琉球大学学術りが University of the Ryukyus Reposition

Title	Sequence A nalysis of a Total of Three Megabases of DNA in Two Regions of Chromosome 8p
Author（s）	Isomura，Minoru；Ikegawa，Shiro；Kinjo，Takao；Takeuchi， Kumiko；Y amane－Tanaka，Y uka；Kitami，Kikuko；Nakamura， Y usuke
Citation	DNA Research，6（6）：387－400
Issue Date	1999－12－01
URL	http：／hdl．handle．net／20．500．12000／46345
Rights	

Sequence Analysis of a Total of Three Megabases of DNA in Two Regions of Chromosome 8p

Minoru Isomura, ${ }^{1,2}$ Shiro Ikegawa, ${ }^{2}$ Takao Kinjo, ${ }^{2}$ Kumiko Takeuchi, ${ }^{2}$ Yuka Yamane-Tanaka, ${ }^{1}$ Kikuko Kitami, ${ }^{1}$ and Yusuke Nakamura, ${ }^{1,2, *}$
Department of Human Genome Analysis, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan ${ }^{1}$ and Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan ${ }^{2}$

(Received 25 June 1999; revised 29 August 1999)

Abstract

Large-scale sequencing of genomic regions and in silico gene trapping together represent a highly efficient and powerful approach for identifying novel genes. We performed megabase-level sequence analyses of two genomic regions on human chromosome 8 p (8 p 11.2 and $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$), after covering those segments with sequence-ready contigs composed of 74 cosmids, 14 BACs , and three PAC clones. We determined continuous nucleotide sequences of $1,856,753$ bases on 8 p11.2 and $1,210,381$ bases on $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ by combining the shotgun and primer-walking methods. In silico gene trapping identified four novel genes in the 8 p11.2 region and, in the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region, six known genes (PRLTS, PCM1, MTMR7, HCAT2, HFREP-1 and $P H P)$ and three novel genes. The distribution of $A l u$ and LINE1 repetitive elements and the densities of predicted exons were different in each region, and $A l u$-rich portions contained more exonic sequences than LINE1-rich areas.

Key words: large-scale DNA sequencing; physical and transcriptional maps; human chromosome 8p11.2; human chromosome $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$

1. Introduction

Large-scale sequencing of genomic regions, and finding genes within those sequences by means of computer software and database searches, is a highly efficient and powerful approach for identifying novel genes. ${ }^{1}$ Recent improvements in sequencing technologies have made high-throughput genomic sequencing possible, and computational gene-finder programs such as GRAIL ${ }^{2}$ and GENSCAN ${ }^{3}$ can identify putative exonic fragments present in anonymous genomic sequences. ${ }^{4,5}$ These data can be integrated via the Internet with partial cDNA sequences that have been archived as expressed sequence tags (ESTs, i.e., exonic fragments), which have been generated with ever-increasing velocity by the Human Genome Project. In addition, whole genomes of several bacterial strains, ${ }^{6-8}$ of yeast, ${ }^{9}$ and of C. elegans ${ }^{10}$ have already been sequenced, presenting us with clues for understanding critical features within the human genome through comparative genomics.

Human chromosome 8 appears to be about 135 Mb long and to contain 4000-5000 genes. As part of the Hu-

[^0]man Genome Project and to investigate the biological importance of this chromosome, we previously constructed physical maps that included a $10-\mathrm{Mb}$ YAC contig on 8 p11.2 (ref. 11) and two cosmid contigs on $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ that encompassed a region commonly deleted in hepatocellular, colorectal, and non-small cell lung carcinomas. ${ }^{12}$ In those experiments we isolated dozens of exon-like sequences by exon-trapping. To complete our understanding on the two loci, and to isolate genes more efficiently from the regions in question, we constructed sequenceready contigs and performed large-scale sequence analyses. We report here the isolation of several genes from these megabase-level, continuous genomic DNA sequences, by means of in silico gene trapping.

2. Materials and Methods

2.1. Construction of sequence-ready contigs

To construct a large-scale sequence-ready contig for 8p11.2, cosmid contigs were constructed from two overlapping CEPH YAC clones (854_f_6 and 937_b_9). Cosmid libraries were constructed from each YAC, and clones containing human DNA inserts were isolated by hybridization selection as described previously. ${ }^{13}$ Contigs were constructed by repeated colony hybridization exper-
iments using PCR fragments derived from end-sequences of the cosmids. ${ }^{12}$ To fill the gaps in the cosmid contigs derived from the YACs, we screened BAC and PAC libraries (Genome Systems, St. Louis, MO) by PCR according to the manufacturer's protocol, using STSs (sequencetagged sites) designed from cosmid DNA sequences.

For $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$, cosmid contigs reported previously ${ }^{12}$ were connected with BAC and PAC linking clones. The BAC and PAC clones were obtained by means of the Genome Systems PCR-screening system.

2.2. Sequencing of contigs

Nucleotide sequences of cosmid, BAC and PAC clones that comprised minimal tiling paths were determined by combining the shot gun and primer-walking methods. DNAs were prepared from the clones with Qiagen plasmid-purification kits (Qiagen, Hilden, Germany). A $10-\mu \mathrm{g}$ aliquot of each DNA was mechanically fragmented by sonication (UD-201 Sonicator; TOMY Co., Tokyo, Japan) and electrophoresed in a 0.8% agarose gel. DNA fractions $2.5-$ to $6-\mathrm{kb}$ long were recovered from the gel and subcloned into plasmids; pBC was used as a cloning vector for cosmid DNAs, and pBluescriptII for BAC and PAC DNAs. DNAs from plasmid subclones were prepared with an automated plasmid-isolation machine (PI-100, Kurabo, Osaka, Japan). Plasmids containing cosmid-vector sequences were identified by hybridization with vector DNA and eliminated from subsequent analysis. Sizes of the inserts in the subclones were determined by electrophoresis in 0.8% agarose gels; plasmid subclones containing inserts of more than 1 kb were sequenced by a dye-terminator method with T3 and T7 universal primers using an ABI 377 automated sequencer (Applied Biosystems, Foster City, CA). End-sequences of more than five shot gun subclones per $1-k b$ insert were determined for each cosmid, BAC, or PAC clone. Sequence data from the shot gun clones were assembled by means of the "Phred", "Phrap" and "Consed" programs. ${ }^{14-16}$

Any gaps that remained in the assembled sequences were filled with sequences of linking clones by the primer-walking method, using primers synthesized on the basis of assembled sequence. DNA sequencing for primer-walking was performed according to an ABI dyeterminator protocol. Plasmid subclones were used as templates for subclones spanning gaps; otherwise, cosmid, PAC and BAC DNAs served as the templates.

2.3. Computational sequence analysis

The continuous sequences on 8 p 11.2 and $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ were examined for the presence of repetitive DNA elements including Alu, LINE1 (L1), and THE, using the RepeatMasker program (http://ftp.genome.washington. edu/RM/RepeatMasker.html). For computational trapping of genes, repetitive sequences were removed by the RepeatMasker program, and exon prediction was
then performed using the GRAIL (GRAIL2) ${ }^{2}$ and GENSCAN ${ }^{3}$ programs. For the GRAIL analysis, only "excellent" scores were considered significant. ${ }^{4}$ We used the BLAST algorithm to search for sequence matches against public DNA and EST databases, and FASTA programs against dbEST.

3. Results

3.1. Large-scale, sequence-ready contigs in $8 p 11.2$ and $8 p 22 \rightarrow p 21.3$

By assembling cosmid libraries from two YACs on 8 p 11.2 , we obtained four independent cosmid contigs. To fill gaps between these contigs, BAC or PAC libraries were screened using STS sequences corresponding to DNA sequences at the ends of each contig. This strategy allowed us to construct a single $1.9-\mathrm{Mb}$ contig consisting of 42 cosmids, 10 BACs , and 1 PAC (Fig. 1a). In the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region, two gaps in the previously reported contigs ${ }^{12}$ (between cosmids 3054 and A266, and between A254 and A014) were filled with BAC and PAC clones. A single contig consisting of 32 cosmids, four BACs, and two PACs, then covered a $1.2-\mathrm{Mb}$ region (Fig. 1b).

3.2. Sequencing and characterization of contigs

On average, the subcloned sequences after removal of vector sequences were $\sim 550 \mathrm{bp}$ long. More than 10 sequences per 1 kb of genomic DNA were determined; hence, the data were considered to be equivalent to more than five-fold redundancy. The sequence of each clone was integrated into a single assembled sequence by comparing overlapping sequences between neighboring clones. In all, we obtained $1,856,753$ nucleotides for the 8 p11.2 region and $1,210,381$ nucleotides for the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region (DDBJ accession No. AP000065AP000083).

The nucleotide composition of the two regions was similar. The 8 p 11.2 and $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ sections contained respectively 29.1% and 30.1% of adenines, 30.1% and 30.4% of thymidines, 20.3% and 19.8% of cytosines, and 20.5% and 19.5% of guanines. In contrast, the two contigs differed with respect to their content of repeat sequences: the 8 p11.2 genomic segment contained 572 copies of Alu and 290 copies of L1, accounting for 8.4% and 16.6%, respectively, of its entire DNA sequence, while in the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region we identified 491 copies of Alu and 147 copies of L1, which accounted for 9.2% (Alu) and 10.1% (L1) of the DNA at this locus.

