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Accurate confidence intervals for risk
difference in meta-analysis with rare events
Tao Jiang1*†, Baixin Cao2 and Guogen Shan3*†

Abstract

Background: Meta-analysis provides a useful statistical tool to effectively estimate treatment effect from multiple
studies. When the outcome is binary and it is rare (e.g., safety data in clinical trials), the traditionally used methods may
have unsatisfactory performance.

Methods: We propose using importance sampling to compute confidence intervals for risk difference in
meta-analysis with rare events. The proposed intervals are not exact, but they often have the coverage probabilities
close to the nominal level. We compare the proposed accurate intervals with the existing intervals from the fixed- or
random-effects models and the interval by Tian et al. (2009).

Results: We conduct extensive simulation studies to compare them with regards to coverage probability and
average length, when data are simulated under the homogeneity or heterogeneity assumption of study effects.

Conclusions: The proposed accurate interval based on the random-effects model for sample space ordering
generally has satisfactory performance under the heterogeneity assumption, while the traditionally used interval
based on the fixed-effects model works well when the studies are homogeneous.

Keywords: Binary outcome, Confidence interval, Importance sampling, Meta-analysis, Rare events

Background
Meta-analysis is a useful statistical tool in medical
research to evaluate treatment effect by analyzing out-
comes from multiple clinical trials. The estimated treat-
ment effect from meta-analysis is always more reliable
and accurate than the estimate from one selected study
among the available studies. In early phase clinical trials to
study safety of a new drug, rare events are very common
[1]. In meta-analysis for such data, Vandermeer et al. [1]
pointed out that the traditionally used asymptotic point
estimates and confidence intervals could be substantially
different from the results using exact methods under the
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exact conditional framework [2]. It is well known that
asymptotic approaches often do not have satisfactory per-
formance when outcome is extreme or sample size is
small.
Multiple methods have been developed for meta-

analysis with rare events over decades [3, 4]. The fixed-
effects models are conveniently used in practice, such
as the Mantel-Haenszel method [5]. When one or both
groups in a study have zero events, a continuity correc-
tion is often needed in order to estimate risk ratio or
odds ratio, but the traditional correction by adding 0.5
may lead to undesirable influence on the analysis results
as pointed out by Sweeting et al [6]. Later, they developed
a continuity correction method by adding a float value
based on the size of each group to improve the cover-
age probability. Multiple follow-up articles discussed this
issue whether or not a small value should be added to
studies with rare events in data analysis [7, 8]. Kuss et al.
[8] suggested using a beta-binomial model to avoid adding
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arbitrary values to each cell in data analysis. Recently, Tian
et al. [9] proposed a simple and effective method for con-
fidence interval calculation without artificial continuity
correction. The confidence intervals from each study were
weighted to construct an overall interval from simulation
studies under the fixed-effects model. Their developed
confidence intervals were shown to have better coverages
when the events are rare, but the length of their intervals
could be much longer than others.
In contrast to fixed-effects models, the treatment effect

in the random-effects model is assumed to follow a nor-
mal distribution. DerSimonian and Laird [10] proposed a
random-effects model by including a random study effect
to account for the variation of study population or study
design. The statistical software R package meta can be
used to compute confidence intervals for the fixed-effects
model and random-effects model [11]. Recently, Bakber-
genuly and Kulinskaya [12] suggested the generalized lin-
ear mixed models (GLMMs) in meta-analysis to include
the correlation between point estimate and its variance
estimate in data analysis.
The aforementioned exact conditional approach

assumes both marginal totals in each study fixed [2]. It
is reasonable to assume that the numbers of participant
in each treatment group are fixed. It is not usual that a
repeated study has the same total number of events as
the observed study. The exact one-sided limit by Buehler
[13] follows the study design with sample size in each
treatment group fixed [14–16]. However, it is too com-
putationally intensive to generate all possible samples in
meta-analysis with binary outcome [17].
In this article, we propose using importance sampling to

construct confidence interval for risk difference in meta-
analysis with rare events. We apply the importance sam-
pling method described by Lloyd and Li [18] to compute
the profile confidence limit proposed by Kabaila and Lloyd
[19]. Importance sampling methods have been studied by
many researchers with regards to coverages of confidence
intervals [20, 21]. Importance sampling does not require
to enumerate all possible samples [19]. This approach sim-
ulates samples from the distribution estimated from the
observed data. Importance sampling has to be used in
conjunction with a designated statistic to order the limits
of simulated samples. We consider the existing inter-
vals from the fixed-effects and random-effects models as
designated statistics in this article.
The rest of this article is organized as follows. In

