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Abstract

In the recent past, deep learning algorithms have been widely used in retinal image analysis
(fundus and OCT) to perform tasks like segmentation and classification. But to build
robust and highly efficient deep learning models amount of the training images, the quality
of the training images is extremely necessary. The quality of an image is also an extremely
important factor for the clinical diagnosis of different diseases. The main aim of this thesis
is to explore two relatively under-explored area of retinal image analysis, namely, the retinal
image quality enhancement and artificial image synthesis.
In this thesis, we proposed a series of deep generative modeling based algorithms to perform
these above-mentioned tasks. From a mathematical perspective, the generative model is a
statistical model of the joint probability distribution between an observable variable and a
target variable. The generative adversarial network (GAN), variational auto-encoder(VAE)
are some popular generative models. Generative models can be used to generate new
samples from a given distribution.
The OCT images have inherent speckle noise in it, fundus images do not suffer from noises
in general, but the newly developed tele-ophthalmoscope devices produce images with
relatively low spatial resolution and blur. Different GAN based algorithms were developed
to generate corresponding high-quality images fro its low-quality counterpart.
A combination of residual VAE and GAN was implemented to generate artificial retinal
fundus images with their corresponding artificial blood vessel segmentation maps. This
will not only help to generate new training images as many as needed but also will help to
reduce the privacy issue of releasing personal medical data.
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Chapter 1

Introduction

Based on “S Sengupta et al. Ophthalmic Diagnosis
Using Deep Learning with Fundus Images-A Critical
Review. Artificial Intelligence in Medicine (2019): vol
102, pp: 101758”

In the United States, more than 40 million people suffer from acute eye related diseases
that may lead to complete vision loss if left untreated [1]. Glaucoma, Diabetic retinopathy
(DR) and age-related macular degeneration (AMD) are some of the most common retinal
diseases.

To study the physiology and anatomy of the retinal structure, different imaging tech-
niques are widely used. Two of the most widely used techniques are fundus photography
and optical coherence tomography (OCT). Other methods include scanning laser ophthal-
moscopy (SLO), auto fluorescence (AF) etc [2].
The above-mentioned imaging technologies help to produce images in different conditions.
Traditionally, the diseases are diagnosed by manual intervention by looking at the images.
But these are time-consuming and due to poor doctor-to-patient ratio in many develop-
ing countries, the process can be extremely time-consuming and sometimes error-prone.
Automated computer-aided methods can help to improve the overall healthcare process
by assisting the clinicians. Researchers have been trying to apply image processing and
machine learning based methods for different retinal image analysis tasks. These include
biomarker detection (image segmentation), early diagnosis of different diseases (classifica-
tion), image quality enhancement, artificial image synthesis [1].
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Since last few years the deep neural networks have outperformed many of the conventional
approaches of analyzing images. Some major tasks include the following

• Segmentation of the retinal blood vessel, optic disc (OD), optic cup (OC) from fundus
images and retinal layers from OCT images are some important tasks to diagnose
and interpret abnormalities the retina. The presence of diseases like DR changes the
retinal blood vessel structure. The cup-to-disc ratio is altered due to the presence of
glaucoma. Glaucoma can also be predicted from the thickness of retinal layers after
segmentation.

• Disease predictions like detection of glaucoma, grading of DR stages, AMD detection
are performed. The presence of red lesions (microaneurysms, hemorrhage) in the
fundus images is a useful biomarker for DR grading.

• Other tasks include image quality analysis, image quality enhancement,(denoising
of the OCT images, deblurring, super-resolution of fundus images) artificial image
synthesis (to reduce the low dataset problem in medical imaging) etc.

Generative modeling is one of the fast growing fields of machine learning. A generative
model is a technique to learn the inherent data distribution in an unsupervised manner.
The generative models try to learn from all of the training data points for generating
new data points. Say, if we have data points x and corresponding labels of y, generative
models try to learn the joint probability distribution of P(x,y) which is transformed into
P(y|x) using Bayes’ theorem. To learn the inherent distribution of a dataset the power of
the neural network is leveraged which can learn a function to approximate the distribu-
tion. Restricted boltzmann machine (RBM), belief network (BN), variational auto-encoder
(VAE), generative adversarial network (GAN) are some popular generative models.

1.1 Major Contribution

Though much work has been done on retinal image analysis tasks, two major issues are still
under-explored, namely, the image quality enhancement and the issue of limited availability
of publicly available annotated retinal image data. In this thesis, the main objective
is to explore applications of generative modeling in artificial image synthesis with their
corresponding annotations labels and quality enhancement of captured retinal images.
Major aims of this thesis:
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• To investigate if generative modeling can help to generate clinically relevant artificial
retinal image dataset which can be used to train a model to perform segmentation.

• To develop an open-source artificial fundus image dataset.

• To investigate the application of generative adversarial network for retinal image
quality enhancement.

• To investigate if deep learning based methods can help to reduce different degradation
of the images.

• To investigate if deep generative models can help to reduce inherent speckle noises
in the OCT images.

1.2 Organization of the Thesis

In the next chapter we will delve into the technical background and details of each of the
proposed methods and solutions. In each chapter, we will first present a literature review
on each topic, elaborating on the methods, and finally at the end of each chapter, we will
compare our discuss our results with what we already have in literature. Finally, we will
provide a discussion on each of the proposed methods in each chapter.
Chapter 2 gives a brief technical background relevant to the research presented in the
rest of the thesis. In chapter 3 and 4, we respectively discuss end-to-end deep generative
methods for fundus and OCT image quality enhancement techniques and algorithms.
In chapter 5, a generative modeling based pipeline for retinal fundus image synthesis is
proposed. The quality of the generated images and effectiveness of the artificial images in
actual segmentation tasks are also discussed.
Chapter 6 concludes with some future research directions.
Relevant codes can be found at https://github.com/souryasengupta
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Chapter 2

Background

2.1 Retina

Located at the innermost lining at the back of the eyeball, a photo-sensitive multi-layered
neural tissue called the retina serves as a receptor of the visual stimuli and converts into a
neural signal. The signal is then relayed via the optic nerve to the brain for the processing
of the image. Enclosed by supportive tissue for structural rigidity, the retinal tissue consists
of several layers, namely, retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear
layer (ONL), external limiting membrane and the microstructures of the photoreceptors
namely inner segment (ELM+IS), ellipsoid zone (EZ), outer segment (OS), and interdigi-
tation zone (IZ), and the retinal pigmented epithelium (RPE). The retina is nourished by
retinal blood vessels and also the vessels from the underlying layer called the choroid. The
architecture of the retina can be disturbed by several diseases that affect vision. Each of
these layers is endowed with biomarkers, which can be studied through suitable imaging
techniques to predict the possibility of a visual impairment. In figure 2.1 a sample picture
of the human retina with different parts is shown. Figure 2.2 illustrates the various layers
of the retina.
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Figure 2.1: Retina

