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ABSTRACT 

Low energy consumption has become a critical design feature in modern systems. 

Internet of Things, wearables and other portable devices create increasing 

demand for low power design where device size is dictated by battery and low 

energy means longer battery life and smaller physical size. These are crucial 

features for wearables and especially implantable medical devices. 

There are several low power and energy efficient techniques which are applied 

at different abstraction levels of the system design. A technique usually utilizing 

software control and hardware features is DVFS (dynamic voltage and frequency 

scaling), a dynamic power management technique which decreases processor 

clock frequency and supply voltage. Reduction in energy consumption is achieved 

with the cost of reduced performance. One of the questions with DVFS is how the 

execution frequencies are defined. 

This thesis presents a method for frequency optimization for applications 

executed on a single core processor. Execution trace data is used to profile the 

application. FreeRTOS operating system is used although tracing can be 

implemented with any real-time operating system executing tasks as separate 

threads. Based on profiling and user-defined data, task execution frequencies are 

defined assuming that execution time scales linearly with the frequency. 

A near-threshold ARM Cortex M3 with integrated power management and 

phase-locked loop is used for measurements. The measurements show that energy 

savings can be achieved without affecting correct application execution. However, 

the reduction in energy consumption depends highly on the system used and the 

application execution profile. Iterative testing and frequency optimization are 

required to ensure adequate performance. For energy efficiency optimization, 

energy consumption needs to be considered in every phase of the design. 

 

Keywords: dynamic voltage and frequency scaling, energy efficiency, embedded 

systems, low power design 
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TIIVISTELMÄ 

Matala energiankulutus on keskeinen ominaisuus nykyisten järjestelmien 

suunnittelussa. Esineiden Internet ja puettava tietotekniikka luovat tarpeen yhä 

pienemmälle energiankulutukselle. Laitteen koko määräytyy akun koon 

mukana. Matala tehonkulutus tarkoittaa pidempää akunkestoa ja pienempää 

fyysista kokoa. Nämä ovat ratkaisevia ominaisuuksia, erityisesti implantoitaville 

lääkinnällisille laitteille. 

Energiatehokkuuteen ja matalaan energiankulutukseen tähtääviä menetelmiä 

voidaan soveltaa eri abstraktiotasoilla järjestelmän suunnittelussa. Dynaaminen 

jännitteen ja taajuuden skaalaus on menetelmä, millä pyritään alentamaan 

dynaamista tehonkulutusta säätelemällä käyttöjännitettä ja kellotaajuutta. 

Suorituskyvyn kustannuksella on mahdollista saavuttaa matalampi 

energiankulutus. Keskeinen kysymys on, miten käytettävät kellotaajuudet tulee 

määritellä. 

Tässä diplomityössä kehitetään menetelmä, jota voidaan käyttää optimaalisten 

kellotaajuuksien määrittämiseen. Suorituksen aikana kerättävää dataa 

käytetään ohjelman profilointiin ja optimointimallin luomiseen. Suoritusdatan 

kerääminen on kehitetty FreeRTOS-käyttöjärjestelmälle, mutta periaate on 

sovellettavissa käyttöjärjestelmille, joissa tehtävät suoritetaan erillisissä 

prosesseissa. Profilointidata hyödynnetään yhdessä käyttäjän syöttämän data 

kanssa kellotaajuuksien määrittämiseen olettaen, että suoritusaika skaalautuu 

lineaarisesti kellotaajuden kanssa. Suositustaajuudet määritetään jokaiselle 

prosessille erikseen.  

Mittauksissa käytettiin ARM Cortex M3 prosessoria integroidulla 

tehonhallinnalla ja vaihelukolla. Mittaustulokset osoittavat, että 

energiankulutusta voidaan pienentää vaikuttamatta sovelluksen virheettömään 

suoritukseen. Saavutettava hyöty tehonkulutuksessa on riippuvainen 

käytettävästä järjestelmästä ja sovelluksen suoritusprofiilista. Riittävä 

suorituskyky täytyy varmistaa iteratiivisella testaamisella ja kellotaajuuksien 

optimoinnilla. Tehonkulutus ja energiatehokkuus täytyy huomioida 

suunnitteluprosessin jokaisella osa-alueella, jotta parhaat tulokset saavutetaan. 

 

Avainsanat: dynaaminen jännitteen ja taajuuden skaalaus, energiatehokkuus, 

sulautetut järjestelmät,  matalan tehonkulutuksen järjestelmäsuunnittelu 
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ABBREVIATIONS 

 

CL  load capacitance 

c task instance count 

CMOS complementary metal oxide semiconductor 

CPU central processing unit 

DVFS dynamic voltage and frequency scaling 

𝐸  energy per cycle 

Eavg average energy consumption 

EDF earliest deadline first  

f execution frequency 

fscaled optimized execution frequency 

GPOS general purpose operating system 

Is capacitive current 

I/O input/output 

KWS Keyword spotting 

OP operating point, a voltage-frequency pair 

OS operating system 

P power 

PLL phase locked loop 

RM rate monotonic scheduling 

RTOS real-time operating system 

RTT Real-Time Transfer 

s scaling factor 

SWD Serial Wire Debug 

t time 

T charging interval 

Vdd supply voltage 

Vout  output voltage 

wcec the largest execution cycle amount required by a task in a trace 

WCEC worst-case execution cycles 
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1. INTRODUCTION 
 

The development of systems such as portable devices and Internet of Things requires 

low-energy design. For many embedded systems, low energy consumption is vital, and 

it has become a crucial feature in modern system design. Long battery life is required 

but devices are limited by battery size and weight. Heat dissipation caused by high 

power consumption is also undesirable and even unacceptable for wearable and 

implantable devices [1].  

The application, supply voltage, execution frequency and process technology are 

the main factors affecting a device’s power consumption [2]. Software and hardware 

can be optimized for low energy consumption and energy efficiency (Figure 1). 

Memory requirements and memory utilization optimization lead to lower energy 

consumption in software. Energy efficient memory technology and hardware design 

techniques reduce hardware energy consumption. Many techniques are related to 

hardware design. Design tools and methodologies are widely available. However, the 

impact of software should not be neglected.  

 

 

Figure 1. Possibilities for low energy consumption in software and hardware. 

 

The hardware design process consists of several levels of abstraction: technology, 

circuit/logic level and architecture level. Software decisions take place at higher levels 

of the design. Algorithm and system levels include software optimization and 

software-controlled power management. Techniques used to achieve low energy 

consumption and increase energy efficiency can be applied at different design 

abstraction levels from system to technology level. The greatest impact on energy 

consumption can be achieved with design decisions made at highest levels of 

abstraction, whereas the accuracy for power estimation decreases at higher levels [3].  

Power management can be implemented in application code, by OS (Operating 

System) or with hardware (Figure 2). The existing hardware low-power features can 

be utilized, thereby using automated hardware control for power management. The 

advantage of software-based implementation is that it is configured for the application. 

RTOSes (Real-Time Operating System) used in today’s embedded systems provide 

power management features and scheduling can be implemented for low energy 

consumption. [4]   
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Figure 2. Overview of levels for power management. 

 

Usually hardware and software are not designed in parallel and the design is done 

in separate teams rather than in an integrated team. In the context of this thesis, the 

hardware has already been designed and is capable of ultra-wide DVFS. The 

application software is provided by an external supplier. Thus, the method presented 

in this thesis for frequency optimization is the only remaining optimization technique 

which can be applied.  

In Chapter 2 the design challenges for low energy consumption are discussed. 

Chapter 3 presents techniques used in software and hardware. It is necessary to 

understand the possibilities that the hardware and software provide and how these 

techniques affect the system behavior. 

DVFS, a power management technique, is used to reduce the dynamic power 

consumption. Basically, clock frequency is dynamically adjusted while allowing the 

reduction in supply voltage. The reduction in dynamic power consumption comes with 

the cost of performance. However, a processor can spend much of its time waiting for 

events to occur [5]. The unused processing time is utilized by DVFS.  

The effect of voltage and frequency scaling to task execution time and energy 

consumption is visualized in Figure 3. Instead of race-to-idle, task execution is 

prolonged. The challenge is that while low energy consumption is achieved, adequate 

performance level and correct behavior must be ensured. Execution time is especially 

critical in hard real-time systems where missing a deadline has fatal consequences. 

Thus, execution frequencies must be carefully chosen for an application utilizing 

DVFS.  

 

 

Figure 3. Basic idea of DVFS. 
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The objective of this thesis is to develop a method which can be used to define 

optimal execution frequencies for DVFS based on application analysis and profiling, 

leading to lower energy consumption while maintaining correct application execution. 

The method is developed for embedded real-time systems. The target system provides 

wide range of frequencies and is capable of near-threshold operation. Optimal 

execution frequencies are defined for inter-task DVFS algorithm. Thus, the 

frequencies must be defined at task-level. The method is developed based on the 

assumption that the execution frequency should be scaled as low as possible given the 

constraints.  

In the context of this thesis, software profiling and frequency optimization are 

developed independently of the operating system. Many operating systems allow 

specific execution events to be traced. The requirement for the implementation is that 

tasks are executed as separate threads instead of a single thread. Only minimal code 

instrumentation should be required. The execution frequencies for tasks are defined 

based on trace data collected during execution and user-defined constraints. Software 

execution trace is used in profiling where data is extracted and used in frequency 

optimization.  
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2. DEVELOPMENT ISSUES 
 

System energy consumption depends on several factors. The design challenges 

introduced by low energy design include degraded system reliability and timing 

overhead caused by power management. These issues need to be acknowledged as 

they cause incorrect system behavior or even failure. Energy and power benchmarking 

tools are also required. 

2.1. Energy consumption 

Power defines the rate at which energy is consumed. Average energy consumption Eavg 

is the time t integral of power P: 

 

       𝐸𝑎𝑣𝑔 =  ∫ 𝑃(𝑡)d𝑡.               (1) 

 

As a capacitor is charged energy is drawn from the power supply. Total energy drawn 

from the power supply when a capacitor is charged is defined using Equation (1) where 

the integral interval is the charging interval from 0 to timepoint T: 

 

  𝐸 =  ∫ 𝑃(𝑡) d𝑡.
𝑇

0
                      (2) 

 

Instantaneous supplied power is the product of supply voltage Vdd and capacitive 

current Is. The charging interval is the interval when a capacitor is charged from 0 to 

Vdd. Thus, Equation (2) for energy drawn at each cycle simplifies to: 

 

   𝐸 =  𝑉𝑑𝑑 ∫ 𝐼𝑠(𝑡)d𝑡 =  𝑉𝑑𝑑 ∫ 𝐶𝐿d 𝑉𝑜𝑢𝑡 =
𝑉𝑑𝑑

0

𝑇

0
 𝐶𝐿𝑉𝑑𝑑

2 ,            (3) 

 

where CL is the load capacitance and Vout is the output voltage. Equation (3) shows the 

relation between supply voltage and energy consumption. Total energy consumption 

is affected by the rate at which charging is done. [6] 

2.2. Timing challenges 

As the correct behavior of an application depends on correct timing of the tasks during 

execution, overhead caused by power reduction implementation can severely affect 

the application behavior. Overhead is the time that the application execution is halted. 

The instructions related to power management are executed resulting in the necessary 

hardware configurations.  

The amount of overhead depends on several factors: the hardware implementation 

characteristics and complexity of the power management algorithm. No matter what 

kind of approach is chosen for power management, each state transition always 

introduces some overhead. Depending on the state transition, the amount of overhead 

that reduces application execution time or increases response time can become 

significant. This needs to be acknowledged in application design as many systems 

require quick response to certain events which cannot be predicted.  
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Dynamic power reduction techniques can be divided into the use of power modes 

and DVFS. The two approaches have the opposite effect to the software execution but 

achieve reduction in power consumption compared to a state where no power reduction 

technique is applied (Figure 4). In that case, power consumption stays at the same level 

with task execution and idle. The system remains responsive.  

 

 

Figure 4. Changes in execution time and power consumption with no power reduction 

versus power modes (1) and DVFS (2). 

2.2.1. Power modes 

Race-to-idle approach is used with power modes. That is, the task being executed 

should be executed as fast and quickly as possible so that the processor can be set to a 

low power mode for the longest possible time period. These time periods where 

processor is not utilized are used to set the processor to a low power mode.  

Low power modes vary from the active mode to low power or sleep mode to nearly 

being totally turned off or, as can be said, hibernated (Figure 5). The functionality is 

decreased as lower power mode is used. In active mode the processor executes at full 

speed and is fully powered. When moving to lower power modes, most clock signals 

are stopped, eventually stopping all clock signals. Some designs allow shutting down 

parts of the chip. The downside is the delay with every exit from and entry to a low 

power mode. Deepness of the power mode affects the wakeup delay and can cause 

unresponsiveness. [7, 8] 

The time to enter and exit a light power mode, for example when waiting for an 

event, is very short [9]. A light mode does not lead to a great decrease in power. Deeper 

modes yield more decrease but increase the response time of the system. Some modes 
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even require booting the processor [10]. It must be ensured that unnecessary wakeups 

are minimized, and the system remains responsive. The decision of when to enter a 

lower power mode must be chosen carefully. Thus, tradeoff between acceptable 

response time and achieved savings must be considered.  

