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ABSTRACT
We have carried out 2D hydrodynamical simulations to study the effects of disc self-gravity
and radiative cooling on the formation of gaps and spirals. (1) With disc self-gravity included,
we find stronger, more tightly wound spirals and deeper gaps in more massive discs. The
deeper gaps are due to the larger Angular Momentum Flux (AMF) of the waves excited in
more massive discs, as expected from the linear theory. The position of the secondary gap
does not change, provided that the disc is not extremely massive (Q � 2). (2) With radiative
cooling included, the excited spirals become monotonically more open (less tightly wound)
as the disc’s cooling time-scale increases. On the other hand, the amplitude and strength of
the spirals decrease when the cooling time increases from a small value to ∼1/�, but then the
amplitude starts to increase again when the cooling time continues to increase. This indicates
that radiative dissipation becomes important for waves with Tcool ∼ 1. Consequently, the
induced primary gap is narrower and the secondary gap becomes significantly shallower when
the cooling time becomes ∼1/�. When the secondary gap is present, the position of it moves
to the inner disc from the fast cooling cases to the slow cooling cases. The dependence of gap
properties on the cooling time-scale (e.g. in AS 209) provides a new way to constrain the disc
optical depth and thus disc surface density.

Key words: hydrodynamics – waves – planet–disc interactions – protoplanetary discs.

1 IN T RO D U C T I O N

Protoplanetary discs from ALMA observations reveal many sub-
structures (e.g. gaps, rings, and spiral arms) in dust continuum
emission (Pérez et al. 2016; Andrews et al. 2018; Long et al.
2018). Among them, the most common features are concentric gaps
and rings (Huang et al. 2018). There are many interpretations for
these features, such as zonal flows (Flock et al. 2015), aggregate
sintering (Okuzumi et al. 2016), secular gravitational instabilities
(Takahashi & Inutsuka 2014), self-induced dust pile-ups (Gonzalez,
Laibe & Maddison 2017), dust growth at snowlines (Zhang, Blake &
Bergin 2015; Pinilla et al. 2017), planet–disc interactions (de Juan
Ovelar et al. 2013; Dong, Zhu & Whitney 2015), and so on. Recent
high-resolution observations for a relatively large sample of discs
(Huang et al. 2018; Long et al. 2018; van der Marel et al. 2019)
conclude that snowlines cannot consistently match the positions of
these gap features, but it may still apply to individual objects.

Of all the exciting scenarios, this paper focuses on the inter-
pretation of planet–disc interactions. Assuming these features are
due to the planets, many authors infer the planet mass from the
gap properties by comparing observations with hydrodynamical
simulations. These properties include gap width and depth in dust

� E-mail: shangjia.zhang@unlv.edu

emission (Zhang et al. 2018), and sub/super-Keplerian rotational
velocity in CO channel maps (Teague et al. 2018; Zhang et al.
2018; Gyeol Yun et al. 2019). Most past works associate each gap
with a planet. Recent simulations show more promising results that
one single planet can explain up to five gaps in ALMA observations
(Bae, Zhu & Hartmann 2017; Guzmán et al. 2018; Zhang et al.
2018). These multiple gaps that are induced by a single planet is due
to the presence of multiple spirals, which results from constructive
interference of the density waves at different m modes in the inner
disc (Bae & Zhu 2018a,b; Miranda & Rafikov 2019a). The one-
armed spiral opens the primary (major) gap at the position of the
planet, and the secondary spiral opens the secondary gap in the inner
disc and so on. The spacing of the gaps is also useful to constrain
the gaseous disc scale height h/r since the ratio of the positions
between the secondary gap and the primary gap mainly depends on
the disc h/r (Dong et al. 2018; Zhang et al. 2018). If we can further
constrain h/r using other observables like gap widths and depths,
we can use the position of the secondary gap to even constrain the
planet mass (Kanagawa et al. 2015, 2016; Bae et al. 2017; Zhang
et al. 2018; Gyeol Yun et al. 2019).

However, most simulations that are used to infer the planet mass
from the disc substructures neglect the (1) self-gravity from the
disc and (2) radiative cooling. For the latter, they employ locally
isothermal Equation of State (EoS) instead, which is equivalent
to instant cooling. These two simplifications might not be valid
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to realistic discs. Consequently, the planet masses inferred from
observations might be subject to systematic errors. Self-gravity and
radiative cooling can play essential roles in some discs.

Several recent works suggest discs might be more massive than
previously thought. Booth et al. (2019) measure the HD 163296
disc mass using 13C17O line, and find the gas mass is a factor of 2–6
higher than previously estimated using C18O. Using the DSHARP
opacity (Birnstiel et al. 2018) and optical–thin assumption, Zhang
et al. (2018) find that Toomre Q at the gap edges are �10 for
most of the discs (see table 3 therein). Among the same series of
papers, Dullemond et al. (2018) also find that most of the prominent
rings are marginally gravitationally stable if the gas-to-dust ratio is
100 (see fig. 7 therein). Furthermore, Zhu et al. (2019) suggests
that these discs might be very optically thick, even though dust
scattering makes these discs look like optically thin. Without the
assumption of the dust opacity, Powell et al. (2019) analyse seven
discs by measuring the locations of ‘dust lines’ – the cutoff radii
of continuum emission – at different wavelengths, and also find all
of those discs have Q � 10, with several approaching unity. For
these reasons, disc self-gravity can become quite important for the
interactions between planets and discs.

The disc should also have orders of magnitude difference in
cooling time at different radii (Zhu et al. 2015; Miranda & Rafikov
2019b). Assuming the Minimum Mass Solar Nebula (MMSN), the
cooling is faster at the outer disc and slower at the inner disc –
7 orders of magnitude of the cooling time between 1 au (105/�)
and 100 au (10−2/�) (Zhu et al. 2015). The fast cooling resembles
the locally isothermal disc, whereas the slow cooling represents the
adiabatic disc. However, it is unclear how the disc might look like
beyond these two extremes. Radiative cooling with different cooling
time-scales at different locations in discs might further change the
disc substructures.

In this paper, we study spirals and gaps induced by planets in discs
with non-negligible self-gravity and radiative cooling. In Section 2,
we lay out the theoretical background of the linear theory and some
basic quantities being used throughout the paper. In Section 3,
we introduce the simulation setups. In Section 4, we present the
results after adding these two physical processes separately, and
also explore a situation that includes both self-gravity and radiative
cooling. We also compare our simulation results with previous
analytical results from Goldreich & Tremaine (1980) and Miranda &
Rafikov (2019a). In Section 5, we quantify the change of AMF and
discuss the observational implications in linear regime. Then, we
take AS 209 disc as a test bed for these two processes, and address
some limitations of our simulations. Finally, we conclude this paper
in Section 6.

2 TH E O R E T I C A L BAC K G RO U N D

Goldreich & Tremaine (1978,1979,1980) develop the linear theory
for planet–disc interactions. This theory produces insightful analyt-
ical results which can be used to understand numerical simulations
on planet migration and gap opening.

In order to study planet–disc interactions in the linear regime,
the planet mass should be less than the thermal mass (Goodman &
Rafikov 2001)

Mth =
(h

r

)3

p
M∗ = 1MJ

( (h/r)p

0.1

)3 M∗
M�

, (1)

where (h/r)p is the disc’s aspect ratio at the planet’s position. M∗
is the mass of the central star. At the thermal mass, the gaseous
disc scale height is comparable to both the Hill and Bondi radii

of the planet, and the distance between the planet and spiral shock
forming region is comparable to the planet’s Bondi radius so that
spiral shocks begin to affect planet accretion (Béthune & Rafikov
2019). If Mp � Mth, the density wave excited by the planet starts
from the non-linear regime, so that the spiral waves immediately
become spiral shocks after the wave excitation. Below the thermal
mass, the spiral shock region can be well separated from the
wave launching area. Most of the simulations in this paper have
Mp � Mth, but we also explore several cases in the high mass
regime.

Angular momentum transport is one of the key aspects in the
accretion theory. In the linear theory, the changing rate of the angular
momentum in the disc enclosed within a radius r is equal to the
planet’s torque � on that region minus the Angular Momentum
Flux1 (AMF) FJ that flows out of the region, that is

dL

dt
= �(r) − FJ (r). (2)

2.1 Torque

The first term on the right-hand side of equation (2) is the planet’s
torque to the disc region within r,

� = −
∫

disc
�(�r × �F )df =

∫
r

dT

dr
dr, (3)

as in Kley & Nelson (2012), where

dT

dr
(r) = r

∫ 2π

0
�(r, φ)

∂�p

∂φ
dφ (4)

is torque density and �p is the planet’s potential in the disc
coordinate,

�p = − GMp{
r2

p + r2 − 2rprcos(φ − φp) + s2
}1/2 , (5)

where rp, φp are planet’s position in radial and azimuthal directions
and s is the smoothing length used in simulations to avoid the
singularity of the planetary potential. The planet feels the opposite
torque, which leads to planet migration if the torque from the inner
disc is not balanced by the torque from the outer disc.

Goldreich & Tremaine (1980) derive the one-sided torque as

FJ0 = (Mp/M∗)2h−3
p �pr

4
p �2

p, (6)

where �p is the angular frequency of the planet (all the ‘p’ as a
subscript in the paper refers to that quantity evaluated at the position
of the planet). This value is commonly used to normalize the torque
and AMF.

2.2 AMF

The second term on the right-hand side of equation (2) is the
AMF carried by the disturbance (e.g. spiral waves). The angular
momentum carried by the spiral waves will be eventually deposited
to the background disc to induce gaps in discs. In order to
understand the gap properties, such as depth, width, and secondary
gap positions, it is necessary to understand the AMF of the spiral
waves. With disc self-gravity included in the analysis, AMF has
two components, advective AMF, FA, and gravitational AMF, FG

(Lynden-Bell & Kalnajs 1972; Goldreich & Tremaine 1979). The

1This is coined as angular momentum current in Binney & Tremaine (2008),
denoted by capital ‘C’.
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latter only occurs in self-gravitating discs. The total AMF is, FJ =
FA + FG.

FA is the advective transport of angular momentum due to the
motion of the fluid and leads to a flow of angular momentum through
circumference at radius r. It is also related to the Reynolds stress in
turbulence studies. It can be calculated as,

FA(r) = r2�(r)
∮

ur (r, φ)uφ(r, φ)dφ, (7)

where � is the gaseous disc surface density and ur and uφ are the
velocity perturbations in the r and φ directions.