“Methods” section, we describe the fixed-effects and
random-effects models to estimate confidence intervals
for risk difference. We then introduce importance sam-
pling for interval calculation. In “Results” section, we
use an example from 18 schizophrenia clinical trials to
illustrate the application of the proposed intervals, and
then compare the proposed intervals with the existing inte

rvalswithregards tocoverageprobability and average length.
In “Conclusions” section, we provide some remarks on
data analysis for meta-analysis with rare events.

Methods
For meta-analysis with binary outcome, data can be orga-
nized in a K × 4 table, where K is the number of studies
(Table 1). Each row represents the results from a parallel
study with the number of events and the number of non-
events in the new treatment group and the control group,
respectively. Let the two treatment groups be indexed by 0
and 1 for the control and the new treatment, respectively.
Suppose Xijr is the number of participants having r events
from the treatment j in ith study, where i = 1, 2, · · · ,K ,
j = 0, 1, and r = 0, 1. For studies with rare events, Xij1 is
often very small. Let nij = Xij1 + Xij0 be the total number
of participants from the treatment j in the ith study, and
N1 = (n11, n21, · · · , nK1) and N0 = (n10, n20, · · · , nK0)
be the sample sizes for the new treatment group and the
control group, respectively. Suppose pj is the event rate of
the treatment j. Given the sample size nij, the number of
responses among these participants, Xij1, follows a bino-
mial distribution, B(nij, pj). We assume that each study is
independent from each other, and the two groups within
each study are independent from each other as well. The
parameter of interest here is the risk difference between
the treatment group and the control group,

� = p1 − p0.

We first review the existing methods to construct two-
sided confidence intervals for � in “Intervals based on
fixed or random-effects model” section, and then develop
accurate intervals in “Accurate intervals” section.

Intervals based on fixed or random-effects model
We first consider the fixed-effects model to calculate
confidence interval for �. Under the study homogeneity
assumption, the treatment effect in each study is assumed
to be the same,

�i = μ,

where μ is the treatment effect. In the ith study, the risk
difference �i is estimated as

̂�i = p̂i1 − p̂i0,

Table 1 Data from K independent studies with binary outcome

Study Treatment group Control group

Events Non-events Events Non-events

1 X111 X110 X121 X120

2 X211 X210 X221 X220

· · · · · · · · · · · · · · ·
K XK11 XK10 XK21 XK20
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where p̂ij = Xij1/nij is the estimated rate of the treat-
ment j in the ith study. The variance is estimated as
s2i = ∑1

j=0
p̂ij(1−p̂ij)

nij from two independent proportions.
The weight for the ith study is

wi = ni1ni0
ni1 + ni0

1
∑K

i=1
ni1ni0
ni1+ni0

,

where
∑K

i=1
ni1ni0
ni1+ni0 is the factor to standardize the weight

values, with
∑K

i=1 wi = 1. It is easy to show that wi is an
increasing function of ni1 (ni0) when ni0 (ni1) is fixed.
The overall weighted treatment effect using the fixed-

effects model is calculated as

̂�F =
K

∑

i=1
wî�i.

and its variance is estimated as

̂SE2F =
K

∑

i=1
w2
i s

2
i .

The standardized statistic ̂�/̂SEF follows the standard
normal distribution asymptotically when � = 0. There-
fore, the asymptotic confidence interval for � based on
the fixed-effectsmodel (the F interval) at the nominal level
of 100(1 − α)% is

CIF = (̂�F − z1−α/2̂SEF ,̂�F + z1−α/2̂SEF), (1)

where za is the ath quantile of the standard normal distri-
bution.
In the observation of study heterogeneity which could

be caused by study population or study design or influ-
ential covariates, DerSimonian and Laird [10] proposed
using the random-effects model to include the study ran-
dom effect in the model as

