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Abstract
Nitrogen is one of the most important yield-limiting nutrients for 
corn (Zea mays). The ability of thermal remote sensing to detect 
nitrogen deficiency in corn may enable precision agriculture to 
modify nitrogen rates according to field conditions. This study 
applies the exergy destruction principle as a theory to explain 
the inverse relationship between surface temperature and nitro-
gen rate. Two hypotheses were developed. First, it was hypoth-
esized that agricultural crops experiencing greater growth and 
providing greater yield will have lower surface temperature. The 
second hypothesis was that corn grown under optimum levels of 
nitrogen will have lower surface temperatures compared to corn 
grown under nitrogen stressed conditions. Field studies were con-
ducted during two summer seasons (2016 and 2017) on an estab-
lished long-term field trial of corn yield response to varying rates 
of nitrogen. It was found that corn surface temperature decreased 
as the rate of nitrogen increased. A shallow but statistically sig-
nificant (P < 0.05) negative slope was observed consistently with 
increasing rates of nitrogen. Surface temperature measurements, 
however, were variable. This variability was the result of external 
and weather dependent variables that influenced leaf surface tem-
perature. Despite this variability, the exergy destruction principle 
provides a theory from which thermal remote sensing can be 
applied through the use of surface temperature measurements to 
detect physiological stress in crop plants.

Core Ideas
•	 Thermal remote sensing was proposed to detect nitrogen stress in 

corn plants.
•	 Nitrogen stressed plants had higher surface temperatures than less 

stressed plants.
•	 Temperature trends were consistent with the exergy destruction 

principle.
•	 Nitrogen-temperature correlations were statistically significant at 

the 0.05 significance level.
•	 Corn yield increases with nitrogen rate increase and surface tem-

perature decrease.

Nitrogen is one of the most important yield-limiting 
nutrients for corn (Zea mays) production world-
wide (Subedi and Ma, 2009). Different methods 

have been used to detect nitrogen stress in corn, such as tissue 
analysis, transmittance, reflectance, and florescence methods 
(Chlingaryan et al., 2018; Corti et al., 2018; Muñoz-Huerta 
et al., 2013). All of these methods, however, have limitations. 
Tissue analysis was found to be time consuming and damaging 
to plant tissues (Goffart et al., 2008). Alternatively, nondestruc-
tive methods were used, such as leaf transmittance, through a 
hand-held soil plant analyses development (SPAD) chlorophyll 
meter, canopy reflectance, and chlorophyll fluorescence methods 
(Muñoz-Huerta et al., 2013; Xie et al., 2018). The SPAD meter 
was found to be highly variable (Martínez and Guiamet, 2004; 
Xiong et al., 2015) and affected by leaf location, solar irradiance, 
and leaf water status (Martínez and Guiamet, 2004; Vigneau et 
al., 2011; Zhang et al., 2009). Limitations of reflectance-based 
methods include lack of sensitivity for stress detection at early 
growth stages and high sensitivity to variation in sunlight and 
soil conditions (Apostol et al., 2007; Muñoz-Huerta et al., 2013; 
Padilla et al., 2018, 2019). Chlorophyll fluorescence measure-
ments were reported to more accurately sense nitrogen indepen-
dently from soil background noise, leaf area, and biomass status 
(Heege et al., 2008; Tremblay et al., 2012). However, hand-held 
devices, such as Multiplex (FORCE-A, Orsay, France), require 
a distance of approximately 10 cm between the sensor and 
the plant, therefore limiting its usefulness on large field scales 
(Muñoz-Huerta et al., 2013; Yao et al., 2012).

Thermal remote sensing is proposed as a means of stress 
detection in crops as it is nondestructive, noncontact, rapid 
assessment capability, easy use, and more accurate than previ-
ously mentioned methods (Ahmed et al., 2018; Das et al., 2018; 
Khanal et al., 2017). Thermal remote sensing has been used 
to detect differences in canopy temperatures between water 
stressed and nonstressed plants (Idso et al., 1981; Jackson et 
al., 1981, 1982) and nitrogen stressed plants (Blad et al., 1988; 
Carroll, 2015; Ward, 2015). Blad et al. (1988) found a non-
consistent relationship between nitrogen stress and canopy 
temperature in different locations and years across Canada. 
Carroll (2015) investigated the effect of varying nitrogen rates 
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on leaf surface temperature for corn grown under full and lim-
ited irrigation conditions. They found a nonsignificant relation-
ship between nitrogen rate and leaf surface temperature under 
two water stress levels in both greenhouse and field conditions. 
In contrast, Lu and Zhang (2000) observed a significant effect, 
with an inverse relationship, between nitrogen rate and surface 
temperature associated with heat stress detection. Ward (2015) 
investigated the effect of varying nitrogen and water stress levels 
on canopy temperature, and found that both canopy tempera-
ture and canopy-air temperature difference provided an equally 
significant sensitivity to plant stress. Akbari (1996) measured 
the temperature difference between leaf surface and air tem-
perature in corn to distinguish between different nitrogen-stress 
levels using a hand-held point measurement infrared gun. In 
this experiment, it was observed that leaf surface temperature 
differences decreased with increasing nitrogen rate. These obser-
vations supported the idea that leaf surface temperature can 
be used as an indicator of complexity and development, which 
enabled the plant to degrade energy.