 

 

Figure 5. Power modes and their relation to power consumption and wakeup delay. 

2.2.2. DVFS 

DVFS tries to minimize the time spent in idle. Opposite to race-to-idle approach, 

energy consumed during active state can be decreased. DVFS controls execution 

frequency and voltage according to application requirements. The operation of the 

processor might not be reliable during these transitions, and the application software 

execution is halted [11]. To be able to estimate the amount of overhead that is 

introduced, the direction of the change must be known. The direction of the change 

corresponds to the value of the voltage and frequency levels used. The overhead 

depends on the direction that the OP (operating point) is changed as the order specifies 

whether execution frequency or supply voltage must be set first (Figure 6). 

 

 

Figure 6. The order and delay of frequency and voltage change. 
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When frequency and voltage are changed to a higher level, the voltage must be set 

first to the requested value. Once the voltage is set to the value which can support the 

requested new frequency, the execution frequency can be set to the requested 

frequency value. On the other hand, when the change direction is the opposite i.e. 

voltage and frequency are changed to a lower level, frequency is set first. Then the 

voltage level can be decreased as the higher voltage level is no longer required. [12] 

The software execution can be continued before the lower voltage level is reached 

when the change is done from a higher to a lower OP level. This is because the lower 

execution frequency is supported by the higher voltage level. When the execution 

frequency value is altered, frequency must be locked before the application execution 

can be continued. The same goes for voltage which must be set and at adequate level 

before execution frequency can be increased. The time taken to lock the correct 

frequency can be rather short. The setting time of the correct voltage is slower and 

defined by the slew rate [13]. Thus, the difference between the voltage levels defines 

some of the overhead introduced.  

From application execution point-of-view, the overhead itself is not the only issue 

which results from frequency and voltage change. The change requires time and 

consumes energy. Thus, it is not feasible to be constantly changing the OP. The power 

reduction is achieved with decreased performance. How is the system performance 

affected if quick response is required but a low OP is in use? This is the case if an 

interrupt occurs. If the service to be executed is short, e.g. interrupt service routine, it 

is not feasible to change the OP as the execution time of the interrupt service routine 

should be short and could be shorter than the overhead time to change the OP. 

2.3. Reliability 

Low power design and harsh use environment conditions cause reliability issues. 

System becomes susceptible to functional errors and failure. Reliability defines the 

ability of a system to continue operation correctly even if errors occurs.  

Low operating voltage and transistor scaling introduce timing skews. Timing errors 

arise from large process variability which increases as voltage is decreased, operation 

time increase due to aging, or transient errors caused by effects such as noise, power 

glitches and radiation. These errors are not permanent. They cause error in data or 

control flow in the software [14]. Data flow errors corrupt data values and cause output 

values to become incorrect whereas control flow errors cause incorrect execution order 

for instructions [15]. Time-independent reliability issues become more significant at 

lower voltages. [16, 17] 

Redundancy is an approach used to make systems more fault tolerant. Several 

techniques for hardware and software redundancy have been developed. Redundancy 

techniques can be classified in structural, time and information redundancy. While 

hardware-based solutions are available, they always require additional hardware. 

Software-based methods are used to reduce the overall cost. Software-based methods 

introduce timing overhead, added code size and additional memory requirement. [18] 

2.4. Benchmarking 

Benchmarking tools are designed to measure the performance characteristics of a 

processor in a comparable manner. As low energy consumption can be achieved by 
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compromising the performance, there is a need for power and energy evaluation. 

Tradeoff between power and performance can be assessed and balanced. 

Benchmarking eases the development process, but the application also has a great 

impact on the energy consumption of the system. 

The Embedded Microprocessor Benchmark Consortium provides a benchmark for 

energy that targets ultra-low power microcontroller units called ULPMark. The 

benchmark quantifies optimization tradeoffs made between different energy demands 

and performance. Behavioral profiles are used to assess the device operation. 

ULPMark line consists of three different profiles. ULPMark-CoreProfile focuses on 

the energy of sleep and transitions between active and sleep mode. ULPMark-

CoreMark is used to analyze performance and energy efficiency. ULPMark-

PeripheralProfile can be used to assess the cost of most used peripherals. [19] 
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3. TECHNIQUES FOR LOW ENERGY CONSUMPTION 
 

Several approaches are used to achieve lower energy consumption. These can be 

categorized into hardware techniques, algorithmic techniques, scheduling algorithms, 

and DVFS algorithms. Techniques from different categories can be combined for total 

system optimization for low energy. 

3.1. Hardware techniques 

Several design techniques which are applied at different design abstraction layers are 

used to lower energy consumption but they also introduce challenges (Table 1). 

Voltage scaling, frequency scaling, power gating and clock gating are the most 

commonly used techniques [20].  

 

Table 1. Examples of low power techniques and their challenges 

Abstraction level Technique Challenges 

Architectural 
Dynamic voltage scaling Added overhead and increased delay 

Pipelining  Control overhead 

Circuit / logic 

Transistor sizing Increased delay 

Clock gating Increased logic 

Power gating Increased delay 

Technology 

Scaling  Parameter variability 

Supply voltage reduction Increased delay 

Threshold voltage reduction Leakage power increase 

 

Scaling of physical dimensions causes variability in device parameters such as 

threshold voltage due to process variation [21]. Supply voltage can be decreased near 

threshold or below the threshold voltage. However, current is not strictly cut off at the 

threshold voltage. The significance of static power consumption on system total power 

consumption grows. Susceptibility for soft errors is increased as capacitances and 

voltages are decreased. [22-24] 

Another efficient technique to reduce dynamic power is clock gating due to clock 

tree constituting a large part of total power consumption. Clock gating prevents 

unnecessary charging by gating off clock supply from unused logic.  Implementation 

requires additional control logic (Figure 7). Power gating has a similar approach as 

current is cut off to reduce leakage power. Although leakage power is efficiently 

reduced, it introduces delay and requires additional logic. [25-27] 

 

 

Figure 7. Basic clock gating cell. 



 

 

17 

Transistor width can be reduced to decrease dynamic power consumption. It causes 

increase in transistor delay and scaling decision is made based on tolerable delay. 

Switching activity is decreased by reordering transistors so that transistors which are 

likely to switch frequently are placed close to the circuit’s output. [25] 

Dynamic voltage scaling is applied at architecture level to reduce dynamic power. 

Reduction in supply voltage increases propagation delay. Glitches occur due signals 

in different paths not having the same delay [28]. Control can be implemented in 

hardware or software and the technique can be combined with dynamic frequency 

scaling.  

 Pipelining increases performance as instruction execution is divided into stages 

executed in parallel. However, conditional execution decreases performance and 

causes delay. Stalling can be avoided by using branch prediction. For wrong 

predictions, pipeline flushing is required wasting execution cycles before continuing 

with the right instructions. Pipeline structure affects the cost of wrong prediction and 

requirements for expensive registers. Another technique used at architectural level is 

low-power memory hierarchy. Memory must be optimized for the application 

specifically to reduce hardware usage. [25, 29] 

3.2. Algorithm level techniques 

Software optimizations are done for power consumption, execution speed and code 

size. Code efficiency decreases execution time. Data optimization techniques 

concentrate on minimizing the cost resulting from data transmissions and storage. 

Code can be optimized in multitude of ways, usually by a compiler, with example 

methods shown in Table 2. 

 

Table 2. Common algorithmic optimization techniques 

Optimization technique Applied to Description 

Software pipelining Loops Reduce execution time by changing loop 

execution order and utilizing instruction 

level parallelism. 

Precision reduction Arithmetic operations Reduce computational precision and 

decrease energy. 

Assembly and intrinsic 

functions 

Functions Library function calls are replaced with 

low-level instructions decreasing 

execution time. 

Strength reduction Expensive operations Expensive operations are replaced by 

less expensive ones. 

 

The algorithm implementation can be evaluated by examining the instructions that 

are needed for the operations. Instructions have different effects on the power 

consumption as they activate different functional units. The aim is to minimize the 

most frequently executed paths to reduce hardware switching activity. Functions can 

be transformed by using different commands to perform the same functionality. Data 

patterns and code sequences which consume less power are key for low-energy 

optimization. [20] 

First, the best suitable algorithm for the given problem must be chosen. Same 

functionality can be achieved with variety of algorithms. The best algorithm can be 

multiple times better than the worst algorithm, whereas implementation details result  
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only in improvement of a few percent [30]. The algorithm is chosen so that it is 

efficient for the available hardware. It includes computations and storage. An 

algorithm transformations and implementation should map to the computational 

resources available.  

Basic programming techniques which can increase code performance include the 

use of fixed-point arithmetic when there is no support for floating point operations. 

Integer values should be correctly sized for the processor usually according to the 

natural word length. For data structures, the parameters should be aligned accordingly. 

[30] 

Instruction selection and ordering are optimization methods. Instruction selection 

consists of selecting the lowest power instruction sequences. Instruction scheduling is 

used minimizing energy consumed as processor switches execution from one type of 

instruction to another i.e. the circuit state without affecting the program behavior. 

These are followed by register allocation which is discussed in memory-based 

techniques. Switching activity caused by an operation can be tried to be minimized by 

operand swapping. [31] 

Stand-alone assembly, inlining and intrinsic functions are used to replace high-level 

language code. Assembly code lacks portability, can inhibit compiler optimizations 

and be a laborious task to implement. Intrinsic functions are an alternative for 

developed-implemented assembly. They are used as standard library functions. 

Intrinsic functions appear in the code as standard function calls but are replaced by the 

compiler with a low-level implementation. Intrinsic functions which are compiler 

specific are built into the compiler. Processor vendors also provide platform-specific 

intrinsic functions. These optimizations eliminate function call overhead and reduce 

execution cycles. [32] 

Function call overhead can also be decreased by eliminating recursion in procedure 

calls. Recursion can be replaced with a loop structure. For each function call, general 

context of the function such as variable values must be pushed onto the stack. Another 

technique to reduce function call overhead is to use inlining which replaces the 

function call with the function body. 

Loops provide opportunity for code optimization. Loop unrolling is used to 

optimize performance and power, but tradeoff is increasing code size. In practice, loop 

unrolling means that a loop is partially unraveled by reducing the number of control 

statements. Loop unrolling increases code parallelization and efficiency. It is 

beneficial with long pipelines and loops with a lot of iterations. The total unraveling 

is not beneficial as it leads to large code size and increased memory accesses.  

Another technique for loops, which can also be combined with loop unrolling, is 

software pipelining which reforms loop operations to decrease execution time. 

Software pipelining uses instruction level parallelism. Loop iterations are reordered 

for out-of-order execution. Software-pipelined iterations are formed of instructions 

from different iterations of the original loop. Iterations are reordered so that 

dependencies are removed. Instructions from different loop iterations can be executed 

in the same pipeline.  

Precision reduction is a technique which can reduce cycles required to execute a 

function and is applied to mathematical functions by reducing precision without 

degrading the output value for the given task. High precision leads to the used of more 

functional units and requires more cycles for execution. This technique can be applied 

if precision is too high for the purpose. [20] 
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Replacing integer division with a constant multiplication is an example of strength 

reduction. Less expensive but similar operations are used to replace the expensive 

ones. Common subexpression elimination is another compiler technique which 

eliminates redundant calculation by identifying expressions which result in the same 

value and storing them into another variable which can be used to reformulate the code. 

[33] 

3.3. Scheduling 

Scheduling is one core task of an operating system. Although scheduling can be 

implemented even on bare metal, operating systems provide various algorithms for 

scheduling and ready framework for implementation. Scheduler decides which task is 

selected for execution at a scheduling point based on a scheduling algorithm (Figure 

8). 

 

 

Figure 8. Execution time allocation in priority-based, round-robin, non-preemptive 

and priority-based preemptive scheduling. 

 

Scheduling policies can be divided into priority-based scheduling and round robin 

scheduling. In priority-based scheduling the task with the highest priority is given 

execution time first whereas in round-robin scheduling tasks are executed in turns. 

Tasks can also be preemptive. In priority-based scheduling, the execution of a task can 

be interrupted by another task with a higher priority i.e. a context switch occurs before 

the task has finished all its jobs. This is preferred in real-time systems as non-

preemptive scheduling lacks the ability to react to real-time events. 

EDF (Earliest deadline first) and RM (Rate monotonic scheduling) are optimal 

algorithms. EDF is an optimal scheduling algorithm for a single processor: if a task set 

can be scheduled, it can be scheduled with EDF. The task with the shortest time until 

its deadline is selected for execution. With dynamic priority assignment, the priorities 

are assigned online.  Processor can be fully utilized i.e. the utilization bound is 100 % 

for EDF. [34, 35] 
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Fixed priority scheduling is the most implemented approach in commercial 

RTOSes [36]. Task priorities are defined by the developer at compile-time, usually 

according to task timing requirements, and remain the same during execution. RM is 

a fixed priority-based scheduling algorithm. A task set cannot be scheduled with any 

fixed-priority algorithm if it cannot be scheduled with RM. Task priorities are assigned 

indirectly proportional to task periods. Tasks which have short periods and execute 

more frequently are assigned higher priorities. For RM, the utilization can drop even 

to 70 %. The problem for these utilizations bound definitions is that task sets are 

assumed to consist of only periodic and independent tasks. [35, 37] 

In practice, many tasks have inter-dependencies. Many task sets contain aperiodic 

and sporadic tasks, and it can be hard to predict the arrival times of these tasks. Also, 

in systems like Internet of Things, telecommunication protocols set timing constraints 

which have to be met. Energy harvesting real-time systems pose another scheduling 

problem as the challenge is to operate so that energy can be harvested as much as it is 

consumed. The available energy and processor utilization need to be considered in 

power management implementation. [38]  

The key for power-aware scheduling is providing just enough performance and 

power for the workload of a processor any given time while maintaining deadlines. 

