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Abstract—We present DASH, a new language for describing
formal behavioural models of requirements. DASH combines the
ability to write abstract, declarative transitions (as in Z or Alloy)
with a labelled control state hierarchy (as in the Statecharts
family of languages). The key contribution of DASH is the
combination of explicit support for user-level abstractions that
create and factor sets of transitions, such as state hierarchy, and
the use of full first-order logic to describe the transitions.

I. INTRODUCTION

Languages for the creation of abstract, declarative, formal
models of behavioural requirements (e.g., Z [1]) are usually
very distinct from languages used for describing behavioural
models in model-driven engineering (e.g., Statecharts [2]).
Both types of models are operational, in that they specify
the operations/steps of the system. But the differences exist
because formal requirements models must support the speci-
fication of abstract and complex concepts (e.g., uninterpreted
and infinite types, uninterpreted functions and relations, and
quantified expressions), which have mainly been supported
by theorem proving-based analysis. Languages for model-
driven engineering (MDE) are usually geared towards code
generation, and automated analysis has been done by model
checking, which generally requires models to use primitive,
finite types.

The Alloy Analyzer [3] has blurred this difference because
its automatic analysis is based on finite model finding, where
finite scopes for abstract types allow problems to be mapped to
propositional logic. The encoding of the temporal logic model
checking problem into first-order logic (e.g., [4][5]) and the
use of SMT solvers [6] for model checking have continued to
attenuate the differences.

However, Alloy provides no explicit support for describing
behavioural/dynamic models, i.e., transition relations. Elec-
trum [7] has extended the Alloy language to provide some
syntactic support for referring to previous and next state
values in a description of a transition relation. TLA+ [8]
provides similar support for creating and model checking
behavioural models. The nuXmv [4] tool supports multiple
model checking algorithms for infinite state systems, but its
input language supports limited types of data and operations

(e.g., integers, reals). Lacking is a language that provides
both the abstractions of first-order logic (FOL) and user-
level modelling abstractions, such as labelled control states
and events. Furthermore, language support is needed for the
systematic organization of transitions within models.

In this paper, we present a new language called DASH1,
which provides explicit user-level modelling primitives to sup-
port a formal description of a set of abstract, declarative tran-
sitions. By ‘abstract’, we mean including uninterpreted/user-
declared types and functions/relations. By ‘declarative’, we
mean describing a transition as a relationship between previous
and next states using all of first-order logic. A transition is not
necessarily executable.

DASH is a layer on top of Alloy. It uses Alloy syntax
to describe types and elements of the system. User-declared
types are possible. User-declared functions and relations can
be included as part of the system; these can be axiomatized,
defined or left uninterpreted. It also uses Alloy to describe
symbolically the conditions and actions of transitions in first-
order logic, including quantifiers2. Creating models using ab-
stract concepts frees engineers to concentrate on the important
details that they want to codify without sacrificing precision
for unknown/irrelevant aspects of models.

Beyond Alloy, DASH provides explicit support for describ-
ing and factoring transitions into groups to permit modular de-
velopment. We began with the idea of supporting Statecharts’
AND- and OR- control state hierarchy. Control states are a
popular user-level abstraction in MDE that groups together
moments in time that have common future behaviours. We
quickly realized that control states are only one method for
factoring the set of transitions. As a textual language, DASH
can support multiple, nested methods of factoring the set of
transitions to aid the systematic representation of models.
Events are another common user-level modelling abstraction
so DASH supports factoring the transition set by events.
Factoring by conditions is another grouping supported in
DASH.

1The name DASH comes from “Declarative Abstract State Hierarchy”.
2In this paper, an “Alloy formula” means an “Alloy formula without

transitive closure”, as it is the one operator in Alloy that is not first-order.
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Furthering the idea of grouping the description of related
transitions, DASH supports the creation of transitions by pat-
terns, which we call transition comprehension. For example,
if every state has a transition to an error state, this can be
defined in one statement in DASH using a pattern to describe
the possible source states.