Figure 2.2: A Typical OCT Image with Retinal Layers
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Figure 2.3: A Typical Fundus Image

2.2 Retinal Imaging with Fundus Camera:

In 1926 the field of ophthalmology and retinal screening was revolutionized by the invention
of the fundus camera by Carl Zeiss [3]. The standard fundus photography captures RGB
images of the fundus, the back of the eye. It uses a flash-enabled camera with a microscope
attachment. Currently, fundus cameras, available in the clinics offer good quality pictures,
but these are mostly bulky and costly . Hence recently there have been significant efforts to
leverage the technological advancement in telecommunication and smartphone technology
to build portable low-cost fundus cameras for ophthalmic screening in remote areas. D-Eye
systems, Ocular CellScope, Lexaminer are important smart-phone based portable low-cost
fundus cameras [4]. Different important retinal areas like OD, OC, retinal vessel, Optic
nerve head (ONH) can be seen and diagnosed from fundus images. In figure 2.3 a sample
fundus image is shown.

6



2.3 Optical Coherence Tomography (OCT):

The OCT is a clinical imaging technique to visualize the cross-sectional structure of the
retina. It uses low-coherence light to capture 2D and 3D images of scattering media [5].
It is based on the interferometric technique invented by Albert A. Michelson and was
developed by James Fujimoto [6]. The OCT images can be used to study different retinal
layers (mentioned before in 2.1) thickness and shape. In figure 2.2 a sample OCT image
with all different layers is shown.

2.4 Deep Generative Models:

Here we describe some well-known generative models.

2.4.1 Restricted Boltzmann Machine (RBM):

A RBM [7] is a generative stochastic artificial neural network that learns a probability dis-
tribution over its set of inputs. The RBM can learn the latent features of the input data,
so the parameters of the latent features can be learnt. The RBM is defined by a particu-
lar energy function and the probability of a particular state is proportional to the energy
of this particular state. It uses the Monte Carlo simulations but it often fails to perform
well in high-dimensional spaces. Figure 2.4 shows a typical schematic diagram of the RBM.
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Figure 2.4: A Typical Schematic Architecture of RBM

2.4.2 Belief Network (BN):

A belief net is a directed acyclic graph composed of stochastic variables. We get to observe
some of the variables and we would like to solve two problems: (1) Infer the states of the
unobserved variables. (2) Adjust the interactions between variables to make the network
more likely to generate the observed data. In BN the chain rule is used to decompose
the probability distribution over a vector into the product of every member of the vector.
But it is slow in the process of dataset generation. Figure 2.5 shows a typical schematic
diagram of the BN.
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Figure 2.5: A Typical Schematic Architecture of VBN

2.4.3 Variational Auto-Encoder (VAE):

The basic intuition of VAE is that from a bunch of random variables of distribution z,
new random samples can be generated through non-linear mapping x = f(z). The encoder
network of the VAE encodes the input data into a much smaller latent space representation
of mean and standard deviation from which the decoder network can sample new data.
Figure 2.6 shows a typical schematic diagram of the VAE.

Figure 2.6: A Typical Schematic Architecture of VAE
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2.4.4 Generative Adversarial Network (GAN):

Figure 2.7: A Typical Schematic Architecture of GAN

The GAN consists of two neural networks, namely: generator and discriminator, which
play a minmax game between each other to generate new sample data different but also
with the basic charactertics of training data. Role of the generator is to generate images
such that the discriminator gets fooled between real and fake generated images. The role
of the discriminator is to improve itself to prevent the generator producing fake samples.
Figure 2.7 shows a typical schematic diagram of the GAN.

Currently, VAE and GAN are two extremely popular generative models. VAE and
GANs are discussed in detail in later sections.
Most popular usages of generative models include conversion of sketches to images, image
denoising, conversion of low resolution images to high resolution, generation of art, and
conversion of satellite images to maps, to name a few.
The next chapter deals with specific generative models and their use in enhancing the
quality of the retinal fundus images which have been degraded due to different clinical
conditions.
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Chapter 3

Multi-scale Feature Averaging
Generative Adversarial Network for
Simultaneous De-blurring and
Super-resolution of Retinal Fundus
Images

Based on “S Sengupta et al. DeSupGAN: Multi-scale
Feature Averaging Generative Adversarial Network
for Simultaneous De-blurring and Super-resolution of
Retinal Fundus Images, To be submitted at MICCAI
Workshop”

3.1 Introduction

Retinal imaging is widely used for the diagnosis of different retinal diseases. The major
diseases like glaucoma, DR, AMD are diagnosed by examining the retinal fundus images
[8]. In the clinics, the expensive fundus cameras are used to collect images but the rapid
growth of research in telemedicine has resulted in the development of portable, hand-held,
cost-efficient fundus cameras. In addition, optical attachments have been developed which
can convert the smart phones into fundus cameras. The low-cost and portable design
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of these cameras make them especially useful in the remote areas of under-developed or
developing countries where sufficient health-care facilities are not available [4]. But recent
studies have found that sometimes the quality of the images captured by these new point-
of-care imaging devices are not sufficient for the clinical diagnosis purpose due to the
low image quality problem namely, poor resolution, motion blur, out-of-focus blur, etc
[9]. Blur in the images can also be caused due to the presence of diseases like cataract
which may eventually hamper the quality of diagnosis. Quellec et al. [10] found the poor
image quality of a hand-held camera(Horos DEC 200) while comparing it with one table-top
camera(AFC12 330). The DR diagnosis performance was worse with the hand-held camera
in comparison with the table-top one. Cuadros et al. [11] also reported the degraded image
quality of telemedicine devices. Barritt et al. [12] made a comparative analysis of images
captured with a D-Eye Digital Ophthalmoscope attached to a smartphone with an actual
fundus camera and found differences in image quality which can affect clinical efficacy. In
most of the telemedicine fundus image devices the spatial resolution is 2 times or 4 times
lower than the clinical fundus camera images.
These degraded images can also lead to unsatisfactory results of different image post-
processing tasks like image segmentation. In different diseases, various landmarks and
biomarkers (hemorrhages, microaneurysms, exudates, blood vessels, OD and OC, fovea)
of the retina get affected. Hence the prominence and visibility of each landmark is very
important for the flawless clinical diagnosis.
Image quality enhancement from a degraded image is an ill-posed inverse problem and
does not have a single unique solution. Mathematically the problem can be formulated as:

y = (x ↓s)⊗ k (3.1)

Here k is a blur kernel, ↓s is the downsampler. x is the high-resolution high-quality image,
y is the low-resolution degraded image, and ⊗ is the convolution operation.