Any slack time arises from suboptimal scheduling as 100 % utilization is not achieved. 

Power-aware scheduling can utilize knowledge of energy models related to tasks and 

their resource utilization.  

3.4. DVFS algorithms 

The target of DVFS is to keep the processor utilized. Although the idea of applying 

DVFS is very simple, it can be a complex task to apply in practice. As real-time 

systems have timing constraints, frequency cannot always be scaled to the lowest level. 

These timing constraints are used to define the execution frequencies.  

DVFS can be classified different ways (Figure 9). They can be classified by their 

implementation, i.e. the time the OP value decisions are made, and whether frequency 

is changed only at task borders or within tasks. Inter-task algorithms are coarse grained 

as the application is only evaluated at task-level usually relying on knowledge of task 

worst-case execution. They introduce less overhead and less code instrumentation. 

Intra-task algorithms switch OP within task boundaries. This enables more fine-

grained approach to tuning the execution frequency. Also, interval-based online 

approaches exist [25]. [39] 

 

 

Figure 9. Classification of DVFS algorithms. 
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Slack is the time by which an execution of a task can be delayed without violating 

its timing constraint. Two types of slack can be utilized in frequency scaling (Figure 

10). Dynamic slack arises when the actual execution time of a task is shorter than the 

worst-case execution. Offline algorithms define the values at compile time. These 

techniques are highly predictable as there is no adaptation to runtime variation. Online 

algorithms make frequency decisions at runtime and make use of runtime variation in 

task execution.  [39] 

 

 

Figure 10. (a) Dynamic slack arises when a task requires less than worst-case cycles. 

(b) Static slack can be present even if tasks require their worst-case cycles. 

 

The downsides of online algorithms are increased complexity and timing overhead. 

Decisions are made based on past execution or predictions of future execution and it 

is hard to ensure deadlines. The decrease in power consumption can be lower with 

offline algorithms. There is no adaptation to varying execution and only static slack is 

utilized. The actual execution cycles required for a task completion can’t be known 

until the task has finished execution. Thus, deadlines are guaranteed by assuming 

worst-case execution. 

For DVFS to be efficient, the energy overhead and timing overhead should be 

minimal. The amount of OP switches should be kept minimal as it adds delay to 

application execution. The decrease in energy consumption depends greatly on the 

target system used. The amount of operating frequency levels that are available 

directly affects DVFs efficiency. The ability to use low voltage which are set according 

to operating frequency improves efficiency. Processor utilization can be used as a 

measure for DVFS performance. Thus, scheduling has a great impact on the 

performance. 

Several algorithms have been proposed in literature. Only algorithms for a single 

core are discussed here. They assume either discrete or continuous frequencies.  

Depending on the algorithm, tasks can be assumed to be periodical, aperiodic or 

sporadic. The frequency decisions can be made based on static code analysis and data 

collected during runtime. Most of the algorithms discussed are developed jointly with 

EDF or RM scheduling algorithm. Table 3 gives overview of different uniprocessor 

algorithms for real-time systems.  
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Table 3. Comparison of DVFS algorithms proposed in literature for real-time systems 

Algorithm / 

Developer 

Classification Scheduling  Frequency Frequency 

decision 

Challenges 

Average rate 

heuristic 

Online EDF Continuous Defined for an 

interval at a 

time. Required 

total amount of 

execution cycles 

in the interval 

defines 

frequency value 

Deadlines misses 

may occur when 

additional tasks 

are released for 

execution within 

an interval 

Static Offline EDF Discrete One execution 

frequency for the 

whole task set 

with timing 

constraints 

Single frequency 

suboptimal for 

DVFS 

Cycle 

conserving 

Online RM / EDF Discrete Current 

utilization and 

assumption of 

future worst-case 

requirements 

updated at each 

scheduling point 

Ensuring 

deadlines when 

frequency is 

decreased 

Look-ahead Online EDF Discrete The lowest 

frequency for 

current task to 

meet a deadline 

Ensuring 

deadlines as low 

frequency used 

for execution 

Bini et al. 
 

Offline EDF / 

Fixed 

priority  

Discrete Single, lowest 

frequency for the 

task set under 

given scheduling 

algorithm which 

makes schedule 

feasible 

No adaptation to 

runtime variation, 

single optimal 

frequency 

defined 

Pinheiro et al. Online - Discrete Initial 

frequencies for 

each task defined 

offline and 

lowered within a 

task if worst-

case path not 

taken 

Increased code 

instrumentation  

Energy-

aware 

DVFS 

Online EDF Discrete Available 

energy: stored 

and harvested in 

the future. 

Energy overhead 

is neglected for 

frequency/voltage 

change.  

Hybrid DVFS 

with 

reinforcement 

learning 

Online - Continuous Several DVFS 

algorithms used. 

The most 

suitable 

algorithm for 

given system 

state is learned.  

Requires training 

for optimal 

adaptation. 

Online algorithm 

adds increased 

overhead. 
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One of the first papers proposing frequency scaling algorithms for power-aware 

scheduling introduced algorithm Average Rate heuristic. It is developed for aperiodic 

tasks with a known deadline and an arrival time. Based on execution cycles required 

for tasks executing within a scheduling interval, an average-rate requirement is 

defined. Based on the average-rate requirement, the execution frequency is defined for 

the given time interval. EDF is used to schedule the tasks. [39, 40] 

Pillai et al. integrated three DVFS algorithms to EDF and RM schedulers. Here, it 

is assumed that deadlines equal task priorities so that Liu and Layland utilization 

bound can be used to check schedule feasibility [41]. Tasks are assumed to be 

independent. Static voltage scaling is a simple algorithm which only defines one 

execution frequency for the whole task set which maintains schedulability. Only static 

slack is considered. Cycle conserving algorithm was created based on the assumption 

that tasks usually require much less execution cycles for completion than worst-case. 

This slack is utilized by other tasks. At first, it is assumed that a task requires its worst-

case execution cycles and high execution frequency is used. Early completion enables 

to lower the execution frequency for the remaining scheduled tasks. Frequency can 

also be increased to meet the timing constraints. Look ahead algorithm is proactive, 

and execution is started with low frequency according to minimum amount of cycles 

required for all tasks. This enables to execute at low frequency and only increase 

execution frequency if required for meeting deadlines. [42] 

A framework for DVFS implementation with EDF and fixed priority scheduling 

was proposed by Bini et al. Continuous frequency range was assumed to define the 

frequencies offline. A speed modulation technique was proposed which is used to 

achieve the desired frequency using two discrete frequency values. Only single optimal 

frequency is defined for the task set which makes the schedule feasible under the 

chosen scheduling algorithm. In addition to considering mixed task sets, scaling 

overhead and energy overhead are also considered in the model. [41] 

Pinheiro et al. developed a methodology to turn a regular source code into power-

aware code by inserting DVFS control code into it. Static source code analysis is 

applied to study the execution paths inside a task which can be used to create a control 

flow graph and define the worst-case execution path. This knowledge is used to ensure 

schedulability and define initial frequencies for tasks. Execution frequency within a 

task can then be reduced when worst-case path is not taken. Task response times are 

used as new deadlines. The method also considers task interference and overhead. [43] 

Energy-aware dynamic voltage and frequency selection algorithm is proposed for 

energy harvesting systems. The operating frequency is selected based on the available 

energy and the energy that will be harvested soon. The frequency is decreased if there 

is not enough energy. Otherwise, tasks are executed with the highest frequency. Task 

execution is delayed until enough energy has been harvested for task execution which 

may lead to deadline miss.  EDF is used for scheduling and with infinite amount of 

energy, the energy-aware algorithm reduces to EDF. [44] 

Hybrid DVFS scheduling with reinforcement learning is more recently proposed 

algorithm for real-time systems with machine learning based control algorithm. 

Adaptability to execution variation is achieved with Q-learning where the most 

suitable action to be taken is chosen for given system state. The core idea is that a 

single algorithm is not optimal in different execution scenarios. A new algorithm is 

not proposed but already existing DVFS techniques are used. The system state is 

observed, and the most suitable algorithm is chosen during execution at every 

scheduling point. System state is described with system utilization and dynamic slack 
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for the given task set. Q-table is defined for each system state and algorithm, 

containing penalties for each action. Penalty functions is defined based on average 

energy consumption in a hyperperiod. [45] 

Temperature-aware DVFS algorithms have been proposed to reduce thermal 

problems caused by heating. As a result of thermal management, reliability increases. 

Temperature-aware DVFS algorithms for real-time systems consider both timing and 

thermal constraints. Approach can be to optimize power or performance. [46] 

3.5. The role of software 

Software has the most significant role in the optimization of a system’s energy 

consumption. It has been estimated that software accounts for approximately 80 % of 

a system’s energy consumption [47]. This is due to hardware activity which is 

controlled by software. Software provides great opportunities to gain even more 

energy savings when designed specifically for energy efficiency. On the contrary, 

inefficient use of the hardware causes waste of energy i.e. inefficient software wastes 

the advantages of hardware designed for low energy consumption [48]. The problem 

is not solved by designing more energy-efficient hardware. Thus, software and 

hardware both need to be specifically designed for low energy consumption.  

The use of an operating system makes application development and integration less 

complex. Today, RTOS is used in almost two thirds of embedded systems [49]. In 

contrary to GPOSes (general-purpose operating systems), many embedded systems 

use an RTOS due to their real-time requirements which can’t be guaranteed with 

GPOSes.  

Many well-known operating systems, although not classified as RTOS, provide 

power management features. For example, Linux provides framework for DVFS 

called CPUFreq and the utilization of low-power idle states with CPUIdle [50]. For 

examples of RTOSes, VxWorks, FreeRTOS and Mentror Graphics Nucleus RTOS 

provide at least some form of feature for low power such as tickles idle or power 

management frameworks.  

There are different approaches how energy-efficient software implementation could 

be done. The most suitable option depends on the application and more than one 

technique can be used for the same application. Static techniques implemented at 

compile time or good programming practices are not enough for total energy 

optimization but can be used to optimize the code for efficiency. As the software is 

executed on the processor, it is the only component that can be used to achieve real 

energy savings. By utilizing software to manage CPU (central processing unit) features 

that affect the power consumption of a system, lower energy consumption can be 

achieved [51]. 

Techniques for writing efficient software which increases performance and 

decrease memory requirement are well known among software developers [52]. 

However, as energy consumption has become a critical design factor, there is a need 

for guidelines on how to design software for energy consumption minimization and 

tools which can accurately model the energy consumption of software design 

decisions. 
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4. PROFILING FOR THE NEAR-THRESHOLD PROCESSOR 
 

A method for defining execution frequencies for a DVFS-enabled, near-threhold 

processor is presented. A software execution trace is used as a base for software 

analysis. Extracted data from the execution trace is used for profiling. The data is 

combined with user-defined data, such as task timing constraints, for frequency 

optimization. The software events which are traced are chosen so that they can be 

traced with any operating system. Requirement is that tasks are executed as separate 

threads. The goal is to minimize application code instrumentation so that minimal 

work is required to collect the execution trace. 

The algorithm defines execution frequencies at task-level. Tasks in optimization 

will have single frequency values assigned. The object is to scale the execution 

frequency as low as possible assuming this leads to decrease in energy consumption. 

To generalize the problem, it is assumed that task execution times scale linearly with 

the execution frequency. 

The frequency optimization model is mainly intended to be used with hard-real time 

systems whose task execution is predictable and tasks have deadlines. That is why 

execution times are defined based on execution cycles that are required to complete 

the task at worst-case scenario. The operating systems used in this work is FreeRTOS. 

Tracing is implemented with trace macros. The profiling and optimization are 

developed independently of the operating system. Optimization can be done without 

the execution trace if software execution properties are known. 

The frequency optimization can be divided into three phases: software execution 

tracing, software profiling and optimization. Overview of the implementation is given 

in Figure 11. Implementation is parameterized so that profiling and optimization 

related parameters are not fixed for the given system and trace event implementation.    

 

 

Figure 11. Overview of the frequency optimization. 
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Software execution tracing includes the actual tracing and some preprocessing steps 

before execution trace is profiled (Appendix 1). Data required to form the optimization 

model is mined from the trace in profiling phase. Task execution and task execution 

properties can be visualized in the profiling phase to give insight of the application 

execution characteristics. Software profiling and user-defined data is used to form an 

optimization model which models task execution of the application. The model 

includes timing constraints and overhead of DVFS. The optimal execution frequencies 

for the application tasks are derived from the optimization results. 

4.1. Task execution 

The task set of an application is modeled with a set of parameters. These parameters 

reflect task execution properties and are used to create the task execution model. Each 

task in the set is characterized by execution time, deadline and task period or minimum 

inter-arrival time. The number of task releases is defined with a task instance value for 

each task. The parameters related to task execution are visualized in Figure 12. The 

periodicity of a task can affect the performance after optimization if task execution 

cannot be modeled adequately.  

