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ABSTRACT

Smart technologies are frequently united and automated in our everyday settings
and commonplace task by linking computers and other devices. While there
has been a necessity to build smart environments for an easy and comfortable
life, research on measuring wellbeing in this environment becomes increasingly
intensive. Emotion is one of the decisive aspects of wellbeing that encourages
us to work effectively, manage, and cope with stress, and affect our physical
health. This work evaluates the EEG signal to measure individuals the different
emotional states in a smart space by creating a computer gaming scenario.
EEG, a physiological signal which provides details on mental, physiological, and
emotional states, EEG frequency bands are strongly correlated with positive
and negative emotional responses. Since brain left frontal cortical area is
responsible for positive emotion and the right frontal region associate, therefore,
we choose two pairs of EEG electrodes F3-F4, and F7-F8 to assess the game
player emotional states during the gaming situations. We measure the EEG
frontal alpha asymmetry (FAA) by comparing variations in the alpha band
power levels in the left and right frontal cortex, corresponding to positive
and negative emotions. Our experiment outcome reveals considerable support
with the emotional variance of the test participants. We note that multiple
interruptions during the gaming situation create irritation to the test subjects.
These findings also confirm that F3 and F4 EEG channels are the most sensitive
to human emotional responses compared to F7 and F8 channels.
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1. INTRODUCTION

A smart environment refers to space or an environment where all kinds of information
technology are continually operating to make people’s lives more convenient [1]. A
smart environment can build up using embedded sensors, actuators, displays, and
computational elements connected with a continuous network [2, 3],for example smart
office, smart campus, smart building. Propelled by breakthroughs in technology,
wellbeing in the smart environment is becoming crucial in our daily lives. According to
Lovén et al. [4], wellbeing can be measured in various aspects of human life, including
mental, emotional, physical, social, material, and professional dimensions, in a smart
context it can be defined by flow (state of mind), low levels of stress, and a balance
between negative and positive affect [4].

Emotional wellbeing is an integrated part of our overall wellbeing, which encourages
us to work productively, decide and cope with the stressful condition, and affect our
physical wellness [5]. Smart spaces can help improve the wellbeing of the person if
the person’s emotional status is known. Halkola et al. [6], Set up an experimental
framework for assessing wellbeing in a smart space by building a proxy environment
utilizing a video gameplay setting. Some researches revealed that computer game
involvement might change the user’s stress, flow, and other emotional states [7, 8].
Although emotional states can be recognized using some nonphysiological signals
like speech signal, facial expression, and body gesture [9, 10]. However, those
attributes can influence individuals’ social and cultural background [11, 12]. On
the other hand, physiological signals are more robust and offer a direct method for
emotional recognition. Since the brain signal responds strongly to any emotional
stimulation, much more than other biological signals, EEG is the most prevalent
emotion recognition technique [13].

EEG is a brain monitoring technique that records brain electrical activity from
the scalp and provides information on mental activities and emotional states [13].
Moreover, it has been proven that EEG frequency bands correlate with emotional
stimulation [14]. Therefore EEG frequency bands are one of the features which can
be used for emotion recognition. Since the EEG alpha frequency considered to signify
activation of cortical function and contralateral inhibitory interactions between the left
and right hemispheres [15], frontal alpha asymmetry (FAA) has been using as an
index for assessing both positive and negative emotions [16]. FAA usually measures
by taking the band power difference of alpha frequency(8–13 Hz) over the frontal
cortical regions between the left and right hemispheres [17].

In 1992, Davidson proposed a approach/withdrawal theory of emotion, he stated
that both left and right hemispheres triggered according to the motivational orientation
of emotional states [18]. The left frontal hemispheric activity is correlated
with the approach, while the right frontal hemispheric activity is associated with
withdrawal [18]. Here approach indicates the emotions related to a positive feeling and
withdrawal refer to the emotions correlated with a negative feeling [13]. In addition to
approach/withdrawal theory, Silberman and Weingartner, given the concept of valence
theory of emotion. This hypothesis indicates that positive emotional states are related
to the left frontal cortical activities , and negative emotions are related to the right
frontal cortical activities [19]. The cortical brain activation negatively correlated to the
Alpha activities [17]. A decrease of alpha-band power in the left frontal hemisphere
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reflects positive emotional information, and a decrease of alpha-band power in the right
frontal hemisphere reflects negative emotional information [17].

This research aims to identify different emotional states in a smart sense built
by digital gameplays’ environment. We focused on analyzing the variation of the
flow, stress, and the negative effects in gaming situations. The negative affects were
introduced by interrupting the gameplay with Skype call ringing, and external Mouse
interruptions while the users were fully immersed in the gaming situations, and stress
elicited by setting game difficulties. Moreover, the flow was introduced by setting easy
games and allowing users to play freely. We used the recorded EEG data and analyzed
frontal alpha asymmetry(FAA). We experimented on three mid-level EEG frequency
bands(theta, alpha, and beta) to compare the test subjects different states of emotions
in contrast to before and after the event in each experimental phase. We observed
that the EEG Alpha frequency band is more responsive than the other to characterized
both positive and negative emotions. Thus, this thesis concentrated only on the EEG
alpha-band power analysis for emotion recognition to measure wellbeing in a smart
environment built up with the computer gaming scenario.

We selected two pairs of frontal EEG electrodes, such as F3-F4 & F7-F8. F3 & F7
are located on the left cortex, and F4 & F4 are on the right cortex. Then, alpha band
powers are measured for each selective EEG channels using the Welch periodograms
and estimated FAA by comparing the relative alpha frequency power levels on the
left and right brain frontal regions. A higher value of FAA demonstrated the power
decreases in the right hemispheres compared to the left due to negative emotions and
lower FAA indicates power decreases in the left hemisphere for positive emotional
responses. Our experimental result reported a significant agreement with the test
subjects emotional variation, mostly negative affects during the gaming situation. We
find that different interruptions during the gaming situation create irritation to the test
subjects. Nevertheless, we did not observe any indication of game difficulty correlation
with either positive and negative emotional responses that was supposed to happen in
phase 3 to 5 according to experimental design, potential reasons for the lack of proof
in assessing the stress and flow addressed in the discussion section. Furthermore, these
results also unveil that F3 and F4 EEG channels are the most devoted to individual
emotional responses compare to F7 and F8 channels.

The thesis outline as follows,the first chapter presented a brief introduction to the
study-related analysis, issue, and motivation. Chapter 2 Emotional well-being, dissect
definitions, some theories related to emotion, and addresses some researches related
to different states of emotion recognition that comprise the emphasis of the analysis
and the techniques used in the experiment. Chapter 3 discusses some techniques
for emotion recognition. Chapter 4 EEG signal processing, provide details of the
EEG signal, measurement method, artifact removal technique. Chapter 5 presents a
detail of the experimental protocol and data collection procedures. Chapter 6 explains
the approach taken for signal processing, feature extraction, and statistical analysis
method. Chapter 7, Result, addresses the experimental and statistical results. Chapter
8, Discussion, offers an interpretation of the results and exposes the study’s main
limitations and possible solutions. Chapter 9, Conclusion.
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2. EMOTIONAL WELLBEING

2.1. Definition of Wellbeing

Although there is no clear concept of wellbeing made yet, wellbeing usually refers
to feeling positive feelings, life satisfaction at a high level, happiness, and the ability
to regulate negative emotions [20, 21]. Lovén et al. [4] mentioned that wellbeing
could be described by measuring six-dimensional factors including mental, emotional,
physical, social, material, professional, and characterized by a balance between
negative and positive affect, low levels of stress, and flow. In this work, we mainly
focused on emotional wellbeing in a smart space. So emotional wellbeing briefly
described in this section. Figure 1 shows six dimensions of wellbeing.

