

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Sofia Mäkikyrö

APPLICATION ANALYSES OF ULTRA-LOW-ENERGY

PROCESSOR

Master’s Thesis

Master's Degree Programme in Biomedical Engineering

November 2020

Mäkikyrö S. (2020) Application analyses of ultra-low-energy processor.
University of Oulu, Master's Degree Programme in Biomedical Engineering. Master’s

Thesis, 65 p.

ABSTRACT

Low energy consumption has become a critical design feature in modern systems.

Internet of Things, wearables and other portable devices create increasing

demand for low power design where device size is dictated by battery and low

energy means longer battery life and smaller physical size. These are crucial

features for wearables and especially implantable medical devices.

There are several low power and energy efficient techniques which are applied

at different abstraction levels of the system design. A technique usually utilizing

software control and hardware features is DVFS (dynamic voltage and frequency

scaling), a dynamic power management technique which decreases processor

clock frequency and supply voltage. Reduction in energy consumption is achieved

with the cost of reduced performance. One of the questions with DVFS is how the

execution frequencies are defined.

This thesis presents a method for frequency optimization for applications

executed on a single core processor. Execution trace data is used to profile the

application. FreeRTOS operating system is used although tracing can be

implemented with any real-time operating system executing tasks as separate

threads. Based on profiling and user-defined data, task execution frequencies are

defined assuming that execution time scales linearly with the frequency.

A near-threshold ARM Cortex M3 with integrated power management and

phase-locked loop is used for measurements. The measurements show that energy

savings can be achieved without affecting correct application execution. However,

the reduction in energy consumption depends highly on the system used and the

application execution profile. Iterative testing and frequency optimization are

required to ensure adequate performance. For energy efficiency optimization,

energy consumption needs to be considered in every phase of the design.

Keywords: dynamic voltage and frequency scaling, energy efficiency, embedded

systems, low power design

Mäkikyrö S. (2020) Matalan energiankulutuksen prosessorin sovellusanalyysi.
Oulun yliopisto, lääketieteen tekniikan maisteriohjelma. Diplomityö, 65 s.

TIIVISTELMÄ

Matala energiankulutus on keskeinen ominaisuus nykyisten järjestelmien

suunnittelussa. Esineiden Internet ja puettava tietotekniikka luovat tarpeen yhä

pienemmälle energiankulutukselle. Laitteen koko määräytyy akun koon

mukana. Matala tehonkulutus tarkoittaa pidempää akunkestoa ja pienempää

fyysista kokoa. Nämä ovat ratkaisevia ominaisuuksia, erityisesti implantoitaville

lääkinnällisille laitteille.

Energiatehokkuuteen ja matalaan energiankulutukseen tähtääviä menetelmiä

voidaan soveltaa eri abstraktiotasoilla järjestelmän suunnittelussa. Dynaaminen

jännitteen ja taajuuden skaalaus on menetelmä, millä pyritään alentamaan

dynaamista tehonkulutusta säätelemällä käyttöjännitettä ja kellotaajuutta.

Suorituskyvyn kustannuksella on mahdollista saavuttaa matalampi

energiankulutus. Keskeinen kysymys on, miten käytettävät kellotaajuudet tulee

määritellä.

Tässä diplomityössä kehitetään menetelmä, jota voidaan käyttää optimaalisten

kellotaajuuksien määrittämiseen. Suorituksen aikana kerättävää dataa

käytetään ohjelman profilointiin ja optimointimallin luomiseen. Suoritusdatan

kerääminen on kehitetty FreeRTOS-käyttöjärjestelmälle, mutta periaate on

sovellettavissa käyttöjärjestelmille, joissa tehtävät suoritetaan erillisissä

prosesseissa. Profilointidata hyödynnetään yhdessä käyttäjän syöttämän data

kanssa kellotaajuuksien määrittämiseen olettaen, että suoritusaika skaalautuu

lineaarisesti kellotaajuden kanssa. Suositustaajuudet määritetään jokaiselle

prosessille erikseen.

Mittauksissa käytettiin ARM Cortex M3 prosessoria integroidulla

tehonhallinnalla ja vaihelukolla. Mittaustulokset osoittavat, että

energiankulutusta voidaan pienentää vaikuttamatta sovelluksen virheettömään

suoritukseen. Saavutettava hyöty tehonkulutuksessa on riippuvainen

käytettävästä järjestelmästä ja sovelluksen suoritusprofiilista. Riittävä

suorituskyky täytyy varmistaa iteratiivisella testaamisella ja kellotaajuuksien

optimoinnilla. Tehonkulutus ja energiatehokkuus täytyy huomioida

suunnitteluprosessin jokaisella osa-alueella, jotta parhaat tulokset saavutetaan.

Avainsanat: dynaaminen jännitteen ja taajuuden skaalaus, energiatehokkuus,

sulautetut järjestelmät, matalan tehonkulutuksen järjestelmäsuunnittelu

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION .. 8
2. DEVELOPMENT ISSUES .. 11

2.1. Energy consumption ... 11
2.2. Timing challenges .. 11

2.2.1. Power modes ... 12
2.2.2. DVFS ... 13

2.3. Reliability ... 14
2.4. Benchmarking .. 14

3. TECHNIQUES FOR LOW ENERGY CONSUMPTION 16
3.1. Hardware techniques .. 16

3.2. Algorithm level techniques .. 17
3.3. Scheduling .. 19

3.4. DVFS algorithms .. 20
3.5. The role of software ... 24

4. PROFILING FOR THE NEAR-THRESHOLD PROCESSOR 25

4.1. Task execution .. 26
4.2. DVFS implementation .. 27

4.3. The optimization model.. 28
4.4. Software execution tracing ... 29

4.5. Profiling .. 31
4.5.1. Profiling data visualization .. 32

4.5.2. Target system .. 33
4.5.3. User-defined data .. 36

5. MEASUREMENTS ... 38

5.1. Tracing and measurement set-up .. 38
5.2. Test application .. 38
5.3. Frequency optimization .. 39

5.3.1. Trace 1 ... 39
5.3.2. Trace 2 ... 41

5.3.3. Trace 3 ... 42
5.3.4. Trace 4 ... 43

5.4. Optimization results ... 44

5.4.1. Power measurement results ... 45
5.4.2. Optimization discussion .. 46

6. DISCUSSION .. 48
6.1. Limitations.. 48

6.2. Use considerations and improvements ... 50
6.2.1. Tasks suitable for optimization ... 50
6.2.2. Required slack time ... 50
6.2.3. Task execution, deadline misses and prioritization 51
6.2.4. Additional profiling and detailed modelling 52

6.2.5. Relation between execution frequency and execution time 52

6.3. Conclusion .. 53
7. SUMMARY ... 54

8. REFERENCES ... 55
APPENDICES

FOREWORD

I would like to thank everyone involved in the process of writing this thesis.

Oulu, 4.11.2020

Sofia Mäkikyrö

ABBREVIATIONS

CL load capacitance

c task instance count

CMOS complementary metal oxide semiconductor

CPU central processing unit

DVFS dynamic voltage and frequency scaling

𝐸 energy per cycle

Eavg average energy consumption

EDF earliest deadline first

f execution frequency

fscaled optimized execution frequency

GPOS general purpose operating system

Is capacitive current

I/O input/output

KWS Keyword spotting

OP operating point, a voltage-frequency pair

OS operating system

P power

PLL phase locked loop

RM rate monotonic scheduling

RTOS real-time operating system

RTT Real-Time Transfer

s scaling factor

SWD Serial Wire Debug

t time

T charging interval

Vdd supply voltage

Vout output voltage

wcec the largest execution cycle amount required by a task in a trace

WCEC worst-case execution cycles

8

1. INTRODUCTION

The development of systems such as portable devices and Internet of Things requires

low-energy design. For many embedded systems, low energy consumption is vital, and

it has become a crucial feature in modern system design. Long battery life is required

but devices are limited by battery size and weight. Heat dissipation caused by high

power consumption is also undesirable and even unacceptable for wearable and

implantable devices [1].

The application, supply voltage, execution frequency and process technology are

the main factors affecting a device’s power consumption [2]. Software and hardware

can be optimized for low energy consumption and energy efficiency (Figure 1).

Memory requirements and memory utilization optimization lead to lower energy

consumption in software. Energy efficient memory technology and hardware design

techniques reduce hardware energy consumption. Many techniques are related to

hardware design. Design tools and methodologies are widely available. However, the

impact of software should not be neglected.

Figure 1. Possibilities for low energy consumption in software and hardware.

The hardware design process consists of several levels of abstraction: technology,

circuit/logic level and architecture level. Software decisions take place at higher levels

of the design. Algorithm and system levels include software optimization and

software-controlled power management. Techniques used to achieve low energy

consumption and increase energy efficiency can be applied at different design

abstraction levels from system to technology level. The greatest impact on energy

consumption can be achieved with design decisions made at highest levels of

abstraction, whereas the accuracy for power estimation decreases at higher levels [3].

Power management can be implemented in application code, by OS (Operating

System) or with hardware (Figure 2). The existing hardware low-power features can

be utilized, thereby using automated hardware control for power management. The

advantage of software-based implementation is that it is configured for the application.

RTOSes (Real-Time Operating System) used in today’s embedded systems provide

power management features and scheduling can be implemented for low energy

consumption. [4]

9

Figure 2. Overview of levels for power management.

Usually hardware and software are not designed in parallel and the design is done

in separate teams rather than in an integrated team. In the context of this thesis, the

hardware has already been designed and is capable of ultra-wide DVFS. The

application software is provided by an external supplier. Thus, the method presented

in this thesis for frequency optimization is the only remaining optimization technique

which can be applied.

In Chapter 2 the design challenges for low energy consumption are discussed.

Chapter 3 presents techniques used in software and hardware. It is necessary to

understand the possibilities that the hardware and software provide and how these

techniques affect the system behavior.

DVFS, a power management technique, is used to reduce the dynamic power

consumption. Basically, clock frequency is dynamically adjusted while allowing the

reduction in supply voltage. The reduction in dynamic power consumption comes with

the cost of performance. However, a processor can spend much of its time waiting for

events to occur [5]. The unused processing time is utilized by DVFS.

The effect of voltage and frequency scaling to task execution time and energy

consumption is visualized in Figure 3. Instead of race-to-idle, task execution is

prolonged. The challenge is that while low energy consumption is achieved, adequate

performance level and correct behavior must be ensured. Execution time is especially

critical in hard real-time systems where missing a deadline has fatal consequences.

Thus, execution frequencies must be carefully chosen for an application utilizing

DVFS.

Figure 3. Basic idea of DVFS.

10

The objective of this thesis is to develop a method which can be used to define

optimal execution frequencies for DVFS based on application analysis and profiling,

leading to lower energy consumption while maintaining correct application execution.

The method is developed for embedded real-time systems. The target system provides

wide range of frequencies and is capable of near-threshold operation. Optimal

execution frequencies are defined for inter-task DVFS algorithm. Thus, the

frequencies must be defined at task-level. The method is developed based on the

assumption that the execution frequency should be scaled as low as possible given the

constraints.

In the context of this thesis, software profiling and frequency optimization are

developed independently of the operating system. Many operating systems allow

specific execution events to be traced. The requirement for the implementation is that

tasks are executed as separate threads instead of a single thread. Only minimal code

instrumentation should be required. The execution frequencies for tasks are defined

based on trace data collected during execution and user-defined constraints. Software

execution trace is used in profiling where data is extracted and used in frequency

optimization.

11

2. DEVELOPMENT ISSUES

System energy consumption depends on several factors. The design challenges

introduced by low energy design include degraded system reliability and timing

overhead caused by power management. These issues need to be acknowledged as

they cause incorrect system behavior or even failure. Energy and power benchmarking

tools are also required.

2.1. Energy consumption

Power defines the rate at which energy is consumed. Average energy consumption Eavg

is the time t integral of power P:

 𝐸𝑎𝑣𝑔 = ∫ 𝑃(𝑡)d𝑡. (1)

As a capacitor is charged energy is drawn from the power supply. Total energy drawn

from the power supply when a capacitor is charged is defined using Equation (1) where

the integral interval is the charging interval from 0 to timepoint T:

 𝐸 = ∫ 𝑃(𝑡) d𝑡.
𝑇

0
 (2)

Instantaneous supplied power is the product of supply voltage Vdd and capacitive

current Is. The charging interval is the interval when a capacitor is charged from 0 to

Vdd. Thus, Equation (2) for energy drawn at each cycle simplifies to:

 𝐸 = 𝑉𝑑𝑑 ∫ 𝐼𝑠(𝑡)d𝑡 = 𝑉𝑑𝑑 ∫ 𝐶𝐿d 𝑉𝑜𝑢𝑡 =
𝑉𝑑𝑑

0

𝑇

0
 𝐶𝐿𝑉𝑑𝑑

2 , (3)

where CL is the load capacitance and Vout is the output voltage. Equation (3) shows the

relation between supply voltage and energy consumption. Total energy consumption

is affected by the rate at which charging is done. [6]

2.2. Timing challenges

As the correct behavior of an application depends on correct timing of the tasks during

execution, overhead caused by power reduction implementation can severely affect

the application behavior. Overhead is the time that the application execution is halted.

The instructions related to power management are executed resulting in the necessary

hardware configurations.

The amount of overhead depends on several factors: the hardware implementation

characteristics and complexity of the power management algorithm. No matter what

kind of approach is chosen for power management, each state transition always

introduces some overhead. Depending on the state transition, the amount of overhead

that reduces application execution time or increases response time can become

significant. This needs to be acknowledged in application design as many systems

require quick response to certain events which cannot be predicted.

12

Dynamic power reduction techniques can be divided into the use of power modes

and DVFS. The two approaches have the opposite effect to the software execution but

achieve reduction in power consumption compared to a state where no power reduction

technique is applied (Figure 4). In that case, power consumption stays at the same level

with task execution and idle. The system remains responsive.

Figure 4. Changes in execution time and power consumption with no power reduction

versus power modes (1) and DVFS (2).

2.2.1. Power modes

Race-to-idle approach is used with power modes. That is, the task being executed

should be executed as fast and quickly as possible so that the processor can be set to a

low power mode for the longest possible time period. These time periods where

processor is not utilized are used to set the processor to a low power mode.

Low power modes vary from the active mode to low power or sleep mode to nearly

being totally turned off or, as can be said, hibernated (Figure 5). The functionality is

decreased as lower power mode is used. In active mode the processor executes at full

speed and is fully powered. When moving to lower power modes, most clock signals

are stopped, eventually stopping all clock signals. Some designs allow shutting down

parts of the chip. The downside is the delay with every exit from and entry to a low

power mode. Deepness of the power mode affects the wakeup delay and can cause

unresponsiveness. [7, 8]

The time to enter and exit a light power mode, for example when waiting for an

event, is very short [9]. A light mode does not lead to a great decrease in power. Deeper

modes yield more decrease but increase the response time of the system. Some modes

13

even require booting the processor [10]. It must be ensured that unnecessary wakeups

are minimized, and the system remains responsive. The decision of when to enter a

lower power mode must be chosen carefully. Thus, tradeoff between acceptable

response time and achieved savings must be considered.

