
RESEARCH ARTICLE

A population model for the 2017/18 listeriosis

outbreak in South Africa

Peter Joseph WitbooiID
1*, Charlene Africa2, Alan Christoffels3, Ibrahim Hussin

Ibrahim Ahmed3

1 Department of Mathematics and Applied Mathematics, University of the Western Cape, Bellville, South

Africa, 2 Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa, 3 SA

MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape,

Bellville, South Africa

* pwitbooi@uwc.ac.za

Abstract

We introduce a compartmental model of ordinary differential equations for the population

dynamics of listeriosis, and we derive a model for analysing a listeriosis outbreak. The

model explicitly accommodates neonatal infections. Similarly as is common in cholera

modeling, we include a compartment to represent the reservoir of bacteria. We also include

a compartment to represent the incubation phase. For the 2017/18 listeriosis outbreak that

happened in South Africa, we calculate the time pattern and intensity of the force of infec-

tion, and we determine numerical values for some of the parameters in the model. The

model is calibrated using South African data, together with existing data in the open litera-

ture not necessarily from South Africa. We make projections on the future outlook of the epi-

demiology of the disease and the possibility of eradication.

Introduction

The World Health Organisation (WHO, 2018) reported [1] the 2017/2018 outbreak of listerio-

sis in South Africa as the largest global outbreak recorded to date. Between 1 January 2017 and

14 March 2018, the National Institute for Communicable Diseases (NICD) reported 978 con-

firmed cases of whom 42% were neonates, infected via vertical transmission from infected

pregnant mothers. Listeriosis is transmitted through the contamination of infected food prod-

ucts with a Gram-positive non-spore forming, facultatively anaerobic bacillus called Listeria
monocytogenes [2] (Lamont et al 2011). The outbreak was predominantly attributed to

sequence type 6 (ST6) while other sequence types attributed to 9% of infections [1] (WHO,

2018). Listeriosis is reported to occur 18 times more frequently in pregnant than non-pregnant

women [3] (Jackson et al., 2010). Infection is usually asymptomatic or may primarily manifest

as a non-specific flu-like illness which is often overlooked, particularly during pregnancy, leav-

ing the mother and her unborn infant at risk of serious illness. The infection may be vertically

transmitted while the baby is in utero, either by translocation across the placenta or by aspira-

tion of contaminated amniotic fluid or or during delivery of the infant. Foetal infection (dur-

ing the 1st and 2nd trimester of pregnancy) may result in abortion, stillbirth, or premature

delivery with amnionitis (during late pregnancy). Neonatal infection can be fatal and may be

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0229901 March 12, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Witbooi PJ, Africa C, Christoffels A,

Ahmed IHI (2020) A population model for the

2017/18 listeriosis outbreak in South Africa. PLoS

ONE 15(3): e0229901. https://doi.org/10.1371/

journal.pone.0229901

Editor: Maria Vittoria Barbarossa, Heidelberg

Germany, GERMANY

Received: May 8, 2019

Accepted: February 18, 2020

Published: March 12, 2020

Copyright: © 2020 Witbooi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: No new data was

generated during this research. The information

that was used to illustrate the model is freely and

publicly available from the (very reliable) websites

as indicated in the references [14], [24] and [27].

Funding: The co-authors Ibrahim Ahmed and Alan

Christoffels are funded through the South African

Research Chairs Initiative of the Department of

Science and Innovation and the South African

National Research Foundation UID:64751.

Competing interests: The authors have declared

that no competing interests exist.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/344913257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-1304-0282
https://doi.org/10.1371/journal.pone.0229901
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229901&domain=pdf&date_stamp=2020-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229901&domain=pdf&date_stamp=2020-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229901&domain=pdf&date_stamp=2020-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229901&domain=pdf&date_stamp=2020-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229901&domain=pdf&date_stamp=2020-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229901&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.1371/journal.pone.0229901
https://doi.org/10.1371/journal.pone.0229901
http://creativecommons.org/licenses/by/4.0/


of early onset (occurring within the first 24 hours to first week of life) or late onset (7 days to 6

weeks after birth) and is usually nosocomially acquired. Early onset disease (EOD) accounts

for 62% of cases and may manifest as sepsis, respiratory distress and thrombocytopenia, while

late onset disease (LOD) may present as sepsis or meningitis. Case fatalities in neonates are

high [4] (Okike et al., 2013).