FG is due to the non-axisymmetric part of the disc potential. The
spiral structure produces a spiral gravitational field, which exerts
torque and transfers angular momentum from one part of the disc
to another. It is non-zero in self-gravitating discs and becomes
important when the following Tommre Q parameter is small,

Q = cs�

πG�
, (8)

where cs is the sound speed and cs = (h/r)vφ . Given fixed cs and
�, a smaller Q means a higher disc surface density. When Q = 1,
the disc becomes gravitationally unstable. The value of FG is the
torque exerted to the inner disc,

FG(r) =
∫ r

0
dr ′r ′

∫ 2π

0
dφ�

∂�out

∂φ
, (9)

where �out is the disc potential at r (the formula is the same as
equation (4), except that �p is replaced with �out). For trailing
spiral arms, the angular momentum is transferred from the inner
to the outer disc, since the inner disc exerts positive gravitational
torque on the outer disc (Lynden-Bell & Kalnajs 1972; Binney &
Tremaine 2008).

Note that, in globally isothermal discs, the total AMF is conserved
(dFJ/dr = 0) based on the linear theory (Goldreich & Tremaine
1979). However, as Miranda & Rafikov (2019b) point out, this is
not the case in locally isothermal discs due to the torque applied
on to the wave by the background shear flow (this is also reported
in Lin & Papaloizou 2011; Lin 2015). In locally isothermal discs,
d(FJ /c2

s )/dr = 0 is conserved.
In the linear theory, all quantities can be further Fourier decom-

posed into individual m harmonics,

η(r, φ) =
∞∑

m=−∞
ηm(r)eim(φ−φp ), (10)

where η can be ur, uφ , and �, and ηm is a complex number. Putting
ur(r) and uφ(r) in equation (7),

FA(r) = 2πr2�(r)
∞∑

m=−∞
ur,m(r)u∗

φ,m(r)

= 4πr2�(r)
∞∑

m=0

	[ur,m(r)u∗
φ,m(r)]. (11)

The second equality holds because the Fourier transform of real
signals is Hermitian. If FA is expanded with positive integer
harmonics (the m = 0 term is always zero),

FA(r) =
∞∑

m=1

FA,m(r), (12)

each m component of the advective AMF can be expressed as,

FA,m(r) = 4πr2�(r)	[ur,m(r)u∗
φ,m(r)]

= 4πr2�(r)
(
	[ur,m(r)]	[uφ,m(r)] + 
[ur,m(r)]
[uφ,m(r)]

)
,

(13)

which is identical to the result using continuous Fourier transform
in the shearing sheet geometry (Dong et al. 2011b; Rafikov &
Petrovich 2012). Likewise, the total AMF can be expanded as,

FJ (r) =
∞∑

m=1

FJ,m(r). (14)

The sum goes to infinity, but the normalized AMF (FJ,m/FFJ0 )
reaches the maximum at m ∼ (1/2)/(h/r) and becomes �1 at several
1/(h/r). Thus, the sum can stop at some m (Goldreich & Tremaine
1980; Artymowicz 1993a,b; Ward 1997), which is known as the
‘torque cutoff’.

2.2.1 Relative importance between FA and FG

Here we discuss the relative importance between FA and FG. We
borrow the WKB solutions in the tightly-wound limit (k � 1/R)
obtained by Goldreich & Tremaine (1979). Their analytical solution
for the advective AMF is,

FA = − πmr�k

2πG�|k| − k2c2
s

(
1 − c2|k|

2πG�

)2
�(r)2, (15)

where �(r) is the amplitude of the perturbed disc gravitational
potential in the form of WKB solution. The gravitational AMF is,

FG = sgn(k)
mr�2(r)

4G
. (16)

Taking the ratio between the FA and the FG, and define the critical
wavenumber kcrit (Binney & Tremaine 2008) as,

kcrit = �2

2πG�
= Q

2

�

cs

= Q

2h
, (17)

we get,

FA

FG
= 2

(Q2

4

|k|
kcrit

− 1
)

= 2
( |k|

kcross
− 1

)
, (18)

where kcross = 4kcrit/Q2 = 2/Qh. When |k| = (3/2)kcross, advective
AMF and gravitational AMF have equal contribution, and we denote
that |k| as keq. keq = (3/2)kcross = 3/Qh. When |k| < keq, FG has larger
contribution, whereas when |k| > keq, FA contributes more. Hence,
to compare the relative importance of FA and FG, we just need to
compare the characteristic values of |k| and keq.

Plugging equations (8) and (17) into the dispersion relation,

ω̃2 = �2 − 2πG�|k| + c2
s k

2, (19)

where ω̃(r) = m[�p − �(r)] and �(r) is the angular velocity of the
disc, we get the absolute value of the wavenumber in unit of kcrit,

|k|
kcrit

= 2

Q

{
m2

(
1 − r3/2

r
3/2
p

)2

−
(

1 − 1

Q2

)}1/2

+ 2

Q2
. (20)

Here we choose the positive sign in front of the first term since it
corresponds to the short wave that propagates beyond Lindblad
resonances in discs (the negative sign solution corresponds to
the long wave that is restrained inside Lindblad resonances and
outside the forbidden region; see fig. 2 in Lovelace, Jore & Haynes
1997, Fig. 6.14 in Binney & Tremaine 2008 and equation 19 in
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2290 S. Zhang and Z. Zhu

Goldreich & Tremaine 1979 for details). Note that this equation
reduces to the following (Ogilvie & Lubow 2002; Bae & Zhu 2018a)
as Q → ∞,

|k|
m

= �

cs

∣∣∣∣(1 − r3/2

r
3/2
p

)2
− 1

m2

∣∣∣∣
1/2

. (21)

With equation (20), we evaluate the ratio of the |k| and keq at the
effective locations of Lindblad resonances. While both sound pres-
sure and self-gravity shift the positions of the Lindblad resonances
(Pierens & Huré 2005), we only account for the contribution from
the pressure effect for simplicity. The locations of the resonances
become,

r = rp

{
1 ±

[
1 + m2(h/r)2

]1/2

m

}2/3

. (22)

At these radii, the ratio reads,

|k|
keq

= Q

3

{
m2(h/r)2 + 1

Q2

}1/2

+ 1

3
. (23)

As Q → ∞, the ratio |k|/keq → ∞, which means that FG has no
contribution to the total AMF. However, when Q = 5 and we adopt
m = (1/2)/(h/r), |k| ≈ keq. Hence, FG contributes comparable amount
of AMF as FA. This simple calculation shows that as Q becomes
smaller, the gravitational AMF becomes increasingly important and
will exceed the contribution of the advective AMF at very low Q.

We caution that the detailed analysis on the relative importance
of FA and FG requires numerically solving the linearized equations
and is beyond the scope of this paper. In this paper, since we focus
on discs with Q � 5, we will only discuss FA for simplicity. As
shown in Section 5.4, we find that when Q ∼2, the gap edge quickly
becomes unstable even though the disc itself is gravitationally
stable.

2.2.2 Calculation of the total AMF

Here we summarize the calculation of the total AMF in the linear
theory. In regions far from corotation (|r − rp|/rp → ∞), advective
AMF dominates (FA � FG; Goldreich & Tremaine 1980). Since FJ

is conserved at different radii, FJ equals FA far from corotation
where WKB solutions (of equation 83 therein) are valid. The
analytical solution can be obtained (Goldreich & Tremaine 1978)
at the following condition (Goldreich & Tremaine 1980),

m(h/r) � min
(Q2 − 1

3Q2
, 1

)
. (24)

The resulting AMF is given by,

FWKB
J (m) = 4

3

m2�

�2

(GMp

R

)2
{2K0(2/3) + K1(2/3)}2, (25)

where the last term is around 6.35, and K0 and K1 are zeroth and
first-order modified Bessel function of the second kind. The value
of FWKB

J (m) is approximately equal to 8.47 m2FJ0. However, the
condition (24) is not always satisfied in the disc. The analytical
solution deviates from the exact solution when m � 1/(h/r), or disc
self-gravity is important (m � Q2−1

3Q2 ). At this regime, Goldreich &
Tremaine (1980) numerically integrate the WKB trial solutions for
each m harmonic at given Q and obtain FJ(m, Q), expressed in unit
of FWKB

J (m) (see figs 2 and 3 therein and Figs 3 and 4 in this paper).
Summing up each m mode, the total AMF is given by,

FJ = f (Q)
FWKB

J (m)

m2
≈ 8.47f (Q)FJ0, (26)

where FJ0 is expressed in equation (6), and f(Q) is a factor, which
is a function of Q. From Goldreich & Tremaine (1980),

f (Q) = 1

3
μ3

max =
∫ ∞

0
dμμ2 FJ (m, Q)

FWKB
J (m)

, (27)

where μ = mcs/�r = m(h/r). The coefficient FJ/FJ0 ≈ 0.93 if Q =
∞ and FJ/FJ0 ≈ 8.6 if Q = 2, which means that more massive discs
(with lower Toomre Q values) have higher AMF. We will compare
this analytical solution with our simulation results in 4.1.1.

2.3 Pitch angle

The pitch angle β is defined as the angle between the direction of
the line tangent to the spiral arm and the azimuthal direction in the
disc. If the spiral arms have m-fold rotational symmetry, and k is
the radial wavenumber under the WKB approximation,

β = tan−1
( m

kr

)
. (28)

The dispersion relation for the spiral wave in the tightly wound
limit (equation 19) can also be used to derive the pitch angle. In the
absence of disc self-gravity, the middle term on the right-hand side
of equation (19) becomes zero. Thus, by manipulating equation (21),
the pitch angle for the m mode is,

tan(β) = m

kr
= cs{

|�p − �|2 − �2

m2

}1/2 . (29)

If m � 1, different m modes have the same pitch angle and interfere
with each other (Ogilvie & Lubow 2002), so that

tan(β) = m

kr
= 1

r

cs

|�p − �| . (30)

When the disc self-gravity is non-negligible, we can rewrite equa-
tion (20) to derive the pitch angle

tan(β) = 1

r

cs{
|�p − �|2 − �2

m2

(
1 − 1

Q2

)}1/2
+ �

mQ

. (31)

Compared to equation (29), two additional terms are (�/mQ)2

within the square root and �/mQ outside the square root. When
Q � 1, equation (31) reduces to equation (29). Equation (31) also
indicates that the pitch angle becomes smaller for higher disc masses
(with smaller Q). However, this effect is not strong unless Q is very
close to unity. For example, when m � 1, equation (31) reduces
to equation (30) even in massive discs. Thus, different m modes
should still have the same pitch angle and interfere with each other
unless Q is close to one. The effect should be stronger in the inner
disc than the outer disc since � decreases with r. We will confirm
this pitch angle calculation using our simulations in Section 4.1.