3.2 Major Contribution

The major contributions of this work are: (1) To the best of our knowledge, this is the
first work to address multiple fundus image degradation problems like low-resolution and
blur. All previously published fundus image enhancement papers dealt with either super-
resolution or de-blurring issues separately. (2) A novel multi-scale feature averaging block
(MFAB) has been designed to fuse features with different kernel sizes. A triplet loss based
training strategy is incorporated to generate images with better structural similarity with
high-resolution de-blurred images.
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3.3 Related Work

Previously published literature on retinal image enhancement dealt with either image
super-resolution or image de-blurring separately. Recently different methods have been
proposed for removing blurriness, enhancing contrast and luminance of retinal fundus im-
ages. Contrast and luminosity enhancement methods have been proposed using luminance
gain matrix and contrast enhancement adaptive histogram equalization (CLAHE) tech-
nique [13]. Mitra et al. [14] used Fourier transform and CLAHE technique to remove the
opacity and enhance the contrast of fundus images. Blurriness removal task was performed
by Xiong et al. [15] by estimating the transmission map and background illuminance. The
previously published methods needed to estimate the degradation model and hence lim-
ited to very specific cases. Very recently Zhao et al. [16] proposed a data-driven model
to remove blurriness from unpaired original-blurry pairs of images. Williams et al. [17]
proposed a hierarchical convolutional neural network based method to classify between
blurred and non-blurred images and then restore the images. Neither of these methods
considered spatial resolution as a degradation model nor did they experiment with different
kinds of blurring issues. On the other hand, different fundus image super-resolution tasks
have been performed. Mahapatra et al. [18] proposed a GAN based architecture for retinal
fundus image super-resolution using saliency maps to incorporate saliency loss for better
super-resolved image quality. In a later work, Mahapatra et al. [19] used a progressive
generative adversarial network to upscale fundus images. These super-resolution papers
did not consider other image degradation model. It can be seen that all of these works
separately considered image super-resolution or blur issue and hence can not be generalized
for practical applications.

3.4 Methodology

In this section, we discuss the proposed network architecture of the GAN [20]. In Figure
3.1 the schematic diagram and corresponding blocks are shown. To put everything into
context, we provide a basic theoretical introduction of GAN and then we discuss the
proposed network blocks and loss functions used herein.

3.4.1 Generative Adversarial Network:

A GAN is a special type of generative model that consists of two separate components: a
generator (G) and a discriminator (D). The generative model generates a new sample and
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Figure 3.1: Top row: The proposed architecture of DeSupGAN; Bottom: Proposed MFAB
and nomenclature of other layers. The generator consists of 3 different modules: feature
extraction module: it consists of MFAB blocks, residual reconstruction module: it consists
of residual skip connections and concatenation layers , up-sampling module: it consists of
deconvolutional layers.

14



the task of the discriminator is to distinguish between the real sample and the generated
fake sample. The generator network is a convolutional neural network (CNN) and it is
parameterized by θG=W, b. The parameters are obtained as:

θ̂ = argmin
θG

1

N

N∑
n=1

l(G(In,D ), In, ′O )) (3.2)

Here l is the loss function, In,D and In, ′O are the degraded and the original ground-truth
images.The adversarial min-max problem can be formulated by the following equation

min
θG

max
θD

E
I ′OPtrain(I

′
O)
[logD(I ′O)] + E

IDPG(I
′
O)
[log(1 −D(G(I ′O)))] (3.3)

It trains the generator G to generate fake ground-truth like images which can fool the
discriminator network D to distinguish between original ground truth images (I ′O) and the
fake generated ground truth-like images (IO).

3.4.2 Proposed DeSupGAN Structure:

The generator of the proposed DeSupGAN consists of 3 different parts as shown in Figure
3.1 (above row): (1) feature extraction module (2) residual reconstruction module and
(3) up-sampling module. The discriminator contains several convolutional layers (convolu-
tion+batchnormalization+ LeakyReLU activation function) followed by a dense layer for
final decision making. The three major parts of the generator architecture are described
below:

Feature Extraction Module:

The feature extraction module is made with several multi-scale feature averaging blocks
(MFAB), the MFAB consists of 3 convolutional blocks (convolution+ batchnormalization+
activation function). The kernel sizes of convolutional blocks are different in sizes (3,5,7).
The outputs of each of the blocks are averaged and the residual connection is used to add
the input of MFAB to the output of the averaging layer for preserving the local structure
of the feature map.
Often during the blurring problem, the exact size of the blur kernel is not known and it
is quite difficult to estimate it. In addition the size of the blur kernel can also change in
different screening experiments. The MFAB is introduced to extract multi-scale features
with different kernel sizes to take care of the above mentioned problem. In the case of
different blur kernels, the MFAB can produce the possible averaged result. The bottom
row of figure 1 shows a schematic of MFAB.
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Residual Reconstruction Module:

The residual module consists of several residual skip connections and a concatenation
layer. Every individual residual block of this module has a convolutional layer followed by
a batch normalization and an activation function (ReLU). The final output of the module
is concatenated with the output feature map of the first convolutional layer followed by a
global skip connection as shown in Figure 3.1. The complete module helps to provide a
stable and better representation of the network and ensures a better flow of gradients.

Up-sampling Module:

The up-sampling module has deconvolutional layers with kernel size 3. The layer consists
of an up-sampling layer followed by a convolution operation and an activation function.
This block helps in increasing the spatial size of the output image. Depending on the
scaling factor of the super-resolution algorithm, the number of deconvolutional layers in
this module can be changed. In Figure 3.1 the up-sampling module holds two blocks for
scaling factor X4.