Figure 5. Power modes and their relation to power consumption and wakeup delay.

2.2.2. DVFS

DVFS tries to minimize the time spent in idle. Opposite to race-to-idle approach,

energy consumed during active state can be decreased. DVFS controls execution

frequency and voltage according to application requirements. The operation of the

processor might not be reliable during these transitions, and the application software

execution is halted [11]. To be able to estimate the amount of overhead that is

introduced, the direction of the change must be known. The direction of the change

corresponds to the value of the voltage and frequency levels used. The overhead

depends on the direction that the OP (operating point) is changed as the order specifies

whether execution frequency or supply voltage must be set first (Figure 6).

Figure 6. The order and delay of frequency and voltage change.

14

When frequency and voltage are changed to a higher level, the voltage must be set

first to the requested value. Once the voltage is set to the value which can support the

requested new frequency, the execution frequency can be set to the requested

frequency value. On the other hand, when the change direction is the opposite i.e.

voltage and frequency are changed to a lower level, frequency is set first. Then the

voltage level can be decreased as the higher voltage level is no longer required. [12]

The software execution can be continued before the lower voltage level is reached

when the change is done from a higher to a lower OP level. This is because the lower

execution frequency is supported by the higher voltage level. When the execution

frequency value is altered, frequency must be locked before the application execution

can be continued. The same goes for voltage which must be set and at adequate level

before execution frequency can be increased. The time taken to lock the correct

frequency can be rather short. The setting time of the correct voltage is slower and

defined by the slew rate [13]. Thus, the difference between the voltage levels defines

some of the overhead introduced.

From application execution point-of-view, the overhead itself is not the only issue

which results from frequency and voltage change. The change requires time and

consumes energy. Thus, it is not feasible to be constantly changing the OP. The power

reduction is achieved with decreased performance. How is the system performance

affected if quick response is required but a low OP is in use? This is the case if an

interrupt occurs. If the service to be executed is short, e.g. interrupt service routine, it

is not feasible to change the OP as the execution time of the interrupt service routine

should be short and could be shorter than the overhead time to change the OP.

2.3. Reliability

Low power design and harsh use environment conditions cause reliability issues.

System becomes susceptible to functional errors and failure. Reliability defines the

ability of a system to continue operation correctly even if errors occurs.

Low operating voltage and transistor scaling introduce timing skews. Timing errors

arise from large process variability which increases as voltage is decreased, operation

time increase due to aging, or transient errors caused by effects such as noise, power

glitches and radiation. These errors are not permanent. They cause error in data or

control flow in the software [14]. Data flow errors corrupt data values and cause output

values to become incorrect whereas control flow errors cause incorrect execution order

for instructions [15]. Time-independent reliability issues become more significant at

lower voltages. [16, 17]

Redundancy is an approach used to make systems more fault tolerant. Several

techniques for hardware and software redundancy have been developed. Redundancy

techniques can be classified in structural, time and information redundancy. While

hardware-based solutions are available, they always require additional hardware.

Software-based methods are used to reduce the overall cost. Software-based methods

introduce timing overhead, added code size and additional memory requirement. [18]

2.4. Benchmarking

Benchmarking tools are designed to measure the performance characteristics of a

processor in a comparable manner. As low energy consumption can be achieved by

15

compromising the performance, there is a need for power and energy evaluation.

Tradeoff between power and performance can be assessed and balanced.

Benchmarking eases the development process, but the application also has a great

impact on the energy consumption of the system.

The Embedded Microprocessor Benchmark Consortium provides a benchmark for

energy that targets ultra-low power microcontroller units called ULPMark. The

benchmark quantifies optimization tradeoffs made between different energy demands

and performance. Behavioral profiles are used to assess the device operation.

ULPMark line consists of three different profiles. ULPMark-CoreProfile focuses on

the energy of sleep and transitions between active and sleep mode. ULPMark-

CoreMark is used to analyze performance and energy efficiency. ULPMark-

PeripheralProfile can be used to assess the cost of most used peripherals. [19]

16

3. TECHNIQUES FOR LOW ENERGY CONSUMPTION

Several approaches are used to achieve lower energy consumption. These can be

categorized into hardware techniques, algorithmic techniques, scheduling algorithms,

and DVFS algorithms. Techniques from different categories can be combined for total

system optimization for low energy.

3.1. Hardware techniques

Several design techniques which are applied at different design abstraction layers are

used to lower energy consumption but they also introduce challenges (Table 1).

Voltage scaling, frequency scaling, power gating and clock gating are the most

commonly used techniques [20].

Table 1. Examples of low power techniques and their challenges

Abstraction level Technique Challenges

Architectural
Dynamic voltage scaling Added overhead and increased delay

Pipelining Control overhead

Circuit / logic

Transistor sizing Increased delay

Clock gating Increased logic

Power gating Increased delay

Technology

Scaling Parameter variability

Supply voltage reduction Increased delay

Threshold voltage reduction Leakage power increase

Scaling of physical dimensions causes variability in device parameters such as

threshold voltage due to process variation [21]. Supply voltage can be decreased near

threshold or below the threshold voltage. However, current is not strictly cut off at the

threshold voltage. The significance of static power consumption on system total power

consumption grows. Susceptibility for soft errors is increased as capacitances and

voltages are decreased. [22-24]

Another efficient technique to reduce dynamic power is clock gating due to clock

tree constituting a large part of total power consumption. Clock gating prevents

unnecessary charging by gating off clock supply from unused logic. Implementation

requires additional control logic (Figure 7). Power gating has a similar approach as

current is cut off to reduce leakage power. Although leakage power is efficiently

reduced, it introduces delay and requires additional logic. [25-27]

Figure 7. Basic clock gating cell.

17

Transistor width can be reduced to decrease dynamic power consumption. It causes

increase in transistor delay and scaling decision is made based on tolerable delay.

Switching activity is decreased by reordering transistors so that transistors which are

likely to switch frequently are placed close to the circuit’s output. [25]

Dynamic voltage scaling is applied at architecture level to reduce dynamic power.

Reduction in supply voltage increases propagation delay. Glitches occur due signals

in different paths not having the same delay [28]. Control can be implemented in

hardware or software and the technique can be combined with dynamic frequency

scaling.

 Pipelining increases performance as instruction execution is divided into stages

executed in parallel. However, conditional execution decreases performance and

causes delay. Stalling can be avoided by using branch prediction. For wrong

predictions, pipeline flushing is required wasting execution cycles before continuing

with the right instructions. Pipeline structure affects the cost of wrong prediction and

requirements for expensive registers. Another technique used at architectural level is

low-power memory hierarchy. Memory must be optimized for the application

specifically to reduce hardware usage. [25, 29]

3.2. Algorithm level techniques

Software optimizations are done for power consumption, execution speed and code

size. Code efficiency decreases execution time. Data optimization techniques

concentrate on minimizing the cost resulting from data transmissions and storage.

Code can be optimized in multitude of ways, usually by a compiler, with example

methods shown in Table 2.

Table 2. Common algorithmic optimization techniques

Optimization technique Applied to Description

Software pipelining Loops Reduce execution time by changing loop

execution order and utilizing instruction

level parallelism.

Precision reduction Arithmetic operations Reduce computational precision and

decrease energy.

Assembly and intrinsic

functions

Functions Library function calls are replaced with

low-level instructions decreasing

execution time.

Strength reduction Expensive operations Expensive operations are replaced by

less expensive ones.

The algorithm implementation can be evaluated by examining the instructions that

are needed for the operations. Instructions have different effects on the power

consumption as they activate different functional units. The aim is to minimize the

most frequently executed paths to reduce hardware switching activity. Functions can

be transformed by using different commands to perform the same functionality. Data

patterns and code sequences which consume less power are key for low-energy

optimization. [20]

First, the best suitable algorithm for the given problem must be chosen. Same

functionality can be achieved with variety of algorithms. The best algorithm can be

multiple times better than the worst algorithm, whereas implementation details result

18

only in improvement of a few percent [30]. The algorithm is chosen so that it is

efficient for the available hardware. It includes computations and storage. An

algorithm transformations and implementation should map to the computational

resources available.

Basic programming techniques which can increase code performance include the

use of fixed-point arithmetic when there is no support for floating point operations.

Integer values should be correctly sized for the processor usually according to the

natural word length. For data structures, the parameters should be aligned accordingly.

[30]

Instruction selection and ordering are optimization methods. Instruction selection

consists of selecting the lowest power instruction sequences. Instruction scheduling is

used minimizing energy consumed as processor switches execution from one type of

instruction to another i.e. the circuit state without affecting the program behavior.

These are followed by register allocation which is discussed in memory-based

techniques. Switching activity caused by an operation can be tried to be minimized by

operand swapping. [31]

Stand-alone assembly, inlining and intrinsic functions are used to replace high-level

language code. Assembly code lacks portability, can inhibit compiler optimizations

and be a laborious task to implement. Intrinsic functions are an alternative for

developed-implemented assembly. They are used as standard library functions.

Intrinsic functions appear in the code as standard function calls but are replaced by the

compiler with a low-level implementation. Intrinsic functions which are compiler

specific are built into the compiler. Processor vendors also provide platform-specific

intrinsic functions. These optimizations eliminate function call overhead and reduce

execution cycles. [32]

Function call overhead can also be decreased by eliminating recursion in procedure

calls. Recursion can be replaced with a loop structure. For each function call, general

context of the function such as variable values must be pushed onto the stack. Another

technique to reduce function call overhead is to use inlining which replaces the

function call with the function body.

Loops provide opportunity for code optimization. Loop unrolling is used to

optimize performance and power, but tradeoff is increasing code size. In practice, loop

unrolling means that a loop is partially unraveled by reducing the number of control

statements. Loop unrolling increases code parallelization and efficiency. It is

beneficial with long pipelines and loops with a lot of iterations. The total unraveling

is not beneficial as it leads to large code size and increased memory accesses.

Another technique for loops, which can also be combined with loop unrolling, is

software pipelining which reforms loop operations to decrease execution time.

Software pipelining uses instruction level parallelism. Loop iterations are reordered

for out-of-order execution. Software-pipelined iterations are formed of instructions

from different iterations of the original loop. Iterations are reordered so that

dependencies are removed. Instructions from different loop iterations can be executed

in the same pipeline.

Precision reduction is a technique which can reduce cycles required to execute a

function and is applied to mathematical functions by reducing precision without

degrading the output value for the given task. High precision leads to the used of more

functional units and requires more cycles for execution. This technique can be applied

if precision is too high for the purpose. [20]

19

Replacing integer division with a constant multiplication is an example of strength

reduction. Less expensive but similar operations are used to replace the expensive

ones. Common subexpression elimination is another compiler technique which

eliminates redundant calculation by identifying expressions which result in the same

value and storing them into another variable which can be used to reformulate the code.

[33]

3.3. Scheduling

Scheduling is one core task of an operating system. Although scheduling can be

implemented even on bare metal, operating systems provide various algorithms for

scheduling and ready framework for implementation. Scheduler decides which task is

selected for execution at a scheduling point based on a scheduling algorithm (Figure

8).

Figure 8. Execution time allocation in priority-based, round-robin, non-preemptive

and priority-based preemptive scheduling.

Scheduling policies can be divided into priority-based scheduling and round robin

scheduling. In priority-based scheduling the task with the highest priority is given

execution time first whereas in round-robin scheduling tasks are executed in turns.

Tasks can also be preemptive. In priority-based scheduling, the execution of a task can

be interrupted by another task with a higher priority i.e. a context switch occurs before

the task has finished all its jobs. This is preferred in real-time systems as non-

preemptive scheduling lacks the ability to react to real-time events.

EDF (Earliest deadline first) and RM (Rate monotonic scheduling) are optimal

algorithms. EDF is an optimal scheduling algorithm for a single processor: if a task set

can be scheduled, it can be scheduled with EDF. The task with the shortest time until

its deadline is selected for execution. With dynamic priority assignment, the priorities

are assigned online. Processor can be fully utilized i.e. the utilization bound is 100 %

for EDF. [34, 35]

20

Fixed priority scheduling is the most implemented approach in commercial

RTOSes [36]. Task priorities are defined by the developer at compile-time, usually

according to task timing requirements, and remain the same during execution. RM is

a fixed priority-based scheduling algorithm. A task set cannot be scheduled with any

fixed-priority algorithm if it cannot be scheduled with RM. Task priorities are assigned

indirectly proportional to task periods. Tasks which have short periods and execute

more frequently are assigned higher priorities. For RM, the utilization can drop even

to 70 %. The problem for these utilizations bound definitions is that task sets are

assumed to consist of only periodic and independent tasks. [35, 37]

In practice, many tasks have inter-dependencies. Many task sets contain aperiodic

and sporadic tasks, and it can be hard to predict the arrival times of these tasks. Also,

in systems like Internet of Things, telecommunication protocols set timing constraints

which have to be met. Energy harvesting real-time systems pose another scheduling

problem as the challenge is to operate so that energy can be harvested as much as it is

consumed. The available energy and processor utilization need to be considered in

power management implementation. [38]

The key for power-aware scheduling is providing just enough performance and

power for the workload of a processor any given time while maintaining deadlines.

Any slack time arises from suboptimal scheduling as 100 % utilization is not achieved.

Power-aware scheduling can utilize knowledge of energy models related to tasks and

their resource utilization.

3.4. DVFS algorithms

The target of DVFS is to keep the processor utilized. Although the idea of applying

DVFS is very simple, it can be a complex task to apply in practice. As real-time

systems have timing constraints, frequency cannot always be scaled to the lowest level.

These timing constraints are used to define the execution frequencies.

DVFS can be classified different ways (Figure 9). They can be classified by their

implementation, i.e. the time the OP value decisions are made, and whether frequency

is changed only at task borders or within tasks. Inter-task algorithms are coarse grained

as the application is only evaluated at task-level usually relying on knowledge of task

worst-case execution. They introduce less overhead and less code instrumentation.

Intra-task algorithms switch OP within task boundaries. This enables more fine-

grained approach to tuning the execution frequency. Also, interval-based online

approaches exist [25]. [39]

Figure 9. Classification of DVFS algorithms.