2.4 Orbital cooling

Miranda & Rafikov (2019b) carry out linear analysis on locally
isothermal discs with temperature varying with the radius and run
simulations to show that the spiral wave absorbs AMF from the
background when it is propagating to hotter regions, resulting in
higher AMF and higher density perturbation. The phenomenon is
unique to locally isothermal discs. It would not happen even if the
adiabatic disc is very close to locally isothermal (γ is very close to
1). They advocate that the inclusion of the energy equation would
result in weaker density waves and shallower gaps. Thus, planet
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Self-gravity and radiative cooling 2291

masses inferred from previous locally isothermal simulations might
be systematically lower than their actual masses.

Besides running locally isothermal simulations, we further study
this issue by carrying out adiabatic simulations with a simple orbital
cooling prescription. The adiabatic EoS is

P = (γ − 1)E, (32)

where E is the internal energy per unit area and γ is the adiabatic
index. We adopt γ = 1.4 in this study. Since the energy equation is
solved in simulations with the adiabatic EoS, we can prescribe the
effect of radiative cooling using the orbital cooling approach:

dE

dt
= −E − cv�Tirr

tcool
, (33)

where � is the disc surface density. Tirr is the disc initial temperature,
which is determined by the stellar irradiation in realistic discs. cv

≡ R/(μ(γ − 1)) is the heat capacity per unit mass, R ≡ k/mH is the
specific gas constant, k is the Boltzmann constant, μ is the mean
molecular weight, mH is the atomic unit mass, and tcool is the cooling
time. It is useful to define the dimensionless cooling time

Tcool = tcool�(r). (34)

Thus, Tcool is tcool in the unit of orbital time over 2π . This
prescription is identical to Zhu et al. (2015) and similar to the
β-cooling in Gammie (2001). Small Tcool means fast cooling. Thus,
the adiabatic disc with fast cooling should be closer to the isothermal
disc, whereas large Tcool means slow cooling, and this disc is closer
to the adiabatic disc without cooling. In the rest of the paper, we
simply use adiabatic discs to refer to the adiabatic discs without
cooling.

To estimate Tcool in realistic discs, we follow Zhu et al. (2015)
which use the radiative cooling rate of

dE

dt
= −16

3
σ (T 4

mid − T 4
irr)

τ

1 + τ 2
, (35)

where σ is the Stefan-Boltzmann constant, τ = (�/2)κR is the
optical depth in the vertical direction, κR is the Rosseland mean
opacity normalized to the gas surface density assuming dust-to-
gas ratio is 1/100, κR = κR(amax, T), and Tmid is the mid-plane
temperature. Assuming E = cv�Tmid and using equations (33) and
(35), we can derive

tcool = 3�cv

16σ (T 2
mid + T 2

irr)(Tmid + Tirr)

1 + τ 2

τ
. (36)

Approximating Tmid = Tirr = Td, where

Td(r) =
{(

φL∗
8πr2σ

)1/4
r ≤ rTf

Tf r > rTf

, (37)

where φ = 0.02, representing flaring angle (Dullemond et al. 2018),
and L∗ is the stellar luminosity. We assume the disc temperature
decreases as r and at a given radius it reaches a minimum floor
temperature Tf, setting by the background heating processes (e.g.
cosmic rays). This radius is

rTf = 39 au
( Tf

20 K

)−2( L∗
L�

)1/2( φ

0.02

)1/2
. (38)

The dimensionless cooling time becomes,

Tcool = 0.015
(

f

0.01

)−1(
κR (amax,Td )

1 cm2g−1

)−1(
L∗
L�

)−3/4(
φ

0.02

)−3/4

×
(

M∗
M�

)1/2
(1 + τ 2)

{
1 r ≤ rTf(

r
rTf

)−3/2
r > rTf

, (39)

where f is the dust-to-gas mass ratio. For a given protoplanetary
disc interior to rTf , and assuming constant f, Tcool only depends
on the Rosseland mean opacity in the optically thin limit, whereas
Tcool ∝ τ 2/κR in the optically thick limit. Within rTf , it does not
explicitly depend on r (the Rosseland mean opacity depends on the
temperature which varies with the radius). Note that this optical
depth is different from the optical depth in the dust continuum
observation, since the Rosseland mean opacity is used for the
cooling process. Aside from the optical depth effect, higher opacity,
higher stellar radiation, larger flaring angle and smaller stellar mass
would make Tcool smaller and vice versa. We also ignore energy
diffusion in the radial direction (Goodman & Rafikov 2001), which
might be important for very optically thick discs.

Here we provide several typical values of κR at different tem-
peratures for references. Using the DSHARP opacity (Birnstiel
et al. 2018), the Rosseland mean absorption opacity for the dust
population with the maximum dust size amax = 1 mm and the size
distribution n(a) ∝ a−3.5 is κR(20 K) = 0.21 cm2g−1, κR(40 K) =
0.48 cm2g−1, and κR(125 K) = 1.03 cm2g−1.

For a solar-type star, suppose � = 100 g cm−2, f = 0.01 at 10 au
and T = 40 K, Tcool ∼ 20, which is approaching the adiabatic limit.
Suppose � = 1 g cm−2, f = 0.01 at 100 au, and T = 20 K, Tcool

∼ 0.02, which is on the locally isothermal limit. Thus, the Tcool

estimated from the gap substructures can help constrain the optical
depth thus the surface density of the disc. We will use this argument
to constrain the surface density at ∼100 au of the AS 209 disc in
Section 5.3.

3 M E T H O D

To test the effects of disc self-gravity and radiative cooling on
planet–disc interactions, we run four sets of 2D hydrodynamical
simulations. We use FARGO-ADSG (Baruteau & Masset 2008a,b;
Baruteau & Zhu 2016) in the first three sets and Athena++ (Stone
et al., in preparation) in the fourth set. For all the simulations, we fix
the planet in circular orbits and do not consider planet migration.
We apply the evanescent boundary condition to all the simulations.
We choose not to include the indirect term for separating its effect
from the effects studied in this paper. Our simulation setups are
motivated and based on Bae & Zhu (2018a) and Bae et al. (2017).
We keep all the parameters the same but add disc self-gravity or/and
radiative cooling. We denote them as B18 (Set 1) and B17 (Set
2), respectively. We denote simulations with adiabatic EoS and
radiative cooling as AD, and simulations with self-gravity as SG. For
example, a simulation that is built on Bae et al. (2017) with both
orbital cooling and self-gravity is written as B17ADSG. We also
run a set of simulations AS209 (Set 3) including radiative cooling
and self-gravity with massive planets by adopting the parameters
in the AS 209 α varying model in Zhang et al. (2018) ({(h/r)p, α,
Mp} = {0.05, 3 × 10−4(r/rp)2, 1 Mth}). The Athena++ (Stone
et al. 2020, in preparation) simulations (Set 4) have the same setup
as B17 and B17AD to verify the results. All the simulations that
appear in this paper are summarized in Table 1, and descriptions
are detailed as follows.

(1) B18 focuses on the linear regime of planet–disc interactions
with very low mass planets. This setup is also adopted in Miranda &
Rafikov (2019b). The planet mass Mp = 0.01 Mth. The aspect
ratio at rp is (h/r)p = 0.1. The gas surface density is � ∝ r−1.
The disc temperature is T(r) ∝ r−0.5 (h/r ∝ r0.25) with the locally
isothermal EoS. The disc viscosity α is 0 (inviscid). The inner
boundary is 0.05 rp, whereas the outer boundary is 5.0 rp. The
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Table 1. Models.

FARGO-ADSG

Run Q Tcool Mp/Mth α (h/r)p q Domain (R) Resolution (R × φ) tgrow/tp
B18 ∞ 0 0.01 0 0.1 0.5 [0.05, 5] 4096 × 5580 1
B18SG 100 0 0.01 0 0.1 0.5 [0.05, 5] 4096 × 5580 1
B18SG 10 0 0.01 0 0.1 0.5 [0.05, 5] 4096 × 5580 1
B18SG 5 0 0.01 0 0.1 0.5 [0.05, 5] 4096 × 5580 1
B18SG 2 0 0.01 0 0.1 0.5 [0.05, 5] 4096 × 5580 1
B18AD ∞ 10−4 0.01 0 0.1 0.5 [0.05, 5] 2048 × 2790 1
B18AD ∞ 10−3 0.01 0 0.1 0.5 [0.05, 5] 2048 × 2790 1
B18AD ∞ 0.01 0.01 0 0.1 0.5 [0.05, 5] 2048 × 2790 1

B17 ∞ 0 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17SG 100 0 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17SG 10 0 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17SG 5 0 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17SG 2 0 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17SG 100 0 0.3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 10, 60
B17SG 10 0 0.3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 10, 60
B17SG 5 0 0.3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 10, 60
B17SG 2 0 0.3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 10, 60
B17SG 100 0 1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 10 0 1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 5 0 1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 2 0 1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 100 0 3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 10 0 3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 5 0 3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17SG 2 0 3 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 100
B17AD ∞ 0.01 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17AD ∞ 0.1 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17AD ∞ 1 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17AD ∞ 10 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17AD ∞ 100 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17ADSG 5 0.01 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17ADSG 5 0.1 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17ADSG 5 1 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
B17ADSG 5 10 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20

B17ADSG 5 100 0.1 5 × 10−5 0.07 0 [0.2, 2] 2048 × 5580 20
AS209AD ∞ 0.01 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209AD ∞ 0.1 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209AD ∞ 1 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209AD ∞ 10 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209AD ∞ 100 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209ADSG 5 0.01 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209ADSG 5 0.1 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209ADSG 5 1 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209ADSG 5 10 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20
AS209ADSG 5 100 1 3 × 10−4(r/rp)2 0.05 0 [0.2, 2] 1024 × 2790 20

Athena++
B17 ∞ 0 0.1 5 × 10−5 0.07 0 [0.2, 2] 1024 × 2796 5
B17AD ∞ 0.01 0.1 5 × 10−5 0.07 0 [0.2, 2] 1024 × 2796 5
B17AD ∞ 0.1 0.1 5 × 10−5 0.07 0 [0.2, 2] 1024 × 2796 5
B17AD ∞ 1 0.1 5 × 10−5 0.07 0 [0.2, 2] 1024 × 2796 5
B17AD ∞ 10 0.1 5 × 10−5 0.07 0 [0.2, 2] 1024 × 2796 5
B17AD ∞ 100 0.1 5 × 10−5 0.07 0 [0.2, 2] 1024 × 2796 5

Note. The q is the exponent in the temperature profile, T(r) ∝ r−q. In AD models, the (h/r)p and the temperature profile are just initial values.

damping regions are inside 0.06 rp and outside 4.6 rp. We run five
simulations with Q = ∞ (non-self-gravitating), 100, 10, 5, and 2,
where Q is evaluated at rp. The self-gravity smoothing length is
0.3 h. Given the density and temperature profiles, Q is larger at
the inner disc and smaller at the outer disc. Q ∝ r−4/3 and Q at
the inner (outer) boundary is 9.5 times (0.30 times) the value at

rp. The resolution in (logarithmically spaced) r and φ directions is
4096 × 5580. There are ∼89 grid cells per scale height in the r
direction. The planet potential is in the form of equation (5) and
the smoothing length s is 0.6 h. The implementation of the Poisson
equation solver for self-gravity can be found in Baruteau & Masset
(2008b). To study the AMF in simulations with adiabatic EoS and
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temperature varying with the radius, we also run three simulations
(B18AD) with lower resolution (2048 × 2790) for Tcool = 10−4,
10−3, and 0.01 cases.