3.4.3 Joint Triplet Loss Based Training Strategy:

To preserve perceptually better image quality as well as finer image details triplet loss
functions are used. These are described below:

Adversarial Loss:

The adversarial or generative loss lG over all the training data can be defined as

lG =

N∑
n=1

−logD(G(ID)) (3.4)

Where D(G(ID)) is the probability that G(ID) is a original high-resolution image. Instead
of minimizing −log[1 −D(G(ID))], convergence is achieved by minimizing logD(G(ID))
and N is the total number of images.
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Structural Similarity Loss:

The structural similarity index (SSIM) is considered as a better alternative than mean
square error (MSE) as an image quality measure. The MSE is inconsistent as a metric for
human visual perception. For two images I and J following expression is used to calculate

SSIM =
(2µIµJ + C1)(2σIJ + C2)

((µ2
I) + (µ2

J) + C1)(σ2I + σ
2
J + C2)

(3.5)

The function is differentiable and can be written as

Ls =
1

WH

Wi,j∑
x=1

Hi,j∑
x=1

SSIM(ID, IO) (3.6)

W, H are width and height of the feature map. The SSIM loss can be defined as 1−Ls

Perceptual Loss:

Perceptual loss [21] is a L2 loss but it is based on the difference between the feature maps
from a particular CNN layer.It is defined by this following equation:

Lp =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
x=1

((φi,j(I
′
O))x,y − (φi,jG(ID))x,y)

2 (3.7)

Wi,j and Hi,j are the dimensions of the feature maps. φi,j is the feature map extracted from
the jth layer of the pre-trained (on Imagenet dataset) VGG-19 network [22]. In this work
output of 9th layer has been used. This loss function helps to restore more perceptually
better general content from the images.
The final loss function was defined as L = LG + λ1 ∗ Ls + λ2 ∗ Lp, where λ1 and λ2 are
constant values.

3.5 Experiment

3.5.1 Dataset Generation:

To evaluate the results of proposed DeSupGAN, the MESSIDOR dataset [23] was used.
For each of the images degraded paired image was simulated using different blur kernels.
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Motion blur and de-focus blur were induced with blur kernels of randomly selected sizes
from 1 to 10. For each of the blur kernels two different scaling factors (X2 and X4) were
used to generate lower resolution images with bi-cubic interpolation.

3.5.2 Training Details:

Data augmentation was performed to increase the number of data. The data augmentation
strategies include (1) horizontal flip, (2) vertical flip and (3) rotation with angles from -5
to +5. A total of 798 images were divided between 698 images for training and 100 images
for the test. All images were resized into 512X512 size. The Adam optimizer [24] was
used for both the discriminator and the combined network with a learning rate of 0.0001
with a momentum of 0.9 and decay rate of 0.1. This method was tested to provide better
and stable convergence for the network training. The model was implemented using the
tensorflow/keras [25] framework and it took approximately 6 hours in a Titan V NVIDIA
GPU in an i7 processor with 64 GB RAM to train for 100 epochs with a batch size of 1.
The proposed DeSupGAN was compared with other several methods:

(1) bicubic interpolation + Richardson-Lucy de-blurring algorithm [26]: The
bicubic interpolation is the most commonly used method for increasing the spatial resolu-
tion of images. The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvo-
lution, is an iterative procedure for recovering an underlying image that has been blurred.
It was named after William Richardson and Leon Lucy, who described it independently.
The main issue with this algorithm is without knowing the exact point spread function it
is very hard to deblur the given blurry image with this method.

(2)SRRESNet [27]: The SRRESNet is a blind super-resolution architecture consists
of multiple residual skip connections with convolutional blocks followed by batch normal-
ization and parameterized ReLU activation functions.

(3)SRGAN [27] [21]: SRGAN is a ??-based architecture where SRRESNet architec-
ture is used as the generator neural network. The discriminator consists of multiple layers
of convolutional with 3X3 kernel size followed by batch normalization and ReLU as acti-
vation function.

(4)SRGAN+DeBlurGAN [28]: This is combination of two popular architecture, the
SRGAN is for increasing the spatial resolution and the DeBlurGAN is for reducing the blur
from the images. The DeBlurGAN used 9 residual skip connections in the generator part
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and discriminator part is same as that of the SRGAN. Super-resolved images (outputs of
SRGAN) were fed into DeBlurGAN for reducing the blur.

3.5.3 Performance Measures:

Two image quality metrics, namely peak signal-to-noise ratio (PSNR) and structural sim-
ilarity index, were calculated to quantify the performance of the proposed network. The
ideas of these two widely used metrices are described here.

PSNR

PSNR is a ratio between maximum value or power of a signal and maximum value or power
of noise in the signal. Mathematically, PSNR can be defined as:

PSNR = 20 log10(
MAXa√
MSE

) (3.8)

and MSE is written as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j) − J(i, j)]2 (3.9)

Here I is the original image of size mxn and K is the noisy counterpart of the image.
MAXI is the maximum possible pixel value of the image

SSIM

Unlike absolute measures based metrics like MSE and PSNR, SSIM gives a better overall
perceptual measure of an image corresponding to a ground truth image. Mathematically
SSIM can be written by the equation 2.5
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3.5.4 Results:

The results of the experiments for two different kernels with two different scaling factors
are tabulated below. The best results are marked with red.

Table 3.1: Results for de-focus blur and different scaling factors

Methods
Scaling Factor

Scaling Factor:X2 Scaling Factor:X4

PSNR SSIM PSNR SSIM
Bicubic+RL 37.01 0.635 36.67 0.740

SRRES 40.70 0.986 39.67 0.987
SRGAN 40.80 0.992 39.8 0.987

SRGAN+DeBlurGAN 40.56 0.991 39.71 0.987
DeSupGAN 41.41 0.996 40.24 0.993

Table 3.2: Results for motion blur and different scaling factors

Methods
Scaling Factor

Scaling Factor:X2 Scaling Factor:X4

PSNR SSIM PSNR SSIM
Bicubic+RL 37.32 0.650 36.56 0.740

SRRES 42.01 0.995 40.20 0.991
SRGAN 41.57 0.995 39.67 0.990

SRGAN+DeBlurGAN 41.47 0.994 40.50 0.992
DeSupGAN 42.42 0.997 41.37 0.995
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Figure 3.2: Comparison of Different Algorithms’ Results of a Representative Image: (a)
LR blurred Image, (b) bicubic+Richardson-Lucy algorithm, (c) SRRESNet, (d) SRGAN,
(e) SRGAN+DeBlurGAN, (f) DeSupGAN, (g) HR de-blrured image(ground truth). The
different coloured bounding boxes show the specific parts of the images where the proposed
algorithm performed better than other algorithms In image quality enhancement.
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Figure 3.3: Sample Results of DeSupGAN for motion blur X4 scaling factor- The top row
consists of LR blurry images, middle row consists of output images of the network, bottom
row consists of the corresponding ground truths
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Figure 3.4: Sample Results of DeSupGAN for defocus blur X2 scaling factor- The top row
consists of LR blurry images, middle row consists of output images of the network, bottom
row consists of the corresponding ground truths
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Figure 3.5: Sample Results of DeSupGAN for motion blur X2 scaling factor- The top row
consists of LR blurry images, middle row consists of output images of the network, bottom
row consists of the corresponding ground truths
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Figure 3.6: Sample Results of DeSupGAN for defocus blur X4 scaling factor- The top row
consists of LR blurry images, middle row consists of output images of the network, bottom
row consists of the corresponding ground truths

The table 3.1 and 3.2 show the results for motion blur and de-focus blur respectively,
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both with two scaling factors of 2 and 4 for each. The PSNR and SSIM were consid-
ered as the metrics for assessing the quality of the generated images and it can be found
that DeSupGAN outperformed other SR and de-blurring algorithms for all different tasks.
Figure 3.2 shows comparative results of different algorithms, the colored oxes show that
DeSupGAN yielded better finer details of blood vessels, optic disc boundary than other
methods. Figure 3.3, figure 3.4, figure 3.5, figure 3.6 show the results of DeSupGAN for
all different scaling factors and blur kernels.

