantum algorithms for element
distinctness [4], subset-sum [7], claw-finding [38], triangle-finding [30], and information
set decoding [25]. All of these algorithms are based on quantum random walks on
Johnson graphs — graphs in which each vertex corresponds to a subset of a finite set.

In this section we describe a quantum data structure for representing a vertex of a
Johnson graph. Essentially, we need a dynamic set that supports membership testing,
uniform sampling from the encoded set, insertion, and deletion. These operations can
be fine-tuned for quantum walk applications. In particular, insertion and deletion only
need to be defined on inputs that would change the size of the encoded set. To avoid
ambiguity, we will refer to these special cases as guaranteed insertion and guaranteed
deletion.

4.1 History-independence

Fix a finite set X . A quantum data structure for subsets of X consists of two parts: a
presentation of subsets as quantum states, and unitary transformations representing
set operations. The presentation must assign a unique quantum state |A〉 to each
A ⊂ X . Uniqueness is a strong condition, but it is necessary for quantum interference.
Different sequences of insertions and deletions that produce the same set will only
interfere if each sequence presents the output in exactly the same way. The set {0, 1}
cannot be stored as |0〉 |1〉 or |1〉 |0〉 depending on the order in which the elements were
inserted. Some valid alternatives are to fix an order (e.g. always store |0〉 |1〉) or to
coherently randomize the order (e.g. always store 1√

2
(|0〉 |1〉+ |1〉 |0〉)). Data structures

that allow for interference between computational paths are called history-independent.

34

Ambainis describes a history-independent data structure for sets in [4]. His construction
is based on a combined hash table and skip list. Bernstein, Jeffery, Lange, and Meurer
[7], and Jeffery [22], provide a simpler solution based on radix trees. Both of these
data structures use random access gates extensively. Our Johnson vertices largely
avoid random access gates, and in Section 4.4 we show that our data structure is more
efficient as a result.

4.2 Johnson vertices

The Johnson graph J(X,R) is a graph whose vertices are R-element subsets of
{1, . . . , X}. Subsets U and V are adjacent in J(X,R) if and only if |U ∩ V| = R− 1.
In algorithms it is often useful to fix a different base set, so we will define our data
structure with this in mind: A Johnson vertex of capacity R, for a set of m-bit strings,
is a data structure that represents an R-element subset of some set X ⊆ {1, . . . , 2m−1}.
This implies log2R ≤ m.

In our implementation below, a subset is presented in lexicographic order in an array
of length R. This ensures that every R element subset has a unique presentation.

We describe circuits parameterized by m and R for membership testing, uniform
sampling, guaranteed insertion, and guaranteed deletion. Since R is a circuit parameter,
our circuits cannot be used in situations where R varies between computational paths6.
This is fine for quantum walks on Johnson graphs, but it prevents our data structure
from being used as a generic dynamic set.

Memory allocation.

The set is stored in a length R array of m-bit registers that we call A. Every register
is initialized to the m-bit zero string, ⊥. The guaranteed insertion/deletion and
membership testing operations require auxiliary arrays A′ and A′′. Both contain
O(Rm) bits and are initialized to zero. It is helpful to think of these as length R
arrays of m-bit registers that each have some scratch space. We will not worry about
the exact layout of the scratch space.

6One can handle a range of capacities using controlled operations, but the size of the resulting circuit
grows linearly with the number of capacities it must handle.

35

Guaranteed insertion/deletion.

Let U be a set of m-bit strings with |U| = R− 1, and suppose x is an m-bit string not
in U . The capacity R− 1 guaranteed insertion operation performs

|U〉 |⊥〉 |x〉 7→ |U ∪ {x}〉 |x〉 .

Capacity R guaranteed deletion is the inverse operation.

Figure 2 depicts the following implementation of capacity R− 1 guaranteed insertion.
For concreteness, we assume that the correct position of x is at index k with 1 ≤ k ≤ R.
At the start of the routine, the first R− 1 entries of A represent a sorted list. Entry
R is initialized to |⊥〉 = |0〉⊗m.

(a). Fan-out: Fan-out the input x to the R registers of A′ and also to A[R], the
blank cell at the end of A. The fan-out can be implemented with O(Rm) gates
in depth O(logR) and width O(Rm).

(b). Compare: For i in 1 to R, flip all m bits of A′′[i] if and only if A′[i] ≤ A[i]. The
comparisons are computed using the scratch space in A′′. Each comparison
costs O(m) gates, and has depth O(logm) and width O(m) [40]. The single bit
result of each comparison is fanned out to all m bits of A′′[i] using O(m) gates
in depth O(logm). The total cost is O(Rm) gates, O(logm) depth.

(c). First conditional swap: For i in 1 to R − 1, if A′′[i] is 11 . . . 1 swap A′[i + 1]
and A[i]. After this step, cells k through R of A hold copies of x. The values
originally in A[k], . . . , A[R− 1] are in A′[k + 1], . . . , A′[R]. Each register swap
uses m controlled-swap gates. All of the swaps can be performed in parallel.
The cost is O(Rm) gates in O(1) depth.

(d). Second conditional swap: For i in 1 to R − 1, if A′′[i] is 11 . . . 1 then swap
A′[i+1] and A[i+1]. After this step, the values originally in A′[k+1], . . . , A′[R]
are in A[k + 1], . . . , A[R]. The cost is again O(Rm) gates in O(1) depth.

(e). Clear comparisons: Repeat the comparison step to reset A′′.

(f). Clear fan-out: Fan-out the input x to the array A′. This will restore A′ back to
the all 0 state. Note that the fan-out does not include A[R] this time.

36

x

0 0

...
...

...
...

A :

A′ :

a1 · · · ak−1 ak ak+1 · · · aR−1 ⊥

0 · · · 0 0 0 · · · 0 0

⊕
•

⊕
•

⊕ • ⊕• ⊕ • ⊕•

⊕

•

⊕
•

⊕

•

⊕
•

⊕
•

⊕

•

⊕
•

⊕

•

⊕
•

(a)

A :

A′ :

A′′ :

a1 · · · ak−1 ak ak+1 · · · aR−1 x

x · · · x x x · · · x x

0 · · · 0 0 0 · · · 0 0

• • • • • • • •
•

⊕

≤?

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

(b)

A :

A′ :

A′′ :

a1 · · · ak−1 ak ak+1 · · · aR−1 x

x x · · · x x x · · · x

0 · · · 0 1 1 · · · 1 1

× × × × × × ×
× × × × × × ×

• • • • • • •

(c)

A :

A′ :

A′′ :

a1 · · · ak−1 x x · · · x x

x · · · x x ak · · · aR−2 aR−1

· · · 0 0 1 · · · 1 1 1

× × × × × × ×
× × × × × × ×

• • • • • • •

(d)

A :

A′ :

A′′ :

a1 · · · ak−1 x ak · · · aR−2 aR−1

x · · · x x x · · · x x

0 · · · 0 1 1 · · · 1 1

• • • • • • • •
•

⊕

≤?

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

(e)

A :

A′ :

A′′ :

a1 · · · ak−1 x ak · · · aR−2 aR−1

x · · · x x x · · · x x

0 · · · 0 0 0 · · · 0 0

(f)

Figure 2: Insertion into a Johnson vertex. See text for full description.

Membership testing and relation counting.

The capacity R membership testing operation performs

|U〉 |x〉 |b〉 7→

{
|U〉 |x〉 |b⊕ 1〉 if x ∈ U
|U〉 |x〉 |b〉 otherwise.

As in guaranteed insertion/deletion, the routine starts with a fan-out followed by a
comparison. In the comparison step we flip the leading bit of A′′[i] if and only if
A′[i] = A[i]. This will put at most one 1 bit into the A′′ array. Computing the parity
of the A′′ array will extract the result. The comparisons use O(Rm) gates in depth
O(logm) [40], as does the parity check [33]. Thus the cost of membership testing
matches that of guaranteed insertion: O(Rm) gates in depth O(logm+ logR).

The above procedure is easily modified to test other relations and return the total
number of matches. In place of the parity circuit, we would use a binary tree of

37

Cost 2 Guaranteed insertion/deletion for a Johnson vertex of capacity R with m-bit
elements.

� Gates: O(Rm)

� Depth: O(logm+ logR)

� Width: O(Rm)

O(logR)-bit addition circuits. With the adders of [37], the cost of the addition tree
is O(R logR) gates in depth O(log2R). The ancilla bits for the addition tree do not
increase the overall width beyond O(Rm). As such, the gate cost of the addition tree
is no more than a constant factor more than the cost of a guaranteed insertion. The
full cost of relation counting will also depend on the cost of evaluating the relation.

Cost 3 Membership testing and relation counting for a Johnson vertex of capacity R
with m-bit elements. The terms TG, TD, and TW denote the gates, depth, and width of
evaluating a relation.

Membership testing Relation counting

Gates: O(Rm) O(Rm+RTG)

Depth: O(logm+ logR) O(log2R + TD)

Width: O(Rm) O(Rm+RTW)

Uniform sampling.

The capacity R uniform sampling operation performs |A〉 |0〉 = |A〉
(

1√
R

∑
x∈A |x〉

)
.

We use a random access to the array A with a uniform superposition of addresses. By
Cost 1, this uses O(Rm) gates in depth O(logm+ logR).

4.3 Random replacement

A quantum walk on a Johnson graph needs a subroutine to replace U with a neigh-
bouring vertex in order to take a step. Intuitively, this procedure just needs to delete
u ∈ U , sample x ∈ X\U , then insert x. The difficulty lies in sampling x in such a way
that it can be uncomputed even after subsequent insertion/deletion operations. The
naive rejection sampling approach will entangle x with U .

38

The applications that we consider below can tolerate a replacement procedure that
leaves U unchanged with probability R/X. We first sample x uniformly from X
and perform a membership test. This yields

√
1/X

∑
x∈X |U〉 |x〉 |x ∈ U〉. Condi-

tioned on non-membership, we uniformly sample some u ∈ U , delete u, and insert
x. Conditioned on membership, we copy x into the register that would otherwise
hold u. The membership bit can be uncomputed using the “u” register. This yields√

1/X
∑

x∈U |U〉 |x〉 |x〉+
√

1/RX
∑
V∼U |V〉 |x〉 |u〉 . The cost of random replacement

is O(1) times the cost of guaranteed insertion plus the cost of uniform sampling in X .

4.4 Comparison with quantum radix trees

In [7] a quantum radix tree is constructed as a uniform superposition over all possible
memory layouts of a classical radix tree. This solves the problem of history-dependence,
but relies heavily on random access gates. The internal nodes of a radix tree store the
memory locations of its two children. In the worst case, membership testing, insertion,
and deletion follow paths of Θ(m) memory locations. Because a quantum radix tree
is stored in all possible memory layouts, these are genuine random accesses to an
R register array. Note that a radix tree of m-bit strings cannot have more than 2m

leaves. As such, logR = O(m) and Cost 1 matches the lower bound for random access
gates given by Beals et al. [5]. Cost 4 is obtained by using Cost 1 for each of the
O(logR) random accesses. The lower bound in Cost 4 exceeds the upper bound in
Cost 2.

Cost 4 Membership testing, insertion, and deletion for quantum radix trees.

Gates: Ω(Rm2)
Depth: Ω(m logm+m logR)
Width: Ω(Rm)

5 Cost analysis: Claw-finding by quantum walk

5.1 Quantum walk based search algorithms

Let S be a finite set with a subset M of “marked” elements. We focus on a generic
search problem: to find some x ∈ M. A simple approach is to repeatedly guess
elements of S. This can be viewed as a random walk. At each step, one transitions
from the current guess to another with uniform probability. The random walk starts
with a setup routine that produces an initial element S. It then repeats a loop of

39

1) checking if the current element is marked, and 2) walking to another element. Of
course, one need not use the uniform distribution. In a Markov chain, the transition
probabilities can be arbitrary, so long as they only depend on the current guess. The
probability of transitioning from a guess of u to a guess of v can be viewed as a
weighted edge in a graph with vertex set S. The weighted adjacency matrix of this
graph is called the transition matrix of the Markov chain.

Quantum random walks perform analogous operations. The elements of S are en-
coded into pairwise orthogonal quantum states. A setup circuit produces an initial
superposition of these states. A check circuit applies a phase to marked elements. An
additional diffusion circuit amplifies the probability of success. It uses a walk circuit,
which samples a new element of S.

Grover’s algorithm is a quantum walk with uniform transition probabilities. It finds
a marked element after Θ(

√
|S| / |M|) check steps. Szegedy’s algorithm can decide

whether or not M is empty for a larger class of Markov chains [36]. Magniez, Nayak,
Roland, and Santha (MNRS) generalize Szegedy’s algorithm to admit even more
general Markov chains [31]. They also describe a routine that can find a marked
element [31, “Tolerant RAA” algorithm]. We will not describe these algorithms in
detail; we will only describe the subroutines that applications of quantum walks must
implement. We do not present these in full generality.

Quantum walk subroutines.

Szegedy- and MNRS-style quantum walks use circuits for the following transformations.
The values u and v are elements of S, and M is the subset of marked elements. The
values pvu are matrix entries of the transition matrix of a Markov chain P . We assume
pvu = puv, and that the corresponding graph is connected.

Set-up: |0 · · · 0〉 7→ 1√
|S|

∑
u∈S
|u〉 |0〉 . (3)

Check: |u〉 |v〉 7→

{
− |u〉 |v〉 if u ∈M,

|u〉 |v〉 otherwise.
(4)

Update: |u〉 |0〉 7→
∑
u∈S

√
pvu |u〉 |v〉 (5)

Reflect: |u〉 |v〉 7→

{
|u〉 |v〉 if v = 0,

− |u〉 |v〉 otherwise.
(6)

40

The walk step applies (Update)−1(Reflect)(Update). After this, it swaps |u〉 and |v〉,
repeats (Update)−1(Reflect)(Update), then swaps the vertices back.

Following MNRS, we write S for the cost of the Set-up circuit, U for the cost of the
Update and C for the cost of the check. The reflection cost is insignificant in our
applications. The cost of a quantum walk also depends on the fraction of marked
elements, ε = |M|/|S|, and the spectral gap of P . With our assumptions, the spectral
gap is δ(P) = 1−|λ2(P)| where λ2(P) is the second largest eigenvalue of P , in absolute
value.

Szegedy’s algorithm repeats the check and walk steps for O(1/
√
εδ) iterations. MNRS

uses O(1/
√
εδ) iterations of the walk step, but then only O(1/

√
ε) iterations of the

check step. MNRS also uses O(log(1/εδ)) ancilla qubits. Cost 5 shows the costs of
both algorithms.

Cost 5 Quantum Random Walks. The tuples S, C, and U are the costs of random walk
subroutines, ε is the fraction of marked vertices, and δ is the spectral gap of the underlying
transition matrix.

Szegedy MNRS

Gates: O
(
SG + 1√

εδ
(UG + CG)

)
O
(
SG + 1√

ε

(
1√
δ
UG + CG

))
Depth: O

(
SD + 1√

εδ
(UD + CD)

)
O
(
SD + 1√

ε

(
1√
δ
UD + CD

))
Width: O (max{SW ,UW ,CW}) O

(
max{SW ,UW + log

(
1
εδ

)
,CW + log

(
1
εδ

)
}
)

5.2 The claw-finding problem

We will now consider a quantum walk algorithm with significant cryptanalytic appli-
cations. The claw-finding problem is defined as follows.

Problem 5.1 (Claw Finding). Given finite sets X , Y, and Z and functions f : X → Z
and g : Y → Z find x ∈ X and y ∈ Y such that f(x) = g(y).

In a so-called golden claw-finding problem the pair (x, y) is unique.

Tani applied Szegedy’s algorithm to solve the decisional version of the claw-finding
problem (detecting the presence of a claw) [38]. He then applied a binary search
strategy to solve the search problem. As noted in [38], the MNRS algorithm can solve
the claw-finding problem directly. The core idea is the same in either case. Parallel

41

walks are taken on Johnson graphs J(X,Rf) and J(Y,Rg), and the checking step
looks for claws.

There are a few details to address. First, since the claw property is defined in terms of
the set Z, we will need to augment the base sets with additional data. Second, we need
to formalize the notion of parallel walks. Fortunately, this does not require any new
machinery. Tani’s algorithm perfoms a walk on the graph product J(X,Rf)×J(Y,Rg).
A graph product G1 ×G2 is a graph with vertex set V (G1)× V (G2) which includes
an edge between (v1, v2) and (u1, u2) if and only if v1 is adjacent to u1 in G1 and
v2 is adjacent to u2 in G2. Our random replacement routine adds self-loops to both
Johnson graphs.

5.3 Tracking claws between a pair of Johnson vertices.

In order to track claws we will store Johnson vertices over the base sets Xf = {(x, f(x)) :
x ∈ X} and Yg = {(y, g(y)) : y ∈ Y}. Alongside each pair of Johnson vertices for
U ⊂ Xf and V ⊂ Yg, we will store a counter for the total number of claws between U
and V.

This counter can be maintained using the relationship counting routine of Section 4.
Before a guaranteed insertion of (x, f(x)) into U we count the number of (y, g(y)) in V
with f(x) = g(y). Evaluating the relation costs no more than equality testing and so
the full relation counting procedure uses O(Rgm) gates in depth O(logm+ log2Rg).
Assuming that Rf ≈ Rg, counting claws before insertion into U is the dominant cost.
We maintain the claw counter when deleting from U , inserting into V, and deleting
from V.

5.4 Analysis of Tani’s claw-finding algorithm

We will make a few assumptions in the interest of brevity. We assume that elements
of Xf and Yg have the same bit-length m. We write X = |X |, Y = |Y|, and
R = max{Rf , Rg}. We also assume that the circuits for f and g are identical; we
write EG, ED, and EW for the gates, depth, and width of either.

In Tani’s algorithm a single graph vertex is represented by two Johnson vertex data
structures. Szegedy’s algorithm and MNRS store a pair of adjacent graph vertices,
so here we are working with two pairs of adjacent Johnson vertices UX ∼ VX and
UY ∼ VY . The main subroutines are as follows.

42

Set-up.

The Johnson vertices UX and UY are populated by sampling R elements of X and
inserting these while maintaining the claw counter. We defer the full cost as it is
essentially O(R) times the update cost.

Update.

The update step applies the random replacement of Section 4.3 to each of the Johnson
vertices. The insertions and deletions within the replacement routine must maintain
the claw counter, so relation counting is the dominant cost of either. Replacement has
a cost of O(1) guaranteed insertion/deletions (from the larger of the two sets) and
O(1) function evaluations. Based on Cost 3 and the cost of evaluating f , the entire
procedure uses O(Rm+ EG) gates in a circuit of depth O(logm+ log2R+ ED) and
width O(Rm+ EW).

Check.

A phase is applied if the claw-counter is non-zero, with negligible cost.

Walk parameters.

Let P be the transition matrix for a random walk on J(X,Rf), formed by normalizing
the adjacency matrix. The second largest eigenvalue of P is λ2 = O(1− 1

Rf
), and is

positive. Our update step introduces self-loops with probability R/X into the random
walk. The transition matrix with self-loops is P ′ = R

X I+(1− R
X)P . The second-largest

eigenvalue of P ′ is λ′2 = R
X + (1− R

X)λ2. Since λ2 is positive, the spectral gap of the

walk with self-loops is δ′f = 1− |λ′2| = Ω
(

1
Rf
− 1

X

)
. In general, the spectral gap of a

random walk on G1 ×G2 is the minimum of the spectral gap of a walk on G1 or G2.
Thus the spectral gap of our random walk on J(X,Rf)× J(Y,Rg) is

δ = Ω

(
1

R
− 1

X

)
.

The marked elements are vertices (UX ,UY) that contain a claw. In the worst case
there is one claw between the functions and

ε =
RfRg
XY

.

43

The walk step will then be applied 1/
√
εδ ≥

√
XY/R times.

In Cost 6 we assume R ≤ (XY)1/3. This is because the query-optimal parameterization
of Tani’s algorithm uses R ≈ (XY)1/3 [38], and the set-up routine dominates the
cost of the algorithm when R > (XY)1/3. The optimal values of R for the G- and
DW -cost will typically be much smaller than (XY)1/3. The G-cost is minimized when
R = EG/m, and the DW -cost is minimized when R = EW /m.

Cost 6 Claw-finding using Tani’s algorithm with |Xf | = X; |Yg| = Y ; R = max{Rf , Rg} ≤
(XY)1/3; m large enough to encode an element of Xf or Yg; and EG, ED, and EW the gates,
depth, and width of a circuit to evaluate f or g.

� Gates: O
(
m
√
XY R + EG

√
XY
R

)
� Depth: O

(
logm

√
XY
R

+ log2R
√

XY
R

+ ED

√
XY
R

)
� Width: O (Rm+ EW)

5.5 Comparison with Grover’s Algorithm

Cost 7 gives the costs of Grover’s algorithm applied to claw-finding. It requires
O(
√
XY) Grover iterations. Each iteration evaluates f and g, and we assume this is

the dominant cost of each iteration. Note that the cost is essentially that of Tani’s
algorithm with R = 1.

Grover’s and Tani’s algorithms have the same square root relationship to XY . Tani’s
algorithm can achieve a slightly lower cost when the functions f and g are expensive.

Cost 7 Claw-finding using Grover’s algorithm with the notation of Cost 6.

Gates: O
(
EG
√
XY

)
Depth: O

(
ED
√
XY

)
Width: O (EW)

44

5.6 Effect of parallelism

The naive method to parallelise either algorithm over P processors is to divide the
search space into P subsets, one for each processor. For both algorithms, parallelising
will reduce the depth and gate cost for each processor by 1/

√
P . Accounting for

costs across all P processors shows that parallelism increases the total cost of either
algorithm by a factor of

√
P . This is true in both the G- and the DW -cost metric. This

is optimal for Grover’s algorithm [43], but may not be optimal for Tani’s algorithm.
The parallelisation strategy of Jeffery et al. [23] is better, but uses substantial
communication between processors in the check step. A detailed cost analysis would
need to account for the physical geometry of the processors, which we leave for future
work.

6 Application: Cryptanalysis of SIKE

The Supersingular Isogeny Key Encapsulation (SIKE) scheme [20] is based on Jao and
de Feo’s Supersingular Isogeny Diffie–Helman (SIDH) protocol [21]. In this section we
describe the G- and DW -costs of an attack on SIKE. Our analysis can be applied to
SIDH as well.

SIKE has public parameters p and E where p is a prime of the form 2eA3eB − 1 and
E is a supersingular elliptic curve defined over Fp2 . Typically eA and eB are chosen
so that 2eA ≈ 3eB ; we will assume this is the case. For each prime ` 6= p, one can
associate a graph, the `-isogeny graph, to the set of supersingular elliptic curves defined
over Fp2 . This graph has approximately p/12 vertices. Each vertex represents an
equivalence class of elliptic curves with the same j-invariant. Edges between vertices
represent degree-` isogenies between the corresponding curves7. A SIKE public key is
a curve EA, and a private key is a path of length eA that connects E and EA in the
2-isogeny graph; only one path of this length is expected to exist.

The `-isogeny graph is (`+ 1)-regular. So the set of paths of length c that start at
some fixed vertex in the 2-isogeny graph is of size 3 · 2c−1. This suggests the following
golden claw-finding problem. Let X be the set of paths of length beA/2c that start at
E, and let Y be the set of paths of length deA/2e that start at EA. Let f : X → Fp2
and g : Y → Fp2 be functions that compute the j-invariant corresponding to the curve
reached by a path. Recovering the private key corresponding to EA is no more difficult

7We are being slightly imprecise, as the `-isogeny graph is actually directed. However, if there is an
edge from u to v corresponding to an isogeny φ, then there is an edge from v to u corresponding to the
dual isogeny φ̂.