(2) B17 focuses on gap opening by more massive planets. These
simulations start with globally isothermal discs. While one subset
keeps the temperature constant, the other subset (AD) allows the
disc to cool. The aspect ratio (h/r)p = 0.07, with h/r ∝ r0.5 so
that T is a constant. The disc viscosity α = 5 × 10−5, and the
gas surface density � ∝ r−1. The inner boundary is 0.2 rp and
the outer boundary is 2.0 rp. The damping regions are inside 0.24
rp and outside 1.6 rp. The planet smoothing length s is 0.1 h. If
the self-gravity is included, the self-gravity smoothing length is
0.3 h. Q ∝ r−1/2 and Q at the inner (outer) boundary is 2.2 times
(0.71 times) the value at rp. The resolution is 2048 (logarithmically
spaced) × 5580 in the r and φ directions, so that dr:dφ ≈ 1:1 for
every grid in the domain. There are ∼ 62 grid cells per scale height
in the r direction. The planet mass grows with time as Mp = Mp, f

sin2(π2
t

tgrow
), and tgrow is 20 tp for 0.1 Mth, 60 tp for 0.3 Mth and 100

tp for 1 and 3 Mth, where tp = 2π /� is the orbital period of the
planet. The planet grows to its full mass at tgrow and stays constant
afterwards. We mainly use Mp = 0.3 Mth cases to study the gap
opening, but some instability has developed for the Q = 2 disc
before its planet grows to the full mass, complicating the analysis.
Thus, we add four simulations (Mp = 0.3 Mth, and Q = 100, 10, 5,
and 2) with tgrow = 10 tp. This set of simulations with a shortened
planet growing time is almost identical to the previous one at the
time-step we choose to analyse, but now the planet grows to its full
mass before the instability occurs. Overall, we have Q = ∞, 100,
10, 5, and 2 discs, with Mp = 0.1, 0.3, 1 and 3 Mth.
This set of simulations also includes dust, represented by 200 000
dust super particles of different sizes. The Stokes numbers (St) of
the particles at rp ranges from 1.57 × 10−5 to 1.57. The setup for
dust particles is identical to Zhang et al. (2018). The Stokes number
St for particles (also called particles’ dimensionless stopping time)
is

St = tstop� = πsρp

2�gas
= 1.57 × 10−3 ρp

1 g cm−3

s

1mm

100g cm−2

�g
,

(40)

where ρp is the density of the dust particle, s is the radius of the dust
particle, and �g is the gas surface density. We assume ρp = 1 g cm−3

in our simulations. The Stokes number mentioned above is the
Stokes number at the beginning of the simulations, St0. As the disc
evolves, the dust sizes are fixed, but as they can drift in the disc, the
Stokes number can change.
For B17AD and B17ADSG discs, Tcool is constant everywhere in
each simulation, but tcool varies as radius since �k ∝ r−3/2. We
explore Tcool = 0.01, 0.1, 1, 10, and 100, covering fast cooling
to slow cooling. Note that for these simulations with cooling, the
given h/r and the temperature profiles above are just the initial
values. Their values are subject to change as the simulations evolve.
We also run a set of B17ADSG discs, which includes both radiative
cooling and self-gravity. These discs have Q = 5 at the planet’s
position and Tcool = 0.01, 0.1, 1, 10, and 100.

(3) AS209 is used to test the effects of radiative cooling in the
massive planet regime (∼thermal mass). We run a set of varying α

(α = 3 × 10−4(r/rp)2) models (AS209AD) with Tcool = 0.01, 0.1, 1,
10, and 100. The (h/r)p is 0.05 and Mp is 1 Mth or 0.1 MJ if M∗ = M�.
The resolution in the r and φ directions is 1024 × 2790. With lower
resolution, we are able to run the simulations longer. We also add a
set of simulations that also include self-gravity (AS209ADSG). Q

is chosen to be 5 at rp. The planet grows to its full mass at 20 tp.
Other parameters are the same as (2).

(4) Athena++ simulations are used to verify the results. They
include an isothermal simulation and a suite of adiabatic simula-
tions, with the same setup as Mp = 0.1 Mth, B17 and B17AD discs
in (2), except for a shorter tgrow = 5 tp. To avoid a numerical artefact
due to the small smoothing length, we use s = 0.2 h for Tcool = 100
(twice as large as what is used in the FARGO simulation).

4 R ESULTS

4.1 Self-gravitating discs

To study the effects of disc self-gravity in the linear regime, we first
analyse B18SG discs with Mp = 0.01 Mth. Fig. 1 shows the density
perturbations with different disc masses in the polar coordinate. The
planet is at φ = 180◦ and r = 1 rp. The density perturbation is

δ�/�0 = (� − �0)/�0, (41)

where �0 is the gaseous surface density at the initial condition,
and � is the density at the time-step (t = 10 tp for this plot)
that is analysed. From left to right, the disc mass increases. The
Toomre Q values at the r = rp are 100, 10, 5, and 2, respectively. As
the disc mass increases, the spiral perturbations become stronger.
This transition is the most evident from the Q = 5 to Q = 2 disc.
The density perturbation changes slightly until Q = 5 and has a
noticeable increase from the Q = 5 to Q = 2 disc. The underlying
AMF that influences the density perturbation is shown in Fig. 2. The
AMF increases as Q decreases. The AMF at Q = 100 (blue solid
curve) is almost identical to the one in the non-self-gravitating disc
(black curve) and identical to the result in fig. 1(a) in Miranda &
Rafikov (2019b). As pointed out by Miranda & Rafikov (2019b),
we can clearly see that the AMF increases towards the inner disc
where the disc is hotter. However, it cannot be captured even with
very small cooling time Tcool = 0.01 and 0.001, as shown by the
short and long dashed curves. Different from the locally isothermal
simulation, the spiral waves cannot pick up the AMF from the
background disc when they propagate to hotter regions, even with
a relatively short Tcool. Only extremely small cooling time (Tcool

= 10−4, shown by the dotted-dashed curve) can capture this increase
of the AMF towards inner disc (the slightly lower values are due to
the lower resolution). The jump of AMF is the largest from the Q =
5 to Q = 2 disc, where the AMF value of the latter almost doubles.
The increase of the AMF with a smaller Q is consistent with the fact
that the density perturbation becomes stronger with a smaller Q.

The spirals become more tightly wound as the disc mass in-
creases. It is the most evident at the inner disc between the Q =
5 and Q = 2 disc. This effect is consistent with the prediction in
Section 2 around equation (31). Only when Q becomes very small,
the two additional terms become important, which makes the pitch
angle smaller. Note that Q is larger than Qp in the inner disc, given
the surface density profile we choose. The changes in pitch angle
would be larger if Q is constant across the disc. This trend is also
reported in Pohl et al. (2015), where their simulations lie in the
non-linear regime with higher planet masses. Hence, the decrease
of pitch angle with the disc mass applies to a large range of planet
masses.

Yu, Ho & Zhu (2019) measure the pitch angles from 10 pro-
toplanetary discs in near-infrared scattered-light images and three
discs in ALMA millimetre dust continuum images. They find a
tight relation between the spiral arm pitch angle and the disc mass
– more massive discs have smaller pitch angles. While we find that
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2294 S. Zhang and Z. Zhu

Figure 1. The gaseous density perturbations (δ�/�0) of the inviscid self-gravitating discs (B18SG) with a low mass planet Mp = 0.01 Mth at 10 orbits. The
disc masses increase from left to right. At the position of the planet, the Toomre Q parameters are 100, 10, 5, and 2, respectively. Since the density profile goes
as r−1, Q is higher at the inner disc and lower at the outer disc. The spirals become stronger and tighter as the mass increases. This is the most evident in the
Q = 2 disc.

Figure 2. The Angular Momentum Flux (AMF) of the B18, B18SG, and
B18AD discs calculated from equation (7) and normalized by equation (6).
The black curves represent the AMF (solid curve) and torque (dotted curve)
of the non-self-gravitating disc, which is almost identical to fig. 1(a) in
Miranda & Rafikov (2019b). The AMF increases as the disc mass increases.
The AMF of Q = 2 disc is ∼ 3 times that of Q = 100 disc. This results in
a stronger density perturbation. The short dashed, long dashed, and dashed-
dotted curves in black represent B18AD with Tcool = 0.01, 10−3, and 10−4,
and with lower resolution (2048 × 2790). The Tcool = 10−4 curve is similar
to the case without cooling at such resolution.

the disc self-gravity cannot lead to such significant changes in pitch
angles, spirals in scattered-light images might show more dramatic
effects with disc self-gravity which needs to be studied in future.
Without the consideration of the self-gravity, the different pitch
angles between scattered light and millimetre continuum images
might be due to the vertical temperature gradient (Juhász & G. 2018;

Rosotti et al. 2019). The near-infrared scattered-light observations
probe higher atmosphere with higher temperature, thus the spirals
have larger pitch angles than those in the mid-plane probed by
ALMA.