Figure 1. Wellbeing dimension according to Lovén et al [4].

2.1.1. Emotional Wellbeing

Both negative and positive feelings are related to emotional wellbeing. Usually,
emotional wellbeing considered to experiencing positive feelings and the ability
to cope with negative feelings successfully [20]. Emotional wellbeing is one of
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the critical aspects of overall wellbeing, its effects on our personal, professional
relationship and makes our life happier and helps to pursue our goals more
effectively [20].

Benefits of emotional wellbeing

It is as essential to focus on our emotional wellbeing as physical and mental wellbeing.
Some benefits of emotional wellbeing described below.

1. Resilience: The ability to manage stress helps susceptibility to physical illness
by impacting the immune system [22].

2. Communication: Emotionally healthy people usually have excellent
communication skills and respond to others positively and productively [23].

3. Self-regulation: People with good emotional health able to handle challenging
situations and continue working even under pressure [24].

4. Motivation: Emotionally good people are always optimistic and motivated by a
sense of determination to excel in any situation [24].

2.2. What Is Emotion

Emotion is an affective state of mind in which happiness, sadness, anxiety, hate,
or the like are experienced, as distinguished from the cognitive and volitional state
of mind [25]. Don Hockenbury and Sandra E. Hockenbury described in the book
"Discovering Psychology," an emotion is a complex psychological state combination
with three components, including subjective experience, physiological response, and
behavioral or verbal response [26].

Subjective experiences

Basic universal emotion such as happiness, sadness, fear, and anger are expressed
by all individuals irrespective of culture or origin that experiencing emotion can be
subjective [27].

physiological response

Emotions are accompanied by the physiological state of the autonomic nervous system
that lead to physical symptom such as increase heart rate,respiration and sweating [28].

Behavioural response

Behavioural response is often called the outward expression of the emotion. Facial
expression, body gestures, posture are the example of the behavioural responses of the
emotion [28].
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2.2.1. Theories of Emotion

Many theories have been proposed to define emotion. In this section, we mention some
of them.

The James-Lange theory of emotion

Two famous physiologists, William James & Carl Lange, proposed a theory of emotion
known as the James-Lange theory of emotion. They stated in their theory that people
experience emotions due to physiological responses to external events [29].

The Cannon-Bard Theory of Emotion

The Cannon-Bard Theory of Emotion proposed by two other physiologists Philip Bard
& Cannon, this theory indicated that individuals might undergo emotionally induced
physiological responses without necessarily experiencing certain types of emotions.
For instance, one might feel a big heart race due to exercising, and heart-racing is not
only an indication of fear [30].

Valence Theory of Emotion

Emotional Valence theory first proposed by Silberman and Weingartner [19].That
theory states that the pattern of emotional valence relies heavily on hemisphere
dominance activation [19]. The left hemisphere predominates in experiencing positive
emotions while the right hemisphere for the experience of negative emotions [19].
According to the valence theory of emotion, fear, disgust, and anxiety are the example
of negative emotions, whereas joy, happiness, and excitement are considered positive
emotions [19].

The Approach-Withdrawal Theory of Emotion

This theory explains the emotional model’s evolutionary principles, implying that
emotions are correlated to an individual’s actions in its surroundings [18]. The
approach method encourages appetite behavior and stimulates approach-related
positive affects, such as a feeling that arises when a person gets closer to the
desired goal [18]. The approach method encourages appetite behavior and stimulates
approach-related positive affects, such as a feeling that arises when a person gets closer
to the desired goal. The withdrawal method promotes an individual’s removal from
sources of aversive stimuli [18].

Both Valence and approach/withdrawal theory agree with positive and negative
feelings except anger. In the approach/withdrawal paradigm, anger is classified as
an approach emotion because it influences the person to defend with sources of
stimulation and thus identified the same attribute as happiness [18].

Circumplex Model of Emotion

Russell, J. A [31] proposed a circumplex model of emotion in a 2D space of valence
and arousal. In this 2D space, all emotional states can be defined as a linear
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combination of valence and arousal. For instance, stress is expressed with a state
of high arousal and negative valence; on the contrary, relaxation often characterized
by a positive valence with low arousal. In particular, this emotional model provides
a theoretical and experimental framework for analyzing the neuronal basis of affects,
also expect to support information into the neurophysiology of affective disorders.
Generally, the circumplex model is used to evaluate triggers of emotional words, facial
expressions, and cognitive responses [32]. Figure 2 shows the circumplex model of
emotion, X-axis represents the valence states and Y-axis defines the arousal, and the
centre of the model describes a neutral valence and a medium level of arousal.

Figure 2. Russell’s circumplex model of emotion.

2.3. Brain Frontal Cortex for Emotion Regulation

The human brain’s prefrontal cortical area is responsible for regulating the influence
of cognitive functions at a high degree which associated with controlling different
aspects of the emotional states [33]. Davidson stated that the brain prefrontal
cortex is accountable for an emotion-based decision-making system [34]. The left
hemisphere’s anterior region is related to approach behaviours or positive affects, while
the right hemisphere’s anterior area is correlated with withdrawal behaviour or negative
emotions [33]. The two other neuro-imaging experiments suggested by Jones and Fox
[35] , and O’ Doherty et al. [36] have also shown this evidence. The brain prefrontal
cortex is the part of the frontal cortex situated at the very front of the brain. The
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prefrontal cortex accounts for more than 10% of the brain volume and is thus engaged
in processing different tasks [37]. Controlling short-sighted, reflexive behaviours like
planning, decision-making, problem-solving, self-control, and acting with long-term
goals in mind are executed in the brain prefrontal cortex [37]. The human brain
anatomy is shown in figure 3, and the yellow shaded area denotes the brain prefrontal
cortex used in emotion detection.

Figure 3. Brain pre-frontal cortex (yellow shaded area).
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3. EMOTION RECOGNITION

3.1. Emotion Recognition

The technique by which human emotion is detected is called emotion recognition [38].
Emotion can be identified in our everyday lives by conventional approaches such as
facial, voice, body gesture and text [38]. Generally, five distinct dimensions evaluate
human emotional responses: Behavioral tendencies, physiological reactions, motor
expressions, cognitive appraisals, and subjective feelings. The first four dimensions
can be assessed automatically by measuring different body parameters or electric
impulses [31]. Subjective feelings can be measured using the self-assessment method
by rating the multiple questionnaires [39]. EEG, ECG, EMG, EDA, skin resistance
measurements, blood pressure, and motion analysis are the most popular in the
automatic emotion detection method. In this section, the most acceptable and widely
used emotion recognition system is discussed.

3.1.1. EEG

EEG is the brain monitoring technique used to record the electrical from the scalp.
By recording the EEG signal, brain electrical activities that respond to various stimuli
typically assessed and evaluated the human emotion recognition technique. In most
case, the EEG signal collected using 8,16 or 32 pairs of metal electrodes placing
on the different part of the human scalp according to the international 10/20 system.
Figure 4 showed the sensor position of a 32 channels EEG device, which follow the
International 10-20 System. EEG sensors labelled with the letters to name after the
underlying area of the brain. For example, pre-frontal (Fp), frontal (F), central (C),
temporal (T), parietal (P), and occipital (O). Furthermore, the number including with
this letter indicates the lateralized location of the brain, and odd numbers indicate the
left hemisphere and even numbers are for the right hemisphere. In contrast, electrodes
over the midline (zero lines) are labelled with the letter “z”.