45

than finding a claw between f and g. With the typical parameterisation of 2eA ≈ 3eB ,
both X and Y are of size approximately p1/4.

We will fix these definitions of X , Y , f , and g for the remainder. We will also assume
that EG, ED, and EW — the gates, depth, and width of a circuit for evaluating f or g

— are all po(1).

6.1 Quantum claw-finding attacks

Let us first consider a parallel Grover search with P quantum processors using the
parallelisation strategy of Section 5.6. Processor i performs a Grover search on Xi×Yi
where Xi is a subset of X of size p1/4/

√
P , and Yi is a subset of Y of size p1/4/

√
P .

Based on Cost 7 the circuit for all P processors uses p1/4+o(1)
√
P gates, has depth

p1/4+o(1)/
√
P , and has width po(1)P . The only benefit to using more than 1 processor

is a reduction in depth. The G- and the DW -cost both increase with P .

Tani’s algorithm admits time vs. memory trade-offs using both the Johnson graph
parameter R and the number of parallel instances P . With any number of instances,
both the G- and the DW -cost are minimized when R = po(1). Based on Cost 6 the
circuit for P processors uses p1/4+o(1)

√
P gates, has depth p1/4+o(1)/

√
P , and has

width po(1)P . This is identical to Grover search up to the po(1) factors. However, there
may be a benefit to using R > 1 if function evaluations are sufficiently expensive.

6.2 Classical claw-finding attacks

In a recent analysis of SIKE, Adj et al. [1] conclude that the best known classical
claw-finding attack on the scheme is based on the van Oorschot–Wiener (VW) parallel
collision search algorithm. We defer to [1] for a full description of the attack. The VW
method uses a PRAM with P processors and M registers. Each register must be large
enough to store an element of X or Y and a small amount of additional information.

From [1], a claw-finding attack on SIKE using VW on a PRAM with 1 processor and
M registers of memory performs

max

{
p3/8+o(1)

M1/2
, p1/4+o(1)

}
(7)

RAM operations. The o(1) term hides the cost of evaluating f , g, and a hash function.
The algorithm parallelizes perfectly so long as P < M ≤ p1/4. This restriction is to
avoid a backlog of operations on the shared memory. The algorithm performs p1/4+o(1)

shared memory operations in total, and M1/2P/p1/8+o(1) shared memory operations

46

simultaneously. Using memory M > p1/4+o(1) does not reduce the total number of
shared memory operations, hence the second term in Equation 7.

It is natural to treat the P processors in this attack as a memory peripheral controller
for M registers of non-volatile memory. Each processor needs an additional po(1) bits
of memory for its internal state, and each of the M registers are of size po(1). Unlike
the quantum claw-finding attacks that we have considered, the RAM operation cost
of the VW method decreases as the amount of available hardware increases.

The query-optimal parameterisation of Tani’s algorithm has p1/6+o(1) qubits of memory.
In our models this implies p1/6+o(1) classical processors for control with a combined
p1/6+o(1) bits of classical memory. A RAM operation for these processors is equivalent
to a quantum gate in cost and time. Repurposed to run VW, these processors would
solve the claw-finding problem in time p1/8+o(1) with p7/24+o(1) RAM operations. Our
conclusion is that an adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using the classical
control hardware to run van Oorschot–Wiener.

6.3 Non-asymptotic cost estimates

The claw-finding attacks that we have described above can all break SIKE in p1/4+o(1)

RAM operations. However, they achieve this complexity using different amounts
of time and memory. Both quantum attacks achieve their minimal cost in time
p1/4+o(1) on a machine with po(1) qubits. The van Oorschot–Wiener method achieves
its minimal cost in time po(1) on a machine with p1/4+o(1) memory and processors.
A more thorough accounting of the low order terms could identify the attack (and
parameterization) of least cost, but real attackers have resource constraints that might
make this irrelevant.

We use SIKE-n to denote a parameterisation of SIKE using an n-bit prime. We focus
on SIKE-434 and SIKE-610, parameters introduced as alternatives to the original
submission to NIST [1]. Figure 3 depicts the attack landscape for SIKE-434. Figure 4
gives the cost of breaking SIKE-434 and SIKE-610 under various constraints. These
cost estimates are based on assumptions that we describe below.

Cost of function evaluations

The functions f and g involve computing isogenies of (2-smooth) degree approximately
p1/4. We assume that the cost of evaluating f is equal to the cost of evaluating g, and
we let EG, ED, and EW denote the gate-count, depth, and width of a circuit for either.

47

We assume that the classical and quantum gate counts are equal, which may lead us
to underestimate the quantum cost.

The SIKE specification describes a method for computing a degree-2e isogeny that
uses approximately e log e curve operations [20]. Each operation is either a point
doubling or a degree-2 isogeny evaluation. We assume that it costs the attacker
at least 4 log p log log p gates to compute either curve operation. This is a very
conservative estimate given that both operations involve multiplication in Fp2 , and
a single multiplication in Fp2 involves 3 multiplications in Fp. Based on this, we

assume that computing an isogeny of degree ≈ p1/4 costs the attacker at least
(log p)2

(
(log log p)2 − 2 log log p

)
gates. We assume that the attacker’s circuit has

width 2 log p, which is just enough space to represent its output. We assume that the
gates parallelize perfectly so that ED = EG/EW .

For an attack on SIKE-434 our assumptions give EG = 223.4, ED = 213.7, and EW = 29.8.
For an attack on SIKE-610, they give EG = 224.6, ED = 214.3, and EW = 210.3. We
assume that elements of Xf and Yg can be represented in m = (log p)/2 bits.

Grover

Each Grover iteration computes two function evaluations. However, to avoid the issue
of whether these evaluations are done in parallel or in series, we only cost a single
evaluation. We ignore the cost of the diffusion operator. We partition the search
space into P parts and distribute the subproblems to P processors. Each processor
performs approximately p1/4/

√
P Grover iterations. This gives a total gate count of

at least p1/4
√
PEG, depth of at least p1/4ED/

√
P , and width of at least PEW .

For depth-constrained computations we use the smallest P that is compatible with
the constraint. For memory-constrained computations we take P large enough to use
all of the available memory.

Tani

A single instance of Tani’s algorithm stores two lists of size R and needs scratch space
for computing two function evaluations. We only cost a single function evaluation.
We assume that only 2Rm+ EW qubits are needed.

We parallelise the gate-optimal parameterisation, i.e. we take R = EG/m. We partition
the search space into P parts and distribute subproblems to P processors. Each
processor performs roughly p1/4/

√
RP walk iterations. Each walk iteration performs

at least one guaranteed insertion with claw-tracking and at least one function evaluation.
Each insertion costs at least Rm gates. Each function evaluation has depth ED and

48

width EW . The total gate cost across all P processors is at least p1/4
√
P/R(Rm+EG) =

p1/4
√

2mEGP gates in depth at least p1/4ED/
√
RP = p1/4ED

√
m/PEG and uses width

at least P (2Rm+ EW) = P (2EG + EW).

For depth-constrained computations we use the smallest P that is compatible with the
constraint. For memory-constrained computations we take P large enough to use all
of the available memory. If the parallelisation is such that R = EG/m ≥ (p1/2/P)1/3,
which would cause the setup cost to exceed the cost of the walk iteration, we decrease
R.

van Oorschot–Wiener

Each processor iterates a cycle of computing a function evaluation and storing the
result. We only cost a single function evaluation per iteration. Our quantum machine
models assume a number of RAM controllers that is proportional to memory. We
make the same assumption here. When the attacker has M bits of memory we assume
they also have P = M/(EW +m) processors. Intuitively, each processor needs space to
evaluate a function and is responsible for one unit of shared memory. This gives a total
gate count of at least (p3/8/M1/2)EG, a depth of at least (p3/8/M3/2)(EW + m)ED,
and a width of M .

For depth constrained-computations we use the smallest amount of memory that
satisfies the constraint. Unlike the quantum attacks, the gate cost of VW decreases
with memory use, so Tables 4a and 4b do not show the best gate count that VW can
achieve with a depth constraint. For memory-constrained computations we use the
maximum amount of memory allowed.

7 Conclusions and future work

7.1 Impact of our work on the NIST security level of
SIKE

The SIKE submission recommends SIKE-503, SIKE-751, and SIKE-964 for security
matching AES-128, AES-192, and AES-256, respectively. NIST suggests that an
attack on AES-128 costs 2143 classical gates (in a non-local boolean circuit model).
NIST also suggests that attacks on AES-192 and AES-256 cost 2207 and 2272 classical
gates, respectively. We have used “RAM operations” throughout to refer to non-local
bit/qubit operations; our G-cost is directly comparable with these estimates.

49

20 40 60 80 100 120
120

140

160

180

200

Width

R
A

M
op

er
at

io
n
s

20 40 60 80 100 120
0

50

100

150

200

Width

D
ep

th

Grover Tani VW

Figure 3: G-cost and depth of claw-finding attacks on SIKE-434, with the isogeny costs of
Section 6.3. The vertical dashed lines are at the width of the query-optimal parameterisation
including storage, (p1/6 log p)/2. Axes are in base-2 logarithms.

Adj et al. [1] recommend slightly smaller primes: SIKE-434 for security matching
AES-128 and SIKE-610 for security matching AES-192. Their analysis is based on
the cost of van Oorschot–Wiener with less than 280 registers of memory. NIST’s
recommended machine model does not impose a limit on classical memory, but it
does impose a limit on the depth of quantum circuits. Our cost estimates (Figure 4)
suggests that known quantum attacks do not break SIKE-434 using less than 2143

classical gates, or SIKE-610 using less than 2207 classical gates, when depth is limited
to 296. We agree with the conclusions of Adj et al., and believe that NIST’s machine
model should include a width constraint.

We caution that claw-finding attacks may not be optimal. Biasse, Jao, and Sankar
[8] present a quantum attack that exploits the algebraic structure of supersingular
curves defined over Fp. This attack uses p1/4+o(1) quantum gates and 2O(

√
log p) qubits

of memory. Given our analysis of Tani’s algorithm, this attack may be competitive
with other quantum attacks.

50

7.2 Further applications of our memory peripherals

Our analysis should be immediately applicable to other cryptanalytic algorithms that
use quantum walks on Johnson graphs. These include algorithms for subset sum [7],
information set decoding [25], and quantum Merkle puzzles [10].

The G- and DW -cost metrics have applications to classical algorithms that use
quantum subroutines, such as the quantum number field sieve [6], and to quantum
algorithms that use classical subroutines, such as Shor’s algorithm.

Our analysis of quantum random access might affect memory-intensive algorithms
like quantum lattice sieving [29]. However, we only looked at quantum access to
quantum memory. There may be physically realistic memory peripherals that enable
inexpensive quantum access to classical memory (e.g. [19]).

7.3 Geometrically local memory peripherals

Neither of our memory peripheral models account for communication costs. We allow
non-local quantum communication in the form of long-range CNOT gates. We allow
non-local classical communication in the controllers. The distributed computing model
of Beals et al. [5] might serve as a useful guide for eliminating non-local quantum
communication. Note that the resulting circuits are, at present, only compatible
with the DW -cost metric. The known self-correcting qubit memories are built out of
physical qubit interactions that cannot be implemented locally in 3 dimensional space.

51

SIKE-434 SIKE-610

Attack G D W G D W

Grover 190 64 127 280 64 216

Tani 175 63 126 264 64 216

VW 145 64 91 189 63 136

(a) MAXDEPTH = 264

SIKE-434 SIKE-610

Attack G D W G D W

Grover 158 96 63 248 96 152

Tani 143 95 62 232 96 152

VW 155 95 70 200 95 115

(b) MAXDEPTH = 296

SIKE-434 SIKE-610

Attack G D W G D W

Grover 159 95 64 204 140 64

Tani 144 94 64 188 140 64

VW 158 104 64 225 172 64

(c) MAXMEMORY = 264

SIKE-434 SIKE-610

Attack G D W G D W

Grover 175 79 96 220 124 96

Tani 160 78 96 204 124 96

VW 142 56 96 209 124 96

(d) MAXMEMORY = 296

SIKE-434 SIKE-610

Attack G D W G D W

Grover 132 122 10 177 167 10

Tani 124 114 25 169 159 25

VW 132 14 128 177 14 173

(e) G-cost optimal

SIKE-434 SIKE-610

Attack G D W G D W

Grover 132 122 10 177 167 10

Tani 131 122 10 177 166 10

VW 132 14 128 177 14 173

(f) DW -cost optimal

Figure 4: Cost estimates for claw finding attacks on SIKE. All numbers are ex-
pressed as base-2 logarithms. The source code and data for this table can be found
at https://jmschanck.info/code/20200701-schanck-thesis-supplemental.tar.gz. A
backup has also been uploaded to the Internet Archive: https://archive.org/details/
20200701-schanck-thesis-supplemental.

52

https://jmschanck.info/code/20200701-schanck-thesis-supplemental.tar.gz
https://archive.org/details/20200701-schanck-thesis-supplemental
https://archive.org/details/20200701-schanck-thesis-supplemental

Chapter 3

NTRU and LWE

A galactic algorithm is an algorithm that is
wonderful in its asymptotic behavior, but is never
used to actually compute anything.

Richard Lipton (2010)

53

Context

I have been involved with the design of several lattice based cryptosystems. Current
practice assigns one of those systems, ntruhrss701, a 123-bit security level. As such, my
co-authors and I recommended ntruhrss701 to NIST at the lowest of their five security
categories. However, I believe that ntruhrss701 is significantly more secure than this
categorization suggests. The paper below represents my best effort to date to solidify this
belief.

Using the Core-SVP methodology of Alkim–Ducas–Pöppelmann–Schwabe, the cost of
breaking ntruhrss701 is approximated by the cost of solving the shortest vector problem in
dimension ≈ 464. The cost of solving the shortest vector problem in dimension ≈ 464 is
approximated by the cost of one call to the Becker–Ducas–Gama–Laarhoven (BDGL) near
neighbour search algorithm. In dimension 464, current practice estimates

� the cost of BDGL as 2135.5 RAM operations;

� the cost of quantum search assisted BDGL as 2123.0 qubit operations; and

� the memory usage of both classical and quantum BDGL as 2101.8 vectors.

The memory usage is worth dwelling on. The number of bits per vector will be roughly
210. Assuming a memory composed of one petabyte micro-SD cards, a 2111.8 bit memory
with a footprint the size of the five boroughs of New York City would stand over 100 meters
tall. The quantum variant needs all of this memory to be stored in quantum accessible
classical memory (qRAM).

When one looks closely at the memory usage of BDGL in dimension 464, one sees that
the algorithm makes many small searches inside “buckets” that each contain roughly one
petabyte worth of vectors. The paper below focuses on the cost of searching a single bucket.
We work in a RAM model for classical computation and in a quantum circuit model for
quantum computation. Our quantum circuits have unit-cost qRAM gates.

There are problems with assuming unit-cost RAM / qRAM for petabyte memories.
Good programmers restructure RAM model programs to make efficient use of their (real)
computer’s caches. They know that access to a register is less expensive than access to
main memory, that access to main memory is less expensive than access to disk, and so

54

on. They know that without cache-awareness a random access to an N -bit memory that is
embedded in a 3-dimensional space takes Ω(N1/3) seconds.

Good programmers will, likewise, restructure quantum circuits to minimize gate latency
on their (real) quantum computers. A qRAM gate, however, can be used to construct
an arbitrary superposition over the entries of a classical memory. The process relies on
quantum interference and cannot be optimized through cache-awareness. Hence, a qRAM
gate has the latency of a worst-case memory access. In other words, a qRAM gate takes
Ω(N1/3) seconds.

The problems with qRAM appear to be more severe than the problems with RAM. But
the problems with RAM cannot be discounted. Both the classical and the quantum versions
of the algorithms considered below must route input data (a large list of vectors) to the
appropriate buckets. This process is entirely classical.

A full accounting of data movement costs alone would likely call into question the
estimate of 2135.5 RAM operations for BDGL in dimension 464. Bernstein, Chungsatiansup,
Lange, and van Vredendaal have made an argument to this effect in the NTRU Prime
submission document.

Our results below paint a slightly different picture: We estimate the cost of BDGL in
dimension 464 as 2163.8 RAM operations. We estimate the depth-width cost of quantum
search assisted BDGL as 2152.8 qubit-cycles. We further estimate that the cost of quantum
error correction is 2158.5 RAM operations. With our estimates, the combined cost of parallel
near neighbor searches could easily dwarf the cost of routing input data to appropriate
buckets.

Further work will be needed to determine whether the modest quantum cost reduction—
from 2163.8 to 2158.5 RAM operations—survives the translation out of the RAM/qRAM
model.

Detailed statement of contributions

I am solely responsible for Section 3. Eamonn Postlethwaite, Vlad Gheorghiu, and I
made equal contributions to Section 4. Vlad Gheorghiu contributed Figure 1. Eamonn
Postlethwaite and I made equal contributions to Sections 5 and 6. The appendices on the cost
of generalized Toffoli gates and our choice of addition circuit, which are referenced in Section
4 were written by Eamonn Postlethwaite and Vlad Gheorghiu. All authors contributed
significantly to the remainder of the paper. Martin Albrecht, Eamonn Postlethwaite, and I
made equal contributions to the software.

55

Estimating quantum speedups for lattice sieves

Martin R. Albrecht Vlad Gheorghiu Eamonn W. Postlethwaite John M. Schanck

Abstract Quantum variants of lattice sieve algorithms are often used to assess the
security of lattice based cryptographic constructions. In this work we provide a
heuristic, non-asymptotic, analysis of the cost of several algorithms for near neighbour
search on high dimensional spheres. These algorithms are used in lattice sieves. We
design quantum circuits for near neighbour search algorithms and provide software that
numerically optimises algorithm parameters according to various cost metrics. Using
this software we estimate the cost of classical and quantum near neighbour search on
spheres. For the most performant near neighbour search algorithm that we analyse
we find a small quantum speedup in dimensions of cryptanalytic interest. Achieving
this speedup requires several optimistic physical and algorithmic assumptions.

1 Introduction

Sieving algorithms for the shortest vector problem (SVP) in a lattice have received
a great deal of attention recently [1, 2, 9, 19, 35, 44]. The attention mostly stems
from lattice based cryptography, as many attacks on lattice based cryptographic
constructions involve finding short lattice vectors [3, 40, 43].

Lattice based cryptography is thought to be secure against quantum adversaries. None
of the known algorithms to solve SVP (to a small approximation factor) do so in
subexponential time, but this is not to say that there is no gain to be had given a
large quantum computer. Lattice sieve algorithms use near neighbour search (NNS) as
a subroutine; near neighbour search algorithms use black box search as a subroutine;
and Grover’s quantum search algorithm [27] gives a square root improvement to the
query complexity of black box search. A black box search that is expected to take
Θ(N) queries on classical hardware will take Θ(

√
N) queries on quantum hardware

using Grover’s algorithm.

Previous work has analysed the effect of quantum search on the query complexity of
lattice sieves [36, 37]. Of course, one must implement the queries efficiently in order
to realise the improvement in practice. Recent work has given concrete quantum
resource estimates for the black box search problems involved in key recovery attacks
on AES [25, 30] and preimage attacks on SHA-2 and SHA-3 [5]. In this work, we
give explicit quantum circuits that implement the black box search subroutines of

56

several quantum lattice sieves. Our quantum circuits are efficient enough to yield
a cost improvement in dimensions of cryptanalytic interest. However, for the most
performant sieve that we analyse the cost improvement is small and several barriers
stand in the way of achieving it.

Outline and Contributions. We start with some preliminaries in Section 2.
In particular, we discuss the “XOR and Population Count” operation (henceforth
popcount), which is our primary optimisation target. The popcount operation is used
to identify pairs of vectors that are likely to lie at a small angle to each other. It is
typically less expensive than a full inner product computation.

In Section 3 we introduce and analyse a filtered quantum search procedure. We present
our quantum circuit for popcount in Section 4. In Section 5 we provide a heuristic
analysis of the probability that popcount successfully identifies pairs of vectors that are
close to each other. This analysis may be of independent interest; previous work [2, 19]
has relied largely on experimental data for choosing popcount parameters.

In Section 6, we rederive the overall cost of the NNS subroutines of three lattice sieves.
Our cost analysis exposes the impact of the popcount parameters so that we can
numerically optimise these in parallel with the sieve parameters. We have chosen to
profile the Nguyen–Vidick sieve [44], the bgj1 specialisation [2] of the Becker–Gama–
Joux sieve [10], and the Becker–Ducas–Gama–Laarhoven sieve [9]. We have chosen
these three sieves as they are, respectively, the earliest and most conceptually simple,
the most performant yet implemented, and the fastest known asymptotically.

Finally, we optimise the cost of classical and quantum search under various cost
metrics to produce Figures 2 and 3 of Section 7. We conclude by discussing barriers
to obtaining the reported quantum advantages in NNS, the relationship between SVP
and NNS, and future work. We provide the source code used to compute all data in
this work in Appendix E.We consider our software a contribution in its own right; it
is documented, easily extensible and allows for the inclusion of new nearest neighbour
search strategies and cost models.

Interpretation. Quantum computation seems to be more difficult than classical
computation. As such, there will likely be some minimal dimension, a crossover
point, below which classical sieves outperform quantum ones. Our estimates give
non-trivial crossover points for the sieves we consider. Yet, our results do not rule out
the relevance of quantum sieves to lattice cryptanalysis. The crossover points that
we estimate are well below the dimensions commonly thought to achieve 128 bits of
security against quantum adversaries. However, our initial logical circuit level analysis

57

(labelled “q: depth-width” in Figures 2 and 3) is optimistic. It ignores the costs of
quantum random access memory and quantum error correction.

To illustrate the potential impact of error correction, we apply a cost model developed
by Gidney and Eker̊a to our quantum circuits. The Gidney–Eker̊a model was developed
as part of a recent analysis of Shor’s algorithm [22]. In the Gidney–Eker̊a model, the
crossover point for the NNS algorithm underlying the Becker–Ducas–Gama–Laarhoven
sieve [9] is dimension 304. In this dimension, the classical and quantum variants
both perform 2115.6 operations and need at least 276.6 bits of (quantum accessible)
random access memory. A large cost improvement is obtained asymptotically, but for
cryptanalytically relevant dimensions the improvement is tenuous. Between dimensions
352 and 824 our estimate for the quantum cost grows from appoximately 2128 to
approximately 2256. In dimension 352 this is an improvement of a factor of 21.3 over
our estimate for the classical cost. In dimension 824 the improvement is by a factor of
214.0.

We caution that a memory constraint would significantly reduce the range of crypt-
analytically relevant dimensions. For instance, an adversary with no more than 2128

bits of quantum accessible classical memory is limited to dimension 544 and below.
In these dimensions we estimate a cost improvement of no more than a factor of 213.2

at the logical circuit level and no more than 26.8 in the Gidney–Eker̊a metric.

A depth constraint would also reduce the range of cryptanalytically relevant dimensions.
The quantum algorithms that we consider would be more severely affected by a depth
constraint than their classical counterparts, due to the poor parallisability of Grover’s
algorithm.