 

 

Figure 12. Task execution related parameters. 

 

The execution time of a task is defined by its execution frequency and required 

execution cycles to complete. A time interval defines the amount of time from a task 

release to the next task’s release. Tasks are assumed to be independent. This means 

that there are no interdependencies between the tasks e.g. a task must wait for another 

task to complete before it can be executed. 

WCEC (worst-case execution cycles) is used to define the task execution time with 

the respective frequency. WCEC value defines the maximum number of execution 

cycles that a task requires to complete. It is not trivial to know if the worst-case has 

occurred in the trace and if the worst-case execution time is defined correctly. 

Knowledge of the application and task worst-case conditions are required from the 

user so that the worst-case conditions can be produced. On the other hand, the 

execution time for a task must be known, as an undersized value can lead to deadline 

misses.  

This deadline value must be provided by the user. A deadline can be defined based 

on implementation requirements; within which time limit a certain task must be 

completed. If there is not known deadline, time interval value can be used instead of a 
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task deadline value. In some cases, deadline can be defined based on subjective 

experience.  

The reason why a context switch occurs is not visible in the trace. Each instance of 

a task is treated as the task has executed all its jobs i.e. no preemptions occur during 

the trace. Tasks are usually implemented as infinite loops. It is not straightforward to 

define the points where a task starts and when it has completed all its jobs.  

Task execution can take different execution paths which lead to different operations 

and different execution cycles. It is assumed that after completing its jobs, the task will 

be left to wait for an event, and this is defined as one whole execution of a task. Task 

is switched out if conditions to continue the execution of the task are not met. When 

the event has occurred, the task is moved to ready state and when it is switched in, it 

can continue the execution. The idle task is an exception. It has the lowest priority and 

is always ready to execute as there should always be one task ready to be executed. 

A hyperperiod can be defined for a periodic task set. Hyperperiod is the smallest 

time interval after which the task execution pattern is repeated. An example of a task 

set execution pattern is given in Figure 13. Ideally, a hyperperiod would be used as a 

trace section for optimization. A hyperperiod can be defined as the least common 

multiple of the task periods [53]. It might not be possible to define a proper 

hyperperiod if tasks are not periodic or the hyperperiod can be long. 

 

 

Figure 13. Example task set with a hyperperiod of 15.  

4.2. DVFS implementation 

The assumption that the execution time scales linearly with the execution frequency is 

made because task execution cycles are the only measure which is used to describe a 

single task instance’s execution and it is not analyzed if a task is CPU-bound. The 

contents, execution paths and decomposition of a task are not included in the frequency 

optimization model. This also leads to the assumption that lower energy consumption 

is achieved at lower frequencies as only CPU power consumption is considered. The 

optimization results define new execution frequencies.  

The OP is defined as a voltage-frequency pair. The frequency levels are discrete 

values and the frequencies that can be used depend on the system. For the 

implementation, it is known that a large range of frequencies can be generated and the 

step size between frequency levels depends on the point in the frequency range. The 

step size increases with higher frequencies. The frequencies are always rounded 
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upwards if the exact frequency cannot be generated. This is because it must be 

guaranteed that the timing constraints are not violated because the frequency is falsely 

rounded. Due to these restrictions in the optimization model and DVFS 

implementation, the actual frequencies differ from the exact optimized frequency 

values. 

The OP values for each task are defined at compile time. The number of different 

frequencies is not limited in the optimization; thus, the number of OPs is not limited. 

All the tasks do not have to be assigned with an OP. During frequency optimization, 

user can select the tasks which are included in the optimization. This means that only 

these tasks will have execution frequencies defined. It is left to the user to decide which 

tasks are included in the optimization. It is proposed that short tasks which execute 

frequently should be excluded due to overhead. Left out tasks will execute with the 

OP in use at given time. 

4.3. The optimization model 

The data collected from the execution trace in the profiling phase and user-defined 

data is used to form the optimization model. Linear optimization problems are convex 

problems. Thus, a linear optimization model is chosen because it is known that when 

a solution is found it is also the global optimal solution [54]. The optimization is 

implemented in MATLAB using linprog solver function. Description of optimization 

input values are provided in Table 17 and Table 18 in Appendix 1. 

Scaling factors si are the decision variables in the optimization problem. Scaling 

factor values are defined based on the optimization constraints and the profiling 

parameter values. Only the tasks that are included in the optimization will have a 

scaling factor defined. Values are defined for each task individually. The number of 

scaling factors and optimized tasks is not restricted. The relation between scaling 

factor s, optimal execution frequency fscaled and task execution frequency f is 

 

𝑓scaled =  
𝑓

𝑠
.      (4) 

 

The optimization model is formed as a maximization problem. The objective 

function defines the total task runtime which is to be maximized. The target is to scale 

the frequency low within the timing constraints which should maximize total task 

runtime. The tasks that are included in the parameter definition are included in the 

optimization. The tasks for optimization are selected from a list of all tasks found in 

the trace if trace file is used as a base for optimization. Otherwise, the number of tasks 

must be defined before task parameter values can be given. 

Runtime for a task instance is defined by the worst-case execution cycles wcec and 

the execution frequency f. Context switch overhead is included in the worst-case 

execution cycles. The total runtime of a task in the section is estimated by multiplying 

the runtime of the worst-case task instance with the number of task instances ci in the 

given trace section. The total runtime which is to be maximized is the sum of all tasks’ 

runtime estimations defined as 

 

    Max.  ∑ ci
n
i=1 × 

wceci

fi si⁄
.      (5) 
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One constraint that limits frequency scaling is the total time available for task 

execution. Time amount tavail is the difference between trace length and user-defined 

reserved time value for the whole time period. Overhead related to voltage and 

frequency change for each task instance also limits total task execution time. Vlock 

defines voltage settling time and Flock defines frequency lock time. The constraint for 

total runtime is 

 

 

∑ ci
n
i=1 ×

wceci

fi si⁄
 ≤ tavail- ∑ ci×(Flock+ Vlock)n

i=1 .    (6) 

 

Each task is assigned a relative deadline dli. Ideally, execution frequency would be 

scaled until execution time corresponds to the deadline value.  For each task, voltage 

and frequency change overhead and user-defined reserved time amount decrease the 

maximum execution time for a task. Guidelines for defining reserved time amounts 

are discussed in Subsection 4.5.3 User-defined data. These constraints define that task 

execution times is  

 
wceci

fi si⁄
 ≤ dli - (Flock+ Vlock+ ti).           (7) 

 

The decision variables, the scaling factors, are bounded by upper and lower limits. 

The limits for a scaling factor are defined separately for each task as 

 

simax
≥ si ≥simin

, i=1,…, n.                (8) 

 

The lower bound for a scaling factor defines the highest frequency that can be 

produced. As the chosen approach is to scale the frequency as low as possible, the 

lower bound is defined by default as one. If scaling factor value is one, the frequency 

of a task is not scaled.  

The upper limit for a scaling factor can be defined based on the system used if there 

is no reason to limit the frequency for a task. A reason to limit the task execution 

frequency could be for example the use of an expensive I/O (input/output) device or 

timing requirement of a protocol. Expensive is used here to portrait the energy 

consumption of the system. If frequency scaling upper bound is only defined based on 

the system, the lowest frequency level that can be produced and current execution 

frequency for a task are used to define the upper bound for the scaling factor. 

4.4. Software execution tracing 

Software execution is traced to collect information on the software execution behavior. 

The collected data is used to analyze and model task execution characteristics. Three 

events related to task execution are traced. These events are successful task creation, 

task switch in and task switch out. FreeRTOS OS provides trace hook macros which 

are used to collect runtime data [55]. The trace hook macros are included in the 

FreeRTOS source code as empty macros.  

A different trace macro is implemented for each of the events traced and each event 

is indicated with a specific abbreviation. All trace events contain the respective cycle 

count register value for the traced event. Passed time can be defined when the 
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execution frequency is known. Additional information in the trace event print varies 

depending on the event and each information field is separated by a colon. Event print 

contents are described in Table 4. Quotes indicate that the text is replaced with a 

respective value in the trace. 

 

Table 4. Trace event print descriptions 

Event name Event abbreviation Trace print 

Task create TC TC “Task name” “Task handle”  “Cycle count” 

Task 

switched in 
CS-I 

CS-I  “Task handle” “Frequency”/CC   “Cycle count” 

Task 

switched out 

CS-O CS-O “Task handle”  CC   “Cycle count” 

 

The trace macro for task creation is called when a task is successfully created. Trace 

event is implemented with traceTASK_CREATE macro. Once a task is created, a task 

control block containing data about the task is created. It is not necessary to include 

task create events in the trace for profiling although it is the only event where the 

descriptive name for a task is visible. Descriptive task name is used in profiling data 

and visualizations produced from the trace. Tasks will be named unknown if the names 

are not available and user must be able to identify the tasks during optimization. 

The task-switch-in macro is called when a task is selected to enter the running state 

where the task is executed and utilizing the processor. This event defines the start for 

task execution. The task handle defines which task is being executed. Trace event is 

implemented with traceTASK_SWITCHED_IN macro. Pseudo code for the 

implemented task-switch-in trace macro is given in Figure 14.  

 

 

First function call in the trace macro is a DVFS callback function. This function is 

used to set the execution frequency and supply voltage i.e. the values for an OP. The 

execution frequency of a task is requested only if OPs are used. Frequency is requested 

after it has been set for the given task. Task handle and cycle count register value are 

read within the trace print function call. Due to this implementation, frequency and 

voltage settling cycles are excluded from task execution cycles. 

The task-switch-out macro is called just before a task being executed is switched 

out. Trace event is implemented with traceTASK_SWITCHED_OUT macro (Figure 

14). Switch-out macro includes a DVFS callback function before event print is taken. 

The cycles taken by the callback function are included in the task execution cycles as 

void traceTASK_SWITCHED_IN() { 

 dvfs_callback(); 

 frequency = getCPUFrequency(); 

 event_switch_in(frequency); 

} 

 

void traceTASK_SWITCHED_OUT() { 

 dvfs_callback(); 

 event_switch_out();  

} 

 

Figure 14.  Pseudo code for task-switch-in and task-switch-out macro definitions. 
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the cycles are read after the callback, in the trace event print function. OP used is not 

changed in switch-out trace macro. Thus, settling delays are excluded from task 

execution cycles. The handle in the event trace print contains the handle of the task 

that is just about to be switched out. This event defines the endpoint of task execution.  

Profiling implementation in MATLAB requires the input trace file to have a 

specific form. The trace file is first processed with a Python script (Figure 26 in 

Appendix 1) to remove any unnecessary data. Knowledge of the trace event print 

structure is utilized in preprocessing. An example of a processed trace is given in 

Figure 27 in Appendix 1. 

4.5. Profiling 

Software profiling is a form of dynamic program analysis. It is used to analyze data 

collected of software execution to examine software execution behavior. In profiling 

phase, the main object is to collect data which is useful for the optimization and is also 

used for execution trace and task parameter visualization. In this profiling 

implementation all variables presented in Table 5 must be defined to match the system 

overhead and implemented trace prints before profiling and optimization. Once the 

values are configured, trace file can be loaded for profiling.  

 

Table 5. Variables which values must be defined before profiling and optimization 

according to used system and tracing implementation 

Variable name Description Default value 

Variables related to trace prints and MATLAB implementation  

switch_in Value must match the abbreviation used for context switch 

in event. 

CS-I 

switch_out Value must match the abbreviation for context switch out 

event.  

CS-O 

task_create Value must match the abbreviation for task create event.  TC 

fields The number of data fields used for events. All event trace 

prints must have the same number of data fields.   

4 

CYC_COUNT Abbreviation used in the 3rd data field if frequency 

information not included. 

CC 

idle_task Name of the idle task in the used OS.  

Variables used in the optimization model 

volt_change Time in milliseconds which is assumed to be required for 

voltage settling. 

- 

freq_change Time in milliseconds which is assumed to be required for 

frequency locking.  

- 

COST_CS_IN The total overhead in milliseconds which is sum of 

frequency locking and voltage settling. 

volt_change  

+ freq_change 

CS_OH Context switching overhead in cycles. - 

 

Data collected is divided into two categories based on the data scope. First category, 

system and runtime parameters, contains data which is relevant to the whole 

application execution. Execution frequency is defined for the whole trace if only single 

execution frequency is used. Otherwise execution frequencies are defined for each 

task. Profiling implementation is supplemented with a frequency table containing all 

available frequency levels in the system. Frequency table is used to define the accurate 
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execution frequency. Total runtime equals the length of the trace or hyperperiod. All 

time values in profiling are defined by execution cycles and frequencies. 

The other data category contains data specified for task found in the trace. Data for 

each task is stored into a data structure (Figure 15). Task WCEC equals the largest 

amount of cycles between a task-switch-in and the following task-switch-out. Each 

task instance is assumed to require its WCEC for completion and is defined by the 

number of task-switch-in events. A time interval value defined as the shortest interval 

from a task-switch-in event to the next can be used as a deadline value. 

 

 

Figure 15. Example of data structure which holds task specific data collected from the 

execution trace. 