Energy has both magnitude and quality. The quality of energy 
is defined as exergy; it measures the ability of the system to 
do useful work (Bonati et al., 2019; Cengel and Boles, 2002; 
Fraser and Kay, 2004). Energy degradation occurs when the 
quality of energy decreases. It is not referred to the reduction 
in quality as energy dissipation, because the concept of energy 
quality involves not only entropy, where entropy production is 
often referred to as dissipation (Glansdorff and Prigogine, 1971; 
Prigogine, 1991), but also environment consideration.

Exergy has three main properties. First, it is context sensitive 
because it is formulated with respect to a reference environment; 
that is, if the environment temperature and pressure changes 
then the exergy changes even if there was no change to the corn 
plant or ecosystem (Cengel and Boles, 2002; Valero, 2008; Wall, 
1977). Second, exergy is universal because it can be used as a 
common decision making tool; that is, it enables all systems to 
be compared with the common basis of energy quality, in other 
words, their ability to do useful work (Fraser and Kay, 2004; 
Gaudreau, 2009). Third, exergy is not conserved because, unlike 
energy, it can only be destroyed but not created (Knudsen, 2016; 
Valero, 2008; Wall 1977). Furthermore, it has been found that 
more developed ecosystems tend to utilize more exergy from the 
incoming solar radiation, and these are more efficient in exergy 
destruction compared to less developed ecosystems (Akbari, 
1996; JØrgensen, 2000; Kay, 2000; Lawrence, 2016).

The exergy destruction principle states that an ecosystem will 
develop in a way to maximize the amount of work available for 
the purpose of structural organization, function, and survival 
(Kay, 2000; Schneider and Kay, 1994a, 1994b). Ecosystems are 
examples of nonequilibrium, complex, nonlinear, and discontin-
uous thermodynamic systems. Ecosystems exist in high ordered 
state and their complexity increases over time (Schrödinger, 
1944). Schneider and Kay (1994a, 1994b) suggest that more 
developed ecosystems are more efficient at energy dissipation 
than less developed ecosystems, thus their surface temperature is 
lower compared to less developed ecosystems. Luvall and Holbo 
(1989) used a thermal infrared multispectral scanner over a 
400-m transact with different land covers; a significant differ-
ence of 10°C was observed in surface temperature among varying 
land covers. The more developed the land cover, the cooler the 

surface temperature. More developed ecosystems have larger bio-
mass to accommodate the increase in complexity, which is corre-
lated with development (Schneider and Kay, 1994a, 1994b). Lin 
et al. (2018) showed a theoretical relationship between entropy 
production, exergy destruction, and forest canopy temperature. 
According to the Gouy–Stodola theorem, the exergy destruc-
tion is directly proportional to entropy production through the 
environment reference temperature (Cengel and Boles, 2002). 
The relationship between entropy production and surface tem-
perature was based on the similarity between the ecosystem 
and the Bénard cell (Lin et al., 2018). It was found that exergy 
destruction decreases with increasing canopy temperature, which 
supports the findings in the literature (Kay, 2000; Luvall and 
Holbo, 1989; Schneider and Kay, 1994a, 1994b).

Maximizing development corresponds to maximizing organiza-
tion (Finn, 1988; Kay, 2000). To the best of our knowledge, this 
concept has never been applied to a plant system. Plant systems 
are characterized as complex, nonlinear, open thermodynamic 
systems, capable of exchanging matter and energy with their sur-
rounding (Prigogine, 1991). From an engineering-thermodynamic 
perspective, a plant system can be modeled as a thermodynamic 
black box with input and output energy and mass flows (Lawrence, 
2016). Therefore, all the physiological processes and mechanisms 
used to raise or lower surface temperature, such as transpiration, 
respiration, photosynthesis, and reflectance, are implicitly taken 
into account and not directly considered in this work.