Brain responses to different emotional stimuli are typically assessed and evaluate by
extracting EEG frequency band, namely: delta, theta, alpha, beta and gamma. Hence
EEG frequency bands relate to different emotional states, so the frequency domain
indexes are widely used for emotion detection and classification methods. Focusing
on the area of interest,a number of different approaches are introduced to interpret
and analyze EEG signals. The statistical analysis [17], machine learning [40], deep
learning methods [41] can be applied to recognize specific emotional states by utilizing
various EEG features.
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Figure 4. Sensor position of 32 channel EEG recording device.

3.1.2. ECG

ECG stands electrocardiography, a physiological signal used for the non-invasive
real-time analysis of the heart’s electrical activity. Since heart activity is intimately
connected to the human nervous system, ECG is not only crucial to measure the
functioning of the heart but also used as a technique for emotion detection [42]. QRS
Complex (shown in figure 5) of the ECG is used as a feature to identify emotions. The
QRS complex determines heart activity related to the human emotional state and is a
useful predictor for identifying key emotions [42]. An automated emotion recognition
technique, ECG signal, requires advanced and robust signal processing techniques that
allow detection and extraction of the useful features from the raw signal. There is a
body of literature available that focuses on individual emotion recognition utilizing
various forms of feature extraction methods like rate variability (HRV) and with-in
beat analysis (WIB) [42].
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Figure 5. QRS complex shown in ECG signal [43].

3.1.3. EDA

EDA refers to an electrodermal activity that measures the skin’s electrical conductance
in response to sweat secretion. The skin’s electrical conductance is recorded using one
or two electrodes made of Ag / AgCl (silver-chloride) by placing on the skin surface.
Although EDA is correlated with controlling our internal temperatures [44], it has
also demonstrated an influential association with emotional arousal [45]. Generally,
emotional changes trigger sweat reactions, often visible on the fingers’ surface and
the soles of the hands. The EDA signal is not only strongly associated with the level
of arousal, but it also has a strong association with stress, excitement, engagement,
frustration, and anger. Therefore the EDA signal is used as a good indicator of
emotional state and its intensity.

3.1.4. Facial Expression, Speech, and Body Gesture

Research into emotion detection methods based on the study of facial expressions,
voice, body posture, and gestures has gone up very significantly [9, 10]. In emotion
recognition, a computer vision system and algorithm usually test and analyses facial
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expression, voice, and body gestures. These are very reliable technique nowadays as it
facilitates non-contact measurements and provides very accurate results.

3.2. Related Work

Research related to emotion is still very prominent in many industries, including
measuring wellbeing in smart space, gaming, psychology, and computer science.
Since emotion is one of the critical elements of overall wellbeing, much research
is still ongoing. Due to its high accuracy and objective assessment in contrast to
other external expressions such as facial, speech, body gesture, methods focused on
electroencephalogram (EEG) signals are more accurate among emotion recognition
approaches. Various types of EEG indexes are utilizing in emotion recognition and
classification method. EEG features are characterized by time-domain, frequency-
domain, and time and frequency domain, the frequency -domain attributes are most
accessible to the researchers.

Shon et al. [46], extracted a set of EEG features, including statistical, band power,
Hjorth parameters, and frontal alpha asymmetry for emotional stress detection. This
paper used a public EEG data set Database for Emotion Analysis using Physiological
Signals (DEAP) data, the dataset was recorded using 32 channels EEG device and
emotion stimulated by showing music video clip to the volunteers. Statistical, band
power, Hjorth parameters are computed from all EEG channels and frontal alpha
asymmetry estimated using Fp1-Fp2 by taking signal power difference between left
and the right cortex. Then PCA and genetic algorithm (GA)-based feature selection
method applied to select a subset of features that are suitable for stress detection
and taught the selected indexes to the k-NN classifier. The result of this research
suggested that the GA-based method better than PCA and well-chosen features method
for emotion detection.

Other researchers also used EEG signal to classify two basic emotions-happiness
and sadness elicited by showing pictures of a smile and cry facial expression [47]. In
this study, they applied common spatial patterns (CSP) and linear-SVM to choose an
optimal EEG frequency band and found that the ERD/ERS activities in gamma band
are significant to classify happiness and sadness with high time resolution. Pane and
her colleagues [40] apply Random Forest( RF) on DEAP dataset to classify happy, sad,
angry and relaxed states during gaming situation of test subjects. In this research, they
used six pair of asymmetry EEG electrodes which have a strong correlation with audio,
visual (T7–T8, O1–O2 ) emotional stimuli ( F7–F8, C3–C4, Cp5–Cp6, P7–P8). The
Cp5–Cp6 and P7–P8 channels were used for the ERP study for emotion recognition
using LPP (Late Positive Potential). For emotion recognition, solely beta frequency is
operated by extracting hybrid features that consist of time, frequency (PSD) and time-
frequency (wavelet)-domain. The finding of this study suggested that left hemisphere
is correlated to classify happy and relaxed states and the right hemisphere is much
concerned with sad and angry emotion, and also indicates RF outperform over the
SVM and LDA while using three pair of asymmetry channels namely, T7–T8, C3–C4
and O1–O2 to identify those emotional states.

Zheng et al. [41] introduced an advanced deep learning model to classify both
positive and negative emotions. They used 62 channels EEG device to record
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experimental data by showing some emotional movie clips to elicit both positive
and negative emotions. The differential entropy feature calculated in five frequency
bands for all EEG channels then trained and tested estimated features employing
five classifiers, KNN, SVM, Graph regularized Extreme Learning Machine (GELM),
Deep Belief Network (DBN), DBN-HMM (Hidden Markov Model). The experimental
results show that high-frequency band (beta and gamma) features are more related to
both positive and negative emotion and the DBN and DBN-HMM methods obtained
higher accuracy than the other four classifiers. Teager-Kaiser Energy Operator (TKEO)
is one of the useful features for EEG based emotion recognition technique. Prashant
Lahane & Mythili Thirugnanam researched for detecting stress using TKEO with a k-
nearest neighbour (KNN), neural network(NN) and Classification Tree (CT) classifiers
based on EEG [48]. This research carried out using the DEAP data set, a bandpass
filtering technique applied on EEG signal to separate alpha and beta band from FC1
and FC2 channels. KTE logistic coefficients and signal logistic coefficients calculated
to generate a feature vector from FC1 and FC2. Then this feature vector is taught
into KNN and NN to classify the happy and stress by comparing the TKEO feature
with Relative Energy Ratio (RER), and Kernel Density Estimation (KDE) techniques
regarding accuracy. The study findings revealed that the extraction of the index using
the Teaser-Kaiser energy operator works well for all classifiers. FC1 channel provides
the highest accuracy for the alpha band and FC2 for the beta band in stress detection.