4.5.1. Profiling data visualization 

Although task dependencies are not profoundly studied in this work, the trace file can 

be used to create a simple visualization of the task execution order for each task. The 

order is visualized as a directed graph. For each task, the tasks which have been 

executed before and right after the task execution are shown. If the graph is simple, 

the order in which the tasks execute can be specified (Figure 16). For complex 

applications, it can be more beneficial to visualize one task at a time. 

 

 

Figure 16. (a) Shown is an example of a case where the task execution order stays the 

same. (b) Preceding and following tasks can also be visualized for single tasks at a 

time which is extracted from (a). 

 

Time view visualization and histograms of task execution characteristics give 

information on the amount of idle time and execution variation (Figure 17). Time view 

can be visualized in two ways. For each task, a separate bar visualizes the task 
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execution also indicating which task is executed at given time in the trace file. Task 

execution and the amount of idle time can be also visualized by showing the division 

of execution time between idle and other executed tasks. Visualization does not specify 

which task is being executed any given time. Idle time is shown as gaps in bar graph. 

Execution time is shown on x-axis. Histograms are used to visualize variation between 

task inter-arrival times or execution cycles. 

 

 

Figure 17. (a) General time view of task execution. (b) Task execution proportion to 

idle time. (c) Histograms of task inter-arrival times in cycles. 

4.5.2. Target system 

ARM Cortex M3 CPU is chosen as the target system. It is used as it is a pilot project 

for new low power technology. The target system is manufactured in 28 nm CMOS 

(Complementary Metal Oxide Semiconductor) technology and is capable of near-

threshold to nominal voltage operation. The minimum energy point is proven to exist 

around 0.2 V – 0.4 V [56].  

The target system includes on-chip low-dropout voltage regulator, PLL (phase-

locked loop), stock memory, peripherals, and interfaces. The target system is shown 
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in Figure 18 from [57] which provides detailed description of the target system. Timing 

safety margins are reduced by critical path monitoring and time-borrowing flip-flops. 

In case of timing events, time borrowing can be cancelled by dynamical clock 

stretching. [57] 

 

 

Figure 18. The target CPU system. 

 

Overhead consists of the processor cycles that are not used to execute application 

code. Two kinds of overhead are defined for optimization. By including the overheads, 

task execution is modeled more realistically as many DVFS algorithms assume that 

overheads are negligible. Especially for hard deadlines, it is necessary to include 

overheads as otherwise the model is too idealistic. 

These overheads are caused by OS, DVFS algorithm implementation and OP 

change times. The overhead values are defined for the described target system. The 

same system is used to execute the software and collect the measurement data.  

Context switching overhead contains overhead caused by the OS. It includes saving 

the context of a task being switched out, scheduling and restoring context of a task 

being switched in. Context switch overhead is always present in the system and 

depends on the operating system and the processor used. When OP change related code 

is included and DVFS is used, the context switching overhead increases.  

The context switching overhead values are measured for three cases and for both 

change directions i.e. levels of voltage and frequency values used for OPs. The test 

cases and corresponding values for single measurement are presented in Table 6. 

Values are defined by comparing the cycle count register value at known points where 

a task is known to switch out and switch in. The overhead value is the difference in 

execution cycles from a switch out to the next switch in. 

 

Table 6. Context switch overhead values 

Overhead OP change direction Cycles 

FreeRTOS - 992 

FreeRTOS + DVFS code 
Low to high 1721 

High to low 1872 

FreeRTOS + OP change 
Low to high 12889 

High to low 6455 
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FreeRTOS overhead values is for OS only. OP is not changed, and DVFS code 

implementation is not included in the application software. Thus, there is only 

overhead caused by OS. For FreeRTOS + DVFS measurement, the DVFS 

implementation is included but only single OP was forced to be used during execution 

i.e. voltage and frequency are not changed during execution and there is no settling 

delay. The values show that FreeRTOS and DVFS code overhead is approximately 

equal in both directions. 

When OPs are actually changed i.e. voltage and frequency are changed when 

another task is switched in, it is seen that the overhead values differ between directions 

and are multiple times greater than previously presented values. The large difference 

between cycle count values can be explained with voltage settling delay. Settling 

delays are discussed in Subsection 2.2.2. 

Because of the settling delays, the overhead caused by the voltage and frequency 

change is defined as a separate overhead value. It is excluded from the context 

switching overhead so that context switching overhead is defined in cycles. The values 

used in optimization for FreeRTOS on given target system are rounded upwards from 

the measurement values (Table 7).  

 

Table 7. Context switch overhead values used for optimization 

Overhead OP change direction Cycles 

FreeRTOS both 1000 

FreeRTOS + DVFS code both 2000 

 

Each instance of task execution requires a context switch and the overhead value is 

defined in cycles. Thus, the overhead is included in the optimization model by adding 

the overhead cycles to the execution cycles required by a task. Voltage and frequency 

settling overhead cannot be accurately modeled in cycles. It is included in the model 

as a fixed time value. In Figure 19, the points where cycle count values are recorded 

during task execution are shown. Also, the different overheads are visualized.  

 

 

Figure 19. Points where cycle count values are recorded for task execution. 

 

It is assumed that each task instance includes an OP change, excluding tasks which 

are not assigned any OP. Voltage and frequency change overhead is a major overhead 

in DVFS-enabled systems and cannot be neglected when execution frequencies are 

defined. The delays related to settling can be viewed as the cost of a context switch in. 

Execution cycles needed to change voltage and frequency are measured by reading 

the cycle counter values before and after the respective functions (Table 8). The cycles 

are measured for case where OP is not changed and where OP is changed. The cycles 

required to execute the DVFS code without including any settling delay, i.e. the OP is 
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not changed, is shown to be negligible. Thus, it is assumed that it is sufficient to include 

the change overhead as settling times. The overhead consists of two values: the time 

taken for frequency to lock and the time required for voltage to be set. It is seen from 

the measurements that the cycles needed for frequency to be changed is around 2000 

cycles in both directions. For voltage change, greater number of cycles is required.  

 

Table 8. Execution cycles taken by frequency and voltage change 

Parameter  OP change direction Frequency change Voltage change 

DVFS code 
Low to high 21 16 

High to low 21 16 

OP change 
Low to high 1850 9023 

High to low 1995 2625 

 

The voltage change overhead depends on the direction of the OP change and there 

is no way to define the change direction in the optimization phase unless the 

optimization is implemented iteratively. Thus, it is assumed that the overhead at each 

point where OP is changed, requires the worst-case overhead. A specified worst-case 

PLL frequency lock time is used for the frequency change overhead value. It is 

dependent on the reference frequency used for PLL. The voltage change ratio is 

defined to be 1 µs / 1 mV. The value for voltage change overhead is defined based on 

the difference between the lowest and the highest voltage level used. 

4.5.3. User-defined data 

Some information required in the optimization cannot be mined from the trace. These 

parameter values must be provided by the user and this requires detailed knowledge of 

the application software and the system used.  

The minimum frequency depends on the system used. Minimum frequency value is 

set to the lowest frequency level that is available for execution. The minimum 

frequency is used with the task execution frequency to limit the frequency scaling. 

Thus, the execution frequency cannot be scaled under the minimum frequency level 

value. 

A relative deadline is required to be defined for each task. Relative deadline is the 

time when a task must have completed all its jobs, measured from the release of the 

task for execution. It defines the range that the execution frequency can be scaled for 

a single task execution when other tasks and constraints are not considered. It is left to 

the user to verify that the set constraints and requirements are sufficient, and that the 

performance and deadline requirements are met. 

The time amount that is reserved from the total available time, i.e. the time amount 

corresponding to the length of the trace section, must be defined to limit the time used 

for scaling and reserve time for other activity than task execution, for example interrupt 

processing. Task execution here consists the execution time for tasks included in the 

optimization. The amount of reserved guard time depends on the application and 

especially the activity and adequate value should be confirmed with testing. There are 

methods such as utilization bound which can be used to define a reference value for 

utilization [35]. Another method is the hyperbolic bound for RM scheduling [58].  

When defining the reserved-time amount, the tasks which are left out of the 

optimization should be considered. In practice, due to the assumption that every task 
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instance requires its WCEC, some slack arises when fewer cycles are required for 

execution. Idle task can have some low-level activities such as freeing memory, so 

some execution time for idle task needs to be guaranteed. It should be noted that the 

distribution of this reserved time cannot be defined, it is used to guarantee that this 

amount of time in the trace section is not spent executing application tasks in the 

optimization. 

The reserved time from single task instance execution is defined in a similar way 

as for the total task execution. However, this time value is defined for each task 

separately and it is taken away either from the set deadline value. The reserved time is 

slack time from the perspective of optimization tasks. This should be considered when 

defining the value. If a task has a deadline which is always less that the task time 

interval value, slack arises because the frequency scaling will be limited by the 

deadline value. The value is also application dependent and to find a suitable value, 

the reserved time values should be tested. 

The effect of reserving time from task execution in an ideal case is presented in 

Figure 20. Task frequency is scaled so that is requires the whole time that is available 

for execution when the overhead of OP switch and reserved time have been removed 

from the available time which here is the task deadline. During execution, this reserved 

time can be scattered between task execution if task execution is interrupted to perform 

some other activity, and task can still meet its deadline. 

 

 

Figure 20. Effect of reserved time on available time. 

 

The frequency range usable for a task can also be limited by setting scaling 

frequency bounds, otherwise values for current execution frequency and minimum 

frequency are used. Scaling limiting can be used if it is known that is it not beneficial 

to scale task frequency to the lowest level. Scaling factor limits for all tasks can be 

defined separately.  
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5. MEASUREMENTS 
 

The frequency optimization testing is carried out in two phases. First, a speech 

recognition software execution is traced. A few different traces are used to define 

frequencies with different optimization constraints. The effect of constraint values to 

the optimization results is also examined. Averaged power measurements between a 

reference case and cases with optimized frequencies are used to estimate the change 

in energy consumption. 

5.1. Tracing and measurement set-up 

The target system is described in Subsection 4.5.2. The system includes on-chip PLL 

for clock generation and power management. The overhead values measured for the 

system are presented in Subsection 4.5.2. J-Link Base debug probe and RTT (Real-

Time Transfer) are used to stream the execution trace data from the target to the host. 

SWD (Serial Wire Debug) is used as a target interface. SWD provides real-time access 

to memory [59]. RTT is used to stream the trace data from the target to the host 

computer without affecting the application execution. 

RTT implementation includes a simple version of printf-function which is used to 

send event traces as formatted strings via RTT. RTTViewer is used to open connection 

between the target and J-Link and save the execution trace into a text file. A function 

which waits for input from the host is inserted into the beginning of main function in 

the application code before the scheduler is started and tasks are created. This allows 

the events to be collected from the beginning of the execution, collecting information 

for all task create events. [60] 

The measurements were taken with a power monitoring unit and read within a 

periodic task. Due to the interference caused by the measurement task, the test traces 

were taken separately. The execution traces which are profiled are recorded first and 

executed using only single frequency values. Traces are processed as required and used 

in profiling. After the optimized frequencies are defined, respective voltage levels 

must be defined to form the voltage-frequency pairs. Because the measurement values 

cannot be timed into the execution trace precisely, the measurement values are 

averaged over the whole measurement trace. The average measurement values are 

defined for each used frequency which will be used to indicate the average power 

consumption for each OP. 

5.2. Test application 

The profiling and frequency optimization model are tested on ARM KWS (Keyword 

Spotting) software. KWS is a speech recognition software. A speech recognition 

software is a good example of an application with constrained power and as an always-

on application. KSW is presented in more detail in [61]. KWS includes a task which 

extracts features from audio data and a classifier is included which is based on a neural 

network model.  
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Another task is added to the software to recognize human voice in the audio.  The 

task includes a bandpass filter and thresholding for human speech detection. The filter 

task constantly filters the audio when available and when KWS task is not executed. 

The interval between instances is approximately 100 ms. If human speech is detected, 

KWS task is evoked to recognize the word. The relative deadline for both tasks is 

assumed to be 100 ms. The 100-millisecond deadline is set because after the time has 

passed, new data will be available for processing. 

5.3. Frequency optimization 

The execution traces which are used for optimization are called the reference traces. 

Measurements taken without the optimized frequencies are the reference values. The 

optimized traces are recorded with the optimized execution frequencies in use. The 

measurements are recorded for reference frequency and supply voltage and for each 

OP. The traces have varying amounts of no-voice audio and voiced audio. The traces 

are taken from different parts of the execution of the software, chosen by hand. The 

different traces are used to test how the trace section selection affects the optimization. 

Different values used in the optimization for the same trace section can be used to 

show the effect on the optimization results. 

5.3.1.  Trace 1 

The first section used for optimization is shown in Figure 21. The length of the trace 

sections is approximately 2321 milliseconds. OP switching is not used or included, 

and the application is executed with a single frequency. It is clearly visible in the 

picture that there is a lot of idle time between application task execution. This section 

of the trace was used for three optimization cases where the context switching 

overhead and requirements for the reserved time values are varied. All variable values 

used in the optimization for the three cases are presented in Appendix 2 - Appendix 4. 

