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a b s t r a c t

This paper presents a computational investigation for a time relaxation regularization of
Navier–Stokes equations known as Time Relaxation Model, TRM, and its corresponding
sensitivity equations. The model generates a regularization based on both filtering and
deconvolution. We discretize the equations of TRM and the corresponding sensitivity
equations using finite element in space and Crank–Nicolson in time. The step problem
and the shear layer roll-up benchmark is used to computationally test the performance
of TRM across different orders of deconvolution operator as well as the sensitivity of the
shear layer computations of the model with respect to the variation of time relaxation
parameter in those cases.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of fluid flow is important to a broad range of practical problems related to various fields. It is known that
the flow consists of different size structures on the order of O(Re−3/4), where Reynold’s number Re ∼ 1/ν with ν denoting
the kinematic viscosity. A direct numerical simulation of a 3d turbulent flow requires O(Re9/4) mesh points in space per
time step. For high Reynolds numbers, this becomes computationally challenging and typically not feasible. Large eddy
simulation is a promising alternative that aims to truncate the small scales and model their effect upon the solution.
Among different fluid models produced by this idea, high order models are of interest, since they deliver a more accurate
simulation at low model resolution. Unfortunately most of these different types of models have the chance of altering
the largest structures of the flow that contain most of the flow’s energy and are responsible for most of the mixing and
flow’s momentum transport [1].

In the present paper, computations of fluid flow based on TRM and their sensitivity are performed using the shear
layer roll-up test problem and the step problem. The idea of TRM was first introduced by Stolz, Adams and Kleiser [2,3].
The truncation scale analysis of this model is shown in [1]. Further numerical studies and computational accuracy of TRM
can be found in [1,4–6]. The analysis of TRM parameter sensitivity was performed in [7,8].

The governing equations for TRM are formulated as follows:

ut + u · ∇u − ν∆u + ∇p + χ (u − GN ū) = f, ∀(x, t) ∈ Ω × [0, T ],

∇ · u = 0, ∀(x, t) ∈ Ω × [0, T ].
(1.1)
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where Ω is our domain of interest in Rd, (d = 2, 3), χ is a scalar constant known as the relaxation parameter, and
ū denotes a spatially averaged function of u defined as: ū := G (u), which is the solution of the partial differential
equation:

−δ2∆ū + ū = u, in Ω,

ū = 0, on ∂Ω.
(1.2)

In the above filtering equation, δ is a constant corresponding to the filter width. Thus for large δ values, ū is smooth and
for small δ values, ū is close to u.

The operator GN in (1.1) represents the Nth van Cittert approximate deconvolution operator. This operator was first
studied by van Cittert in 1931. For each N = 0, 1, . . . it computes an approximate solution uN to the above filtering
equation by a fixed point iteration of N steps [9]. The process is as follows: first rewrite the deconvolution equation
ū = G (u) as the following fixed point problem: Given ū, solve u = u + (ū − Gu).

We can now solve for the deconvolution approximation using the following algorithm:

u0 = ū,

un+1 = un + (ū − Gun) , n = 1, 2, 3, . . . ,N − 1. (1.3)

This algorithm is precisely the first order Richardson iteration for the operator equation ū = G (u), where G :

(L2(Ω))d −→ (L2(Ω))d is the operator given above, which is possibly non-invertible. The de-convolution problem is ill-
posed, so we cannot expect such an algorithm to converge as N → ∞. With these preliminaries, we can now define the
operator GN which appears in (1.1):

Definition 1.1. The Nth van Cittert approximate deconvolution operator GN : (L2(Ω))d −→ (L2(Ω))d is the map
GN : ū −→ uN , or GN (ū) = uN .

It is an easy exercise to find the following explicit formula for the deconvolution operator GN :

GN ū :=

N∑
n=0

(I − G)nū, N = 0, 1, 2, . . . . (1.4)

For convenience, we list the first few values of the GN operator here:

G0ū = ū,

G1ū = 2ū − ¯̄u,

G2ū = 3ū − 3 ¯̄u +
¯̄ū.