From an exergy balance perspective, the maximum work 
available to a plant system exists at the lowest surface tempera-
ture (Lawrence, 2016). Based on the exergy destruction prin-
ciple that ecosystem organization can be measured using surface 
temperature, and that more developed ecosystems have larger 
biomass, it is hypothesized that agricultural crops experienc-
ing greater growth and providing greater yield will have lower 
surface temperatures. Plant stress will affect plant growth and 
development (Cools and De Veylder, 2009; Duncan et al., 1965; 
Lee et al., 2008). When a plant is stressed with an external stress 
factor (e.g., excess heat, insects, or lack of nutrients), its func-
tions (e.g., transpiration, respiration, and photosynthesis) will 
also be affected. Highly stressed plants experience less growth 
and development. Therefore, given that a crop experiencing 
greater growth and development will have a lower surface tem-
perature, and that crop stress reduces growth and development, 
it is also hypothesized that corn grown under optimum levels of 
nitrogen will have lower surface temperatures than corn grown 
under nitrogen stressed conditions. The main objective is to 
determine if surface temperature can be used to predict nitrogen 
stress in corn plants at early growth stages. More specifically, 
our objective is to determine if there is an inverse correlation 
between surface temperature and nitrogen stress, yield reduc-
tion as predicted by the exergy destruction principle.

Materials and Methods
In 2008, a long-term field trial was established at the Elora 

Research Station, Elora Ontario, to determine the response of 
corn yield to varying rates of nitrogen. This experimental study 
was conducted on a silt clay loam soil pH 7.7, organic matter of 
3.5%. The total test area was 1.72 ha. Individual plots consisted 
of six rows of corn, 76 cm between rows and approximately 15 m 
in length by 4.5 m wide. Nitrogen rates of 0, 28, 57, 115, 188, and 
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230 kg N ha–1 were applied at planting. The nitrogen formulation 
used was Urea Ammonium Nitrate (UAN, 28v/v). The UAN was 
injected between rows every year. A starter nitrogen fertilizer of 
30 kg ha–1 was applied at the time of planting. In addition, weeds 
were controlled prior to corn planting using the herbicide Callisto 
(Mesotrione, Syngenta) at 0.3 L ha–1 along with Primextra II 
Magnum (S-metolachlor and atrazine, Syngenta) at 3.5 L ha–1.

A soil nitrate sampling to a depth of 0 to 30 cm was con-
ducted prior to corn planting in May each year, where five cores 
per plot were taken and mixed. A nonsignificant difference 
among all nitrogen treatment plots was found in soil nitrate 
levels prior to the addition of fertilizer each year. This implies 
that the amount of nitrogen added in the previous year does not 
affect the following year. The volumetric water content of the 
soil was measured over different plots within the field using an 
EC5 soil moisture sensor (Decagon Devices Inc., Pullman, WA, 
US) inserted into 10-cm depth below ground.

Corn hybrid ‘DeKalb DKC 3987’ (DEKALB Canada, 
Chatham, ON, Canada) was planted on 17 May 2016 and 11 
May 2017 at a seeding rate of 79,000 seeds per hectare. The 
corn hybrid required 2700 heat units with 2000 growing degree 
days to mature. The starter fertilizer (i.e., 15–15–15–2 Zn) was 
applied in a band at a distance of 5 cm from the row at a depth 
of 5 cm. Standard agronomic practices were applied to optimize 
corn growth and development. Conventional fall tillage with 
a plow was used. In addition, the average rainfall was approxi-
mately 75 mm per month.

Each individual plot was machine harvested on 1 November 
2016 and 7 November 2017. Yield was reported at 15% moisture 
level.

Thermal Image Acquisition

Temperature measurements were initiated on 5 June 2016 
and 1 June 2017 at the three-leaf tip stage (i.e., V2 stage) of the 
corn seedling growth using a high-resolution research thermal 
camera (T620 series, FLIR Systems, Canada). Leaf surface 
temperatures were collected from the middle two rows to avoid 
any border effects from the neighboring plots. The thermal 
camera specifications included a 640 by 480 resolution thermal 
detector, field of view 25 by 19°, a standard temperature range of 
–40 to 650°C, spectral range of 7.5 to 14 µm, thermal sensitiv-
ity less than 0.04°C at 30°C temperature, accuracy of ± 2°C, 
and precision of 0.1°C. FLIR T620 camera has an uncooled 
microbolometer that is very sensitive to temperature drift of 
the camera housing (Gong and Wasserman, 2019). The thermal 
camera powered on for at least 10 min prior to thermal image 
acquisition to minimize the effect of vignetting (Israel, 2016). 
In addition, a manual nonuniformity correction (NUC) was 
performed before taking every image to reduce the fixed pattern 
noise (Niklaus et al., 2008; Sui et al., 2013) and maintain good 
image quality. The manual NUC involves the selection of a cali-
bration function to force the thermal detector to recalibrate the 
location of every pixel in the image (i.e., minimize the drift).