21

Slack is the time by which an execution of a task can be delayed without violating

its timing constraint. Two types of slack can be utilized in frequency scaling (Figure

10). Dynamic slack arises when the actual execution time of a task is shorter than the

worst-case execution. Offline algorithms define the values at compile time. These

techniques are highly predictable as there is no adaptation to runtime variation. Online

algorithms make frequency decisions at runtime and make use of runtime variation in

task execution. [39]

Figure 10. (a) Dynamic slack arises when a task requires less than worst-case cycles.

(b) Static slack can be present even if tasks require their worst-case cycles.

The downsides of online algorithms are increased complexity and timing overhead.

Decisions are made based on past execution or predictions of future execution and it

is hard to ensure deadlines. The decrease in power consumption can be lower with

offline algorithms. There is no adaptation to varying execution and only static slack is

utilized. The actual execution cycles required for a task completion can’t be known

until the task has finished execution. Thus, deadlines are guaranteed by assuming

worst-case execution.

For DVFS to be efficient, the energy overhead and timing overhead should be

minimal. The amount of OP switches should be kept minimal as it adds delay to

application execution. The decrease in energy consumption depends greatly on the

target system used. The amount of operating frequency levels that are available

directly affects DVFs efficiency. The ability to use low voltage which are set according

to operating frequency improves efficiency. Processor utilization can be used as a

measure for DVFS performance. Thus, scheduling has a great impact on the

performance.

Several algorithms have been proposed in literature. Only algorithms for a single

core are discussed here. They assume either discrete or continuous frequencies.

Depending on the algorithm, tasks can be assumed to be periodical, aperiodic or

sporadic. The frequency decisions can be made based on static code analysis and data

collected during runtime. Most of the algorithms discussed are developed jointly with

EDF or RM scheduling algorithm. Table 3 gives overview of different uniprocessor

algorithms for real-time systems.

22

Table 3. Comparison of DVFS algorithms proposed in literature for real-time systems

Algorithm /

Developer

Classification Scheduling Frequency Frequency

decision

Challenges

Average rate

heuristic

Online EDF Continuous Defined for an

interval at a

time. Required

total amount of

execution cycles

in the interval

defines

frequency value

Deadlines misses

may occur when

additional tasks

are released for

execution within

an interval

Static Offline EDF Discrete One execution

frequency for the

whole task set

with timing

constraints

Single frequency

suboptimal for

DVFS

Cycle

conserving

Online RM / EDF Discrete Current

utilization and

assumption of

future worst-case

requirements

updated at each

scheduling point

Ensuring

deadlines when

frequency is

decreased

Look-ahead Online EDF Discrete The lowest

frequency for

current task to

meet a deadline

Ensuring

deadlines as low

frequency used

for execution

Bini et al.

Offline EDF /

Fixed

priority

Discrete Single, lowest

frequency for the

task set under

given scheduling

algorithm which

makes schedule

feasible

No adaptation to

runtime variation,

single optimal

frequency

defined

Pinheiro et al. Online - Discrete Initial

frequencies for

each task defined

offline and

lowered within a

task if worst-

case path not

taken

Increased code

instrumentation

Energy-

aware

DVFS

Online EDF Discrete Available

energy: stored

and harvested in

the future.

Energy overhead

is neglected for

frequency/voltage

change.

Hybrid DVFS

with

reinforcement

learning

Online - Continuous Several DVFS

algorithms used.

The most

suitable

algorithm for

given system

state is learned.

Requires training

for optimal

adaptation.

Online algorithm

adds increased

overhead.

23

One of the first papers proposing frequency scaling algorithms for power-aware

scheduling introduced algorithm Average Rate heuristic. It is developed for aperiodic

tasks with a known deadline and an arrival time. Based on execution cycles required

for tasks executing within a scheduling interval, an average-rate requirement is

defined. Based on the average-rate requirement, the execution frequency is defined for

the given time interval. EDF is used to schedule the tasks. [39, 40]

Pillai et al. integrated three DVFS algorithms to EDF and RM schedulers. Here, it

is assumed that deadlines equal task priorities so that Liu and Layland utilization

bound can be used to check schedule feasibility [41]. Tasks are assumed to be

independent. Static voltage scaling is a simple algorithm which only defines one

execution frequency for the whole task set which maintains schedulability. Only static

slack is considered. Cycle conserving algorithm was created based on the assumption

that tasks usually require much less execution cycles for completion than worst-case.

This slack is utilized by other tasks. At first, it is assumed that a task requires its worst-

case execution cycles and high execution frequency is used. Early completion enables

to lower the execution frequency for the remaining scheduled tasks. Frequency can

also be increased to meet the timing constraints. Look ahead algorithm is proactive,

and execution is started with low frequency according to minimum amount of cycles

required for all tasks. This enables to execute at low frequency and only increase

execution frequency if required for meeting deadlines. [42]

A framework for DVFS implementation with EDF and fixed priority scheduling

was proposed by Bini et al. Continuous frequency range was assumed to define the

frequencies offline. A speed modulation technique was proposed which is used to

achieve the desired frequency using two discrete frequency values. Only single optimal

frequency is defined for the task set which makes the schedule feasible under the

chosen scheduling algorithm. In addition to considering mixed task sets, scaling

overhead and energy overhead are also considered in the model. [41]

Pinheiro et al. developed a methodology to turn a regular source code into power-

aware code by inserting DVFS control code into it. Static source code analysis is

applied to study the execution paths inside a task which can be used to create a control

flow graph and define the worst-case execution path. This knowledge is used to ensure

schedulability and define initial frequencies for tasks. Execution frequency within a

task can then be reduced when worst-case path is not taken. Task response times are

used as new deadlines. The method also considers task interference and overhead. [43]

Energy-aware dynamic voltage and frequency selection algorithm is proposed for

energy harvesting systems. The operating frequency is selected based on the available

energy and the energy that will be harvested soon. The frequency is decreased if there

is not enough energy. Otherwise, tasks are executed with the highest frequency. Task

execution is delayed until enough energy has been harvested for task execution which

may lead to deadline miss. EDF is used for scheduling and with infinite amount of

energy, the energy-aware algorithm reduces to EDF. [44]

Hybrid DVFS scheduling with reinforcement learning is more recently proposed

algorithm for real-time systems with machine learning based control algorithm.

Adaptability to execution variation is achieved with Q-learning where the most

suitable action to be taken is chosen for given system state. The core idea is that a

single algorithm is not optimal in different execution scenarios. A new algorithm is

not proposed but already existing DVFS techniques are used. The system state is

observed, and the most suitable algorithm is chosen during execution at every

scheduling point. System state is described with system utilization and dynamic slack

24

for the given task set. Q-table is defined for each system state and algorithm,

containing penalties for each action. Penalty functions is defined based on average

energy consumption in a hyperperiod. [45]

Temperature-aware DVFS algorithms have been proposed to reduce thermal

problems caused by heating. As a result of thermal management, reliability increases.

Temperature-aware DVFS algorithms for real-time systems consider both timing and

thermal constraints. Approach can be to optimize power or performance. [46]

3.5. The role of software

Software has the most significant role in the optimization of a system’s energy

consumption. It has been estimated that software accounts for approximately 80 % of

a system’s energy consumption [47]. This is due to hardware activity which is

controlled by software. Software provides great opportunities to gain even more

energy savings when designed specifically for energy efficiency. On the contrary,

inefficient use of the hardware causes waste of energy i.e. inefficient software wastes

the advantages of hardware designed for low energy consumption [48]. The problem

is not solved by designing more energy-efficient hardware. Thus, software and

hardware both need to be specifically designed for low energy consumption.

The use of an operating system makes application development and integration less

complex. Today, RTOS is used in almost two thirds of embedded systems [49]. In

contrary to GPOSes (general-purpose operating systems), many embedded systems

use an RTOS due to their real-time requirements which can’t be guaranteed with

GPOSes.

Many well-known operating systems, although not classified as RTOS, provide

power management features. For example, Linux provides framework for DVFS

called CPUFreq and the utilization of low-power idle states with CPUIdle [50]. For

examples of RTOSes, VxWorks, FreeRTOS and Mentror Graphics Nucleus RTOS

provide at least some form of feature for low power such as tickles idle or power

management frameworks.

There are different approaches how energy-efficient software implementation could

be done. The most suitable option depends on the application and more than one

technique can be used for the same application. Static techniques implemented at

compile time or good programming practices are not enough for total energy

optimization but can be used to optimize the code for efficiency. As the software is

executed on the processor, it is the only component that can be used to achieve real

energy savings. By utilizing software to manage CPU (central processing unit) features

that affect the power consumption of a system, lower energy consumption can be

achieved [51].

Techniques for writing efficient software which increases performance and

decrease memory requirement are well known among software developers [52].

However, as energy consumption has become a critical design factor, there is a need

for guidelines on how to design software for energy consumption minimization and

tools which can accurately model the energy consumption of software design

decisions.

25

4. PROFILING FOR THE NEAR-THRESHOLD PROCESSOR

A method for defining execution frequencies for a DVFS-enabled, near-threhold

processor is presented. A software execution trace is used as a base for software

analysis. Extracted data from the execution trace is used for profiling. The data is

combined with user-defined data, such as task timing constraints, for frequency

optimization. The software events which are traced are chosen so that they can be

traced with any operating system. Requirement is that tasks are executed as separate

threads. The goal is to minimize application code instrumentation so that minimal

work is required to collect the execution trace.

The algorithm defines execution frequencies at task-level. Tasks in optimization

will have single frequency values assigned. The object is to scale the execution

frequency as low as possible assuming this leads to decrease in energy consumption.

To generalize the problem, it is assumed that task execution times scale linearly with

the execution frequency.

The frequency optimization model is mainly intended to be used with hard-real time

systems whose task execution is predictable and tasks have deadlines. That is why

execution times are defined based on execution cycles that are required to complete

the task at worst-case scenario. The operating systems used in this work is FreeRTOS.

Tracing is implemented with trace macros. The profiling and optimization are

developed independently of the operating system. Optimization can be done without

the execution trace if software execution properties are known.

The frequency optimization can be divided into three phases: software execution

tracing, software profiling and optimization. Overview of the implementation is given

in Figure 11. Implementation is parameterized so that profiling and optimization

related parameters are not fixed for the given system and trace event implementation.

Figure 11. Overview of the frequency optimization.

26

Software execution tracing includes the actual tracing and some preprocessing steps

before execution trace is profiled (Appendix 1). Data required to form the optimization

model is mined from the trace in profiling phase. Task execution and task execution

properties can be visualized in the profiling phase to give insight of the application

execution characteristics. Software profiling and user-defined data is used to form an

optimization model which models task execution of the application. The model

includes timing constraints and overhead of DVFS. The optimal execution frequencies

for the application tasks are derived from the optimization results.

4.1. Task execution

The task set of an application is modeled with a set of parameters. These parameters

reflect task execution properties and are used to create the task execution model. Each

task in the set is characterized by execution time, deadline and task period or minimum

inter-arrival time. The number of task releases is defined with a task instance value for

each task. The parameters related to task execution are visualized in Figure 12. The

periodicity of a task can affect the performance after optimization if task execution

cannot be modeled adequately.

Figure 12. Task execution related parameters.

The execution time of a task is defined by its execution frequency and required

execution cycles to complete. A time interval defines the amount of time from a task

release to the next task’s release. Tasks are assumed to be independent. This means

that there are no interdependencies between the tasks e.g. a task must wait for another

task to complete before it can be executed.

WCEC (worst-case execution cycles) is used to define the task execution time with

the respective frequency. WCEC value defines the maximum number of execution

cycles that a task requires to complete. It is not trivial to know if the worst-case has

occurred in the trace and if the worst-case execution time is defined correctly.

Knowledge of the application and task worst-case conditions are required from the

user so that the worst-case conditions can be produced. On the other hand, the

execution time for a task must be known, as an undersized value can lead to deadline

misses.

This deadline value must be provided by the user. A deadline can be defined based

on implementation requirements; within which time limit a certain task must be

completed. If there is not known deadline, time interval value can be used instead of a

27

task deadline value. In some cases, deadline can be defined based on subjective

experience.

The reason why a context switch occurs is not visible in the trace. Each instance of

a task is treated as the task has executed all its jobs i.e. no preemptions occur during

the trace. Tasks are usually implemented as infinite loops. It is not straightforward to

define the points where a task starts and when it has completed all its jobs.

Task execution can take different execution paths which lead to different operations

and different execution cycles. It is assumed that after completing its jobs, the task will

be left to wait for an event, and this is defined as one whole execution of a task. Task

is switched out if conditions to continue the execution of the task are not met. When

the event has occurred, the task is moved to ready state and when it is switched in, it

can continue the execution. The idle task is an exception. It has the lowest priority and

is always ready to execute as there should always be one task ready to be executed.

A hyperperiod can be defined for a periodic task set. Hyperperiod is the smallest

time interval after which the task execution pattern is repeated. An example of a task

set execution pattern is given in Figure 13. Ideally, a hyperperiod would be used as a

trace section for optimization. A hyperperiod can be defined as the least common

multiple of the task periods [53]. It might not be possible to define a proper

hyperperiod if tasks are not periodic or the hyperperiod can be long.

Figure 13. Example task set with a hyperperiod of 15.

4.2. DVFS implementation

The assumption that the execution time scales linearly with the execution frequency is

made because task execution cycles are the only measure which is used to describe a

single task instance’s execution and it is not analyzed if a task is CPU-bound. The

contents, execution paths and decomposition of a task are not included in the frequency

optimization model. This also leads to the assumption that lower energy consumption

is achieved at lower frequencies as only CPU power consumption is considered. The

optimization results define new execution frequencies.

The OP is defined as a voltage-frequency pair. The frequency levels are discrete

values and the frequencies that can be used depend on the system. For the

implementation, it is known that a large range of frequencies can be generated and the

step size between frequency levels depends on the point in the frequency range. The

step size increases with higher frequencies. The frequencies are always rounded

28

upwards if the exact frequency cannot be generated. This is because it must be

guaranteed that the timing constraints are not violated because the frequency is falsely

rounded. Due to these restrictions in the optimization model and DVFS

implementation, the actual frequencies differ from the exact optimized frequency

values.

The OP values for each task are defined at compile time. The number of different

frequencies is not limited in the optimization; thus, the number of OPs is not limited.

All the tasks do not have to be assigned with an OP. During frequency optimization,

user can select the tasks which are included in the optimization. This means that only

these tasks will have execution frequencies defined. It is left to the user to decide which

tasks are included in the optimization. It is proposed that short tasks which execute

frequently should be excluded due to overhead. Left out tasks will execute with the

OP in use at given time.

4.3. The optimization model

The data collected from the execution trace in the profiling phase and user-defined

data is used to form the optimization model. Linear optimization problems are convex

problems. Thus, a linear optimization model is chosen because it is known that when

a solution is found it is also the global optimal solution [54]. The optimization is

implemented in MATLAB using linprog solver function. Description of optimization

input values are provided in Table 17 and Table 18 in Appendix 1.