�i = μ + ui,

where ui is the deviation of the ith study from the popula-
tionmeanμ, and it follows a normal distribution. Let vi be
the weight of the ith study from the fitted random-effects
model. Then, the weighted treatment effect and its vari-
ance are ̂�R = ∑K

i=1 vî�i, and ̂SE2R = ∑K
i=1 v2i s

2
i , respec-

tively. It follows that the asymptotic confidence interval
for � using the random-effects model (the R interval) is
computed as

CIR = (̂�R − z1−α/2̂SER,̂�R + z1−α/2̂SER), (2)

It can be seen that the difference between CIF and CIR
is the weights used in the treatment effect and its vari-
ance calculation. The F interval and the R interval can be
computed by using the function metabin from the sta-
tistical software package meta [11, 22]. In the metabin
function, we useMH .exact = TRUE in the option with no
continuity correction in the estimates.

Accurate intervals
Exact confidence limit by Buehler [13] for � is preferable,
but it is computationally intensive to save all the possi-
ble samples in meta-analysis with sample size nij fixed.
For this reason, we consider importance sampling (IS) to
construct accurate intervals for � by simulating samples
from the distribution estimated from the observed data to
make statistical inference. Importance sampling has been
applied to many important medical research areas that
often only have one nuisance parameter (e.g., the propor-
tion difference in a parallel study [21, 23]). We extend
the application of IS to meta-analysis with multiple nui-
sance parameters in confidence interval calculation. The
intervals computed using importance sampling are accu-
rate with coverage close to the nominal level. In addition,
importance sampling has the computational advantage
over exact methods [19].
The calculation of the IS intervals has to be used in

conjunction with a designated statistic for the interval
ordering. Let T be the considered designated statistic.
Suppose p0 = (p10, p20, · · · , pK0) is the probability vec-
tor of the control group, where pi0 is the probability of the
control group in the ith study. The accurate upper limit
based on the designated statistic T is computed as the
supremum of � such that

G(�) = P
(

T(Y) ≤ T(yobs) | �, p̂0(�)
)

>
α

2
, (3)

where yobs is the observed data, Y is data from the sim-
ulated data set, and p̂0(�) is the maximum likelihood
estimate of p0 given �.
Suppose we simulate B data sets from independent

binomial distributions with the probabilities using ̂�∗ and
p̂0(�∗) estimated from the observed data yobs. For studies
with double zeros, although their estimated risk differ-
ences are zero, sample sizes from such studies are still
valuable information in estimating the overall � and it
confidence intervals [24]. Sample sizes from all studies
including the ones with double zeros are used in the pro-
posed method. The number of events are simulated from
binomial distributions with the probabilities of p̂0(�∗).
The designated statistic of each simulated data set

is computed, and compared with T(yobs). The set of
T(Y) ≤ T(yobs) equals to �T (yobs) = {Y : T(Y) ≤
T(yobs)}. Let the size of �T (yobs) be B1 with data: Y1, · · · ,
YB1 . Then, the upper limit in Eq. 3 can be rewritten as the
supremum of � such that

̂G(�) = 1
B

B1
∑

b=1

f (Yb|�, p̂0(�))

f (Yb|̂�∗, p̂0(�∗))
>

α

2
,

where f (Yb) is the probability density function of Yb,
which is a product of independent binomial distributions
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with parameters (nij, pij) for the treatment j in the ith
study. For a given �, numerical algorithms can be used
to find the maximum likelihood estimator of p0(�) to
calculate ̂G(�).
Similarly, the IS lower limit can be computed. It should

be noted that designated statistics from the same model
are used for the IS upper limit and the IS lower limit. For
example, the asymptotic upper limit from the fixed-effects
model is used as the designated statistic for the accu-
rate upper limit, and then the lower limits from the same
model is used for the accurate lower limit. We refer this
accurate interval as the IS-F interval. When the asymp-
totic limits from the random-effects model are used as
the designated statistics, the computed accurate limits are
referred to be as the IS-R interval.