3.3. Computational gene trapping and identification of known genes

To identify expressed sequences within the two genomic fragments of chromosome 8 p , we subjected the entire three megabases of sequenced DNA to computational analysis. The GRAIL program predicted 158 tran-

GRAIL 1
EST Alи
L1 1

Figure 1. Physical map of a $1.9-\mathrm{Mb}$ region on 8 p 11.2 (top) and a $1.2-\mathrm{Mb}$ region on 8 p 21.3 region (bottom). Each figure shows the centromere on the left and the telomere on the right. Cosmid, BAC and PAC clones are shown by transverse lines; locations of exonic fragments predicted by the GRAIL2 program, Alu and LINE/1 repetitive elements, and human ESTs are indicated by vertical lines above and below the horizontal lines to indicate presence on the plus and the minus strands (directing centromere to telomere), respectively.
scribed DNA segments from the 8p11.2 region with "excellent" scores. Thirty-nine segments matched archived human ESTs, of which, 19 had also been predicted by the GRAIL program. No previously known genes were present.

In the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region, GRAIL predicted 144 exonic elements, and 196 segments matched sequences in the human EST databases. Sixty segments were identified by both GRAIL analysis and EST search. Six known genes were found within this contig: PRLTS (PDGFreceptor beta-like tumor suppressor), ${ }^{17}$ PCM1 (autoantigen pericentriolar material 1), ${ }^{18}$ MTMR7 (myotubularinrelated protein 7), ${ }^{19}$ HCAT2 (cationic amino acid transporter 2), ${ }^{20} H F R E P-1$ (fibrinogen-related protein) ${ }^{21}$ and PHP (putative heart protein). ${ }^{22}$

3.4. Identification of novel genes

In the 8 p11.2 region, six exons (GR61-66; Table 1a) showed significant similarity to the Drosophila ash2 gene. ${ }^{23}$ GR69 showed significant similarity to C. elegans hypothetical protein F09E5.8, which is highly homologous to a bacterial proline synthetase-associated gene. ${ }^{24}$ Eight predicted exons (GR71-78) were highly homologous to a C. elegans C42c1.9 gene, ${ }^{25}$ and ten (GR119128) to a murine pH -sensitive K^{+}channel gene, Slo3 (ref. 26).
From the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region (Table 1 b), fragments GR230-232 were highly homologous to the murine CAF-1 (CCR4 associated protein 1) gene. ${ }^{27}$ Fragments GR280-283 showed a high degree of homology to human KIAA0774 (ref. 28), and GR212-214 to a C. elegans C56A gene. ${ }^{25}$ The nucleotide sequences of these fragments were also identified in the dbEST archive.

4. Discussion

We have determined and characterized the genomic DNA sequence of a $1.9-\mathrm{Mb}$ segment on chromosome 8 p 11.2 and of a $1.2-\mathrm{Mb}$ segment on chromosome $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$. The GC content of the two regions is almost the same, but the numbers and proportions of repetitive sequences are different. The $1.9-\mathrm{Mb}$ region at $8 \mathrm{pll.2}$ carries fewer Alu than the $1.2-\mathrm{Mb}$ region on $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ (8.4% vs. 9.2% of total nucleotides). In contrast, the 8 p11.2 region contains more L1 than the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region does. The inverse proportion of $A l u$ and L1 elements has also been suggested by in situ hybridization analyses reported elsewhere. ${ }^{29}$ Both the 8p11.2 and 8p21.3 regions belong to an R-banded region, which has been reported to be relatively rich in Alu sequences. ${ }^{29}$ The $1.9-\mathrm{Mb}$ region at 8 p 11.2 , however, does not have this characteristic, possibly because the fine localization of the $1.9-\mathrm{Mb}$ region is at 8 p 11.22 which is a G-banded region.

The distribution of repetitive sequences is uneven as
well; in the $1.9-\mathrm{Mb}$ region, the 400 kb at its centromeric end contain more Alu than the 400 kb at its telomeric end (1 copy in 2.0 kb vs. 1 copy in 4.0 kb), and the opposite is true for L 1 sequences (1 copy in 11 kb vs. 1 copy in 2.5 kb). Interestingly, among the 39 ESTs identified in this portion of $8 \mathrm{p} 11.2,23$ were located within the centromeric $A l u$-rich region. In contrast, Alu elements were distributed evenly in the sequenced portion of $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$, and so were the genes.

The two regions also differed in gene annotation. GRAIL analysis identified 144 exonic candidates in the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ segment, but only 158 fragments in the 8 p 11.2 segment (1 exon in every $11.8-\mathrm{kb}$ or 8.4 kb of genomic sequence, respectively). Similarly, the number of ESTs was higher in the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region than in the 8 p11.2 region (196 vs. 39).

The distribution of identified genes was also unequal: we identified nine genes from the $1.2-\mathrm{Mb} 8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ segment but only four from the $1.9-\mathrm{Mb}$ region on 8 p 11.2 . These observations were similar to reports for other chromosomes, in which for example only three genes were identified from a 685 kb -sequence on 3 p 21 (ref. 4) but 17 were identified from a $650-\mathrm{kb}$ region on 7 q 22 (ref. 30), and 20 from a $223-\mathrm{kb}$ region on 12 p13.3 (ref. 31). Interestingly, the 8 p11.2 segment is rich in L 1 and the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ segment is rich in Alu, in agreement with previous assumptions that $A l u$-rich regions contain more genes than L1-rich regions. ${ }^{32,33}$ Unequal gene density is also reported in the C. elegans genome: ${ }^{10}$ fewer genes are present in the central parts of worm chromosomes than in the autosomal arms. In keeping with these observations, the gene-poor human 8 p11.2 region is adjacent to the centromere.

To date, we have identified numerous genes using the in silico method. This approach has several advantages: 1) it can detect expressed sequences independent of their expression levels; 2) it determines the genomic structure of a gene at the same time the gene is identified; and 3) it is not technically demanding. Moreover, this method is very sensitive and reliable. Previously we had screened the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region by exon-trapping but isolated only two genes, PRLTS and PCM1 (ref. 12), trapping only 2 of the 7 exons of PRLTS and 3 of the 39 exons of the PCM1 gene. In contrast, the method used in the present study successfully identified 4 exons of the PRLTS gene and 19 exons of PCM1.

We have now identified a total of 13 genes in the portions of 8 p under study (4 in 8 p 11.2 and 9 in $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$), including 7 never reported before. The four novel genes in 8p11.2 include orthologues of the D. melanogaster ash2 gene, the C. elegans C42c1.9 gene, a bacterial proline synthetase associated gene, and a murine Slo3 gene. Detailed characterization of those three Drosophila, worm, and bacterial genes have been reported elsewhere. ${ }^{34-36}$ With respect to the fourth orthologue, it is worth noting that murine Slo3 encodes a pH -
sensitive potassium channel that functions in a voltagesensitive manner. ${ }^{26}$ Defects in potassium-channel genes are known to be responsible for neuronal disorders including some kinds of epilepsy. ${ }^{37}$ Therefore, the human orthologue of Slo3 might be involved in neuronal performance.

The present study identified six known and three novel genes in the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region. The known genes include PRLTS, PCM1, HCAT2, MTMR7, HFREP-1, and PHP. PRLTS and PCM1 had already been isolated and characterized by us. ${ }^{17,18}$ HCATQ is a cationic aminoacid transporter gene that was mapped to chromosome $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ by another group. ${ }^{20} M T M R 7$ is a myotubularin dual-specificity phosphatase gene, which is conserved from yeast to human, and it has been assigned to $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ (ref. 19); at least eight human genes belonging to this family of phosphatases have been isolated to date. ${ }^{19}$ HFREP- 1 is a fibrinogen-related gene that is often over-expressed in hepatocellular carcinomas. ${ }^{21}$ PHP was originally isolated from a heart cDNA library, ${ }^{22}$ but its function remains unclear. The chromosomal locations of HFREP- 1 and PHP were determined for the first time in the present study.

The three novel genes we identified in the $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ region are orthologues of murine $C A F-1$ and C. elegans C56A3.6, and a homologue of human KIAA0774. The murine CAF-1 gene product interacts with CCR4, a protein that is required for regulating a number of genes in yeast. ${ }^{27} C A F-1$ is conserved from C. elegans to humans with a high degree of homology, suggesting that it has a critical role in eukaryotic transcription. As the predicted exons designated as GR230-232 showed significant homology to CAF-1 at the protein level, they may represent another CCR4-related human gene. Characterization of the remaining two genes (KIAA0774 and C. elegans C56A3.6 homologues) is in progress. Further study may unveil the significance of these positional candidates for involvement in hepatocellular, colorectal, and non-small cell lung carcinomas. ${ }^{12}$

Acknowledgments: This work was supported partly by the Japan Science and Technology Corporation (JST) and partly by a Grant-in-Aid from the Ministry of Education, Culture, Sports and Science of Japan. We thank H. Hayashi and Y. Hashimoto for technical advice on computational analysis. Details of the sequence-ready contigs and genomic sequences of the two regions are available on the Internet (http://www-alis.tokyo.jst.go.jp/HGS/).