The time relaxation parameter is considered to be a positive quantity, i.e. χ > 0, and has units of 1/time. The term
χ (u − GN ū) aims to drive the unresolved scales to zero exponentially [10]. In working with TRM, the parameter χ must
be specified and scaled appropriately in relation to other parameters in the problem [1].

1.1. The effective averaging length scale

In this section, based on Olson’s work in [11], we identify the effective averaging length scale in the TRM model as
δN = δ0

√
N + 1, where δ0 is a fixed length scale suited for the N = 0 version of our model. Following the work from

Olson, we consider the effects of the deconvolution filter for the time relaxation term χ (u− GNu) on regular 2π-periodic
functions with a spatial average of 0 in Fourier Space. Hence, we can write the following forms for u and u:

u(x, t) =

∑
k∈Zd\0

uk(t)eik·x and u(x, t) =

∑
k∈Zd\0

uk(t)eik·x.

It follows from the differential filter (1.2) and deconvolution algorithm (1.3) that

GNuk = GN,k(1 + δ2|k|2)−1uk,

where

GN,k =

N∑
n=0

(
1 −

1
1 + δ2|k|2

)n

=

N∑
n=0

(
δ2|k|2

1 + δ2|k|2

)n

.

Noting that the above is a geometric series, we sum up the above series to obtain:

GN,k

1 + δ2|k|2
= 1 −

(
δ2|k|2

1 + δ2|k|2

)N+1

.
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Fig. 1. NSE at ν = 1/600 and on fine mesh level 2.

For the LHS of above, we note the following limits

GN,k

1 + δ2|k|2
→ 1 as N → ∞ for fixed δ, or as δ → 0 for fixed N.

Also,
GN,k

1 + δ2|k|2
→ 0 as δ → ∞ for fixed N.

These limits suggest that there is a relationship between δ and N which can be used to identify an effective averaging
length scale that leaves the small scale attenuation of the smoothing filter unchanged as we increase the order of
convolution N . Now we do asymptotic analysis on the term GN,k/(1 + δ2|k|2) as k → ∞ to determine this relationship
for the averaging length scale. We have that

GN,k

1 + δ2|k|2
= 1 −

(
δ2|k|2

1 + δ2|k|2

)N+1

∼
N + 1
δ2|k|2

for large k.

From this behavior, it is clear that if we scale our δ for higher N values as δN = δ0
√
N + 1 for some chosen constant

δ0 for N = 0, we obtain an asymptotic decay for the above expression that is independent of N as k → ∞. This choice of
delta for higher N will be apparent in the benchmark problem we pursue in a later section of this paper.

2. Preliminaries and notations

This section presents the finite element notation, preliminary results, and the finite element schemes in order to
numerically solve (1.1) and (1.2). The L2(Ω) norm and inner product will be denoted by ∥·∥ and (·, ·). Likewise, the Lp(Ω)
norms and the Sobolev W k

p (Ω) norms are denoted by ∥ · ∥Lp and ∥ · ∥W k
p
, respectively. For the semi-norm in W k

p (Ω) we
use |·|W k

p
. Hk is used to represent the Sobolev space W k

2 , and ∥ · ∥k denotes the norm in Hk. For functions v(x, t) defined
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Fig. 2. NSE at ν = 1/600 and on coarse mesh level 1.

on the entire time interval (0, T ), we define

∥v∥∞,k := sup
0<t<T

∥v(t, ·)∥k , and ∥v∥m,k :=

(∫ T

0
∥v(t, ·)∥m

k dt
)1/m

.

The velocity and pressure finite element spaces (Xh,Q h) are defined respectively,

Xh
⊂ X = H1

0 (Ω) := {v ∈ H1(Ω)d : v|∂Ω= 0},

Q h
⊂ Q = L20(Ω) := {q ∈ L2(Ω)|

∫
Ω

q = 0},

and the space of discretely divergence free velocity is

V h
= {v ∈ Xh

: (q, ∇ · v) = 0, ∀q ∈ Q h
}.