 

 

Figure 21. (a) Time view of trace 1. (b) Task execution intervals in cycles. 
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Figure 21 also shows the variation of task execution intervals in the trace. A single 

frequency was used in the optimization and the execution intervals are expressed in 

execution cycles. It is seen that the tasks are not periodic. However, it is seen that one 

of the tasks is executing, depending whether voice is detected or not, rather 

periodically. How the audio data is handled explains the variation in execution 

intervals. KWS task execution is triggered at 900 ms time point. Task periods are not 

used define task execution in the optimization. Instead, task instance count is used to 

define the total execution time required by a task. 

The constraint input values are presented in Table 9. The reserved time value was 

used for both tasks. As the same trace section is used for all cases, the values collected 

from the trace are same for all cases. Context switching overhead is assumed to be zero 

and there is no requirement for any idle time in Ideal case. This means that the 

frequency can be scaled the most within the limits set by trace data and deadlines. 

Overhead-only takes into consideration the cycle amount needed by each context 

switch and Restricted case requires some time off from the optimization task 

execution.  

 

Table 9. Overhead and constraint values for the three optimization cases 

Optimization case Constraints 

Context switch 

overhead 

Total reserved time Reserved time in task’s 

time window 

Ideal 0 cycles 0 ms 0 ms 

Overhead-only  2000 cycles 0 ms 0 ms 

Restricted 2000 cycles 200 ms 5 ms 

 

The optimization results for KWS and filter task for these three cases are presented 

in Table 10. The scaling factor is the result from the optimization. It is seen that the 

filter task is scaled to the lowest frequency level available in all cases. Table 10 also 

shows the actual frequencies that were used for the given optimized frequencies and 

the corresponding supply voltages.  

 

Table 10. Optimization results and runtimes after optimization for the three cases 

 Case KWS Filter task 

Scaling factor  Ideal 1.7875 15.104 

Overhead-only 1.7872 15.1040 

Restricted 1.5551 15.1040 

Scaled frequency [kHz] Ideal 101 397.482 12 000 

Overhead-only 101 414 12 000 

Restricted 116 551 12 000 

Actual frequency [kHz] Ideal, Overhead-only 102 400 12 037 

Restricted 117 760 12 037 

Corresponding voltage [mV] Ideal, Overhead-only 528 420 

Restricted 590 420 

Instance runtime [ms] Ideal, Overhead-only 55.66 4.63 

Restricted 55.664 4.633 

Instance runtime after 

optimization [ms] 

Ideal, Overhead-only 98.526 69.766 

Restricted 85.6747 69.766 

Instance runtime after 

optimization (ideal) [ms] 

Ideal, Overhead-only 99.483 69.981 

Restricted 86.5634 69.981 
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Actual execution frequency for KWS task increased 0.99 % from the optimal 

frequencies due to the implementation in ideal case. The magnitude of the difference 

is as expected as frequency steps are larger in higher frequencies. In overhead-only 

case the frequency for KWS task is increased 0.97 %. Ideal and overhead-only cases 

result in the same actual execution frequencies even though the constraints were 

different. In Restricted case, KWS task is assigned a higher frequency than in the 

previous cases. The frequency is increased 1.04 % due to the implementation. The 

increase for filter task was 0.31 % for all cases. 

In Table 10, shown are the estimated worst-case execution times of the tasks. 

Execution times are defined with the optimization result frequency and the closest, 

higher frequency level that is actually used. The execution times are estimates based 

on the WCEC value for a task. In Ideal and Overhead-only cases, the theoretical 

execution time for KWS task with the exact optimized frequency leaves just enough 

time for OP switch. The execution time for KWS task increases 77.0 % and 1406.8 % 

for filter task. In Restricted case the execution time is estimated to increase 53.91 % 

for KWS task. 

The difference between Restricted case and the other two test cases was that case 

three included a lot of reserved time both from total time and task time window. The 

total reserved time was about 8.6 % of the total time available. This is seen as higher 

frequency for KWS task. The execution time of filter task is bounded by the lowest 

frequency level. It is seen that the filter task is still scaled to the lowest frequency level 

and fulfills the 5-millisecond reserved time requirement. 

The frequency deviation from the optimization result causes some more possible 

idle time in the application execution. The amount is visible in the difference of the 

estimated runtimes for a task instance assuming that all task instances require their 

WCEC (Table 10). 

5.3.2. Trace 2 

The second trace is longer than the previously used trace section and contains multiple 

executions for word classification task and filter task (Figure 22). The length of the 

trace is approximately 34300 milliseconds. The context switching overhead is included 

but no reserved time required in the optimization. The rest of the values used in the 

optimization are presented in Appendix 5.  

 

 

Figure 22. Task execution in trace 2. 
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It is seen that the final execution frequencies correspond to the values defined for 

cases 1 and 2 in trace 1 optimization. The frequency for filter task increases 0.31 % 

and 0.97 % for KWS due to the implementation. The frequency values and estimated 

instance runtimes are presented in Table 11. Execution time for KWS task increases 

77.00 % and 1405.8 % for filter task by estimate for worst-case instance.  

 

Table 11. Optimization results and runtimes for trace 2 
 

KWS Filter task 

Scaling factor 1.787 15.104 

Scaled frequency [kHz] 101416.202 12 000 

Actual frequency [kHz] 102 400 12 037 

Corresponding voltage [mV] 528 420 

Instance runtime [ms] 55.66469 4.63335 

Instance runtime after optimization [ms] 98.52651 69.767051 

Instance runtime after optimization (ideal) [ms] 99.4822 69.9821 

5.3.3. Trace 3 

The third trace section used for optimization is short and resembles the trace 1 (Figure 

23). Trace section length is approximately 2.3 seconds. The optimization for trace 3 

contained only overhead caused by FreeRTOS as the context switching overhead 

value. The OP switching was used during tracing but a single OP was forced to be 

used. The values used in the optimization are presented in Appendix 6.  

 

 

Figure 23. (a) Task execution in trace 3. (b) Task execution cycles variation. 
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It is clearly seen in the time view visualization that the KWS task execution length 

has large variation between shortest and longest execution. The variation in filter task 

execution is smaller which can also be seen from the histogram (Figure 23). Nearly 

half of the KWS task instances require small amount of execution cycles in selected 

trace section. When these kind of task instances occur in the execution with optimized 

frequencies, a lot of dynamic slack is bound to occur. For filter task, the amount of 

slack should be smaller as the range of execution cycles is smaller. 

There was no requirement for reserved time. It is seen that the resulting frequencies 

(Table 12) are the same that have been defined in the optimization cases presented 

earlier. Frequency for filter task increases 0.31 % and 0.98 % for KWS from the 

optimized frequency values. The estimates for task execution length are given in Table 

12. Execution time is estimated to increase 77.0 % for KWS and 1405.8 % for filter 

task. 

 

Table 12. Optimization results and runtimes for trace 3 
 

KWS Filter task 

Scaling factor 1.7872545319731 15.104 

Scaled frequency [kHz] 101 408.828 12 000 

Actual frequency [kHz] 102 400 12 037 

Corresponding voltage [mV] 528 420 

Instance runtime [ms] 55.66758 4.636757 

Instance runtime after optimization [ms] 98.53162 69.81831 

Instance runtime after optimization (ideal) [ms] 99.49467 70.033583 

5.3.4. Trace 4 

The last trace which was optimized is shown in Figure 24. The trace was recorded with 

OP in use but forced to use a single OP. The optimization included context switching 

overhead for FreeRTOS. Rest of the optimization values are presented in Appendix 7. 

The length of the trace is approximately 909 milliseconds. It is seen that the trace 

mostly contains idle and KWS task execution with long execution times.  

 

 

Figure 24. Task execution for trace 4. 
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Table 13 shows that the frequency for filter task is again scaled to the lowest level. 

The frequency for KWS task is scaled to around 113 MHz although there were no 

requirements for reserved time. Due to the implementation the frequency of KWS task 

increases 1.2 %. The estimated execution time for filter task stays around the same 

value as in previous optimization cases (Table 13). The execution time for KWS task 

is a lot lower than most optimization cases and around the same level with trace 1 case 

3 optimization. 

 

Table 13. Optimization results and runtimes for trace 4 
 

KWS Filter task 

Scaling factor 1.59937853676076 15.1040 

Scaled frequency [kHz] 113 324 12 000 

Actual frequency [kHz] 114 688 12 037 

Corresponding voltage [mV] 580 420 

Instance runtime [ms] 55.626826 4.635648 

Instance runtime after optimization [ms] 87.91025 69.8016 

Instance runtime after optimization (ideal) [ms] 88.96836 70.01683 

5.4. Optimization results 

The optimization results lead to a few different OP value pairs to be defined. The filter 

task was scaled to the lowest frequency level in all optimization cases. The lowest level 

is the same that is assigned to the idle task in the optimized execution. This corresponds 

to 12 MHz and 420 mV OP values. The rest of the frequencies are presented in Table 

14. Requested frequencies which are assigned to an OP and resulting execution 

frequencies are presented also with assigned voltage levels. Table 14 shows that 

actually only three different execution frequencies are used for KWS task. This is 

because of the frequency rounding to an integer megahertz value.  

 

Table 14. Final execution frequencies and actual execution frequencies used with 

respective voltage levels 

Frequency [kHz] Requested frequency  

[MHz] 

Actual execution 

frequency [kHz] 

Corresponding voltage 

[mV] 

12 000 12 000 12 037 420 

101 398 102 000 

 

102 400 528 

101 416 

101 417 

101 409 

113 324 114 000 114 688 580 

116 551 117 000 117 760 590 

 

The time view of task execution with optimized frequencies is pictured in Figure 

25. Idle task and filter task are executed with 12 MHz and KWS with 102 MHz. The 

effect of frequency scaling is clearly visible in the proportion of idle task and 

application task execution compared to the time view figures presented in Subsection 

5.3. 102 MHz was the lowest frequency that was assigned to KWS task. It also shows 

how there is always some idle time left.  
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Figure 25. Time view of how application task execution is prolonged with DVFS. 102 

MHz execution frequency for KWS is shown. 

 

The filter task frequency scaling was bounded by the lowest frequency level. 

Because of this and the fact that the audio is processed in approximately 100 

millisecond sections, the filter task execution time stays quite constant. The execution 

time of KWS task varies more. Around 1000 millisecond mark, KWS task is executed 

only for a short time. This leads to idle task execution. This is where it would be 

beneficial if the DVFS decision were done online because this slack that rises because 

of runtime variation can’t be utilized when offline DVFS algorithm is used. 

 

5.4.1. Power measurement results 

Measurements were recorded with a periodic measurement task run with 200 

milliseconds intervals. Due to the interference caused by measurement task the 

execution traces and traces including measurement values were taken separately. 

Average measurement values are used to define power consumption value at each OP. 

Because there are only three different pairs of OP values, three different measurements 

were done. The reference measurement which is used to compare the total energy 

consumption of a task after the optimization was executed with a single frequency. 

The execution frequency was 181 248 kHz and voltage 903 mV.  

The benefits of lowering the supply voltage and execution frequency are seen in the 

long run when it is seen how the energy consumption has changed. The energy 

consumption depends on the application activity and it is clear that if the consumption 

was defined for a certain section of the execution, the section selection would affect 

the values a lot. Thus, we use the energy consumption of the application task KWS to 

model the effect of DVFS. For the optimized cases, task execution time is defined 

based on the WCEC value used in the optimization. To make the results more 

comparable, a single WCEC value is used. Energy consumption for a task execution 

is defined based on the power measurement values and the execution time. The 

reference value is defined for the same execution time and measurement values from 

the reference execution trace. This means that the idle and filter task energy 

consumption is not considered in the optimized measurements. 

The measurement values for each OP are presented in Table 15. The first row 

corresponds to the reference measurements and the rest three are the OP defined based 
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on the optimization result. Table 15 includes power values which are the averaged 

values of power measurements over the execution of KWS. The measured power 

values are used to define the energy consumption within given time. 

 

Table 15. Power average measurements for KWS task and estimated energy 

consumptions for task execution 

Execution 

frequency [kHz] 

Execution time of 

KWS [ms] 

Assigned voltage 

[mV] 

Measured power 

[µW] 

Energy 

consumption [µJ] 

181 248 55.67 903 2809 156.4 

102 400 98.53 528 640,0 63.1 

114 688 87.97 580 863,6 76.0 

117 760 85.68 590 914,0 78.3 

 

The energy consumption is defined for each OP used. It is assumed that the 

execution time scales linearly, and the energy consumption is defined accordingly. For 

the reference measurement which corresponds to the first row, the value includes only 

the KWS task execution time. The estimated values are presented in Table 15. The 

execution cycle count of 10089638 is use as the assumption WCEC for KWS task to 

make the comparison between different OPs easier. It is the largest WCEC value that 

was used in the optimization. With 102 MHz the execution time of KWS increases 

77.0 % and energy consumption decreases 59.7 % compared to the reference case. 

Increase in execution time is 58.0 % with 114 MHz frequency and energy consumption 

decreases 51.4 %. For the 117 MHz execution time increases 53.9 % and energy 

consumption decreases 49.9 %. 