Results
We first use an example from 18 schizophrenia clinical tri-
als to illustrate the application of the proposed accurate
intervals. In addition to the F interval, the R interval, the
IS-F interval, and the IS-R interval, We also include the
confidence interval for � by Tian [9] in the comparison
(referred to be as the Tian interval). Tian interval can be
computed by using their developed R functionmeta.exact
from the exactmeta function, without the mid-p value
approach. All data including studies with zero events are
used in the confidence interval calculation.
These 18 schizophrenia clinical trials reported the num-

ber of all-cause mortality for patients treated with the
long-acting injectable antipsychotics (LAI-AP) or the oral
antipsychotics (OAP) which is the control treatment here.
Data of these 18 trials are presented in Table 2, which was
provided by Efthimiou [25]. Out of a total of 3774 partici-
pants treated with the LAI-AP, 7 events were observed. In
the OAP group, there were 6 events recorded from a total
of 2145 participants in the control group. The naive esti-
mates for all-cause mortality rates are 0.185% and 0.279%
in the LAI-AP group and the OAP group, respectively.
Table 3 presents the estimated ̂� and the 95% confi-

dence interval for � using the five methods. The point
estimate of ̂� from the R method is similar to the Tian
method, and they are larger than that from the F method.
It can be seen that the Tian interval is much wider than
others, and the asymptotic F or R intervals have shorter
lengths than the proposed accurate intervals. The upper
limits of the proposed accurate intervals are smaller than
those of other intervals. All the intervals contain zero.
Therefore, we fail to reject the null hypothesis that there is
no difference between the LAI-AP treatment and the OAP
treatment with regards to the all-cause mortality rate.

Simulation studies
We conduct extensive simulation studies to compare cov-
erage probability and average length of the five intervals:

the F interval, the R interval, the IS-F interval, the IS-R
interval, and the Tian interval. The nominal confidence
level is set as 95%. The sample sizes, nij, are assumed to be
the same as those in the aforementioned example, as N1
and N0 in Table 2. The number of responses Xij1 follows
a binomial distribution (nij, pij). We simulate D = 1, 000
data for each configuration: Y1, Y2, · · · , and YD. For the
proposed IS intervals, we generate B = 2, 000 impor-
tance samples from the estimated distribution using each
simulated data.
Coverage probability is defined as the proportion of

the pre-specified risk difference � being included in the
confidence intervals:

CP = 1
D

D
∑

d=1
I
(

� ∈ CI(Yd)
)

.

A confidence interval with the simulated interval being
closer to the nominal level is preferable. Average length is
defined as the average of all the lengths

AL =
D

∑

d=1

CIupper(Yd) − CIlower(Yd)

D
,

whereCIlower andCIupper are the lower limit and the upper
limit of an interval. When two intervals are compara-
ble with regards to coverage probability, the one with a
shorter average length outperforms the other.

Homogeneity of study effects
We first compare the coverage probabilities of the five
methods with fixed probabilities, p1 and p0. For simplicity,
we assume a common rate in the control group, pi0 = p,
with p from 0.01% to 10%. The treatment probability is
pi1 = p + �. For each configuration of (p,�), the cov-
erage probabilities of these methods are computed, see
Fig. 1 when �=0.005 and 0.05. It can be seen that the F
method has the coverage closer to the nominal level when
�=0.005, except the case in which p is very low. As �

is increased to 0.05, the F interval, the IS-R interval, and
the IS-F interval have similar coverages when p is small.
The IS-F interval and the IS-R interval are conservative
when p is large. In this plot with � = 0.05, the Tian
interval and the R interval have the coverage probabilities
below the nominal level. Overall, the F interval has good
performance with regards to coverage when studies are
homogeneous and have common rates.
Given the number of nuisance probabilities, it is dif-

ficult to compare the performance of the five methods
under each configuration. With 18 studies and 5 consid-
ered probabilities, the number of possible configurations
is 536, which is over 1025. For this reason, we follow the
approach by Tian et al. [9] to compare the performance of
these methods by simulating the probabilities of the con-
trol group (p0) from uniform distributions:U(0, b), where
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Table 2 Data from 18 clinical trials comparing all-cause mortality rate of patients treated with long-acting injectable antipsychotics
(LAI-AP) or the oral antipsychotics (OAP) treatment as the control