We assume that the spaces Xh, Q h satisfy the discrete inf–sup condition. Also, bilinear a(·, ·) : X × X → R and trilinear
b∗(·, ·, ·) : X × X × X → R forms are defined as,

a(u, v) := (∇u, ∇v),

b∗(u, v,w) :=
1
2
(u · ∇v,w) −

1
2
(u · ∇w, v).

We will also need to define discretized versions of our filtering equation and the deconvolution operator. Following
the lead of Manica and Kaya-Merdan [12], the discretized differential filtering equation is as follows: For φ ∈ L2(Ω) and
a given filtering radius δ > 0, we define the operator Gh

: L2(Ω) −→ L2(Ω) by the equation φ
h

:= Gh(φ), where φ
h
is the

unique solution of the following variational formulation:

δ2(∇φ
h
, ∇vh) + (φ

h
, vh) = (φ, vh), ∀vh ∈ Xh. (2.1)
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Fig. 3. TRM with N=0, δ0 , at ν = 1/600 and on coarse mesh level 1.

Another possibility for defining the differential filter is to instead use a Stokes problem. This is of course a more
expensive filtering operation. But, such an approach allows us to preserve the incompressibility approximately for the
filtered velocity in the non-periodic cases [13–15]. Thus, for the case of internal flows under the no-slip boundary
conditions, we will choose the discrete Stokes differential filter to weakly preserve the incompressibility of the filtered
velocity. In this case, for any φ ∈ X ′ and δ > 0, we define Gh

: X ′
−→ Xh by φ

h
= Gh(φ), where (φ

h
, ρ) ∈ Xh × Ph is the

unique solution of the following variational formulation:

δ2(∇φ
h
, ∇vh) + (φ

h
, vh) − (ρ, ∇ · vh) = (φ, vh), ∀vh ∈ Xh,

(∇ · φ
h
, q) = 0, ∀q ∈ Ph.

Note that the Stokes filter gives us a weakly divergence free filtered velocity, and therefore the discrete Stokes filtered
velocity is also weakly divergence free in the discrete sense. Now that we have defined a discretized differential filter, the
same procedure used in the continuous case can be used here to define a discrete Nth van Cittert deconvolution operator.

Definition 2.1. The discrete Nth order van Citter deconvolution operator Gh
N is defined by the following formula:

Gh
Nφ :=

N∑
n=0

(I − Gh)nφ, N = 0, 1, 2, . . . . (2.2)

It can be shown that both GN and Gh
N are O(δ2N+2) inverse approximates to the filter operators G and Gh respectively .

Both proofs are based on the same type of algebraic manipulations, and can be found in [16,17].

3. Variational formulation and the computational algorithm

The variational formulation of TRM based on the set of Eqs. (1.1)–(1.2) using suitable choice of test functions from X
and Q are respectively given as: Find (u, p) ∈ (X,Q ) such that:

(ut , v) + νa(u, v) + b∗(u,u, v) − (p, ∇ · v) + χ (u − GN ū, v) = (f, v), ∀v ∈ X, (3.1)
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Fig. 4. TRM with N=1, unscaled δ0 , at ν = 1/600 and on coarse mesh level 1.

(∇ · u, q) = 0, ∀q ∈ Q , (3.2)
δ2(∇ū, ∇v) + (ū, v) = (u, v), ∀v ∈ X . (3.3)

The method of Crank–Nicolson is used for time discretization. Our notations in the time discretization equations of
TRM read as following: v(tn+1/2) = v((tn+1

+ tn)/2) for the continuous variable and vn+1/2
= (vn+1

+ vn)/2 for both,
continuous and discrete variables. Thus, the fully discretized finite element variational formulation of TRM is written as
follows.