2 Preliminaries

2.1 Models of computation

We describe quantum algorithms as circuits using the Clifford+T gate set, but we
augment this gate set with a table lookup operation (qRAM). We describe classical
algorithms as programs for RAM machines (random access memory machines).

Clifford+T+qRAM quantum circuits. Quantum circuits can be described
at the logical layer, wherein an array of n qubits encodes a unit vector in (C2)

⊗n
, or

at the physical layer, wherein the state space may be much larger. Ignoring qubit
initialisation and measurement, a circuit is a sequence of unitary operations, one per
unit time. Each unitary in the sequence is constructed by parallel composition of

58

gates. At most one gate can be applied to each qubit per time step. The Clifford+T
gate set

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =

(
1 0

0 eiπ/4

)
,

is commonly used to describe circuits at the logical layer due to its relationship
with some quantum error correcting codes. This gate set is universal for quantum
computation when combined with qubit initialisation (of |0〉 and |1〉 states) and
measurement in the computational basis.

In addition to Clifford+T gates, we allow unit cost table lookups in the form of
qRAM (quantum access to classical RAM). The difference between RAM and qRAM
is that qRAM can construct arbitrary superpositions of table entries. Suppose that
(R0, . . . , R2n−1) are registers of a classical RAM and that each register encodes an `
bit binary string. We allow our Clifford+T circuits access to these registers in the
form of an (n+ `) qubit qRAM gate that enacts

2n−1∑
j=0

αj |j〉 |x〉
qRAM−→

2n−1∑
j=0

αj |j〉 |x⊕Rj〉 . (1)

Here
∑

j αj |j〉 is a superposition of addresses and x is an arbitrary ` bit string.

Quantum access to classical RAM is a powerful resource, and the algorithms we
describe below fail to achieve an advantage over their classical counterparts when
qRAM is not available. We discuss qRAM at greater length in Section 7.

RAM machines. We describe classical algorithms in terms of random access
memory machines. For comparability with the Clifford+T gate set, we will work
with a limited instruction set, e.g. {NOT, AND, OR, XOR, LOAD, STORE}. For
comparability with qRAM, LOAD and STORE act on ` bit registers.

Cost. The cost of a RAM program is the number of instructions that it performs.
One can similarly define the gate cost of a quantum circuit to be the number of gates
that it performs. Both metrics are reasonable in isolation, but it is not clear how one
should compare the two. Jaques and Schanck recommend that quantum circuits be
assigned a cost in the unit of RAM instructions to account for the role that classical
computers play in dispatching gates to quantum memories [31]. They also recommend
that the identity gate be assigned unit cost to account for error correction. The
depth-width cost of a quantum circuit is the total number of gate operations that it
performs when one includes identity gates in the count.

59

2.2 Black box search

A predicate on {0, 1, . . . , N−1} is a function f : {0, 1, . . . , N−1} → {0, 1}. The kernel,
or set of roots, of f is Ker(f) = {x : f(x) = 0}. We write |f | for |Ker(f)|. A black box
search algorithm finds a root of a predicate without exploiting any structure present
in the description of the predicate itself. Of course, black box search algorithms can
be applied when structure is known, and we will often use structure such as “f has
M roots” or “f is expected to have no more than M roots” in our analyses. We will
also use the fact that the set of predicates on any given finite set can be viewed as a
Boolean algebra. We write f ∪ g for the predicate with kernel Ker(f) ∪Ker(g) and
f ∩ g for the predicate with kernel Ker(f) ∩Ker(g).

Exhaustive search. An exhaustive search evaluates f(0), f(1), f(2), and so on
until a root of f is found. The order does not matter so long as each element of the
search space is queried at most once. If f is a uniformly random predicate with M
roots, then this process has probability 1−

(
N−M
j

)
/
(
N
j

)
≥ 1− (1−M/N)j of finding

a root during j evaluations of f . This is true even if M is not known.

Filtered search. If f is expensive to evaluate, we may try to decrease the cost of
exhaustive search by applying a search filter. We say that a predicate g is a filter for
f if f 6= g and |f ∩ g| ≥ 1. We say that g recognises f with a false positive rate of

ρf (g) = 1− |f ∩ g|
|g|

,

and a false negative rate of

ηf (g) = 1− |f ∩ g|
|f |

.

A filtered search evaluates g(0), f(0), g(1), f(1), g(2), f(2), and so on until a root of
f ∩ g is found. The evaluation of f(i) can be skipped when i is not a root of g, which
may reduce the cost of filtered search below that of exhaustive search.

Quantum search. Grover’s quantum search algorithm is a black box search
algorithm that provides a quadratic advantage over exhaustive search in terms of
query complexity. Suppose that f is a predicate with M roots. Let D be any unitary
transformation that maps |0〉 to 1√

N

∑
i |i〉, let R0 = IN − 2|0〉〈0| and let Rf be the

unitary |x〉 7→ (−1)f(x)|x〉. Measuring D|0〉 yields a root of f with probability M/N .
Grover’s quantum search algorithm amplifies this to probability ≈ 1 by repeatedly
applying the unitary G(f) = DR0D

−1Rf [27]. Suppose that j repetitions are applied.

60

The analysis in [27] shows that measuring the state G(f)jD|0〉 yields a root of f with
probability sin2((2j+1) ·θ) where sin2(θ) = M/N . Assuming M � N , the probability
of success is maximised at j ≈ π

4

√
N/M iterations. Boyer, Brassard, Høyer, and Tapp

(BBHT) show that a constant success probability can be obtained after O(
√
N/M)

iterations.

The same complexity can be obtained when M is not known. One simply runs the
algorithm repeatedly with j chosen uniformly from successively larger intervals. The
following lemma contains the core observation.

Lemma 2.1 (Lemma 2 of [13]). Suppose that measuring D|0〉 would yield a root of
f with probability sin2(θ). Fix a positive integer m. Let j be chosen uniformly from
{0, . . . ,m− 1}. The expected probability that measuring G(f)jD|0〉 yields a root of f

is 1
m

∑m−1
j=0 sin2((2j + 1) · θ) = 1

2 −
sin(4mθ)

4m sin(2θ) . If m > 1/ sin(2θ) then this quantity is

at least 1/4.

The complete strategy is made precise by [13, Theorem 3].

Amplitude amplification. Brassard, Høyer, Mosca, and Tapp observed that the
D subroutine of Grover’s algorithm can be replaced with any algorithm that finds
a root of f with positive probability [14]. This generalisation of Grover’s algorithm
is called amplitude amplification. Let A be a quantum algorithm that makes no
measurements and let p be the probability that measuring A|0〉 yields a root of f .
Let G(A, f) = AR0A

−1Rf , where R0 and Rf are as in Grover’s algorithm. Let θ be
such that sin2(θ) = p. Suppose that j iterations of G(A, f) are applied to A|0〉. The
analysis in [14] shows that measuring the state G(A, f)jA|0〉 yields a root of f with
probability sin2((2j + 1) · θ). The BBHT strategy for handling an unknown number
of roots generalises to an unknown p.

2.3 Lattice sieving and near neighbour search on the
sphere

A Euclidean lattice of rank m and dimension d is an abelian group generated by
integer sums of m ≤ d linearly independent vectors in Rd. In this paper we only
consider full rank lattices, i.e. m = d. The shortest vector problem in a lattice Λ is
the problem of finding a non-zero v ∈ Λ of minimal Euclidean norm. Norms in this
work are Euclidean and denoted ‖ · ‖. The angular distance of u, v ∈ Rd is denoted
θ(u, v) = arccos (〈u, v〉/‖u‖‖v‖), arccos(x) ∈ [0, π].

61

A lattice sieve takes as input a list of lattice points, L ⊂ Λ, and searches for integer
combinations of these points that are short. If the initial list is sufficiently large, SVP
can be solved by performing this process recursively. Each point in the initial list can
be sampled at a cost polynomial in d [33]. Hence the initial list can be sampled at a

cost of |L|1+o(1).

Sieves that combine k points at a time are called k-sieves. The sieves that we consider
in this paper are 2-sieves. They take integer combinations of the form u ± v with
u, v ∈ L and u 6= ±v. If ‖u± v‖ ≥ max{‖u‖, ‖v‖} then we say that (u, v) is a reduced
pair, else it is a reducible pair.

We analyse 2-sieves under the heuristic that the points in L are independent and
identically distributed (i.i.d.) uniformly in a thin spherical shell. This heuristic was
introduced by Nguyen and Vidick in [44]. As a further simplification, we assume that
the shell is very thin and normalise such that L ⊂ Sd−1, the unit sphere in Rd. As
such, (u, v) are reducible if and only if θ(u, v) < π/3. The popcount filter, introduced
in Section 2.4, acts as a first approximation to θ(· , ·).
When we model L as a subset of Sd−1, we can translate some lattice sieves into the
language of (angular) near neighbour search on the sphere. For example, the Nguyen–
Vidick sieve [44], which checks all pairs in L for reducibility, becomes1 Algorithm 8
with θ = π/3.

Algorithm 8 AllPairSearch

Require: A list L = (v1, v2, . . . vN) ⊂ Sd−1 of N points. Parameter θ ∈ (0, π/2).
Ensure: A list of pairs (u, v) ∈ L× L with θ(u, v) ≤ θ.

1: function AllPairSearch(L; θ)
2: L′ ← ∅
3: for 1 ≤ i < N do
4: Li ← (vi+1, . . . , vN)
5: Search Li for any number of u that satisfy θ(u, vi) ≤ θ.
6: For each such u found, add (u, vi) to L′.
7: If |L′| ≥ N , return L′.

8: return L′

1This is slightly imprecise. The analogy with the Nguyen–Vidick sieve is completed only when Algorithm 8
is wrapped in a procedure that takes each (u, v) ∈ L′ and maps it to (u± v)/ ‖u± v‖, and then recurses.

62

2.4 The popcount filter

Charikar’s locality sensitive hashing (LSH) scheme [16] is a family of hash functions
H, defined on Sd−1, for which

Pr
h←H

[h(u) = h(v)] = 1− θ(u, v)

π
. (2)

The hash function family is defined by

H =
{
u 7→ sgn(〈r, u〉) : r ∈ Sd−1

}
,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. Equation 2 follows from the
fact that θ(u, v)/π is the probability that uniformly random u and v lie in opposite
hemispheres.

Charikar observed that one can estimate θ(u, v)/π by choosing a random hash
function h = (h1, . . . , hn) ∈ Hn and measuring the Hamming distance between
h(u) = (h1(u), . . . , hn(u)) and h(v) = (h1(v), . . . , hn(v)). Each bit hi(u) ⊕ hi(v) is
Bernoulli distributed with parameter p = θ(u, v)/π. In the limit of large n, the
normalised Hamming weight wt(h(u)⊕ h(v))/n converges to a normal distribution
with mean p and standard deviation

√
p(1− p)/n.

In the sieving literature, the process of filtering a θ(·, ·) test using a threshold on
the value of wt(h(u)⊕ h(v)) is known as the “XOR and population count trick” [2,
19, 20]. Functions in Hn are also used in Laarhoven’s HashSieve [35]. We write
popcountk,n(u, v;h) for a search filter of this type

popcountk,n(u, v;h) =

{
0 if

∑n
i=1 hi(u)⊕ hi(v) ≤ k,

1 otherwise.

When the n hash functions are fixed we write popcountk,n(u, v). The threshold, k,
is chosen based on the desired false positive and false negative rates. Heuristically,
if one’s goal is to detect points at angle at most θ, one should take k/n ≈ θ/π. If
k/n� θ/π then the false negative rate will be large, and many neighbouring pairs
will be missed. An important consequence of missing potential reductions is that the
N required to iterate Algorithms 8, 10, 11 increases. In Section 6 this increase is
captured in the quantity `(k, n). If k/n � θ/π then the false positive rate will be
large, and the full inner product test will be applied often. We calculate these false
positive and negative rates in Section 5. These calculations and the fact that popcount
is significantly cheaper than an inner product makes popcount a good candidate for
use as a filter under the techniques of Section 2.2. Furthermore it is the filter used in
the most performant sieves to date [2, 19].

63

2.5 Geometric figures on the sphere

Our analysis of the popcount filter requires some basic facts about the size of some
geometric figures on the sphere. We measure the volume of subsets of Sd−1 = {v ∈
Rd : ‖v‖ = 1} using the (d− 1) dimensional spherical probability measure2 µd−1. The
spherical cap of angle θ about u ∈ Sd−1 is Cd−1(u, θ) = {v ∈ Sd−1 : θ(u, v) ≤ θ}. The
measure of a spherical cap is

Cd(u, θ) := µd−1(Cd−1(u, θ)) =
1√
π

Γ(d2)

Γ(d−1
2)

∫ θ

0
sind−2(t) dt.

We will often interpret Cd(u, θ) as the probability that v drawn uniformly from Sd−1

satisfies θ(u, v) ≤ θ. We denote the density of the event θ(u, v) = θ by

Ad(u, θ) :=
∂

∂θ
Cd(u, θ) =

1√
π

Γ(d2)

Γ(d−1
2)

sind−2(θ).

Note that Cd(u, θ) does not depend on u, so we may write Cd(θ) and Ad(θ) without
ambiguity. The wedge formed by the intersection of two caps is Wd−1(u, θu, v, θv) =
Cd−1(u, θu) ∩ Cd−1(v, θv). The measure of a wedge only depends on θ = θ(u, v), θu,
and θv, so we denote it

Wd(θ, θu, θv) = µd−1(Wd−1(u, θu, v, θv)).

We will often interpret Wd(θ, θu, θv) as the probability that w drawn uniformly from
Sd−1 satisfies θ(u,w) ≤ θu and θ(v, w) ≤ θv. Note that θ ≥ θu+θv ⇒Wd(θ, θu, θv) = 0.
An integral representation of Wd(θ, θu, θv) is given in Appendix A.

3 Filtered quantum search

A filter can reduce the cost of a search because a classical computer can branch to
avoid evaluating an expensive predicate. A quantum circuit cannot branch inside a
Grover search in this way. Nevertheless, a filter can be used to reduce the cost of a
quantum search.

The idea is to apply amplitude amplification to a Grover search. The inner Grover
search prepares the uniform superposition over roots of the filter, g. The outer
amplitude amplification searches for a root of f among the roots of g. We present
pseudocode for this strategy in Algorithm 9.

2By “probability measure” we mean that µd−1(Sd−1) = 1.

64

If |g| and |f ∩ g| are known, then we can choose the number of iterations of the inner
Grover search and the outer amplitude amplification optimally. When these quantities
are not known, we can attempt to guess them as in the BBHT algorithm. In our
applications, we have some information about |g| and |f ∩ g|, which we can use to
fine-tune a BBHT-like strategy.

Proposition 3.1 gives the cost of Algorithm 9 when we know 1. a lower bound, Q, on
the size of |f ∩ g|, and 2. the value of |g| up to relative error γ. In essence, when a
filter with a low false positive rate is used to search a space with few true positives,
Algorithm 9 can be tuned such that it finds a root of f with probability at least 1/14
and at a cost of roughly γ

2

√
N/Q iterations of G(g).

Algorithm 9 FilteredQuantumSearch

Require: A predicate f and a filter g defined on {0, . . . , N − 1}. Integer parameters m1

and m2.
Ensure: A root of f or ⊥.

1: function FilteredQuantumSearch(f, g;m1,m2)
2: Sample integers j and k with 0 ≤ j < m1 and 0 ≤ k < m2 uniformly at random.
3: Let Aj = G(g)jD.

4: Let Bk = G(Aj, f ∩ g)k.
5: Prepare the state |ψ〉 = BkAj|0〉.
6: Let r be the result of measuring |ψ〉 in the computational basis.
7: if f(r) = 0 then
8: return r
9: return ⊥

If we know that the the inner Grover search succeeds with probability x < 1, we can
compensate with a factor of

√
1/x more iterations of the outer amplitude amplification.

We do not know x. However, in our applications, we do know that the value of θ for
which sin2(θ) = |g| /N will be fairly small, e.g. θ < 1/10. The following technical
lemma shows that, when θ is small, we may assume that x = 1/5 with little impact
on the overall cost of the search.

Let j and Aj be as in Algorithm 9. Let pθ(j) be the probability that measuring Aj |0〉
would yield a root of g. For any x ∈ (0, 1), there is some probability qx(m1) that the
choice of j is insufficient, i.e. that pθ(j) < x. We expect to repeat Algorithm 9 a total
of (1− qx(m1))−1 times to avoid this type of failure.

Lemma 3.1. Fix θ ∈ [0, π/2] and x ∈ [0, 1). Let pθ, qx : R → R be defined by
pθ(j) = sin2((2j + 1) · θ) and qx(m) = 1

m |{j ∈ Z : 0 ≤ j < m, pθ(j) < x}|. If m > π
4θ ,

65

then

qx(m) <
3 arcsin(

√
x)

π − arcsin(
√
x)

+
6θ

π
.

Proof. Observe that pθ(j) < x when |(2j + 1)θ mod π| < arcsin(
√
x). Let I0 be the

interval [0, arcsin(
√
x)). For integers t ≥ 1 let It = (tπ− arcsin(

√
x), tπ+ arcsin(

√
x)).

Let c = c(m) be the largest integer for which [0, (2m− 1) · θ) intersects Ic. The
quantity mqx(m) counts the number of non-negative integers i < m for which (2i+1)·θ
lies in I0 ∪ I1 ∪ · · · ∪ Ic. This is no more than (c + 1) + b(2c + 1) arcsin(

√
x)/(2θ)c.

It follows that qx(m) < (c + 1)/m + (2c + 1) arcsin(
√
x)/2mθ. Note that 2mθ >

(2m − 1)θ > cπ − arcsin(
√
x) and (c + 1)/m < 2θ/π + 1/m. Hence qx(m) < (2c +

1) arcsin(
√
x)/(cπ − arcsin(

√
x)) + 2θ/π + 1/m. Moreover, qx(m) > qx(m− 1) when

(2m− 1) · θ lies in Ic, and qx(m) < qx(m− 1) otherwise. The upper bound on qx(m)
that we have derived is decreasing as a function of c. Hence the claim holds when
c ≥ 1. Finally, when m = π

4θ and c = 0 we have qx(m) < 2 arcsin(
√
x)/π + 4θ/π and

qx(m) is decreasing until c = 1.

There are situations in which filtering is not effective, e.g. when the false positive
rate of g is very high, when evaluting g is not much less expensive than evaluating
f , or when f has a very large number of roots. In these cases, other algorithms will
outperform Algorithm 9. We remark on these below. Proposition 3.1 optimises the
choice of m1 and m2 in Algorithm 9 for a large class of filters that are typical of our
applications.

Proposition 3.1. Suppose that f and g are predicates on a domain of size N and
that g is a filter for f . Let Q ∈ R be such that 1 ≤ Q ≤ |f ∩ g|. Let P and γ be real
numbers such that P/γ ≤ |g| ≤ γP . If γP/N < 1/100 and γQ/P < 1/4, then there
are parameters m1 and m2 for Algorithm 9 such that Algorithm 9 finds a root of f
with probability at least 1/14 and has a cost that is dominated by ≈ γ

2

√
N/Q times

the cost of G(g) or by ≈ 2
3

√
γP/Q times the cost of Rf∩g.

Proof. Fix x ∈ (0, 1). We will analyse Algorithm 9 with respect to the parameters

m1 =
⌈
π
4

√
γN/P

⌉
and m2 =

⌈√
γP/3xQ

⌉
. Let θg be such that sin2(θg) = |g| /N .

Let j and k be chosen as in Algorithm 9. Let p = pθg(j) and q = qx(m1) be defined
as in Lemma 3.1. Note that since |g| /N < γP/N < 1/100 we can use 6θg/π <
1/5 in applying Lemma 3.1. Let θh(j) be such that sin2 (θh(j)) = p · |f ∩ g| / |g|.
With probability at least 1 − q we have p ≥ x, which implies that sin(θh(j)) >√
xQ/γP . Since γQ/P < 1/4 ⇒ sin2(θh(j)) < 1/4, then cos(θh(j)) >

√
3/4. Thus

1/ sin(2θh(j)) <
√

γP
3xQ ≤ m2. By Lemma 2.1 measuring G(Aj , f ∩ g)kAj |0〉 yields a

66

root of f ∩ g with probability at least 1/4. It follows that Algorithm 9 succeeds with
probability at least (1− q)/4.

The algorithm evaluates G(g) exactly k · j+ 1 times and evaluates G(g)−1 exactly k · j
times. The expected value of 2kj + 1 is c1(x) · γ ·

√
N/Q where c1(x) ≈ (π/8)/

√
3x.

Likewise the algorithm evaluates Rf∩g exactly k times, which is c2(x) ·
√
γP/Q in

expectation where c2(x) ≈ (1/2)/
√

3x. Taking x = 1/5, and applying the upper
bound on qx(m1) from Lemma 3.1, we have (1− qx(m1))/4 ≥ 1/14, c1(x) ≈ 1/2 and
c2(x) ≈ 2/3.

Remark 3.1. When γP/N ≥ 1/100 or γQ/P ≥ 1/4 there are better algorithms. If
both inequalities hold then classical search finds a root of f quickly. If γQ/P ≥ 1/4
then finding a root of f is not much harder than finding a root of g, so one can search
on g directly. If γP/N ≥ 1/100 then the filter has little effect and one can search on
f directly.

Remark 3.2. It is helpful to understand when we can ignore the cost of Rf∩g in
Proposition 3.1. Roughly speaking, if evaluating f is c times more expensive than
evaluating g, then the cost of calls to G(g) will dominate when N > c2 |g|. In a
classical filtered search the cost of evaluating g dominates when N > c |g|.

4 Circuits for popcount

Consider a program for popcountk,n(u, v). This program loads u and v from specified
memory addresses, computes h(u) and h(v), computes the Hamming weight of h(u)⊕
h(v), and checks whether it is less than or equal to k. Recall h(u) is defined by n
inner products. If the popcount procedure is executed many times for each u, then it
may be reasonable to compute h(u) once and store it in memory. Moreover, if u is
fixed for many sequential calls to the procedure, then it may be reasonable to cache
h(u) between calls. The algorithms that we consider in Section 6 use both of these
optimisations.

In this section we describe RAM programs and quantum circuits that compute
popcountk,n(u, ·) for a fixed u. These circuits have the value of h(u) hard-coded.
They load h(v) from memory, compute the Hamming weight of h(u)⊕h(v), and check
whether the Hamming weight is less than or equal to k. We ignore the initial, one
time, cost of computing h(u) and h(v).

67

4.1 Quantum circuit for popcount

Loading h(v) costs a single qRAM gate. Computing h(u) ⊕ h(v) can then be done
in-place using a sequence of X gates that encode h(u). The bulk of the effort is in
computing the Hamming weight. For that we use a tree of in-place adders. The final
comparison is also computed with an adder, although only one bit of the output is
needed. See Figure 1 for a full description of the circuit.

We use the Cuccaro–Draper–Kutin–Petrie adder [17], with “incoming carry” inputs,
to compute the Hamming weight. We argue in favour of this choice of adder in
Appendix C. We use the Häner–Roetteler–Svore [28] carry bit circuit for implementing
the comparison.

We will later use popcount within filtered quantum searches by defining predicates of
the form g(i) = popcountk,n(u, vi), i ∈ {1, . . . , N}. To simplify that later discussion,

we cost the entire Grover iteration G(g) = DR0D
−1Rg here. In Appendix B we

introduce the (possibly multiply controlled) Toffoli gate and discuss the Toffoli count
for G(g), which in turn gives the T count for G(g).