4.1.1 Comparison to the linear theory

In this subsection, we provide a quantitative comparison with the
linear theory. In Section 2, we briefly introduce the AMF in discs
with and without self-gravity. The quantity we want to compare
is FJ (m, Q)/FWKB

J (m) (ratio of the numerically integrated m
harmonics of the AMF and the m mode AMF solved analytically; see
equation 27), which has been given in fig. 2 of Goldreich & Tremaine
(1980). Similar comparisons have been performed before in non-
self-gravitating shearing sheet simulations (Dong et al. 2011b). With
our simulations, we measure the AMF at several h away from a low-
mass planet (Mp � Mth) in the inner disc. Note that the spirals will
shock at a certain distance away from the planet. This distance is
lsh (Goodman & Rafikov 2001), given by

lsh ≈ 0.8
(γ + 1

12/5

Mp

Mth

)−2/5
h. (42)

The linear theory of wave propagation fails for |r − rp| > lsh, so
the position that we measure the AMF cannot be too far from the
planet. The position should also be chosen closer to the planet as
the planet mass increases, as lsh becomes shorter with higher mass
planets.

We start the comparison with a very low planet mass, Mp = 0.01
Mth in B18SG discs. Fig. 3 shows the AMF measured at 5h, where
we find the values match the linear theory the best. The blue curve
shows the ratio of the non-self-gravitating disc, and the orange
curve shows the ratio of the Q = 2 disc. The ratios calculated
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Figure 3. Comparison between FJ (m, Q)/FWKB
J (m) measured from sim-

ulations (Mp = 0.01 Mth, B18SG) and calculated from the linear theory
(Goldreich & Tremaine 1980). This ratio is measured at 5h (at 0.5 rp) inside
of the planet and is plotted on y-axis. The x-axis is μ = mcs

�R
(or m(h/r),

where (h/r)p = 0.1). The simulation results are shown in blue (Q = ∞)
and orange (Q = 2) solid curves, whereas the analytical results are shown
in dashed curves (Q = 2 curve is the higher).

Figure 4. Similar to Fig. 3, but for B17SG, Mp = 0.1 Mth. This ratio is
measured at 2h (blue), 3h (orange), 4h (green), and 5h (red) inside of the
planet. The upper panel shows the results in Q = 100 disc, whereas the
lower panel shows the results in Q = 2 disc. The dashed curves are the same
as in Fig. 3.

from Goldreich & Tremaine (1980) are shown in dashed curves
(the ratio of Q = 2, FJ (m, 2)/FWKB

J (m) is shown above and that of
Q = ∞, FJ (m, ∞)/FWKB

J (m) is shown below). The Q = ∞ curve
matches the linear calculation relatively well, especially at μ � 1.
As for the differences, one of the reasons is that the temperature is
assumed to be constant throughout the disc in the linear calculation,
whereas T ∝ r−0.5 in the simulations. FJ (m, Q)/FWKB

J (m) of the

self-gravitating disc is higher than that of Q = ∞ disc, which is
consistent with the linear theory.

To make a more proper comparison with the analytical theory,
we also present B17SG discs that are globally isothermal with Mp

= 0.1 Mth. FJ (m, Q)/FWKB
J (m) at different distances from the

planet are shown in Fig. 4 (Top panel: Q = 100 disc, Bottom panel:
Q = 2 disc). Similar to the results of isothermal shearing sheet
simulations in Dong et al. (2011b), we also find a close agreement
with the linear theory when Q → ∞. However, the values in Q =
2 disc are still different from the linear theory expectation. They
are lower by one order of magnitude when μ � 1 and higher
than the linear theory prediction at μ ∼ 6. The discrepancy in the
high m (or high μ) is possibly due to the limited resolution in the
azimuthal direction in simulations. We need very high resolutions
to resolve the high m modes properly with a much smaller self-
gravity smoothing kernel. As for the low m modes, it is actually not
surprising to see discrepancy, since we only measure the advective
AMF, and ignore the gravitational AMF (see Section 2.2). In Q = 2
discs, FG should contribute a significant amount of AMF. It should
be more important when Q is even smaller (close to 1). To match the
analytical result of total AMF, one has to include FG. On the other
hand, we do see the increases of advective AMF as the Q becomes
smaller. This indicates that as the disc becomes more massive, both
FA and FG increase to contribute for the increase of total AMF, FJ.
Being part of the AMF, FA alone is enough to explain the change
of the density perturbations, i.e. the increases of FA leads to the
increases of the density perturbations. It is not necessary to add FG

when we want to explain the density perturbations qualitatively.

4.1.2 Gap opening

In the linear theory, if the planet mass Mp is large enough (close to
or higher than Mth), the planet can open gaps in the disc. However,
the gap opening mass can be much lower, since the non-linear
effects such as shock can occur even if the system starts in a linear
regime (Goodman & Rafikov 2001; Rafikov 2002). The study of gap
opening is very important since gaps are observable in both gaseous
and dusty discs. They have been found ubiquitously in recent high-
resolution ALMA observations (Huang et al. 2018; Long et al.
2018). Assuming these gaps are due to the planet, one might infer
the planet mass from the gap width and depth (e.g. Zhang et al.
2018). Now we use higher mass planets to demonstrate the effect
of the self-gravity on gap opening.

We first show the results of B17SG discs with Mp = 0.3 Mth,
where the evolution starts in linear regime, marginally opening gap
for non-self-gravitating disc at longer time evolution. Figs 5 and 6
show the density perturbations in 2D and 1D at t = 20 tp (we use
the models whose tgrow = 10 tp here). As the Q decreases, the gap
becomes deeper. Pohl et al. (2015), Li & Li (2016) also find this
effect for higher mass planets. The transition is the most evident
from Q = 5 to Q = 2 discs, where the gap depth becomes a factor of
3 stronger at the major gap where the planet is located. The major
gap is separated by the horseshoe region, thus resembles ‘w’ shape.
The gap width changes only slightly comparing to the gap depth
(see Section 5.2 for details). The secondary gap is around 0.5 to 0.6
rp, the location of which does not change as the Q decreases.

To understand the density perturbations, we plot the AMF of each
simulation in Fig. 7. The left-hand panel shows Mp = 0.1 Mth discs
and right-hand panel shows Mp = 0.3 Mth discs. Given the same
Q, the normalized AMF decreases as the planet mass increases,
which is due to the increasing non-linear shock dissipation. This is
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Figure 5. The gas density perturbations (δ�/�0) of the isothermal self-gravitating discs B17SG with a low mass planet Mp = 0.3 Mth at 20 orbits (with
tgrow = 10 tp). Compared to Fig. 1, higher planet mass can open deeper gap and even the secondary gap (see Fig. 6). The depth of the primary gap becomes
deeper with the decreases of Q. This is the most evident in Q = 2 disc.

Figure 6. The azimuthally averaged density perturbations of Fig. 5. The
blue, orange, green, and red curves represent Q = 100, 10, 5, and 2 discs. As
the disc mass increases, the perturbations become stronger and gaps become
deeper, but the position of the secondary gap does not change significantly.

consistent with the result of non-self-gravitating discs in Miranda &
Rafikov (2019b). The changes of the AMF at each Q has the same
trend as the changes in density perturbations. From Q = 5 to Q = 2,
the AMF doubles. We will quantify this trend in Section 5.1. Since
the normalization factor FJ0 ∝ Mp2, the absolute value of AMF is
still higher in the discs with higher planet mass.

To study how disc self-gravity affects the dust continuum obser-
vations, we evolve simulations for a longer time-scale (500 tp) and
plot the density perturbations of both gas and dust with different
Stokes numbers in Fig. 8. From top to bottom, it shows the δ�/�0 of
gas, and dust with St = 0.001 (represented by St = [0.0005, 0.002]),
0.01 (represented by St = [0.005, 0.02]) and 0.1 (represented by
St = [0.05, 0.2]). Notice that the St0 is the Stokes number at the
beginning of the simulations. As the simulations evolve, the particle
sizes are fixed, so the dust grain might have different St after it drifts.
From left to right, the planet masses are Mp = 0.1, 0.3, and 1.0

Mth. The blue, orange, and green curves represent Q = 100, 10,
and 5 discs. As expected, the perturbations in the dust are stronger
than those in gas, and dust with higher Stokes number has larger
perturbations. This is because dust particles with higher St drift
faster when St � 1. For Mp = 0.1 Mth, St = 0.1 disc, the dust
particles have almost drifted to the inner disc. Similar to the trend in
the gas, the gap becomes deeper, and the ring becomes higher as the
Q becomes smaller, which are consistent with Li & Li (2016). The
positions of the secondary gaps do not change. The overall shapes
of the profiles do not change, except the gaps outside the planet
become weaker for Mp = 0.3 and 1.0 Mth discs at St0 = 0.001. The
positions of them also shift outside. The region beyond r = 1.6 rp

should not be trusted as it is in the wave damping zone. For small Q
and large Mp, some curves for discs with Q = 5 are missing since
the discs have already become unstable at 500 tp. We will discuss
this phenomenon in Section 5.4.

4.2 Adiabatic discs with radiative cooling

In this subsection, we study the effects of radiative cooling on
planet–disc interactions, focusing on B17AD. The simulations
presented in this section are globally isothermal, with q = 0.
The absorption of AMF from the background occurs in locally
isothermal disc (in Figs 1 and 2), but not in globally isothermal
discs here. From left to right, Fig. 9 shows the density perturbations
for the Mp = 0.1 Mth isothermal disc, and adiabatic discs with
cooling time Tcool = 0.01, 0.1, 1, 10, and 100. The top panels
are results from FARGO-ADSG, whereas the bottom panels are
results from Athena++. They are almost identical, except for
the small difference for the corotation features in the Tcool =
100 cases. We analyse the simulations at t = 40 tp for FARGO
and 20 tp for Athena++ due to a shorter tgrow adopted in
Athena++ simulations. At these times, we find that all the discs
are stable and have reached quasi-steady states. Discs with shorter
dimensionless cooling times Tcool are more similar to isothermal

MNRAS 493, 2287–2305 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/2/2287/5733178 by U
niversity of N

evada, Las Vegas user on 08 M
ay 2020



Self-gravity and radiative cooling 2297

Figure 7. The AMF of the isothermal discs at 20 orbits with Mp = 0.1 and 0.3 Mth. Given the same disc mass, as the planet mass increases, the normalized
AMF becomes lower at any disc with different Q, as shock forms earlier and closer to the planet with the increases of the planet mass.