The energy consumption for the total length of optimized KWS task execution is 

calculated in the reference case. Energy consumption in the reference case and for each 

OP used for KWS task (Table 16) is compared separately and the time which is used 

to define the total energy consumption is different in each case. This includes the 

execution of KWS task and idle task. The energy consumption for the time of KWS 

task execution with 102 MHz decreases 77.2 % compared to the energy consumption 

in reference case. For the time task KWS task is executed with 114 MHz the energy 

consumption decreases 69.2 % and for the 117 MHz KWS execution energy 

consumption decreases 67.4 % compared to the energy consumption in that time with 

the reference case. 

 

Table 16. Energy consumption in reference case for the time of KWS task execution 

in optimized cases 

Frequency [kHz] Execution time [ms] Energy consumption [µJ] 

181 248 98.53 276.8 

181 248 87.97 247.1 

181 248 85.68 240.1 

5.4.2. Optimization discussion 

It is seen that varying trace lengths and constraints resulted in little variation in final 

execution frequencies. Some remarks can be made about the application. With only 

two tasks included in optimization, it is on the simpler side. It is known that the tasks 
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have a dependency. They are not executed periodically, more like in turns. There is 

some variation between execution cycles of task instances, especially with KWS task. 

However, it was out of scope to design the application or optimize it for the processor 

architecture used (KWS was supplied by the processor IP manufacturer). 

The effect of overheads, constraints and section selection were tested. Ideally, the 

frequency is scaled so that there is just enough time to complete all tasks. Due to this 

and the assumption that there is dynamic slack, reserved time was not requested in 

most of the optimization cases.  

The results show that actual execution frequencies do not have much variation. In 

this case, the context switch overhead is relatively small compared to task execution 

cycles. The effect of including overhead is accentuated when task execution cycles 

decrease and the percentage of overhead of total cycles increases. Therefore, context 

switch overhead should be included in the optimization although it can be compensated 

by the frequency deviation. Results also show that in this case the reserved time 

requirement affects the optimization result more than the included overhead causing 

increase in execution frequency for KWS. 

Scaling of the filter task was limited by the lowest frequency level. For KWS task, 

the optimized frequency varied. It was seen that even if the optimized execution 

frequencies were different, defined with different constraints, the final execution 

frequencies were the same. Small variation in the constraints did not affect the final 

execution frequencies. This is due to the discrete frequency levels and that the 

execution characteristics of the application remain the same.  
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6. DISCUSSION 
 

The application characteristics and requirements need to be considered when choosing 

the most suitable power management technique. For other application might benefit 

more of sleep states while other applications are more suitable for DVFS. The impact 

on power consumption and responsiveness needs to be considered. Low power 

techniques can also affect the system reliability. 

Sleep states can be applied if idle periods are known and longer wakeup delays do 

not cause performance degradation. DVFS does not introduce long wakeup delays. 

However, changing OPs introduces timing delays and increase run time. This can 

cause deadline misses if frequencies are defined incorrectly and therefore knowledge 

of task and application characteristics is required. If performance can be kept at 

acceptable level and a suitable algorithm is used for DVFS, it can reduce dynamic 

energy. 

The quintessential question with DVFS is how the execution frequencies can be 

defined so that system still meets its processing requirements. Many DVFS algorithms 

were discussed before and all algorithms have their limitations. There is no single 

algorithm which is optimal for all applications. Traditional algorithms are mostly 

developed for specific scheduler and make assumption about the task set. These 

algorithms cannot be applied to any application. Machine learning has been used to 

overcome the problem being able to adapt to runtime variation and utilizing slack more 

efficiently, like in [45]. However, the proposed frequency optimization is developed 

for offline inter-task DVFS. Offline algorithms are simple and thus introduce low 

overhead. 

The proposed optimization method takes a different approach on frequency 

optimization by analysing and profiling software execution trace. Trace data is used to 

form a model which is used for frequency optimization. This way any application can 

be profiled. It provides a more general solutions on how the execution frequencies are 

defined. This way frequency optimization can be used to estimate the energy 

consumption savings that can be achieved on given platform when DVFS is used and 

with any OS with minimal code instrumentation. Although the core idea is to scale the 

execution frequency as low as possible, user can easily change constraint values to 

limit the scaling as desired. It is simple to explore the effect of system overhead and 

timing constraint values to the optimization results.  

6.1. Limitations 

The generalization of the model and offline DVFS can also lead to suboptimal results 

in some applications. As there is no adaptation to runtime variation and frequency 

decisions are done based on worst-case assumption, frequency can be set to an 

unnecessarily high level. This leads to suboptimal result if a task rarely requires its 

WCEC and dynamic slack cannot be utilized. WCEC values must be used to ensure 

deadlines.  

The scheduling algorithm is also not considered in the optimization model. It is 

intended that scheduling is not affected by frequency scaling meaning that a task can 

have time available for scheduling at most the time amount of the shortest time window 
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value. However, it is left to the user to define which value is used as deadline value to 

limit the scaling. If tasks use close to their WCEC most of the time and the execution 

pattern is deterministic, better optimization results can be achieved with the 

optimization model. Thus, the use cases for this DVFS algorithm are always-on 

applications, applications which have predictable execution pattern and low activity 

leaving enough slack for frequency to be scaled notably.  

DVFS algorithms use either discrete or continuous frequencies even though only 

discrete frequency levels are available in systems. Continuous frequencies are used in 

the optimization model to simplify the problem. Efficient DVFS implementation 

requires that a variety of frequency levels are available. The assumption of continuous 

frequencies causes the actual execution frequencies to deviate from the optimized 

values. The actual execution frequency should be set to a value as close as possible to 

the optimization value and there should be also low voltage levels available to match 

the execution frequencies to gain benefit of DVFS. The deviation from the original 

optimized frequency value might not be that significant itself, although it varies 

between systems. However, the voltage is set accordingly, and increase results in 

greater energy consumption. In the long run, the difference might become significant. 

The overall impact of DVFS is hard to estimate with short measurements. 

On the test system used, it was known that the step size between frequency levels 

depended on the frequency range. Frequency deviation by DVFS control could be 

avoided by using the knowledge of which frequencies are produced by which 

frequency assignments or slightly altering the implementation. Also, this impact can 

be considered minimal as most of the total amount of frequency deviation is probably 

caused by the lack of many frequency levels. The total amount of deviation is defined 

case by case as it depends on the optimized frequency values and the system used. It 

can be thought that the frequency deviation in the test cases were minimal compared 

to the whole frequency range that was in use. 

The number of OPs is not limited meaning that there can be as many different 

execution frequencies defined as there are tasks in optimization. As every OP change 

introduces overhead, constant changing can result in increased power consumption and 

overhead. If the number of OPs is limited, the number of OP changes would decrease. 

How can the optimal number of OPs be defined? A possible solution could be to group 

similar OP to their highest values i.e. all tasks which have an OP close to each other 

would be assigned the highest OP among the group. This could be beneficial if there 

are a lot of different tasks with different OPs. 

The cost of OP change is only included as timing overhead in the model. It is 

included to ensure that deadlines are kept even with overhead caused by OP change. 

The effect of frequent OP changes was discussed in the previous paragraph. Thus, the 

power consumption impact of changes should be considered. System power model and 

the impact of OP changes need to be integrated into the frequency optimization.   

As energy consumption does not only depend on the efficiency of the DVFS 

algorithm, it is not easy to compare different algorithms. As was just discussed, the 

energy consumption reduction also depends on how low the voltage can be set and 

how accurately the execution frequencies can be set to match the execution frequencies 

if continuous frequency range is used. The cost of OP change on the given platform 

must also be considered. The efficiency also depends on the application. Thus, the 

limitations of the used DVFS algorithm need to be acknowledged. 

The complexity of the frequency optimization problem increases as more variables 

are included in the model.  However, this can lead to better optimization results for 
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applications that match the model. An optimization tool for any application should 

have a power model of the system used and be able to estimate whether offline 

algorithm is adequate or would online algorithm be more beneficial. The requirement 

for intra-task OP changes should be evaluated too. How much overhead is acceptable 

and does not cause the energy consumption to increase?  

6.2. Use considerations and improvements 

User should have some knowledge of the application for better results. Decisions such 

as which tasks to include and required slack times affect the optimization result. The 

method can be developed further. A more detailed tracing and execution modelling is 

required and the relation between execution frequencies and actual execution times for 

tasks should be included. 

6.2.1. Tasks suitable for optimization 

Applying DVFS blindly can lead to higher energy consumption. Some tasks should be 

left out of optimization to avoid constantly changing the OP. Constant OP changing 

defers application execution and can lead to higher energy consumption. Generally, 

short tasks which execute frequently should be left out of the optimization. This is 

especially the case when settling times are long. OP change should not take longer 

than the execution of the context’s jobs e.g. it is not reasonable to change OP before 

executing interrupt handlers.  

6.2.2. Required slack time 

The reserved time requirement for tasks affects the optimization. Needed time depends 

on the application: how much of the activity is not included in the optimization. If the 

trace section starts with an idle period, the time needs to be included in the reserved 

time requirement. The variation of task execution lengths can be used to assess if 

reserved time requirement can be decreased as dynamic slack arises from variation. 

This is especially the case if task time window is used as a deadline. For task-specific 

requirements, the impact of possible pre-emptions needs to be considered. There 

should always be enough time for time-critical tasks to complete execution before 

deadlines. 

Utilization bounds can be used as an estimate for the total amount of needed 

reserved time. These should be used as a guideline as not all tasks are necessarily 

included in the optimization and tasks are not periodic which is usually assumed. 

Defined bounds can be pessimistic and result in under-scaling. 

In practice, the frequency is scaled as low as the deadline allows with no time 

reservations. If the total runtime is less than required time for task execution with low 

frequencies, it becomes the limiting factor. The problem with total reserved time is 

that the time allocation cannot be defined which is done with task-specific reserved 

time. Some tasks may not use the whole time window even with the lowest frequency 

and reserved time is not required. Values for total reserved time and for each task’s 

time window need to be chosen and tested together to find suitable values. 
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6.2.3. Task execution, deadline misses and prioritization 

Relative deadline defined the time limit by which task must finish all its jobs. How 

deadline misses are detected? Do they need to be detected if they are not fatal? 

Calculating execution times and comparing to deadlines during execution is not 

reasonable. The execution trace could be used to detect deadline misses. It is assumed 

that the user is aware of the consequences of deadline misses. The severity of a 

deadline miss depends on the application and the task. Time view visualization can be 

used to inspect execution patterns. Anomalies can be visible but slight deadline misses 

that do not cause failure can go unnoticed. Timings between trace events can be 

approximately defined with the current trace information. Precise timing would require 

accurate modeling of the system’s voltage and frequency settling times. Even if 

voltage and frequency settling times are not modeled accurately, the worst-case 

assumption can be used for deadline miss inspection, although it would be a 

pessimistic approach.  

An additional trace print can be inserted into the switch in macro before the DVFS 

callback function. Jointly with a task switch in print, it is used to define the section for 

OP change. Now the cycles between a switch out and the next switch in are assumed 

to be executed with the same frequency as the task which was switched out. Although 

trace prints defer application execution, the impact is probably lesser than constantly 

calculating runtimes. Total execution time for a task instance could be then defined by 

comparing the total task execution time and the OP change time to the deadline value.  

Another question raises when task deadline misses are defined. How is it known if 

a task has finished its jobs? It has been assumed that tasks are executed without pre-

emption and switched out once execution has reached the end of a task. Detailed 

knowledge of task implementation and additional code instrumentation is required if 

a trace print for task completion is added. This way the total task execution time could 

be defined combining execution times between the first switch in and the following 

task completion trace event. 

In addition to relative deadline, absolute deadline could be checked from execution 

trace. Absolute deadline is the time when a task must be finished from the timepoint 

when it entered the ready state. Detecting absolute deadline misses could be 

implemented the same way as relative deadlines. For example, FreeRTOS provides a 

trace macro for tasks entering the ready state. The knowledge could also be used in 

optimization if a task has absolute deadline and it is seen that the task does not 

immediately get execution time which eventually can result in a deadline miss. 

The assumption is that tasks have hard deadlines that should always be met.  But 

tasks do not always have hard deadlines. This leaves room for optimization. Tasks 

which have soft deadlines could be assigned lower frequencies than their WCEC 

defines. An example of a potential task is a task which only occasionally requires 

execution cycles close to WCEC value and a deadline miss is not fatal. Instead of using 

WCEC in optimization, median or mean execution cycle value could be used in 

optimization. But if task execution is prolonged, it must be ensured that tasks with hard 

deadlines get execution time. This brings us the question if task priorities and OP levels 

have or should have a dependency. 

Task prioritization should be done carefully when fixed values are used and when 

prioritization is done by the developer. Task priorities are not considered in the 

frequency optimization model. It can be thought that tasks with higher priorities 

require to be executed more urgently. Thus, should higher priority values correspond 
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to higher OP values? Each task and application should be inspected as separate cases, 

but most critical tasks should be executed briefly and have a high priority to be able to 

do so. For tasks that require brief execution, frequency scaling can be limited by setting 

the scaling factor limits accordingly. 

6.2.4. Additional profiling and detailed modelling 

Complex applications consist of tasks which have interdependencies. One step to 

automate trace analysis and profiling could be to analyze task dependencies from the 

trace. If task communication events are not traced, task dependencies could be mined 

from the execution trace using pattern recognition. Task dependencies can be seen as 

repeating patterns in the trace [62]. If tasks are known to have a dependency, a 

possibility to define a joint deadline for these tasks could be added to the optimization. 