The cost of Rg. The Rg subroutine is computed by running the popcount circuit
in Figure 1 and then uncomputing the addition tree and X gates. The circuit uses
in-place i bit adders3 for i ∈ {1, . . . , ` − 1}. The width of the circuit is given in
Appendix B. The depth of the circuit is

depth = 2 + d(CARRY) +
`−1∑
i=1

2 · d(ADDi), (3)

where d(·) denotes the depth of its argument. The factor of 2 accounts for uncompu-
tation of the ADDi circuits. The CARRY circuit is only cost once as the carry bit is
computed directly into the |−〉 state during the CARRY circuit itself. The summand
2 accounts for the X gates used to compute, and later uncompute, h(u)⊕ h(v).

The cost of DR0D
−1. Recall that D can be any circuit that maps |0〉 to the

uniform distribution on the domain of the search predicate. While there is no serious
difficulty in sampling from the uniform distribution on {0, . . . , N − 1} for any integer
N , when costing the circuit we assume that N is a power of two. In this case D
is simply log2N parallel H gates. The reflection R0 is implemented as a multiply

3An in-place i bit quantum adder takes two i bit inputs, initialises an ancilla qubit in the |0〉 state, and
returns the addition result in an i+ 1 bit register that includes the new ancilla and overlaps with i bits of
the input.

68

ADD1

ADD1

ADD1

ADD1

ADD1

ADD1

ADD1

ADD1

ADD2

ADD2

ADD2

ADD2

ADD3

ADD3

ADD4

|−⟩

.

.

.𝑛
−
𝑘

w
t[
ℎ
𝑢
⊕
ℎ
𝑣
]

CA
RR

Y
[𝑛
−
𝑘,

w
t(
ℎ
𝑢
⊕
ℎ
𝑣
)]

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

X
i

Figure 1: A quantum circuit for popcount. This circuit computes h(u)⊕ h(v) for a fixed n
bit h(u), computes the Hamming weight of h(u)⊕ h(v), and checks whether the Hamming
weight is less than or equal to k. Here n = 2`− 1 = 31. The input qubits are represented as
lines ending with a black diamond. The dashed lines represent incoming carry inputs, and
the dotted lines represent carry outputs. Not all of the output wires are drawn. For space
efficiency, some of the input qubits are fed into the incoming carry qubits of the adders
(dashed lines). The Xi mean that gate X is applied to input qubit i if bit i of h(u) is 1.
The circuit uses a depth `− 1 binary tree of full bit adders from [17], where ADDi denotes
an i bit full adder. The output wt(h(u)⊕ h(v)) from the tree of adders together with the
binary representation of the number n − k are finally fed into the input of the CARRY
circuit from [28], which computes the carry bit of n− k + wt(h(u)⊕ h(v)) (the carry bit
will be 0 if wt(h(u) ⊕ h(v)) ≤ k, and 1 otherwise). The final CNOT is for illustration
only. In actuality, the carry bit is computed directly into an ancilla that is initialised in
the |−〉 = (|0〉 − |1〉)/

√
2 state, so we can obtain the needed phase kickback. The tree of

adders and the initial X gates, but not the CARRY circuit, are run in reverse to clean up
scratch space and return the inputs to their initial state. The uncomputation step is not
depicted here. 69

controlled Toffoli gate (Appendix B) that targets an ancilla initialised in the |−〉
state. We use Maslov’s multiply controlled Toffoli from [41]. The depth and width of
DR0D

−1 are both O(logN); our software calculates the exact value.

4.2 RAM program for popcount

Recall that we use a RAM instruction set that consists of simple bit operations and
table lookups. A Boolean circuit for popcount is schematically similar to Figure 1.
Let ` = dlog2 ne. Loading h(v) has cost 1. Computing h(v) ⊕ h(w) takes n XOR
instructions and has depth 1. Following [45, Table. II], with cFA = 5 the number of
instructions in a full adder, (n− `− 1)cFA + ` lower bounds the instruction cost of
computing the Hamming weight and comparing it with a fixed k. This has depth
(`− 1)(δsum + δcarry) + 1. We assume δsum = δcarry = 1. Thus, the overall instruction
count is 6n− 4`− 5 and the overall depth is 2`.

4.3 Cost of inner products

The optimal popcount parameters will depend on the cost of a computing an inner
product in dimension d. The cost of one inner product is amortised over many
popcounts, and a small change in the popcount parameters will quickly suppress the
ratio of inner products to popcounts (see Remark 3.2). Hence we only need a rough
estimate for the cost of an inner product. We assume 32 bits of precision are sufficient.
We then assume schoolbook multiplication is used for scalar products, which costs
approximately 322 AND instructions. We then assume the cost of a full inner product
is approximately 322 d, i.e. we ignore the cost of the final summation, assuming it is
dwarfed by the ANDs.4

5 The accuracy of popcount

Here we give an analysis of the popcount technique based on some standard simplifying
assumptions. We are particularly interested in the probability that a popcount filter
identifies a random pair of points as potential neighbours. We are also interested
in the probability that a pair of actual neighbours are not identified as potential
neighbours, i.e. the false negative rate. Our software computes all of the quantities in
this section to high precision.

4We also tested the effect of assuming 8-bit inner products are sufficient. As expected, this reduces all
costs by a factor of two to four and thus does not substantially alter our relative results.

70

Let Pk,n(u, v) be the probability that popcountk,n(u, v;h) = 0 for a uniformly random
h (recall popcountk,n(u, v;h) = 0 if u, v pass the filter). In other words, let h =
(h1, . . . , hn) be a collection of independent random variables that are distributed
uniformly on the sphere, and define

Pk,n(u, v) = 1− E
[
popcountk,n(u, v;h)

]
.

The hyperplane defined by hi separates u and v with probability θ(u, v)/π, and
popcountk,n(u, v;h) = 0 if no more than k of the hyperplanes separate u and v.
Hence,

Pk,n(u, v) =
k∑
i=0

(
n

i

)
·
(
θ(u, v)

π

)i
·
(

1− θ(u, v)

π

)n−i
.

Note that Pk,n(u, v) depends only on the angle between u and v, so it makes sense
to define Pk,n(θ). The main heuristic in our analysis of popcount is that Pk,n(u, v)
is a good approximation to the probability that popcountk,n(u, v;h) = 0 for fixed h
and varying u and v. Under this assumption, all of the quantities in question can be
determined by integrating Pk,n(u, v) over different regions of the sphere.

Let P̂k,n denote the event that popcountk,n(u, v;h) = 0 for uniformly random u, v,

and h. Let R̂θ be the event that θ(u, v) ≤ θ. Recall that Pr[R̂θ] = Cd(θ), and observe
that Pr[R̂θ] is a cumulative distribution with associated density Ad(θ) = ∂

∂θCd(θ). We
find, letting S = Sd−1 for some implicit d,

Pr[P̂k,n] =

∫
S

∫
S
Pk,n(u, v) dµ(v) dµ(u)

=

∫
S

(∫ π

0
Pk,n(θ) ·Ad(θ) dθ

)
dµ(u)

=

∫ π

0
Pk,n(θ) ·Ad(θ) dθ. (4)

Let u, v such that θ(u, v) ≤ ϕ be neighbours. The false negative rate is 1−Pr[P̂k,n | R̂ϕ].

The quantity Pr[P̂k,n∧R̂ϕ] can be calculated by changing the upper limit of integration
in Equation 4. It follows that

1− Pr[P̂k,n | R̂ϕ] = 1− 1

Cd(ϕ)

∫ ϕ

0
Pk,n(θ) ·Ad(θ) dθ. (5)

In Section 6 we consider u and v that are uniformly distributed in a cap of angle
β < π/2, rather than the uniformly distributed on the sphere. Let B̂w,β be the event

71

that u and v are uniformly distributed in a cap of angle β about w. We have

Pr[B̂w,β] =

∫
S

∫
S

1
{
w ∈ Wd−1(u, β, v, β)

}
dµ(v) dµ(u)

=

∫ 2β

0
Wd(θ, β, β) ·Ad(θ) dθ. (6)

In the second line we have used the fact that β < π/2 and W (θ, θ1, θ2) is zero when
θ ≥ θ1 + θ2. The quantity Pr[B̂w,β ∧ R̂ϕ] can be computed by changing the upper

limit of integration in Equation 6 from 2β to min{2β, ϕ}. We note that B̂w,β has no

dependence on w and therefore may also be written B̂β . The conditional probability
that popcountk,n(u, v;h) = 0, given that u, v are uniformly distributed in a cap Bβ,

Pr[P̂k,n | B̂β], can be computed using Equation 6 and

Pr[P̂k,n ∧ B̂β] =

∫ 2β

0
Pk,n(θ) ·Wd(θ, β, β) ·Ad(θ) dθ. (7)

The quantity Pr[P̂k,n ∧ B̂β ∧ R̂ϕ] can be computed by changing the upper limit of
integration in Equation 7 from 2β to min{2β, ϕ}. The false negative rate for popcount
when restricted to a cap is 1− Pr[P̂k,n | B̂w,β ∧ R̂ϕ].

6 Tuning popcount for NNS

We now use the circuit sizes from Section 4 and the probabilities from Section 5
to optimise popcount for use in NNS algorithms. Our analysis is with respect to
points sampled independently from the uniform distribution on the sphere. We further
restrict our attention to list-size preserving parameterisations, which take an input
list of size N and return an output list of (expected) size N .

We use the notation for events introduced in Section 5. In particular, we write R̂θ
for the event that a uniformly random pair of vectors are neighbours, i.e. that they
lie at angle less than or equal to θ of one another; P̂k,n for the event that popcount

identifies a uniformly random pair of vectors as potential neighbours; B̂β for the event
that a uniformly random pair of vectors lie in a uniformly random cap of angle β; and
B̂w,β for the same event except we highlight the cap is centred on w. Throughout
this section we use popcountk,n(u, ·), for various fixed u, as a filter for the search
predicate θ(u, ·) ≤ θ. We write η(k, n) for the false negative rate of popcount. We
assume that θ(u, v) ≤ θ is computed using an inner product test. Throughout this
section, c1 represents the instruction cost of the inner product test from Section 4.3,
c2(k, n) the instruction cost of popcount from Section 4.2, q1 the quantum cost of the

72

reflection Rf∩g, and q2(k, n) the quantum cost of G(g) from Section 4.1. We note
that c1, q1 have a dependence on d that we suppress. We write q0(m) for the number
of G(g) iterations that are applied during a quantum search on a set of size m.

Our goal is to minimise the cost of list-size preserving NNS algorithms as a function of
the input list size, the popcount parameters k and n, and the other NNS parameters.
In a list of N points there are

(
N
2

)
ordered pairs. We expect

(
N
2

)
·Pr[R̂θ] =

(
N
2

)
·Cd(θ)

of these to be neighbours, and we expect a 1− η(k, n) fraction of neighbours to be
detected by popcount. List-size preserving parmaterisations that use a popcount filter
must therefore take an input list of size at least

`(k, n) =
2

1− η(k, n)
· 1

Cd(θ)
. (8)

The optimised costs reported in Figures 2, 3, and 4 typically use popcount parameters
for which `(k, n) ∈ (2/Cd(π/3), 4/Cd(π/3)). Here we assume that list-size preserving
parameterisations take N = `(k, n). Note that η(k, n) = 1 − Pr[P̂k,n | R̂θ] when
the search is over a set of points uniformly distributed on the sphere, and η(k, n) =
1− Pr[P̂k,n | R̂θ ∧ B̂β] when the search is over a set of points uniformly distributed in
a cap of angle β (left implicit).

In each of the quantum analyses, we apply Proposition 3.1 with γ = 1, P = |g| and
Q = 1 to estimate q0(m). We assume that filtered quantum search succeeds with
probability 1 instead of probability at least 1/14, as guaranteed by Proposition 3.1.
In practice, one will not know |g| and one will therefore take γ > 1. Our use of
γ = 1 is a systematic underestimate of the true cost of the search. There may be
searches where our lower bound of Q = 1 on |f ∩ g| is too pessimistic. However,
the probability of success in filtered quantum search decreases quadratically with
Q/ |f ∩ g| if Q > |f ∩ g|. In Sections 6.1 and 6.3 we expect |f ∩ g| ≈ 2 so the effect
of taking Q = 1 is negligible. In Section 6.2, where Q may be larger, an optimistic
analysis using the expected value of Q makes negligible savings in dimension 512
and small savings in dimension 1024. This analysis does not decrement Q when a
neighbour is found in, then removed from, a search space and ignores the quadratic
decrease in success probability.

6.1 AllPairSearch

As a warmup, we optimise AllPairSearch. Its asymptotic complexity is 2(0.415...+o(1))d

classically and 2(0.311...+o(1))d quantumly. We describe implementations of Line 5
of Algorithm 8 based on filtered search and filtered quantum search, and optimise
popcount relative to these implementations.

73

Filtered search.

Suppose that Line 5 applies popcountk,n(vi, ·) to each of vi+1 through vN and then
applies an inner product test to each vector that passes. With an input list of size
N = `(k, n), we expect this implementation to test all

(
N
2

)
pairs before finding N

neighbouring pairs. Moreover, we expect the popcount filter to identify
(
N
2

)
· Pr[P̂k,n]

potential neighbours, and to perform an equal number of inner product tests. The
optimal parameters are obtained by minimising(

c1 · Pr[P̂k,n] + c2(k, n)
)
·
(
`(k, n)

2

)
. (9)

Filtered quantum search.

Suppose that Line 5 is implemented using the search routine Algorithm 9. Specifically,
we take the predicate f to be θ(vi, ·) ≤ θ with domain Li. We take the filter g to be
popcountk,n(vi, ·). Each call to the search routine returns at most one neighbour of vi.
To find all detectable neighbours of vi in Li we must repeat the search |f ∩ g| times.
This is expected to be |Li| · Pr[P̂k,n ∧ R̂θ]. Known neighbours of vi can be removed
from Li to avoid a coupon collector scenario. We consider an implementation in which
searches are repeated until a search fails to find a neighbour of vi.

We expect to call the search subroutine |Li| · Pr[P̂k,n ∧ R̂θ] + 1 times in iteration i.

Proposition 3.1 with P = |Li| · Pr[P̂k,n], Q = 1, and γ = 1 gives q0 (|Li|) = 1
2

√
|Li|

iterations of G(g). As i ranges from 1 to N − 1 the quantity |Li| takes each value in
{1, . . . , N − 1}. Our proposed implementation therefore performs an expected

N−1∑
j=1

1

2

√
j
(
j · Pr[P̂k,n ∧ R̂θ] + 1

)
= Pr[P̂k,n ∧ R̂θ]

(
1

5
N5/2 +

1

4
N3/2

)
+

1

3
N3/2 +O(

√
N) (10)

applications of G(g); the expansion is obtained by the Euler–Maclaurin formula.
When N = `(k, n) we expect N · Pr[P̂k,n ∧ R̂θ] = 2 +O(1/N). The right hand side of
Equation 10 is then 11

15N
3/2 +O(

√
N).

Proposition 3.1 also provides an estimate for the rate at which reflections about the
true positives, Rf∩g are performed. With P and Q as above, we find that Rf∩g is

performed at roughly p(k, n) =
√

Pr[P̂k,n] the rate of calls to G(g). The optimal

74

popcount parameters (up to some small error due to the O(
√
N) term in Equation 10)

are obtained by minimising the total cost

11

15
(q1p(k, n) + q2(k, n)) · `(k, n)3/2. (11)

6.2 RandomBucketSearch

One can improve AllPairSearch by bucketing the search space such that vectors in
the same bucket are more likely to be neighbours [35]. For example, one could pick a
hemisphere H and divide the list into L1 = L ∩H and L2 = L\L1. These lists would
be approximately half the size of the original and the combined cost of AllPairSearch
within L1 and then within L2 would be half the cost of an AllPairSearch within L.
However, this strategy would fail to detect the expected θ/π fraction of neighbours
that lie in opposite hemispheres.

Becker, Gama, and Joux [10] present a very efficient generalisation of this strat-
egy. They propose bucketing the input list into subsets of the form {v ∈ L :
popcountk,n(0, v;h) = 0} with varying choices of h. This bucketing strategy is
applied recursively until the buckets are of a minimum size. Neighbouring pairs are
then found by an AllPairSearch.

A variant of the Becker–Gama–Joux algorithm that uses buckets of the form L ∩
Cd−1(f, θ1), with randomly chosen f and fixed θ1, was proposed and implemented in [2].
This variant is sometimes called bgj1. Here we call it RandomBucketSearch. This
algorithm has asymptotic complexity 2(0.349...+o(1))d classically [2] and 2(0.301...+o(1))d

quantumly.5 This is worse than the Becker–Gama–Joux algorithm, but the algorithm
is conceptually simple and still provides an enormous improvement over AllPairSearch.
Pseudocode is presented in Algorithm 10.

Description of Algorithm 10.

The algorithm takes as input a list of N points uniformly distributed on the sphere. A
random bucket centre f is drawn uniformly from Sd−1 in each of the t iterations of the
outer loop. The choice of f defines a bucket in Line 5, Lf = L ∩ Cd−1(f, θ1), which is
of expected size N · Cd(θ1). For each vj ∈ Lf , the inner loop searches a set Lf,j ⊂ Lf
for neighbours of vj . The quantity |Lf,j | takes each value in {1, . . . , |Lf | − 1} as vj

5The asymptotic quantum complexity is calculated, similarly to the classical complexity [2], using the
asymptotic value of Wd(θ, θ1, θ1) given in [9]. Let N = 1/Cd(π/3) and t(θ1) = 1/Wd(π/3, θ1, θ1). The

exponent 0.3013 . . . is obtained by minimising t(θ1)
(
N + (NCd(θ1))

3/2
)

with respect to θ1.

75

Algorithm 10 RandomBucketSearch

Require: A list L = (v1, v2, . . . vN) ⊂ Sd−1 of N points. Parameters θ, θ1 ∈ (0, π/2) and
t ∈ Z+.

Ensure: A list of pairs (u, v) ∈ L× L with θ(u, v) ≤ θ.

1: function RandomBucketSearch(L; θ, θ1, t)
2: L′ ← ∅
3: for 1 ≤ i ≤ t do
4: Sample f uniformly on Sd−1

5: Lf ← L ∩ Cd−1(f, θ1)
6: for j such that vj ∈ Lf do
7: Lf,j ← {vk ∈ Lf : j < k ≤ N}
8: Search Lf,j for any number of u that satisfy θ(vj, u) ≤ θ
9: For each such u found, add (vj, u) to L′.

10: If |L′| ≥ N , return L′.

11: return L′

ranges over Lf . The inner loop is identical to the loop in AllPairSearch apart from
indexing and the fact that elements of Lf are known to be in the cap Cd−1(f, θ1).

A bucket Lf is expected to contain
(
N
2

)
· Pr[R̂θ ∧ B̂f,θ1] neighbouring pairs. Only a

1− η(k, n) fraction of these are expected to be identified by the popcount filter. When
θ1 > θ it is reasonable to assume that Pr[R̂θ∧B̂f,θ1] ≈ Cd(θ)·Wd(θ, θ1, θ1). We use this
approximation. The expected number of neighbouring pairs in Lf that are detected by

the popcount filter is therefore approximately
(
N
2

)
· (1− η(k, n)) · Cd(θ) ·Wd(θ, θ1, θ1).

When N = `(k, n) this is N ·Wd(θ, θ1, θ1). If all detectable neighbours are found by
the search routine then the algorithm is list-size preserving when N = `(k, n) and
t = 1/Wd(θ, θ1, θ1).

We can now derive optimal popcount parameters for various implementations of Line 8.

Filtered search.

Suppose that Line 8 of Algorithm 10 applies popcountk,n(vj , ·) to each element
of Lf,j and then applies an inner product test to each vector that passes. This

implementation applies popcount tests to all
(|Lf |

2

)
≈
(
N ·Cd(θ1)

2

)
pairs of elements in

Lf and finds all of the neighbouring pairs that pass. In the process it applies inner

product tests to a p(θ1, k, n) = Pr[P̂k,n | B̂f,θ1] fraction of pairs. The cost of populating
buckets in one iteration of Line 5 is c1 · `(k, n). The cost of all searches on Line 8 is

76

(c1 · p(θ1, k, n) + c2(k, n)) ·
(
NCd(θ1)

2

)
. With the list-size preserving parameters N and

t given above, the optimal θ1, k, and n can be obtained by minimising the total cost

c1 · `(k, n) + (c1 · p(θ1, k, n) + c2(k, n)) ·
(
`(k,n)·Cd(θ1)

2

)
Wd(θ, θ1, θ1)

. (12)

Filtered quantum search.

Suppose that Line 8 is implemented using the search routine Algorithm 9. We take
the predicate f to be θ(vj , ·) ≤ θ with domain Lf,j . We take the filter g to be
popcountk,n(vj , ·). Each call to the search routine returns at most one neighbour of vj .
To find all detectable neighbours of vj in Lf,j we must repeat the search several times.
Known neighbours of vj can be removed from Lf,j to avoid a coupon collector scenario.

Proposition 3.1 with P = |Lf,j | · Pr[P̂k,n | B̂f,θ1], Q = 1, and γ = 1 gives us that the
number of G(g) iterations in a search on a set of size |Lf,j | is q0 (|Lf,j |) = 1

2

√
|Lf,j |.

We consider an implementation of Line 8 in which searches are repeated until a
search fails to find a neighbour of vj . With N = `(k, n), the set Lf is of expected
size `(k, n) · Cd(θ1) and contains an expected `(k, n) ·Wd(θ, θ1, θ1) neighbouring pairs
detectable by popcount. The set Lf,j is expected to contain a proportional fraction
of these pairs. As such, we expect to call the search subroutine |Lf,j | · r(θ1, k, n) + 1
times in iteration j where

r(θ1, k, n) =
N ·Wd(θ, θ1, θ1)(|Lf |

2

) ≈ 2Wd(θ, θ1, θ1)

`(k, n) · Cd(θ1)2 .

The inner loop makes an expected

|Lf |−1∑
j=1

1

2

√
j (j · r(θ1, k, n) + 1)

applications of G(g). This admits an asymptotic expansion similar to that of Equa-
tion 10. If we assume that |Lf | takes its expected value of `(k, n) · Cd(θ1), then the
inner loop makes

q3(θ1, k, n) · (`(k, n) · Cd(θ1))3/2

applications of G(g), where

q3(θ1, k, n) =
2Wd(θ, θ1, θ1)

5Cd(θ1)
+

1

3
.

Proposition 3.1 also provides an estimate for the rate at which reflections about the
true positives, Rf∩g are performed. With P and Q as above, we find that Rf∩g is

77

applied at roughly p(θ1, k, n) =
√

Pr[P̂k,n | B̂f,θ1] the rate of G(g) iterations. The
total cost of searching for neighbouring pairs in Lf is therefore

s(θ1, k, n) = (q1 · p(θ1, k, n) + q2(k, n)) · q3(θ1, k, n) ·
(
`(k, n) · Cd(θ1)

)3/2
. (13)

Populating Lf has a cost of c1 · `(k, n). With the list-size preserving t given above,
the optimal parameters θ1, k, and n can be obtained by minimising the total cost

c1 · `(k, n) + s(θ1, k, n)

Wd(θ, θ1, θ1)
. (14)

6.3 ListDecodingSearch

The optimal choice of θ1 in RandomBucketSearch balances the cost of N · t cap
membership tests against the cost of all calls to the search subroutine. It can be seen
that reducing the cost of populating the buckets would allow us to choose a smaller
θ1, which would reduce the cost of searching within each bucket.