References

1. McKusick, V. A. 1997, Genomics: Structural and functional studies of genomes, Genomics, 45, 244-249.
2. Uberbacher, E. C. and Mural, R. J. 1991, Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach, Proc. Natl. Acad. Sci. USA, 88, 11261-11265.
3. Burge, C. and Karlin, S. 1997, Prediction of complete gene structures in human genomic DNA, J. Mol. Biol., 268, 78-94.
4. Ishikawa, S., Kai, M., Tamari, M. et al. 1997, Sequence analysis of a $685-\mathrm{kb}$ genomic region on chromosome 3p22p 21.3 that is homozygously deleted in a lung carcinoma cell line, DNA Res., 4, 35-43.
5. Claverie, J. M. 1997, Computational methods for the identification of genes in vertebrate genomic sequences, Hum. Mol. Genet., 6, 1735-1744.
6. Fleischmann, R. D., Adams, M. D., White, O. et al. 1995, Whole-genome random sequencing and assembly of Haemophilus influenzae, Rd., Science, 269, 496-512.
7. Fraser, C. M., Gocayne, J. D., White, O. et al. 1995, The minimal gene complement of Mycoplasma genitalium, Science, 270, 397-403.
8. Blattner, F. R., Plunkett, G. 3rd, Bloch, C. A. et al. 1997, The complete genome sequence of Escherichia coli K-12, Science, 277, 1453-1474.
9. Goffeau, A., Aert, R., Agostini-Carbone, M. L. et al. 1997, The yeast genome directory, Nature, 387 (supp.), 5-105.
10. The C. elegans sequencing consortium, 1998, Genome sequence of the nematode C. elegans: a platform for investigating biology, Science, 282, 2012-2017.
11. Koyama, K., Sudo, K., and Nakamura, Y. 1995, Isolation of 115 human chromosome 8 -specific expressed-sequence tags by exon amplification, Genomics, 26, 245-253.
12. Chinen, K., Isomura, M., Izawa, K. et al. 1996, Isolation of 45 exon-like fragments from $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$, a region that is commonly deleted in hepatocellular, colorectal, and non-small cell lung carcinomas, Cytogenet. Cell Genet., 75, 190-196.
13. Tokino, T., Takahashi, E., Mori, M. et al. 1991, Isolation and mapping of 62 new RFLP markers on human chromosome 11, Am. J. Hum. Genet., 48, 258-268.
14. Ewing, B., Hiller, L., Wendl, M. C., and Green, P. 1998, Base-calling of automated sequencer traces using Phred. I. Accuracy assessment, Genome Fes., 8, 175-185.
15. Ewing, B. and Green, B. 1998, Base-calling of automated sequencer traces using Phred. II. Error probabilities, Genome Res., 8, 186-194.
16. Gordon, D., Abajian, C., and Green, P. 1998, Consed: a graphical tool for sequence finishing, Genome Res., 8 , 195-202.
17. Fujiwara, Y., Ohata, H., Kuroki, T. et al. 1995, Isolation of a candidate tumor suppressor gene on chromosome $8 \mathrm{p} 21.3-\mathrm{p} 22$ that is homologous to an extracellular domain of the PDGF receptor beta gene, Oncogene, 10, 891-895.
18. Ohata, H., Fujiwara, Y., Koyama, K., and Nakamura, Y. 1994, Mapping of the human autoantigen pericentriolar material 1 (PCM1) gene to chromosome 8p21.3-p22, Genomics, 24, 404-406.
19. Laporte, J., Blondeau, F., Buj-Bello, A. et al. 1998, Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human, Hum. Mol. Genet, 7, 1703-1712.
20. Hoshide, R., Ikeda, Y., Karashima, et al. 1996, Molecular cloning, tissue distribution, and chromosomal localization of human cationic amino acid transporter 2
(HCAT2), Genomics, 38, 174-178.
21. Yamamoto, T., Gotoh, M., Sasaki, H., et al. 1993, Molecular cloning and initial characterization of a novel fibrinogen-related gene, HFREP-1, Biochem. Biophys. Res. Commun., 193, 681-187.
22. Churchill, J. R., Hoffman, S., and Wieland, S. J. 1995, A new gene family predicted by a novel human heart cDNA, Mol. Biol. Cell, 6S, 418a.
23. Adamson. A. L. and Shearn, A. 1996, Molecular genetic analysis of Drosophila ash2, a member of the trithorax group required for imaginal disc pattern formation, $G e$ netics, 144, 621-33.
24. Savioz, A., Jeenes, D. J., Kocher, H. P., and Haas, D. 1990, Comparison of proC and other housekeeping genes of Pseudomonas aeruginosa with their counterparts in Escherichia coli, Gene, 86, 107-111.
25. Wilson, R., Ainscough, R., Anderson, K. et al. 1994, 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans, Nature, 368, 32-38.
26. Schreiber, M., Wei, A., Yuan, A. et al. 1998, Slo3, a novel pH -sensitive K^{+}channel from mammalian spermatocytes, J. Biol. Chem., 273, 3509-1356.
27. Draper, M., P., Salvadore, C., and Denis, C., 1995, Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex, Mol. Cell. Biol., 15, 34873495.
28. Nagase, T., Ishikawa, K., Suyama, M. et al. 1998, Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro, DNA Res., 5, 277-286.
29. Korenberg, J. R. and Rykowski, M. C. 1988, Human genome organization: Alu, lines, and the molecular struc-
ture of metaphase chromosome bands, Cell, 53, 391-400.
30. Golckner, G., Scherer, S., Schattevoy, R. et al. 1998, Large-scale sequencing of two regions in human chromosome 7 q 22 : analysis of 650 kb of genomic sequence around the EPO and CUTL1 loci reveals 17 genes, Genome Res., 8, 1060-1073.
31. Ansari-Lari, M. A., Shen, Y., Muzny, D. M. et al. 1997, Large-scale sequencing in human chromosome 12p13: experimental and computational gene structure determination, Genome Res., 7, 268-280.
32. Soriano, P., Meunier-Rotival, M., and Bernardi, G. 1983, The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes, Proc. Natl. Acad. Sci. USA, 80, 1816-1820.
33. Bernardi, G., Olofsson, B., Filipski, J. et al. 1985, The mosaic genome of warm-blooded vertebrates, Science, 228, 953-958.
34. Ikegawa, S., Isomura, M., Koshizuka, Y., and Nakamura, Y. 1999, Cloning and characerization of ASH2L and Ash21, human and mouse homologs of the Drosophila ash2 gene, Cytogenet. Cell Genet., 84, 167-172.
35. Ikegawa, S., Isomura, M., Koshizuka, Y., and Nakamura, Y. 1999, Cloning and characterization of a novel gene (C8orf2), a human representative of a novel gene family with homology to C. elegans C42.C1.9, Cytogenet. Cell Genet., 85, 227-231.
36. Ikegawa, S., Isomura, M., Koshizuka, Y., and Nakamura, Y. 1999, Cloning and characterization of the human and mouse PROSC (proline synthetase co-transcribed) genes, J. Hum. Genet., 44, 337-342.
37. Biervert, C., Schroeder, B., C., Kubisch, C. et al. 1998, A potassium channel mutation in neonatal human epilepsy, Science, 279, 403-406.
Table 1. Summary of predicted exonic sequences. A "+" indicates prediction by the GENSCAN program, matching with ESTs, or isolation by the exon-trap method. "Gene name" indicates the archived gene product for which FASTA analysis detected the highest degree of similarity to the peptide predicted from each putative exonic sequence. The overlap
column indicates the lengths of homologous sequences. Tables 1 a and 1 b are for the 8 p 11.2 and $8 \mathrm{p} 22 \rightarrow \mathrm{p} 21.3$ regions, respectively.
 EKELEAAVNAGLGPSSQPETPLSLIKLEKVQILYGTHSHYNFPVWPVRKPDG $\stackrel{n}{\sim}$ DITPESQEQFASMWDGSQWTFTVLPQDYVHSPTIYHGLVDDVMLTFD
KFKPLLPALKMEEEGPDSRNVVASSIWQ DITPESQEQFASMWDGSQWTFTVLPQDYVHSPTIYHGLVDDVMLTFD
KFKPLLPALKMEEECPDSRNVVASSIWQ

SSEEVNVNEHKMKLSENMICTLHIKIKKITNTVTDT IGT I SGRMAT SVSLGCYTKYRRLGGLNNMHI FCTVLEPGKSKIKILADLVL
EKDAMDQTVAEKQKQRN

DDQKQGFIYGVYQQESHKTVTAVHPVTTG
MSH IDAKKIACVYIMPKCFSFHPFRLKVPSFMERNPKSTKEVYVDLVNMEV MAQACSLCCGD IHARCAQGKERKEHLLLISMVHCCKDSQIQLKKAKYIVRIT