Figure 8. The density perturbations of the gas and dusts with different Stokes number (St = 0.001, 0.01, and 0.1) at t = 500 tp in globally isothermal disc with
Mp = 0.1, 0.3, and 1 Mth (from left to right). From top to bottom panels, there are density perturbations of the gas, St = 0.001, St = 0.01 and St = 0.1 sized
dusts. The blue, orange, and green curves represent Q = 100, 10, and 5 discs. Some curves for discs with Q = 5 are missing since the disc becomes unstable
at this time-steps in the simulations. Overall, the position of the secondary gap does not change with the increase of disc masses. The gap becomes deeper for
lower Q values.

discs, whereas discs with larger Tcool resemble adiabatic discs. The
primary spirals are marked as ‘P’, the secondary spirals are marked
as ‘S’, and the tertiary spirals are marked as ‘T’ on the figure.

From the isothermal to the adiabatic limit (increasing Tcool from
the left to the right-hand panels), the spirals become weaker as the

cooling time-scale becomes longer until Tcool = 1 and then become
stronger again as Tcool continues to increase. The secondary and
tertiary spirals also become very weak at Tcool = 1 and stronger at
Tcool = 10. Nevertheless, the secondary and tertiary spirals are still
present at Tcool = 1 as indicated by the arrows.
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Figure 9. The density perturbations of the adiabatic simulations B17AD at 40 orbits (FARGO) and 20 orbits (Athena++) with Mp = 0.1 Mth. From left
to right, the discs represent fast to slow cooling. The isothermal dick is shown in the leftmost panel, then the dimensionless disc cooling parameters Tcool are
0.01, 0.1, 1, 10, and 100, respectively. The upper panels show results from FARGO-ADSG and the lower panels show results from Athena++. The primary
spirals are marked as ‘P’, the secondary spirals are marked as ‘S’, and the tertiary spirals are marked as ‘T’.

The spirals become more open as the cooling time increases. This
is due to the increases of the sound speed from cs = (RT/μ)1/2 in the
isothermal limit to cs = (γ RT/μ)1/2 in the adiabatic limit. In other
words, the effective γ in equation (30) increases from 1 to 1.4 as
Tcool becomes larger.

The change of the amplitude and position of the spiral arms with
respect to the cooling time can be seen more clearly in 1D plots.
Fig. 10 (left-hand panels) shows the density perturbations versus
azimuthal angle (φ) cut at r = 0.45 rp and r = 0.32 rp. The density
perturbations due to the primary spiral and the secondary spiral are
marked as ‘P’ and ‘S’ on the figure. The one due to the tertiary
spiral is also marked as ‘T’ in the r = 0.32 rp plot. The positions of
the primary, secondary, and tertiary spirals in Tcool = 0.01 discs are
similar to those in the isothermal disc. At r = 0.45 rp, the amplitude
of the spiral in the Tcool = 0.01 disc is slightly lower than that in
the isothermal disc

There is a significant change of the spiral’s amplitude when Tcool

increases from �0.01 to 0.1. The spiral’s amplitude becomes much
smaller at Tcool = 0.1 with a slight shift of the primary spiral position.
The tertiary spiral almost disappears at r = 0.32 rp, but we can still
see its presence with a amplitude of ∼ 1 per cent. But the biggest
change of the spiral’s position occurs when Tcool increases from 0.1
to 1. At r = 0.45 rp, the primary spiral shifts ∼45

◦
between Tcool =

0.1 to Tcool = 1 cases, although the amplitude does not change much.

The tertiary spiral at r = 0.32 rp is now the hump from 160◦ to 250◦

with a amplitude of ∼ 0.5 per cent. At Tcool = 10, the amplitude of
the spiral becomes much higher. The positions are very similar to
those in Tcool = 1. The tertiary spiral also becomes stronger. But
the spirals are still weaker than those in the isothermal disc. From
Tcool = 10 to Tcool = 100 discs, the perturbations seem to converge
to the limit of an adiabatic disc. Overall, from isothermal discs
(Tcool � 0.01) to adiabatic discs (Tcool � 10) the azimuthal angles
of the spirals shift to smaller values by ∼50◦ at r = 0.45 rp. This is
consistent with the finding in 2D plots that the spirals become less
tightly wound as Tcool increases.2

Since spirals are directly related to gap opening, we want to
study how the properties of the induced gaps are related to radiative
cooling. The top panel of Fig. 11 shows the azimuthally averaged
density perturbations of discs with different cooling times. Tcool

= 0.01 disc has a similar profile to the isothermal disc, but with

2Aside from the interesting behaviour at Tcool ∼ 1, we want to note that at
two extremes, the spiral at the adiabatic limit is still weaker than that at the
locally isothermal limit as expected. This is related to the increase of the
effective sound speed with a longer cooling time. When the sound speed
increases, the thermal mass increases and ratio between the planet mass and
the thermal mass decreases so that the planet is less capable of exciting
spiral waves.
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Figure 10. The density perturbations along r = 0.45 rp (upper panels) and r = 0.32 rp (lower panels) for B17AD (left-hand panels) and B17ADSG (right-hand
panels) discs at t = 40 tp. The positions of the primary, secondary, and tertiary spirals for small Tcool are marked as ‘P’, ‘S’, and ‘T’ on the left-hand panels.

smaller amplitudes. The secondary gap at Tcool = 0.1 and 1
disappears (the disappearance of the gap in gas does not necessarily
lead to that in dust; see Section 5.3). It reappears at Tcool = 10, but the
position changes from 0.5 rp to 0.4 rp and the amplitude becomes
smaller. Since spirals carve gaps in discs, the inward shift of the
secondary gap position is due to the more open secondary spiral for
higher Tcool. On the other hand, the non-monotonically transition –
the trend of high, low, and high amplitudes of the secondary gap
depth from the fast cooling to the slow cooling cases – is due to
weaker spirals at intermediate Tcool. Overall, for the intermediate
massive planet (Mp ∼ 0.1 Mth), discs with Tcool � 0.01 can be
treated as isothermal discs and discs with Tcool � 10 can be seen as
purely adiabatic discs, whereas the discs undergo a sharp transition
between these limits, characterized by low amplitude spirals and
shallow secondary gaps. Note that this Tcool � 0.01 criterion is
more stringent with a low mass planet in the linear regime. As
shown in Fig. 2, only when Tcool = 10−4 the AMF is close to the
isothermal case with Mp = 0.01 Mth. Both the temperature gradient
(T ∝ r−0.5) and the linear damping contribute to the AMF profile,
but the linear damping is the dominant effect here.

Since such conditions with intermediate cooling times are very
likely to occur in realistic protoplanetary discs (see Section 2), we
are interested in whether these much shallower secondary gaps can

still trap enough dust particles to be observable. Examining the
previous models in Zhang et al. (2018), we find the current set of
simulations has very similar setup to the h/r = 0.07, α = 10−4,
Mp/M∗ = 11M⊕/M� model in Zhang et al. (2018) (the upper-left
plots in 2D figures therein), despite the α is lower here. However,
the secondary gap cannot be found in any dust configurations in that
model, even though those simulations assume the locally isothermal
EoS. Thus, we conclude that the models being analysed in this
subsection with such low planet mass is not suitable for testing the
observability of the secondary gap. To that end, we run simulations
with higher planet mass, 1 Mth, close to the setup of the AS 209
simulation, α varying model (Zhang et al. 2018). We direct the
discussion to Section 5.3.

We also plot the AMF (in solid curves) and the integrated torque
(in dashed curves) of these discs in the lower panel of Fig. 11. The
torque is integrated from the planet’s position towards either side of
the disc. The AMF decreases monotonously close to the planet (|r
− rp| � 0.1 rp) due to the torque cutoff. The AMF far away from
the planet (e.g. at r = 0.3 rp and 1.5 rp) decreases to the lowest
values at Tcool = 0.1 and 1 and increases back to the isothermal
values at Tcool = 10 and 100. On the other hand, from the fast
cooling (and isothermal) to the slow cooling cases, the torque first
increases and reaches the maximum at Tcool = 1 and then decreases
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Figure 11. Top panel: The azimuthally averaged density perturbations in
Fig. 9, upper panels. Bottom panel: The normalized AMF (solid curves) and
torque (dashed curves) for different cooling times, Tcool. The black curves
represent isothermal disc, whereas blue, orange, green, red, and purple
curves represent adiabatic discs with Tcool = 0.01, 0.1, 1, 10, and 100,
respectively. The changes of the AMF distribution should be responsible for
the change of the density perturbations.

and reaches the minimum at Tcool = 100. The AMF and torque at
several h away from the planet (e.g. at r = 0.85 rp or 1.2 rp) have
similar values in both the very small (e.g. Tcool = 0.01) and very
large (e.g. Tcool = 100) Tcool cases. However, the torque there is
much higher than the AMF at Tcool = 0.1, 1, and 10. This indicates
that, for intermediate cooling cases, the waves fail to launch or are
damped right after they are launched, indicating radiative cooling is
important for these cases. Note that the normalization (characteristic
value, FJ0) should have varied with different cooling times, since
FJ0 ∝ h−3

p . In adiabatic EoS, the sound speed, cs = (
γ

dp

dρ

)1/2
and

the scale height h ∝ cs ∝ γ 1/2. Thus, FJ ∝ γ −3/2. The effective
normalization is 0.6 times the FJ0 in equation (6) at the slow cooling
limit when γ = 1.4. This value should be in between 1 and 0.6 in
transition from small to large Tcool. Nevertheless, we just use FJ0 as
equation (6) and compare the absolute values of the AMF. We will
have more detailed discussions in Section 5.1.

4.3 Disks with both self-gravity and radiative cooling

We also explore a situation that both self-gravity and radiative
cooling are included, even though we do not seek to carry out
a parameter space study. The parameters we choose are Q = 5,
B17ADSG discs with various Tcool. The density perturbations at two
radii are shown in Fig. 10’s right-hand panels. The profiles of the
spirals are very similar to the non-self-gravitating ones on the left-
hand panels. All the trends found in Section 4.2 still apply. At the
same cooling time, the perturbation amplitudes become stronger
and the spirals become tighter if Q becomes smaller, which are
consistent with the results in Section 4.1. This means that when

both of these two physical processes (disk self-gravity and radiative
cooling) are operating, they play similar roles as those that they play
individually, at least for low mass planets. From the magnitudes of
the changes due to these two processes, we can conclude that when
the disc is not too massive (Q � 5), the effects of the self-gravity
on the discs are less important than those of the cooling.