Given (Xh,Q h), the time interval [0, T ], the time step chosen as △t < T = M△t , find the approximated TRM solution
(un+1

h , pn+1
h ) ∈ (Xh,Q h), for n = 0, 1, 2....M − 1 satisfying:

1
△t

(un+1
h − un

h, vh) + νa(un+1/2
h , vh) + b∗(un+1/2

h ,un+1/2
h , vh) − (pn+1

h , ∇ · vh)

+ χ (un+1/2
h − Gh

Nuh
n+1/2

h
, vh) = (fn+1/2, vh), ∀vh ∈ Xh, (3.4)

(∇ · un+1
h , qh) = 0, ∀qh ∈ Q h, (3.5)

δ2(∇ūn+1
h , ∇vh) + (ūn+1

h , vh) = (un+1
h , vh), ∀vh ∈ Xh. (3.6)

In the space V h, Eqs. (3.4)–(3.6) are equivalently rewritten as follows.
Find un+1

h ∈ V h, for n = 0, 1, 2....M − 1 satisfying:

1
△t

(un+1
h − un

h, vh) + νa(un+1/2
h , vh) + b∗(un+1/2

h ,un+1/2
h , vh)

+ χ (un+1/2
h − Gh

Nuh
n+1/2

h
, vh) = (fn+1/2, vh), ∀vh ∈ V h, (3.7)

δ2(∇ūn+1
h , ∇vh) + (ūn+1

h , vh) = (un+1
h , vh), ∀vh ∈ V h. (3.8)
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Fig. 5. TRM with N=1, scaled δ1 , at ν = 1/600 and on coarse mesh level 1.

The existence, stability, and convergence analysis of the finite element solution of the above schemes are investigated
in [10]. In our computations, the non-linear term b∗(un+1/2

h ,un+1/2
h , vh) in Eq. (3.7) is approximated by the method of

fixed point iteration. We implemented the Stokes filter for all our computations.

4. Computational results

This section contains computational results for two benchmark problems: step problem and shear layer roll-up
problem. We tested our model TRM with different order of deconvolutions, such as N = 0, N = 1 and N = 2. In the cases
for higher order of deconvolution, we tested the unscaled and scaled filter length based on its derivation in Section 1.1.

4.1. Computations for step problem

We present herein a benchmark flow with recirculation, the so called flow across a step. The most distinctive
characteristic of this fluid flow is the development of a recirculating vortex behind the step around Reynolds number
Re = 600, see [18]. We will study this flow in the transition via shedding of eddies behind the step using our model,
i.e. (3.1)–(3.3) with N = 0, N = 1 and N = 2. The domain of this problem is a 40 × 10 channel with a 1 × 1 step size
situated five units into the channel at the bottom border. Our results are for a parabolic inflow profile, which is given
by u = (u1, u2)T , with u1 = y(10 − y)/25, u2 = 0. This profile is also imposed at the outflow while no-slip boundary
condition is prescribed on the top, bottom boundary and around the step borders. The computations were performed
on two different meshes: coarse mesh level 1 (with 8348 dof) and fine mesh level 2 (with 38,451 dof). The goal is to
compare the performance of the various cases in underresolved simulations by comparison against the truth solution. We
used the P3/P2 finite element spaces, i.e. third order polynomial approximations for velocity and second order polynomial
approximations for pressure. We set our kinematic viscosity ν = 1/600. The filter width is chosen to be of order of the
mesh size elements behind the step. The background color represents the norm of the velocity vectors. Fig. 1 shows the
successful replication of the shedding of eddies that represents our true solution for this problem.
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Fig. 6. TRM with N=2, unscaled δ0 , at ν = 1/600 and on coarse mesh level 1.

Fig. 2 shows the Navier–Stokes solution on the coarse mesh level 1 where oscillations are present at later times. On
the same mesh level, Figs. 3–5, 6 and 7 give qualitative results with eddies behind the step that are recognizable for our
model. These figures were obtained for χ = 0.1 and δ0 = 0.25. For values of scaled filter width for order of deconvolution
N = 1 we had δ1 = δ0

√
2 and for N = 2 we had δ2 = δ0

√
3. Clearly, increasing order of deconvolution helps in reducing

the stabilizing effects of the time relaxation term and starts to give the appearance of more than one eddy behind the
step. In the simulations for N = 0 we do not have the phenomenon of shedding of the eddies, while for higher order of
deconvolution N = 1 and N = 2 we do observe eddy shedding behind the step.