3.5.5 Ablation Studies:

The ablation studies, performed by removing two important components of the proposed
network, the novel MFAB block and structural similarity loss (LS), are shown in table 3.3
and 3.4. It can be seen from the tables that the results were much worse when compared to
the whole network thus demonstrating the importance of these components in the proposed
network.

Table 3.3: Ablation Studies: Results for motion blur and different scaling factors

Methods
Scaling Factor

Scaling Factor:X2 Scaling Factor:X4

PSNR SSIM PSNR SSIM
Without Structural Similarity Loss 42.02 0.995 40.2 0.992

Without MFAB Block 40.90 0.994 39.89 0.991

Table 3.4: Ablation Studies: Results for defocus blur and different scaling factors

Methods
Scaling Factor

Scaling Factor:X2 Scaling Factor:X4

PSNR SSIM PSNR SSIM
Without Structural Similarity Loss 40.29 0.993 39.67 0.989

Without MFAB Block 40.95 0.994 40.20 0.992

3.5.6 Visualization of Feature Maps:

The proposed model achieved good results but deep learning models are not self-explanatory
hence interpreting some insights of the model is necessary. To increase the chances of
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practical integration of deep learning based models in different clinical practices, model in-
terpretability is very important. Here the intermediate layer’s feature maps are extracted
(shown in figure 3.7: first MFAB output and figure 3.8: the 5th MFAB output).

It can be observed that the first MFAB block’s feature maps were not very detailed
and only contained overall shape feature of images. On the other hand, the 5th or final
MFAB block’s feature maps were more detailed and had some high level features like blood
vessels, optic disc etc.

Figure 3.7: Randomly selected sample feature maps of the outputs of first MFAB block.
The images show that the first block mainly extracted low level features like overall shape
of the images. It did not have high level details in it.
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Figure 3.8: Randomly selected feature maps of the outputs of final MFAB block. The
images show that the block learnt more detailed high level features like like blood vessels,
structure of optic disc. The overall shape was also retained in the images.

3.6 Conclusion

We proposed DeSupGAN which can generate high-resolution de-blurred retinal fundus im-
ages from low-resolution blurry images. It uses MFAB blocks for extracting multi-scale
feature and triplet loss functions to generate perceptually better results. The experimental
results show that the proposed DeSupGAN outperformed other state-of-the-art methods.

In the next chapter a comparative analysis of different generative model architectures
applied to OCT image denoising will be discussed.
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Chapter 4

Optical Coherence Tomography
Speckle Denoising Using Generative
Adversarial Network

4.1 Introduction

The OCT imaging system results in the speckle noises in the images[6] due to the usage
of coherent sources. The speckle noise degrades the quality of the images by reducing the
overall contrast and signal-to-noise ratio of the images [29]. This results in a reduction of
the visibility of the retinal layers and the tissues which are necessary for a disease diagnosis.
Hence the OCT speckle denoising is an important task[30]. The OCT denoising task can
be done (1) during the OCT image acquisition and (2) after the acquisition. Denoising
during the image acquisition is done by averaging multiple correlated image frames which
is also called image compounding[31] . The compounding technique can reduce the speckle
noise from the images but it needs multiple scans of the same area of the retina. This
method suffers from the problem of complexity of the data acquisition, hence not always
feasible to perform in the clinical setup. Different post-processing methods can be used to
denoise the OCT images. Popular denoising methods like adaptive median filtering [32],
linear least square estimation [33], maximum a posteriori (MAP)[34] estimation have been
used to reduce the speckle noise from the OCT images, but these methods showed lower
noise reduction capability. Later, wavelet based methods [35],[36] seem to perform better
than the previously applied techniques in terms of the signal-to-noise ratio but generated
unwanted artifacts in the images. Algorithms like block matching and 3D filtering (BM3D)
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[37], dictionary learning based method (k-SVD) [38] , have also been used to reduce the
speckle noise. However, these methods assume certain specific statistical properties or
prior information of the noise, and hence limits the applicability of these techniques.
In this work, we implemented several state-of-the-art deep learning based image restoration
algorithms for the speckle denoising from OCT images. It is to be noted that the methods
were adopted as a generator of a GAN to do the task. To the best of our knowledge these
networks have not been used before for this particular purpose. The rest of the chapter
is organized as follows: Section 2 briefly discusses about the properties of speckle noise,
section 3 deals with the descriptions about the algorithms and section 4 describes details
of training and the results.

4.2 Speckle Noise

Speckle occurs due to the coherent nature of the light sources used to capture the OCT
images. Speckle is a granular interference that inherently exists and degrades the OCT
image quality. The surfaces, illuminated by light wave, are generally rough on the scale
of the wavelength and can be thought of as a source of array of scattered waves, these
scattered signals undergo linear superposition and add constructively and destructively
depending on the the relative phases of each scattered wavefront. Speckle results from
these patterns and shows up as bright or dark spots in the images, however it should be
noted that speckle noise is not exactly a noise in the usual sense but the signal itself. A
good description of speckle noise is given by Goodman. [39]
Mathematically the speckle noise is a multiplicative noise [40]. The intensity of the multi-
plicative noise varies with the image intensity, which is also the reason behind the difficulty
of the speckle noise removal from the actual images. Mathematically, it can be written as

Yi,j = Xi,j ∗ ni,j (4.1)

Here Yi,j is the noisy image produced due to the noise ni,j with the image Xi,j. The
denoising problem can also be considered as an inverse problem where the target is to get
the denoised image from its noisy counterpart. The speckle noise can be modeled using
the probability distribution function (pdf) which generally follows the gamma distribution
[41]. It can be written as

f(x; ρ,β) =
xρ−1e−

x
β

βρΓρ
(4.2)

In this above equation ρ and β are shape and scale of different levels of the Gamma noise.
The Γ(ρ) is the gamma function and x is the input pixel value.
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4.3 Methodology

In this section, we discuss different networks which were used to perform denoising task. It
is to be noted that different individual networks were adopted as a generator of the image-
to-image translation GAN [42] architecture. The basic theoretical backbone of GAN can
be found in chapter 1.