Algorithm 11, ListDecodingSearch, is due to Becker, Ducas, Gama, and Laarhoven [9].
Its complexity is 2(0.292...+o(1))d classically and 2(0.265...+o(1))d quantumly [36, 37]. Like
RandomBucketSearch, it computes a large number of list-cap intersections. However,
these list-cap intersections involve a structured list—the list-cap intersections in
RandomBucketSearch involve the inherently unstructured input list.

Description of Algorithm 11.

The algorithm first samples a t point random product code F . See [9] for background
on random product codes. In our analysis, we treat F as a list of uniformly random
points on Sd−1. Some justification for this heuristic is given in [9, Appendix B].

The first loop populates t buckets that have as centres the points f of F . Bucket Lf
stores elements of L that lie in the cap of angle θ2 about f . Each bucket is of expected
size N · Cd(θ2).

The second loop iterates over vj ∈ L and searches for neighbours of vj in the disjoint
union of buckets with centres within an angle θ1 of vj . The set Fj constructed
on Line 8 contains an expected t · Cd(θ1) bucket centres. The disjoint union of
certain elements from the corresponding buckets, denoted LF,j , is of expected size
(N − j) · Cd(θ2) · t · Cd(θ1). We note that by simplifying and assuming the expected
size of LF,j is N · Cd(θ2) · t · Cd(θ1) the costs given below are never wrong by more
than a factor of two.

78

Algorithm 11 ListDecodingSearch

Require: A list L = (v1, v2, . . . vN) ⊂ Sd−1 of N . Parameters θ, θ1, θ2 ∈ (0, π/2) and
t ∈ Z+.

Ensure: A list of pairs (u, v) ∈ L× L with θ(u, v) ≤ θ.

1: function ListDecodingSearch(L; θ, θ1, θ2, t)
2: Sample a random product code F of size t
3: Initialise an empty list Lf for each f ∈ F
4: for 1 ≤ i ≤ N do
5: Fi ← F ∩ Cd−1(vi, θ2)
6: Add vi to Lf for each f in Fi

7: for 1 ≤ j < N do
8: Fj ← F ∩ Cd−1(vj, θ1)
9: for f ∈ Fj do

10: Lf,j ← {vk ∈ Lf : j < k ≤ N}
11: LF,j ←

∐
f∈Fj

Lf,j (disjoint union)

12: Search LF,j for any number of u that satisfy θ(vj, u) ≤ θ
13: For each such u found, add (vj, u) to L′.
14: If |L′| ≥ N , return L′.

15: return L′

Suppose that w is a neighbour of vj , so θ(vj , w) ≤ θ. The measure of the wedge formed
by a cap of angle θ1 about vj and a cap of angle θ2 about w is at least Wd(θ, θ1, θ2).
Assuming that the points of a random product code are indistinguishable from points
sampled uniformly on the sphere, the probability that some f ∈ Fj contains w is at
least t ·Wd(θ, θ1, θ2).

The second loop is executed N times. Iteration j searches LF,j for neighbours of vj .
With N = `(k, n) there are expected to be N detectable neighbouring pairs in L.
With t = 1/Wd(θ, θ1, θ2) we expect that each neighbouring pair is of the form (vj , w)
with w ∈ LF,j .
The angles θ1, θ2 relate to the spherical cap parameters α, β respectively in [9], and
are such that θ1 ≥ θ2. Optimal time complexity is achieved when θ1 = θ2.

We have omitted the list decoding mechanism by which list-cap intersections are
computed. In our analysis we assume that the cost of a list-cap intersection such as
Fi = F ∩ Cd−1(vi, θ1) is proportional to |Fi|, but independent of |F |. Specifically, we

assume that the cost is equal to |Fi| inner product tests. A cost of |Fi|1+o(1) is justified

79

by [9, Section 5]. A cursory examination of that method shows the o(1) term masks a
cost much larger than one inner product test, but there may yet be improvements in
this area.

Filtered search.

Suppose that the implementation of Line 12 of Algorithm 11 applies popcountk,n(vj , ·)
to each element of LF,j and then applies an inner product test to each vector that
passes. This implementation applies popcount tests to all N ·Cd(θ2) ·t ·Cd(θ1) elements
of LF,j and finds all of the neighbours of vj that pass. Note that w ∈ LF,j implies that
there exists some f ∈ F such that both vj and w lie in a cap of angle θ1 around f .
Inner product tests are applied to a p(θ1, k, n) ≥ Pr[P̂k,n | B̂f,θ1] fraction of all pairs.6

The cost of preparing all t buckets in the first loop is c1 ·N · t · Cd(θ2). The cost of
constructing the search spaces in the second loop is c1 ·N · t · Cd(θ1). Each search
has a cost of |LF,j | popcount tests and |LF,j | · p(θ1, k, n) inner product tests. With
the list-size preserving parameterisation given above, the optimal θ1, θ2, k, and n can
be obtained by minimising the total cost

`(k, n)

Wd(θ, θ1, θ2)

(
c1 · Cd(θ1) + c1 · Cd(θ2)

+
(
c1 · p(θ1, k, n) + c2(k, n)

)
· `(k, n) · Cd(θ1) · Cd(θ2)

)
. (15)

Filtered quantum search.

Suppose that Line 12 is implemented using Algorithm 9. We take the predicate f to
be θ(vj , ·) ≤ θ with domain LF,j . We take the filter g to be popcountk,n(vj , ·). Each
call to the search routine returns at most one neighbour of vj . Known neighbours of
vj can be removed from LF,j to avoid a coupon collector scenario. Proposition 3.1

with P = |LF,j | · Pr[P̂k,n | B̂f,θ2], Q = 1, and γ = 1 gives us that the number of G(g)
iterations in a search on a set of size |LF,j | is q0 (|LF,j |) ≈ 1

2

√
|LF,j |.

Assuming that computing Fj = F ∩ C(vj , θ1) has a cost of c1 |Fj |, the N iterations of
Lines 5 and 8 have a total cost of

c1 ·N · t · (Cd(θ1) + Cd(θ2)) (16)

Each search applies an expected

q0 (|LF,j |) ≈
1

2

√
N · Cd(θ1) · t · Cd(θ2)

6The inequality is because vj and w may be contained in multiple buckets, Lf,j .

80

applications of G(g). Reflections about the true positives, Rf∩g, are performed at

roughly p(θ1, k, n) =
√

Pr[P̂k,n | Bf,θ1] the rate of G(g) iterations. We consider an
implementation of Line 8 in which searches are repeated until a search fails to find a
neighbour of vj . With the list-size preserving parameters given above, we expect to
perform two filtered quantum searches per iteration of the second loop. The optimal
parameters can be obtained by minimising the total cost

`(k, n)

(
c1
Cd(θ1) + Cd(θ2)

Wd(θ, θ1, θ2)
+ (q1p(θ1, k, n) + q2(k, n))

√
`(k, n)Cd(θ1)Cd(θ2)

Wd(θ, θ1, θ2)

)
.

7 Cost estimates

Our software numerically optimises the cost functions in Sections 6.1, 6.2 and 6.3 with
respect to several classical and quantum cost metrics. The classical cost metrics that
we consider are: c (unit cost), which assigns unit cost to popcount; c (RAM), which
uses the classical circuits of Section 4. The quantum cost metrics that we consider
are: q (unit cost), which assigns unit cost to a Grover iteration; q (depth-width), which
assigns unit cost to every gate (including the identity) in the quantum circuits of
Section 4; q (gates), which assigns unit cost only to the non-identity gates; q (T
count), which assigns unit cost only to T gates; and q (GE19), which is described in
Section 7.1.

We stress that our software, and Figures 2, 3, and 4, give estimates for the cost of
each algorithm. These estimates are neither upper bounds nor lower bounds. As we
mention above, we have systematically omitted and underestimated some costs. For
instance, we have omitted the list decoding mechanism in our costing of Algorithm 11.
We have approximated other costs. For instance, the cost that we assign to an inner
product in Section 4.3. We have also not explored the entire optimisation space. We
only consider values of the popcount parameter n that are one less than a power of
two. Moreover, following the discussion in Section 2.4, we set k = bn/3c.
While we have omitted and approximated some costs, we have tried to ensure that
these omissions and approximations will ultimately lead our software to underestimate
of the total cost of the algorithm. For instance, if our inner product cost is accurate,
our optimisation procedure ensures that we satisfy Remark 3.2 and can ignore costs
relating to Rf∩g.

Our results are presented in Figures 2, 3, and 4. We also plot the leading term of the
asymptotic complexity of the respective algorithms as these are routinely referred to
in the literature.

We give the source code to produce our figures in Appendix E.

81

Figure 2: Quantum (“q”) and classical (“c”) resource estimates for RandomBucketSearch.
The three plots, respectively, show crossover points in dimension ≤ 64 under the gate
cost metric, dimension 88 under the depth-width metric, and dimension 288 under the
Gidney–Eker̊a cost metric.

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

256

d

lo
g

2
(#
op
s)

RandomBucket (c: RAM)
0.3494 d
RandomBucket (q: gates)
0.3013 d

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

256

d

lo
g

2
(#
op
s)

RandomBucket (c: RAM)
0.3494 d
RandomBucket (q: depth-width)
0.3011 d

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

256

d

lo
g

2
(#
op
s)

RandomBucket (c: RAM)
0.3494 d
RandomBucket (q: GE19)
0.3011 d

82

Figure 3: Quantum (“q”) and classical (“c”) resource estimates for ListDecodingSearch. The
three plots, respectively, show crossover points in dimension 72 under the gate cost metric,
dimension 136 under the depth-width metric, and dimension 304 under the Gidney–Eker̊a
cost metric.

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

d

lo
g

2
(#
op
s)

ListDecoding (c: RAM)
0.2924 d
ListDecoding (q: gates)
0.2652 d

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

d

lo
g

2
(#
op
s)

ListDecoding (c: RAM)
0.2924 d
ListDecoding (q: depth-width)
0.2652 d

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

d

lo
g

2
(#
op
s)

ListDecoding (c: RAM)
0.2924 d
ListDecoding (q: GE19)
0.2652 d

83

7.1 Barriers to a quantum advantage

As expected, the plots indicate that quantum search provides a substantial savings
over classical search asymptotically. Our plots fully contain the range of costs from
2128 to 2256 that are commonly thought to be cryptanalytically interesting. Modest
cost improvements are attained in this range.

The range of parameters in which a sieve could conceivably be run, however, is much
narrower. If one assumes a memory density of one petabyte per gram (253 bits per
gram), a 2140 bit memory would have a mass comparable with that of the Moon.
Supposing that a 2-sieve stores 1/Cd(π/3) vectors, and that each vector is log2(d) bits,
an adversary with a 2140 bit memory could only run a sieve in dimension 608 or lower.
The potential cost improvement in dimension 608 is smaller than the potential cost
improvement in, say, dimension 1000. The potential cost improvement that can be
actualised is likely smaller still.

We expect that our cost estimates are underestimates. However, the quantum advan-
tage could grow, shrink, or even be eliminated if our underestimates do not affect
quantum and classical costs equally. In this section, we list several reasons to think
that the advantage might shrink or disappear.

Error correction overhead.

By using the depth-width metric for quantum circuits, we assume that dispatching a
logical gate to a logical qubit costs one RAM instruction. In practice, however, the
cost depends on the error correcting code that is used for logical qubits. This cost
may be significant.

Gidney and Eker̊a have estimated the resources required to factor a 2048 bit RSA
modulus using Shor’s algorithm on a surface code based quantum computer [22].
Under a plausible assumption on the physical qubit error rate, they calculate that
a factoring circuit with 212.6 logical qubits and depth 231 requires a distance δ = 27
surface code. Each logical qubit is encoded in 2 δ2 = 1458 physical qubits, and the
error tracking routine applies at least δ2 = 729 bit instructions, per logical qubit per
layer of logical circuit depth, to read its input.

In general, a circuit of depth D and width W requires a distance δ = Θ(log(DW))
surface code. To perform a single logical gate, classical control hardware dispatches
several instructions to each of the Θ(log2(DW)) physical qubits. The classical control
hardware also performs a non-trivial error tracking routine between logical gates, which

84

takes measurement results from half of the physical qubits as input.7 Consequently,
the cost of surface code computation grows like Ω(DW log2(DW)).

We have adapted scripts provided by Gidney and Eker̊a to estimate δ for our circuits.
The third plot in Figures 2 and 3 shows the cost of ListDecodingSearch when every
logical gate (including the identity) is assigned a cost of δ2. For ListDecodingSearch
the cost in the Gidney–Eker̊a metric grows from 2128 to 2256 between dimensions 352
and 824, and we calculate a 2128 bit memory is sufficient to run in dimension 544. We
find that the advantage of quantum search over classical search is a factor of 21.3 in
dimension 352, a factor of 26.8 in dimension 544, and a factor of 214.0 in dimension
824. Compare this with the näıve estimate for the advantage, 20.292d−0.265d, which is
a factor of 29.5 in dimension 352, a factor of 214.7 in dimension 544, and a factor of
222.5 in dimension 824.

One should also note that error correction for the surface code sets a natural clock
speed, which Gidney and Eker̊a estimate at one cycle per microsecond. Gidney and
Eker̊a estimate that their factoring circuit, the cost of which is dominated by a single
modular exponentiation, would take 7.44 hours to run. This additional overhead in
terms of time is not refelected in the instrution count.

On the positive side, the Gidney–Eker̊a cost model is specific to the surface code
architecture. Significant improvements may be possible. Gottesman has shown that
an overhead of Θ(1) physical qubits per logical qubit is theoretically possible [24].
Whether this technique offers lower overhead than the surface code in practice is yet
to be seen.

Dependence on qRAM.

Quantum accessible classical memories are used in many quantum algorithms. For
example, they are used in black box search algorithms [27], in collision finding algo-
rithms [15], and in some algorithms for the the dihedral hidden subgroup problem [34].
The use of qRAM is not without controversy [12, 26]. Previous work on quantum
lattice sieve algorithms [36, 37] has noted that constructing practical qRAM seems
challenging.

Morally, looking up an ` bit value in a table with 2n entries should have a cost that
grows at least with n+`. Recent results [6, 7, 42] indicate that realistic implementations
of qRAM have costs that grow much more quickly than this. When ancillary qubits
are kept to a minimum, the best known Clifford+T implementation of a qRAM has a
T count of 4 · (2n − 1) [7]. While it is conceivable that a qRAM could be constructed

7For a thorough introduction to how logical gates are performed on the surface code see [21], and for
more advanced techniques see e.g. [29].

85

at lower cost on a different architecture, as has been suggested in [23], a unit cost
qRAM gate should be seen as a powerful, and potentially unrealistic, resource.

One can argue that classical RAMs also have a large cost. This is not to say that
classical and quantum RAMs have the same cost. A qRAM can be used to construct
an arbitrary superposition over the elements of a memory. This process relies on
quantum interference and necessarily takes as long as a worst case memory access time.
This is in contrast with classical RAM, where careful programming and attention to a
computer’s caches can mask the fact that accessing an N bit memory laid out in a
3-dimensional space necessarily takes Ω(N1/3) time.

If the cost of a qRAM gate is equivalent to Θ(N1/3) Clifford+T gates, then the
asymptotic cost of quantum AllPair search is 2(0.380...+o(1))d, the asymptotic cost of
quantum RandomBucket search is 2(0.336...+o(1))d, and the asymptotic cost of quantum
ListDecoding search is 2(0.284...+o(1))d. If memory is constrained to two dimensions,
and qRAM costs Θ(N1/2) Clifford+T gates, the quantum asymptotics match the
classical RAM asymptotics.

Quantum sampling routines.

We have assumed that D in Section 4.1 (the uniform sampling subroutine in Grover’s
algorithm) is implemented using parallel H gates. This is the smallest possible circuit
that might implement D, and may be a significant underestimate. In Line 12 of
Algorithm 11 we must construct a superposition (ideally uniform) over {k : vk ∈ LF,j}.
The set LF,j is presented as a disjoint union of smaller sets. Copying the elements of
these smaller sets to a flat array would be more expensive than our estimate for the
cost of search. While we do not expect the cost of sampling near uniformly from LF,j
to be large, it could easily exceed the cost of popcount.

7.2 Relevance to SVP

The NNS algorithms that we have analysed are closely related to lattice sieves for
SVP. While the asymptotic cost of NNS algorithms are often used as a proxy for the
asymptotic cost of solving SVP, we caution the reader against making this comparison
in a non-asymptotic setting. On the one hand, our estimates might lead one to
underestimate the cost of solving SVP:

� the costs given in Figures 2 and 3 represent one iteration of NNS within a sieve,
while sieve algorithms make poly(d) iterations;

86

� the costs given in Figures 2 and 3 do not account for all of the subroutines
within each NNS algorithm.

On the other hand, our estimates might lead one to overestimate the cost of solving
SVP:

� it is a mistake to conflate the cost of NNS in dimension d with the cost of SVP
in dimension d. The “dimensions for free” technique of [19] can be used to solve
SVP in dimension d by calling an NNS routine polynomially many times in
dimension d′ < d. Our analysis seamlessly applies to dimension d′;

� there are heuristics that exploit structure present in applications to SVP not
captured in our general setting, e.g. the vector space structure allowing both
±u to be tested for the cost of u, and keeping the vectors sorted by length.

7.3 Future Work

The sieving techniques considered here are not exhaustive. While it would be relatively
easy to adapt our software to other 2-sieves, like the cross polytope sieve [11], future
work might consider k-sieves such as [8, 32].

Future work might also address the barriers to a quantum advantage discussed in
Section 7.1. Two additional barriers are worth mentioning here. First, as Grover
search does not parallelise well, one might consider depth restrictions for classical
and quantum circuits. Second, our estimates might be refined by including some
of the classical subroutines, present in both the classical and quantum variants of
the same sieve, that we have ignored, e.g. the cost of sampling lattice vectors or the
cost of list-decoding in Algorithm 11. Any cost increase will reduce the range of
cryptanalytically relevant dimensions, giving fewer dimensions to overcome quantum
overheads.

Finally, our estimates should be checked against experiments. Our analysis of Algo-
rithm 10 recommends a database of size N(d) ≈ 2/Cd(π/3), while the largest sieving
experiments to date [2] runs Algorithm 10 with a database of size N ′(d) = 3.2 · 20.2075d

up to dimension d = 127. There is a factor of 8 gap between N ′(127) and N(127). A
factor of two can be explained by the fact that [2] treats each database entry u as
±u. It is possible that the remaining factor of four can be explained by the other
heuristics used in [2]. As d increases, N(d) and N ′(d) continue to diverge, so future
work could attempt to determine more accurately the required list size.

87

Appendices

A Caps and wedges

The expression of Cd(θ) in terms of the regularised incomplete beta function, Cd(θ) =
1
2Isin2(θ)

(
d−1

2 , 1
2

)
, is perhaps not as well known as it should be.8 Apart from being

concise, this representation makes it clear that Cd(θ) has a hypergeometric representa-
tion (see https://dlmf.nist.gov/8.17#E7). Computer algebra systems often provide
routines for computing hypergeometric functions that are more robust than generic
numerical integration routines.

An exact expression for Wd(θ, θu, θv) involves a subtle case analysis [38]. Fortunately,
we only need the following case.

Fact A.1 ([38, Case 8]). Let θ, θu, θv be real numbers is in (0, π/2) with θ < θu + θv
and (cos(θv) − cos(θu) cos(θ))(cos(θv) cos(θ) − cos(θu)) < 0. Define θ∗ ∈ (0, π/2) by
cos(θv) sec(θ∗) = cos(θu) sec(θ − θ∗). For any u, v ∈ Sd−1 with 〈u, v〉 = cos(θ), the
wedge Wd−1(u, θu, v, θv) has µd−1 measure

Wd(θ, θu, θv) = Jd (θ∗, θv) + Jd (θ − θ∗, θu)

where

Jd(t1, t2) =
1√
π

Γ
(
d
2

)
Γ
(
d−1

2

) ∫ t2

t1

sind−2(ϕ)Cd−1

(
arccos

(
tan(t1)
tan(ϕ)

))
dϕ.

8We learnt this from [39] via [38]. The identity is easy to check

1

2
Isin2(θ)

(
d−1
2 , 12

)
=

1

2
√
π

Γ(d2)

Γ(d−12)

∫ sin2(θ)

0

t
d−1
2 −1(1− t)−

1
2 dt

=
1√
π

Γ(d2)

Γ(d−12)

∫ θ

0

sind−2(t) dt.

88

https://dlmf.nist.gov/8.17#E7

While we use fixed dimension in this work, asymptotics for Cd(θ) and Wd(θ, θu, θv),
as a function of d, are occasionally useful. For fixed θ it follows immediately from the
integral representation of Cd(θ) above that Cd(θ) = (sin θ)(1+o(1))d. The expression
for Wd is slightly more complicated. For fixed θ, θu, and θv let θ∗ be such that
cos θu sec θ∗ = cos θv sec (θ − θ∗), and let ϕ = arccos(cos θu sec θ∗). Note that θ∗ = θ/2
when θu = θv. The argument in [9, Appendix A] establishes that Wd(θ, θu, θv) =

(sinϕ)(1+o(1))d.

Remark A.1. The constraint (cos(θv)− cos(θu) cos(θ))(cos(θv) cos(θ)− cos(θu)) < 0
in the statement of Fact A.1 ensures that u and v lie on opposite sides of the hyperplane
orthogonal to w = u/ cos(θu)− v/ cos(θv). The quantity cos(θv) sec(θ∗) that appears in
the statement of Fact A.1 is equal to the quantity γ that appears in the statement of [9,
Lemma 2.2]. It is the norm of the shortest x ∈ Rn, ‖x‖ ≤ 1 with 〈x, u〉 = cos(θu),
〈x, v〉 = cos(θv), and 〈x,w〉 = 0. The entire wedge is contained in a cap of angle
arccos(‖x‖)(= arccos(γ)) about this shortest x. The proof of [9, Lemma 2.2] establishes
that the wedge is essentially a factor of

√
d smaller than this cap asymptotically,

i.e. Wd(θ, θu, θv) = Θ
(

1
d2

(1− γ2)
d/2
)

.

B Toffoli counts and circuit width

Let the notation be as in Section 4.1. The Toffoli gate is often used in circuit
design. Here we count the Toffoli (or T) gates required to implement G(g) when
g(i) = popcountk,n(u, vi). Recall G(g) = DR0D

−1Rg and that R0 is implemented
with a “multiply controlled” Toffoli. For some m ≥ 3 the m bit Toffoli gate is
TOFm : {0, 1}m → {0, 1}m, (x1, . . . , xm−1, xm) 7→ (x1, . . . , xm−1, (x1 ∧ · · · ∧ xm−1) ⊕
xm). The m = 3 case is referred to as a Toffoli gate, rather than, as for m ≥ 4, a
“multiply controlled” Toffoli gate. The Toffoli count is a pertinent quantity because it
determines the T count. The T count plays a large part in determining the distance
required for error correction, and hence the cost of error correction. In the m ≥ 4 case,
i.e. for R0, more efficient decompositions into T gates are possible [41] and therefore
our software does not count Toffoli gates, but rather directly counts T gates.