Besides, other studies also analyze the human brain waves for emotion recognition
when the persons are playing video games. In this work, they use Fp1 and Fp2 EEG
channels and obtained the PSD of the alpha and beta frequency band [49]. The study
compares brain wave activities before and after playing the video game. The result
indicates that the PSD of alpha-band for all samples decreased after playing the game
and difference of the alpha PSD slightly small in Fp2 compared to Fp1 channel, and the
result is same for beta-band also. Their findings conclude that the person experiences
the stress while they are playing the video game. Moreover, EEG frontal asymmetry
is a more acceptable alternative for emotion recognition. EEG frontal asymmetry
examined for two positive emotions (amusement and tenderness) and two negative
emotions (anger and fear) using power in three bands (theta, alpha and beta) analysis
[50]. Thirty-three EEG data recorded by showing some Chinese emotional movie clips
and then mean band power of the theta, alpha and beta bands calculated from frontal
(FP1-FP2 and F3-F4), and the midline to parietal lobe (FZ, FCZ, CZ, CPZ and PZ).
The asymmetry of EEG frequency calculated by taking the band power difference from
the right to the left hemisphere using the selected EEG recording channels.The study
result confirms that frontal theta and alpha asymmetry on Fp1-Fp2, F3-F4 significant
for positive and negative emotions, also showed that theta power at midline channels
significantly identified negative emotions. In contrast, alpha and beta power at midline
useful for positive emotions recognition. In short, this experiment settles that frontal
EEG asymmetry and midline power can use to recognize discrete emotions described
in the valence-arousal theory. Geoffrey and Schwartz [17] also confirm that that
differential lateralization in frontal brain areas related to positive and negative emotion
recognition, relative left-hemispheric activation is measured by decreases in alpha
abundance for positive emotions and relative right-hemispheric activation for negative
emotions.
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4. EEG SIGNAL PROCESSING

4.1. What Is EEG

EEG stands for electroencephalogram, a physiological method for recording the brain’s
electrical activity from the scalp. It is the most common and fastest brain monitoring
technique for evaluating several brain disorders, and this technique can be used to
identify normal and abnormal brain electrical activity within a fraction of second
for clinical and research purposes [51, 52]. EEG signals are typically recorded by
small metal disks called electrodes placed in different locations to the scalp [51]. The
electrodes receive the brain signal sent to the amplifier in an EEG machine to amplify
the signals and then printed on the computer screen in a wave pattern [52]. Figure 6
shown a time course raw EEG signal recorded with EEG devices.

Figure 6. Example of Raw EEG signal. The vertical axis represents the EEG channels
and horizontal axis indicates the time (ms).

4.1.1. How Does EEG Signal Generates

The Human brain consists of hundreds of thousands of communicative cells called
neurons, which are interconnected via thousands of synapses [52]. Synapses are
responsible for the inhibitory or excitatory activity of the human brain. Excitatory
involves transferring information between neurons, and inhibitory refers to preventing
the transfer of information from one neuron to the next neuron. [52]. Whenever a
smaller group of neurons is triggered, they generate an electrical field. This electrical
field strength is strong enough to spread the signal through tissue, bone, and skull,
and it can be capture on the surface of the skull using small disks, which are called
electrodes [52].

Generally, the human brain consists of two halves of hemispheres, namely the
left and right hemispheres. Four different lobes separate each of these hemispheres,
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and they are Frontal, Temporal, Parietal, and Occipital cortex. Every lobe of both
hemispheres in the human brain is responsible for processing information in EEG
signal [53]. Among the four lobes, the Frontal lobe is the largest part of the
hemisphere, located just behind the forehead. This frontal lobe involves the response
of a person’s emotions, behavior, Judgment, planning, problem-solving, personality,
memory, Body movement (motor strip), language, intelligence, concentration, and
self-awareness [54]. The parietal lobe is situated behind the frontal lobe and engaging
in processing different sensory information, like Sense of touch, pain, temperature
(sensory strip), interprets signals from vision, hearing, motor, sensory and memory,
spatial and visual perception [54]. Occipital is worked to process visual information,
and Temporal is related to sound, speech, and various aspects of memory [53].

4.1.2. EEG Signals Characteristic

Many more variables depend on categorized EEG signals such as frequency, amplitude,
continuity (rhythmic, intermittent or continuous), synchrony, and electrodes position
[55]. Among these, the most familiar and frequently used method is the frequency-
based category. According to this EEG, the waveform can be classified into five distinct
types:-

Delta:

Delta rhythm lies in the frequency range between 0.5 Hz to 4 Hz. It is the slowest
wave with the highest amplitude. Delta waves customarily appear when a person is in
most profound meditation and dreamless sleep and also involved in unconscious bodily
function [53].

Theta:

The theta brain wave oscillates between 4Hz and 8 Hz (cycles per second), which is
associated with creativity, emotional connection, intuition, and relaxation. Having too
low theta may lead us to experience anxiety, poor emotional awareness, and stress,
and too high frequency indicates attention deficit hyperactivity disorder (ADHD),
depression, hyperactivity, impulsivity, inattentiveness [53].

Alpha:

This brain wave is commonly seen in adult persons when they are awake but relaxed
with closed eyes, and it is disappeared with an opening eye. The alpha waves lie in the
frequency range between 8 to 13 Hz [53].

Beta:

It is known as a high-frequency brain wave with a low amplitude, which oscillates
between 13 Hz and 30 Hz. Beta waves are commonly involved in conscious thought,
logical thinking, and stimulating affect [53].
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Gamma:

This frequency band is invented after the development of digital EEG device, since the
frequency of this brain wave is more than 25Hz, so it was not possible to record and
measured with analog EEG devices. Among the other brain waves, the gamma is the
fastest brain waves with small amplitudes [53].

4.1.3. EEG Use Case

Since the EEG considered a safe and comfortable brain monitoring method, which is
why it has many uses in the various fields of application. In this section, some of its
use cases have been discussed.

Wellness Technology

Nowadays, EEG gained popularity among athletes, biohackers to track their brain
activity. They use this technology to measure their cognitive functions—such as
attention and distraction, the stress in daily life events. By getting feedback from EEG
data they can design scientifically informed strategies to reduce stress, improve focus
or enhance meditation [56].

Healthcare

EEG has been playing a significant role in the healthcare sectors to diagnosing brain
disorders such as brain dysfunction, head trauma, sleep disorders, memory problems,
brain tumors, stroke, dementia, seizure disorders [56].

Sleep Monitoring

EEG can be used to measure a person’s polysomnography. The term polysomnography
used to diagnose sleep disorders. The polysomnography is usually done to monitor
overnight sleep patterns, heart rate, breathing, and oxygen saturation levels [56].

Academic Research

Researchers are extensively using EEG technology to study mental disabilities,
cognitive psychology, neuroscience, etc. Recent advances in computer hardware and
processor technologies have created an opportunity to extend current understanding
of the human brain functioning and to explore the basic neuronal processes involved
in behaviour, perception, or emotional regulation that remain previously unexplained
[52].

4.2. EEG Signal Recording.

EEG signal recording method comes with following:
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4.2.1. EEG Electrodes

The EEG electrodes are one of the most crucial components to collect brain electrical
activity. These are typically metal disks or pellets made of stainless steel, tin, gold,
or silver place on the skull using conductive gel, paste, or saline. There are two types
of EEG recording electrodes commercially available, wet and dry electrodes.The most
common wet electrode is Ag/AgCl, which made of silver (Ag), and silver chloride
(AgCl) layer. On the other hand, dry electrodes can be used for the same purpose
directly on the skull without requiring electrode gel [57].

4.2.2. Electrode Placement

The 10/20 system is the most common standardization for the electrode placement
system. In 1958, the International Federation in Electroencephalography and Clinical
Neurophysiology had proposed this standardization based on an electrode location and
the underlying area of the cerebral cortex [58]. The numbers 10 and 20 indicate the
distance between the electrodes from skull landmarks (nasion, preauricular points,
inion). According to this system, the inter-electrode distance would be either 10%
or 20% of the total front-back or left-right [58]. Electrodes labeled according to
the brain region or lobe: F (frontal), C (central), T (temporal), P (posterior), and O
(occipital) along with the number. The odd number indicates the left hemisphere, and
even number indicates the right hemisphere, and "Z" stands for zero refers to electrodes
position over the midline central brain regions [57].