Scaling factors si are the decision variables in the optimization problem. Scaling

factor values are defined based on the optimization constraints and the profiling

parameter values. Only the tasks that are included in the optimization will have a

scaling factor defined. Values are defined for each task individually. The number of

scaling factors and optimized tasks is not restricted. The relation between scaling

factor s, optimal execution frequency fscaled and task execution frequency f is

𝑓scaled =
𝑓

𝑠
. (4)

The optimization model is formed as a maximization problem. The objective

function defines the total task runtime which is to be maximized. The target is to scale

the frequency low within the timing constraints which should maximize total task

runtime. The tasks that are included in the parameter definition are included in the

optimization. The tasks for optimization are selected from a list of all tasks found in

the trace if trace file is used as a base for optimization. Otherwise, the number of tasks

must be defined before task parameter values can be given.

Runtime for a task instance is defined by the worst-case execution cycles wcec and

the execution frequency f. Context switch overhead is included in the worst-case

execution cycles. The total runtime of a task in the section is estimated by multiplying

the runtime of the worst-case task instance with the number of task instances ci in the

given trace section. The total runtime which is to be maximized is the sum of all tasks’

runtime estimations defined as

 Max. ∑ ci
n
i=1 ×

wceci

fi si⁄
. (5)

29

One constraint that limits frequency scaling is the total time available for task

execution. Time amount tavail is the difference between trace length and user-defined

reserved time value for the whole time period. Overhead related to voltage and

frequency change for each task instance also limits total task execution time. Vlock

defines voltage settling time and Flock defines frequency lock time. The constraint for

total runtime is

∑ ci
n
i=1 ×

wceci

fi si⁄
 ≤ tavail- ∑ ci×(Flock+ Vlock)n

i=1 . (6)

Each task is assigned a relative deadline dli. Ideally, execution frequency would be

scaled until execution time corresponds to the deadline value. For each task, voltage

and frequency change overhead and user-defined reserved time amount decrease the

maximum execution time for a task. Guidelines for defining reserved time amounts

are discussed in Subsection 4.5.3 User-defined data. These constraints define that task

execution times is

wceci

fi si⁄
 ≤ dli - (Flock+ Vlock+ ti). (7)

The decision variables, the scaling factors, are bounded by upper and lower limits.

The limits for a scaling factor are defined separately for each task as

simax
≥ si ≥simin

, i=1,…, n. (8)

The lower bound for a scaling factor defines the highest frequency that can be

produced. As the chosen approach is to scale the frequency as low as possible, the

lower bound is defined by default as one. If scaling factor value is one, the frequency

of a task is not scaled.

The upper limit for a scaling factor can be defined based on the system used if there

is no reason to limit the frequency for a task. A reason to limit the task execution

frequency could be for example the use of an expensive I/O (input/output) device or

timing requirement of a protocol. Expensive is used here to portrait the energy

consumption of the system. If frequency scaling upper bound is only defined based on

the system, the lowest frequency level that can be produced and current execution

frequency for a task are used to define the upper bound for the scaling factor.

4.4. Software execution tracing

Software execution is traced to collect information on the software execution behavior.

The collected data is used to analyze and model task execution characteristics. Three

events related to task execution are traced. These events are successful task creation,

task switch in and task switch out. FreeRTOS OS provides trace hook macros which

are used to collect runtime data [55]. The trace hook macros are included in the

FreeRTOS source code as empty macros.

A different trace macro is implemented for each of the events traced and each event

is indicated with a specific abbreviation. All trace events contain the respective cycle

count register value for the traced event. Passed time can be defined when the

30

execution frequency is known. Additional information in the trace event print varies

depending on the event and each information field is separated by a colon. Event print

contents are described in Table 4. Quotes indicate that the text is replaced with a

respective value in the trace.

Table 4. Trace event print descriptions

Event name Event abbreviation Trace print

Task create TC TC “Task name” “Task handle” “Cycle count”

Task

switched in
CS-I

CS-I “Task handle” “Frequency”/CC “Cycle count”

Task

switched out

CS-O CS-O “Task handle” CC “Cycle count”

The trace macro for task creation is called when a task is successfully created. Trace

event is implemented with traceTASK_CREATE macro. Once a task is created, a task

control block containing data about the task is created. It is not necessary to include

task create events in the trace for profiling although it is the only event where the

descriptive name for a task is visible. Descriptive task name is used in profiling data

and visualizations produced from the trace. Tasks will be named unknown if the names

are not available and user must be able to identify the tasks during optimization.

The task-switch-in macro is called when a task is selected to enter the running state

where the task is executed and utilizing the processor. This event defines the start for

task execution. The task handle defines which task is being executed. Trace event is

implemented with traceTASK_SWITCHED_IN macro. Pseudo code for the

implemented task-switch-in trace macro is given in Figure 14.

First function call in the trace macro is a DVFS callback function. This function is

used to set the execution frequency and supply voltage i.e. the values for an OP. The

execution frequency of a task is requested only if OPs are used. Frequency is requested

after it has been set for the given task. Task handle and cycle count register value are

read within the trace print function call. Due to this implementation, frequency and

voltage settling cycles are excluded from task execution cycles.

The task-switch-out macro is called just before a task being executed is switched

out. Trace event is implemented with traceTASK_SWITCHED_OUT macro (Figure

14). Switch-out macro includes a DVFS callback function before event print is taken.

The cycles taken by the callback function are included in the task execution cycles as

void traceTASK_SWITCHED_IN() {

 dvfs_callback();

 frequency = getCPUFrequency();

 event_switch_in(frequency);

}

void traceTASK_SWITCHED_OUT() {

 dvfs_callback();

 event_switch_out();

}

Figure 14. Pseudo code for task-switch-in and task-switch-out macro definitions.

31

the cycles are read after the callback, in the trace event print function. OP used is not

changed in switch-out trace macro. Thus, settling delays are excluded from task

execution cycles. The handle in the event trace print contains the handle of the task

that is just about to be switched out. This event defines the endpoint of task execution.

Profiling implementation in MATLAB requires the input trace file to have a

specific form. The trace file is first processed with a Python script (Figure 26 in

Appendix 1) to remove any unnecessary data. Knowledge of the trace event print

structure is utilized in preprocessing. An example of a processed trace is given in

Figure 27 in Appendix 1.

4.5. Profiling

Software profiling is a form of dynamic program analysis. It is used to analyze data

collected of software execution to examine software execution behavior. In profiling

phase, the main object is to collect data which is useful for the optimization and is also

used for execution trace and task parameter visualization. In this profiling

implementation all variables presented in Table 5 must be defined to match the system

overhead and implemented trace prints before profiling and optimization. Once the

values are configured, trace file can be loaded for profiling.

Table 5. Variables which values must be defined before profiling and optimization

according to used system and tracing implementation

Variable name Description Default value

Variables related to trace prints and MATLAB implementation

switch_in Value must match the abbreviation used for context switch

in event.

CS-I

switch_out Value must match the abbreviation for context switch out

event.

CS-O

task_create Value must match the abbreviation for task create event. TC

fields The number of data fields used for events. All event trace

prints must have the same number of data fields.

4

CYC_COUNT Abbreviation used in the 3rd data field if frequency

information not included.

CC

idle_task Name of the idle task in the used OS.

Variables used in the optimization model

volt_change Time in milliseconds which is assumed to be required for

voltage settling.

-

freq_change Time in milliseconds which is assumed to be required for

frequency locking.

-

COST_CS_IN The total overhead in milliseconds which is sum of

frequency locking and voltage settling.

volt_change

+ freq_change

CS_OH Context switching overhead in cycles. -

Data collected is divided into two categories based on the data scope. First category,

system and runtime parameters, contains data which is relevant to the whole

application execution. Execution frequency is defined for the whole trace if only single

execution frequency is used. Otherwise execution frequencies are defined for each

task. Profiling implementation is supplemented with a frequency table containing all

available frequency levels in the system. Frequency table is used to define the accurate

32

execution frequency. Total runtime equals the length of the trace or hyperperiod. All

time values in profiling are defined by execution cycles and frequencies.

The other data category contains data specified for task found in the trace. Data for

each task is stored into a data structure (Figure 15). Task WCEC equals the largest

amount of cycles between a task-switch-in and the following task-switch-out. Each

task instance is assumed to require its WCEC for completion and is defined by the

number of task-switch-in events. A time interval value defined as the shortest interval

from a task-switch-in event to the next can be used as a deadline value.

Figure 15. Example of data structure which holds task specific data collected from the

execution trace.

4.5.1. Profiling data visualization

Although task dependencies are not profoundly studied in this work, the trace file can

be used to create a simple visualization of the task execution order for each task. The

order is visualized as a directed graph. For each task, the tasks which have been

executed before and right after the task execution are shown. If the graph is simple,

the order in which the tasks execute can be specified (Figure 16). For complex

applications, it can be more beneficial to visualize one task at a time.

Figure 16. (a) Shown is an example of a case where the task execution order stays the

same. (b) Preceding and following tasks can also be visualized for single tasks at a

time which is extracted from (a).

Time view visualization and histograms of task execution characteristics give

information on the amount of idle time and execution variation (Figure 17). Time view

can be visualized in two ways. For each task, a separate bar visualizes the task

33

execution also indicating which task is executed at given time in the trace file. Task

execution and the amount of idle time can be also visualized by showing the division

of execution time between idle and other executed tasks. Visualization does not specify

which task is being executed any given time. Idle time is shown as gaps in bar graph.

Execution time is shown on x-axis. Histograms are used to visualize variation between

task inter-arrival times or execution cycles.

Figure 17. (a) General time view of task execution. (b) Task execution proportion to

idle time. (c) Histograms of task inter-arrival times in cycles.

4.5.2. Target system

ARM Cortex M3 CPU is chosen as the target system. It is used as it is a pilot project

for new low power technology. The target system is manufactured in 28 nm CMOS

(Complementary Metal Oxide Semiconductor) technology and is capable of near-

threshold to nominal voltage operation. The minimum energy point is proven to exist

around 0.2 V – 0.4 V [56].

The target system includes on-chip low-dropout voltage regulator, PLL (phase-

locked loop), stock memory, peripherals, and interfaces. The target system is shown

34

in Figure 18 from [57] which provides detailed description of the target system. Timing

safety margins are reduced by critical path monitoring and time-borrowing flip-flops.

In case of timing events, time borrowing can be cancelled by dynamical clock

stretching. [57]

Figure 18. The target CPU system.

Overhead consists of the processor cycles that are not used to execute application

code. Two kinds of overhead are defined for optimization. By including the overheads,

task execution is modeled more realistically as many DVFS algorithms assume that

overheads are negligible. Especially for hard deadlines, it is necessary to include

overheads as otherwise the model is too idealistic.

These overheads are caused by OS, DVFS algorithm implementation and OP

change times. The overhead values are defined for the described target system. The

same system is used to execute the software and collect the measurement data.

Context switching overhead contains overhead caused by the OS. It includes saving

the context of a task being switched out, scheduling and restoring context of a task

being switched in. Context switch overhead is always present in the system and

depends on the operating system and the processor used. When OP change related code

is included and DVFS is used, the context switching overhead increases.

The context switching overhead values are measured for three cases and for both

change directions i.e. levels of voltage and frequency values used for OPs. The test

cases and corresponding values for single measurement are presented in Table 6.

Values are defined by comparing the cycle count register value at known points where

a task is known to switch out and switch in. The overhead value is the difference in

execution cycles from a switch out to the next switch in.

Table 6. Context switch overhead values

Overhead OP change direction Cycles

FreeRTOS - 992

FreeRTOS + DVFS code
Low to high 1721

High to low 1872

FreeRTOS + OP change
Low to high 12889

High to low 6455

35

FreeRTOS overhead values is for OS only. OP is not changed, and DVFS code

implementation is not included in the application software. Thus, there is only

overhead caused by OS. For FreeRTOS + DVFS measurement, the DVFS

implementation is included but only single OP was forced to be used during execution

i.e. voltage and frequency are not changed during execution and there is no settling

delay. The values show that FreeRTOS and DVFS code overhead is approximately

equal in both directions.

When OPs are actually changed i.e. voltage and frequency are changed when

another task is switched in, it is seen that the overhead values differ between directions

and are multiple times greater than previously presented values. The large difference

between cycle count values can be explained with voltage settling delay. Settling

delays are discussed in Subsection 2.2.2.

Because of the settling delays, the overhead caused by the voltage and frequency

change is defined as a separate overhead value. It is excluded from the context

switching overhead so that context switching overhead is defined in cycles. The values

used in optimization for FreeRTOS on given target system are rounded upwards from

the measurement values (Table 7).

Table 7. Context switch overhead values used for optimization

Overhead OP change direction Cycles

FreeRTOS both 1000

FreeRTOS + DVFS code both 2000

Each instance of task execution requires a context switch and the overhead value is

defined in cycles. Thus, the overhead is included in the optimization model by adding

the overhead cycles to the execution cycles required by a task. Voltage and frequency

settling overhead cannot be accurately modeled in cycles. It is included in the model

as a fixed time value. In Figure 19, the points where cycle count values are recorded

during task execution are shown. Also, the different overheads are visualized.

Figure 19. Points where cycle count values are recorded for task execution.

It is assumed that each task instance includes an OP change, excluding tasks which

are not assigned any OP. Voltage and frequency change overhead is a major overhead

in DVFS-enabled systems and cannot be neglected when execution frequencies are

defined. The delays related to settling can be viewed as the cost of a context switch in.

Execution cycles needed to change voltage and frequency are measured by reading

the cycle counter values before and after the respective functions (Table 8). The cycles

are measured for case where OP is not changed and where OP is changed. The cycles

required to execute the DVFS code without including any settling delay, i.e. the OP is

36

not changed, is shown to be negligible. Thus, it is assumed that it is sufficient to include

the change overhead as settling times. The overhead consists of two values: the time

taken for frequency to lock and the time required for voltage to be set. It is seen from

the measurements that the cycles needed for frequency to be changed is around 2000

cycles in both directions. For voltage change, greater number of cycles is required.

Table 8. Execution cycles taken by frequency and voltage change

Parameter OP change direction Frequency change Voltage change

DVFS code
Low to high 21 16

High to low 21 16

OP change
Low to high 1850 9023

High to low 1995 2625

The voltage change overhead depends on the direction of the OP change and there

is no way to define the change direction in the optimization phase unless the

optimization is implemented iteratively. Thus, it is assumed that the overhead at each

point where OP is changed, requires the worst-case overhead. A specified worst-case

PLL frequency lock time is used for the frequency change overhead value. It is

dependent on the reference frequency used for PLL. The voltage change ratio is

defined to be 1 µs / 1 mV. The value for voltage change overhead is defined based on

the difference between the lowest and the highest voltage level used.