The Toffoli Count of Rg. The Toffoli count of the full circuit described in Fig 1,
i.e. including the uncomputation, is

c(CARRY) + 2

`−2∑
i=0

2ic(ADD`−i−1), (17)

89

where c(·) denotes the Toffoli count of its argument. The factor of 2 accounts for
uncomputation and, as explained in Section 4.1, the CARRY circuit is only cost once.
The i bit full adder ADDi of [17] has a Toffoli count of 2i− 1. The CARRY circuit
of [28] has a Toffoli count of 4(`− 2) + 2. A routine calculation gives the overall Toffoli
count as 3n− 5. When decomposing Toffoli gates (m = 3) into T gates we make use
of [4]. Roughly, a Toffoli gate costs 7 T gates.

The Toffoli Count of DR0D
−1. As explained in Section 4.1, D and D−1 com-

prise solely of H gates. We decompose the multiply controlled Toffoli into T gates
via [41, Table I]. In particular we use the bottommost “Ours” row for TOF 4 and
TOFm,m ≥ 5.

The circuit width of Rg. The first layer of adders in Figure. 1 requires 3× 2`−2

qubits. The subsequent layers of adders reuse the qubits from their “parent” layers,
e.g. the adders ADD2 in the second layer reuse the qubits from the layer consisting of
ADD1 adders, with the exception of the input carry for each adder. Hence the total
number of qubits required by the adders is simply equal to the number of input lines
(that end with a black diamond), i.e. 2` − 1.

The CARRY in Fig. 1 requires 2` input qubits and one dirty ancilla, ` of which are
reused from the last adder.

Therefore, the total number of qubits required by Rg is

width = (2` − 1) + `+ 1 = 2` + `. (18)

C The choice of adder

Let the notation be as in Section 4.1. The i bit adders of [18, 46] function similarly
to [17] but instead require O(i) and O(i/ log i) ancillae, respectively. While these
adders require more ancillae, they have an optimal depth of O(log i) compared to the
depth O(i) of the [17] adder. We argue below to not consider [18, 46] when costing
our circuit.

The largest n we consider is 32767 and therefore ` = 15 and the largest adder we
require has i = 14 bits. Such an in-place adder, with incoming carry bit, of [17,
Table. 1] has depth 34, width 29 and requires 27 Toffoli gates. Such an in-place
adder, with incoming carry bit, of [18, Table. 2] has depth 18, width 50 and requires
102 Toffoli gates. The adder of [46] does not allow an incoming carry, and hence
Figure 1 would require 2`−1 = n+ 1, i.e. ` = 16 and the largest adder to have i = 15

90

bits. Following the discussion at the end of [46, Section. 3.4], while ultimately the
depth-width is O(i) compared to O(i log i) of [18], for our small i these circuits are
larger—ignoring the asymptotic subtracted terms and requiring i = 15, we get depth
approximately 90, width approximately 45 and require approximately 435 Toffoli
gates.

Therefore, while we have not explicitly constructed the relevant circuits, we expect any
gain due to the smaller depths of [18, 46] would be minimal at best for our parameters,
given the extra ancillae. Certainly, if one were to consider error correction, such a
gain would be outweighed entirely by their higher Toffoli count.

D Additional figures

Figure 4 provides estimates for AllPairSearch from Section 6.1.

E Location of supplemental materials

The source code and data for this paper can be found on
https://jmschanck.info/code/20200701-schanck-thesis-supplemental.tar.gz.

A backup has also been uploaded to the Internet Archive:
https://archive.org/details/20200701-schanck-thesis-supplemental.

Other versions of this paper are available at:
https://eprint.iacr.org/2019/1161.

91

https://jmschanck.info/code/20200701-schanck-thesis-supplemental.tar.gz
https://archive.org/details/20200701-schanck-thesis-supplemental
https://eprint.iacr.org/2019/1161

Figure 4: Quantum (“q”) and classical (“c”) resource estimates for AllPairSearch. The
three plots, respectively, show crossover points in dimension ≤ 64 under the gate cost metric,
dimension ≤ 64 under the depth-width metric, and dimension 160 under the Gidney–Eker̊a
cost metric.

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

256

d

lo
g

2
(#
op
s)

AllPair (c: RAM)
0.4150 d
AllPair (q: gates)
0.3112 d

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

256

d

lo
g

2
(#
op
s)

AllPair (c: RAM)
0.4150 d
AllPair (q: depth-width)
0.3112 d

100 150 200 250 300 350 400 450 500 550 600
0

64

128

192

256

d

lo
g

2
(#
op
s)

AllPair (c: RAM)
0.4150 d
AllPair (q: GE19)
0.3112 d

92

Chapter 4

RSA

It is clear that the standard size of 512 bits no
longer provides adequate protection, and should be
substantially increased.

Adi Shamir (1995)

93

Context

In celebrating the successful factorization of 295 + 1 by mechanical computer, Derrick N.
Lehmer wrote: “the mathematician reaches out with his high-powered machines and his
high-powered theorems and investigates the internal structure of his distant bodies much
as the astronomer inquires into the structure of some distant star. [...] For over fifty years
this number has stood on the outposts of the number system, a challenge to explorers in
this field of thought.”

How much farther will we see with quantum computers?

The answer depends, of course, on the form of the factorization. Shor’s algorithm can
split generic composites. Its asymptotic complexity suggests that we might some day factor
generic integers that are as large as the Mersenne numbers that can be tested currently
with the Lucas–Lehmer primality test.1 Variants of Shor’s algorithm might see farther for
numbers of a special form.

In the paper below I examine the use of Shor’s algorithm to factor numbers of a special
form. For any number N of the form that I consider, the element 3N mod N is of small
multiplicative order. Given 3N mod N , the cost of Shor’s algorithm is dramatically reduced.
However, if one equates bit operations and quantum gates, then computing 3N mod N
(classically) becomes the dominant cost.

With quantum computers, the outposts of the number system will recede into the
distance. But to predict how far, we will need to determine the relative cost of quantum
and classical operations.

1The largest known Mersenne prime is 27.5 megabytes when fully expressed in base 2.

94

Multi-power Post-quantum RSA

John M. Schanck

Abstract Special purpose factoring algorithms have discouraged the adoption of
multi-power RSA, even in a post-quantum setting. We revisit the known attacks
and find that a general recommendation against repeated factors is unwarranted.
We find that one-terabyte RSA keys of the form n = p2

1p
3
2p

5
3p

7
4 · · · p

πi
i · · · p225287

20044 , with
πi the i-th prime, are competitive with one-terabyte RSA keys of the form n =
p1p2p3p4 · · · pi · · · p231 . Prime generation can be made to be a factor of 100 000 times
faster at a loss of at least 1 but not more than 17 bits of security against known
attacks. The range depends on the relative cost of bit and qubit operations under the
assumption that qubit operations cost 2c bit operations for some constant c.

1 Introduction

An RSA modulus is a “publicly specified product, n, of two large secret prime numbers
p and q” [17]. This – a direct quote from the paper that introduced RSA – is an
uncontroversial and historically accurate definition. But, while n = pq is the most
common form for RSA moduli in deployment, it is not clear that things should be
this way. A lot has changed since [17] was written. The bit-length of n that provide
“adequate security” has increased decade by decade. Why hasn’t the number of factors?
Or their multiplicity? Assuming modest, or even dramatic, reductions in the cost of
factoring, what shape should RSA moduli take in the long term?

If you adhere to some dictum like the right form is that which maximizes security as a
function of the bit length of n, then n = pq is quite plausibly the right form. However,
security is not the only measure of a cryptosystem. Users consider computational
efficiency, compactness, resistance to side-channel attacks, and intellectual property
claims, among other attributes. So there may be room for alternative key forms.

Indeed, a number of alternatives to n = pq have been proposed. The fact that it
is possible to use n = pe11 p

e2
2 · · · p

e`
` was mentioned in the RSA patent [18]. Other

proposals in the literature tend to focus on improving efficiency.

� Takagi [22] has suggested n = prq. This form admits a fast decryption algorithm
based on Takagi’s earlier work [21] on “multi-block” RSA with modulus nk =
(pq)k.

95

� Lim, Kim, Yie, and Lee [11] have suggested n = prqs. They claim that n = p2q3

is 15 times faster than n = pq for 8192-bit n. They consider, but dismiss, the
use of more than two primes.

� Shamir [19] has suggested unbalanced moduli, n = pq, with q much larger than
p. He has also proposed efficiency enhancements so that large n can be used –
large enough that the system is “likely to provide long term security even to
professional paranoids.”

� Collins, Hopkins, Langford, and Sabin [4] have patented efficient methods for
using moduli of the form n = p1p2 · · · p` where each prime is ≈ (lg n)/` bits and
` > 2 is a constant.

� Bernstein, Heninger, Lou, and Valenta [1] have suggested n = p1p2 · · · p` where
each prime is of (lg lg n)2+o(1) bits and ` grows proportionally with n. They
propose key generation, encryption, and decryption routines that each cost
(lg n)(lg lg n)O(1) bit operations.

All of these proposals sacrifice the security of the standard RSA key form for greater
efficiency – even Shamir’s “paranoids” appear to have limited patience for slow
cryptography. The efficiency gains are largely in decryption and are due to the
decryption algorithms of Quisquater and Couvreur [16] and Takagi [21]. The cost of
these decryption algorithms, at least for moduli with a constant number of prime
factors, depends on the size of the private primes rather than the size of n.

Special purpose factoring algorithms limit the extent to which one can use small
primes in RSA. Lenstra’s elliptic curve method (ECM) heuristically finds a prime p
that divides n in exp

(
(log p)1/2+o(1)

)
bit operations. Hence, a system designer who

tries to maximize performance for a given bit length must weigh the cost of ECM
against the cost of the best general purpose factoring algorithm in his attack model.

The number field sieve, a pre-quantum general purpose factoring algorithm, factors n
in exp

(
(log n)1/3+o(1)

)
bit operations. As such, small private primes weaken security

when minp|n log p < (log n)2/3, at least asymptotically. The non-asymptotic analysis is
somewhat more delicate: for lg n ≈ 2048 no more than 3 equally sized private primes
should be used, and for lg n ≈ 4096 no more than 4 equally sized private primes should
be used [8].

Shor’s quantum factoring algorithm dramatically reconfigures the relationship between
special and general purpose factoring algorithms. Shor’s algorithm factors arbitrary n
with high probability using only (lg n)2+o(1) qubit operations. For some n the cost
can even be reduced to (log n)1+o(1) qubit operations. Faced with Shor’s algorithm,
one has to consider whether honest parties are left with any advantage over attackers.

96

This advantage can be formalized as a “cost/performance ratio” – the cost of the best
attack on the system divided by the cost of using the system.

The proposal of Bernstein, Heninger, Lou, and Valenta [1], which we will call “multi-
prime post-quantum RSA” or “multi-prime pqRSA”, is an attempt to maximize the
cost/performance ratio of RSA against Shor’s algorithm. The use of small primes
is still a liability in a post-quantum setting, but their use is also a necessity. The
cost/performance ratio of RSA with n = pq is constant (assuming qubit operations
and bit operations have equal cost), while the cost/performance ratio of multi-prime
pqRSA is (lg n)1+o(1).

Could a different key form provide an even larger post-quantum cost/performance
ratio? There is some evidence that other forms are more efficient in practice. Boneh
and Shacham [3] have compared multi-prime RSA, n = p1p2p3, with Takagi’s variant,
n = p2

1p2, and have found that decryption in Takagi’s system is faster. This suggests
that a multi-power post-quantum RSA, with n = pe11 p

e2
2 . . . pe`` , might have better

performance than multi-prime post-quantum RSA. However, attackers might also
have better cost.

Bernstein, Heninger, Lou, and Valenta dismiss post-quantum parameterizations of
Takagi’s system due to worrisome structure. In [1] they write,

One can try to further accelerate key generation using Takagi’s idea [22]
of choosing n as pk−1q. We point out two reasons that this is worrisome.
The first reason is lattice attacks [2]. The second reason is that any nth
power modulo n has small order, namely some divisor of (p− 1)(q − 1);
Shor’s algorithm finds the order at relatively high speed once the nth
power is computed.

We will elaborate on these two concerns in the remainder of this article.

1.1 Structure of this document.

In Sections 2 and 3 we review lattice based factoring and its cost. In Sections 4
and 5 we review Shor’s algorithm and its cost. In Section 6 we propose a particular
exponent sequence for multi-power post-quantum RSA and examine the implications
of this choice. Readers familiar with Coppersmith’s technique and Shor’s algorithm
are encouraged to skip to Section 6 and refer to Sections 3 and 5 as needed.

97

1.2 Notation.

We use standard notation, o(·), O(·), ω(·), Ω(·), for asymptotic growth rates. The
natural logarithm is denoted log and the logarithm to base 2 is denoted lg. Euler’s
totient function is denoted φ(n). The bit operation cost of (lg n)-bit (modular)
multiplication is denoted M(lg n).

2 Factoring with Coppersmith’s Technique

The first concern, “lattice attacks,” refers to Boneh, Durfee, and Howgrave-Graham’s
work [2] on factoring numbers of the form n = pkq. Their algorithm is based on
Coppersmith’s technique, and outperforms Lenstra’s elliptic curve method for large
k. Coppersmith’s technique is a general method for finding small modular roots
of univariate polynomials. More formally, it solves some instances of the following
problem.

Problem 2.1. Given a rational polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0,

and positive integers R and P , enumerate all integers x0 such that f(x0) ≡ 0 (mod P)
and |x0| < R.

The difficulty of Problem 2.1 varies dramatically with R and P . The Berlekamp-
Zassenhaus-van Hoeij algorithm solves Problem 2.1 in randomized polynomial time
when the factorization of P is known. Coppersmith’s technique solves some instances
even when the factorization of P is not known.

We will describe a formulation of Coppersmith’s technique due to Howgrave-Graham
[9]. Our emphasis will be on factoring integers of the form n = pkq with p and q of
known bit length and k large. Howgrave-Graham’s version of Coppersmith’s technique
solves a generalization of Problem 2.1 in which only a multiple of P , rather than P
itself, is given.

Problem 2.2. Given a rational polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0,

positive integers R and N , a real number β, and a promise that N has a divisor P of
size Nβ, enumerate all integers x0 such that f(x0) ≡ 0 (mod P) and |x0| < R.

98

Both variants of the problem have applications to factoring and the cryptanalysis of
RSA; Alexander May has compiled an extensive survey of these applications [12].

Suppose that n = pkq and that we know some bits of p. For example, suppose that
we know the high bits of p; or equivalently, that we know an integer u for which p− u
is a small (unknown) integer r. Then the rational polynomial

f(x) = (u+ x)k/n (1)

evaluates to 1/q at x = r. Likewise f2(r) = 1/q2, f3(r) = 1/q3, and every polynomial
of the form

h(~a;x) =
m−1∑
i=0

k−1∑
j=0

aik+jf(x)ixj , (2)

with ~a ∈ Zkm, satisfies h(~a; r) ∈ q−(m−1)Z. In other words, qm−1h(~a; r) is an integer for
every ~a ∈ Zkm. Coppersmith’s technique constructs an ~a for which |h(~a; r)| < q−(m−1)

and, consequently, h(~a; r) = 0.

Remarkably, such an ~a can be constructed in polynomial time whenever sufficiently
many bits of p are known. This is made precise by Theorem 2.1.

Theorem 2.1. Let N = P kQ for positive integers P , Q, and k with k > 2. Let
f(x) = akx

k + ak−1x
k−1 + · · · + a1x + a0 with gcd{N, a0, a1, . . . , ak} = 1. Let R be

such that

R <
1

2

(
P k/Q

)1/(k+1)
.

Then all integers x0 satisfying f(x0) ≡ 0 (mod P k) and |x0| < R can be enumerated
at a cost of

k11+o(1) lgN + k10+o(1) lg2N

bit operations.

2.1 Constructing a short polynomial for fixed R.

The set of rational polynomials of degree at most d is denoted Q[x]≤d. Observe that
Q[x]≤d is a Q-vector space of dimension d+ 1. We equip this space with the usual
coefficient norm, ∥∥∥c0 + c1x+ · · ·+ cdx

d
∥∥∥ =

√
c2

0 + c2
1 + · · ·+ c2

d,

99

so that we can view the integer span of a finite collection of elements of Q[x]≤d as a
lattice.

A basis for a full rank lattice L ⊂ Q[x]≤d is a set of d + 1 linearly independent
polynomials in L. The determinant, or co-volume, of L is detL := |detB| where B is
the matrix of coefficient vectors of a basis of L.

For a rational number t the evaluation map x 7→ t is a linear functional on Q[x]≤d,
which one can think of as an inner product of a coefficient vector with (1, t, t2, . . . , td).
Thus, for g(x) ∈ Q[x]≤d we have

|g(t)| ≤
√
Ct ‖g(x)‖ (3)

with Ct =
∑d

i=0 t
2i. More conveniently, when |t| ≤ 1 we have

|g(t)| <
√
d+ 1 ‖g(x)‖ . (4)

This simple fact, the Cauchy-Schwarz inequality, proves to be quite useful. Preserving
the motivation and definition of f(x) in Eq. 1, recall that we are looking for a small
integer r. The definition of small is made precise by introducing a number R such that
|r| < R. Suppose s ∈ Z and |s| < R, then Equation 4 can be applied, with t = s/R,
to polynomials of the form

ĥ(~a;x) =
m−1∑
i=0

k−1∑
j=0

aik+jf(xR)i(xR)j , with ~a ∈ Zkm.

These polynomials form a lattice in Q[x]≤km−1. The parameter ~a expresses ĥ(~a;x) in
the basis

H =

1, (xR), (xR)2, . . . , (xR)k−1,

f(xR), f(xR)(xR), f(xR)(xR)2, . . . , f(xR)(xR)k−1,
f(xR)2, f(xR)2(xR), f(xR)2(xR)2, . . . , f(xR)2(xR)k−1,

· · ·
f(xR)m−1, f(xR)m−1(xR), f(xR)m−1(xR)2, . . . , f(xR)m−1(xR)k−1

 .

Note that H contains exactly one element of each degree from 0 to km− 1. So H is in
fact a basis for a lattice of rank km. Moreover, the corresponding matrix of coefficient
vectors is triangular, so we can easily compute |detH|. The leading coefficient of
f(xR)i(xR)j is Rik+j/ni, hence

|detH| =
m−1∏
i=0

k−1∏
j=0

Rik+j/ni

= Rkm(km−1)/2n−km(m−1)/2.

(5)

100

The lattice reduction algorithm of Lenstra, Lenstra, and Lovász (LLL) can be used to
find “short” elements of a lattice in polynomial time. The exact meaning of “short” is
provided by the following fact.

Fact 2.1 (LLL [10]). Let (~b1,~b2, . . . ,~bd) be an LLL-reduced basis of a lattice L. Then

‖~b1‖ ≤ 2(d−1)/4(detL)1/d.

We omit the precise definition of LLL-reduced; for now it suffices to know that an LLL-
reduced basis can be produced, in polynomial time, by applying the LLL algorithm to
a basis of L.

If ĥ(x) is the first vector obtained by applying LLL to H, then

‖ĥ(x)‖ ≤ 2(km−1)/4 |detH|1/km (6)

The question now is whether this is small enough to ensure that ĥ(r/R) = 0.

2.2 Optimizing R.

We will determine the largest R for which

|ĥ(s/R)| < q−(m−1) (7)

for all s ∈ Z with |s| < R. When Eq. 7 is satisfied, we are able to recover r, and
factor n, by computing the rational roots of ĥ(x). Equations 4, 5, and 6 imply

|ĥ(s/R)| <
√
km ‖ĥ(x)‖

=
√
km 2(km−1)/4R(km−1)/2n−(m−1)/2.

Observe that
√
km 2(km−1)/4 < 2(km−1)/2 for integers k and m with km > 7. So

Equation 7 is satisfied, for km > 7, when

(2R)(km−1)/2 < n(m−1)/2q−(m−1). (8)

Taking logarithms we have

lg 2R <
m− 1

km− 1
(lg n− 2 lg q) . (9)

The bound on R in the statement of Theorem 2.1 is recovered by taking m = k and
writing lg n = k lg p+ lgp q.

101

3 The cost of lattice attacks.

We will now consider the cost of using Theorem 2.1 to factor n of the form n =
pe11 p

e2
2 . . . peLL . For simplicity we will assume that the prime factors of n are of equal

bit length and that the ei are in decreasing order.

Let E =
∑L

i=1 ei. Suppose E ≥ 5, so that there exist integers P , Q, and k with k > 2
and n = P kQ. Let R be as in Theorem 2.1. An attacker has to guess lgP − lgR bits
of P to construct an f(x), as in Equation 1, to which Theorem 2.1 can be applied.
With the upper bound on R from Theorem 2.1 we have

lgP − lgR > lgP − 1

k + 1
(k lgP − lgQ)

=
1

k + 1
(lgP + lgQ).

(10)

The cost of checking a guess is dominated by LLL. Thus, factoring n = P kQ with
Coppersmith’s technique costs

2lgP−lgR · poly(k,N) > (PQ)1/(k+1) · poly(k,N) (11)

bit operations, where poly(k,N) is the cost of lattice reduction. The expected cost
of guessing lgP − lgR bits of P will be comparable to the cost of ECM when
lgP − lgR ≈

√
lg p1. Note that lgP + lgQ is at least (lg p1)L, since each prime

dividing n must occur to some power in P or Q. If L is constant with respect to n, as
it is for n = pkq, the condition to beat ECM is k = Ω(

√
lg p1), as was reported in [2].

However, if L grows with n, then one needs k = Ω(L
√

lg p1).

The LLL algorithm costs d5+o(1)(lgB)2+o(1) bit operations where d is the lattice rank
and lgB is the number of bits needed to represent the longest vector of the input
basis. The o(1) terms assume fast multiplication techniques.

Much of the algorithmic research on lattice reduction focuses on improving the constant
2(d−1)/4 in Fact 2.1. In Equation 8 we discarded any impact these algorithms could
have, with little consequence.

On the other hand, Stehlé and Nguyen’s L2 variant of LLL [13] does seem to help. They
use (carefully analyzed) floating point arithmetic to produce an LLL-reduced basis in
d5+o(1) lgB + d4+o(1) lg2B bit operations. The complexity claim in the statement of
Theorem 2.1 is recovered with m = k, d = k2, and lgB = O(k lgN).

The cost can also be improved by using Novocin, Stehlé, and Villard’s L̃1 variant
of LLL [14]. That algorithm costs d5+o(1) lgB + dω+1+o(1)(lgB)1+o(1) bit operations,
where ω < 2.373 is the matrix multiplication exponent.

102

4 Shor’s Algorithm.

We turn now to quantum attacks. We will describe Shor’s algorithm without the usual
machinery of unitary transformations on complex euclidean space. Instead we break
the algorithm into four steps: initialization, randomization, modular exponentiation,
and the quantum Fourier transform. We give a high level description of each step, the

cost of each step, and the probability of events that we label “R
(i)
j = k.” The event

“R
(i)
j = k” should be read as “terminating Shor’s algorithm after step i and reading

qubit register j yields outcome k.”

The computation involves two qubit registers. The first register represents an element
of Z/SZ, for an S that our analysis will determine later. The second register represents
an element of Z/nZ, where n is the number to be factored. Each step of the algorithm
may use “scratch” registers as well, but we assume that these scratch registers are
statistically independent from the data registers in between steps2. The cost of each
step is given as the depth of a quantum circuit that performs that step. Circuit depth
is measured in elementary single- and two-qubit gates, hereafter “qubit operations.”