We could not obtain the Navier–Stokes solution at ν = 1/10,000 neither on mesh level 1 nor mesh level 2 due to the
mesh being too coarse for this Reynold’s number. This is theoretically explained by the Kolmogorov theory that says that
we need to have much finer mesh when we increase the Reynolds number. The nonlinear Oseen type of iteration failed
to converge at the 42nd time iteration on the fine mesh level 2 and at the 171st time iteration on the coarse mesh level
1. The convergence tolerance for the Oseen type of the problem was set to 10−5. Then, we investigated our model on the
coarse mesh level 1. When we ran our model TRM with χ = 0.7 and δ = 0.25 for scaled N = 1 and scaled N = 2, we
obtained a meaningful flow, as well as for N = 0. This is presented in Fig. 8 for the order of deconvolution N = 1 and
we omitted the cases for N = 0 and N = 2 since they gave an identical qualitative output. We captured the rotational
structure behind the step but we did not get shedding of the eddies. The TRM for N = 1 and N = 2 with unscaled filter
width failed to converge at the 475th time iteration and at the 381st time iteration, respectively.

4.2. Computations for shear layer problem and its sensitivity

This section contains computations for approximated velocity using TRM with deconvolution orders of N = 0, 1, and
2 for the so called shear layer roll-up test problem. The sensitivity computations with respect to the variations of time
relaxation parameter χ for all the tested deconvolution orders are performed as well.
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Fig. 7. TRM with N=2, scaled δ2 , at ν = 1/600 and on coarse mesh level 1.

4.2.1. Shear layer roll-up benchmark
This is a benchmark problem involving a doubly periodic pair of shear layers studied in [19–21]. The initial flow field

consists of a horizontal shear layer of finite thickness, perturbed by a small amplitude vertical velocity. Each of the shear
layers forming the boundaries of the initial jet will eventually evolve into a periodic array of large vortices. Meanwhile,
the shear layers between the rolls are thinned out by the large straining field, which then causes these layers to wrap
around the large rolls. An exact solution is not known for this problem, thus a reference solution is generated for the
problem using a very fine mesh and will be used to test for the accuracy of our simulations. The domain is Ω = [0, 1]2,
and initial conditions are given by

u =

{
tanh(ρ(y − 0.25)) if y ≤ 0.5,
tanh(ρ(0.75 − y)) if y > 0.5,

v = δ sin(2πx).

Doubly-periodic boundary conditions are applied on our domain Ω . The time step △t = 0.004, Reynolds number
Re = 10,000 (i.e. ν = 1/10,000), Taylor–Hood finite elements, and uniform triangular mesh, were used in all cases. The
relaxation parameters used are χ = 0.1 and χ = 1 and the shear layer width parameter ρ = 80, while the filter radius
is given by the scaled values δN = δ0

√
N + 1 with δ0 =

5
m , where m denotes the number of subintervals on each side of

the square domain Ω . Thus, the filter width for TRM with order of deconvolution N = 0 is denoted by δ0, for TRM with
N = 1 the scaled filter width is given by δ1 = δ0

√
2, and for TRM with N = 2 we have the scaled filter width δ2 = δ0

√
3.

The initial condition vector field is plotted in Fig. 9.
We present the true unfiltered vorticity solution (i.e. Navier–Stokes solution) obtained on a fine mesh with m = 250

in Fig. 10. Then, the simulations from Figs. 11 and 13 are on a coarse mesh with m = 100. These vorticity plots
show the advantage of applying the time relaxation modeling in comparison with no filtering and deconvolution, i.e. a
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Fig. 8. TRM with N=1, scaled δ1 , at ν = 1/10,000 and on coarse mesh level 1.

Fig. 9. Initial Velocity field for the Shear Layer problem, with ρ = 80, δ = 0.5.