4.5.3. User-defined data

Some information required in the optimization cannot be mined from the trace. These

parameter values must be provided by the user and this requires detailed knowledge of

the application software and the system used.

The minimum frequency depends on the system used. Minimum frequency value is

set to the lowest frequency level that is available for execution. The minimum

frequency is used with the task execution frequency to limit the frequency scaling.

Thus, the execution frequency cannot be scaled under the minimum frequency level

value.

A relative deadline is required to be defined for each task. Relative deadline is the

time when a task must have completed all its jobs, measured from the release of the

task for execution. It defines the range that the execution frequency can be scaled for

a single task execution when other tasks and constraints are not considered. It is left to

the user to verify that the set constraints and requirements are sufficient, and that the

performance and deadline requirements are met.

The time amount that is reserved from the total available time, i.e. the time amount

corresponding to the length of the trace section, must be defined to limit the time used

for scaling and reserve time for other activity than task execution, for example interrupt

processing. Task execution here consists the execution time for tasks included in the

optimization. The amount of reserved guard time depends on the application and

especially the activity and adequate value should be confirmed with testing. There are

methods such as utilization bound which can be used to define a reference value for

utilization [35]. Another method is the hyperbolic bound for RM scheduling [58].

When defining the reserved-time amount, the tasks which are left out of the

optimization should be considered. In practice, due to the assumption that every task

37

instance requires its WCEC, some slack arises when fewer cycles are required for

execution. Idle task can have some low-level activities such as freeing memory, so

some execution time for idle task needs to be guaranteed. It should be noted that the

distribution of this reserved time cannot be defined, it is used to guarantee that this

amount of time in the trace section is not spent executing application tasks in the

optimization.

The reserved time from single task instance execution is defined in a similar way

as for the total task execution. However, this time value is defined for each task

separately and it is taken away either from the set deadline value. The reserved time is

slack time from the perspective of optimization tasks. This should be considered when

defining the value. If a task has a deadline which is always less that the task time

interval value, slack arises because the frequency scaling will be limited by the

deadline value. The value is also application dependent and to find a suitable value,

the reserved time values should be tested.

The effect of reserving time from task execution in an ideal case is presented in

Figure 20. Task frequency is scaled so that is requires the whole time that is available

for execution when the overhead of OP switch and reserved time have been removed

from the available time which here is the task deadline. During execution, this reserved

time can be scattered between task execution if task execution is interrupted to perform

some other activity, and task can still meet its deadline.

Figure 20. Effect of reserved time on available time.

The frequency range usable for a task can also be limited by setting scaling

frequency bounds, otherwise values for current execution frequency and minimum

frequency are used. Scaling limiting can be used if it is known that is it not beneficial

to scale task frequency to the lowest level. Scaling factor limits for all tasks can be

defined separately.

38

5. MEASUREMENTS

The frequency optimization testing is carried out in two phases. First, a speech

recognition software execution is traced. A few different traces are used to define

frequencies with different optimization constraints. The effect of constraint values to

the optimization results is also examined. Averaged power measurements between a

reference case and cases with optimized frequencies are used to estimate the change

in energy consumption.

5.1. Tracing and measurement set-up

The target system is described in Subsection 4.5.2. The system includes on-chip PLL

for clock generation and power management. The overhead values measured for the

system are presented in Subsection 4.5.2. J-Link Base debug probe and RTT (Real-

Time Transfer) are used to stream the execution trace data from the target to the host.

SWD (Serial Wire Debug) is used as a target interface. SWD provides real-time access

to memory [59]. RTT is used to stream the trace data from the target to the host

computer without affecting the application execution.

RTT implementation includes a simple version of printf-function which is used to

send event traces as formatted strings via RTT. RTTViewer is used to open connection

between the target and J-Link and save the execution trace into a text file. A function

which waits for input from the host is inserted into the beginning of main function in

the application code before the scheduler is started and tasks are created. This allows

the events to be collected from the beginning of the execution, collecting information

for all task create events. [60]

The measurements were taken with a power monitoring unit and read within a

periodic task. Due to the interference caused by the measurement task, the test traces

were taken separately. The execution traces which are profiled are recorded first and

executed using only single frequency values. Traces are processed as required and used

in profiling. After the optimized frequencies are defined, respective voltage levels

must be defined to form the voltage-frequency pairs. Because the measurement values

cannot be timed into the execution trace precisely, the measurement values are

averaged over the whole measurement trace. The average measurement values are

defined for each used frequency which will be used to indicate the average power

consumption for each OP.

5.2. Test application

The profiling and frequency optimization model are tested on ARM KWS (Keyword

Spotting) software. KWS is a speech recognition software. A speech recognition

software is a good example of an application with constrained power and as an always-

on application. KSW is presented in more detail in [61]. KWS includes a task which

extracts features from audio data and a classifier is included which is based on a neural

network model.

39

Another task is added to the software to recognize human voice in the audio. The

task includes a bandpass filter and thresholding for human speech detection. The filter

task constantly filters the audio when available and when KWS task is not executed.

The interval between instances is approximately 100 ms. If human speech is detected,

KWS task is evoked to recognize the word. The relative deadline for both tasks is

assumed to be 100 ms. The 100-millisecond deadline is set because after the time has

passed, new data will be available for processing.

5.3. Frequency optimization

The execution traces which are used for optimization are called the reference traces.

Measurements taken without the optimized frequencies are the reference values. The

optimized traces are recorded with the optimized execution frequencies in use. The

measurements are recorded for reference frequency and supply voltage and for each

OP. The traces have varying amounts of no-voice audio and voiced audio. The traces

are taken from different parts of the execution of the software, chosen by hand. The

different traces are used to test how the trace section selection affects the optimization.

Different values used in the optimization for the same trace section can be used to

show the effect on the optimization results.

5.3.1. Trace 1

The first section used for optimization is shown in Figure 21. The length of the trace

sections is approximately 2321 milliseconds. OP switching is not used or included,

and the application is executed with a single frequency. It is clearly visible in the

picture that there is a lot of idle time between application task execution. This section

of the trace was used for three optimization cases where the context switching

overhead and requirements for the reserved time values are varied. All variable values

used in the optimization for the three cases are presented in Appendix 2 - Appendix 4.

Figure 21. (a) Time view of trace 1. (b) Task execution intervals in cycles.

40

Figure 21 also shows the variation of task execution intervals in the trace. A single

frequency was used in the optimization and the execution intervals are expressed in

execution cycles. It is seen that the tasks are not periodic. However, it is seen that one

of the tasks is executing, depending whether voice is detected or not, rather

periodically. How the audio data is handled explains the variation in execution

intervals. KWS task execution is triggered at 900 ms time point. Task periods are not

used define task execution in the optimization. Instead, task instance count is used to

define the total execution time required by a task.

The constraint input values are presented in Table 9. The reserved time value was

used for both tasks. As the same trace section is used for all cases, the values collected

from the trace are same for all cases. Context switching overhead is assumed to be zero

and there is no requirement for any idle time in Ideal case. This means that the

frequency can be scaled the most within the limits set by trace data and deadlines.

Overhead-only takes into consideration the cycle amount needed by each context

switch and Restricted case requires some time off from the optimization task

execution.

Table 9. Overhead and constraint values for the three optimization cases

Optimization case Constraints

Context switch

overhead

Total reserved time Reserved time in task’s

time window

Ideal 0 cycles 0 ms 0 ms

Overhead-only 2000 cycles 0 ms 0 ms

Restricted 2000 cycles 200 ms 5 ms

The optimization results for KWS and filter task for these three cases are presented

in Table 10. The scaling factor is the result from the optimization. It is seen that the

filter task is scaled to the lowest frequency level available in all cases. Table 10 also

shows the actual frequencies that were used for the given optimized frequencies and

the corresponding supply voltages.

Table 10. Optimization results and runtimes after optimization for the three cases

 Case KWS Filter task

Scaling factor Ideal 1.7875 15.104

Overhead-only 1.7872 15.1040

Restricted 1.5551 15.1040

Scaled frequency [kHz] Ideal 101 397.482 12 000

Overhead-only 101 414 12 000

Restricted 116 551 12 000

Actual frequency [kHz] Ideal, Overhead-only 102 400 12 037

Restricted 117 760 12 037

Corresponding voltage [mV] Ideal, Overhead-only 528 420

Restricted 590 420

Instance runtime [ms] Ideal, Overhead-only 55.66 4.63

Restricted 55.664 4.633

Instance runtime after

optimization [ms]

Ideal, Overhead-only 98.526 69.766

Restricted 85.6747 69.766

Instance runtime after

optimization (ideal) [ms]

Ideal, Overhead-only 99.483 69.981

Restricted 86.5634 69.981

41

Actual execution frequency for KWS task increased 0.99 % from the optimal

frequencies due to the implementation in ideal case. The magnitude of the difference

is as expected as frequency steps are larger in higher frequencies. In overhead-only

case the frequency for KWS task is increased 0.97 %. Ideal and overhead-only cases

result in the same actual execution frequencies even though the constraints were

different. In Restricted case, KWS task is assigned a higher frequency than in the

previous cases. The frequency is increased 1.04 % due to the implementation. The

increase for filter task was 0.31 % for all cases.

In Table 10, shown are the estimated worst-case execution times of the tasks.

Execution times are defined with the optimization result frequency and the closest,

higher frequency level that is actually used. The execution times are estimates based

on the WCEC value for a task. In Ideal and Overhead-only cases, the theoretical

execution time for KWS task with the exact optimized frequency leaves just enough

time for OP switch. The execution time for KWS task increases 77.0 % and 1406.8 %

for filter task. In Restricted case the execution time is estimated to increase 53.91 %

for KWS task.

The difference between Restricted case and the other two test cases was that case

three included a lot of reserved time both from total time and task time window. The

total reserved time was about 8.6 % of the total time available. This is seen as higher

frequency for KWS task. The execution time of filter task is bounded by the lowest

frequency level. It is seen that the filter task is still scaled to the lowest frequency level

and fulfills the 5-millisecond reserved time requirement.

The frequency deviation from the optimization result causes some more possible

idle time in the application execution. The amount is visible in the difference of the

estimated runtimes for a task instance assuming that all task instances require their

WCEC (Table 10).

5.3.2. Trace 2

The second trace is longer than the previously used trace section and contains multiple

executions for word classification task and filter task (Figure 22). The length of the

trace is approximately 34300 milliseconds. The context switching overhead is included

but no reserved time required in the optimization. The rest of the values used in the

optimization are presented in Appendix 5.

Figure 22. Task execution in trace 2.

42

It is seen that the final execution frequencies correspond to the values defined for

cases 1 and 2 in trace 1 optimization. The frequency for filter task increases 0.31 %

and 0.97 % for KWS due to the implementation. The frequency values and estimated

instance runtimes are presented in Table 11. Execution time for KWS task increases

77.00 % and 1405.8 % for filter task by estimate for worst-case instance.

Table 11. Optimization results and runtimes for trace 2

KWS Filter task

Scaling factor 1.787 15.104

Scaled frequency [kHz] 101416.202 12 000

Actual frequency [kHz] 102 400 12 037

Corresponding voltage [mV] 528 420

Instance runtime [ms] 55.66469 4.63335

Instance runtime after optimization [ms] 98.52651 69.767051

Instance runtime after optimization (ideal) [ms] 99.4822 69.9821

5.3.3. Trace 3

The third trace section used for optimization is short and resembles the trace 1 (Figure

23). Trace section length is approximately 2.3 seconds. The optimization for trace 3

contained only overhead caused by FreeRTOS as the context switching overhead

value. The OP switching was used during tracing but a single OP was forced to be

used. The values used in the optimization are presented in Appendix 6.

Figure 23. (a) Task execution in trace 3. (b) Task execution cycles variation.

43

It is clearly seen in the time view visualization that the KWS task execution length

has large variation between shortest and longest execution. The variation in filter task

execution is smaller which can also be seen from the histogram (Figure 23). Nearly

half of the KWS task instances require small amount of execution cycles in selected

trace section. When these kind of task instances occur in the execution with optimized

frequencies, a lot of dynamic slack is bound to occur. For filter task, the amount of

slack should be smaller as the range of execution cycles is smaller.

There was no requirement for reserved time. It is seen that the resulting frequencies

(Table 12) are the same that have been defined in the optimization cases presented

earlier. Frequency for filter task increases 0.31 % and 0.98 % for KWS from the

optimized frequency values. The estimates for task execution length are given in Table

12. Execution time is estimated to increase 77.0 % for KWS and 1405.8 % for filter

task.

Table 12. Optimization results and runtimes for trace 3

KWS Filter task

Scaling factor 1.7872545319731 15.104

Scaled frequency [kHz] 101 408.828 12 000

Actual frequency [kHz] 102 400 12 037

Corresponding voltage [mV] 528 420

Instance runtime [ms] 55.66758 4.636757

Instance runtime after optimization [ms] 98.53162 69.81831

Instance runtime after optimization (ideal) [ms] 99.49467 70.033583

5.3.4. Trace 4

The last trace which was optimized is shown in Figure 24. The trace was recorded with

OP in use but forced to use a single OP. The optimization included context switching

overhead for FreeRTOS. Rest of the optimization values are presented in Appendix 7.

The length of the trace is approximately 909 milliseconds. It is seen that the trace

mostly contains idle and KWS task execution with long execution times.

Figure 24. Task execution for trace 4.

44

Table 13 shows that the frequency for filter task is again scaled to the lowest level.

The frequency for KWS task is scaled to around 113 MHz although there were no

requirements for reserved time. Due to the implementation the frequency of KWS task

increases 1.2 %. The estimated execution time for filter task stays around the same

value as in previous optimization cases (Table 13). The execution time for KWS task

is a lot lower than most optimization cases and around the same level with trace 1 case

3 optimization.

Table 13. Optimization results and runtimes for trace 4

KWS Filter task

Scaling factor 1.59937853676076 15.1040

Scaled frequency [kHz] 113 324 12 000

Actual frequency [kHz] 114 688 12 037

Corresponding voltage [mV] 580 420

Instance runtime [ms] 55.626826 4.635648

Instance runtime after optimization [ms] 87.91025 69.8016

Instance runtime after optimization (ideal) [ms] 88.96836 70.01683

5.4. Optimization results

The optimization results lead to a few different OP value pairs to be defined. The filter

task was scaled to the lowest frequency level in all optimization cases. The lowest level

is the same that is assigned to the idle task in the optimized execution. This corresponds

to 12 MHz and 420 mV OP values. The rest of the frequencies are presented in Table

14. Requested frequencies which are assigned to an OP and resulting execution

frequencies are presented also with assigned voltage levels. Table 14 shows that

actually only three different execution frequencies are used for KWS task. This is

because of the frequency rounding to an integer megahertz value.