4.2.3. Number of Electrodes for Recording

There is no fixed optimal number of electrodes for EEG recording. It depends on the
actual results and findings. The number of electrodes for the experiment can be 3 to
more than 128 channels.

4.2.4. Electrode Impedance

Dead skin and scalp sweating, oily skin secretions (sebum), can obstruct brain
electrical activity propagation.The obstacle of this electrical activity technically
expresses as impedance, which is measured in units of Ohm (Ω).Therefore, to collect
good quality EEG data, it is essential to keep electrodes impedance as low as possible.
Impedance can be minimized by adequately cleaning all electrode sites with alcohol
and applying an appropriate amount of electrode gel or saline [57].

4.2.5. Signal Digitization, Amplification and Forwarding

Within an active brain, there are continuous fluctuations and changes in the voltages
produced by an ionic current within the neurons [57]. The generated voltage collected
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by the electrodes and passes to the amplifiers to amplified and digitized. After that,
this amplified and digitized signal is transmitted to the recording computer through a
wired connection (e.g.via USB) or wirelessly (e.g., via Bluetooth) [57].

4.3. EEG Artifacts

The recorded EEG signals that are come from other sources rather than cerebral is
termed as EEG artifact. Mainly there are two types of EEG artifacts, the physiologic
artifacts and extra physiologic artifacts. The physiologic artifacts generated from the
different parts of the subject body while extra physiologic artifacts arise outside of the
subject body.

4.3.1. Physiologic Artifacts

As the physiological artifacts come from the patient body itself, it can be categorized
as intrinsic artifacts [59]. Here, we also include a short overview of some significant
physiologic artifacts.

Muscle artifacts

Muscle activity is a very common artifact of the EEG signal. This kind of activity,
also known as an EMG signal (Electromyogram). Notably, the EMG signals (shown
in figure 7) generated due to facial muscles’ movements like forehead, cheek, mouth,
neck muscles, and jaw musculature. Usually, the duration of muscle activity is shorter

Figure 7. EMG artifact (identified in the red rectangular box) mixed with the raw EEG
signal.

than the brain activities so, it can be identified quickly based on duration, morphology,
and frequency [60].
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Eye movements

Eye movement is a very common artifact seen in the recorded EEG signal. The human
eye generated a strong electromagnetic field by firing the millions of neurons in the
retina [57]. This electromagnetic field also generated an electrical activity that is
distinct from the brain’s electrical activity. Eye movement artifacts can be two types,
horizontal and vertical. The vertical eye movements look like a sinusoidal wave, while
horizontal eye movements appear box-shaped (figure 8).

Figure 8. Eye movement artifacts usually seen in frontal electrodes.

Eye Blinks

The eye blinking and eye movement artifacts are also known as an electrooculogram
(EOG) that can be propagated on the head scalp and recorded by the EEG electrodes.
The reason behind generating eye blink artifacts is ocular conductance, created by the
alterations of corneal interaction with eyelid [59]. Generally, the amplitude of EOG
is higher than the EEG signal, but its frequency is same as EEG [59]. The eye blinking
artifacts displayed in the figure 9.

Figure 9. Eye blink artifacts.
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4.3.2. Extra Physiologic Artifacts

The extra physiologic artifacts come from external sources like environment and
experimental error. For this reason, these artifacts are classified as extrinsic
artifacts [59].

Instrumental artifacts

The electrodes and headsets movement can cause this type of extrinsic artifacts visible
in the affected channel or all channels. Appropriate procedures and planning can
eliminate these artifacts. Before starting to record EEG activity, it is imperative to make
sure that the headset sits snug on the scalp, and all electrodes are securely contacted
with the skin. An example of the instrumental artifacts shown in the figure 10.

Figure 10. Instrumental Artifacts.

Power Line Artifacts

The frequency of the power line artifact is 50Hz in the EU and 60 Hz in the US. It
is potent and quite apparent artifacts (figure 11) in the raw EEG signal. This artifact
arises when electrodes’ impedance is reduced, and line noise became stronger and
generated artifacts [57], and this kind of artifact very frequent in the EEG signal. Since
the brain’s cognitive frequencies are often below the power line frequencies, and it is
straightforward to get rid of this noise from raw EEG data. The lowpass filter with a
cutoff below the line frequency (50 or 60 Hz) and notch filters are a common technique
to remove this artifact.
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Figure 11. Power-line Artifacts shown in the yellow rectangle box.

Head Swinging

The head swinging and swaying can create a powerful artifact on the recording EEG
signal. It is recommended not to turn the patient or subject head too fast or look up or
down abruptly during recording. Since this artifact can shifts in the data so it will be
too hard to take care of during processing [57]. In figure 12, head swinging artifacts in
the EEG is shown.

Figure 12. Head Swinging Artifact.

4.4. Artifacts Removal Techniques

A lot of general techniques have been used to remove or separate EEG artifacts from
raw EEG data. Generally, we can use classical filtering techniques -such as low, high,
bandpass filter, Etc. However, this method is usually done whenever the artifact’s
frequency bands and the desired signal do not overlap. When the EEG spectral is
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overlap with the artifact, this technique will not be sufficient,in this situation alternative
techniques must be adopted [61].

4.4.1. Regression Methods

Regression Methods is one of the oldest EEG artifact removal methods. Hillyard and
Gallambos have first proposed the time domain regression method; later on, Whitton
et al. proposed another regression method based on the frequency domain, and these
two methods were combined with EEG detection software [59] to clean up the signal.
The regression algorithm is applied based on the assumption that each channel is the
cumulative sum of pure EEG data and a proportion of artifact, which can be defined
as the amplitude relationship between the reference channel and EEG channel [59]. In
mathematics, this algorithm can express as:

EEGcorr = EEGraw − γF (HEOG)− δF (V EOG) (1)

Where (γ) and (δ) are the transmission factors of EOG and EEG respectively. EEGcorr

represents the clean EEG data and EEGraw define the raw EEG data. HEOG and VEOG
indicate horizontal and vertical EOG signals. Although, blind source separation-based
methods are gained popularity to the researchers but still regression-based algorithms
used as a gold standard to assess the performance of the new approach [59].

4.4.2. General Filtering Techniques.

Filter

The filter refers to a circuit designed in a way to separates one frequency or range of
frequencies out of a combination of various frequencies in a circuit.

Low Pass Filter

A low-pass filter is a digital filter that allows passing frequencies that are lower than
the cutoff frequency (edge of frequency) and attenuates the frequencies that are higher
than the cutoff frequency [62].

High Pass filter

It is just the opposite of low pass filter, i.e., .which allows to pass frequencies higher
than the cutoff frequency (edge of frequency) and attenuates the frequencies that are
lower than the cutoff frequency [62].

Band Pass Filter

The bandpass filter works in between highpass and lowpass filters. It means it passes
frequencies within a specific range and attenuates the frequencies outside in that range
[63].
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Notch Filter

A notch filter is a bandstop filter used to attenuate a narrow range of frequencies [63].