DASH also supports layering, which allows a modeller to
describe “add-on” parts of a transition in different places in
a model. These descriptions are layered together to create
the complete description of the transition. Addons facilitate
aspect-oriented modelling [9]. For example, an action common
on all transitions (such as a clock tick) can be described once
and layered onto all the transitions.

DASH accomplishes all of the following:
• Adding hierarchical labelled control states to the Alloy

Language for describing transitions.
• Adding user-declared types and operations, and first-

order logic formulae in the conditions and actions of
Statecharts.

• Creating user-level syntax for the control state hierarchy
that we previously proposed as a datatype to be used in
transitions described in SMT-LIB [10].

• Offering new factoring, patterning, and layering abstrac-
tions to describe and organize systematically the transi-
tions of a model.

The key contribution of DASH is the combination of explicit
support for user-level abstractions that create and factor sets of
transitions, and the use of full first-order logic to describe the
transitions. From a user-level perspective, factoring transitions
by states, events, or conditions are higher-level abstractions
(than a declarative transition by itself) that group together
Kripke structure transitions to describe systematically the
system’s behaviour.

In this paper, we report on the language definition for
DASH. Creating several examples3 previously written in lan-
guages such as Alloy, Z, and Statecharts has helped us to
create a grammar for DASH and a parser using Xtext [11].
Besides the parser, Xtext facilitates creating robust tool support
for a language that includes linking, type checking, compiling
and editing support. This infrastructure allows us to rapidly
test and improve our language. The rest of the paper is
organized as follows. Section II describes our new language
via an example. In Section III, we provide an overview of
our planned semantics for DASH. In Section IV, we compare
the features of DASH with existing formal languages for
describing abstract behavioural models. In Section V, we
describe the future work to create tool support for DASH
models.

II. DASH

DASH is a language for describing a set of transitions; the
transitions are combined to form the transition relation of a
behavioural model. A DASH model is a set of states within an

3A repository of DASH examples and the full grammar can be found in
https://cs.uwaterloo.ca/∼nday/2017-modre

Alloy module. Figure 1 shows a fragment of a DASH model
for a heating system example based on Day [12].

Each state consists of declarations of system elements and a
set of transitions. Declarations of variables are in Alloy syntax
as on lines 6-10 in the example. There can be declarations of
types and global constants outside of a state (e.g., the type
ValvePosition on line 1).

Modellers describe transitions using the following tem-
plate:
1 trans tlabel {
2 from <src_state>
3 on <trigger_event>
4 when <guard_condition>
5 goto <dest_state>
6 do <action>
7 send <generated_event>
8 }

These keywords were chosen to match the way a transition is
described in English. Lines 35-44 and 51-55 are examples of
transitions in the heating system model.

Every part of a transition definition is optional. If the model
uses labelled control states, then the source and destination
state labels are in the from and goto parts. If the model uses
events, then the triggering events are listed in the on part and
generated events are listed in the send part.

The condition (when part) and action (do part) can contain
any formula in Alloy. A formula can be labelled and defined
separately from where it is used (as on line 15). As in Z and
Electrum, DASH uses the primed version of variables to refer
to their values in the next state (e.g., line 18).

A set of transitions in one DASH state described in the
above form alone is roughly equivalent to writing a number
of Z schemas.

State blocks can be nested to form a control state hierar-
chy. The set of top-level DASH states is a set of AND-states.
Within a state, there can be AND-, OR- and basic substates.
AND-states have the keyword conc when they are introduced,
as on line 30, and OR-states and basic states require no
keyword (line 33). The default substate is designated using
the default keyword as on line 31. These labelled control
state blocks can include declarations (line 6), transitions (line
51), and substates (line 46). While DASH models assume
global communication, the state hierarchy is used as a scoping
mechanism for creating partitioned namespaces. All names
of elements declared within a given state must be unique.
However, names can be reused at other levels of the state
hierarchy. To refer to elements outside of the current scope,
fully qualified names must be used.