Table 14. Final execution frequencies and actual execution frequencies used with

respective voltage levels

Frequency [kHz] Requested frequency

[MHz]

Actual execution

frequency [kHz]

Corresponding voltage

[mV]

12 000 12 000 12 037 420

101 398 102 000

102 400 528

101 416

101 417

101 409

113 324 114 000 114 688 580

116 551 117 000 117 760 590

The time view of task execution with optimized frequencies is pictured in Figure

25. Idle task and filter task are executed with 12 MHz and KWS with 102 MHz. The

effect of frequency scaling is clearly visible in the proportion of idle task and

application task execution compared to the time view figures presented in Subsection

5.3. 102 MHz was the lowest frequency that was assigned to KWS task. It also shows

how there is always some idle time left.

45

Figure 25. Time view of how application task execution is prolonged with DVFS. 102

MHz execution frequency for KWS is shown.

The filter task frequency scaling was bounded by the lowest frequency level.

Because of this and the fact that the audio is processed in approximately 100

millisecond sections, the filter task execution time stays quite constant. The execution

time of KWS task varies more. Around 1000 millisecond mark, KWS task is executed

only for a short time. This leads to idle task execution. This is where it would be

beneficial if the DVFS decision were done online because this slack that rises because

of runtime variation can’t be utilized when offline DVFS algorithm is used.

5.4.1. Power measurement results

Measurements were recorded with a periodic measurement task run with 200

milliseconds intervals. Due to the interference caused by measurement task the

execution traces and traces including measurement values were taken separately.

Average measurement values are used to define power consumption value at each OP.

Because there are only three different pairs of OP values, three different measurements

were done. The reference measurement which is used to compare the total energy

consumption of a task after the optimization was executed with a single frequency.

The execution frequency was 181 248 kHz and voltage 903 mV.

The benefits of lowering the supply voltage and execution frequency are seen in the

long run when it is seen how the energy consumption has changed. The energy

consumption depends on the application activity and it is clear that if the consumption

was defined for a certain section of the execution, the section selection would affect

the values a lot. Thus, we use the energy consumption of the application task KWS to

model the effect of DVFS. For the optimized cases, task execution time is defined

based on the WCEC value used in the optimization. To make the results more

comparable, a single WCEC value is used. Energy consumption for a task execution

is defined based on the power measurement values and the execution time. The

reference value is defined for the same execution time and measurement values from

the reference execution trace. This means that the idle and filter task energy

consumption is not considered in the optimized measurements.

The measurement values for each OP are presented in Table 15. The first row

corresponds to the reference measurements and the rest three are the OP defined based

46

on the optimization result. Table 15 includes power values which are the averaged

values of power measurements over the execution of KWS. The measured power

values are used to define the energy consumption within given time.

Table 15. Power average measurements for KWS task and estimated energy

consumptions for task execution

Execution

frequency [kHz]

Execution time of

KWS [ms]

Assigned voltage

[mV]

Measured power

[µW]

Energy

consumption [µJ]

181 248 55.67 903 2809 156.4

102 400 98.53 528 640,0 63.1

114 688 87.97 580 863,6 76.0

117 760 85.68 590 914,0 78.3

The energy consumption is defined for each OP used. It is assumed that the

execution time scales linearly, and the energy consumption is defined accordingly. For

the reference measurement which corresponds to the first row, the value includes only

the KWS task execution time. The estimated values are presented in Table 15. The

execution cycle count of 10089638 is use as the assumption WCEC for KWS task to

make the comparison between different OPs easier. It is the largest WCEC value that

was used in the optimization. With 102 MHz the execution time of KWS increases

77.0 % and energy consumption decreases 59.7 % compared to the reference case.

Increase in execution time is 58.0 % with 114 MHz frequency and energy consumption

decreases 51.4 %. For the 117 MHz execution time increases 53.9 % and energy

consumption decreases 49.9 %.

The energy consumption for the total length of optimized KWS task execution is

calculated in the reference case. Energy consumption in the reference case and for each

OP used for KWS task (Table 16) is compared separately and the time which is used

to define the total energy consumption is different in each case. This includes the

execution of KWS task and idle task. The energy consumption for the time of KWS

task execution with 102 MHz decreases 77.2 % compared to the energy consumption

in reference case. For the time task KWS task is executed with 114 MHz the energy

consumption decreases 69.2 % and for the 117 MHz KWS execution energy

consumption decreases 67.4 % compared to the energy consumption in that time with

the reference case.

Table 16. Energy consumption in reference case for the time of KWS task execution

in optimized cases

Frequency [kHz] Execution time [ms] Energy consumption [µJ]

181 248 98.53 276.8

181 248 87.97 247.1

181 248 85.68 240.1

5.4.2. Optimization discussion

It is seen that varying trace lengths and constraints resulted in little variation in final

execution frequencies. Some remarks can be made about the application. With only

two tasks included in optimization, it is on the simpler side. It is known that the tasks

47

have a dependency. They are not executed periodically, more like in turns. There is

some variation between execution cycles of task instances, especially with KWS task.

However, it was out of scope to design the application or optimize it for the processor

architecture used (KWS was supplied by the processor IP manufacturer).

The effect of overheads, constraints and section selection were tested. Ideally, the

frequency is scaled so that there is just enough time to complete all tasks. Due to this

and the assumption that there is dynamic slack, reserved time was not requested in

most of the optimization cases.

The results show that actual execution frequencies do not have much variation. In

this case, the context switch overhead is relatively small compared to task execution

cycles. The effect of including overhead is accentuated when task execution cycles

decrease and the percentage of overhead of total cycles increases. Therefore, context

switch overhead should be included in the optimization although it can be compensated

by the frequency deviation. Results also show that in this case the reserved time

requirement affects the optimization result more than the included overhead causing

increase in execution frequency for KWS.

Scaling of the filter task was limited by the lowest frequency level. For KWS task,

the optimized frequency varied. It was seen that even if the optimized execution

frequencies were different, defined with different constraints, the final execution

frequencies were the same. Small variation in the constraints did not affect the final

execution frequencies. This is due to the discrete frequency levels and that the

execution characteristics of the application remain the same.

48

6. DISCUSSION

The application characteristics and requirements need to be considered when choosing

the most suitable power management technique. For other application might benefit

more of sleep states while other applications are more suitable for DVFS. The impact

on power consumption and responsiveness needs to be considered. Low power

techniques can also affect the system reliability.

Sleep states can be applied if idle periods are known and longer wakeup delays do

not cause performance degradation. DVFS does not introduce long wakeup delays.

However, changing OPs introduces timing delays and increase run time. This can

cause deadline misses if frequencies are defined incorrectly and therefore knowledge

of task and application characteristics is required. If performance can be kept at

acceptable level and a suitable algorithm is used for DVFS, it can reduce dynamic

energy.

The quintessential question with DVFS is how the execution frequencies can be

defined so that system still meets its processing requirements. Many DVFS algorithms

were discussed before and all algorithms have their limitations. There is no single

algorithm which is optimal for all applications. Traditional algorithms are mostly

developed for specific scheduler and make assumption about the task set. These

algorithms cannot be applied to any application. Machine learning has been used to

overcome the problem being able to adapt to runtime variation and utilizing slack more

efficiently, like in [45]. However, the proposed frequency optimization is developed

for offline inter-task DVFS. Offline algorithms are simple and thus introduce low

overhead.

The proposed optimization method takes a different approach on frequency

optimization by analysing and profiling software execution trace. Trace data is used to

form a model which is used for frequency optimization. This way any application can

be profiled. It provides a more general solutions on how the execution frequencies are

defined. This way frequency optimization can be used to estimate the energy

consumption savings that can be achieved on given platform when DVFS is used and

with any OS with minimal code instrumentation. Although the core idea is to scale the

execution frequency as low as possible, user can easily change constraint values to

limit the scaling as desired. It is simple to explore the effect of system overhead and

timing constraint values to the optimization results.

6.1. Limitations

The generalization of the model and offline DVFS can also lead to suboptimal results

in some applications. As there is no adaptation to runtime variation and frequency

decisions are done based on worst-case assumption, frequency can be set to an

unnecessarily high level. This leads to suboptimal result if a task rarely requires its

WCEC and dynamic slack cannot be utilized. WCEC values must be used to ensure

deadlines.

The scheduling algorithm is also not considered in the optimization model. It is

intended that scheduling is not affected by frequency scaling meaning that a task can

have time available for scheduling at most the time amount of the shortest time window

49

value. However, it is left to the user to define which value is used as deadline value to

limit the scaling. If tasks use close to their WCEC most of the time and the execution

pattern is deterministic, better optimization results can be achieved with the

optimization model. Thus, the use cases for this DVFS algorithm are always-on

applications, applications which have predictable execution pattern and low activity

leaving enough slack for frequency to be scaled notably.

DVFS algorithms use either discrete or continuous frequencies even though only

discrete frequency levels are available in systems. Continuous frequencies are used in

the optimization model to simplify the problem. Efficient DVFS implementation

requires that a variety of frequency levels are available. The assumption of continuous

frequencies causes the actual execution frequencies to deviate from the optimized

values. The actual execution frequency should be set to a value as close as possible to

the optimization value and there should be also low voltage levels available to match

the execution frequencies to gain benefit of DVFS. The deviation from the original

optimized frequency value might not be that significant itself, although it varies

between systems. However, the voltage is set accordingly, and increase results in

greater energy consumption. In the long run, the difference might become significant.

The overall impact of DVFS is hard to estimate with short measurements.

On the test system used, it was known that the step size between frequency levels

depended on the frequency range. Frequency deviation by DVFS control could be

avoided by using the knowledge of which frequencies are produced by which

frequency assignments or slightly altering the implementation. Also, this impact can

be considered minimal as most of the total amount of frequency deviation is probably

caused by the lack of many frequency levels. The total amount of deviation is defined

case by case as it depends on the optimized frequency values and the system used. It

can be thought that the frequency deviation in the test cases were minimal compared

to the whole frequency range that was in use.

The number of OPs is not limited meaning that there can be as many different

execution frequencies defined as there are tasks in optimization. As every OP change

introduces overhead, constant changing can result in increased power consumption and

overhead. If the number of OPs is limited, the number of OP changes would decrease.

How can the optimal number of OPs be defined? A possible solution could be to group

similar OP to their highest values i.e. all tasks which have an OP close to each other

would be assigned the highest OP among the group. This could be beneficial if there

are a lot of different tasks with different OPs.

The cost of OP change is only included as timing overhead in the model. It is

included to ensure that deadlines are kept even with overhead caused by OP change.

The effect of frequent OP changes was discussed in the previous paragraph. Thus, the

power consumption impact of changes should be considered. System power model and

the impact of OP changes need to be integrated into the frequency optimization.

As energy consumption does not only depend on the efficiency of the DVFS

algorithm, it is not easy to compare different algorithms. As was just discussed, the

energy consumption reduction also depends on how low the voltage can be set and

how accurately the execution frequencies can be set to match the execution frequencies

if continuous frequency range is used. The cost of OP change on the given platform

must also be considered. The efficiency also depends on the application. Thus, the

limitations of the used DVFS algorithm need to be acknowledged.

The complexity of the frequency optimization problem increases as more variables

are included in the model. However, this can lead to better optimization results for

50

applications that match the model. An optimization tool for any application should

have a power model of the system used and be able to estimate whether offline

algorithm is adequate or would online algorithm be more beneficial. The requirement

for intra-task OP changes should be evaluated too. How much overhead is acceptable

and does not cause the energy consumption to increase?

6.2. Use considerations and improvements

User should have some knowledge of the application for better results. Decisions such

as which tasks to include and required slack times affect the optimization result. The

method can be developed further. A more detailed tracing and execution modelling is

required and the relation between execution frequencies and actual execution times for

tasks should be included.

6.2.1. Tasks suitable for optimization

Applying DVFS blindly can lead to higher energy consumption. Some tasks should be

left out of optimization to avoid constantly changing the OP. Constant OP changing

defers application execution and can lead to higher energy consumption. Generally,

short tasks which execute frequently should be left out of the optimization. This is

especially the case when settling times are long. OP change should not take longer

than the execution of the context’s jobs e.g. it is not reasonable to change OP before

executing interrupt handlers.

6.2.2. Required slack time

The reserved time requirement for tasks affects the optimization. Needed time depends

on the application: how much of the activity is not included in the optimization. If the

trace section starts with an idle period, the time needs to be included in the reserved

time requirement. The variation of task execution lengths can be used to assess if

reserved time requirement can be decreased as dynamic slack arises from variation.

This is especially the case if task time window is used as a deadline. For task-specific

requirements, the impact of possible pre-emptions needs to be considered. There

should always be enough time for time-critical tasks to complete execution before

deadlines.

Utilization bounds can be used as an estimate for the total amount of needed

reserved time. These should be used as a guideline as not all tasks are necessarily

included in the optimization and tasks are not periodic which is usually assumed.

Defined bounds can be pessimistic and result in under-scaling.

In practice, the frequency is scaled as low as the deadline allows with no time

reservations. If the total runtime is less than required time for task execution with low

frequencies, it becomes the limiting factor. The problem with total reserved time is

that the time allocation cannot be defined which is done with task-specific reserved

time. Some tasks may not use the whole time window even with the lowest frequency

and reserved time is not required. Values for total reserved time and for each task’s

time window need to be chosen and tested together to find suitable values.

51

6.2.3. Task execution, deadline misses and prioritization

Relative deadline defined the time limit by which task must finish all its jobs. How

deadline misses are detected? Do they need to be detected if they are not fatal?

Calculating execution times and comparing to deadlines during execution is not

reasonable. The execution trace could be used to detect deadline misses. It is assumed

that the user is aware of the consequences of deadline misses. The severity of a

deadline miss depends on the application and the task. Time view visualization can be

used to inspect execution patterns. Anomalies can be visible but slight deadline misses

that do not cause failure can go unnoticed. Timings between trace events can be

approximately defined with the current trace information. Precise timing would require

accurate modeling of the system’s voltage and frequency settling times. Even if

voltage and frequency settling times are not modeled accurately, the worst-case

assumption can be used for deadline miss inspection, although it would be a

pessimistic approach.

An additional trace print can be inserted into the switch in macro before the DVFS

callback function. Jointly with a task switch in print, it is used to define the section for

OP change. Now the cycles between a switch out and the next switch in are assumed

to be executed with the same frequency as the task which was switched out. Although

trace prints defer application execution, the impact is probably lesser than constantly

calculating runtimes. Total execution time for a task instance could be then defined by

comparing the total task execution time and the OP change time to the deadline value.