The 2017/2018 outbreak of listeriosis in South Africa, highlighted the need for adequate

surveillance and prevention of this infection, bearing in mind that prior to this outbreak, the

NICD regarded Listeria monocytogenes as a rare pathogen in meningitis infection in South

Africa (NICD 2017) [5].

Mathematical modeling has been utilised in the fight against various epidemics. In particu-

lar, there is a vast literature on so-called compartmental models of systems of ordinary differ-

ential equations (ODEs), [6–9] for instance. Such models are mainly utilized under the

assumption that there are no external forces working on the system. Understanding exactly

how a sudden epidemic outbreak occurs will often require a different analysis. Such analyses

of outbreaks have been studied for various diseases, [10], [11] and [12].

The aim of this paper is to propose a compartmental model for the population dynamics of

listeriosis, and to derive a model for analysing a listeriosis outbreak. In particular the model

explicitly accommodates neonatal infections. Similarly as is commonly done for cholera mod-

els, for instance [7–9], we include a compartment to represent the reservoir of bacteria. We

also include a compartment to represent the incubation phase. For the 2017/18 outbreak [13]

that happened in South Africa, we calculate the time pattern and intensity of the force of infec-

tion, and we make projections on the numbers of new infections and mortalities subsequent to

the recall of the contaminated food that was the source of the infection. The model is calibrated

using data from the NICD [13] of South Africa, together with existing data in the open litera-

ture not necessarily from South Africa. Our model differs from both the listeriosis population

dynamics model in [14] and the listeriosis-anthrax coinfection model in [6] in several ways.

Essentially the latter two models do not explicitly consider neo-natal infections and do not

include a compartment for the incubation phase.

There are different ordinary differential equations (ODE) models for the population

dynamics of infectious diseases under different conditions. Usually such models assume that

the infection has entered the population or the system, and thereafter there is no external inter-

ference on the system. We shall refer to such models simply as population models. Modelling

of how the population responds (numerically) while the infection is invading the system, i.e.,

during an outbreak of the disease, requires a different approach. In this paper we propose a

population model for listeriosis disease. Properly calibrated, the model permits computation

of future outlooks on a listeriosis epidemic. In terms of this proposed model we reflect on the

listeriosis outbreak in South Africa 2017-18 [13]. In particular we discover the temporal pat-

tern description of how the original infection took place and we make future projections of its

epidemiology. For a previous listeriosis outbreak, the paper [12] presents a similar investiga-

tion but with completely different methods.

Methods

The population dynamics of listeriosis disease is studied by way of a newly introduced com-

partmental model of ODE. The model explicitly accommodates neonatal infections and we

include a compartment to represent the reservoir of bacteria. Recent examples of models with

vertical transmission can be found in the papers [15] and [16] for instance. Our analysis

includes both theoretical mathematics as well as computer simulations. The model is cali-

brated to South African data.
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The model

We describe our ODE compartmental model as follows. By E we denote the collection of indi-

viduals who are infected with listeriosis, but do not experience the symptoms. Those who are

beyond the latter phase and are suffering the symptoms of listeriosis form a compartment I. By

R we denote the removed, i.e., those who have recovered from listeriosis and have temporary

immunity. This can be bodily immunity or through lifestyle adaptation. The remaining popu-

lation forms the class S of so-called susceptibles. At any given time t the sizes of these compart-

ments are denoted by E(t), I(t), R(t) and S(t) respectively. The size of the population at time t is

denoted by N(t), and then N(t) = S(t) + E(t) + I(t) + R(t). It is also assumed that the pathogen is

present in the environment, over and above those that live in the form of human infection.

Thus our system has another compartment B, with B(t) representing the abundance of the

pathogen at time t. The data in the report [13] of the NICD show that in any given week the

number of new infections were always below 1000, in a very large population. This has impli-

cations (mainly simplification) of our computations. Since we do not have data available to

feed into the model, we work with B(t) just as an abstract quantity, but we now declare the

(proportional) connection of B(t) with the concentration of the pathogen. If we write P(t) for

the average (over the population) concentration of the pathogen in the diet, then for a suitable

proportionality constant q, we write B(t) = qP(t). Here q is chosen in such a way that:

B ¼ 1 corresponds to the value of P that; in a population of 60 million susceptibles; causes100 infections per week: ð1Þ

The sizes of these compartments will be treated as continuous variables (rather than inte-

gers). We assume a homogeneously mixing population. We introduce non-negative constant

parameters K, μ, ϕ, ψ, δ, z and ν. The number K is the size of the population when in disease-

free state, i.e., at disease-free equilibrium. The general mortality rate is denoted by μ. In the I-

compartment the mortality rate is amplified by the disease-induced mortality rate δ. Therefore

in the compartments S,E,R and I respectively, the rate of outflow due to death are (resp.) μS,

μE, μR and (μ + δ)I.
It is assumed that there is an inflow of individuals (newborns) into the system at a rate μK.