4.4.3. Advance Filtering Methods

Several filtering methods can be used in artifact removal techniques from the raw EEG,
for instance, adaptive filtering, Wiener filtering, and Bayes filtering. Here two most
common filtering methods are briefly illustrated:

Adaptive Filtering

It is a digital filtering method based on the assumption that the desired signal s(n) and
the artifact v(n) are uncorrelated [61]. In this filtering technique, an artifact reference
is used as one of the inputs originated from undesired electrophysiological signals, for
example, EOG, EMG. By iteratively adjusting the weights factor of the filter generates
a signal v̂(n), which is associated with the original artifact signal v(n) from a reference
signal u(n) [61]. Then the artifact that is estimated from the system is then subtracted
from the recorded signal x(n), and the residual ŝ(n) is an estimate of the original
signal s(n) [61]. In this system, some optimization algorithm is used to update its

Figure 13. Functional diagram of an adaptive filter.

weight parameter like least mean squares (LMS) or recursive least squares algorithm
(RLMS). RLMS is much faster than LMS but requires a high calculation cost [59].
Although the implementation of adaptive filtering is easy, it can operate in-line and
without prepossessing or calibration [61], but this system has disadvantages because
the system needs to provide additional sensors for reference inputs. Functional diagram
of the adaptive filtering technique is shown in figure 13.

Wiener Filtering

Wiener filter is also an optimal filtering technique that operates based on a linear
statistical filtering approach to remove unwanted artifacts[59]. In this filtering
technique, it is assumed that the desired signal and the artifacts are uncorrelated
with each other, and it also assumed that the original signal and the artifact are
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stationary linear stochastic processes with known spectral characteristics [61]. This
filter generates a linear time-invariant filter to minimize the mean square error between
the actual desired signal and the estimated signal by estimating power spectral densities
(PSDs) of the signal and the artifact [61] since there is no prior knowledge on the PSD
so it must be estimated from measurements [61].

4.4.4. Wavelet Transform

Wavelet transform is widely utilized in digital signal analyzing and processing
mechanisms. It transforms a time-domain signal into time and frequency domain
signal. From this time-frequency signal, a set of wavelet coefficients are encapsulated
for non-stationary signal analysis [59]. The time-frequency transformation is
accomplished by selecting the subsets of the scales (t) and the time shift (k) of the
mother wavelet (Ψ(t)). Mathematically it can be written as:

Ψj,k = 2( j

2
)Ψ(2jt− k) (2)

where j and k are integers. Then the wavelet transform can be expressed by:
Ψj,kW = 〈f,Ψj,k〉 (3)

The above equation indicates the inner product of the time-domain signal and wavelet
function. The DWT (discrete wavelet transform) derived from continuous wavelet can
be applied when the input signal and the decomposition can be expressed as:

Xa,L(n) =
N∑
k=1

Xa-1,L(2n− k)g(k) (4)

Xa,H(n) =
N∑
k=1

Xa-1,L(2n− k)h(k) (5)

Here g(k) and h(k) are refer to a low pass and a high pass filter respectively.Moreover,
these filters generate a low-frequency high-frequency component. Then thresholding
is applied to this decomposition signal to remove the artifacts signal and to get the
reconstructed clean EEG signal [59].

4.5. Blind Source Separation (BSS)

Blind Source Separation is a class of unsupervised learning algorithms developed
and applied to digital signal processing to separate the original signal from a
mixture of signals [61]. This algorithm is beneficial when both the sources and the
mixing methodology are unknown; only mixture signals are available without prior
information [61]. This methodology can be expressed as follows:

X = AS (6)
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Where "X" is the original signals obtained from scalp electrodes,and "S" is the
combined source and artifact signal."A" refers to the unknown matrix of source signal
"S". The BSS can be written as:

U = WX (7)

Where U is the estimation of the original sources, and W is the unmixing matrix.
When the original sources’ estimations are known, then the corresponding sources of
the artifact signals can be removed [61]. In this section, some BSS algorithm has been
described that is usually adopted in EEG signal processing.

4.5.1. Independent Component Analysis (ICA)

Raw EEG signals are often contaminated with some other undesired signals like eye
movements, blinks, muscle, heart, and line noise, which cause a severe problem to
EEG interpretation and analysis. There are several algorithms have been proposed to
remove eye movement and blink artifacts from raw EEG. ICA-based artifact removal
method is an acceptable method to the researchers that helps to separate and remove a
wide range of variety of artifacts from the raw EEG data [64]. This technique works
based on the assumption below:

1. The cerebral and artifactual sources are statistically independent of each other
and instantaneously mixed [59].

2. The dimension of the original signal will be greater than or equal to the source
signal [59].

3. The signal source will be non-Gaussian. Alternatively, only one source can be
Gaussian [59].

As we know, the acquisition of biomedical signals is non-linear instantaneous;
therefore, a Convolutive ICA (CICA) was proposed to approach considering weighted
and delayed contributions of signals [65]. On the contrary, for ICA implementation,
the source of estimate original signals must be non-Gaussian; it is not always possible
to know that the signal sources are Gaussian or non-Gaussian [59]. Figure 14 and 15
presenting the raw EEG with eye blinking artifacts and filtered EEG signal in where
artifacts were removed using ICA respectively.



31

Figure 14. Raw EEG signal including eye blink artifacts.

Figure 15. EEG artifacts removed by ICA using Infomax algorithm.

4.5.2. Algorithm for Independent Component Analysis (ICA)

Some accessible and widely acceptable algorithms have been developed depending
on running time, allocated memory of the system, accuracy, and scalability of
implementation [66]. Here two widely used algorithms have been introduced:

Hyvarinen’s fixed-point algorithm (FastICA)

FastICA is one of the classical ICA algorithms often used in ’real time’ applications
and can solve a maximum likelihood estimation problem [67]. FastICA converges
quickly and uses kurtosis for the estimation of the independent components [67]. This
algorithm applied after performing the whitening on the data set [67]. Algorithm of
FastICA is as follows:

1. Initialize wi in a random.
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2. wi
+ =E(∅ (wi

TX)wi -E(x∅(wi
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3. wi = w+
i

w+
i

4. for i = 1,go to step 7, ELSE continue with step 5,

5. wi
+ =wi −

∑i−1
j=1 wi

Twiwj

6. Repeat step 3.

7. If not converged, go back to step 2. Else go back to step 1 with i = i + 1 until all
components are extracted

Infomax

It is a widely used algorithm in neuroscience-based on the maximization of
entropy, which presents a natural gradient for the computation of the independent
components.The mathematical formula for the neural learning method can express as:

W (t+ 1) = W (T ) + η(t)(I − f(s)sT )W (t) (8)

Here η(t) is a learning-rate function, and f(s) is a function that depends on the nature
of distribution, such as super-Gaussian or sub-Gaussian. Here, W defines as a random
matrix [66].

4.5.3. Statistics Used for ICA Analysis

Skewness, Kurtosis, and variance are very used statistics to compute ICA for EEG
data.