5 D ISCUSSION

5.1 AMF versus Q and Tcool

To quantify the relationships between AMF versus Q and AMF
versus Tcool, we measure the AMF at given positions in Figs 7
and 11 for B17SG and B17AD discs with Mp = 0.1 Mth. We plot
the AMF as a function of Q (the left-hand panel) and Tcool (the right-
hand panel) in Fig. 12. The AMF is measured at 0.87 rp for B17SG
simulations, where it reaches the maximum at the inner disc. The
AMF increases as the disc becomes more massive (with a smaller
Q). This increase becomes quite fast when Q is approaching 2. The
advective AMF in the Q = 2 simulation is almost five times the
AMF in the Q = 100 simulation, which is roughly consistent with
the analytical expectation (equation 26).

As for the radiative cooling, we measure the AMF at 0.9 rp

and 0.6 rp. At the position very close to the planet (e.g. 0.9 rp),
the AMF decreases as the cooling time increases. As mentioned
in Section 4.2, this is most likely due to the transition of the
effective γ (that enters the sound speed) from 1 to 1.4. The
ratio between the AMF at Tcool = 100 and that at Tcool = 0.01
is ∼0.6, which is very close to the expected change due to our
definition of FJ0. However, if the AMF is measured farther away
from the planet (e.g. 0.6 rp), it first decreases and then increases
as Tcool increases, reaching the minima at 0.1 and 1 Tcool. The
decrease of the AMF with the distance away from the planet is
due to the wave damping as the wave propagates. When the wave
propagates to 0.6 rp, the damping is the strongest at Tcool ∼ 0.1 − 1,
implying that radiative cooling plays an important role on the wave
damping/dissipation when Tcool � 1. We are expecting a stronger
wave damping with a smaller Tcool. However, when Tcool becomes
very small and approaches the isothermal limit, the temperature
of the wave becomes the background disc temperature, and shock
damping in this case behaves similar to the shock damping in the
adiabatic limit (Goodman & Rafikov 2001; Dong, Rafikov & Stone
2011a). At the position that the secondary spiral should form, the
wave becomes already too weak to perturb the gas for the Tcool =
0.1 − 1 cases. Thus, the secondary gap can even disappear at these
intermediate cooling times.

5.2 Implications for observations

To quantify the properties of the primary gap, we measure the gap
width and depth in the gas density perturbation maps for B17SG
and B17AD, Mp = 0.1 Mth, using the definitions in Zhang et al.
(2018). Different from Zhang et al. (2018), we only measure the
gaps at ∼50 orbits and from the gas density perturbation profiles,
because we do not run the simulations for very long time and the
planet mass is still too small to open significant gaps in gas and dust.
However, these measurements suffice to demonstrate the trend.

In the upper panels of Fig. 13, the gap width–Q relation is shown
on the left-hand panel, whereas the depth–Q relation is shown on
the right-hand panel. Both the x and y axes are in logarithmic
scales. Since the exponents in the gap depth relations are ∼5 times
larger than that of gap width relations (see Table 1 and 2 in Zhang
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Figure 12. AMF versus Q (left-hand panel) and AMF versus Tcool (right-hand panel). The AMF is measured at r = 0.87 rp for the SG runs and at r = 0.6 rp

(marked as ‘X’s) and 0.9 rp (marked as dots) for the AD runs.

Figure 13. Gap width/depth versus Q (top) and Gap width/depth versus
Tcool (bottom). � and δ - 1 are proportional to Mp. The range for the gap
(depth - 1) is five times than that in the width. Under this factor, the y-axes
on the left-hand and right-hand panels have approximately the same scaling
to Mp. Thus, the y-axes of the left-hand and right-hand panels can be directly
taken as the planet mass in an arbitrary unit.

et al. 2018 for details), the plotted y-axis range for the depth (δ
− 1) is 5 times of the range for the width (�). In this way the
relative magnitude read on both y-axes is roughly proportional to the
planet mass ratio. As Q changes to lower values, the gap depth has
more significant changes than the width. The planet mass inferred
from the gap depth without considering disc self-gravity will be
overestimated. Adopting common exponents 0.25 and 1.25 for the
width–Mp and depth–Mp relations (more precisely, width–K

′
and

depth–K in Zhang et al. 2018), the ratio of the inferred masses
between Q = 2 and Q = 100 discs is 1.5 using the width–Mp

relation, and 6 using the depth–Mp relation. Thus, if one wants to

infer the planet mass, the gap width is a better observable than the
gap depth since it is less sensitive to the disc mass.

The lower panels of Fig. 13 show the width and depth as functions
of the Tcool. The gap width and depth are not very well defined due
to the irregular gap shape. We try to neglect the horseshoe region
around rp when we measure the gap width. It is better to use the
gap depth as a proxy for the planet mass. If one uses the gap width
to measure the planet mass in locally isothermal simulations, the
planet mass will be underestimated if Tcool � 0.01.

Note that these trends found in the low planet mass regime do not
necessarily apply to the high planet mass regime, as we will discuss
in the next subsection, where we find much less change in the gap
shape for various cooling times.

5.3 AS 209: cooling in the high planet mass regime

We have two goals in this subsection. One is to explore the effects
of radiative cooling on the gap properties when the planet mass is
relatively large reaching the thermal mass. Meanwhile, we decide
to choose a model that resembles a realistic disc so that we are
able to constrain its surface density via estimating its Tcool. Of all
the DSHARP discs, AS 209 features many intricate gaps and rings
(Guzmán et al. 2018). Using simple (without radiative cooling and
self-gravity) hydrodynamical simulations, Zhang et al. (2018) find
an excellent match to the AS 209 disc with a model whose (h/r)p =
0.05, α = 3 × 10−4(r/rp)2, and Mp/M∗ = 10−4, or 1 Mth.3 The dust
size distribution is a power law n(a) ∝ a−3.5, amax = 0.68 mm, and
the gas surface density �g, 0 = 6.4 g cm−1. This model can explain
up to five gaps in the disc, not only their locations, but also the
intensity. Since we have found that self-gravity and radiative cooling
have the potential to change the gap shape and the secondary gap
position in the low planet mass regime, we would like to explore

3We also run simulations with constant α as the model (b) in Zhang et al.
(2018). Same as previous models, they reproduce AS 209’s 1D profile, but
are non-axisymmetric in 2D. We do not see more differences due to the
viscosity profile.
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Figure 14. Azimuthally averaged density perturbations and brightness
temperature of AS209AD and AS209ADSG at 400 tp. From top to bottom,
they are the density perturbations of the gas, dusts with Stmax = 3 × 10−3

and Stmax = 3 × 10−2. The bottom panels show the brightness temperature
of the Stmax = 3 × 10−2 (amax = 0.5 mm) dust models. The left-hand panels
show the cases without self-gravity, whereas the right panels show the cases
with Q = 5. The blue, orange, green, and red curves represent Tcool = 0.01,
0.1, 1, and 100, respectively. The Tcool = 0.01 curves on the left-hand panels
are almost identical to the locally isothermal cases in Zhang et al. (2018)
(the slight difference is mainly due to the different setups in resolution,
temperature profile, indirect term, and smoothing length).

how the planet mass for AS 209 will change considering these two
physical processes.

Fig. 14 shows the azimuthally averaged density perturbation and
brightness temperature of the AS209models with different cooling
times (Tcool = 0.01, 0.1, 1, and 100) and different disc masses
(Q = ∞ and 5) at 400 tp. We choose not to show Tcool = 10 case
to avoid crowdedness of the figure, but its feature is similar to the
Tcool = 100 case with shallower gaps in dust. The left-hand panels
show the Q = ∞ cases, whereas the right-hand panels show the
Q = 5 cases. The blue, orange, green, and red curves represent Tcool

= 0.01, 1, 10, and 100 cases, respectively. From the top to bottom
panels, it shows the density perturbations of the gas, the dust with
Stmax = 3 × 10−3, Stmax = 3 × 10−2, and the brightness temperature
of the Stmax = 3 × 10−2 models. We assume that the temperature
in the disc is proportional to r−0.5 in the last row and the procedure
to obtain the optical depth is detailed in Zhang et al. (2018). As the

Tcool becomes larger, the perturbation at the major gap (where the
planet locates) becomes shallower in gas. However, this is not the
case in dust. The gap width and depth are almost the same across
different cooling times. This result is different from that in the low
planet mass regime, where the gap shapes are quite different across
different cooling times. For dust profiles, the horseshoe region has
the smallest density for Tcool = 1. The secondary gap disappears
for Tcool = 1 in gas, but it is still noticeable in dust for Stmax =
3 × 10−2, with a lower amplitude than Tcool = 0.01, 0.1, and 100
cases. This indicates that, due to the gaseous bump at the inner edge
of the primary gap, dust particles can still be trapped there, forming
the secondary gap in dust even if the secondary gap disappears
in the Tcool = 1 case. The location of the secondary gap shifts
from ∼0.65 rp to ∼0.6 rp when Tcool increases. The tertiary gap is
also present in Tcool = 0.01 and 100 cases. It moves inwards from
∼0.43 rp to ∼0.37 rp. Although the tertiary gap is not present in
the Tcool = 1 case, a change of slope can been seen at ∼0.4 rp

(this is more obvious in Q = 5 case). The Q = 5 discs are similar
to the Q = ∞ discs but with slightly stronger perturbations. The
differences between different Tcool curves are slightly smaller in
Q = 5 discs than those in Q = ∞ discs.

Note that aside from the EoS, the simulation setups in this
subsection are different from those in Zhang et al. (2018) in
several aspects (e.g. the resolution, domain size, temperature profile,
indirect term, smoothing length, and planet growing time). Thus,
the gap shape and position are expected to be slightly different
from the simulations in Zhang et al. (2018). Also, as time evolves,
the position of the secondary and tertiary gaps will move slightly
inwards. Thus, we do not try to compare these profiles with AS
209 observations. Instead, we use this example to demonstrate the
observable differences due to different cooling times.

We also want to emphasize that without the self-gravity, the
location of the planet and the gaseous surface density from the
simulation can be scaled to any value. However, when the disc self-
gravity is included, the gas density and the location of the planet
are related. The relation is �g,0 = (M∗/r2

p )(h/r)p/(πQp). Taking
M∗ = 0.83 M�, rp = 99 au, Qp = 5 and (h/r)p = 0.05, we get �g, 0

= 2.4 g cm−2. In Zhang et al. (2018), the best-fitting model has Q
≈ 2 at the planet’s position in the initial condition.