Part of the inflow is into the I-class, as neonates are at risk of contracting the infection from

the mother if she is infected. So let us use θ to denote the fraction of neonates from infected

mothers who do contract the infection from the mother. The number of babies from infected

mothers can be calculated as μI. Therefore the number of newborns entering the I-class is θμI.
We assume that the probability of an individual becoming infected with listeriosis during a

short period of time [t, t + h] is hβ(t) where β(t) is given by

bðtÞ ¼
cBðtÞ

Lþ BðtÞ
ð2Þ

for some fixed positive constants c and L. This means that new infections occur at a rate β(t)S
(t), and so β(t)S(t) is the rate of transfer from the S-class to the E-class. The given form of β(t)
is also applied in modeling of cholera. The rate of transfer from the E-class to the I-class is ϕE
(t) and the rate of transfer from the I-class to the R-class is ψI(t). From the R-class, individuals

move to the S-class at the rate zR(t). The flow chart, Fig 1, of the proposed model shows the

rates of transfer in or out of compartments.

In the environment, the bacteria are assumed to have an effective rate of decline denoted by

ν. Furthermore, the infectious class I of the human population contributes to the bacteria in
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the environment at a rate ξI(t). The factor ξ takes the form

x ¼
Z

1þ Z0I

for some non-negative constants η and η0. Then the population dynamics of the disease is

described by the system (3) of five ordinary differential equations.

dSðtÞ
dt

¼ mK � ymIðtÞ � mSðtÞÞ � bðtÞSðtÞ þ zRðtÞ

dEðtÞ
dt

¼ bðtÞSðtÞ � ð�þ mÞEðtÞ

dIðtÞ
dt

¼ ymIðtÞ þ �EðtÞ � ðcþ mþ dÞIðtÞ

dRðtÞ
dt

¼ cIðtÞ � ðzþ mÞRðtÞ

dBðtÞ
dt

¼ xIðtÞ � nBðtÞ

ð3Þ

For notational convenience we introduce the symbol

m1 ¼ cþ mþ d:

The state of the population at any time t is a solution X(t) = (S(t), E(t), I(t), R(t), B(t)) of this

system of differential equations. As is common in compartmental ODE models, this system of

equations is applicable when studying the phase subsequent to an outbreak. During the out-

break itself, the infection is imposed on susceptibles by an external force, and we follow a

slightly different approach.

It can routinely be shown that the set

D ¼ fx 2 ½0;1Þ5 : x1 þ x2 þ x3 þ x4 � Kg

is an invariant domain for the system. This means essentially that all the state variables will be

non-negative and the total population size will never be bigger than K.

Fig 1. The flow chart of the listeriosis disease model. The dashed lines indicate influences but not flow of individuals.

https://doi.org/10.1371/journal.pone.0229901.g001
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The basic reproduction number

The model has a disease-free equilibrium point, denoted by X�
0
, and X�

0
¼ ðK; 0; 0; 0; 0Þ. The

basic reproduction number R0 of a disease in a population is defined as the number of infec-

tions caused by introducing a single infectious person into a susceptible population. It has the

property that whenever R0 < 1, then the disease-free equilibrium is locally asymptotically sta-

ble, see [17]. The latter means that if the initial state of the population is sufficiently close to

disease-free, then in the long run the disease will be eradicated from the system. We determine

the basic reproduction number of the model (3) following the next-generation matrix method

as presented in the work [17]. The vector of infectious classes is (E, I, B). Then the next-genera-

tion matrix is of the form FV−1 with F and V as below.