LAI-AP group OAP group Sample sizes

Study Events Non-events Events Non-events N1 N2

Kane 2012 1 268 0 134 269 134

Kane 2014 0 168 0 172 168 172

Meltzer 2015 0 415 1 206 415 207

Hirsch 1973 0 41 0 40 41 40

Jolley 1990 2 25 0 27 27 27

Odejide 1952 0 35 1 34 35 35

Rifkin 1977 0 23 1 21 23 22

Lauriello 2008 0 306 0 98 306 98

Berwaerts 2015 0 160 0 145 160 145

Fu 2015 2 162 0 170 164 170

Gopal 2010 0 221 0 135 221 135

Hough 2010 0 206 0 204 206 204

Kramer 2010 0 163 0 84 163 84

Nasrallah 2010 1 390 1 126 391 127

Pandinda 2010 1 487 0 164 488 164

Takahasji 2013 0 160 1 163 160 164

Kane 2003 0 302 1 97 302 98

Nasser 2016 0 235 0 119 235 119

b = 0.0001, 0.001, 0.01, and 0.1. We consider the follow-
ing five � values: 0.001, 0.005, 0.01, 0.05, and 0.1. Under
the study homogeneity assumption, the probabilities of
the treatment group p1 are then obtained as pi1 = pi0+�.
Table 4 presents coverage and average length compar-

ison between the five intervals when p0 ∼ U(0, 0.01%).
Coverage probabilities of the F interval range from 89% to
96%. The R interval is very conservative when � is small,
and its coverage is below 95% when � is larger. The Tian
interval is conservative when � ≤ 1%, but it could be as
low as 76% when � is 10%. The proposed accurate inter-
vals always have the coverage probabilities close to the
nominal level as compared to the existing intervals. Aver-
age length is always an increasing function of � for each
confidence interval method. The Tian intervals are wider
than others when they all guarantee the coverage proba-
bility. The IS-R interval generally has a shorter length as
compared to the R interval and the IS-F intervals.

When the event rates of the control group are higher
with p0 ∼ U(0, 0.1%) in Fig. 2, the F interval generally per-
forms better than others with regards to coverage prob-
ability and average length. When � is large (e.g., 10%),
coverage probabilities of these intervals are all slightly
below 95%. In this case with a small p0 and a relatively
large �, the proposed intervals (IS-R or IS-F intervals)
have better coverage probabilities than the F interval, and
the length difference between the accurate intervals and
the F interval is small. When� = 10%, the coverage prob-
ability of the Tian interval is below 80%. When the rates
are even higher with p0 ∼ U(0, 1%), the rates are not rare
in these configurations, and the F interval outperforms
others as seen in Fig. 2.

Heterogeneity of study effects
Under the study heterogeneity assumption, the probabil-
ity in the treatment group is pi1=pi0 + ui, where ui is

Table 3 Confidence intervals for risk difference between the LAI-AP group and the OAP group

Asymptotic intervals IS intervals Tian interval

Method ̂� lower upper length lower upper length lower upper length

Fixed-effects -0.064% -0.346% 0.218% 0.564% -0.506% 0.165% 0.704%

Random-effects -0.030% -0.382% 0.322% 0.671% -0.509% 0.250% 0.758%

Tian method -0.028% -0.843% 0.430% 1.273%
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Fig. 1 Coverage probability of the five methods under the study homogeneity assumption, with fixed and common rate pi0 = p in the control group

Table 4 Coverage probability and average length comparison between the five intervals when p0 ∼ U(0,0.01%)

The F interval The IS-F interval The R interval The IS-R interval The Tian interval

� Coverage Length Coverage Length Coverage Length Coverage Length Coverage Length

0.1% 0.890 0.21% 0.968 0.36% 1.000 0.63% 0.984 0.34% 0.987 1.02%
0.5% 0.932 0.47% 0.970 0.71% 0.987 0.72% 0.957 0.67% 0.997 1.10%
1.0% 0.949 0.66% 0.958 0.83% 0.877 0.84% 0.944 0.76% 0.994 1.24%
5.0% 0.949 1.45% 0.946 1.45% 0.905 1.58% 0.952 1.46% 0.903 1.52%
10.0% 0.962 1.99% 0.962 2.00% 0.935 2.15% 0.960 2.00% 0.730 1.63%