> TWKPCHEREDESKRNTVILITTKETMRSHFLKQG

MDSKFPQNNLSNCYCGDLYTRDITYKEASA
MDSKFPQNNLSNCYCGDLYTRDIT YKEASA variable region of immunoglob
C18C4.5 gene product
40S ribosomal protein
ZEAXANTHIN GLUCOSYL TRANSFERA
(-)
Antennal binding protein X
desmoglein 3 [Mus musculus]
putative protein [Arabidopsis
S-ADENOSYIMETHIONINE SYNTHETA

$$
\stackrel{m}{n}
$$

trefoil factor pS2 precursor 53.3
 hypothetical protein [Escherichia coli]
variable region of immunoglobulin lambda variable region of immunoglobulin lambda EEAXANTHIN GLUCOSYL TRANSFERASE

$$
\text { Antennal binding protein } X
$$

S-ADENOSYLMETHIONINE SYNTHETASE
TRYPSIN/FACTOR XIIA INHIBITOR PRECURSOR
STP1 gene - Saccharomyces cerevisiae
DIAMINOPIMELATE EPIMERASE.
oRF 172 - Pyrococcus horikoshii
(-)
(-)
r
\therefore ㅂㅇ 0880 「NM
ro
ro

$\begin{array}{lll}\text { B lymophocyte activation antigen B7-1 } & 47.6 \\ \text { type I restriction-modification enzyme } 2 & 50.0\end{array}$
NWWVLGLTDFKNEAADPH
VKLQTFTVSVTALKVARLELFVPPGGLVVLLGSGVKLQIFA
NSKGSNQDEGSAADIPKSIVRSQVGISWTOVILLIFHH
GSVIPPNAVSVFAAIFGMASVSELMSCPLWALEETPIPEHLTPAQQA
GFQELNVIVDDHFVEQVTETCKFNRQPAASCLQCWKSTRSLNI LEEVLS
RHLVWRPWQNI LME PQSEWKAKVHLVRI HLKIK
HKTTFTEKVLPHIQKEGISAQSVGQEESRQSGL
NWWVLGLTDFKNEAADPH
VHEENMTKFTEAFKSLYLEVINVI SAHIVLAKASHVTNFKVKEKHNLIKKKR
SRNTLMTTSTRIGEKERSR

RLPPHGYPLEHPENKDGYRYILAEPDPHAPDPEKLELDCWAGKPIPGDLYRA CLYERVLLALHDR

GIAAGSSGKGRGAKRKQQDGGTTGTTKKAR
SKERDVFLVKEHPDPGSKDPEEDYPKFGLLDQVH
LKEMCLSALANLTWQSRTQDEHPKTMFSKDKVEVEL
EANLVDVSGGLETESSNGKDTL
VQELLEKASNPK
DLPAIQPRLVAVSKTKPADMVIEAYGHGQRTFGENY
MI IHCSYGSMYLSNRYLYYLKSVNSESKMVILTDEIY
QIDENLKLALQQDLTSMAPGL
GGVMIYFDRIEVVNELVPNA

$$
\begin{aligned}
& \text { Antennal binding protein } X \\
& \text { desmoglein } 3 \text { [Mus musculus] }
\end{aligned}
$$

QIDENLKLALQQDLTSMAPGLVIQ
AEKVAQVAEITYGQKVMEKETEKKI SEIEGKQKWQSCLSPPQTPPCG
ESEKTKLLIAAQKQKVVEKEAETERKKALIGLNVVL
OKGSLMAQLGAVVAVASSFFCASLFSAVHKIEEGHI GVYY

TTAFIVIIIIIIISKCFMRHLHCASIWRR
LVNGRAEVGLLAYLTVNSGFSQNFTCPR

$\underset{\sim}{\infty}$
岕

$\bigcirc \underset{6}{\circ} \boldsymbol{6}$
둥 웅 둥

EAIPLAPHDIEKKKFLTCVQGDG	ORNITHINE DECARBOXYLASE	47.3
MEEEEEEEEKEEREEMQEEKKEEEEKEEGEEMEEKEKEEGEKMEEEANAEGW	cyclic nucleotide－gated channel beta	66.0
RWRRGGGCCNHGKAGSCL	subunit	
MEEEEEEMEEEEEEMEEEEEEEMEEKEEMEEEEKGKEKE	GLUTAMIC ACID－RICH PROTEIN PRECURSOR	69.2
hSEQEEAEVEEEEEEKREEEEREEEEEEEIEEKEEEMEEEEGEREEEE	troponin T－fruit fly	71.7
VEVMSERDHERFKYGYGVISVITNSLKIKESGNKLA	LYSYL－TRNA SYNTHETASE	39.3
DLKQGGDSKEENEGTNQLNWMTQWLKT LKKAEEL	T19F06．5 gene product	42.8
RLLRKEQFDVPKIP	thrombospondin－related protein	50.0
VLVLKCISLQVGLASWIVSWLRTEATGYTFALLPPGTHHTEQTPSKHEQNGA	malf gene	43.4
ELFCNCVSCFEDPC		
MFSPTCPSTVCHMRMQQERPHQTQDAGVMILDFPDSGT	hypothetical protein slr0981	33.3
LEKKSENIILSM	OLIGOMYCIN RESISTANCE ATP－DEPENDENT	63.6
ISIIIIIIIIIIIIIIAIIVPNSNEYYTISLQHAPATLIVVISHNYLGILDS	hypothetical protein YM9958．10	35.1
KPGDHGREILPAALLSSNLGRLIFLLTPRGILSCSGTSPAFTKDAA	（－）	
VTEHVDSQSKKKI	Rat NKAAI gene for $\mathrm{Na}+/ \mathrm{K}+$－ATPase alphal	63.6
MSTRESTQQKYGHRMYAQHCTRPWRGKVSALKEVTVQEPDAGYPQVQ	P16 protein－Mycoplasma hyopneumonia	33.3
LVHKDAEEGLLMQKDLQICKYKI SDKEDYGKHEKEPESNMAVKRLCMG	T．pallidum predicted coding region	39.4
ETDVTHGEKEEQYGTAAHLRATWSGKAYSPQPREV	APURINIC ENDONUCLEASE－REDOX PROTEIN	35.4
SAYLLLDQSLYRVEGETEARNSDQNNAAAEQGFEFLTTKPTIEA	HYPOTHETICAL PROTEIN HI1594	38.4
MINTDNAKFWWYHFENILVIFNNNCTP	NITRATE REDUCTASE	50.0
MDT GKRKSGSRVTMNAHCQHIRMRVQ	IS600 gene product［Escherichia coli］	40.0
GKEEVLQYHKQAIQGGFVQVFNFELELPDKE	calreticulin precursor	41.1
KEHEIYKVEDTEGEQRFRKKENEAKERKSGREERLDGRRKDKD	pp52／S37 gene－Mus musculus	38.6
MSIAENGINETEKKLKTYTLNTERKEKEERETDN	flagellar filament cap protein	42.4
EKTDTQSNRVTNSGSTA	protein，large T－monkey e－lymphotrop	50.0
VWKKLI PVLMDDIERFKASTEEVTTDVVETARELEVEPNS	Human Tiggerl transposable element，	78.3
SKGEEKKDDKNI PMEMEEAREEEMT ESQQNSEEGTFSPEDKESGQEWVDSMA	BAF57 protein	79.7
EEGTSDSNIGSDSNST IVQEPPKDPIPEDEKKR		
NESSDLVANGSFVNPA	probable membrane protein YLR444c	60.0
EEMEAERVQ	core－binding factor beta subunit p17．6	77.7
SGADAELVGLFDSFNTRDLINTMCKQKKKYLLRQWKYFIT SDKVVIA	replication protein El	53.3
TFYDVKI FHVCADDYGGSWPLVAAEHLK	immunoglobulin heavy chain variable	47.0
VEQLGIFGDTSFSKRKWYRQQGTPAQV	HYPOTHETICAL 19.2 KD PROTEIN IN ASN2－	52.1
RNSRSLNYTKGI PKAVAIVGIDPDLT	PUTATIVE 605 MITOCHONDRIAL RIBOSOMAL	48.0
SNEVSKTLKGYNPSKKKNFE	cro protein［Bacteriophage $\mathrm{H}-19 \mathrm{~B}$ ］	41.1
MLKTLNKLGIKGTYLKITRAIYDKHTTNITLNGQKLEEFTLRTEMRQGCPVS PLLFNIILEVLARAI	ORF III T beta G4I	80.5
EKRRKRRDAKADLAL	fusion protein from strain BTA 1686	57.1
PRNTFGQLFCGSLDLFGILCVGLYRI IDEEELNPENKRGVC	pH －sensitive K channel－Mus musculus	80.0
SYQNGNGNKDKHNNMSHHTHOKLLKEARMIKTITGIRVSELIILLITYPPWQ CHHKDIKEMAFQASYYPRIKQTTL	T18E12．15 gene product	28.3
IKKLELKRSKDLPETTLSISVRAGTQLQQFDPGPAYSPYT	（－）	
AEYNYHVLELLQMLVTGGVSSQLEQHLDKDKVYGVADSCTSLLSGRNRCKLG LLSLHETILSDVN	pH－sensitive K channel－Mus musculus	61.5
NPSNIHFIEQLGGLEGSLQETNLHLSTAFSTGTVFSGSFLDSLLAT	pH－sensitive K channel－Mus musculus	78.2
GCALYSGDLHAANIEQCSMCAVLSPPPQPSSNQTLVDTEAIMATLTIGSLQI DSSSDPSPSVS	pH －sensitive K channel－Mus musculus	60.3
TLQHDVEQDSDQLDSSGMFHWCKPTSLDKVTL	pH－sensitive K channel－Mus musculus	62.0
ALFYCSVCHDDVFIPELITNCGCGKSRSRQHIT	pH －sensitive K channel－Mus musculus	59.3
MPKQTWKKHFLNSMKNKILTQRLSDDFAGMSFPEVAR	pH －sensitive K channel－Mus musculus	88.
FIVVCGNITVDSVTAELRNELRDKSGEINTEIVCLG	pH －sensitive K channel－Mus musculus	88.8