States can be used to factor/group transitions, i.e., transi-
tions specified within a state have to do with that state. If the
from field is omitted from a transition (e.g., t1 on line 35) then
the source state is the parent state of the transition. Whereas
if the goto is omitted (e.g., t2 on line 40) the parent state is
the destination of the transition. Furthermore, both the from

and the goto parts of a transition can be omitted to define
a looping transition. We find this shortcut particularly useful
when a state has no nested states.

https://cs.uwaterloo.ca/~nday/2017-modre


1 abstract sig ValvePosition {}
2 abstract sig Room {}
3 ...
4
5 conc state HeatingSystem {
6 valvePosition: Room -> ValvePosition
7 desiredTemp: Room -> Int
8 actualTemp: Room -> Int
9 occupied: Room
10 requestHeat: Room
11
12 event activate {}
13 event deactivate {}
14
15 action adjValve [
16 all r:occupied |
17 r.actualTemp < r.desiredTemp =>
18 r.valvePosition’ = OpenPosition
19 ] {}
20
21 condition roomsNeedHeat [
22 some requestHeat
23 ] {}
24
25 init {
26 all r: Room |
27 r.valvePosition = ClosedPosition
28 }
29
30 conc state Controller {
31 default state Off { }
32 state Error { }
33 state On {
34 default state Idle{
35 trans t1 {
36 when roomsNeedHeat
37 goto HeaterActive
38 send activate
39 }
40 trans t2 {
41 from HeaterActive
42 when (not roomsNeedHeat)
43 send deactivate
44 }
45 }
46 state HeaterActive{
47 default state ActivatingHeater{}
48 state HeaterRunning{}
49 }
50
51 trans t3 {
52 on heatSwitchOff
53 goto Off send deactivate
54 }
55 trans t4 {on furnaceFault goto Error}
56 }
57 }
58
59 conc state Bedroom {
60 default state NoHeatRequestested {}
61 state HeatRequested {
62 default state IdleHeating{}
63 state WaitForCool{
64 trans t5 {on waitedForCool do adjValve}
65 }
66 }
67 }
68 }

Fig. 1. Heating System in DASH

Labelled control states are only one means of factoring the
set of transitions. Transitions can be factored by events as in:
1 event deactivate {
2 trans off1 {from Activating goto Off}
3 trans off2 {from Running goto Off}
4 }

This primitive both declares events and factors the transitions
by events, grouping together transitions with a common trig-
gering event. In the example, the event deactivate triggers
transitions off1 or off2.

Similarly, transitions can be factored by conditions, resem-
bling a switch/case statement, as in:
1 condition C1 [<formula>] {
2 <transitions>
3 }

The condition is any formula in Alloy. It is included in the
when part of every transition declared within a condition

block. The condition keyword also assigns a label to a
formula (as on line 21) and the label can be used in other
expressions.

The state, event, and condition factoring keywords not only
help modellers with the systematic organization of transitions
by user-level abstractions, but they can also help with the
completeness and consistency of models. For example, tool
support for DASH can check if all conditions have been
considered when factoring by condition.

Even after grouping related transitions, many transitions
have similarities. DASH supports the use of patterns to create
a set of transitions with only one statement to make models
simpler to read and less tedious to write. We call such a
pattern a transition comprehension. The use case for this
can be illustrated by an example of a telephone number
model abstracted from Vakili [13]. The model consists of a
phone number and the transitions between its various states,
such as, calling, talking, idle, busy, etc. The transitions are
triggered by specific events that dictate the phone number’s
behaviour. One of the characteristics of this model is that the
phone number, regardless of its current control state, returns
to the idle state whenever the event hang_up occurs. This
captures the behaviour that the owner of the phone number
can choose to hang up her phone at any time. One way to
model this behaviour without transition comprehension, is to
write a transition originating from every control state, such as:
1 trans calling_to_idle {
2 from calling on hang_up goto idle
3 }
4 trans talking_to_idle {
5 from talking on hang_up goto idle
6 }
7 trans busy_to_idle {
8 from busy on hang_up goto idle
9 }
10 ...