Another question raises when task deadline misses are defined. How is it known if

a task has finished its jobs? It has been assumed that tasks are executed without pre-

emption and switched out once execution has reached the end of a task. Detailed

knowledge of task implementation and additional code instrumentation is required if

a trace print for task completion is added. This way the total task execution time could

be defined combining execution times between the first switch in and the following

task completion trace event.

In addition to relative deadline, absolute deadline could be checked from execution

trace. Absolute deadline is the time when a task must be finished from the timepoint

when it entered the ready state. Detecting absolute deadline misses could be

implemented the same way as relative deadlines. For example, FreeRTOS provides a

trace macro for tasks entering the ready state. The knowledge could also be used in

optimization if a task has absolute deadline and it is seen that the task does not

immediately get execution time which eventually can result in a deadline miss.

The assumption is that tasks have hard deadlines that should always be met. But

tasks do not always have hard deadlines. This leaves room for optimization. Tasks

which have soft deadlines could be assigned lower frequencies than their WCEC

defines. An example of a potential task is a task which only occasionally requires

execution cycles close to WCEC value and a deadline miss is not fatal. Instead of using

WCEC in optimization, median or mean execution cycle value could be used in

optimization. But if task execution is prolonged, it must be ensured that tasks with hard

deadlines get execution time. This brings us the question if task priorities and OP levels

have or should have a dependency.

Task prioritization should be done carefully when fixed values are used and when

prioritization is done by the developer. Task priorities are not considered in the

frequency optimization model. It can be thought that tasks with higher priorities

require to be executed more urgently. Thus, should higher priority values correspond

52

to higher OP values? Each task and application should be inspected as separate cases,

but most critical tasks should be executed briefly and have a high priority to be able to

do so. For tasks that require brief execution, frequency scaling can be limited by setting

the scaling factor limits accordingly.

6.2.4. Additional profiling and detailed modelling

Complex applications consist of tasks which have interdependencies. One step to

automate trace analysis and profiling could be to analyze task dependencies from the

trace. If task communication events are not traced, task dependencies could be mined

from the execution trace using pattern recognition. Task dependencies can be seen as

repeating patterns in the trace [62]. If tasks are known to have a dependency, a

possibility to define a joint deadline for these tasks could be added to the optimization.

In a similar manner, pattern recognition could be utilized in suitable trace section

selection. This would also require more detailed tracing, including information of task

completions.

Static code analysis is another technique which could be utilized for task execution

path and WCEC analysis. Variation in task execution paths could be used to define the

least amount of execution cycles that is required for task completion. This knowledge

of range for execution cycles is used to estimate the number of times a task was

executed in the trace section if there are no events to define task completion.

Acknowledging pre-emptions requires that the estimated number of pre-emptions and

added overheads are included in optimization for each task. Frequency optimization

becomes inevitably more complex as task execution is modelled more accurately.

More detailed modelling requires additional trace events. Even if only minimal

tracing information is collected, tracing affects the application execution. The effect

of selected scheduling algorithm is also not considered. Thus, regular testing should

be carried out when scaled frequencies are applied. The required performance needs

to be verified by the user. In practice, frequency scaling should be applied in the

software development phase. The joint effect of scheduling algorithm, task

prioritization and frequency scaling could be analysed and utilized in software

development. For example, costly jobs which would be beneficial to execute with high

frequency can be implemented as separate tasks.

6.2.5. Relation between execution frequency and execution time

The effect of different execution frequencies to task execution times should be studied.

Although execution frequency is only changed at task boundaries, some insight on task

execution would be useful in optimization. The assumption is that the execution time

of a task scales linearly with its execution frequency. As this is not always the case,

analysis on the execution inside a task could be used to group tasks based on how their

execution time is affected by frequency scaling.

Tasks can be divided into CPU-bound tasks, where execution time is limited by the

CPU frequency, and memory-bound tasks, if majority of execution time consists of

memory accesses. If a task is memory-bound, execution frequency can be scaled to a

low frequency level causing only minor effect on the execution time [63]. Some tasks

spend time in I/O operations and frequency scaling can be limited by the subsystem.

The power consumption for these subsystems should be modelled and considered in

53

frequency scaling. It is not beneficial to scale the execution frequency of a task if it

requires an expensive subsystem to be powered on for longer period if this results in

greater total power consumption.

6.3. Conclusion

This leads to the conclusion that only scaling execution frequency might not always

lead to lower power consumption. Processor power consumption can be reduced with

DVFS, but it is not solely enough. Low power is achieved by combining different

techniques at different abstraction layers. The impact of each component must be

considered and techniques for low power must be applied at all design abstraction

layers. Software must be also designed with energy efficiency in mind and to match

the underlying hardware. Techniques should not be applied blindly. Tools are required

which provide models how different design techniques and optimizations impact the

power consumption and if certain techniques contradict and result in higher total power

consumption.

54

7. SUMMARY

The objective of this thesis was to develop a method for DVFS frequency optimization

using software analysis and profiling for near-threshold processor. The target system

included an inter-task DVFS software. The method was tested with a speech

recognition software.

It was shown that software execution can be modeled with only a few selected trace

events. The trace data in combination with timing constraints and system-specific

worst-case overhead values are used to form an optimization model. The method can

easily be used to test the effect of constraints on the resulting execution frequencies to

find suitable values. The resulting frequencies fulfill the set timing constraints. The

results obtained from power measurements showcase the effect of DVFS on energy

consumption of the near-threshold processor. Energy consumption is decreased using

optimized execution frequencies and respective voltages for the given application.

As offline algorithm is not able to adapt to runtime variation, it is most suitable for

applications with predictable execution patterns and tasks which regularly require

execution cycles close to their WCEC. The reduction in energy consumption with

DVFS also depends on the system.

The aspects of energy efficiency and low energy consumption must be considered

at all stages of system design. Tools are required to model and give feedback on the

effects of design decisions to the system energy consumption. In addition to power-

aware hardware design techniques, software needs to be optimized for energy

efficiency. Total system optimization is required. Power management can be applied

to reduce power consumption even more. However, suitable technique needs to be

selected based on application characteristics.

55

8. REFERENCES

[1] Kallimani R & Rasane K (2015) A survey of techniques for power management

in embedded systems. International Journal of Emerging Technology in Computer

Science & Electronics 14(2): 461-464.

[2] Oshana R (2012) DSP for Embedded and Real-Time Systems. Oxford, UK,

Newnes.

[3] Durrani Y (2016) Low-power integrated circuit design optimization approach.

UET Taxila Technical Journal 21(1): 32-42.

[4] Chatzigeorgiou A & Stephanides G (2002) Energy Issues in Software Design of

Embedded Systems. 2nd WSEAS International Conference on Applied

Informatics. Rethymnon, Greece, 1-6.

[5] Electronics Weekly (2009) Use the RTOS to save power. URL:

www.electronicsweekly.com/market-sectors/embedded-systems/use-the-rtos-to-

save-power-2009-11/. Accessed 3.2.2020.

[6] Biswas A (2020) CMOS Inverter - Power and Energy Consumption. URL:

www.technobyte.org/cmos-inverter-power-energy-consumption/. Accessed

25.8.2020.

[7] Beningo J (2019) ARM Cortex-M low-power mode fundamentals. URL:

www.embedded.com/arm-cortex-m-low-power-mode-fundamentals/. Accessed

3.2.2020.

[8] Yiu J (2014) The Definitive Guide to ARM Cortex-M3 and Cortex-M4

Processors. Oxford, United Kingdom, Elsevier Science & Technology.

[9] Walls C (2015) Power management in embedded software. URL:

www.embedded.com/power-management-in-embedded-software/. Accessed

9.3.2020.

[10] Beningo J (2019) How low (power) can you go?. URL: www.embedded.com/

how-low-power-can-you-go/. Accessed 2.3.2020.

[11] Lattice Semiconductor Corporation (2005) Dynamic power management in an

embedded system. URL: www.latticesemi.com/-/media/LatticeSemi/Documents/

WhitePapers/AG/DynamicPowerManagementinanEmbeddedSystem.ashx?docu

ment_id=9552.

[12] Iniewski K (2010) CMOS Processors and Memories. Dordrecht, Netherlands,

Springer.

[13] Benson M (2014) The Art of Software Thermal Management for Embedded

Systems. New York, United States, Springer.

56

[14] Thati V, Vankeirsbilck J, Pissoort D & Boydens J (2019) Hybrid Technique for

Soft Error Detection in Dependable Embedded Software: A First Experiment.

International Scientific Conference Electronics. Sozopol, Bulgaria, 1-4. DOI:

http://dx.doi.org/10.1109/ET.2019.8878497.

[15] Thati V, Vankeirsbilck J, Penneman N & Pissoort D (2018) CDFEDT:

Comparison of Data Flow Error Detection Techniques in Embedded Systems: An

Empirical Study. Proceedings of the 13th International Conference on

Availability, Reliability and Security. Hamburg, Germany, 1-9. DOI:

http://dx.doi.org/10.1145/3230833.3230854.

[16] Amara A, Ea T & Belleville M (2010) Emerging Technologies and Circuits.

Heidelberg, Germany, Springer.

[17] Henkel J, Pagani S, Amrouch H, Bauer L & Samie F (2017) Ultra-Low Power

and Dependability for IoT Devices. Design, Automation & Test in Europe

Conference & Exhibition. Lausanne, Switzerland, 954-959. DOI:

http://dx.doi.org/10.23919/DATE.2017.7927129.

[18] Castano V & Schagaev I (2015) Resilient Computer System Design. Cham,

Switzerland, Springer.

[19] EEMBC (2019) Introducing the ULPMark™-CoreMark® Benchmark. URL:

www.eembc.org/ulpmark/. Accessed 24.2.2020.

[20] Oshana R & Kraeling M (2013) Software Engineering for Embedded Systems:

Methods, Practical Techniques, and Applications. Oxford, United Kingdom,

Elsevier Science & Technology.

[21] Rahma M & Anis M (2013) Nanometer Variation-Tolerant SRAM: Circuits and

Statistical Design for Yield. New York, United States, Springer-Verlag.

[22] Borkar S (1999) Design challenges of technology scaling. IEEE Micro 19(4): 23-

29. DOI: http://dx.doi.org/10.1109/40.782564.

[23] Reynders N & Dehaene W (2015) Ultra-Low-Voltage Design of Energy-Efficient

Digital Circuits. Cham, Switzerland, Springer.

[24] Verma A, Mishra A, Singh A & Agrawal A (2014) Effect of threshold voltage on

various CMOS performance parameter. International Journal of Engineering

Research and Applications 4(4): 21-28.

[25] Venkatachalam V & Franz M (2005) Power reduction techniques for

microprocessor systems. ACM Computing Surveys 37(3): 195-237. DOI:

http://dx.doi.org/10.1145/1108956.1108957.

[26] Subramanian K & Venkatachalam M (2018) Power reduction of shift register

performance analysis and implementation of adaptive clock gating technology for

low power systems. International Journal of Pure and Applied Mathematics

119(15): 357-366.

57

[27] Cadence Design Systems (2014) Power gating. URL:

www.semiengineering.com/knowledge_centers/low-power/techniques/power-

gating/. Accessed 4.2.2020.

[28] Chen Z, Wei L & Kaushik R (1997) Reducing glitching and leakage power in low

voltage CMOS circuits using multiple threshold transistors. ECE Technical

reports docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1084&context=ecetr.

[29] Haverinen J (2006) Lecture 5: Pipelining and Hazards. URL: www.ee.oulu.fi/

research/tklab/courses/521480S/luennot/luento5.pdf. Accessed 15.6.2020.

[30] Jones N (2016) How to make embedded software smaller and faster. URL:

www.barrgroup.com/embedded-systems/how-to/embedded-software-

performance. Accessed 5.4.2020.

[31] Roy K & Johnson M. (1997) Software Design for Low Power. In: Nebel W &

Mermet J (eds) Low Power Design in Deep Submicron Electronics. Dordrecht,

Netherlands, Springer: 433-460.

[32] Batten D and D'Arcy P (1999) Intrinsic functions boost compilers. URL:

www.eetimes.com/intrinsic-functions-boost-compilers. Accessed 25.3.2020.

[33] Acar H (2017) Software Development Methodology in a Green IT Environment.

Doctoral thesis. University of Lyon, InfoMaths Doctoral School.

[34] Shah A & Kotecha K (2010) Efficient Scheduling Algorithms for Real-Time

Distributed Systems. First International Conference on Parallel, Distributed and

Grid Computing. Solan, India, 44-48. DOI:

http://dx.doi.org/10.1109/PDGC.2010.5679608.

[35] Liu C & Layland J (1973) Scheduling algorithms for multiprogramming in a hard-

real-time environment. Journal of the ACM 20(1): 46-61. DOI:

http://dx.doi.org/10.1145/321738.321743.

[36] Davis R, Cucu-Grosjean L, Bertogna M & Burns A (2016) A review of priority

assignment in real-time systems. Journal of Systems Architecture 65(C): 64-82.

DOI: http://dx.doi.org/10.1016/j.sysarc.2016.04.002.

[37] Embedded (2002) Introduction to rate monotonic scheduling. URL:

www.embedded.com/introduction-to-rate-monotonic-scheduling/. Accessed

15.6.2020.

[38] Chetto M (2012) Task scheduling in energy harvesting real-time embedded

systems. Journal of Information Technology & Software Engineering 2(3): 1-2.

DOI: http://dx.doi.org/10.4172/2165-7866.1000e106.

[39] Bambagini M, Hakan M, Aydin H & Buttazzo G (2016) Energy aware scheduling

for real-time systems: A survey. ACM Transactions on Embedded Computing

Systems 15(1): 1-34. DOI: http://dx.doi.org/10.1145/2808231.

[40] Yao F, Demers A & Shenker S (1995) A Scheduling Model for Reduced CPU

Energy. Proceedings of IEEE 36th Annual Foundations of Computer Science.

58

Milwaukee, United States, 374-382. DOI: http://dx.doi.org/10.1109/SFCS.

1995.492493.

[41] Bini E, Butazzo G & Lipari G (2008) Minimizing CPU energy in real-time

systems with discrete speed management. ACM Transactions on Embedded

Computing Systems 8(4): 1-22. DOI: http://dx.doi.org/10.1145/1550987.

1550994.

[42] Pillai P & Shin K (2001) Real-Time Dynamic Voltage Scaling for Low-Power

Embedded Operating Systems. Proceedings of the eighteenth ACM symposium

on Operating systems principles. Banff, Canada, 89-102. DOI:

http://dx.doi.org/10.1145/502034.502044.

[43] Pinheiro D, Concalves R, Valentin E, Oliveira H & Barreto R (2017) Inserting

DVFS Code in Hard Real-Time System Tasks. Brazilian Symposium on

Computer Systems Engineering. Curitiba, Brazil, 23-30. DOI:

http://dx.doi.org/10.1109/SBESC.2017.10.