Assuming the gaps at 24, 35, and 61 au in AS 209 are related to
the planet at 99 au, we can use these gaps to constrain the AS 209
disc mass. Using equation (39), and adopting the stellar luminosity
as 1.4 L� and the mass as 0.87 M� from Andrews et al. (2018), φ =
0.02, Tf = 20 K, and κR = 0.21 cm2g−1, we have

Tcool = 0.02

[
1 + 0.01

( �

1 g cm−2

)2
] {

2.5 r ≤ 46 au(
r

99 au

)−3/2
r > 46 au

. (43)

To produce an observable tertiary gap, we need low or high cooling
times (Tcool � 0.1 or Tcool � 10). However, Tcool � 10 requires
� � 200 g cm−2, which is impossible since Q would be �1.
If Tcool � 0.1, we can constrain � � 20 g cm−2. While it is an
independent constraint, this does not give tighter constraint on the
density for this disc, since from gravitational instability criterion
(equation 8), the disc will become unstable if �g, 0 > 12 g cm−2

at 99 au. Nevertheless, this constraint from the disc cooling is
consistent with that from the disc instability.

The Q = 5 models with low Tcool might be plausible models
for the AS 209 disc, since their density at 99 au is allowed given
the constraints derived above. However, with the density �g, 0

= 2.4 g cm−2 from the Q = 5 disc, we cannot restore the intensity
measured from the DSHARP observation. It is much lower than
that from the observation. Only �g, 0 � 6 g cm−2 can explain the
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Self-gravity and radiative cooling 2303

Figure 15. The density perturbations of B17SG discs with Mp = 0.3 and 1.0 Mth (top and bottom) at t = 100 tp. The disc becomes unstable at Q = 2. The
lower panel shows that self-gravity can suppress small m vortices, so that the number of the vortices increases as Q becomes smaller.

intensity. This means that either the actual opacity is higher than
what we adopt (e.g. the dust-to-gas mass ratio is larger) or the disc
has even lower Q. If the latter is true, the Tcool can be larger (but still
<1), since the low Q that is close to unity can produce much stronger
perturbations, compensating for the weaker perturbations due to the
larger value of the Tcool. Interestingly, Powell et al. (2019) estimate
the gas surface density � ≈ 10 g cm−2 at 100 au, using the ‘dust
line’ method. This high surface density is actually compatible and
consistent with the constraints from disc self-gravity and radiative
cooling for the AS 209 disc. If this is the case, it indicates that
the outer disc of the AS 209 disc is marginally gravitational
stable.

5.4 Long time evolution for self-gravitating discs with planets

On the other hand, in our long time-scale simulations, we find that
the self-gravitating discs with planets tend to become unstable at
later times. This happens earlier if the Q is small or if the planet
mass is high. Fig. 15 shows the density perturbations of B17SG
discs when Mp = 0.3 and 1.0 Mth (top and bottom) at t = 100 tp.
Q = 2 discs have become unstable at this point. This is why low Q
and high Mp curves are missing in Fig. 8. The disc would become
more stable if the radiative cooling is included. For instance, the
AS209ADSG simulations discussed in Section 5.3 can evolve for
very long time without any sign of instability even though their Q =
5 and Mp = 1 Mth. Another interesting behaviour in the lower panels
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is that as the disc becomes more massive, the number of vortices at
the gap edge becomes larger. This is consistent with the simulation
results in Lin (2012), Zhu & Baruteau (2016), as self-gravity can
suppress large-scale (small m) vortices produced by Rossby wave
instability (Lovelace et al. 1999).

6 C O N C L U S I O N S

We run 2D hydrodynamical simulations to explore the effects of
self-gravity and radiative cooling on the gap and spiral formation in
protoplanetary discs. We explore these effects with different Toomre
Q parameters and the dimensionless cooling times Tcool for low mass
planets. As the disc becomes more massive (smaller Q), we find:

(i) The spirals become slightly more tightly wound, especially
when Q ∼ 2, which is consistent with the linear theory.

(ii) The spirals become stronger and the primary and secondary
gaps become deeper. This is due to the higher AMF in more massive
discs, which is consistent with the linear theory. The advective AMF
in the Q = 2 disc is almost five times the AMF in the Q = 100 disc.

(iii) If Q � 2, the secondary gap’s position does not change,
despite gaps being deeper.

In discs with radiative cooling, we find:

(i) Even with a relatively short Tcool = 0.01, the spiral waves
cannot pick up AMF from the background disc when they are
propagating to hotter regions, different from locally isothermal
discs.

(ii) The spirals become less tightly wound (more open) as the
cooling time increases, due to the increase of the disc’s effective
sound speed. The spiral’s openness changes dramatically from discs
with Tcool = 0.1 to Tcool = 1.

(iii) The spirals become weaker as the cooling time increases
from a small value to 1/�, and then start to become stronger as the
cooling time increases. There is a significant change of the spiral’s
amplitude when Tcool increases from � 0.01 to 0.1.

(iv) The AMF of the wave dissipates the fastest during its
propagation when Tcool ∼ 0.1 to 1, implying that radiative damping
may be important.

(v) With weaker spirals, the secondary gaps due to low mass
planets disappear when Tcool = 0.1 to 1.

(vi) If the secondary gap is present, its position moves from ∼
0.5 rp to ∼ 0.4 rp in a disc with (h/r)p = 0.07 in transition from the
isothermal limit to the adiabatic limit.

(vii) For Q � 5 discs, the effect of radiative cooling is more
critical than self-gravity.

Our simulations also have implications for the observations. We
have run planet–disk simulations with massive planets (∼ thermal
mass):

(i) One might overestimate the planet mass using the simulation
that neglects self-gravity. The gap width is less sensitive to the disc
self-gravity than the gap depth. Thus, it is better to constrain the
planet mass using the gap width when disc self-gravity is important.

(ii) One might underestimate the planet mass using the simula-
tion that neglects the radiative cooling. This is especially the case
when Tcool ∼ 1.

(iii) For deep primary gaps in the high planet mass regime, their
shapes are less affected by the cooling time, but the secondary gap’s
position and depth for the gas depend on the cooling time. On the
other hand, the secondary gap in dust or brightness temperature
is less sensitive to the cooling time since dust drift fast to the

primary gap edge forming secondary gaps. The tertiary gap becomes
unnoticeable in both gas and dust when Tcool = 1.

(iv) The dependence of the gap properties (e.g. gap depth, width,
and secondary/tertiary gap’s position and depth) on the cooling
time-scale provides a new way to constrain the gaseous disc surface
density.

(v) Assuming the gaps at 24, 35, and 61 au in AS 209 are all
associated with the planet at 99 au, the gas surface density at
∼100 au in AS 209 should be �20 g cm−2 using the Tcool � 0.1
cooling constraints, which is consistent with the surface density
constraint from Q � 1.
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Béthune W., Rafikov R. R., 2019, MNRAS, 487, 2319
Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ.

Press, Princeton
Birnstiel T. et al., 2018, ApJ, 869, L45
Booth A. S., Walsh C., Ilee J. D., Notsu S., Qi C., Nomura H., Akiyama E.,

2019, ApJ, 882, L31
de Juan Ovelar M., Min M., Dominik C., Thalmann C., Pinilla P., Benisty

M., Birnstiel T., 2013, A&A, 560, A111
Dong R., Rafikov R. R., Stone J. M., 2011a, ApJ, 741, 57
Dong R., Rafikov R. R., Stone J. M., Petrovich C., 2011b, ApJ, 741, 56
Dong R., Zhu Z., Whitney B., 2015, ApJ, 809, 93
Dong R., Li S., Chiang E., Li H., 2018, ApJ, 866, 110
Dullemond C. P. et al., 2018, ApJ, 869, L46
Flock M., Ruge J. P., Dzyurkevich N., Henning T., Klahr H., Wolf S., 2015,

A&A, 574, A68
Gammie C. F., 2001, ApJ, 553, 174
Goldreich P., Tremaine S., 1978, ApJ, 222, 850
Goldreich P., Tremaine S., 1979, ApJ, 233, 857
Goldreich P., Tremaine S., 1980, ApJ, 241, 425
Gonzalez J.-F., Laibe G., Maddison S. T., 2017, MNRAS, 467, 1984
Goodman J., Rafikov R. R., 2001, ApJ, 552, 793
Guzmán V. V. et al., 2018, ApJ, 869, L48

MNRAS 493, 2287–2305 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/2/2287/5733178 by U
niversity of N

evada, Las Vegas user on 08 M
ay 2020



Self-gravity and radiative cooling 2305

Gyeol Yun H., Kim W.-T., Bae J., Han C., 2019, ApJ, 884, 142
Huang J. et al., 2018, ApJ, 869, L42
Hunter J. D., 2007, Comput. Sci. Eng., 9, 90
Jones E., et al., 2001, SciPy: Open source scientific tools for Python.

Available at: http://www.scipy.org/
Juhász A., Rosotti G. P., 2018, MNRAS, 474, L32
Kanagawa K. D., Muto T., Tanaka H., Tanigawa T., Takeuchi T., Tsukagoshi

T., Momose M., 2015, ApJ, 806, L15
Kanagawa K. D., Muto T., Tanaka H., Tanigawa T., Takeuchi T., Tsukagoshi

T., Momose M., 2016, PASJ, 68, 43
Kley W., Nelson R. P., 2012, ARA&A, 50, 211
Li S., Li H., 2016, J. Phys., 719, 012007
Lin M.-K., 2012, MNRAS, 426, 3211
Lin M.-K., 2015, MNRAS, 448, 3806
Lin M.-K., Papaloizou J. C. B., 2011, MNRAS, 415, 1445
Long F. et al., 2018, ApJ, 869, 17
Lovelace R. V. E., Jore K. P., Haynes M. P., 1997, ApJ, 475, 83
Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
Lynden-Bell D., Kalnajs A. J., 1972, MNRAS, 157, 1
Miranda R., Rafikov R. R., 2019a, ApJ, 875, 37
Miranda R., Rafikov R. R., 2019b, ApJ, 878, L9
Ogilvie G. I., Lubow S. H., 2002, MNRAS, 330, 950
Okuzumi S., Momose M., Sirono S.-i., Kobayashi H., Tanaka H., 2016, ApJ,

821, 82
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