The thermal camera and a hand-held point measurements 
infrared gun were used to measure surface temperatures. Each 
plot consisted of approximately 200 corn plants distributed in 
six rows. Three plants per plot from the middle two rows were 
selected for leaf temperature measurements. The top side of a 
youngest fully expanded sunlight leaf was consistently selected 

for leaf temperature measurements. The hand-held infrared gun, 
which was used to measure the on-site leaf surface temperature, 
was consistently held 50 cm away and perpendicular to the top 
side of the leaf surface. Canopy temperatures were measured using 
the thermal camera mounted on a 5-m aboveground tripod with a 
setup distance in the camera of 5 m from the plot. Previous stud-
ies identified the canopy thermal radiation variances with sensor 
view angle (Kimes et al., 1980; Kirkham, 2005; Krayenhoff and 
Voogt, 2016; Nanda et al., 2018). Consequently, the thermal cam-
era images of the canopy were consistently taken perpendicular to 
the plant surface, that is, in the nadir direction.

The thermal camera calculated surface temperature from the 
incident thermal radiation on the thermal detector. Different 
parameters were required for the user to input to the camera, 
prior to thermal image acquisition, in order to obtain an accu-
rate estimate of object temperature. Such parameters include: 
surface emissivity, distance from the camera lens to the object, 
reflected apparent temperature, atmospheric temperature, and 
relative humidity. The thermal camera corrected the object tem-
perature for atmospheric and sky background variation.

Prior to field temperature measurements, an average emissivity 
of 0.96 was determined under controlled laboratory conditions, 
based on the 7.5 to14 µm band as determined from corn leaf emis-
sivity measurements using a Fourier transform infrared (FTIR) 
reflectometer (Surface Optics corporation SOC400T, San Diego, 
CA). The reflected apparent temperature was measured each time 
prior to surface temperature measurements using the procedures 
described in the thermal camera’s user manual and the guidance 
of ISO18434–1. In addition, the thermal camera was calibrated 
using a blackbody source (463 Cavity black-body, Infrared 
Industries, Hayward, CA). The difference between the thermal 
camera measurement and the standard reference temperature was 
no more than the accuracy of the thermal camera (± 2°C). In the 
field, the thermal camera was calibrated before every measure-
ment using the Programmable NUC set in the camera. Surface 
temperature measurements in 2016 and 2017 were recorded twice 
a week around noon time over approximately 2-h period under 
clear sky or uniform overcast conditions for a uniform sky back-
ground radiation assumption. Surface temperature measurements 
continued on a weekly basis until the corn silking stage.

The reflected apparent temperature was estimated using a 
crumbled aluminum foil (i.e., to reduce the specular reflec-
tion) placed in front of a leaf surface (Jones et al., 2002; Maes 
and Steppe, 2012). Surface temperatures were corrected for 
meteorological conditions on different days due to temperature 
measurement sensitivity to solar irradiance, air temperature, 
relative humidity, and wind speed (Fuchs, 1990; Maes and 
Steppe, 2012; Maes et al., 2017; Yazici and Kaynak, 2006). Leaf 
and canopy temperatures were corrected for the variation in air 
and soil temperatures. In addition, plant geometry, emissivity, 
inclination, and orientation of corn leaves within corn canopy 
can also generate leaf temperature variation, therefore, an aver-
age surface temperature was calculated to reduce the geometry-
related effects (Chauhan and Opeña, 2013).

Processing of Thermal Images

Surface temperatures were extracted from the collected ther-
mal images using FLIR ResearchIR (FLIR Systems Inc., Boston, 
MA, version 3.5) and Matlab R2017B (Mathworks Inc., Natick, 
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MA) software. Multiple thermal images were collected for the 
same plot to calculate the variance in temperature measure-
ments. The pixel value in each thermal image represents the 
temperature of that pixel because a radiometric thermal camera 
was used (FLIR T620). Thermal images were converted to ‘csv’ 
file using ResearchIR, then imported into Matlab and analyzed 
using image processing toolbox. The average and maximum 
temperatures were extracted from each region of interest (ROI). 
The ROI over a leaf surface was defined as a rectangular box of 
approximately 2000 pixels, approximately 0.03 m2, when calcu-
lating leaf surface temperature. In addition, the ROI was defined 
over multiple plants as a rectangular box with 100,000 pixels, 
approximately 1.5 m2, for canopy temperature measurements. 
The raw 14-bit data, Metadata of thermal images, and calibration 
constants were extracted using Exiftool (Harvey, 2016), and the 
raw images were processed in Matlab and converted to tempera-
ture using equations described in detail in Di Felice et al. (2018).

Thermal images were subjected to a segmentation thresh-
olding algorithm. Specifically, the Otsu method (Otsu, 1979; 
Shrestha et al., 2004) using Matlab’s graythresh function, which 
was applied to determine the optimal threshold level, creating a 
binary image identifying areas of soil and corn plants. Figure 1 
provides a summary of the method for creating a binary image. 
The binary image is multiplied by the original image to isolate 
the plants by 1s and 0s corresponding to plants and soil, respec-
tively. To isolate the soil, the 1s and 0s in the binary image were 
reversed. Finally, an average canopy temperature for the plants 
was calculated. As an example (Fig. 1), the difference in average 
canopy temperature, between averaging the temperature of the 
plants only versus averaging the temperature of the entire image, 
was approximately 3°C.