Shor’s algorithm computes the multiplicative order of 3 modulo n, i.e the smallest r
such that 3r ≡ 1 (mod n). If r is even, and 3r/2 6≡ −1 (mod n), then gcd(3r/2 − 1, n)
is a non-trivial factor of n. If r is odd, or 3r/2 ≡ −1 (mod n), then one tries again
with a different constant in place of 3. The algorithm proceeds as follows.

Step 1: The registers are initialized to 0, i.e.

Pr[R
(1)
1 = 0 ∧R(1)

2 = 0] = 1.

The cost of this step is omitted.

Step 2: The first register is transformed so that it represents the uniform distribution
on Z/SZ:

Pr[R
(2)
1 = x ∧R(2)

2 = 0] = 1/S

for all x ∈ Z/SZ. When S is a power of 2 the circuit for this operation – parallel
Hadamard gates on each qubit of the first register – has depth 1.

Step 3: The value modexp(3, x, n) := 3x mod n is calculated and stored in the second
register. The transformation (x, 0) 7→ (x,modexp(3, x, n)) is a bijection, so this does
not affect the probability of finding x in the first register, i.e.

Pr[R
(3)
1 = x ∧ R

(3)
2 = modexp(3, x, n)] = 1/S

2Standard reversible computing techniques make this a benign assumption, though it is slightly stronger
than what is needed.

103

for all x ∈ Z/SZ. This operation costs (lgS)·M(lg n) qubit operations, whereM(lg n)
is the cost of (lg n)-bit modular multiplication. It is reasonable to expect that quantum
modular multiplication will cost (lg n)1+o(1) qubit operations, matching the classical
bit operation cost3.

Step 4: The (approximate) Z/SZ quantum Fourier transform is applied to the first
register. This costs (lgS)1+o(1) qubit operations [5]. The effect of this transformation

is best described by the distribution of R
(4)
1 conditioned on R

(4)
2 = 3k mod n. Since 3

is of multiplicative order r we may assume 0 ≤ k < r. Then for y ∈ Z/SZ Shor shows
that

Pr[R
(4)
1 = y | R(4)

2 = 3k mod n] =

∣∣∣∣∣∣∣
√
r

S

bS−k−1
r c∑
b=0

exp
(
2πib ryS

)∣∣∣∣∣∣∣
2

. (12)

We will say that y is good if there exists an integer d such that∣∣∣∣ yS − d

r

∣∣∣∣ ≤ 1

2S
. (13)

Shor shows that for good y the right hand side of Equation 12 is at least 1/3r. If
S > 2r then there are at least φ(r) pairs (d, y) for which d/r is in lowest terms and y
is good. Hence, for S > 2r, the total probability assigned to the set of good y is at
least φ(r)/3r = O(1/ log log r).

The algorithm terminates after step 4. Shor’s strategy for recovering r from the known
quantities y and S is to compute the convergents of the continued fraction expansion
of y/S. If S > r2 then Equation 13 is a sufficient condition (well known in the theory
of Diophantine approximation) for d/r to appear among the convergents. For S of this
size there are also techniques that amplify the success probability from O(1/ log log r)
to O(1) through classical post-processing alone [20]. We ignore the bit operation cost
of post-processing, including the cost of computing gcd(3r/2 − 1, n).

5 The cost of period finding.

The (lgS)·M(lg n) qubit operations in step 3 are the dominant cost of Shor’s algorithm.
For general integers, Shor recommends taking S to be the power of two between n2

and 2n2. However, for certain integers one can take S slightly smaller.

This brings us to the second reason that Bernstein, Heninger, Lou, and Valenta
find n = pkq to be worrisome. Since φ(n) = pk−1(p − 1)(q − 1) the multiplicative

3State of the art quantum circuits for mod-n multiplication cost 32(lg n)2 +O(lg n) qubit operations [7],
but there are no fundamental barriers to implementing fast multiplication.

104

order of any nth power in (Z/nZ)× divides (p − 1)(q − 1). Hence, we may take
S = ((p− 1)(q− 1))2 ≈ n4/(k+1) so long as we by replace the constant 3 in Step 3 with
3n mod n. The cost of computing 3n mod n is (lg n)·M(lg n) bit operations. Following
this, the cost of Step 3 of Shor’s algorithm is O(lgn

k+1) · M(lg n) qubit operations. In
other words, “Shor’s algorithm finds the order at relatively high speed once the nth
power is computed” [1].

The same argument applies to more general multi-power moduli n = pe11 p
e2
2 . . . peLL .

The adversary can take S = n2L/E where E =
∑

i ei. The asymptotic cost of factoring
such n by Shor’s algorithm is (lg n) ·M(lg n) bit operations plus O(LE lg n) ·M(lg n)
qubit operations. If E − L is large, and qubit operations are much more expensive
than bit operations, this could be a dramatic improvement.

6 Multi-power pqRSA

The multi-prime post-quantum RSA system proposed in [1] uses fast multiplication
techniques to reduce the cost of users’ operations when n = p1p2 · · · p` and ` grows
as lg n/(lg lg n)2+o(1). The multi-power post-quantum RSA system we propose here
applies similar techniques to reduce the cost of users’ operations when n = pe11 p

e2
2 · · · p

eL
L

and L grows as (lg n)1/(2+o(1)). Our decryption procedure follows [22] and [11] in using
a Newton iteration to compute a cube root modulo peii from a cube root modulo pi.

The constraints on parameter selection for multi-prime pqRSA come from ECM and
Shor’s algorithm. When repeated factors are allowed we also need to ensure that lattice
attacks cost more than ECM and that special purpose variants of Shor’s algorithm do
not eliminate our cost/performance ratio.

6.1 Parameters.

We take
n = p2

1p
3
2p

5
3p

7
4 · · · p

πi
i · · · p

πL
L

where πi is the ith prime. As in [1], we take each prime factor of n to be of bit
length (lg lg n)2+o(1). We also take pi ≡ 2 (mod 3) for i = 1, . . . , L so that encryption
exponent 3 can be used.

We define E(L) =
∑

i≤L πi. The prime number theorem suggests that E(L) ∼
1
2L

2 logL. To obtain keys of a specified bit-length we choose L such that E(L) =

lg n/(lg lg n)2+o(1).

105

For concreteness we will focus on 1-terabyte keys, lg n = 243. We follow [1] and
fix the bit length of the pi at 4096 bits. We then take L = 20044, which gives
E(20044) = 231.0001....

6.2 Security.

Small factor attacks.

The asymptotic security analysis of multi-power pqRSA with respect to trial division,
Pollard’s p− 1 method, Williams’ p+ 1 method, and Lenstra’s elliptic curve method
is identical to multi-prime pqRSA. This is also true for variants of these algorithms
that use Grover’s algorithm as a subroutine. We refer to [1] for a detailed discussion
of why these attacks are not likely to succeed at a cost of less than 2140 bit operations
when 4096-bit primes are used.

Note that Peralta and Okamoto [15] describe a method to speed up ECM for moduli of
the form n = p2q. This method does not improve on the asymptotic exp((log p)1/2+o(1))
cost estimate for ECM that is used here.

Lattice attacks.

The lattice attack in Section 2 is competitive with ECM when the attacker needs to
guess fewer than

√
lg p1 = (lg lg n)1+o(1) bits. We will argue that there do not exist

integers P , Q, and k, with n = P kQ, for which the lattice attack is competitive with
ECM. From Equation 10, we see that P , Q, and k must satisfy

1

k + 1
(lgP + lgQ) ≤ (lg lg n)1+o(1). (14)

Observe that p2
1p

3
2 · · · p

πj
j | Q for j such that πj < k. The sum of the primes less than

k grows at least as fast as the sum of the first k/ log k integers. In particular the sum
dominates k. Hence lgQ = ω((lg lg n)2k) and we see that Eq. 14 cannot be satisfied.
It is a simple exercise to show that replacing Equation 14 with a condition based on
Equation 9 does not improve the situation.

Even if a satisfying k did exist, the cost of LLL would be prohibitive. Theorem
2.1 suggests a cost of well over k10 lg n bit operations. Taking k smaller than L is
unrealistic, as lgP + lgQ grows super-linearly with L. With lg n = 243 and L = 20044
we have L10 lg n > 2185.

The cost of lattice reduction becomes an enormous obstacle if one attempts to guess
bits of P using Grover search.

106

Period finding.

As described in Section 5, one can reduce the cost of period finding by replacing the
constant 3 in Shor’s algorithm with 3n mod n. The resulting cost is (lg n) · M(lg n)
bit operations plus (lgS) · M(lg n) qubit operations where S = n2L/E . For our
multi-power pqRSA moduli lgS = (lg n)1/2+o(1), so the cost of Shor’s algorithm is
(lg n) · M(lg n) bit operations plus (lg n)1.5+o(1) · M(lg n) qubit operations.

Bernstein, Heninger, Lou, and Valenta [1] estimateM(lg n) using contemporary speed
records for multiplication in F260 . Assuming that integer multiplication can be made
as fast as binary polynomial multiplication, that reduction modulo n is free, and that
bit operations have the same cost as qubit operations, they suggest thatM(243) ≈ 256

bit (or qubit) operations.

For our 1-terabyte multi-power pqRSA parameters S = (24096L)2 ≈ 2227 . Consequently,
Shor’s algorithm costs (lg n) · M(243) ≈ 299 bit operations plus (lgS) · M(243) ≈ 283

qubit operations. Compare this with the cost of attacking 1-terabyte multi-prime
pqRSA: with S = n2 Shor’s algorithm costs (lg n) · M(243) ≈ 2100 qubit operations.

6.3 Efficiency.

Apart from decryption, the user’s computations in multi-power pqRSA are identical
to the user’s computations in multi-prime pqRSA. We refer the reader to [1] for the
justification that key generation and encryption take (lg n)1+o(1) bit operations.

Multi-power pqRSA decryption may be somewhat faster than multi-prime pqRSA
decryption, but we do not expect a significant asymptotic improvement. To decrypt
a ciphertext c, one first uses a remainder tree to compute c mod pπii for i = 1, . . . , L.
One then computes the cube root of c modulo each pi. The decryption algorithm
differs from multi-prime pqRSA in that there are two distinct interpolation steps. The
first, as in [22, 11], lifts the cube root of c modulo pi to a cube root of c modulo pπii
for i = 1, . . . , L. The second uses a CRT tree to construct the cube root of c modulo
n. If there is any speedup for multi-power pqRSA decryption, it is likely due to the
fact that fewer cube roots need to be computed. The two interpolation steps together
are likely as expensive as the CRT tree in multi-prime pqRSA. Regardless, decryption
will cost (lg n)1+o(1) bit operations.

We have not implemented multi-power pqRSA, and can only estimate its non-
asymptotic efficiency. Bernstein, Heninger, Lou, and Valenta report a prime generation
rate of between 750 and 1585 primes per core-hour. They also report that a set of 231

primes was generated in 1 975 000 core-hours [1]. At the same rate, generating the
20 044 primes needed for a 1-terabyte multi-power pqRSA key would take only 18.5

107

core-hours. Keep in mind that the full key generation procedure also involves a large
product tree.

Cost/performance ratio.

Multi-prime pqRSA key generation, encryption, and decryption all cost (lg n)1+o(1)

bit operations. The best attack costs (lg n)2+o(1) qubit operations. As there is no
reason to believe that qubit operations are less expensive than bit operations, we can
safely say that there is a quadratic gap between the attacker’s cost and the user’s cost.
The gap could be larger if qubit operations are fundamentally more expensive than
bit operations.

Multi-power pqRSA key generation, encryption, and decryption cost (lg n)1+o(1) bit
operations. The best attack costs (lg n)2+o(1) bit operations plus (lg n)1.5+o(1) qubit
operations. If qubit operations cost the same as bit operations, then multi-power
pqRSA users still enjoy a quadratic advantage against attackers. This remains true
when qubit operations cost C bit operations, for any constant C. The quadratic
advantage is only threatened when the cost of qubit operations grows with n.

7 Conclusion

One-terabyte multi-prime pqRSA key generation is quite costly. In one test, prime
generation took “four months running on spare compute capacity of a 1,400-core
cluster” and evaluating the product tree took “about four days” [1]. A user with a
comparable machine should be able to generate a multi-power pqRSA key in just 5
days. The speedup comes with some loss in security, but quantifying this loss presents
challenges.

In Section 6.2 we saw that if bit operations and qubit operations have equal cost, then
1-terabyte multi-power pqRSA users suffer a 1 bit security loss. However, if qubit
operations are much more expensive than bit operations, these users suffer a 17 bit
security loss—albeit from a higher initial security level.

The security gap could be amplified in other cost models. In [6] the cost of a quantum
circuit is expressed in “surface code cycles.” Each surface code cycle involves error
correction that can be assigned a cost in bit operations. For a logical circuit of depth
D on W logical qubits, the error correction for the surface code costs poly lgDW bit
operations per surface code cycle. This is O(lg lgn) bit operations per surface code
cycle for attacks on both multi-prime and multi-power pqRSA, but the constant will
be smaller for multi-power pqRSA.

108

Questions about the relative cost of bit and qubit operations will need to be answered
whether users choose multi-prime pqRSA, multi-power pqRSA, or some other system.
Even if users decide that no variant of pqRSA is fast enough for their needs, a
robust quantum cryptanalysis of RSA will greatly improve our understanding of the
post-quantum security of other systems.

109

Chapter 5

Conclusion

110

1 Assumptions redux

My co-authors and I have worked within standard models where possible. Each of the
above chapters includes an analysis in the standard circuit model, or an analysis in the
circuit model with qRAM. Each chapter fills in details that were missing from previous
analyses and draws new conclusions. To re-cap:

1. There is no known attack of cost p1/6+o(1) on SIKE—the best known is p1/4+o(1).

2. The 20.265d estimate for the cost of lattice sieving is a severe underestimate. I know
of no algorithm for list-size preserving angular near neighbor search in dimension
d = 376 that can claim a cost of less than 2127.7 Clifford+T+qRAM gates or less than
2137.6 RAM operations.

3. Multi-power RSA is either roughly as secure as multi-prime RSA, or multi-power
RSA is less secure than multi-prime RSA and multi-prime RSA is more secure than
it is currently claimed to be.

However, I began by asking that we re-examine several features of the quantum machine
models that we use. Alongside our analyses in standard models, my co-authors and I have
shown that the following features have practical consequences for the security of SIKE,
lattice-based schemes, and RSA.

Zero-cost quantum storage If one assumes unit-cost quantum storage (i.e. the depth-
width cost) rather than zero-cost quantum storage (i.e. the gate cost), then the claimed
p1/6+o(1) attack on SIKE is immediately revealed to be a p1/3+o(1) attack. Optimizing the
parameters of the attack only reduces its cost to p1/4+o(1). This matches the best known
classical attack up to terms in the o(1).

Unit-cost quantum accessible classical memory By the principle of locality, a qRAM
gate necessarily has a cost that is at least proportional to the time to access an N bit
classical memory. This impacts the asymptotic advantage that quantum search provides
to angular near neighbor search algorithms. Under an assumption of unit-cost qRAM the
asymptotic complexity of the Becker–Ducas–Gama–Laarhoven algorithm is 2(0.265...+o(1))d.
If the memory is embedded in a three dimensional space (at finite integration density),
and one assumes that the cost of memory access matches the lower bound of Ω(N1/3),
then the asymptotic complexity of the BDGL algorithm is 2(0.284...+o(1))d. If one assumes a

111

two dimensional embedding of the memory, and that the cost of memory access matches
the lower bound of Ω(N1/2), then the asymptotic complexity of the BDGL algorithm is
2(0.292...+o(1))d. Its classical RAM model complexity is also 2(0.292...+o(1))d.

Zero-cost classical computation If one assumes that quantum gates and classical gates
have equal cost, then the asymptotic complexity of Shor’s algorithm matches the complexity
of modular exponentiation. This presents an obvious barrier to the small order attack of
Chapter 4.

2 Recommendations for quantum cryptanalysis

The tools that are needed by cryptanalysis are not, entirely, contained in the theory of
the analysis of algorithms. Nor are they entirely contained in the theory of computational
complexity. Nor are they contained in the union of these theories. What cryptanalysts
need is a theory of computational economy—a theory of how to compute best given fixed
finite resources.

For practitioners of computational economy, I have some concrete recommendations:

1. We should assume that active error correction is an essential part of quantum compu-
tation. This assumption comes with some risk, but it is a risk similar to that posed
by non-dissipative computation.

2. We should cost classical pre-processing, co-routines, and post-processing in the same
model of computation that we use to cost quantum error correction.

3. We should fix a technologically motivated absolute limit on the size of a memory. I
suggest 2140 bits—a Lunar mass memory with a density of one petabyte per gram.

My goal in making these recommendations is to simplify the attack landscape of post-
quantum cryptosystems without compromising real-world security.

Physicists may eventually show that self-correcting quantum memories do not exist. They
may eventually show that robust computing systems must dissipate energy. They may
eventually find computational speed limits. They may eventually show that closed timelike
curves do not exist. Computer scientists may even have a role to play in exploring these
limits. But cryptographers do not have to wait for future developments. We can continue
to use economic and technological assumptions to shore up our analyses.

112

Bibliography

Chapter 1: Introduction

[1] Scott Aaronson and John Watrous. Closed timelike curves make quantum and classical
computing equivalent. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 465(2102):631–647, 2009.

[2] Carlisle M. Adams and Henk Meijer. Security-related comments regarding McEliece’s
public-key cryptosystem. In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, pages 224–228. Springer, Heidelberg, August 1988.

[3] Gordon B. Agnew, Ronald C. Mullin, and Scott A. Vanstone. An implementation of
elliptic curve cryptosystems over F2155 . IEEE Journal on Selected areas in Communi-
cations, 11(5):804–813, 1993.

[4] Dave Bacon. Quantum computational complexity in the presence of closed timelike
curves. Physical Review A, 70(3):032309, 2004.

[5] F. Bahr, M. Böhm, J. Franke, and T. Kleinjung. Factorization of RSA-200. http:
//www.loria.fr/∼zimmerma/records/rsa200, May 2005.

[6] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, Richard Davis, and Scott
Simon. Recommendation for pair-wise key establishment using integer factorization
cryptography. NIST Special Publication 800-56B Rev. 2, 2019. https://csrc.nist.
gov/publications/detail/sp/800-56b/rev-2/final.

[7] Paul Benioff. The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines. Journal of
statistical physics, 22(5):563–591, 1980.

113

http://www.loria.fr/~zimmerma/records/rsa200
http://www.loria.fr/~zimmerma/records/rsa200
https://csrc.nist.gov/publications/detail/sp/800-56b/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-56b/rev-2/final

[8] Paul Benioff. Quantum mechanical Hamiltonian models of Turing machines. Journal
of Statistical Physics, 29(3):515–546, 1982.

[9] Paul Benioff. Comment on “Dissipation in computation”. Physical Review Letters,
53(12):1203, 1984.

[10] Charles H Bennett. Logical reversibility of computation. IBM journal of Research and
Development, 17(6):525–532, 1973.

[11] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of
LNCS, pages 207–228. Springer, Heidelberg, April 2006.

[12] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
McEliece cryptosystem. In Johannes Buchmann and Jintai Ding, editors, Post-quantum
cryptography, second international workshop, PQCRYPTO 2008, pages 31–46. Springer,
Heidelberg, October 2008.

[13] Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece cryptosys-
tem. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT’98, volume 1514 of LNCS,
pages 187–199. Springer, Heidelberg, October 1998.

[14] David Deutsch. Is there a fundamental bound on the rate at which information can be
processed? Physical Review Letters, 48(4):286, 1982.

[15] David Deutsch. Quantum theory, the Church–Turing principle and the universal
quantum computer. Proc. R. Soc. Lond. A, 400:97–117, 1985.

[16] Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the NBS Data
Encryption Standard. IEEE Computer, 1977. https://ee.stanford.edu/∼hellman/
publications/27.pdf.

[17] Freeman J. Dyson. Search for artificial stellar sources of infrared radiation. Science,
131(3414):1667–1668, 1960.

[18] Richard P. Feynman. Quantum mechanical computers. Foundations of Physics,
16:507–531, 1986.

[19] Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, Martin
Šimka, and Colin Stahlke. An efficient hardware architecture for factoring integers
with the elliptic curve method. Special-Purpose Hardware for Attacking Cryptographic
Systems–SHARCS, 2005.

114

https://ee.stanford.edu/~hellman/publications/27.pdf
https://ee.stanford.edu/~hellman/publications/27.pdf

[20] Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21:219–253, 1982.

[21] Thomas Häner and Damian S Steiger. 0.5 petabyte simulation of a 45-qubit quantum
circuit. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–10, 2017.

[22] IEEE International Roadmap for Devices and Systems. More Moore, 2018 edition.
https://irds.ieee.org/editions/2018/more-moore.

[23] Stephen P. Jordan. Fast quantum computation at arbitrarily low energy. Physical Rev.
A, 95, 2017.

[24] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM
journal of research and development, 5(3):183–191, 1961.

[25] Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of
LNCS, pages 275–280. Springer, Heidelberg, May 1988.

[26] Norman Margolus and Lev B. Levitin. The maximum speed of dynamical evolution.
Physica D: Nonlinear Phenomena, 120(1-2):188–195, 1998.

[27] Robert J McEliece. A public-key cryptosystem based on algebraic coding theory. Jet
Propulsion Laboratory DSN Progress Report, 1978. http://ipnpr.jpl.nasa.gov/
progress report2/42-44/44N.PDF.

[28] N. David Mermin. What’s bad about this habit. Physics today, 62(5):8–9, 2009.

[29] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian
LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert,
Ananth Raghunathan, and Douglas Stebila. FrodoKEM. Technical report, National
Institute of Standards and Technology, 2019. Available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.

[30] W. Porod, R. O. Grondin, D. K. Ferry, and G. Porod. Dissipation in computation.
Physical Review Letters, 52(3):232, 1984.

[31] W. Porod, R. O. Grondin, D. K. Ferry, and G. Porod. Porod et al. respond. Physical
Review Letters, 53(12):1206, 1984.

115

https://irds.ieee.org/editions/2018/more-moore
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[32] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[33] Tommaso Toffoli. Comment on “Dissipation in computation”. Physical Review Letters,
53(12):1204, 1984.

[34] Jeff Tsao, Nate Lewis, and George Crabtree. Solar FAQs. https://www.sandia.gov/
∼jytsao/Solar%20FAQs.pdf, 2006.

[35] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(1):230–265, 1937.

[36] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1–28, January 1999.

[37] Michael J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology,
17(2):105–124, March 2004.

[38] Wojciech H. Zurek. Reversibility and stability of information processing systems.
Physical Review Letters, 53(4):391, 1984.

Chapter 2: SIKE

[1] G. Adj, D. Cervantes-Vázquez, J.-J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-
Henŕıquez. On the cost of computing isogenies between supersingular elliptic curves.
In Selected Areas in Cryptography – SAC 2018, pages 322–343. LNCS 11349.

[2] R. Alicki, M. Fannes, and M. Horodecki. On thermalization in Kitaev’s 2d model. J.
Physics A, 42:065303, 2009.

[3] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki. On thermal stability of
topological qubit in Kitaev’s 4d model. Open Systems & Information Dynamics,
17:1–20, 2010.

[4] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Computing,
37:210–239, 2007.

[5] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd, and
M. Stather. Efficient distributed quantum computing. Proc. Royal Soc. London A:
Mathematical, Physical and Engineering Sciences, 469, 2013.