Navier–Stokes solution that has more spurious vortices on the coarse mesh, especially as the vorticity develops in time.
In Figs. 12 and 14 we can see the advantage of using scaled values for the filter width over the constant value δ0 as we
increase the order of deconvolution N . The produced vorticity plots for scaled values of the filter width had less noise
and increased accuracy compared to the true solution.
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Fig. 10. Vorticity for the NSE on a fine mesh (m = 250).

Fig. 11. Vorticity for NSE Vs. TRM for various N , χ = 0.1, scaled δN = δ0
√
N + 1.

4.2.2. Parameter sensitivity computations
In this section, we provide a computational assessment of the parameter sensitivity of TRM model with respect to the

variation of χ values for the van Cittert deconvolution operator of orders N = 0, 1, and 2. A detailed analysis of TRM
sensitivity with respect to the time relaxation parameter χ using the Continuous Sensitivity Equation Method, CSEM,
for N = 0 can be found in [22]. In this paper, we derive the sensitivity equations by differentiating the TRM equations
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Fig. 12. Vorticity for N = 1, 2, χ = 0.1, unscaled δ0 and scaled δN , at times T = 0.8 (first row), T = 1.0 (second row), and T = 1.2 (third row).

Fig. 13. Vorticity for NSE Vs. TRM for various N , χ = 1, scaled δN = δ0
√
N + 1.
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Fig. 14. Vorticity for N = 1, 2, χ = 1, unscaled δ0 and scaled δN , at times T = 0.8 (first row), T = 1.0 (second row), and T = 1.2 (third row).

(1.1)–(1.2) with respect to χ . Thus given (u, p), we find (s, r) such that

st + u · ∇s + s · ∇u + ∇r − ν△s + (u − GN ū) + χ (s − GNw) = 0, in Ω × [0, T ],

∇ · s = 0, in Ω × [0, T ],

s = 0, on ∂Ω × [0, T ]. (4.1)

where s =
∂u
∂χ

, r =
∂p
∂χ

and w =
∂ū
∂χ

. Here, w satisfies the following sensitivity filtering equation,

−δ2△w + w = s, in Ω,

w = 0, on ∂Ω. (4.2)

In order to obtain the solution for (4.1) we need to couple (1.1) with (4.1) as, u appears in the sensitivity equation.
The fully discretized variational formulation for the sensitivity using Crank–Nicolson is to find sn+1

h ∈ V h satisfying:

1
△t

(sn+1
h − snh, vh) + νa(sn+1/2

h , vh) + b∗(sn+1/2
h ,un+1/2

h , vh) + b∗(un+1/2
h , sn+1/2

h , vh)

+ (un+1/2
h − uh

h
n+1/2

, vh) + χ (sn+1/2
h − wn+1/2

h , vh) = 0, ∀vh ∈ V h (4.3)

δ2(∇wn+1
h , ∇vh) + (wn+1

h , vh) = (sn+1
h , vh), ∀vh ∈ V h (4.4)

The existence, stability, and convergence analysis of the finite element solution of the above scheme is investigated
in [22]. In the following numerical computations, we consider using sensitivity as an accuracy assessment for the
approximated velocity solution with different values of parameter χ via computing χ∥s∥l2(0,1.2;L2(Ω)). This is a simple
result based on the following difference quotient for the sensitivity,

s =
∂u
∂χ

≈
u(χ ) − u(0)

χ

where u is considered an implicit function of χ . Thus, u(0) indicates the true solution of Navier–Stokes equations while
u(χ ) for χ > 0 denotes the corresponding TRM approximation of the velocity. According to the above finite difference
formula, u(χ ) for a given χ value is an accurate approximation to u(0) when ∥u(χ ) − u(0)∥ is small. Thus the accuracy
of u(χ ) can be estimated by measuring χ∥s∥.