F ¼

0 0 cK
L

0 ym 0

0 Z 0

2

6
6
6
4

3

7
7
7
5

V ¼

�þ m 0 0

� � m1 0

0 0 n

2

6
6
6
4

3

7
7
7
5
:

Therefore we obtain the next-generation matrix as:

FV � 1 ¼

0 0 cK
nL

ym�

m1ðmþ�Þ

ym

m1
0

Z�

m1ðmþ�Þ

Z

m1
0

2

6
6
6
6
4

3

7
7
7
7
5
:

Its characteristic equation is:

ð� lÞ
2
½
ym

m1

� l� þ
cK
nL
½

Z�

m1ðmþ �Þ
�l ¼ 0:

The basic reproduction number is the maximum of the moduli of the roots λ of the latter

cubic equation. Therefore,

R0 ¼
ym

2m1

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ym

2m1

� �2

þ
Z�cK

m1ðmþ �ÞnL
:

s

Recall that the number R0 serves as an indicator of local stability (or otherwise) of the disease-

free equilibrium of system (3) (see [17]). We shall also refer to the following number Rg, when

studying global stability, proving that the condition Rg< 1 guarantees global stability of the

disease-free equilibrium. Global stability of the disease-free equilibrium means that irrespec-

tive of the initial state of the population, in the long run the disease will tend towards extinc-

tion, and is a stronger condition than local stability.

Rg ¼
�ZcK

ðmþ �Þ½cþ mð1 � yÞ þ d�nL
:

In fact, as indicators of stability, the invariants Rg and R0 are equivalent as we prove below.
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Theorem. (Equivalence of stability thresholds).

1. If Rg< 1 then R0 < 1.

2. If Rg> 1 then R0 > 1.

Proof. We can write

Rg ¼
D

m1ð1 � 2xÞ
; with D ¼

�ZcK
ðmþ �ÞnL

and x ¼
my

2m1

:

Then

R0 ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ D=m1

p
:

(a) Now suppose that Rg� 1. Then D/μ1 < (1 − 2x). Therefore,

R0 ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ D=m1

p
< xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1 � 2x
p

¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � xÞ2
q

¼ 1:

This proves (a).

(b) This follows by a similar argument.

Global stability of the disease-free equilibrium

When working towards eradication of an endemic infectious disease, global stabilization of the

disease-free equilibrium state is important. This will ensure that in the long term, the pathogen

will become extinct in the population.

Global stability theorem. If R0 < 1, then the disease free equilibrium, X� = (K, 0, 0, 0, 0), of
the system (1) is globally asymptotically stable.

Proof. Let us assume that R0 < 1. Then also Rg< 1. This condition is equivalent to the

inequality

�cK
ð�þ mÞL

� cþ m 1 � yð Þ þ d½ �
n

Z
< 0:

Given the latter inequality there exist positive numbers b0, b1, � such that

b1 þ ðb0 þ 1Þ
�

�þ m

� �
cK
L
� cþ m 1 � yð Þ þ d½ �

n

Zð1þ �Þ
< 0: ð4Þ

We fix such numbers b0, b1, and �. Now we define the following numbers:

a1 ¼
ðb0 þ 1Þ�

�þ m
and a3 ¼

cþ mð1 � yÞ þ d

Zð1þ �Þ
:

In particular we note that

ym � ðcþ mþ dÞ þ a3Z < 0:

Therefore we can find a number a0 > 0 such that a0� b1 and such that

ða0 þ 1Þym � ðcþ mþ dÞ þ a3Z < 0:

We can also choose a number a2 > 0 such that

ða0 þ 1Þym � ðcþ mþ dÞ þ a2cþ a3Z < 0: ð5Þ
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We introduce a new variable Q(t) = K − S(t) and we define a function

V ¼ VðQðtÞ;EðtÞ; IðtÞ;RðtÞ;BðtÞÞ;

which we shall prove to be a Lyapunov function with respect to the disease-free equilibrium

point X�
0
. This will suffice to complete the proof. Thus, let

V ¼ a0Qþ a1Eþ I þ a2Rþ a3B:

Then

dV
dt
¼ � a0mQþ ða0 þ a1ÞbSþ E½� � a1ð�þ mÞ� þ I½a0ymþ ym � ðcþ mþ dÞ þ a2cþ a3x�

þ R½� a2ðzþ mÞ � a0z� � a3nB:

Noting that β = cB/(L + B) and S� K, in particular we obtain the following inequality

ða0 þ a1ÞbS � a3nB � ða0 þ a1Þ
cK
L
� a3n

� �

B:

Also, ξ� η. Therefore we obtain:

_V � � a0mQþ E½� b0�� þ I½a0ymþ ym � ðcþ mþ dÞ þ a2cþ a3Z� þ R½� a2ðzþ mÞ � a0z�

þ B½ða0 þ a1Þ
cK
L
� a3n�:

On the right hand side of the latter inequality, we note that the coefficients of Q, E and R
are negative. From the inequality (5) it follows that also the coefficient of I is negative. Regard-

ing the coefficient of B we observe:

a0 þ a1ð Þ
cK
L
� a3n ¼ a0 þ

ðb0 þ 1Þ�

�þ m

� �
cK
L
� a3n:

Therefore

a0 þ a1ð Þ
cK
L
� a3n � b1 þ

ðb0 þ 1Þ�

�þ m

� �
cK
L
�

cþ mð1 � yÞ þ d

Zð1þ �Þ

� �

n;

and so by the inequality (4) the coefficient of B is negative. Thus we have shown that V is a Lya-

punov function, and this completes the proof.

Existence of an endemic equilibrium point

The endemic equilibrium point X�e has I� 6¼ 0. In this case, in particular we have also B� 6¼ 0. In

fact for the endemic equilibrium point we have (and note that we write η/(1 + η0 I�) = ξ�):

I� ¼
n

x
� B�; R� ¼

c

zþ m
I�; E� ¼

mn
�x
� B�;
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wherem = ψ + μ + δ − θμ. The values of S� and B� are calculated as follows:

S� ¼
ð�þ mÞmn
c�x�

ðLþ B�Þ;

B� ¼
mðzþ mÞ

nZ
c�x�K � ð�þ mÞmnL½ �; ð6Þ

with Z ¼ c�ymðzþ mÞ þmðzþ mÞð�þ mÞðmþ cÞ � czc�:

Now we note the following inequality:

Z > mðzþ mÞð�þ mÞðmþ cÞ � czc� > mðzÞð�ÞðcÞ � czc� > 0; becausem > c:

Thus we have shown that the denominator in the expression (6) is positive. Consequently

for B� > 0 we must have cϕξ�K − (ϕ + μ)mνL> 0. The latter condition implies R0 > 1, since

ξ� � η. It can routinely be shown that the positive equilibrum X�e exists if and only if R0 > 1.

Parameter values relevant to outbreak

Values of parameters of system (3) will be discussed in this section, and are presented in

Table 1. We also analyse the transmission probabilities α(t) for the duration of the outbreak.

Since the listeriosis data [13] from the South African NICD are given per week, we choose 1

week as our unit of time (but in simulations we consistently use timestep equal to 1 day).

From the NICD data which are reflected in Fig 3, we fit the parameters ϕ, ψ and δ, and their

values are as in Table 1. The data also sheds light on θ. Regarding θ, simple calculations reveal

that there must have been many infected babies whose mothers were not listeriosis patients. In

a random sample of n the expected percentage F of babies, who in a given period of 62 weeks

Table 1. Numerical values of parameters.

Param. Description Numerical value Reference/comment

K Population size when disease-free 60 000 000 [18]

μ mortality rate, excluding death directly due to listeriosis 0.000298 per

week

[18]

δ rate of human deaths due to listeriosis 0.0183 per week [13]

ϕ Transfer rate from E-class to I-class 1.29 per week [13]

ψ Transfer rate from I-class to R-class (recovery rate) 0.0484 per week [13]

z Transfer rate from R-class to S-class (rate of loss of becoming

susceptible post recovery)

1

6
per week Nominal value, lack of available data. This depends on the specific

population/region.

θ The proportion of neonates who contracts listeriosis from the

mother

0.9 [13]

c a proportionality constant 3.33 × 10−6 per

week

See the description of B

L A threshold value of B 1 Nominal, lack of data

ν Removal rate of pathogen from the environment 2 units per week Nominal value, lack of available data. This depends on the specific

population/region.

η associated with the effect of infectious humans on the bacterial

reservoir

0.00137 per week estimated (led by [19])

η0 associated with the effect of infectious humans on the bacterial

reservoir

1/71.6 per person nominal

https://doi.org/10.1371/journal.pone.0229901.t001
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were less than 28 days old, is calculated as

F ¼ ½m� ð62þ 4Þ � n�=n ¼ 1:97:%

The percentage of neonates among the infected is reported in [13] as 42% which is bigger

by a factor of more than 20. This leads one to conclude that if both a mother and her neonate

was exposed to L. monocytogenes, then the baby was more likely to contract the disease than

the mother. In particular then, for the given scenario one would suspect that if the mother of a

neonate was infected, then her child would very likely also be infected. On this basis we guess a

value, θ = 0.9. The other parameters are obtained from the literature (except for L, η and ν,
which are not relevant to the outbreak).