4.3.1 DeBlur-GAN:

The generator architecture of this GAN network is inspired from the image restoration
network proposed in by Kupyn et al. [28]. This uses a contraction path, followed by some
ResNet blocks and an expansion path to get the final image.

4.3.2 RDNSR-GAN:

The generator architecture of this GAN network is inspired from the network proposed
by Yulun et al [43]. In the network all hierarchical features are exploited using a residual
dense block to extract abundant local features by densely connected layers. Both the local
and the global residual connections are used to learn both the local and the global features
and to stabilize the training.

4.3.3 DIDN-GAN:

The basic generator architecture of this GAN network is inspired from the network proposed
by Yu et al. [44] The basic structure is inspired from the U-Net architecture but it uses
deep iterative down-up approach to extract important features from the network.

4.3.4 RED-GAN:

The basic generator architecture of this GAN network is adopted from the network pro-
posed in by Jiang et al. [45]. It uses the symmetric convolution and the de-convolution
layers. The skip connections are used to join the outputs of a convolution layer and a
mirror de-convolution layer.
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4.3.5 RID-GAN:

The basic generator architecture of this GAN network is taken from the network proposed
in by Jiang et al.[46]. It uses the residual on the residual structure to ease the flow of
low-frequency information. It applies the feature attention to exploit the channel depen-
dencies.

4.4 Experiments

4.4.1 Dataset:

All the models were tested on a SD-OCT image dataset [47]. The dataset contains 28
images with a sub-sampled resolution of 450X900. In the dataset, the noisy SD-OCT
images were captured by a Biopitgen SD-OCT imaging system, and a corresponding clear
OCT image was generated by the image registration and averaging of several B-scan images
obtained at the same position.

4.4.2 Training Details:

All of the images were resized by cropping out the less informative portions from below
or above the retinal layers. A total of 1700 patches of size 256X256 were extracted from
each images to increase the amount of data available. 1600 images were used for training
and the rest as the test images. All the models were trained with adversarial loss and a
structural similarity loss similar to that described in chapter 1 DeSupGAN architecture.
The Adam optimizer [24] with a learning rate of 0.00001, momentum parameter of 0.9 and
a linear decay rate was used. The Tensorflow/Keras framework [25] was used to train each
model and it took approximately 6 hours for 100 epochs with a batch size of 1. A Titan V
NVIDIA GPU and a Tesla 12GB GPU were used to train the models.

4.4.3 Results:

To compare the results of the models for this task, different performance metrics were
used, namely, peak signal-to-noise ratio (PSNR), structural similarity index (SSIM). In
table 4.1, the results of different algorithms are tabulated. In figure 4.1 the output of
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different networks are shown with the corresponding denoised and noisy image. The RID-
GAN performed better than other methods in terms of PSNR and SSIM, intuitively due
to inclusion of attention mechanism. The test run time is lowest for the RDNS-GAN but
it performed worse than the RID-GAN.

Figure 4.1: Visualizing the Results of 5 different Algorithms. Even though some images
have reduced noise, the algorithms also reduced edge (retinal layers) information in these
images.
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Table 4.1: Results for OCT Denoising

Methods
Metric

PSNR SSIM

DIDN-GAN 20.3 0.36
RDNS-GAN 21.7 0.48
DeBlur-GAN 21.70 0.46
RED-GAN 25.70 0.58
RID-GAN 27.94 0.59

4.5 Summary and Conclusions

In this work, the OCT image denoising task was performed using few state-of-the-art image
restoration deep neural networks. The networks were used a generator of GAN architec-
ture. Different metrics, like PSNR, SSIM were used to compare the efficiency of the models.
Here the edge information is a very crucial factor since it gives the information about the
retinal layers. Some of the algorithms give reduced edge information. In future research
denoising using cycle-consistency loss with the unpaired image data can be explored. An-
other important research direction will be to develop novel edge sensitive loss functions
which can take care of the edge information in the OCT images.
In chapter 5, a separate application of generative models in retinal imaging will be dis-
cussed, namely the use of generative modeling to synthesize artificial retinal images with
corresponding blood vessel annotation segmentation maps.
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Chapter 5

Residual Variational Auto-encoder
and Image-to-Image Translation
Network for Fundus Image Synthesis

Based on “S Sengupta, A Athwale, T Gulati, J Zelek,
and V Lakshminarayanan FunSyn-Net: enhanced resid-
ual variational auto-encoder and image-to-image trans-
lation network for Fundus Image Synthesis, Proc. SPIE
11313, Medical Imaging 2020: Image Processing” [48]

5.1 Introduction

Computer-aided image synthesis and classification require a large amount of data in order
to perform well. The need for annotated labeled data has increased with the increased
popularity of deep learning algorithms [8]. In the case of medical images, manual annota-
tion is not only costly but also needs a lot of clinical expertise which is often scarce. [49].
Segmentation of retinal images has various applications for the diagnosis of different retinal
diseases like glaucoma, diabetic retinopathy (DR). DR, a major cause of blindness, can
be diagnosed by the changes of retinal blood vessel structure. Glaucoma, another cause
of irreversible blindness, can be diagnosed by analyzing the shape of ONH which gener-
ally requires removal of blood vessel structure [50] from the fundus images. Calculations
of important vessel characteristics such as branching pattern, density, tortuosity, etc can
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play crucial roles as biomarkers for many other abnormal ophthalmic conditions. Hence,
segmentation of retinal blood vessesl are very important to detect and diagnose critical
conditions of retina [51].
In computer-aided retinal image analysis, automated segmentation of retinal vessel struc-
ture is important for detecting the structural changes in vessel structure or to remove
the structure from the retina to evaluate the condition of other important morphologies
in retina. Recently the deep learning based methods outperformed the image processing
and traditional machine learning based approaches but it needs images with clinical anno-
tations to train a system. But it is hard and costly to get a large amount of such data.
This is the motivation of generating the clinically relevant datasets to train a deep learning
based system for blood vessel segmentation more robustly. In this paper, we discuss a deep
learning based fully automated pipeline to generate a complete fundus image dataset with
their corresponding blood vessel annotations. The artificial dataset can be downloaded
from: https://www.openicpsr.org/openicpsr/project/117290/version/V1/view
The rest of the chapter is organized as follows.The section 5.2 briefly describes relevant
literature.The section 5.3 discusses the methodology and the section 5.4 deals with the
analysis of the results obtained in the study.