With the transition comprehension feature, DASH allows us
to write just one expression to define this set of transitions:
1 trans to_idle {
2 from * on hang_up goto idle
3 }



Here, the * symbol represents all states within the current
scope. Instead of the wildcard, modellers can provide a list of
particular state names. Patterns are also possible for the goto

definition. Alternatively, state hierarchy can be used to model
the same behaviour by encapsulating the affected source states
in a superstate, and defining a transition from that superstate.
However, transition comprehension gives modellers flexibility
to describe similar behaviour from different levels of the state
hierarchy.

Another DASH feature to facilitate convenient and system-
atic modelling of transitions is layering. Using the addon

keyword, we can describe conditions and/or actions to add
to a set of transitions, specified by a pattern. For example:
1 addon (do incErrorCounter)
2 to (from * goto Error)
3 addon (do incErrorCounter) to t19

Declaring the initial state and invariants of a system is also
possible in DASH. The keywords init and invariant are
used respectively, followed by a block of Alloy formulae.
Figure 1 on line 25 defines the condition on the initial state
of the heating system. Additionally, there are well-formedness
constraints and quality checks for DASH models that we omit
due to lack of space.

While our original goal with DASH was to add the common
MDE modelling abstraction of state hierarchy to declarative
specifications, we believe that we have gone further to enhance
the modeller’s experience by supporting transition comprehen-
sion, layering, and factoring by more than just control state. As
in Alloy, there are multiple ways to use these features together
to construct equivalent models, which makes DASH flexible
for different modelling styles. A flexible modelling language
that supports the systematic and convenient description of
transitions will hopefully help in obtaining a high quality
behavioural model.

III. SEMANTICS

The first step in determining the meaning of a DASH model
is to reduce the model to a finite set of transitions and a
control state hierarchy. This automatic syntactic expansion step
involves 1) flattening the effect of factoring (i.e., combining the
factors into the meaning of the transitions); 2) expanding the
transition comprehension patterns, and; 3) merging the add-
ons with all relevant transitions.

Next, we combine the set of transitions together to produce a
relation in first-order logic between two configurations of the
model, plus a predicate describing the initial configurations.
Together, an initial predicate and next configuration relation
form a symbolic Kripke Structure [13], which has a possibly
infinite set of reachable configurations.

With a control state hierarchy, the semantics of a transi-
tion system cannot be reduced to either a conjunction or a
disjunction of the relations for each individual transition. Co-
ordination of transitions is required to describe the meaning of
concurrent transitions. For example, to assert that an event has
not occurred requires global knowledge across all transitions
that are taken in a step.

A significant issue in the semantics is the differing ap-
proaches in Statecharts languages and declarative requirements
languages with respect to changes in elements in a step:
in Statecharts, a variable does not change its value unless
explicitly stated; in Z, Alloy, and SMV [14], a variable must
be explicitly constrained to retain its value otherwise it can
change non-deterministically. When transitions can be taken
concurrently, the Statecharts approach is needed otherwise the
model would frequently have inconsistencies. However, it is
useful for a modeller to state explicitly what variables do not
change in a transition. We plan a hybrid approach: a statement
of the non-changing variables in a transition will be considered
local to a transition and not global across concurrent tran-
sitions. However, a top-level directive will indicate whether
the user must explicitly state the non-changing variables in a
transition or whether these should be inferred from the actions
of the transition. In addition, DASH will have the Statecharts
semantics that if no transition is taken in a step, the elements
do not change (implicit looping transition).