$\underset{\sim}{M O}$		 	$\underset{\sim}{\circ} \text { のr }$	$\underset{\sim}{n} \rightarrow \infty$	012	$\stackrel{6}{6}$	$\underset{m}{m} \underset{m}{m}$
		＋	＋		＋		
$\underset{\infty}{\sim}$	$\operatorname{Fin}_{\infty} \sim_{\infty}^{\circ}$				$\begin{array}{ll}\infty & 0 \\ \cdots \\ \cdots & \sim \\ \sim\end{array}$	$\stackrel{\circ}{\circ} \mathrm{N}$	$\begin{array}{ccc} N \\ N \\ \sim & M \\ \sim \end{array}$
号号	号号号号品号	号号号足足号号号号号号号号品号足号	号号号号品足志品	号号号	㔽孚	足尔	号吕枵品

GR 126		30	ILFANYIPEMVELFANKRKYTSSYEALKGK	pH-sensitive K channel - Mus musculus	76.6	30
GR 127		24	LRFLRALRLLELPQILQILRAIKT	pH -sensitive K channel - Mus musculus	87.5	24
GR 128		40	ELFTSGT IARSHVRSLHFQGQFRDHIEMLISAQTFVGQVL	pH -sensitive K channel - Mus musculus	62.5	40
GR 129		27	VSARKNEEGEEVAYERFKEAITFPHKE	endo-1, 4-beta-glucanase	40.0	30
GR 130		24	ETPGYTNGHNEKSNCRKVPILTEL	M protein - Streptococcus sp.	40.0	20
GR 131	+	38	PITIIFQDLISHNEMFSDIYKIWEITNGLCLEVEQKML	Ig-dependent histamine-releasing fact	77.1	35
GR 132		45	GEKPSNRNKLRDDTNLELSEFEISMINMLKTLIENIDNMEQRMDN	HYPOTHETICAL PROTEIN MJ1417.1	38.7	31
GR 133		15	NHTVSADKNDMKENN	P2Y PURINOCEPTOR 8	90.0	10
GR 134		41	MSAVTAVFQHNTGSFTCSKLVKKKINDMKIGKKEIKQSLLP	ATPase 2 [Plasmodium falciparum]	31.8	44
GR 135		30	IVVQIWLRGYSLPT PALYNGKKDVNYLPAP	UROPORPHYRINOGEN DECARBOXYLASE	40.9	22
GR 136		38	MKQEDTQKNYNPCGRRVTKQKESWESCFLT PTLLDNEE	ORF 381 - Pyrococcus horikoshii	32.4	37
GR 137		20	EIVGGDWCALSNFKATQSMK	lac repressor	53.3	15
GR 138		11	HKKNINVVEKA	iron	54.5	11
GR 139		40	MISEDVYGFKSTRGGLVIVNIVRSLPAYI FLPRCMGRCDH	(-)		
GR 140		36	SYPLKARMVKIGSLKERKAFNSHVI KDREIDRKEGK	CYANELLE 50 S RIBOSOMAL PROTEIN L35.	37.9	29
GR 141		33	EKRKSNPKRSKGNYQDDDEERCQNDNCVQSQKS	hypothetical protein 1	61.1	18
GR 142		45	YNLTKVWSTDQQHKHYLGACQQCKT SDLRSDLLNQNLDFNKIPQI	ALDOSE REDUCTASE	35.1	37
GR 143		55	YISIISQEKFKRERRRKLPKKKTIPDDLNAGKILEDSTKLELGEHVLQMSKP			
GR 144		69	MTDFSIEDEKDAIKTKPSYLGCCCKQQVSPHSPRTRQIHNSQEVEGIRAPEE GFCLKVSMERWEQSKDG	Mouse endogenous retrovirus in Fv-4 locus	30.5	59
GR 145		19	MQMKANYVQGKQRQECVAL	DNA polymerase	73.3	15
GR 146		32	SGDWEIHCQGGTSGENLLAGGDSLQNTEVGIP	PXNC [Leishmania major]	52.6	19
GR 147		18	MEPGGTGIHIRYKAVKAV	RING finger protein [Rattus norvegicus]	64.2	14
GR 148		34	FPYYVTIYSSKPPLGSSHEDDDVQKRQVTFLRPH	40 S riboscmal protein	42.8	28
GR 149		36	MSALFCKLLKDKDQSLFVSVPLTILSPVLCTQQMTN	hypothetical protein ybcp	50.0	24
GR 150		51	KQPQAGPSGGI PKEGTVIAEDDSSMPVTAPEDLTVGQDVEVEDSDIDDPDS	ethylene-responsive LEA-like protein	38.6	44
GR 151		38	LNYNSQACECIKVKMTDQIPNNLVSFVVKCRVVGNNNK	major allergen:ISOTYPE=Par j 1.0101	48.3	31
GR 152		36	MKTADNDEIYYWCSTHLLPTLQGPLQAPAPNKAVQD	C-TERMINAL BINDING PROTEIN 2	52.3	21
GR 153		33	MLGISAMNIICIGESEVSAGLEYWEDTGRAEFK	replication initiator	39.1	23
GR 154		11	DFTNNIEQSGL	unknown [Saccharomyces pastorianus]	80.0	10
GR 155		43	CFKVMDNYGKTIEFYEHELIAAFYLFQSFFFDQKQCYVEYRPC	ORF 10 - Borrelia burgdorferi	27.9	43
GR 156		14	INEVKELKYGKIVV	PAR-E [Mycoplasma genitalium]	63.6	11
GR 157		36	KIERGCEGSNAGEFFILNIVVKEDHMEKTPLEEKAQ	hypothetical protein 31	39.2	28
GR 158		50	RCSLHQIATAVGQGEWHWRFKAAVFFCFFSTSFRDKKLKPGTHLIFGSYE	C08H9.11 [Caenorhabditis elegans]	34.0	47