The following Tables 1 and 2 contain the sensitivity values of χ∥s∥l2(0,1.2;L2(Ω)) for Reynolds number Re = 10,000 and
the time relaxation parameter χ = 0.01, 0.1, 1, and 10 with two choices for a fixed filter length of δ0 = 5/m = 0.05 and
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Fig. 15. Sensitivity χ∥s∥l2(0,T ;L2(Ω)) values in time for unscaled δ0 =
5
m .

Table 1
χ ||s||l2(0,1.2;L2(Ω)) values for unscaled δ0 .

χ N = 0 N = 1 N = 2

0.01 3.035e−2 3.44e−3 2.655e−3
0.1 2.5865e−1 2.356e−2 1.8893e−2
1 2.08791 9.313e−2 7.0404e−2
10 – 1.8300e−1 2.13989e−1

Table 2
χ ||s||l2(0,1.2;L2(Ω)) values for scaled δN .

χ N = 0 N = 1 N = 2

0.01 3.035e−2 4.64592e−3 4.46365e−3
0.1 2.5865e−1 3.17663e−2 3.04986e−2
1 2.08791 1.29948e−1 1.22917e−1
10 – 1.79795e−1 1.40921e−1

δN = δ0
√
N + 1 (i.e. δ1 = δ0

√
2 and δ2 = δ0

√
3) as well as different values of the van Cittert operator, i.e. N = 0, 1, and

2. The selected spatial mesh size consists of m = 100 subintervals in both x and y directions. All the computations are
carried out with a uniform time-step ∆t = 0.004 using the Taylor–Hood finite elements on the time interval [0, 1.2]. We
note that the fixed point iteration implemented for the nonlinear term failed to converge (after 50 performed iterations)
for N = 0 and χ = 10.

Across all the N values, the least values of χ∥s∥l2(0,1.2;L2(Ω)) are associated with χ ≤ 0.1. Thus, we identify the
interval of [0, 0.1] as the interval of reliability for this parameter value. All the tested χ values in both tables show an
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Fig. 16. Sensitivity norm of TRM for χ = 0.1, δ =
5
m , N = 1 at t = 1.0, 1.2.

improved sensitivity value for higher order van Cittert operator, i.e. for larger N values, indicating a better accuracy for
the approximated velocity u.

With this same experiment, the progression of sensitivity values across different times, t = 0.2, 0.4, 0.6, 0.8, 1.0, and
1.2, for δ0 = 5/m = 0.05 was tested. The plots in Fig. 15 present the results of these computations for χ = 0.01, 0.1, 1,
10 and N = 0, 1, and 2. For any χ values, the sensitivity values at all times are smaller for larger values of N . For all N
and χ values, χ∥s∥l2(0,T ;L2(Ω)) increases in value as T progresses to 1.2.

Fig. 16 shows the norm of sensitivity of TRM with χ = 0.1 at times t = 1.0 and t = 1.2 for Re=10,000, with unscaled
δ0 = 5/m, and for order of deconvolution N = 1. We can see that the sensitivity, i.e. velocity deviations with respect to
χ , are concentrated in areas of vorticity actions.

5. Conclusions

In this paper we computationally studied the so called time relaxation model, TRM, and its sensitivity. The model
is regularizing the flow at higher Reynolds number through filtering and deconvolution effects that are added as an
additional term to the Navier–Stokes equations. The TRM and its corresponding sensitivity equations were both discretized
using finite element in space and second order Crank–Nicolson method in time. We tested the performance of this
model with different deconvolution orders, i.e. N = 0, 1, and 2, using the step problem and the shear layer roll-up
benchmark problem. Our computations using the Olson’s suggested average filter length scale produced improved results
and confirmed the positive effect of such scaling for higher deconvolution order N especially for the shear layer problem
where the noise was reduced. In the step problem not many different scale sizes of rotational structure are present,
the flow away from the step is smooth with no eddies at all, so the effect of the average length scale for higher order
deconvolution was not that visible. The sensitivity computations of TRM with respect to the variation of parameter χ
verified the range of this parameter’s values for a reliable approximated solution. We noted that the sensitivity was lower
as the order of deconvolution was increased.
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