5.2 Literature Review

Very recently, data-driven generative modeling based medical image synthesis has became
popular. In the medical imaging domain, one of the first applications of the generative
model was by Tulder et. al [52] for MRI image synthesis. In the context of retinal imaging
synthesis for blood vessel segmentation Costa et al. [53] proposed a model to generate
color fundus images from blood vessels but the method relied upon existing blood vessel
structure and it did not generate simulated blood vessels. Similar work was done by
Iqbal et al. [54] to generate color fundus images but this method also was dependent on
existing blood vessel structure. In another work Costa et al. [55] generated blood vessels
along with corresponding fundus images but the generated blood vessels and corresponding
fundus images were of 256X256 resolution which in the context of retinal fundus images
was of much lower resolution. We propose a model with several advantages over previously
published works.
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5.3 Methodology

In figure 1 the schematic of the proposed methodology is shown. A deep residual variational
auto-encoder (RsVAE) ( VAE with residual skip connections) [56] is used to generated
blood vessel annotation masks with 512X512 image resolution followed by a de-noising
algorithm to remove the existing blurriness. After that a GAN [42] is used to generate the
corresponding fundus image. Figure 5.1 shows a schematic of the proposed methods. The
schematic architectures of the RSVAE and the generator of the GAN are shown respectively
in figure 5.2 and figure 5.3.

Figure 5.1: Proposed Methodology of FunSynNet. The first step uses a residual variational
auto-encoder (RSVAE) to generate grayscale blood vessel segmentation maps. The second
step uses a pix2pix GAN architecture to generate corresponding fundus images

5.3.1 Residual Variational Auto-Encoder (RSVAE)

To learn a vessel structure, a RsVAE architecture was adopted to compress the image to
a low dimension latent vector of size 64 (Encoder) and then to reconstruct it (decoder).
We employed a different architecture based on residual layers [57]. The traditional VAE
assumes a Gaussian prior while calculating L2 the loss function and hence the output tends
to get blurry. To avoid the inherent blurriness problem residual layers were added (Figure
1).
The framework of VAE contains a specific probability model of data x and latent variables
z. The latent variables are drawn from a prior p(z ), and the data x have a likelihood p(x |z )
that is conditioned on latent variables z. The joint probability p(x,z ) of the model can be
decomposed into likelihood and prior p(x |z )p(z ) with p(z ) being a unit Gaussian. This
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generative model allows to sample z∼p(z ) and x∼p(x |z ) to generate random images. For
training, however, additionally the approximate posterior p(z |x ) is needed. The variational
inference w is used to approximate the posterior with a family of distributions q(z |x ) such
that

q(z|x) = N(z;µ(x,diag(σ2(x)) (5.1)

where µ (mean) and σ2 (variance) are predicted using the encoder network. In this work,
the likelihood (decoder model) was a Bernoulli distribution as the generated vessel structure
was black and white image. The decoder network predicted 512X512 Bernoulli parameters
one for each pixel.

In this variational inference framework the parameters of encoder and decoder neural
network are found by maximizing the likelihood p(x ). The likelihood is computation-
ally expensive to calculate so the evidence lower bound (ELBO) is used instead [56][58].
According to this, the loss to be minimized is given by:

LVAE = −Eq(z|x)[lnp(x|z)] + KL(q(z|x)|p(z)) (5.2)

The first term is the reconstruction loss, or expected negative log-likelihood of the i-th
datapoint. The expectation is taken with respect to the encoder’s distribution over the
representations. The required samples z∼p(z |x ) are computed using the reparamaterisation
trick,

z = µ(x) + εσ(x) with ε ∼ N(ε; 0, 1) (5.3)

To make LVAE differentiable, at test time, the sampling process z∼p(z |x ) was replaced
by the predicted mean µ(x).

5.3.2 Image-to-image Translation Network

An image-to-image translation network based on GAN, typically called pix2pix, also has
a generator and a discriminator. But unlike the conventional GAN the generator takes
an image as input. The generative model generates a new image from the input image
and the output image preserves the features of the input image. As usual, the task of
the discriminator is to distinguish between the real sample and the generated fake sample.
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The generator network is a CNN and it is parameterized by θG=W, b. The parameters
are obtained by the following equation:

θ̂ = argmin
θG

1

N

N∑
n=1

l(G(In,D ), In, ′O )) (5.4)

Here l is the loss function, In,D and In, ′O are the degraded and the original ground-truth
images.The adversarial min-max problem can be formulated by the following equation

min
θG

max
θD

E
I ′OPtrain(I

′
O)
[logD(I ′O)] + E

IDPG(I
′
O)
[log(1 −D(G(I ′O)))] (5.5)

It trains the generator G to generate fake ground-truth like images which can fool the
discriminator network D to distinguish between original ground truth images (I ′O) and the
fake generated ground truth-like images (IO).
In this work a U-shaped encoder-decoder type generator architecture was used with a
feature-map concatenation between two corresponding blocks of encoder and decoder ar-
chitecture.

Figure 5.2: Schematic architecture of residual variational auto-encoder. Here the decoder
uses residual skip connections
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Figure 5.3: Schematic architecture of the generator: The generator uses a contraction and
then an expansion path and each corresponding layers between contraction and expansion
paths have concatenations between each other. An image of size 512X512 is the input to
the network.

5.4 Experiments and Results

5.4.1 Dataset

The DRIVE [59] dataset was used to train the system. The DRIVE dataset consists of
40 retinal fundus images from the Dutch Diabetic Retinopathy Screening Program. This
dataset contains both the retinal fundus images and corresponding manually segmented
vessel mask annotations. The images of 768 by 584 pixels were captured by a Canon CR5
non-mydriatic 3CCD camera with a 45 degree field of view.

5.4.2 Training Details

All the images of both blood vessel structure and corresponding fundus images were resized
to 512X512 size. The Adam optimizer was used with dropout of 0.5. Both the RsVAE and
GAN were run for 50 epochs with a learning rate of 0.001 and 0.0002 respectively. All the
experiments were performed in tensorflow/keras in a 12 GB Titan V GPU with a 64GB
RAM intel i7 processor.
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5.4.3 Performance Measures

To measure how the model performed structural similarity analysis, performance in seg-
mentation using U-Net architecture and quantitative analysis of generated datasets.

Quality of the Images:

The SSIM is an important measure to understand the quality of an image with a cor-
responding reference image. The blood vessel grayscale images were generated from the
RsVAE.