Table 1b

exon name	EST	$\begin{aligned} & \text { Exon } \\ & \text { trap } \end{aligned}$	size (aa)	Predicted Amino Acid Sequence	Gene Name	identity (8)	overlap a.a.
GR 201			42	FFFFKMEDPRSCLNADGKKKI KFKGKRI IDVIRTQVGVGDKN	(-)		
GR 202		+	43	SNPSKTPFLEFRVQEVYTKEFRNNPFFLSDKDDIYPVDTVSID	Streptococcus thermophilus bacteriophage	41.6	36
GR 203			51	SCLPFTCPQQDSNL IEDHKTFI PGS ILPHTLEEGMLHREVKKNLNRQACWV	HIV tat protein	37.7	45
GR 204			39	RETGQTSYKGTAVDLIIDESIATDRSQRTVGYIFKSERK	Homo sapiens protein	38.2	34
GR 205			47	GKEEVYMLNHYAILPLEKKTFIYVI FQSNNEMMYVKVLYKLVKNPIM	hypothetical protein X	28.1	32
GR 206	$+$		36	ELNQMLAETPPVWKGSSKLFRNLKEKGELTLVLVLF	Venezuela tomato geminivirus ACl	47.2	36
GR 207			69	VGHYLCLFCRFNISQQVVANVSVGGPFFNFVPLPPVISKEKIQCFEKGTSTE LLFEGHFQVFFCPSFLL	Pelvicachromis pulcher unknown protein	29.7	47
GR 208			40	CPTVVNAAALMVGHVVMIVDQMPLFTNLESWVRQGLLAST	(-)		
GR 209	+		86	SSLFQEKLTSECIFREQFEENWYNTYSSNIYKHGDTGRRY FVALNKDGTPRD GARSKRHQKFTHFLPRPVDPERVPELYKDLLMYT	Xenopus laevis fibroblast growth factor9	88.4	78
GR 210		+	18	GEINPKAIFLICKMKVFG	Sus scrofa ovarian sterol	44.4	18
GR 211			32	HSSALQNDGEMAVFNLITIDIDVFLPSENGQG	(-)		
GR 212	$+$		60	AIGRTDIEDLDLYATSRERRFRLFASIECEGQLFMT PYDFILAVTTDEPKGK	Caenorhabditis elegans C56A3.6 protein	45.0	40
GR 213	+		45	IPSLFFLAEPHAGFRIAFNMFDTDGNEMVDKKEFLVVCILDAALY	Caenorhabditis elegans C56A3.6 protein	52.3	42
GR 214			73	FPSLLHECHRFMDNLQTEVLEIEFLSYSNGMNTISEEDFAHILLRYTNVENT SVFLENVRYSIPEEKVSNPHI	Caenorhabditis elegans C56A3.6 protein	$38: 8$	54
GR 215			83	ILFLCNIYLDEFKRAVYVATGLKFSPHLVNTVEKIFDVDKDDQLSYKEFIGI MKDRLHRGFRVNLHILNLIISFLKSEGNQSI	Caenorhabditis elegans C56A3. 6 protein	50.0	52
GR 216			37	ITFDEFRSFFQFLNNLEDFAIALNMYNFASRSIGQGK	Homo sapiens atopy related protein	40.0	35
GR 217			47	QLYYGSPEKQNQWDVHKEIYCKKSAHVIMEADKSQDL.QGEVASWRLR	(-)		
GR 218			63	RSWAGGCGWKMAPSGPGSSARRRCRRVLYWIPVVEITLLLGWSYYAYAIQLC IGECAPRRGAP	(-)		
GR 219			28	LDLLFTSIATPEEQSGAEEEISKIYTKQ	Feline herpesvirus 1 glycop	50.0	24
GR 220			52	THLDDFLCSRYCARRWLHDVQKNKPNQTKNKELAFVKFIVQI KKMSAPTALI	Caenorhabditis elegans F10F2.5	57.8	19
GR 221			26	KHSMWLKHRKLKIEKY INEVGEVSKD	Rattus norvegicus deoxycytidine kinase	44.4	27
GR 222	+		52	FLYHLFLEAFRGPVFRHGTDLNGFSLGFSNNMRHVEGDAKQYWLLPIFSRYI	(-)		
GR 223	$+$	+	35	GKFEKIFSCSIAEIQKDVEYRLPETINNLTININM	Beet yellows virus protein	27.2	33
GR 224			58	YIKKRGLIGSGFCWLYKKHDIVICLASEELLLPVEGKAGAGTLHDESKSEEW	$(-)$		
GR 225	+		56	HFFFCVSSVSQLTDMNEQEEVLLEQFLTLPQLKQIITDKDDLVKSIEELASM	(-)		
GR 226	+		32	YELLTQMKST FEKKMQRQHELSEVRLFIFFPL	Azospirillum brasilense unknown	44.0	25
GR 227			39	TEKFFPVCSSNYYCKMKYRKQLIYHRNKIVKYLEVNPMK	S. cerevisiae chromosome IV ORF	35.2	34
GR 228	$+$		67	IKVVPDFLFQSCSASALQARLKVAAHEAEEESDNIAEDFLEGKMEIDDFLSS FMEKRTVCNTRQLRT	Caenorhabditis elegans CD4.4	25.8	62
GR 229			49	LARTRHYIRNMLGPCEEQQDLCLRIVSERKVKKNDIQKAKVRGLLEPRS	Ost oncogene - rat	35.4	48
GR 230	+		41	FFEDHIDDAKYCGHLYGLGSGSSYVQNGTGNAYEEEANKQS	Mus musculus mCAFl protein mRNA	97.5	41
GR 231	+		73	FYSGYDFGYLIKILTNSNLPEEELDEFEILRLFEPVIYDVKYLMKSCKNLKV RLRMALSTAAHCSDQVTVMRA	Mus musculus mCAEl protein mRNA	98.0	51
GR 232	+		64	ECCLSLSSAREDMYAQDSIELLTTSGIQFKKHEEEGIETQYFAELLMTSGVV LCEGVKWLSFHR	Mus musculus mCAFI protein mRNA	100	53
GR 233			38	GTMNLRGCAMAPAGVRLAEEGAWRRIGGWVTGAGGLSR	Homo sapiens PFKM protein	58.8	17
GR 234	-		35	TTEFLMGTWLYIFDEIYPKDKKDCKKIKKKSNCIQ	hypothetical protein PH0080	52.6	19
GR 235			46	FSSFSYLVFSISKQLIIKSSVTIRKEKTAPPCFNKGYEEEVGRQSH	Mitochondrion Strongylocent	35.0	40
GR 236	$+$		49	NTEFEPHSYHKMMSSKMMLFENILYIVSLKVAVSKNLLTLSEAFLYLEM	Caenorhabditis elegans W03B1.2	31.9	47
GR 237			43	NHYHNIILLDKPKNKKLGNGYKSPKIDTSRLRVFSELMKETEH	Pasteurella multocida UDP	51.8	27

	238	+	128	KGSLMSLSFLADCSCDPVVLHRLPTRIQNGNSENAYNNDSILNFLEIKSLGN LDGQHDFCDLLRKGSISHSSNDALTASEAGPEAALISSVLVPKDCDKHPKAE GTKPTSLEEQAAQPQWLFFIFQIP	Caenorhabditis elegans K08F4.9	28.2	85
GR	239		119	LEKIQKVQLNCTKVKSKQSEPSKHSGFSTSDNSIANTPQDYSGNMKSFPSRS PSQGDEDSALILTQDNLKSSDPDLSANSDQESGVEDLSCRSPSGGEHAPSED	Myotubularin related protein 7 (mMTMR7)	66.6	54
GR	240	+	70	CEFSDCDKVVSRRFAILSRFWSGMYNRFEKGMQPRQSVTDYLMAVKEETQQL EEELEALEEVRHTCFVNL	Myotubularin related protein 7 (mMTMR7)	88.3	43
GR	241		76	KVSNALFYRYGNLDGDPKEISPVIDQFIECVWQLMEQFPCAFEFNERFLIHI QHHIYSCQFGNFLCNSQKERRELK	Myotubularin related protein 7 (mMTMR7)	94.2	69
GR	242	+	17	VLIEKDWISFGHKFNHR	Myotubularin related protein 7 (mMTMR7)	10	17
GR	243	+	51	AVSEEGASVLVHCSDGWDRTAQVCSVASLLLDPHYRTLKGFMVSVATGRFP	Myotubularin related protein 7 (mMTMR7)	93.3	45
GR	244	+	53	SICRSSQPLSGESARCLEDEQMLQAIRKANPGSDFVYVVDTRPKVSVTVAMH	Myotubularin related protein 7 (mMTMR 7)	95.6	46
GR	245	+	53	QVCDSYPTELYVPKSATAHIIVGSSKFRSRRRFPVLSYYYKDNHVSLEACFC	Myotubularin related protein 7 (mMTMR7)	94.	38
GR	246		57	TQCSGEGRNPHNWYCVHRGEASTSDASLA IGDWAQVVELFVLAHAKP SKSTY	resC - Bacillus subtilis	39.	8
GR	247	+	64	NFILPFLAVKYEELYCFSFNPMLDKEEREQGWVLIDLSEEYTRMGLPNHYWQ LSDVNRDYRVSA	Myotubularin related protein 7 (mMTMR7)	46.	2
GR	248	+	62	ILHSQISTIEKQATTATGCPVLIRCKNFQLIQLIIPQERDCHDVYISLIHLA RPGRAEELGI	Caenorhabditis elegans F53A2.8	46.9	49
GR	249	+	49	IPNSSMPRYQQTSTSIKT IQENMTLPNELRHQETILEKQRYVTLQTDNS	(-)		
	250		53	DISFHFSCLGPYDSIAEEMPPVLVLFHVVLSPARAHWILQELSYHHNSYFCY	(-)		
GR	251		40	FFGHFLFNPDVTKEIFTLRQNELECTVYTTGKSTCLQIFR	(-)		
GR	252		73	DIYLQDGIKLLLTVYSREFVTGGSLNKRAYPILHPLSQPSAEMQCIQDMEQK LISLQAFQLVDIYSVFHLGVC	(-)		
	253		67	AACTPHLSSRRPHPKQGPLCVSENSGRIVLRRLPLLRESEQPSPRQPQAEAR RGGGAGGRRGGGGLS	Caenorhabditis elegans C18D11.4	34.0	47
GR	254		55	LADKLTAKIIANKLKVFNIRRYDOMKKFEFISS ITLHSMASGKRHCRCQSSN	Caenorhabditis elegans K07D4.5	33.4	38
GR	255		60	HIHCAFLYTSVLMEETGSLCNKVQKRKQPQVSEYSLPNNTDLEYTRIRIHSH	(-)		
	256		53	KYTYTHKLELMNKFLTDSRRSNTASYQRYAIQKATENINEETEIVCIKELNG	Arabidopsis thaliana R2R3-M	36.6	30
GR	257		48	KRRFYESHFSKAYHRISIAFIFITVVVLREEVVVIHKVEQVESAEMRP	Schizosaccharomyces pombe hypothetical	23.9	46
GR	258		59	YFITGLFIGRNCLCFTFWDVAVNTLLIRALSFLSLVFIMGNSELWKNVNFVF	Homo sapiens gastric mucin	46.3	41
GR	259	+	136	QLLTSSLLLRSPSSDVRMIPCRAALTEARCLIRRKIVTLDSLEDTKLCRCLS TMDLIALGVGSTLGAGVYVLAGEVAKADSGPSIVVSFLIAALASVMAGLCYA EFGARVPKTGSAYLYTYVTVGELWAFITGWNL	cationic amino acid transporter 2 (CAR2)	100	9
GR	260		63	LKCPFSVGLLSFGVKESAWVNKVFTAVNILVLLFVMVAGFVKGNVANWKISE EFLKNISASAR	cationic amino acid transporter 2 (CAR2)	100	56
GR	261	+	44	LHRSFLLPLALMAFLFDL KALVDMMSIGT LMAYSLVAACVLILR	cationic amino acid transporter 2 (CAR2)	100	35
GR	262	+	74	LIFFFPAPTGFLIYFSYGIRHSLEGHLRDENNEEDAYPDNVHAAAEEKSAIQ ANDHHPRNLSSPFIFHEKTSEF	cationic amino acid transporter 2 (CAR2)	100	65
GR	263		42	PPLRPRPAQPPRSCAPRSEVPEMKVWLLLGLLLVHEALEDGE	(-)		
GR	264		45	MHFFGTAYGTMTAVRFLNVYLSWVHPVVYTRDHRVWVCVLLWCVL	chemokine receptor CXCR3	35.2	51
GR	265		46	PSRRIPLPTRNQNLWPGMAKSCGNEKHKFSKWFLDPCLYNTDTVVG	synaptic glycoprotein SC2	31.7	41
GR	266		96	HFFSGRGALDFDGLAHFILYCIVVVISKEIDNHSFCIVVI ISKEIDNHLQRH AVNPVVPEFQKVPEDVGYRLQVTLELCRIQLRQPYKQPHRGSKT	ribosomal protein S3 - maize chlorop	31.8	69
GR	267		37	DIEIYESKNLEERKMARLEITEVKYTLEAREQHPPWH	(-)		
GR	268	+	50	IHTMEYYAAIKRNKIMSFAGTWMKLEAIILSKIMQEQKTKDHIFSLISGS	(-)		
GR	269		50	ISSASFLLVLENDITTPSLTIKSALGATPICSEKPVLPYLPPIILSCKGQ	Arabidopsis thaliana T7I23.	36.9	46
GR	270		46	HALHVSLSPGESEELYAKQLFINSHTDCVGIRRQRFKYPPKITADM	aminoglycoside 3'',9-adenylyltransferase	43.5	39
GR	271	+	22	RGLFGSSFCRLYKKHGTNICFQ	Bacillus sp. cytochrome c o	50.0	18
GR	272		53	LSSVLTHLPGPILPKYVAVSVQLSRAGACFSDVTHREVLMSFCYMVRLELPD	probable serine-specific protein kinase	5.1	37
	273		42	VLGVFDKSNTFLYYSMTSEKDWGKSAQRTVEPSVTAGGPQPG	(-)		