The measured leaf and canopy temperatures are affected by 
the variations in soil and air temperatures. Air temperature was 
measured using a type T thermocouple attached to a corn plant 
at 2-m height, where the tip of the thermocouple was exposed 
and measured the surrounding air canopy temperature. Soil 
temperatures were extracted from thermal images. The follow-
ing two equations represent the corrections that were applied to 
leaf and canopy temperatures: 

c c c a a meanT T T T= − + � [1]

c c c soil soil meanT T T T= − + � [2]

where Tc c is corrected canopy temperature, Tc is canopy tem-
perature (°C), Ta is air temperature (°C), Ta mean is mean air 
temperature (°C), Tsoil is soil temperature (°C), and Tsoil_mean is 
soil mean temperature (°C).

Atmospheric correction is an important step in extracting 
accurate temperature data. Atmospheric transmission (τ), which 
is a function of relative humidity, atmospheric temperature, 
and distance between the object and the camera sensor, was 
calculated using equations described in details in Di Felice et 
al. (2018) and Minkina and Dudzik (2009). For the canopy 
temperature measurements, the maximum distance between 
the crop surface and the thermal camera sensor was 5 m. At this 
distance, atmospheric transmittance was estimated as 0.986 and 
the relative temperature error was 0.1%, which can be assumed 
to be negligible.

Fig. 1. Thermal image segmentation using thresholding algorithm.



Agronomy Journa l   •   Volume 111, Issue 6  •   2019	 3211

Whorl Temperature Measurement 
Using Thermocouples

Whorl temperatures for selected nitrogen treatments were 
measured using a type T thermocouples with FEP-Insulated 
Probe (Digi-Sense, Cole-Parmer, Montreal, Quebec) for contin-
uous temperature measurements. Thermocouples were inserted 
into the whorl of corn plants to reduce the error associated with 
different radiation levels. Each thermocouple wire was attached 
to a mini-connecter. Thermocouples were connected to a 
12-channel datalogging thermometer with an SD card (Extech 
DT4208SD, Cole-Parmer). Whorl temperature data were col-
lected at the same time with thermal images over short period of 
time (approx. 1 min between the measurements).

Meteorological Conditions

Leaf and canopy temperature measurements were affected 
by many weather related variables such as: solar irradiance, air 
temperature, wind speed, and relative humidity (Knížková et 
al., 2002). Wind speed, air temperature, and relative humidity 
were measured 2 m above the ground using a mobile Vantage 
Vue weather station (Davis Instrument, Hayward, CA). The 
sampling rate was set to 1 Hz, and 15-min averages of data 
were recorded. In addition, more metrological data including 
rainfall precipitation rate, solar radiation, and longwave radia-
tion were provided from a nearby weather station, which was 

approximately 1.5 km from the study site. Wind speed, relative 
humidity, and solar radiation were compensated through con-
ditional sampling, and days with low wind speed in the range of 
0.3 to 1.3 m s–1 were selected for temperature data acquisition.

Data Analysis

Statistical data analysis was conducted on the collected leaf 
and canopy temperature measurements using Matlab software. 
Analysis of variance (ANOVA) using an F-test was applied to 
investigate the effect of different nitrogen treatments on surface 
temperature. Leaf surface temperatures were collected on differ-
ent days in 2016 and 2017 as an average of three measurements 
per plot for four replications within the field. A significant 
difference in leaf surface temperature between each of nitrogen 
treatments was confirmed after conducting a linear regression 
based ANOVA at a 0.05 significance level. In addition, Pearson 
correlation analysis was used to investigate the relationship 
between yield and leaf temperature.

Regression analysis was also applied individually to each of 
the four replications on all days for which temperature measure-
ments were presented. In these 16 datasets (i.e., 4 d times four 
replications), three nonsignificant positive slopes, five nonsig-
nificant negative slope, and eight significant negative slopes 
were observed. This variability in temperature data is not unex-
pected, given the slopes are shallow, the large data variability, 

Fig. 2. The mean leaf surface temperature as influenced by nitrogen rate (a) June 2016, (b) July 2016, (c) June 2017, (d) July 2017. Each 
temperature data point represents an average of 12 temperature measurements per day (3 measurements times 4 replications for each 
nitrogen rate per day).
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the three data points per nitrogen treatment in each dataset per 
replication, and the assumed 95% significance level, therefore, 
the general observation of a consistent negative slope remains 
unchanged.

A paired t-test with an equal variance assumption was used 
to compare the nitrogen treatments. A linear regression analysis 
was conducted to investigate the relationship between increas-
ing nitrogen rate and decreasing surface temperature. Corn 
yield data were analyzed using ANOVA analysis to determine 
the significant increase in yield with increasing nitrogen rate. A 
quadratic regression model was chosen as the best fit to nitrogen 
rate versus grain yield data (Sui et al., 2017). Unless otherwise 
stated, the significance level was chosen as P ≤ 0.05.