116

https://www.sandia.gov/~jytsao/Solar%20FAQs.pdf
https://www.sandia.gov/~jytsao/Solar%20FAQs.pdf

[6] D. J. Bernstein, J.-F. Biasse, and M. Mosca. A low-resource quantum factoring
algorithm. In Post-Quantum Cryptography – PQCrypto 2017, pages 330–346. LNCS
10346.

[7] D. J. Bernstein, S. Jeffery, T. Lange, and A. Meurer. Quantum algorithms for the
subset-sum problem. In Post-Quantum Cryptography – PQCrypto 2013, pages 16–33.
LNCS 7932.

[8] J.-F. Biasse, D. Jao, and A. Sankar. A quantum algorithm for computing isogenies
between supersingular elliptic curves. In Progress in Cryptology – INDOCRYPT 2014,
pages 428–442. LNCS 8885.

[9] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf. Cavity quantum
electrodynamics for superconducting electrical circuits: An architecture for quantum
computation. Physical Rev. A, 69, 2004.

[10] G. Brassard, P. Høyer, K. Kalach, M. Kaplan, S. Laplante, and L. Salvail. Merkle
puzzles in a quantum world. In Advances in Cryptology – CRYPTO 2011, pages
391–410.

[11] S. Bravyi and B. Terhal. A no-go theorem for a two-dimensional self-correcting quantum
memory based on stabilizer codes. New J. Physics, 11, 2009.

[12] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton. Quantum memories
at finite temperature. Rev. Modern Physics, 88, Nov 2016.

[13] B. Coecke, T. Fritz, and R. W Spekkens. A mathematical theory of resources. Infor-
mation and Computation, 250:59–86, 2016.

[14] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. J.
Mathematical Physics, 43, 2002.

[15] D. E. Deutsch. Quantum computational networks. Proc. R. Soc. Lond. A, 425:73–90,
1989.

[16] R. P Feynman. Quantum mechanical computers. Foundations of Physics, 16:507–531,
1986.

[17] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes:
Towards practical large-scale quantum computation. Physical Rev. A, 86, Sep 2012.

117

[18] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg. Towards practical classical
processing for the surface code. Physical Rev. letters, 108, 2012.

[19] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quantum
random access memory. Physical Rev. A, 78, Nov 2008.

[20] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and D. Urbanik.
Supersingular isogeny key encapsulation. Submission to NIST post-quantum project,
November 2017. Available at https://sike.org/#nist-submission.

[21] D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In Post-Quantum Cryptography – PQCrypto 2011, pages 19–34.
LNCS 7071.

[22] S. Jeffery. Frameworks for Quantum Algorithms. PhD thesis, University of Waterloo,
2014.

[23] S. Jeffery, F. Magniez, and R. De Wolf. Optimal parallel quantum query algorithms.
Algorithmica, 79(2):509–529, Oct 2017.

[24] S. P Jordan. Fast quantum computation at arbitrarily low energy. Physical Rev. A,
95, 2017.

[25] G. Kachigar and J.-P. Tillich. Quantum information set decoding algorithms. In
Post-Quantum Cryptography – PQCrypto 2017, LNCS 10346, pages 69–89. Springer.

[26] R. M. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory
machines. Technical Report UCB/CSD-88-408, EECS Department, University of
California, Berkeley, Mar 1988.

[27] A. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303:2–30,
2003.

[28] A. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi. Classical and quantum computation.
Number 47. American Mathematical Soc., 2002.

[29] T. Laarhoven, M. Mosca, and J. van de Pol. Finding shortest lattice vectors faster
using quantum search. Designs, Codes and Cryptography, 77:375–400, Dec 2015.

[30] F. Le Gall and S. Nakajima. Quantum algorithm for triangle finding in sparse graphs.
Algorithmica, 79:941–959, Nov 2017.

118

https://sike.org/#nist-submission

[31] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. SIAM
Journal on Computing, 40:142–164, 2011.

[32] R. McDermott, M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann,
O. A. Mukhanov, and T. A. Ohki. Quantum–classical interface based on single flux
quantum digital logic. Quantum science and technology, 3, 2018.

[33] C. Moore. Quantum circuits: Fanout, parity, and counting. arXiv preprint, 1999.
Available at https://arxiv.org/abs/quant-ph/9903046.

[34] National Institute of Standards and Technology. Submission requirements and evalua-
tion criteria or the post-quantum cryptography standardization process. 2017. Available
at https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

[35] R. Peierls. On Ising’s model of ferromagnetism. In Mathematical Proc. Cambridge
Philosophical Society, volume 32, pages 477–481. Cambridge University Press, 1936.

[36] M. Szegedy. Quantum speed-up of markov chain based algorithms. In 2004 IEEE
Symposium on Foundations of Computer Science, pages 32–41, Oct.

[37] Y. Takahashi, S. Tani, and N. Kunihiro. Quantum addition circuits and unbounded
fan-out. Quantum Info. Comput., 10:872–890, September 2010.

[38] S. Tani. An improved claw finding algorithm using quantum walk. In Mathematical
Foundations of Computer Science – MFCS 2007, pages 548–558. LNCS 4708.

[39] B. M. Terhal. Quantum error correction for quantum memories. Rev. Modern Physics,
87:307, 2015.

[40] H. Thapliyal, N. Ranganathan, and R. Ferreira. Design of a comparator tree based
on reversible logic. In 2010 IEEE International Conference on Nanotechnology, pages
1113–1116.

[41] A. Wang and W. D. Woo. Static magnetic storage and delay line. J. Applied Physics,
21:49–54, 1950.

[42] G. Wendin. Quantum information processing with superconducting circuits: a review.
Reports on Progress in Physics, 80, 2017.

[43] C. Zalka. Grover’s quantum searching algorithm is optimal. Physical Rev. A, 60, Oct
1999.

119

https://arxiv.org/abs/quant-ph/9903046
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf

Chapter 3: NTRU and LWE

[1] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector
problem. In: 33rd ACM STOC. pp. 601–610. ACM Press (Jul 2001)

[2] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens,
M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 717–746. Springer,
Heidelberg (May 2019)

[3] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - A
new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 327–343. USENIX
Association (Aug 2016)

[4] Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(6), 818–830 (June 2013)

[5] Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.M.:
Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In:
Avanzi, R., Heys, H.M. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer,
Heidelberg (Aug 2016)

[6] Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., Srinivasan, P.V.:
On the robustness of bucket brigade quantum RAM. New Journal of Physics 17(12),
123010 (2015), http://stacks.iop.org/1367-2630/17/i=12/a=123010

[7] Babbush, R., Gidney, C., Berry, D.W., Wiebe, N., McClean, J., Paler, A., Fowler, A.,
Neven, H.: Encoding electronic spectra in quantum circuits with linear T complexity.
Phys. Rev. X 8, 041015 (Oct 2018), https://link.aps.org/doi/10.1103/PhysRevX.
8.041015

[8] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS Journal of Computation
and Mathematics 19(A), 146–162 (2016)

[9] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA.
pp. 10–24. ACM-SIAM (Jan 2016)

120

http://stacks.iop.org/1367-2630/17/i=12/a=123010
https://link.aps.org/doi/10.1103/PhysRevX.8.041015
https://link.aps.org/doi/10.1103/PhysRevX.8.041015

[10] Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Report 2015/522 (2015), http://eprint.iacr.org/2015/522

[11] Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-polytope LSH.
In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 16. LNCS, vol. 9646,
pp. 3–23. Springer, Heidelberg (Apr 2016)

[12] Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? Workshop Record of SHARCS’09: Special-purpose Hard-
ware for Attacking Cryptographic Systems (2009), http://cr.yp.to/papers.html#
collisioncost

[13] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quan-
tum searching. Fortschritte der Physik 46(4-5), 493–505 (1998), https:
//onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28199806%
2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P

[14] Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and
estimation. Contemporary Mathematics 305, 53–74 (2002), https://arxiv.org/abs/
quant-ph/0005055

[15] Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. SIGACT News 28(2), 14–19 (Jun 1997), http://doi.acm.org/10.1145/
261342.261346

[16] Charikar, M.: Similarity estimation techniques from rounding algorithms. In: 34th
ACM STOC. pp. 380–388. ACM Press (May 2002)

[17] Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry
addition circuit (2004), arXiv:quant-ph/0410184

[18] Draper, T., Kutin, S., Rains, E., Svore, K.M., Svore, K.M.: A logarithmic-
depth quantum carry-lookahead adder. Quantum Info. Comput. pp. 351–
369 (January 2006), https://www.microsoft.com/en-us/research/publication/
a-logarithmic-depth-quantum-carry-lookahead-adder/, lANL ArXiv: quant-
ph/0406142.

[19] Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 125–145.
Springer, Heidelberg (Apr / May 2018)

121

http://eprint.iacr.org/2015/522
http://cr.yp.to/papers.html#collisioncost
http://cr.yp.to/papers.html#collisioncost
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28199806%2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28199806%2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28199806%2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0005055
http://doi.acm.org/10.1145/261342.261346
http://doi.acm.org/10.1145/261342.261346
https://www.microsoft.com/en-us/research/publication/a-logarithmic-depth-quantum-carry-lookahead-adder/
https://www.microsoft.com/en-us/research/publication/a-logarithmic-depth-quantum-carry-lookahead-adder/

[20] Fitzpatrick, R., Bischof, C.H., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano,
A., Yang, B.Y.: Tuning GaussSieve for speed. In: Aranha, D.F., Menezes, A. (eds.)
LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305. Springer, Heidelberg (Sep 2015)

[21] Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: Towards
practical large-scale quantum computation. Phys. Rev. A 86, 032324 (Sep 2012),
https://link.aps.org/doi/10.1103/PhysRevA.86.032324

[22] Gidney, C., Eker̊a, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits (2019), https://arxiv.org/abs/1905.09749, arXiv:1905.09749

[23] Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev.
Lett. 100, 160501 (Apr 2008), http://link.aps.org/doi/10.1103/PhysRevLett.100.
160501

[24] Gottesman, D.: Fault-tolerant quantum computation with constant overhead (2013),
https://arxiv.org/abs/1310.2984, arXiv:1310.2984

[25] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algorithm
to AES: Quantum resource estimates. In: Takagi, T. (ed.) Post-Quantum Cryptography
- 7th International Workshop, PQCrypto 2016. pp. 29–43. Springer, Heidelberg (2016)

[26] Grover, L., Rudolph, T.: How significant are the known collision and element distinct-
ness quantum algorithms. Quantum Info. Comput. 4, 201–206 (May 2004)

[27] Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys.
Rev. Lett. 79, 325–328 (Jul 1997), http://link.aps.org/doi/10.1103/PhysRevLett.
79.325

[28] Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n + 2 qubits with Toffoli
based modular multiplication. Quantum Info. Comput. 17(7-8), 673–684 (Jun 2017),
http://dl.acm.org/citation.cfm?id=3179553.3179560

[29] Horsman, C., Fowler, A.G., Devitt, S., Meter, R.V.: Surface code quantum computing
by lattice surgery. New Journal of Physics 14(12), 123011 (2012), http://stacks.iop.
org/1367-2630/14/i=12/a=123011

[30] Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles
for quantum key search on AES and LowMC. Cryptology ePrint Archive, Report
2019/1146 (2019), https://eprint.iacr.org/2019/1146

122

https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://arxiv.org/abs/1905.09749
http://link.aps.org/doi/10.1103/PhysRevLett.100.160501
http://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://arxiv.org/abs/1310.2984
http://link.aps.org/doi/10.1103/PhysRevLett.79.325
http://link.aps.org/doi/10.1103/PhysRevLett.79.325
http://dl.acm.org/citation.cfm?id=3179553.3179560
http://stacks.iop.org/1367-2630/14/i=12/a=123011
http://stacks.iop.org/1367-2630/14/i=12/a=123011
https://eprint.iacr.org/2019/1146

[31] Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 32–61. Springer, Heidelberg (Aug 2019)

[32] Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum algo-
rithms for the approximate k-list problem and their application to lattice sieving. In:
Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology – ASIACRYPT 2019. pp.
521–551. Springer International Publishing, Cham (2019)

[33] Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Shmoys,
D.B. (ed.) 11th SODA. pp. 937–941. ACM-SIAM (Jan 2000)

[34] Kuperberg, G.: Another subexponential-time quantum algorithm for the Dihedral
Hidden Subgroup Problem. In: Theory of Quantum Computation, Communication
and Cryptography – TQC 2013. pp. 20–34. LIPIcs 22 (2013), http://drops.dagstuhl.
de/opus/volltexte/2013/4321

[35] Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 3–22. Springer, Heidelberg (Aug 2015)

[36] Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice sieving.
Ph.D. thesis, Department of Mathematics and Computer Science (2 2016), proefschrift

[37] Laarhoven, T., Mosca, M., van de Pol, J.: Solving the shortest vector problem in
lattices faster using quantum search. In: Gaborit, P. (ed.) Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013. pp. 83–101. Springer, Heidelberg (Jun
2013)

[38] Lee, Y., Kim, W.C.: Concise formulas for the surface area of the inter-
section of two hyperspherical caps. Tech. rep., KAIST (February 2014),
https://ie.kaist.ac.kr/uploads/professor/tech file/Concise+Formulas+
for+the+Surface+Area+of+the+Intersection+of+Two+Hyperspherical+Caps.pdf

[39] Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian Journal
of Mathematics and Statistics 4(1), 66–70 (2011)

[40] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg
(Feb 2011)

123

http://drops.dagstuhl.de/opus/volltexte/2013/4321
http://drops.dagstuhl.de/opus/volltexte/2013/4321
https://ie.kaist.ac.kr/uploads/professor/tech_file/Concise+Formulas+for+the+Surface+Area+of+the+Intersection+of+Two+Hyperspherical+Caps.pdf
https://ie.kaist.ac.kr/uploads/professor/tech_file/Concise+Formulas+for+the+Surface+Area+of+the+Intersection+of+Two+Hyperspherical+Caps.pdf

[41] Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to
multiple control Toffoli optimization. Physical Review A 93(2), 022311 (2016)

[42] Matteo, O.D., Gheorghiu, V., Mosca, M.: Fault tolerant resource estimation of quantum
random-access memories (2019), arXiv:1902.01329v1

[43] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann,
J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2009), https://doi.org/10.1007/978-3-540-88702-7 5

[44] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical.
J. of Mathematical Cryptology 2(2) (2008)

[45] Parhami, B.: Efficient Hamming weight comparators for binary vectors based on
accumulative and up/down parallel counters. IEEE Trans. on Circuits and Systems
56-II(2), 167–171 (2009), https://doi.org/10.1109/TCSII.2008.2010176

[46] Takahashi, Y., Kunihiro, N.: A fast quantum circuit for addition with few qubits.
Quantum Info. Comput. 8(6), 636–649 (Jul 2008), http://dl.acm.org/citation.cfm?
id=2016976.2016981

Chapter 4: RSA

[1] Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-quantum RSA.
In International Workshop on Post-Quantum Cryptography, pages 311–329. Springer,
2017.

[2] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring N = prq for large r.
In Annual International Cryptology Conference, pages 326–337. Springer, 1999.

[3] Dan Boneh and Hovav Shacham. Fast variants of RSA. RSA Laboratories’ CryptoBytes,
vol 5, no 1, pp 1–9, 2002.

[4] T. Collins, D. Hopkins, S. Langford, and M. Sabin. Public key cryptographic apparatus
and method. US Patent #5,848,159, Jan. 1997.

[5] Don Coppersmith. An approximate Fourier transform useful in quantum factoring.
arXiv preprint quant-ph/0201067, 2002.

124

https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1109/TCSII.2008.2010176
http://dl.acm.org/citation.cfm?id=2016976.2016981
http://dl.acm.org/citation.cfm?id=2016976.2016981

[6] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A,
86:032324, Sep 2012.

[7] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n+ 2 qubits
with Toffoli based modular multiplication. arXiv preprint arXiv:1611.07995, 2016.

[8] M. Jason Hinek. On the security of multi-prime RSA. Journal of Mathematical
Cryptology, 2(2):117–147, 2008.

[9] Nicholas Howgrave-Graham. Finding small roots of univariate modular equations
revisited. In IMA International Conference on Cryptography and Coding, pages 131–142.
Springer, 1997.

[10] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomi-
als with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[11] Seongan Lim, Seungjoo Kim, Ikkwon Yie, and Hongsub Lee. A generalized Takagi-
cryptosystem with a modulus of the form prqs. In Bimal Roy and Eiji Okamoto, editors,
Progress in Cryptology —INDOCRYPT 2000, pages 283–294. Springer, 2000.

[12] Alexander May. Using LLL-reduction for solving RSA and factorization problems. In
The LLL algorithm, pages 315–348. Springer, 2009.

[13] Phong Q Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity.
SIAM Journal on Computing, 39(3):874–903, 2009.

[14] Andrew Novocin, Damien Stehlé, and Gilles Villard. An LLL-reduction algorithm with
quasi-linear time complexity: Extended abstract. In Proceedings of the Forty-third
Annual ACM Symposium on Theory of Computing, STOC ’11, pages 403–412, New
York, NY, USA, 2011. ACM.

[15] René Peralta and Eiji Okamoto. Faster factoring of integers of a special form. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
79(4):489–493, 1996.

[16] J-J Quisquater and Chantal Couvreur. Fast decipherment algorithm for RSA public-key
cryptosystem. Electronics letters, 18(21):905–907, 1982.

[17] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978.

125

[18] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Cryptographic communica-
tions system and method. US Patent #4,405,829, Dec. 1977.

[19] Adi Shamir. RSA for paranoids. RSA Laboratories’ CryptoBytes, vol 1, no 3, pp 1–4,
1995.

[20] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[21] Tsuyoshi Takagi. Fast RSA-type cryptosystems using n-adic expansion. In Burton S.
Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 372–384. Springer,
1997.

[22] Tsuyoshi Takagi. Fast RSA-type cryptosystem modulo pkq. In Hugo Krawczyk, editor,
Advances in Cryptology — CRYPTO ’98, pages 318–326. Springer, 1998.

126

Appendix: Other work by the author

The three articles presented above are some of the work that I have been doing to make
post-quantum cryptography more secure, more usable, and easier to deploy. The following
is a short summary, organized by topic, of the other work that I have been doing.

Quantum cryptanalysis With Amy, Di Matteo, Gheorghiu, Mosca, and Parent, I
studied the security of the SHA-2 and SHA-3 hash functions against generic quantum
pre-image attacks. This work is very much within the theme of this thesis, but was partially
completed during my Master’s.

� Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent, and
John M. Schanck. Estimating the cost of generic quantum pre-image attacks on
SHA-2 and SHA-3. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016,
volume 10532 of LNCS, pages 317–337. Springer, Heidelberg, August 2016.

Key encapsulation mechanisms I have participated in the design of two lattice-based
key encapsulation mechanisms: NTRU and Kyber. Both of these were submitted to NIST’s
post-quantum standardization effort, and both have advanced to the second round of this
process. I am the principal author on the NTRU submission.

NTRU, specifically the ntruhrss701 parameter set, was profiled in an experiment con-
ducted by Google1 and Cloudflare2. That experiment compared ntruhrss701 against another
submission to NIST’s standardization effort called SIKEp434. The conclusion was that
“[ntruhrss701] looks like the more promising algorithm for use in TLS.” Google Chrome
clients, starting with version 83, can negotiate a TLS 1.3 connection using ntruhrss701. This

1https://www.imperialviolet.org/2019/10/30/pqsivssl.html
2https://blog.cloudflare.com/the-tls-post-quantum-experiment/

127

https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://blog.cloudflare.com/the-tls-post-quantum-experiment/

likely makes NTRU the most widely used piece of post-quantum public-key cryptography
on the Internet.

� Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld,
John M. Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang. NTRU.
Technical report, National Institute of Standards and Technology, 2019. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

� Joppe Bos, Leo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals – Kyber: A CCA-
secure module-lattice-based KEM. In 2018 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 353–367, April 2018.

� Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. High-speed key
encapsulation from NTRU. In Wieland Fischer and Naofumi Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 232–252. Springer, Heidelberg, September 2017.

� John M. Schanck, Andreas Hulsing, Joost Rijneveld, and Peter Schwabe. NTRU-HRSS-
KEM. Technical report, National Institute of Standards and Technology, 2017. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.

� John M. Schanck. A comparison of NTRU variants. Cryptology ePrint Archive, Report
2018/1174, 2018. https://eprint.iacr.org/2018/1174.

� Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS–KYBER.
Technical report, National Institute of Standards and Technology, 2017. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.

� Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS–KYBER.
Technical report, National Institute of Standards and Technology, 2019. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

Lattice KEM decryption failures Some post-quantum KEMs, like ntruhrss701, are
essentially drop-in replacements for their pre-quantum counterparts. Others, like Kyber,
differ from widely deployed pre-quantum KEMs in that they can fail to decrypt an honestly
generated ciphertext. This occurs very rarely in Kyber, but decryption failures are a serious
security risk and require careful analysis.

128

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2018/1174
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Nina Bindel and I have studied correlations between decryption failure events and the
information revealed by successful decryptions. Separately, I have studied the risk of a
decryption failures for a fixed user of the NewHope scheme—previous analyses of NewHope
studied the expected rate of failures over all keys and ciphertexts.

� Nina Bindel and John M. Schanck. Decryption failure is more likely after success.
Cryptology ePrint Archive, Report 2019/1392, 2019. (To appear at PQCrypto 2020).
https://eprint.iacr.org/2019/1392.

� John M. Schanck. An upper bound on the decryption failure rate of static-key
NewHope Cryptology ePrint Archive, Report 2020/326, 2020. https://eprint.iacr.
org/2020/326.

Deployment of post-quantum cryptography With Douglas Stebila, I proposed a
method for incorporating an additional key exchange into TLS 1.3. This method allows one
to define “hybrid” ciphersuites that combine a pre-quantum and post-quantum KEM. With
William Whyte and Zhenfei Zhang, I proposed a hybrid ciphersuite for the Tor anonymity
network and proved that it achieves a notion of forward secrecy that is defined relative to
an adversary who acquires a quantum computer after the session has been established.

� John M. Schanck and Douglas Stebila. A Transport Layer Security (TLS) Extension
For Establishing An Additional Shared Secret. Internet Draft, April 2017. https:
//tools.ietf.org/html/draft-schanck-tls-additional-keyshare-00

� John M. Schanck, William Whyte, and Zhenfei Zhang. Circuit-extension handshakes
for Tor achieving forward secrecy in a quantum world. PoPETs, 2016(4):219–236,
October 2016.

129

https://eprint.iacr.org/2019/1392
https://eprint.iacr.org/2020/326
https://eprint.iacr.org/2020/326
https://tools.ietf.org/html/draft-schanck-tls-additional-keyshare-00
https://tools.ietf.org/html/draft-schanck-tls-additional-keyshare-00

	Introduction
	Information is physical, but computation is technological
	Our technological prospects
	Our habits

	SIKE
	Introduction
	Machine models
	Cost analysis: Quantum random access
	Cost analysis: Johnson vertex data structure
	Cost analysis: Claw-finding by quantum walk
	Application: Cryptanalysis of SIKE
	Conclusions and future work

	NTRU and LWE
	Introduction
	Preliminaries
	Filtered quantum search
	Circuits for popcount
	The accuracy of popcount
	Tuning popcount for NNS
	Cost estimates

	RSA
	Introduction
	Factoring with Coppersmith's Technique
	The cost of lattice attacks.
	Shor's Algorithm.
	The cost of period finding.
	Multi-power pqRSA
	Conclusion

	Conclusion
	Assumptions redux
	Recommendations for quantum cryptanalysis

	Bibliography
	Appendix: Other work by the author