GR	274	+		109	RISLSLRFAVTGQHLPKNKRPKEPGENRIKPTNKKVKPKI PKMKDRDSANSA. PKTQSIMMQVLDKGRFQKPAATLSLLAGQTVELRCKGSRIGWSYPAYLDTFK	PDGF-receptor beta-like tumor suppressor (PRLTS)	100	99
GR	275	+		67	HVSFIPSVKQNERYGQLTLVNSTSADTGEFSCWVQLCSGYICRKDEAKTGST YIFFTGKILGALMEL	PDGF-receptor beta-like tumor suppressor (PRLTS)	98.1	53
GR	276	+		116	ACVFLPFAEKGELFVPSPSYFDVVYLNPDRQAVVPCRVTVLSAKVTLHREFP AKEIPANGTDIVYDMKRGFVYLQPH SEHQGVVYCRAEAGGRSQISVKYQLLY	PDGF-receptor beta-like tumor suppressor (PRLTS)	92.6	109
GR	277	+		65	TLPVSCLLPVPSGPPSTTILASSNKVKSGDDISVLCTVLGEPDVEVEFTWIF PGQKVSAVPASQP	PDGF-receptor beta-like tumor suppressor (PRLTS)	100	47
GR	278			49	RKHIILFFHRKQKRIPTIMDFIPEGNKKTRDSKDINVEYQKITGPKGHF	Seed imbibition protein protein	45.0	20
GR	279	$+$		79	VHYISFSKSGKLNSGSYCGISLKILSSANVISCINRLEVFHCNDTLGDSRGV SQSSVDQPPSVLDRHRPFILENDTHKD	Caenorhabditis elegans R11A5.4	29.5	71
GR	280	$+$		72	HGFWPFSSRQLSTEQAVLQESLEKESKVNKRLSMENEELLWKLHNGDLCSPK RSPTSSAIPLQSPRNSGSFP	Homo sapiens KIAA0774	57.1	63
GR	281	+		43	INVGILVYAKVDNNTALVDKLKRFQQENEELKARMDKHMAISR	Homo sapiens KIAA0774	40.6	32
GR	282	$+$		62	TMWNKSS ILLCPFQKNPQIMYLEQELESLKAVLEIKNEKLHQQDIKLMKMEK LVCFLQNERG	Homo sapiens KIAAO774	43.4	46
GR	283	$+$		86	FPLLSPLFSVTASTTCEKLEKARNELQTVYEAFVQQHQAEKTERENRLKEFY TREYEKLRDTYIEEAEKYKMQLQEQVCAFAARAC	Homo sapiens KIAA0774	33.3	75
GR	284	+		41	KQINDLKSENDALNEKLKSEEQKRRAREKANLVSCVCSFIS	Streptococcus pyogenes M protein	42.4	33
GR	285			44	ACLPGVFKHTGINGLLQAVTVIQFICKVIVVRHWGECETCAISS	(-)		
GR	286	+	+	90	FVPMLIRFAVEKSRQKNPRSLCIQPQTAPDALPPEKTLELTQYKTKCENQSG FILQLKQLLACGNTKFEALTVVIQHLLSEVRRCILERA	(-)		
GR	287			46	KPLESSFLPQIPIYSSTVSQCYQYHLTEDYPELKKTFDENDIVAYH	Homo sapiens 280 kda protein	32.5	43
GR	288			43	QKVPQREVLTMTRTPQKRSILGDAVSTCLCKYVHKMSVASGGD	(-)		
GR	289			57	INYNYYHIIEFIIITILMLEEILKIQEKLHETNEKPLRNQLHDVAKSVVNSR	Anguilla japonica ventricular	31.5	38
GR	290			29	AAFIOVCCCRIKDATDDMEMNKRNCIPVK	Mycoplasma hominis orif 99 protein	47.6	21
GR	291	+		14	VDDDDKEFGANFDI	hypothetical protein RP413 - Rickett	53.8	13
GR	292			71	SQNHKHDFPRFESMVSYYHDLRLTWYYEEPSEEKLLCGQRTTTKCVCFGKTT LMLKNDAEKPVTLGGSLNL	$(-)$		
GR	293			33	HYPAQFWATMAI IENVNGPVKFLSI ECGVNGDS	hypothetical protein yxle - Bacillus	30.4	23
GR	294			41	GCT HQQQKRTDENI LKESYKQTQGCWGRECWI PQDWSPFKR	Arabidopsis thaliana T06D2	38.4	26
GR	295			49	LPSQSSNFSEEVDGRLISKPSHDQQSPALISKITQPTCRFVRSNKWLLI	(-)		
GR	296			55	INTHWVSSRLICTDLENVANGDLSIVQMHRKLGFRMIEVVVT INNLKKSRLR	14 aminoglycoside $6^{\prime}-\mathrm{N}$-acetyltransferase	41.0	39
GR	297			28	FSFFLFFHTREMNGDVDMRCKDQNLEVN	Oryctolagus cuniculus ryanodine receptor	43.4	23
GR	298			54	EKI HFATVCRDKEKKVLL I I IVSVPKPQLGWMNEDSGAHRLRAI RNYYVLHM	(-)		
GR	299	$+$		62	VFFFFLPSTRCHSANLNGVYYSGPYTAKTDNGIVWYTWHGWWYS LKSVVMKI RPNDFIPNVI	(-)		
GR	300	+		67	NFYELNIGEYSGTAGDSLAGNFHPEVQWWASHQRMKFSTWDRDHDNYEGNCA EEDQSGLWENRFDVL	fibrinogen-related protein (HFREP-1)	98.4	63
GR	301	+		43	LLVSFLEDYTLKIDLADFEKNSRYAQYKNFKVGDEKVLQFSKK	fibrinogen-related protein (HFREP-1)	100	30
GR	302	+		59	GWVVVALVPQMEFALIGFHFTFFRGWKDYENGFGNFVQKHGEYWLGNKNLHE	fibrinogen-related protein (HFREP-1)	97.1	35
GR	303			64	WLFFSFFFPVNQQDYLSLNNLQNVHVKDRKMFNGKTKHRQCSSPVDNKEQKE NKTLVEYWNLSE	BARBA DNA GYRASE SUBUNIT B	45.4	33
GR	304	+		49	SSVLNLFCRELIVKSSMATGGGPEEDGMNDQDLPNWSNENVDDRLNNMV	Centrosome autoantigen (PCM-1)	100	44
GR	305	+		99	RSIGSDSQGRATAANNKRQLSENRKPFNFLPMQINTNKSKDASTSPPNRETI GSAQCKELFASALSNDLLQNCQVSEEDGRGEPAMESSQVITEVSFAH	Centrosome autoantigen (PCM-1)	96.7	93
GR	306			73	FLKKIFPLQIVSRLVQIRDYITKASSMREDLVEKNERSANVERLTHLIDHLK EQEKSYMKFLKKILVSIRLLK	Centrosome autoantigen (PCM-1)	100	48
GR	307			57	MIYTAKIFQARENEEEDVRTIDSAVGSGSVAESTSLNIDVQSEASDTTVSGE	Rattus norvegicus zinc finger protein	43.1	51