Results and disscussion
Leaf Surface Temperature Decreased with 

Increasing Rates of Nitrogen
Corn leaf surface temperature decreased as the rate of nitro-

gen increased. A shallow but statistically significant negative 
slope was observed consistently with increasing rates of nitrogen 
on a daily basis throughout the months of June and July for both 
2016 and 2017 (Fig. 2). For example, on June 26 and July 10 
2016, the 0 nitrogen rate had a mean leaf surface temperature of 
27.5°C and 20.8°C, compared to 27°C and 19.9°C, respectively, 
for corn that received 230 kg ha–1 of nitrogen. The average air 

temperatures on these two days were 27.9°C and 23.4°C during 
the time of temperature data collection, and the leaves supplied 
with 0 kg ha–1 and 230 kg ha–1 of nitrogen were at 12 to 13 and 
14 to 15 leaf stage, respectively. On 24 June and 12 July 2017, the 
0 nitrogen rate had a mean leaf surface temperature of 22.8°C 
and 28.9°C, compared to 20.4°C and 28.2°C, respectively, for 
corn that received 230 kg ha–1 of nitrogen. The average air tem-
peratures on these two days were 22.9°C and 25.8°C, and the 
leaves supplied with 0 kg ha–1 and 230 kg ha–1 of nitrogen were 
at 10 to 11 and 14 to 15 leaf stage, respectively. Figure 3 shows 
the temperature data for the four replications per nitrogen treat-
ment on a single graph for a given day. For example, on June 23 
2016, for the 0 nitrogen rate, leaf surface temperature ranged 
from 23.0 to 27.2°C and for the 230 kg ha–1 rate of nitrogen, the 
leaf temperature ranged from 24.2 to 25.9°C (Fig. 3). A similar 
response was observed in 2017. Despite the large temperature 
variability between corn plants within and between the four rep-
lications, the regression analysis consistently identified a negative 
slope, as presented in Fig. 3, where the RMSE is the calculated 
root mean squared error, supportive of the hypothesis that nitro-
gen stress affects surface temperature.

Despite this small difference in leaf surface temperature 
between the low and high nitrogen rates, a significant difference 
was also observed among nitrogen treatments when analyzed 
through ANOVA (Table 1). A P-value of 0.00012 (<<0.05) 

Fig. 3. The effect of increasing nitrogen rate on leaf surface temperature on different days over 2-yr period (a) June 23 2016, (b) July 10 
2016, (c) June 24 2017, (d) July 12 2017. 
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confirmed the significant difference among the six nitrogen treat-
ments regrading leaf surface temperature on July 6 2016. As an 
example to validate the assumptions of ANOVA and linear regres-
sion for random error and normal data distribution, Q-Q and 
frequency distribution plots were investigated for temperature data 
and residuals (Fig. 4) for July 6 2016. The residual (Y-Ŷ ) was cal-
culated by subtracting leaf temperature (Y) from the predicted leaf 
temperature (Ŷ ) obtained by least square linear fit model. Finally, 
a consistent difference in leaf surface temperature between stressed 
and non-stressed corn plants with nitrogen rate started to appear 
when the plants were at 4 to 5 leaf tip stage (i.e., V3 stage), at which 
stage the plants were no longer provided with nutrients from the 
seed (Dovrat et al., 2018; Neild and Newman, 1990).

Canopy Temperature Decreased with 
Increasing Rates of Nitrogen

Canopy temperatures decreased as the rate of nitrogen 
increased. A shallow but consistent negative slope was observed 
with increasing rates of nitrogen (Fig. 5, 6). As an example, 
on June 7 2017, the mean canopy temperature for plants that 
received 0 nitrogen was 33°C compared to 31°C for corn that 
received 230 kg ha–1 of nitrogen (Fig. 5). In addition, canopy 
temperature difference was calculated between the average zero 
applied nitrogen plots and the five nitrogen treatments (i.e., 28, 
57, 115, 188, 230 kg ha–1) on different days in June and July 
2016 and 2017 (Fig. 7). The increasing relationship between 
canopy temperature difference and nitrogen rate was significant, 
which supports the hypothesis that with increasing nitrogen 
rate, surface temperature decreases.

Whorl Temperatures Decreased with 
Increasing Rates of Nitrogen

Whorl temperatures decreased as the rate of nitrogen 
increased. Less variability in temperature measurements was 

Table 1. An example of significant difference across the six nitro-
gen treatments on 6 July 2016.