In a similar manner, pattern recognition could be utilized in suitable trace section 

selection. This would also require more detailed tracing, including information of task 

completions. 

Static code analysis is another technique which could be utilized for task execution 

path and WCEC analysis. Variation in task execution paths could be used to define the 

least amount of execution cycles that is required for task completion. This knowledge 

of range for execution cycles is used to estimate the number of times a task was 

executed in the trace section if there are no events to define task completion. 

Acknowledging pre-emptions requires that the estimated number of pre-emptions and 

added overheads are included in optimization for each task. Frequency optimization 

becomes inevitably more complex as task execution is modelled more accurately. 

More detailed modelling requires additional trace events. Even if only minimal 

tracing information is collected, tracing affects the application execution. The effect 

of selected scheduling algorithm is also not considered. Thus, regular testing should 

be carried out when scaled frequencies are applied. The required performance needs 

to be verified by the user. In practice, frequency scaling should be applied in the 

software development phase. The joint effect of scheduling algorithm, task 

prioritization and frequency scaling could be analysed and utilized in software 

development. For example, costly jobs which would be beneficial to execute with high 

frequency can be implemented as separate tasks. 

6.2.5. Relation between execution frequency and execution time 

The effect of different execution frequencies to task execution times should be studied. 

Although execution frequency is only changed at task boundaries, some insight on task 

execution would be useful in optimization. The assumption is that the execution time 

of a task scales linearly with its execution frequency. As this is not always the case, 

analysis on the execution inside a task could be used to group tasks based on how their 

execution time is affected by frequency scaling.  

Tasks can be divided into CPU-bound tasks, where execution time is limited by the 

CPU frequency, and memory-bound tasks, if majority of execution time consists of 

memory accesses. If a task is memory-bound, execution frequency can be scaled to a 

low frequency level causing only minor effect on the execution time [63]. Some tasks 

spend time in I/O operations and frequency scaling can be limited by the subsystem. 

The power consumption for these subsystems should be modelled and considered in 
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frequency scaling. It is not beneficial to scale the execution frequency of a task if it 

requires an expensive subsystem to be powered on for longer period if this results in 

greater total power consumption. 

6.3. Conclusion 

This leads to the conclusion that only scaling execution frequency might not always 

lead to lower power consumption. Processor power consumption can be reduced with 

DVFS, but it is not solely enough. Low power is achieved by combining different 

techniques at different abstraction layers. The impact of each component must be 

considered and techniques for low power must be applied at all design abstraction 

layers. Software must be also designed with energy efficiency in mind and to match 

the underlying hardware. Techniques should not be applied blindly. Tools are required 

which provide models how different design techniques and optimizations impact the 

power consumption and if certain techniques contradict and result in higher total power 

consumption. 
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7. SUMMARY 
 

The objective of this thesis was to develop a method for DVFS frequency optimization 

using software analysis and profiling for near-threshold processor. The target system 

included an inter-task DVFS software. The method was tested with a speech 

recognition software. 

It was shown that software execution can be modeled with only a few selected trace 

events. The trace data in combination with timing constraints and system-specific 

worst-case overhead values are used to form an optimization model. The method can 

easily be used to test the effect of constraints on the resulting execution frequencies to 

find suitable values. The resulting frequencies fulfill the set timing constraints. The 

results obtained from power measurements showcase the effect of DVFS on energy 

consumption of the near-threshold processor. Energy consumption is decreased using 

optimized execution frequencies and respective voltages for the given application.  

As offline algorithm is not able to adapt to runtime variation, it is most suitable for 

applications with predictable execution patterns and tasks which regularly require 

execution cycles close to their WCEC. The reduction in energy consumption with 

DVFS also depends on the system.  

The aspects of energy efficiency and low energy consumption must be considered 

at all stages of system design. Tools are required to model and give feedback on the 

effects of design decisions to the system energy consumption. In addition to power-

aware hardware design techniques, software needs to be optimized for energy 

efficiency. Total system optimization is required. Power management can be applied 

to reduce power consumption even more. However, suitable technique needs to be 

selected based on application characteristics. 
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APPENDICES 
 

Appendix 1. Software profiling and optimization implementation. 

 

Preprocessing with a Python script removes any data from the trace file which is not 

relevant for profiling (Figure 26). The related events are extracted based on event 

abbreviations. Tasks, if necessary, can be removed from the trace if their task handle 

is known. 

 

 

Figure 26. Code used for trace preprocessing. 

 

The requirements for the trace file structure are set by the MATLAB 

implementation. The structure must match the implementation, or the input file cannot 

be correctly parsed. A processed trace file contains only event trace data (Figure 27). 

All trace prints have the same number of data fields which contain information which 

depends on the traced event. Data fields are separated by a colon. Additional data fields 

can be added to the end of the trace print as long as all traced events have the same 

number of data fields.  

 

 

Figure 27. Example contents of a processed trace file. 

 

Ideally, the trace file used for profiling contains a hyperperiod of the task set. Worst-

case execution should be included. The largest execution cycle counts for tasks found 

in the trace are assumed to be the worst-case execution cycles of the tasks. Tracing is 

started from the beginning of the application execution to include task creation events.  

Trace section is selected by hand. Automation of the trace section would require 

data mining.  It is assumed that the user is aware of the task set properties which eases 

the section selection. When the section selection is done by hand, assumptions are 

made based on the optimization model implementation. The first event in the trace 

should be a task-switch-in event of an application task. This excludes the task-create 

events which are only used for task naming purposes and do not affect profiling. The 

last event in the trace section should be a switch-out event of the idle task. These 

assumptions cause that all tasks included in the trace are included as a whole and that 

there is possibility for frequency scaling even for the last executing application task in 

the trace. 
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Most of the data used in optimization is mined from the execution trace. The mined 

data will be displayed in dialog-boxes after profiling (Figure 28). All values can be 

changed. User-defined values must be defined at this stage. If a trace file is not used, 

user must provide all obligatory values for optimization. Detailed descriptions for all 

variables are given in Table 17 for system and runtime related parameters and Table 

18 for task specific parameters. 

 

 

Figure 28. Dialog boxes which are used to define input values for optimization related 

to (a) system and runtime and (b) each task’s execution. 

 

Table 17. System and runtime parameter description 

Parameter Unit Value from trace / 

value defined by user 

Description 

Total 

runtime  

ms Trace Length of the trace which is used in optimization. 

Slack time ms User Time that is reserved for other activities than 

application tasks (included in the optimization model). 

Base 

frequency 

kHz Trace, if frequency 

info in trace 

User otherwise 

The execution frequency if frequency not changed 

during execution.   

Minimum 

frequency 

kHz User The minimum frequency is the lowest frequency level 

that can be used for execution. The value is (by 

default) used to define upper bound for scaling factor.  

 

If a solution is found, optimization results are presented in the same order as the 

task-specific data was given in the dialog boxes i.e. first scaled frequency corresponds 

to task 1. Frequencies are defined according to Equation (4). In addition to scaled 

frequencies, the function which implements the whole optimization returns the output 

from the solver defined in [80], including the scaling factors. If a solution is not found, 

an error message specific to the solver is displayed. 
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Table 18. Task-specific parameter descriptions 

Parameter Unit Value from 

trace / value 

defined by 

user 

Description 

Name - Trace Descriptive name for a task. (optional) 

Priority - User Priority of a task (optional) 

Handle - Trace A pointer to the task control block. A task handle is 

used to identify a task. (optional) 

WCEC cycles Trace The largest amount of execution cycles defined from 

a task switch in to a switch out found in the trace. 

Deadline ms User The final target completion time defined from the 

start of a task 

Instance count - Trace The number of times a task has been switched in.  

Current 

frequency 

kHz Trace, if 

frequency 

info in trace. 

 

User 

otherwise. 

The execution frequency of a task. A single value for 

a task included in the optimization is assumed.  

Scaling factor 

(UB) 

- User  Frequency scaling can be restricted by setting an 

upper bound for a scaling factor. (optional) 

Scaling factor 

(LB) 

- User  Frequency scaling can be restricted by setting a 

lower bound for a scaling factor.  (optional) 

Interval slack 

time 

ms User Interval slack time is reserved from the task time 

deadline value. It reduces the time available for 

frequency scaling of a task. This time is reserved for 

other activity than task execution.  

 

Appendix 2. Optimization values for Ideal case of trace 1. 

 
Optimization and parameters 

Variable name Variable value 

Volt change [ms] 0.376 

Freq change [ms] 0.122 

Cost cs in  volt_change + freq_change (0.4980) 

CS overhead 0 

 
Variable name Variable value 
Trace period [ms] 2321.0847 
Guard time [ms] 0 
Time available [ms] (difference of trace and guard time) 2321 
Frequency [kHz] (for single frequency trace) 181 248 
Minimum frequency [kHz] 12000 

 

Variable name Task names  
Filter task KWS task 

Instance count 14 13 

WCEC 839768 10089050 

Relative deadline [ms] 100 100 

Slack time [ms] 0 0 

Exec. Freq. [kHz] 180 000 180 000 

Actual freq. [kHz] 181 248 181 248 
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Appendix 3. Optimization values for Overhead-only case of trace 1. 
 

Optimization and parameters 

Variable name Variable value 

Volt change [ms] 0.376 

Freq change [ms] 0.122 

Cost cs in  volt_change + freq_change (0.4980) 

CS overhead (cycles) 2000 

 

Variable name Variable value 

Trace period [ms] 2321 

Guard time [ms] 0 

Time available [ms] (difference of trace and guard time) 2321 

Frequency [kHz] (for single frequency trace) 181 248 

Minimum frequency [kHz] 12000 

 

Variable name Task names  
Filter task KWS task 

Instance count 14 13 

WCEC 839768 10089050 

Relative deadline [ms] 100 100 

Slack time [ms] 0 0 

Exec. Freq. [kHz] 180 000 180 000 

Actual freq. [kHz] 181 248 181 248 

 

Appendix 4. Optimization values for Restricted case of trace 1. 
 

Optimization and parameters 

Variable name Variable value 

Volt change [ms] 0.376 

Freq change [ms] 0.122 

Cost cs in  volt_change + freq_change (0.4980) 

CS overhead (cycles) 2000 

 

Variable name Variable value 

Trace period [ms] 2321 

Guard time [ms] 200 

Time available [ms] (difference of trace and 

guard time) 

2121 

Frequency [kHz] (for single frequency trace) 181 248 

Minimum frequency [kHz] 12000 

 

Variable name Task names  
Filter task KWS task 

Instance count 14 13 

WCEC 839768 10089050 

Relative deadline [ms] 100 100 

Slack time [ms] 5 5 

Exec. Freq. [kHz] 180 000 180 000 

Actual freq. [kHz] 181 248 181 248 
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Appendix 5. Optimization values for trace 2. 
 

Optimization and parameters 

Variable name Variable value 

Volt change [ms] 0.376 

Freq change [ms] 0.122 

Cost cs in  volt_change + freq_change (0.4980) 

CS overhead (cycles) 2000 

 

Variable name Variable value 

Trace period [ms] 34317.8574 

Guard time [ms] 0 

Time available [ms] (difference of trace and 

guard time) 

34317.8574 

Frequency [kHz] (for single frequency trace) 181 248 

Minimum frequency [kHz] 12 000 

 

Variable name Task names  
Filter task KWS task 

Instance count 314 39 

WCEC 839786 10089115 

Relative deadline [ms] 100 100 

Slack time [ms] 0 0 

Exec. Freq. [kHz] 180 000 180 000 

Actual Freq. [kHz] 181 248 181 248 

 

Appendix 6. Optimization values for trace 3. 
 

Optimization and parameters 

Variable name Variable value 

Volt change [ms] 0.376 

Freq change [ms] 0.122 

Cost cs in  volt_change + freq_change (0.4980) 

CS overhead (cycles) 1000 

 

Variable name Variable value 

Trace period [ms] 2320.365 

Guard time [ms] 0 

Time available [ms] (difference of trace and 

guard time) 

2320.365 

Frequency [kHz] (for single frequency trace) 181 248 

Minimum frequency [kHz] 12 000 

 

Variable name Task names  
Filter task KWS task 

Instance count 14 13 

WCEC 840403 10089638 

Relative deadline [ms] 100 100 

Slack time [ms] 0 0 

Exec. Freq. [kHz] 180 180 

Actual Freq. [kHz] 181248 181248 
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Appendix 7. Optimization values for trace 4. 
 

Optimization and parameters 

Variable name Variable value 

Volt change [ms] 0.376 

Freq change [ms] 0.122 

Cost cs in  volt_change + freq_change (0.4980) 

CS overhead (cycles) 1000 

 

Variable name Variable value 

Trace period [ms] 908.7189 

Guard time [ms] 0 

Time available [ms] (difference of trace and 

guard time) 

908.7189 

Frequency [kHz] (for single frequency trace) 181 248 

Minimum frequency [kHz] 12 000 

 

 Task names 

Variable name Filter task KWS task 

Instance count 4 7 

WCEC 840202 10082251 

Relative deadline [ms] 100 100 

Slack time [ms] 0 0 

Exec. Freq. [kHz] 180 180 

Actual Freq. [kHz] 181248 181248 
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