$\stackrel{\text { N }}{ }$	N－	\％	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$	へ～ガ	$\text { on } \underset{\sim}{\circ} \underset{\sim}{n}$	$\stackrel{n}{\square}$			\bigcirc	$\stackrel{\sim}{7}$	9	$\stackrel{M}{\sim} \underset{\sim}{-1}$
\bigcirc		${ }^{\circ}$	\bigcirc	6	ors			Nos	\pm	\llcorner	\square	\cdots	06
$\dot{\square}$	$8 \stackrel{1}{\circ}$	$\dot{\square}$	$\dot{\infty}$	$\dot{\circ}$	¢i	88	内－			$\dot{\sim}$	\cdots	「	

DTSIVGLIFQARDPQQEPMEEIENLKKQHDLLKRMLQQQEQLRALQGRQAAL LALQHKAEQAIAVMDDSGMSQSENILF	Centrosome autoantigen（PCM－1）
SVVTNFFPVVAETAGSLSGVSITSELNEELNDLIQRFHNQLRDSQVT	Centrosome autoantigen（PCM－1）
FLLFFFNKPPAVPDNRRQAESLSLTREVSQSRKPSASERLPDEKVELFSKMR VLQEKKOKMDKLLGELHTLRDQHLNNSSCE	Centrosome autoantigen（PCM－1）
IVYINFLFIRKLNEVRKRLNELRELVHYYEQTSDMMTDAVNENRKDEETEES EYDSEHENSEPVTNIR	Centrosome autoantigen（PCM－1）
YMFSADCRYNREGEQEIHVAQGEDDEEEEEEAEEEGVSGASLSSHRSSLVDE HPEDAEFEQKINRLMAAKQKLRQLQDLVAMVQVNIAWSFKN	Centrosome autoantigen（PCM－1）
DCFNVMML FQDDDAAQGVI SASASNLDDFYPAEEDTKQNSNNTRGNANKTQK DTGVNEKARYVKLLAFI	Centrosome autoantigen（PCM－1）
QFNCREKFYEAKLQQQQRELKQLQEERKKLIDIQEKIQALQTACPDLQVIMK	Centrosome autoantigen（PCM－1）
TSVLCLLITRTMATWGGSTQCALDEEGDEDGYLSEGIVRTDEEEEEEQDASS NDNESVCPSHSVNHNSYNGKETKNRLVSVE	Centrosome autoantigen（PCM－1）
IVSRHISESHEKGENVKSVNSGTWI ASNSELT PSESLATTDDVS	Centrosome autoantigen（PCM－1）
ETFEKNFERETHKISEQNDADNASVLSVSSNFEPFATDDLGKQNCL	Centrosome autoantigen（PCM－1）
SKN I FVPNVGNTVI HLDQALARMREYERMKT EAESNSNMRCICRIIEDGDGA GAGTTVNNLEGI	Centrosome autoantigen（PCM－1）
DFSQEHMDEVCSSQLLTSVRRMVLTLTQQNDESKEFVKEFHKQLGSILQVRV	Centrosome autoantigen（PCM－1）
DSLAKFAGRKLKDCGEDLLVEI SEVLFNELAFFKLMQDLDNNSITVKQRCKR KIEATGVIQSCAKEVNNVHFDV	Centrosome autoantigen（PCM－1）
DKDETETVKQTQTSEVYDGPKNVRSDISDQEEDEESEGCPVSISKFKGSVLS	Centrosome autoantigen（PCM－1）
LQRDFKKTAESKNVPLEREATSKSKKSK	Centrosome autoantigen（PCM－1）
YVFEFEITLQEAESGNISQKSDEEDFVKVEDLPLKLTIYSEVFSCL	Centrosome autoantigen（PCM－1）
CLCCLFLVCRCGRQLLKENQNHKQVMIEMAVLN LKNGGNVGQNRGLDVGRGG	MAN RETROVIRUS－RELATED ENV POLYPROTEI
AFENKDIEAGQSSTPKSRANTAVNEESLFTKQRGSSVMHCNCDSSVHHKVES NSNTKDNTDNNVKLPV	HIV rev protein
RLCIFLNCFPAQKGEEYDSHPEMTTEANNNNYSNNVCIESTK	LAFK CALCIUM－TRANSPORTING ATPASE
FHLNIDDSYGLNVSLQNSGVVSVLVVRGAFFKR	Saccharomyces cerevisiae Yprl44cp
RYNLSIQAFQKTEDDKANGSATEFENPVYLITCSGK	HELPY TRYPTOPHAN SYNTHASE BETA CHAIN
VVKSKSLRKLSLLEIDGPKAENPEVLLHCE	Saccharomyces cerevisiae pyruvate kinase
MFLYSYEEAKNLLTKTKI LAPAYFI LGGNQSGEGCVITRDRKESLDVYE	Homo sapiens PHP protein．
AFINIFVFQPGLLGNFPGPFEEEMKGIAAVTDIPLGKVHLEALKK	Homo sapiens PHP protein．
FSKHFIYFSAKGYSEFSEEYDKYIRAKWKSYAGGG	oryctolagus cuniculus angiotensin
TEVCFSDLFIMHLAEILDKYENIFRFKCPSLDYQNHRKEKDFQPDAVAHAGN	Homo sapiens KIAAO273 protein
KESVHSLSQAVTSVLGAVLTSRSAESGINKERKQMI IKQCHKHVDESVHKCC	（－）
GRKGGYEYF	
LRDVSYHCFVGLNLNEQFNGIFVVSAGGSIPSSGTKTSRPAEPNMGARCKNF ASGSPGVMVSGATSIST	murine herpesvirus 68 unknown protein
CYFLLTGCNQHNVINVMDQCDILWKQNVIKFSSNKITTQSRKVDIPLR	Tetrahymena thermophila P－type ATPase
KKPTMDHHTSPLHQLPKEPRFRKILSETKAAVQKDISSETDDENIFIHMHNA YTQSMLYKCT LMKSYLQEMHKINQLSESLYTIYTSHTGSDVTVKYKAR	（－）
INKVRDKRGDITIDTTEIQKIIREYYEQLYDNTLESLGEMDKFLHTCNLPLL NHEAIQNMNRQ	Plasmodium falciparum malaria antigen
AKKICESSSRIREINEVKHERFM	Vesicular stomatitis virus orf2
GLPVGLGPVSVMILKCSLKHKTLDSNAEKIKITYPKAFNWIQSS	Caenorhabditis elegans C44C8．1
GLLSITPHRNIKWNNYPCKKTPSKELKKSGELSQYLVLA	SCHPO HYPOTHETICAL 40.9 KD PROTEIN C31A
LVIWINPDETDQKTDTERERTKTNNIGLKRGILSQTQKQ	Coxiella burnetii protein
LPSSSFASSRLPVLLFLDLFQALTEHITHGTSSVRLPESRNQVKYKSTVLPA	（－）
GGMGIIGQYNSPPFFTVRYE	
NSCHQGTEMTGILLEDLQREGTESEQREHTFGGLRGGNLGTLHGSAAYLVLS LCPSSSRGTGELNWYGATH	（－）

$\stackrel{\square}{\sim}$	「～	$\stackrel{\infty}{\infty}$	\cdots	0	－${ }_{\sim}^{\text {N }}$	$\underset{\square}{\square} \stackrel{6}{*}$	$\stackrel{\infty}{\sim}$			$\stackrel{9}{6}$	${ }_{\infty}^{\infty} \stackrel{8}{-8}$	$\underset{6}{6}$		$\stackrel{H}{i}$
										＋			＋	
$+$	＋＋		＋	＋		$+\quad+$	＋＋	＋＋	＋＋＋＋					
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \text { an o } \\ & \stackrel{\circ}{\mathrm{o}} \mathrm{~m} \end{aligned}$	\vec{m}	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\underset{m}{2}}$	$\underset{m}{\vec{~}} \stackrel{n}{m}$		$\begin{aligned} & \text { go } \\ & \vec{m} \end{aligned}$	$\underset{\sim}{c}$	$\underset{M}{N} N \mathbb{N} M M M M m m$	$\stackrel{\sim}{m}$	$\stackrel{\bullet}{\underset{m}{m}} \underset{\sim}{m}$	$\stackrel{\infty}{\stackrel{\infty}{m}}$		苂
品	足品	号	$\frac{\sim}{0}$	$\frac{0}{0}$	号品	号	$\underset{\sim}{9} \underset{\sim}{9}$			号	号品	呪	品品品品品	号

[^0]: Communicated by Toshihisa Takagi

 * To whom correspondence should be addressed. Tel. +81 -3-5449-5372, Fax. +81-3-5449-5433, E-mail: yusuke@ims.utokyo.ac.jp