N rate
Measurement 

points
Avg  

temperature Variance
kg ha–1 ————— ˚C —————
0 12 25.7 0.09
28 12 25.1 0.21
57 12 25.0 0.29
115 12 25.0 0.11
188 12 24.9 0.29
230 12 24.9 0.09

ANOVA analysis results
Source of variation SS† df‡ MS§ F_calc¶ P-value F_crit#
Between N rates 5.42 5 1.08 5.99 0.00012 2.35
Within N rate 11.9 66 0.18
Total 17.4 71
† Total sum of the squares which is related to the total variance in the data.
‡ Degree of freedom.
§ Mean squared error which is generated by dividing SS over df.
¶ Calculated F value through dividing mean square of regression (MSR) 
for N amount and days over the mean square of error (MSE).
# Critical F value that is determined using F-tables with corresponding 
degrees of freedom for numerator (mean square of regression, MSR) 
and denominator (mean square of error, MSE).

Fig. 5. The mean canopy temperature and nitrogen rate on 
different days in June 2017

Fig. 4. An example of approximately normal distribution and random error assumptions from July sixth 2016 data (a) leaf surface 
temperature and temperature residual (Y- Ŷ , where Y is leaf temperature, and Ŷ  is predicted leaf temperature) distribution (b) Q-Q plot 
for leaf surface temperature and temperature residual.
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observed when thermocouples were inserted into the whorl of 
corn plants and measured on a smaller time scale (i.e., minutes 
and seconds). It was observed that whorl temperatures decreased 
with increasing rates of nitrogen (Fig. 8). As an example, two 
nitrogen rates were investigated (i.e., 0 and 188 kg ha–1) to 
study the relationship between whorl temperature and nitro-
gen rate. On July 14 2016, whorl temperatures were measured 
consistently in the evening and were higher for 0 nitrogen rate 
compared to 188 kg ha–1 rate of nitrogen. The trend in Fig. 
8 is explained by different weather-dependent variables that 
affect whorl temperature, such as air temperature, wind speed, 
and variation in solar radiation. An average air temperature 
obtained from a nearby weather station is included in the cap-
tion for each day of temperature measurements (i.e., air temper-
ature °C) with an average difference in air temperature of 1°C 
was found during whorl temperature measurements.

Yield Increased with Increasing Rates of 
Nitrogen and Surface Temperature Decreased

Yield increased with increasing rates of nitrogen, and surface 
temperature decreased. A plateau relationship was expected 
between increasing nitrogen rate and yield, however, for the range 
of nitrogen rates investigated (i.e., 0 to 230 kg ha–1) a quadratic 
function was found to fit the nitrogen rate versus grain yield data 

as presented in Fig. 9. In Ontario, Canada, the optimum nitrogen 
rate is variable and considered to be in the range of 150 to 170 kg 
ha–1 (personal communication, C. Swanton) which is a balance 
between increasing yield and nitrogen fertilizer. Within each 
nitrogen rate there was a considerable variability in grain yield. For 
example, in 2016 at 188 kg ha–1 nitrogen the yield response ranged 
from 10100 to 12500 kg ha–1 with a 2400 kg ha–1 difference 
across the four replications within the field. A similar response 
was observed in 2017. This range in yield variability was similar 
to the variability found in surface temperatures. Corn yield was 
negatively correlated with leaf surface temperature prior to harvest, 
as yield increased leaf surface temperature decreased (Fig. 10). A 
significant negative correlation between surface temperature and 
yield was observed, indicating that yields tend to increase as surface 
temperature decreases (Bai and Purcell, 2018). As a conclusion, it 
was observed that surface temperatures collected mid-season (i.e., 
June and July) were negatively correlated with end of season yield 
(i.e., Oct. and Nov.), indicating that surface temperatures collected 
in June and July have predictive relative yield potential.

Discussion
It was required to check if corn plants were under water 

stress conditions during the growing season in 2016 and 2017, 
therefore, the soil volumetric water content and precipitation 

Fig. 6. An inverse correlation between canopy temperature and nitrogen rate presented on different days in June 2017 (a) June 7, (b) June 
13, (c) June 15, (d) June 24.
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rate were monitored over the 2-yr period. In 2016, the average 
soil volumetric water content during the growing season (i.e., 
June–August) for plots supplied with 0 kg ha–1 and 188 kg ha–1 
of nitrogen were 26.07% ± 0.062 and 24.06% ± 0.056 (m3 
m–3), respectively. In 2017, the volumetric water contents were 
25.07% ± 0.074 and 22.0% ± 0.048 (m3 m–3), respectively. For 
the precipitation rates in 2016, the average rate per day during 
the growing season was 5.76 ± 8.59 mm and in 2017 was 4.19 
± 6.17 mm. These results are within the field capacity range 
of 22% to 28% for silt clay loam soil (Ratliff et al., 1983), and, 
when coupled with observations of no wilting, they indicate 
that the corn plants did not experience significant water stress. 
Even if there were brief periods of water stress, it was effectively 
uniform across plots, as ensured by the randomized block design 
of the plots. Therefore, even if water stress did affect the corn 
surface temperature, it would only shift the temperature and not 
affect the temperature difference trends induced by the nitrogen 
differential stressor.