In stating the semantics of DASH, we plan to follow an
approach that describes constraints on the set of transitions that
can be taken in a step [12][15]. By thinking of the transitions
as first-class entities, there is a clear separation of concerns
in stating the semantics. The preconditions (events and condi-
tions) on the transitions enforce which transitions are enabled.
The state hierarchy constrains which enabled transitions can
be taken together. If a model is nondeterministic, there can be
multiple sets of transitions that can be taken in a step. The
postconditions and generated set of events are enforced for
the set of transitions chosen. Eventually, we plan to support
the range of semantics possible for languages with control
state hierarchies as described in Esmaeilsabzali et al. [16].
This will enable DASH to not only support synchronous
communication, but also to support asynchronous message
passing, which is required to model distributed systems.

IV. RELATED WORK

In this section, we compare DASH to both formal, abstract
specification languages and some relevant notations used to
create models for model checking analysis.

There are a number of languages for formally describing
abstract behavioural requirements: Z [1], VDM [17], B [18],
ASMs [19], TLA+ [8], Electrum [7], DynAlloy [20], and
SAL [21] [22]. These languages are based on logic and set
theory so they support abstract declarative models. These
languages provide some syntax (e.g., unprimed and primed
system variables) or packaging mechanisms (e.g., schemas in
Z) for describing transitions. Labelled control state hierarchy
can be represented encoded in variables (e.g., [23]). However,
none of these languages explicitly support the representation
of control state hierarchy or other methods of factoring, which
are included in DASH.

The use of labelled control state hierarchy comes from the
Statecharts family of languages, which includes StateMachines
in UML [24]. These languages usually have a fixed condition



and action language that does not allow for declarative spec-
ification of user-defined datatypes and operations. OCL [25]
is a formal language for expressing invariants, pre and post
conditions, which can be added onto parts of a UML model
(described in a context), somewhat similar to DASH’s add-
on construct. In contrast, DASH allows the use of FOL
formulae directly in transition conditions and actions and will
have a fully formal semantics. In addition, DASH offers the
flexibility of factoring, layering, and transition comprehension
to describe a model.

Model checking tools usually have fairly primitive input
languages with no support for abstract datatypes and op-
erations. In SMV [14], transitions can be described using
case/switch statements, and labelled control state hierarchy and
its semantics can be encoded, but is not supported natively.
Abstract datatypes and operations can be encoded into these
languages as in Chang and Jackson [26]. nuXmv [4] includes
support for infinite datatypes such as integers and reals, but
not user-defined types.

Alloy supports set theory primitives and other syntactic
sugar for first-order logic descriptions, but no explicit sup-
port for transitions. Electrum [7] extends Alloy with primed
variables to refer to the next values of variables. DynAlloy
[20] and [27] extend Alloy to allow the definition of actions
to model state changes relating pre and post-conditions on
transitions. TLA+ [8] can describe transition systems but
has no support for labelled control states. SMT-LIB [28] is
intended as a machine-readable version of FOL with theories
for datatypes with decision procedures. Previously we created
a way to represent labelled control state hierarchy as a datatype
in SMT-LIB [10], but no user-level language to describe and
group these transitions.

V. CONCLUSION

We have presented DASH, a new language for describ-
ing abstract, declarative transitions of behavioural models.
Unlike existing modelling languages, DASH supports both
descriptions of transition behaviour in full first-order logic,
and common user-level, behavioural MDE abstractions such
as labelled, hierarchical control states and events. DASH is
a textual language that provides convenient mechanisms for
users to create and organize their models: 1) factoring/group-
ing the set of transitions by control state, event, and condition;
2) transition comprehension for describing a set of transitions
using a pattern; and 3) layering together parts of transitions
described in different places in a model.

In the future, we plan to:
1) Extend DASH with new features for modularity, such as

parameterized states and quantification over states.
2) Build tool support, which initially will be a translator to

Alloy, but in the future may also include translations to
SMT solvers.

3) Explore model checking of DASH models.
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