In the census document [18] the average life expectancy in South Africa is given as 61.2

years for males and 66.7 years for females. Therefore we calculate the value of the general mor-

tality rate μ for South Africa as 1

ð64:45Þð52Þ
¼ 0:000298 per week.

Members in the class R are considered at least temporarily safe from becoming infected,

due to bodily immunity or through lifestyle adaptation. In the case of listeriosis there are clear

guidelines for avoiding infection, generally published regularly by public health authorities, see

[13] or [20] for instance. The effective duration of the temporary immunity is taken as 6

weeks, and so z = 1/6 per week.

Regarding the function β, it is difficult to find an optimal value for L. However, we assign to

it a nominal value L = 1. Then the value of c is fixed by the definition of B(t): Since B = 1 corre-

sponds to 100 new latent infections per week and we have chosen L = 1, we obtain c × 1 × 6 ×
107/(1 + 1) = 100. This means that c = 1/300000 (per week).

The parameters η, η0 and ν will be given nominal values. They are not relevant to the out-

break and we shall explain them at a later stage.

Remark (a) A value for ϕ can be estimated based on the papers [21] and [22]. The incuba-

tion period of listeriosis varies quite significantly: from under 24 hours up to as much as 90

days—a study of the incubation period appears in [21] for instance. A final value is not con-

cluded in [21]. Our fitted value of ϕ, puts the average incubation period for listeriosis at just

below 5.5 days.

(b) In the study [22] it is observed that the mortality among the infected is one-third. The

period post incubation, subsequent to the pathogen having taken effect, over which these

deaths occur was not specified. We note that treatment for listeriosis takes 2-6 weeks (Bacter-

emia should be treated for 2 weeks, meningitis for 3 weeks, and brain abscess for at least 6

weeks, [20]). So if one takes the duration of the infectious period as 6 weeks, then it suggests a

disease-induced mortality rate of 1/(3 × 6) per week. This is approximately three times the rate

that we calculate for this outbreak.

Results

During the outbreak

In what follows we present a numerical analysis of the force of infection, α(t), during the out-

break period, 01 January 2017 up to 08 March 2018. We compare the model output of the

mortalities and recoveries with the numbers reported in [13], and we present an outlook on

the return of the system to equilibrium subsequently to the recall of the food products that

caused the outbreak.

As noted earlier, the original system of equations is applicable when studying the phase sub-

sequent to the outbreak, when there are no external forces on the system. During the outbreak

the infection is imposed on susceptibles by an external force. This force is assumed to be
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resulting in infections at a rate α(t)S(t), where α(t) is a function of time. This α(t) replaces β(t)
as the driving force of the infection, it does not have the same functional form as the β(t) of the

population model and is unknown. In order to assess the force of infection, α(t), during the

outbreak period itself, we shall utilise the system (7) below. System (7) is obtained from system

(3) by excluding the fifth differential equations and the force of infection will be determined

from the data [13]. Then we have a system (7) of four ordinary differential equations.

dSðtÞ
dt

¼ mK � ymIðtÞ � mSðtÞÞ � aðtÞSðtÞ þ zRðtÞ

dEðtÞ
dt

¼ aðtÞSðtÞ � ð�þ mÞEðtÞ

dIðtÞ
dt

¼ ymIðtÞ þ �EðtÞ � ðcþ mþ dÞIðtÞ

dRðtÞ
dt

¼ cIðtÞ � ðzþ mÞRðtÞ

ð7Þ

The system (7) above is discretized as follows, with h being the time increment.

Sðt þ 1Þ ¼ SðtÞ þ ðmK � ymIðtÞ � mSðtÞÞ � bðtÞSðtÞ þ zRðtÞÞh

Eðt þ 1Þ ¼ EðtÞ þ ðaðtÞSðtÞ � ð�þ mÞEðtÞÞh

Iðt þ 1Þ ¼ IðtÞ þ ðymIðtÞ þ �EðtÞ � ðcþ mþ dÞIðtÞÞh

Rðt þ 1Þ ¼ RðtÞ þ ðcIðtÞ � ðzþ mÞRðtÞÞh

ð8Þ

Initial values for the compartmental variables are chosen as below, which we shall see

eventually are the endemic equilibrium values corresponding to the parametrization given

in Table 1:

Eð0Þ ¼ 4; Ið0Þ ¼ 72; Rð0Þ ¼ 21

The new cases for each week can be read from the data in [13]. During the t’th week this

number is the same as (ϕE(t) + θμI(t)), and the expression for E(t) contains the variable α.