The results obtained from this work suggest that leaf, canopy, 
and whorl temperatures are inversely correlated with increas-
ing nitrogen rates and increasing yield. This relationship is in 
support of the two proposed hypotheses. Decreasing leaf and 
canopy temperatures with increasing yield (Fig. 10) supports 
the first hypothesis that corn experiencing greater yield will 

correspond to lower surface temperatures. In addition, decreas-
ing leaf and canopy temperatures with increasing nitrogen rate 
(i.e., decreasing stress) as presented in Figs. 2, 3, 5, and 6, sup-
port the second hypothesis that corn grown under optimum 
levels of nitrogen will have lower temperatures compared to 
corn grown under nitrogen stressed conditions.

Temperature measurements were highly variable. This vari-
ability was explained by many external and weather dependent 
variables that interact with leaf, canopy and whorl temperatures. 
Such variables include the variation in solar irradiance, air tem-
perature, soil temperature, soil moisture, relative humidity, wind 
speed, cloud cover, leaf angle, leaf emissivity, sensor view angle, 
and many other factors. Therefore, if the non-nitrogen related 
variables can be controlled, or compensated through conditional 
sampling, a comparison of relative temperatures between plants 
would meet the basic needs for an experimental design to sup-
port or reject the proposed two hypotheses. The extent of this 
variability was found to change day to day, further suggesting the 
influence of these variables on changing plant temperature.

The error in temperature difference between stressed and less 
stressed plants was related to the camera precision error, not 
the camera accuracy. The error in the mean temperature differ-
ence can be statistically reduced as the number of temperature 
measurements increases (i.e., 1/2

mean nσ σ −= ). As an example, for 

Fig. 7. The relationship between temperature difference (TLow N-THigh N) and nitrogen rate, where TLow N represents the temperature 
collected at low nitrogen rate and THigh N represents the temperature collected at high nitrogen rate, and the numbers in brackets are 
the maximum, minimum, and average error [max, min, avg °C], (a) June 2016 [1.14, 0.193, 0.66°C], (b) July 2016 [0.967, 0.307, 0.62°C ], (c) 
June 2017 [1.84, 0.26, 1.03°C], (d) July 2017 [2.45,0.27,1.28°C]. 



3216	 Agronomy Journa l   •   Volume 111, Issue 6  •   2019

the temperature measurements collected on June 24 2016, the 
average statistical error in the mean temperature was 0.49°C, 
so when coupled with the precision error using Gaussian error 
propagation, the net error on the mean difference was 0.53°C.

In this work, the ecosystem is the corn plant system, which 
clearly demonstrated an increase in development, growth, com-
plexity, and yield with increasing rates of nitrogen. When a corn 

plant is stressed by the lack of nitrogen, all the functions includ-
ing transpiration, respiration, and photosynthesis are affected, 
resulting in less growth and development (Lambers et al., 2008; 
Lee et al., 2008) compared to less stressed plants. Therefore, 
less stressed plants were more developed and complex, thereby 
enabling more efficient energy degradation and utilization of 
solar exergy compared to highly stressed plants. Stress affects 

Fig. 8. Average whorl temperatures and nitrogen rate as presented on different days over 2-yr period (a) July 14 2016, Tmean_air = 21°C; (b) 
July 16 2016, Tmean_air = 19.9°C; (c) July 12 2017, Tmean_air = 23.16°C; (d) July 17 2017, Tmean_air = 22.4°C. In (a), measurements were recorded 
in the evening on a 5-s interval. In (b), (c), and (d), temperature measurements were recorded around solar noon on a 2-min interval.

Fig. 9. The effect of increasing nitrogen rate on corn yield in (a) 2016, (b) 2017.
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the plants ability to utilize the solar exergy and degrade it 
(Lawrence, 2016). This efficient degradation of energy results in 
lower surface temperatures, as suggested by the exergy destruc-
tion principle (Kay, 2000).

In conclusion, the inverse relationship between decreasing 
temperature and increasing yield and increasing nitrogen rate 
held true despite the large variability associated with each tem-
perature measurement. A statistically significant difference, at 
0.05 significance level, was observed in temperatures between 
stressed and less stressed corn plants. An approximate 1°C 
variation between corn plants that experienced different levels 
of development (i.e., yield and leaf stage) due to nitrogen stress 
was a reasonable magnitude, given that ecosystems with a wider 
variation in development observed approximately 5°C average 
variation (Luvall and Holbo, 1989; Quattrochi and Luvall, 
2004). The exergy destruction principle provides a theory from 
which thermal remote sensing can be applied, through the use 
of surface temperature measurements, to detect physiological 
stress in crop plants.
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