U-Net and Performance with Synthetic Dataset:

The main purpose of the synthetic images to facilitate better and robust performance for
blood vessel segmentation task. The U-Net is a widely used encoder-decoder based ar-
chitecture performed for different supervised biomedical segmentation tasks. The U-Net
is generally efficient for its ingenious framework of down-sampling, up-sampling, and con-
catenation of the layers. The architecture consists of a contracting path and an expansive
path also known as encoder and decoder. The contracting path applies typical convolution
operations. For example, a typical U-Net includes the repeated application of 3 × 3 con-
volutions, each followed by an activation function (ReLU) and a 2 × 2 max-pooling layer
with stride 2 to down-sample the former layer. During each down-sampling, the number
of feature channels is doubled. On the expansive path or the decoder, each step of up-
sampling of the feature map is followed by a 2 × 2 up-convolution layer that halves the
number of feature channels, and concatenation with correspondingly cropped feature map
from the contracting path and activation function. U-Net was used to check the perfor-
mance of blood vessel segmentation with the synthetic images and it was compared with
other previously published work. A typical U-Net model architecture is shown in figure
5.4
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Figure 5.4: A Typical U-Net Architecture

5.4.4 Results

The SSIM [60] is a widely used index to measure image quality with a particular reference
image and is considered as a better metric than mean square error calculation. In table
5.1 comparative analysis of generated data with a related paper is given. It can be seen
that our model performs better than existing models in the context of practicability and
computational complexity. 20 artificially generated blood vessels and 20 corresponding
fundus images were generated for calculating the SSIM values. Artificially generated fake
blood vessel annotations achieved SSIM values 0.74 on average compared with this partic-
ular image from the original dataset whereas the images in the original dataset have 0.78
SSIM on average compared with the same image in the original dataset. To the best of our
knowledge, there is only one artificially created publicly available fundus image dataset
[61] for research purposes. SSIM analysis was done with this dataset and images of blood
vessel annotations from this dataset achieved an SSIM value of 0.64 which is lower than
the results with our method.
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Figure 5.5: Synthetic vessels and corresponding fundus images. The bottom row fundus
images are in correspondence with the top row blood vessel segmentation maps. All the
images shown here were generated using the FunSynNet methodology.

In table 5.2 a comparative analysis is given comparing other relevant attempts to generate
retinal fundus images.

Table 5.1: Comparative image quality analysis by measuring the SSIM of artificially gen-
erated blood vessels.

Reference SSIM Value
[61] 0.64
FunSynNet 0.74
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Table 5.2: Relevant comparative details with state-of-the-art fundus image synthesis liter-
ature.

Reference Blood Vessel Annotation Resolution Online Availability Training Image
[53] No 512X512 No 614
[54] No 512X512 No 10
[55] Yes 256X256 No 634
FunSynNet Yes 512X512 Yes 20

Table 5.3: The performance comparison of artificial datasets in the blood vessel segmen-
tation task.

Reference SN SP Acc AUC
[55] - - - 0.84
FunSynNet 0.84 0.97 0.97 0.87
DRIVE 0.83 0.97 0.96 0.88

As the whole purpose of this work is to generate a complete dataset that can be useful
for training to system to segment blood vessels from fundus images, the performance of the
dataset on this problem is extremely important. In table 5.3 the comparison performances
of a segmentation model with different dataset is shown. The synthetic dataset achieved
a sensitivity (SN) of 0.84 and specificity (SP) of 0.97 with an overall accuracy (ACC) of
0.97 with area under the curve (AUC) of 0.87. It can be seen that it outperformed the
previous methods and it achieved very similar results of a model trained with the original
DRIVE dataset. The U-Net [62] model was used in all cases to train the system. Results
from Costa et. al[55] was directly taken from the paper.
The figure 5.5 shows examples of artificially generated synthetic blood vessel segmentation
annotation maps and corresponding fundus images generated by the proposed FunSynNet
pipeline.
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5.5 Summary and Conclusion

In this paper we proposed an end-to-end automated pipeline for generating artificial fundus
images with their corresponding blood vessel annotation masks. A combination of RsVAE
and GAN architecture were used to develop the complete pipeline. In principle, from
this method an infinite number of images and their blood vessel annotation masks can be
generated. This method can also be applied to other types of medical images for artificial
image synthesis. The important contributions of this model are:

• This adversarial residual training framework has helped to generate less blurry output
images.

• The model has learnt the inherent distribution of the image and generated plausible
high-resolution retinal fundus images of 512X512 with their blood vessel annotations
unlike previously existing methods.

• Without augmentation, number of training images used are as low as 20.

• The complete generated dataset is available online for public research use.
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Chapter 6

Future Research Directions:

In this thesis, the two major applications of the generative modeling in retinal image
analysis were explored, namely artificial retinal image synthesis and retinal image quality
enhancement. We found significantly good results in both of the tasks and generative
modeling-based approaches showed a huge potential for solving such image analysis tasks.
But also these methods have their limitations and challenges. For example,

• RsVAE produced images with better quality than usual VAE but it still had a little
bit of blur in it. Hence a little post-processing was done to remove the blurriness
from the output images.

• Training a GAN in a proper way to get the desired result was not an easy task and
it needed several simulations and experiments to finalize the different parameters of
the models as well as activation functions etc. The convergence was not very much
dependent on the architecture of the discriminator, but the design of the generator
and the way of training of the model played a key role in this case. The resid-
ual connections and the concatenation layers were really important to achieve good
results.

• Another issue with the output of the GAN was the images had blurry and discon-
tinuous edges which is unlikely in the real fundus image dataset. To overcome this
issue circular masking was done to get the images with exact boundary.

• While training the image-to-image translation for chapter 5 the image-patches were
used during the training and hence it was a PatchGAN. Though it helped in the
convergence of the network, it resulted in some visible patches in the final output
images.
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The important future research directions are given here:

• The amount of data is always a concern for the medical image analysis task. In
chapter 5, we proposed an end-to-end deep generative modeling based approach to
generate retinal fundus images with corresponding blood vessel annotations masks.
The images, used for training were from healthy images. The conditional GANs are
also efficient enough to generate multi-class images. Hence the approach may also
help to generate images with different disease classes as prior conditions. In this way,
multi-class medical image datasets can be generated. The OCT images can also be
synthesized with their corresponding annotations of layers.

• We have recently acquired a huge ocular database from UK Bio-bank with more
than 100,000 images. It also contains both retinal fundus and OCT images. A future
direction is to decipher this database and extract the images to create a bigger and
more comprehensive set of both fundus and OCT images. Therefore, by establishing
such a huge database, we can build our novel deep learning models and train it using
these images. It is expected that by using such a large database, the performance of
the neural network will improve significantly.

• While performing the image quality enhancement task, it is preferred to use paired
images to train a better model. But often, paired clinical data is not easily found.
Hence the model should be trained to perform without paired image data. Cycle-
consistency loss based CycleGAN can be a useful tool for this case.

• The image quality enhancement is largely dependent on the traditional image quality
measures like PSNR, SSIM etc. But all of these metrics have their drawbacks with
regard to the perceptual quality of an image. Hence more research is needed to
determine better image quality metrics for judging the quality of the images.
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