Kurtosis

Kurtosis is one of the classical statistics to measure the non- gaussianity of data to use
ICA implementation. It is a fourth-order cumulant and can be defined as:

kurt(y) = E{y4} − 3(E{y2}2) (9)

Here, y considered as a random variable that has zero-mean and variance equal to one
and also assumed that y is the unit variance, so the right-hand side of the equation 9,can
simplify to E{y4} − 3. That means that Kurtosis is merely a simplified variant of the
fourth Ey4. For a gaussian y, the equation becomes kurt(y) = 3(E{y2}2). Therefore
Kurtosis is zero for a gaussian random variable and non zero for nongaussian random
variables [68]. On the contrary, Kurtosis can be positive or negative. The negative
Kurtosis is called subgaussian, which typically has a flat probability density function.
Moreover, the positive Kurtosis is called super gaussian, in which the probability
density function is spiky [68]. The absolute value of Kurtosis is used as a measure
of non-gaussianity in ICA. In computational and theoretical aspects, Kurtosis can be
estimated simply by using the fourth moment of the sample data.
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Skewness

Skewness is the other statistic used in ICA, which measures are the degree of
distortion from the symmetrical bell curve in a probability distribution. Unlike
Kurtosis,Skewness can be positive or negative. When the degree of skewness greater
than zero, it is called the distribution is positively skewed. Conversely, when the degree
of skewness less than zero, then distribution is called negatively skewed. Negatively
skewed distribution means that the left tail is long relative to the right tail, and
positively skewed distribution indicates the right tail is long relative to the left tail.

Variance

Variance is a statistic that measures how far a set of random variables are spread out
from their average value. It is equivalent to a second-order cumulant of a probability
distribution and mathematically define as:

var(x) = E[(x− µ)2] (10)

where x is a random variable and µ is the mean of variable x.

Figure 16. Artifact components detected by using skewness, Kurtosis and variance (left
to right) in ICA analysis. Sensor positions of the artifact signal in where the artifact is
generated.The dark blue represent heart signal and dark red identified the EOG signal.

4.5.4. Principal Component Analysis

Principal Component Analysis(PCA) is first proposed by Berg and Scherg to separate
the EOG signal from raw the EEG signal [59]. PCA is one of the most straightforward
and computationally efficient BSS techniques, which algorithm developed based on
the covariance matrix’s Eigenvalues. In PCA, the algorithm first converts correlated
variables into uncorrelated variables using orthogonal transformation, called principal
components (PCs). The PCs of EEG signals is implemented using Single Value
Decomposition (SVD). Then the artifact is rejected by the related components through
an inverse operation [59].
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5. DATA DESCRIPTION

5.1. Game Selection

The study aims to analyze the individual emotional wellbeing in smart space,
especially stress and flows and affect. As a part of our experimental procedure, we
selected one of the most familiar and comfortable games called the Bubble Shooter1

(figure 17) to elicit the subjective emotional state. We have chosen this game so that
a player quickly adopts in the digital gaming system and adjusts to induce variation in
the players’ stress, flow, and affect by modifying the speed, difficulty, and the strategy
settings of the game. In this game, the player has given the challenge to clear all
bubbles. To clean up all the bubbles, the player needs to make a group of 3 or more
bubbles of the same color and hit these with other same color bubbles. Once the player
would have enough bubbles underneath the group, he/she can remove the top bubbles,
and the entire row of bubbles will have vanished. When a row of bubbles is clean, a
new row will be formed on the top and moves the whole bubble field 1 row down. This
task can be done very fast. Otherwise, if the bubbles touch the bottom of the screen,
the game will over.

Figure 17. Screenshot of Bubble shooter game.

5.2. Subjects

We selected eighteen healthy volunteer subjects, both male and female, for the data
collection procedure. Most of the volunteers were researchers from the University of
Oulu, Finland, but they come from different nationalities. All subjects were right-
handed between the age of 20 and 45 years with no history of mental illness, brain
injury, and psychiatric disorders. Before this experiment, we explained the volunteers
all about our experimental producers and purpose of this experiment and given a

1https://www.bubbleshooter.net/original-bubble-shooter/
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questionnaire from where they were asked about their age, gender, whether they had
any head, brain injury, neuralgic or chronic diseases, and taken the written consent.

5.3. Experimental Devices

Emotiv EPOC Flex kit (shown in figure 18) was used for acquiring the EEG data in
this experiment. This Flex kit comes with an EEG head cap, including 32 channels
EEG recording electrodes (plus CMS/DRL references). The electrodes’ placement
was located on the scalp according to the international 10-20 system, as shown in
the figure 19. To record the EEG signal, Emotive EPOC Flex uses the sequential
sampling method with a single ADC at a resolution of 14 bits and a sampling rate
of 128 Hz2. Emotiv EPOC Flex is convenient to use as it has wireless connectivity,
relatively cheap, long-life battery support, and can be visualized a real-time EEG signal
using EmotivePRO software.

Figure 18. 32 channels Emotiv EPOC Flax Cap.

2https://emotiv.gitbook.io/epoc-flex-user-manual/epoc-flex/
technical-spec
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Figure 19. The channel location used in the Emotive EPOC Flex cap. And four selected
EEG frontal electrodes used for feature extraction method.

5.4. Environment Setting

This experiment was done in a room that was equipped with a large LED screen with
mouse control, and two laptop one is used for operating EmotivPro software and the
other one used for controlling the video game by a researcher. Two cameras were used,
one is placed infront of the subject, and the second camera is positioned right behind
the researchers. Two researchers were in this room and situated behind the subject.
One researcher was involved in instructing the test subject, monitoring the sensors,
and adjusting the game settings while the other researcher collects user feedback with
queries. Game playing scenario and data collection procedure are presented in figure
20.
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Figure 20. Experimental setup for data collection.

5.5. Course of Measurement

The experiment consisted of six main phases from 0 to 5:

• Phase 0, the player was allowed to play freely to get familiar with the game.
Target is in the immersion of a player into the game, as well as flow inducing.

• In phase 1, the gameplay was interrupted with a Skype call ringing to reduce the
game player’s flow.

• Phases (2 and 3), the game was further interrupted by external control over the
mouse to create difficulties for playing; the target was to increase stress and
induce the negative affect.
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• Phase 4, the player had given the challenge to win the game. In this phase, the
game was set in a way that the player will certainly lose. The aim of this phase
to increase player stress levels.

• Phase 5, an easy game which allows the subject to cool off.

Table 1. Experimental protocol proposed by Halkola et al. [6].)
Phase Time (min) Comments
0 3-5 easy game, warm-up
1 8-10 easy game, Skype call while playing
2 8-10 easy game, external control of mouse
3 5-10 difficult game, losing
4 3-8 difficult game, losing
5 5-10 easy game, winning, cool-off

5.6. Self-Report Measurements

A set of questionnaire was filled by the test subject after each phase of this experiment
to measure their current emotional state(stress, flow, and affect). For knowing the
positive, negative emotional affect we used PANAS [69] and for arousal, valence we
followed Self-Assessment Manikin (SAM) queries [70]. We also designed a simple
self-assessment questionnaire(SSAQ) scale to measure overall happiness, stress, flow,
negative affect and attention, and flow-related questions.

5.7. Synchronization.

The software was used for both Mood Metric ring and heart rate readings in a
smartphone because they share that very same reference time. Moreover, the same
smartphone was used for EEG data time synchronization. When an event was started,
the smartphone was tilted on specific EEG measurement electrodes, which created a
marker in the EEG signal and other wearable sensors. The same job was done when
the event was finished. Moreover, when the smartphone was tilted, it consecutively
generated a number shown on the phone screen ( figure 21). It recorded the time of the
experimental event, and also video recording helps in time synchronization. In addition
to this, we also created markers in the raw EEG data with EmotivPRO software’s help.
A graphical user interface(GUI), MNELAB3 used to visualize the raw EEG signal that
also helped in time synchronization (figure 22). From the video recording data, we
found out the specific EEG electrode is where the mobile phone was tilted. Then we
exported the time of the experimental event from the mobile phone. We carefully look
up the raw EEG data on the MNELAB GUI and EmotivPRO software to figure out
the tilted artifacts and mark them as the starting or ending point of the experimental
events.