[44] Liu S, Qiu Q & Wu Q (2008) Energy Aware Dynamic Voltage and Frequency

Selection for Real-Time Systems with Energy Harvesting. Design, automation

and test in Europe. Munich, Germany, 236-241. DOI: http://dx.doi.org/10.1109/

DATE.2008.4484692.

[45] Islam F & Lin M (2017) Hybrid DVFS scheduling for real-time systems based on

reinforcement learning. IEEE Systems Journal 11(2): 931-940. DOI:

http://dx.doi.org/10.1109/JSYST.2015.2446205.

[46] Chen J, Wang S & Thiele L (2009) Proactive Speed Scheduling for Real-Time

Tasks Under Thermal Constraints. IEEE Real-Time and Embedded Technology

and Applications Symposium. San Francisco, United States, 141-150. DOI:

http://dx.doi.org/10.1109/RTAS.2009.30.

[47] Luo G, Guo B, Shen Y, Liao H & Ren L (2009) Analysis and Optimization of

Embedded Software Energy Consumption on the Source Code and Algorithm

Level. International Conference on Embedded and Multimedia Computing. Jeju,

South Korea, 1-5. DOI: http://dx.doi.org/10.1109/EM-COM.2009.5402965.

[48] Georgiou K, Xavier-de-Souza S & Eder K (2018) The IoT energy challenge: a

software perspective. IEEE Embedded Systems Letters 10(3): 53-56. DOI:

http://dx.doi.org/10.1109/LES.2017.2741419.

[49] Beningo J (2020) 5 RTOS best practices for designing RTOS-based applications.

URL: www.beningo.com/5-best-practices-for-designing-rtos-based-applications.

Accessed 6.2.2020.

[50] Texas Instruments (2018) Linux Core Power Management User's Guide (v4.4).

URL: processors.wiki.ti.com/index.php/Linux_Core_Power_Management_User

%27s_Guide_(v4.4). Accessed 3.2.2020.

[51] Walls C (2014) Power management considerations for efficient embedded

systems development. URL: www.semiengineering.com/power-management-

59

considerations-for-efficient-embedded-systems-development/. Accessed

1.3.2020.

[52] Embedded (2002) Designing embedded software for lower power. URL:

www.embedded.com/designing-embedded-software-for-lower-power/. Accessed

22.3.2020.

[53] Ripoll I & Ballaster-Ripoll R (2013) Period selection for minimal hyperperiod in

periodic task systems. IEEE Transactions on Computers 62(9): 1813-1822. DOI:

http://dx.doi.org/10.1109/TC.2012.243.

[54] Bertsekas D (2009) Convex Optimization Theory. Belmont, United States,

Athena Scientific.

[55] Amazon Web Services Inc (2008) Trace hook macros. URL: www.freertos.org/

rtos-trace-macros.html. Accessed 25.11.2019.

[56] Koskinen L, Hiienkari M, Mäkipää J & Turnquist M (2016) Implementing

Minimum-Energy-Point Systems with Adaptive Logic. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 24(4): 1247-1256. DOI:

http://dx.doi.org/10.1109/TVLSI.2015.2442614.

[57] Hiienkari M, Gupta N, Teittinen J, Simonsson J, Turnquist M, Eriksson J, Anttila

R, Myllynen O, Rämäkkö H, Mäkikyrö S & Koskinen L (2020) A 0.4-0.9V,

2.87pJ/Cycle Near-Threshold ARM Cortex-M3 CPU with in-Situ Monitoring and

Adaptive-Logic Scan. IEEE Symposium on Low-Power and High-Speed Chips

and Systems. Online, 556-558.

[58] Bini E & Buttazzo G (2001) A Hyperbolic Bound for the Rate Monotonic

Algorithm. 13th Euromicro Conference on Real-Time Systems. Delfth, The

Netherlands, 59-66. DOI: http://dx.doi.org/10.1109/EMRTS.2001.934000.

[59] Arm Limited (2016) URL: developer.arm.com/architectures/cpu-architecture/

debug-visibility-and-trace/coresight-architecture/serial-wire-debug. Accessed

3.12.2019.

[60] Segger Microcontroller GmbH (2019) J-Link / J-Trace User Guide. URL:

www.segger.com/downloads/jlink/UM08001. Accessed 3.12.2019.

[61] Zhang Y, Suda N, Lai L & Chandra V (2017) Hello edge: keyword spotting on

microcontrollers. arXiv:1711.07128v3 [cs.SD].

[62] Alawneh L & Abdelwahab H (2011) Pattern Recognition Techniques Applied to

the Abstraction of Traces of Inter-Process Communication. European conference

of software maintenance and reengineering.

[63] Choi K, Soma R & Pedram M (2004) Dynamic Voltage and Frequency Scaling

Based on Workload Decomposition. Proceedings of the 2004 International

Symposium on Low Power Electronics and Design. 174-179. DOI:

http://dx.doi.org/10.1109/LPE.2004.240891.

60

APPENDICES

Appendix 1. Software profiling and optimization implementation.

Preprocessing with a Python script removes any data from the trace file which is not

relevant for profiling (Figure 26). The related events are extracted based on event

abbreviations. Tasks, if necessary, can be removed from the trace if their task handle

is known.

Figure 26. Code used for trace preprocessing.

The requirements for the trace file structure are set by the MATLAB

implementation. The structure must match the implementation, or the input file cannot

be correctly parsed. A processed trace file contains only event trace data (Figure 27).

All trace prints have the same number of data fields which contain information which

depends on the traced event. Data fields are separated by a colon. Additional data fields

can be added to the end of the trace print as long as all traced events have the same

number of data fields.

Figure 27. Example contents of a processed trace file.

Ideally, the trace file used for profiling contains a hyperperiod of the task set. Worst-

case execution should be included. The largest execution cycle counts for tasks found

in the trace are assumed to be the worst-case execution cycles of the tasks. Tracing is

started from the beginning of the application execution to include task creation events.

Trace section is selected by hand. Automation of the trace section would require

data mining. It is assumed that the user is aware of the task set properties which eases

the section selection. When the section selection is done by hand, assumptions are

made based on the optimization model implementation. The first event in the trace

should be a task-switch-in event of an application task. This excludes the task-create

events which are only used for task naming purposes and do not affect profiling. The

last event in the trace section should be a switch-out event of the idle task. These

assumptions cause that all tasks included in the trace are included as a whole and that

there is possibility for frequency scaling even for the last executing application task in

the trace.

61

Most of the data used in optimization is mined from the execution trace. The mined

data will be displayed in dialog-boxes after profiling (Figure 28). All values can be

changed. User-defined values must be defined at this stage. If a trace file is not used,

user must provide all obligatory values for optimization. Detailed descriptions for all

variables are given in Table 17 for system and runtime related parameters and Table

18 for task specific parameters.

Figure 28. Dialog boxes which are used to define input values for optimization related

to (a) system and runtime and (b) each task’s execution.

Table 17. System and runtime parameter description

Parameter Unit Value from trace /

value defined by user

Description

Total

runtime

ms Trace Length of the trace which is used in optimization.

Slack time ms User Time that is reserved for other activities than

application tasks (included in the optimization model).

Base

frequency

kHz Trace, if frequency

info in trace

User otherwise

The execution frequency if frequency not changed

during execution.

Minimum

frequency

kHz User The minimum frequency is the lowest frequency level

that can be used for execution. The value is (by

default) used to define upper bound for scaling factor.

If a solution is found, optimization results are presented in the same order as the

task-specific data was given in the dialog boxes i.e. first scaled frequency corresponds

to task 1. Frequencies are defined according to Equation (4). In addition to scaled

frequencies, the function which implements the whole optimization returns the output

from the solver defined in [80], including the scaling factors. If a solution is not found,

an error message specific to the solver is displayed.

62

Table 18. Task-specific parameter descriptions

Parameter Unit Value from

trace / value

defined by

user

Description

Name - Trace Descriptive name for a task. (optional)

Priority - User Priority of a task (optional)

Handle - Trace A pointer to the task control block. A task handle is

used to identify a task. (optional)

WCEC cycles Trace The largest amount of execution cycles defined from

a task switch in to a switch out found in the trace.

Deadline ms User The final target completion time defined from the

start of a task

Instance count - Trace The number of times a task has been switched in.

Current

frequency

kHz Trace, if

frequency

info in trace.

User

otherwise.

The execution frequency of a task. A single value for

a task included in the optimization is assumed.

Scaling factor

(UB)

- User Frequency scaling can be restricted by setting an

upper bound for a scaling factor. (optional)

Scaling factor

(LB)

- User Frequency scaling can be restricted by setting a

lower bound for a scaling factor. (optional)

Interval slack

time

ms User Interval slack time is reserved from the task time

deadline value. It reduces the time available for

frequency scaling of a task. This time is reserved for

other activity than task execution.

Appendix 2. Optimization values for Ideal case of trace 1.

Optimization and parameters

Variable name Variable value

Volt change [ms] 0.376

Freq change [ms] 0.122

Cost cs in volt_change + freq_change (0.4980)

CS overhead 0

Variable name Variable value
Trace period [ms] 2321.0847
Guard time [ms] 0
Time available [ms] (difference of trace and guard time) 2321
Frequency [kHz] (for single frequency trace) 181 248
Minimum frequency [kHz] 12000

Variable name Task names
Filter task KWS task

Instance count 14 13

WCEC 839768 10089050

Relative deadline [ms] 100 100

Slack time [ms] 0 0

Exec. Freq. [kHz] 180 000 180 000

Actual freq. [kHz] 181 248 181 248

63

Appendix 3. Optimization values for Overhead-only case of trace 1.

Optimization and parameters

Variable name Variable value

Volt change [ms] 0.376

Freq change [ms] 0.122

Cost cs in volt_change + freq_change (0.4980)

CS overhead (cycles) 2000

Variable name Variable value

Trace period [ms] 2321

Guard time [ms] 0

Time available [ms] (difference of trace and guard time) 2321

Frequency [kHz] (for single frequency trace) 181 248

Minimum frequency [kHz] 12000

Variable name Task names
Filter task KWS task

Instance count 14 13

WCEC 839768 10089050

Relative deadline [ms] 100 100

Slack time [ms] 0 0

Exec. Freq. [kHz] 180 000 180 000

Actual freq. [kHz] 181 248 181 248

Appendix 4. Optimization values for Restricted case of trace 1.

Optimization and parameters

Variable name Variable value

Volt change [ms] 0.376

Freq change [ms] 0.122

Cost cs in volt_change + freq_change (0.4980)

CS overhead (cycles) 2000

Variable name Variable value

Trace period [ms] 2321

Guard time [ms] 200

Time available [ms] (difference of trace and

guard time)

2121

Frequency [kHz] (for single frequency trace) 181 248

Minimum frequency [kHz] 12000

Variable name Task names
Filter task KWS task

Instance count 14 13

WCEC 839768 10089050

Relative deadline [ms] 100 100

Slack time [ms] 5 5

Exec. Freq. [kHz] 180 000 180 000

Actual freq. [kHz] 181 248 181 248

64

Appendix 5. Optimization values for trace 2.

Optimization and parameters

Variable name Variable value

Volt change [ms] 0.376

Freq change [ms] 0.122

Cost cs in volt_change + freq_change (0.4980)

CS overhead (cycles) 2000

Variable name Variable value

Trace period [ms] 34317.8574

Guard time [ms] 0

Time available [ms] (difference of trace and

guard time)

34317.8574

Frequency [kHz] (for single frequency trace) 181 248

Minimum frequency [kHz] 12 000

Variable name Task names
Filter task KWS task

Instance count 314 39

WCEC 839786 10089115

Relative deadline [ms] 100 100

Slack time [ms] 0 0

Exec. Freq. [kHz] 180 000 180 000

Actual Freq. [kHz] 181 248 181 248

Appendix 6. Optimization values for trace 3.

Optimization and parameters

Variable name Variable value

Volt change [ms] 0.376

Freq change [ms] 0.122

Cost cs in volt_change + freq_change (0.4980)

CS overhead (cycles) 1000

Variable name Variable value

Trace period [ms] 2320.365

Guard time [ms] 0

Time available [ms] (difference of trace and

guard time)

2320.365

Frequency [kHz] (for single frequency trace) 181 248

Minimum frequency [kHz] 12 000

Variable name Task names
Filter task KWS task

Instance count 14 13

WCEC 840403 10089638

Relative deadline [ms] 100 100

Slack time [ms] 0 0

Exec. Freq. [kHz] 180 180

Actual Freq. [kHz] 181248 181248

65

Appendix 7. Optimization values for trace 4.

Optimization and parameters

Variable name Variable value

Volt change [ms] 0.376

Freq change [ms] 0.122

Cost cs in volt_change + freq_change (0.4980)

CS overhead (cycles) 1000

Variable name Variable value

Trace period [ms] 908.7189

Guard time [ms] 0

Time available [ms] (difference of trace and

guard time)

908.7189

Frequency [kHz] (for single frequency trace) 181 248

Minimum frequency [kHz] 12 000

 Task names

Variable name Filter task KWS task

Instance count 4 7

WCEC 840202 10082251

Relative deadline [ms] 100 100

Slack time [ms] 0 0

Exec. Freq. [kHz] 180 180

Actual Freq. [kHz] 181248 181248

	Abstract
	Tiivistelmä
	Table of contents
	Foreword
	Abbreviations
	1. Introduction
	2. development issues
	2.1. Energy consumption
	2.2. Timing challenges
	2.2.1. Power modes
	2.2.2. DVFS

	2.3. Reliability
	2.4. Benchmarking

	3. Techniques for low energy consumption
	3.1. Hardware techniques
	3.2. Algorithm level techniques
	3.3. Scheduling
	3.4. DVFS algorithms
	3.5. The role of software

	4. Profiling for the near-threshold processor
	4.1. Task execution
	4.2. DVFS implementation
	4.3. The optimization model
	4.4. Software execution tracing
	4.5. Profiling
	4.5.1. Profiling data visualization
	4.5.2. Target system
	4.5.3. User-defined data

	5. Measurements
	5.1. Tracing and measurement set-up
	5.2. Test application
	5.3. Frequency optimization
	5.3.1. Trace 1
	5.3.2. Trace 2
	5.3.3. Trace 3
	5.3.4. Trace 4

	5.4. Optimization results
	5.4.1. Power measurement results
	5.4.2. Optimization discussion

	6. Discussion
	6.1. Limitations
	6.2. Use considerations and improvements
	6.2.1. Tasks suitable for optimization
	6.2.2. Required slack time
	6.2.3. Task execution, deadline misses and prioritization
	6.2.4. Additional profiling and detailed modelling
	6.2.5. Relation between execution frequency and execution time

	6.3. Conclusion

	7. Summary
	8. References