These can be used to calculate the function α(t), which we display in Fig 2.

In order to smooth out the NICD data, we found a density plot, p(t), for the relative number

of cases, i.e., (cases)/967. This density plot is shown together with the scatter diagram of rela-

tive case numbers in Fig 3. This p(t) will be used hereafter to describe the force of infection

over the outbreak period, in a similar way as is done for the rough data.

Comparing the model output with reported results

In Table 2 we present three outputs of the model for comparison with reported results [13], for

the period 01 January 2017 up to 08 March 2018. We give the total new cases as reproduced on

the basis of the force of infection, computed using the Eq (8) above. The three outputs that we

compute are the total number of cases, the total number of fatalities and the total number of

recoveries. We are then able to calculate the number of remaining infectives through simple

arithmetic. The outputs are calculated twice: i.e., first for rough data and then from the density

plot. In both cases the outcomes compare very well with the observed data.

In Fig 4 (based on the NICD-data) and Fig 5 (based on the density plot) we show the trajec-

tories of the E-, I-, and R-compartments over the outbreak period. The S-class is many orders

bigger. In fact, we note that the total number of cases during the outbreak was fewer than

1000. Therefore if we consider S(0) to be 60 million, then during the outbreak S(t) will always

be above 59999000.
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Fig 2. The infection shock α(t) as calculated from the data over the outbreak period, 01 January 2017 up to 08

March 2018.

https://doi.org/10.1371/journal.pone.0229901.g002

Fig 3. Scatter diagram of the relative number of cases over the outbreak period and the density plot.

https://doi.org/10.1371/journal.pone.0229901.g003
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The complete population model

What remains to be determined are the parameters of the last (the pathogen’s) equation. South

Africa’s Minister of Health in his media report of 03 September 2019 [19] announced that

NICD records show between 60 and 80 mortalities p.a. due to listeriosis, over the years 2012-

2016. Let us take this as approximately 70 listeriosis deaths p.a. under equilibrium conditions.

This enables us to calculate I� as follows:

δI� × 52 = 70, therefore I� = 71.6.

We note that at endemic equilibrium, from the second and the third equations of the sys-

tem (3) we have:

cB�S�

Lþ B�
¼ ð�þ mÞE� and �E� ¼ mI�:

Fig 4. The trajectories of the E, I and R -classes over the outbreak period, based on the rough data.

https://doi.org/10.1371/journal.pone.0229901.g004

Table 2. The model output versus observed data.

Total number of individuals who . . . NICD Report [13] Model output rough data Model output density plot

became infected during the 62 weeks period 967 967.5 964.3

died during the 62 weeks period 183 183.3 182.7

was infected and has recoveredduring the 62 weeks period 486 487.6 484.7

are infectedon 08 March 2018 298 296.6 296.7

https://doi.org/10.1371/journal.pone.0229901.t002
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This yields

B� ¼
mð1þ m=�ÞI�

cS� � mð1þ m=�ÞI�
; so B� ¼ 0:0245 :

Therefore we have calculated the value of B� in terms of the known parameters, the values

of which are well motivated. In particular we did not require ν, η or η0. Thus we are in a posi-

tion to calculate the ratio ξ�/ν = B�/I�. This yields ξ�/ν = 0.000342. So, in order to complete the

calibration of the model, we only need to determine the value of either ξ� or ν. For both of the

latter two parameters, their values depend on the environment together with human behaviour

and lifestyle. So for any two different populations, there may be a huge difference between the

two η -values. Likewise for ν -values. We pick a nominal value ν = 2 units per week. Then we

use η0 = 1/71.6 and that automatically determines η:

Z ¼ ð1þ Z0I�Þx
�
¼ ð1þ Z0I�Þ0:000353n ¼ 2� 0:000342� 2 ¼ 0:00137 :

Now we can harness the model for making future projections. The graphs in Fig 6 illustrate

how the population returns to equilibrium subsequent to removal of the cause of the outbreak.