Shan et al. BMCMedical ResearchMethodology           (2020) 20:98 Page 7 of 10

Fig. 2 Coverage probability and average length comparison between the five intervals under the study homogeneity assumption, when the
probability of the control group p0 ∼ U(0 , 0.1%) and U(0 , 1%)

the random study effect that follows a normal distribution
with mean of � and standard deviation of �/2. Figure 3
presents the coverage probability and average length com-
parison between the five intervals when p0 ∼ U(0, 0.01%),
U(0, 0.1%), and U(0, 1%). As � increases, the standard
deviation of the probabilities in the treatment group goes
up. When � is small, the F interval, the IS-R interval,
and the IS-F interval have the coverage probabilities closer
to the nominal level as compared to the R interval and
the Tian interval. Coverage probabilities of the F inter-
val and the IS-F interval drop to almost 50% when � is

10%. The R interval generally has good coverage when �

is large. However, the R interval’s coverage probabilities
are very low when � = 1% in meta-analysis with rare
events (e.g., p0 ∼ U(0, 0.01%) or U(0, 0.1%)). The IS-
R interval has consistent good performance with regards
to coverage and length as compared to others in meta-
analysis with rare events. Figure 3 also presents the results
when the event rates are not rare (e.g., p0 ∼ U(0, 1%)).
When � is large, the R interval and the IS-R interval
have better coverage probabilities than others.When vari-
ance of study effects is small (for the configurations with
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Fig. 3 Coverage probability and average length comparison between the five intervals under the study heterogeneity assumption, when p0 ∼ U(0 ,
0.01%), U(0 , 0.1%) and U(0 , 1%)

small � values), the F interval performs better where the
configurations are similar to the ones under the study
homogeneity assumption.

Conclusions
We propose using importance sampling to construct
confidence intervals for risk difference in meta-analysis
with rare events. The traditionally used F interval has

satisfactory performance with regards to coverage prob-
ability and interval length when the rate of events is not
rare under the study homogeneity assumption, but this
interval could have a very low coverage probability under
the study heterogeneity assumption. The IS-R interval
based on the asymptotic limits from the random-effects
model outperforms the existing intervals under the het-
erogeneity assumption. The IS intervals use the existing
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asymptotic limits to order the sample space. Although
the asymptotic limits are computed from asymptotic
approaches whose performances are based on the approx-
imation of the test statistic to the limiting distribution,
the order of these limits provides a useful information to
produce better IS limits.
The Tian interval often guarantees the coverage prob-

ability when the rates of both groups are rare, but that
interval could have the coverage probability below the
nominal level when � is large. Theoretically, the Tian
interval can be used as a designated statistic to order the
sample space. However, simulations are involved in the
Tian interval calculation that would significantly increase
the computational intensity of the proposed IS intervals.
In addition, the ordering of the sample space based on the
Tian interval may change as the number of simulations
being utilized. For these reasons, we do not include the IS
intervals based on the ordering by the Tian interval.

Discussion
The method by Buehler [13] to construct exact one-sided
confidence interval is ideal for binary outcome when the
size of the sample size is not too large that allows a full
enumeration of the sample space [16, 26–29]. However, it
is not feasible in meta-analysis as it is extremely difficult
to save the sample space under the unconditional frame-
work with sample size in each treatment group fixed. If
the upper bound of the possible number of events can be
determined and the size of the sample size is not too large,
exact Buehler interval may be computed. Otherwise, an
efficient search algorithm should be developed to order
the sample space efficiently.
Exact confidence intervals are preferable for statistical

inference. However, it is often computationally intensive,
such as the aforementioned the exact interval by Buehler
[28, 30–32]. For these reasons, simulation based intervals
are proposed for use in practice, including the proposed
interval here, the Tian interval, and the interval based
on confidence distribution [24, 33–35]. It is still a big
challenge in exact meta-analysis by enumerating all pos-
sible data, which becomes a big data problem with the
requirement of huge memory and computational power.
In addition to risk difference, odd ratio and risk ratio

are also used to measure the treatment effect. For stud-
ies with zero events in one or both treatment groups, the
estimated risk difference is zero. However, the estimated
ratios could be infinity [17, 36–39]. In order to avoid this
issue, an arbitrary small number (e.g., ε =0.5, 1) is often
added to each cell in the data. The performance of the test
statistics is affected by the chosen small value [6, 40–42].
The added value ε also raises the question of whether the
number of participants in a study should be nij or nij + 2ε.
We consider this as future work to study the IS intervals
for ratios.
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