Of course the initial values of this computation are the terminal value of the outbreak compu-

tation. In particular, the initial value of B(t) is taken as the value of B(t) that was built up during

the outbreak, i.e., B(end of outbreak). During the outbreak period B(t) starts at B� = 0.0245

and reaches a final value 0.0409 at the end of the outbreak. Thus for the simulations of Fig 6

we use B(0)= 0.0409.

Table 3 shows the equilibrium values as calculated using the formulae and parameter values,

and also the values of the variables S, E and I as predicted by the model for the dates 30 June

Fig 5. Trajectories of the E, I and R -classes over the outbreak period, using the density plot.

https://doi.org/10.1371/journal.pone.0229901.g005
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2019 and 30 June 2020. The prediction values do appear to be converging to the endemic

equilibrium.

Reducing the annual mortalities

The stability threshold is computed as having the numerical value R0 = 1.43. The Global Stabil-

ity Theorem revealed that when R0 < 1, then in the long run, the disease will vanish from the

system. This informs how much should be done by way of intervention to ensure that the dis-

ease will not persist and flourish. Interventions should lead to reduction of R0 below unity.

In particular, with an intervention which changes the parameter values in such a way as to

result in R0 going below unity, the disease will ultimately vanish from the population. In this

regard we could immediately consider parameters that depend on behaviour or lifestyle, such

as η: perhaps through improved sanitation service, or c: good hygiene around food and drink-

ing water. Indeed the graph in Fig 7 illustrates, how the infectious class diminishes converging

to zero, under a suitable intervention. In this case, the parameter values are all the same as in

Fig 6. The return to endemic stable state over a period of 130 weeks, 08 march 2018–30 june 2020, according to

the model. See also Table 3.

https://doi.org/10.1371/journal.pone.0229901.g006

Table 3. Model prediction of listeriosis prevalence in South Africa.

Disease class X X�-value Model prediction 30 June 2019 Model prediction 30 June 2020

E 3.7 4.0 3.8

I 71.6 80 74

R 21 24.4 21.5

B 0.0245 0.0259 0.0249

https://doi.org/10.1371/journal.pone.0229901.t003
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Table 1, except for η which has been reduced to 0.00065 (instead of 0.0014), and this gives R0 =

0.987 which is below 1.

Discussion and conclusion

We have constructed a mathematical model for the population dynamics of listeriosis infec-

tion. Such a model is useful to public health authorities when exploring intervention strategies

to control or eradicate an infectious disease (Huppert and Katriel 2013 [23], Althaus et al 2014

[24]; Rose et al 2014 [25], Heesterbeek et al 2015 [26]). In particular, interventions should aim

at reducing the value of the basic reproduction number, bringing it to below unity where possi-

ble. In the case of the current model, having R0 < 1 will guarantee eradication of the disease in

the long run. For some disease models, the said condition is not sufficient to ensure eradica-

tion, but we proved that for the current model it is indeed.

We were able to harness the model in a modified form, retrospectively to reveal the inten-

sity, or at least the temporal pattern, of the infection which caused the outbreak. The data avail-

able is limited, and consequently not all of the parameters could be determined. Nevertheless

we were able to obtain a reasonable estimate of the basic reproduction number and the

endemic equilibrium point. The endemic equilibrium as calculated yields an endemic equilib-

rium value of I� which is in line with the annual infection numbers in South Africa (see [19]).

We also demonstrated how to compute future projections (Table 3), and how to test an inter-

vention for the purpose of eradication (Fig 7).

Fig 7. With a change in the value of η to η = 0.00065, we obtain R0 = 0.987 which is below 1, and as guaranteed by

the Global Stability Theorem, over time the infection will be eradicated. The graph shows how the system will

change over a period of 130 weeks, starting from what is currently the endemic equilibrium. We note a definitive

tendency of convergence to disease-free state in the longer term.

https://doi.org/10.1371/journal.pone.0229901.g007
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For application to another population, the model can be used in the same form, but the

parameter values must be adapted. For this reason adequate surveillance systems and resources

to diagnose or detect listeria must be in place. Accuracy can be improved by allowing for age

structure and spatiality, and to produce simulations through more accurate methods. Climate

variability may directly or indirectly lead to higher infection rates of listeriosis in South Africa

[27]. Modeling that accommodates the effect of climatic factors, such as was done for malaria

by several authors ([28] or [29] for instance) may prove useful in the near future.
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