3https://pypi.org/project/mnelab/
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Figure 21. EEG electrode and tilt number is shown on the mobile phone screen during
the data collection procedure.

Figure 22. Tilt artifact identified in MNELAB GUI, the green line indicates the exact
time point of the event.
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6. SIGNAL PROCESSING

6.1. Preprocessing

EEG signals are feeble and usually contain different kinds of artifacts in it. It is
imperative to prepossess the raw EEG signal before the analysis. The term prepossess
means removing the artifacts from the EEG signal and to preparation for feature
extraction algorithms. Power line interference, environmental noises, and drifts can
remove by applying a 0.5-50Hz bandpass filter [71, 72]. Signal preprocessing and
analysing steps are described in diagram 23.

Figure 23. Schematic representation of EEG data preprossessing method.

6.1.1. Digital Filtering

Generally, the digital filtering method can be applied to remove artifacts that the
frequency bands do not overlap with the desired signal frequency. To remove the
extra physiological artifacts such as slow drifts, powerline noise, and instrumental
artifacts, we used the bandpass filter with a lower cutoff frequency of 1 Hz and a
higher cutoff frequency 50 Hz. We implemented an FIR filter technique to design it.
Figure 24 shown the raw EEG signal before applying the bandpass filter and observed
some artifacts in it. After implementing the FIR filter, it removed slow drift and
other extra physiological artifacts from the original EEG signal (figure 25 ). Power
spectrum density (PSD) of the EEG signal before and after the utilising bandpass
filtering technique shown in figure 26 & 27 respectively.
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Figure 24. Raw EEG data before applying bandpass filter.

Figure 25. Raw EEG data after applying bandpass filter.
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Figure 26. PSD for unfiltered EEG signal.

Figure 27. PSD for filtered EEG signal.

6.2. Independent Component Analysis

Artifacts remain still in our filtered EEG signal ( seen in figure 25 ). The digital filter
technique could not remove altogether the artifacts that come from other physiological
sources like eye blinking, muscle signal, and heart signal. ICA is a popular technique
that widely used EEG signal preprocessing to separate desired brain signal mixed with
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some other physiological signals. We choose this method as it does not require any
reference signal. We applied a newer ICA algorithm Picard [73]. It converges faster
than FastICA and Infomax and is more robust than the other algorithms when the
sources are not entirely independent. Using a Principal Component Analysis (PCA),
the raw EEG signal is whitened (de-correlated and scaled to unit variance) before
fitting and implementing the ICA. Then We passed the n_components =3 (number
of principal components) to the ICA algorithm and identified artifact components by
visual in plotting inspection (figure 29). Then the captured artifacts were removed, and
the EEG signal was reconstructed. In the schematic below (figure 28) is outlined the
fitting and reconstruction techniques which govern dimensionality at different stages.

Figure 28. The schematic diagram of ICA implementation.

Figure 29. Figure shown that the ICA001 detected as a artifact component.

The scalp projection is shown in figure 29 ; the component ICA001 identified as
an eye artifact because the scalp map shows a robust far-frontal prediction. Besides
this, the power spectral density of component ICA001 is typically for EOG artifacts
because the EEG alpha peak is missing in it. The component-time course plot (figure
31) and ERP (figure 30) also confirm this assumption. The raw EEG and artifacts free
pure EEG signal are shown in figure 32 & 33 respectively, also shown PSD of the clean
EEG in the figure 34.
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Figure 30. Scalp topographies for artifacts components.

Figure 31. Time course plot showing the artifact component.
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Figure 32. Raw EEG signal which shown the eye blinking artifacts .

Figure 33. Reconstructed EEG signal after implementing ICA.
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Figure 34. PSD of the EEG signal after implementing ICA.

6.3. Feature Extraction

Features are the distinguishing properties of the signal. EEG feature extraction meant
obtaining useful information from the brain signal to characterize different emotional
states. In this thesis, we have selected four frontal EEG electrode F3 & F4 and F7 & F8,
and extracted important features for analysis. Before started analysis, we segmented
the clean EEG signal into 10 seconds time windows right before each interruption or
right after each experimental phase has started and right after interruptions or end of the
testing phases. We then computed EEG alpha band (8-13Hz) power (µV 2/Hz), using
Welch periodograms [74] on the F3, F7 (located in the left hemisphere) and F4, F8
(located in the left hemisphere) EEG recording channels. To evaluate the variation of
the user’s emotions, we compared EEG band power changes after and before contrast
in each experimental phase. We compare this variation by calculating band power
differences and ratio in each selected EEG sensors using the following equations:

The band power difference di:
[H] di = alphaai − alphabi (11)

The band power ratio ri :
[H] ri = alphaai /alpha

b
i (12)

Here superscript a and b indicate after and before each interruptions and gaming
phases.
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Table 2. Before and after time windows used to extract alpha band power.
Phase Before After
ph0 10s in the beginning of phase 0 10s before end of phase 0
skp 10s in the right before Skype call interrupt 10s right after Skype call interrupt
m1 10s in the right before 1st Mouse interrupt 10s right after 1st Mouse interrupt
m2 10s in the right before 2nd Mouse interrupt 10s right after 2nd Mouse interrupt
ph3 10s in the beginning of phase 3 10s before end of phase 3
ph4 10s in the beginning of phase 4 10s before end of phase 4
ph5 10s in the beginning of phase 0 10s before end of phase 0

We then estimate FAA by computing the lateralized alpha band power ratio between
the left and right hemispheres. Finally, We compare the lateralized power ratio to
measure relative changes in the alpha band power between 10 seconds time windows
of recorded EEG at the beginning of the gaming phase 0 and right after interruptions
or right before the end of the game phase. We consider a 10 seconds time interval at
the beginning of the game phase0 as our baseline for analysis.

Table 3. Before and after time windows used to assess emotional variation during the
gaming event. [75]

Phase Before After
1 10s in the beginning of phase 0 10s after interrupt
2 10s in the beginning of phase 0 10s after interrupt
3 10s in the beginning of phase 0 10s before end of Phase 3
4 10s in the beginning of phase 0 10s before end of Phase 4
5 10s in the beginning of phase 0 10s before end of Phase 5

The lateralized power ratios P for alpha band are determined as follows:

FAA =
L−R
L+R

, (13)

where L and R refer to alpha band power for left and right hemisphere
respectively.Therefore, a higher FAA values of equation (13) imply band power
decreases in the right hemisphere, which indicates the negative emotion. On the
contrary, a lower FAA value (13) imply band power decrease in the left hemisphere
resulting from positive emotion.

6.4. Statistical Analysis

The pseudo-medians [76] are calculated from the resulting FAA value obtain from
equation the (13) and evaluated with a non-parametric 95% confidence interval [76].
To tests the statistical significance of the after and before contrasts in our experiment,
the robust paired Wilcoxon signed-rank exact test [77] performed, as it does not require
normality in the data. Significant tests is performed according to Chowdhury et al. [75]

Ci = Pia − Pib , (14)

Here, i ∈ {1, 2, 3, 4, 5} indicates the experimental phases, and b and a denote for the
before and after timing windows mentioned in Table 3.
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7. RESULT

7.1. Power Level Comparison In Testing Phases

According to table 2, we calculated band power difference and ratios in each testing
phases to visualize the power level variation after and before contrast. We presented
this result for all selected EEG channels in this section.

Figure 35. Band power variation after and before contrast in each gaming phase for F3
channel.

From the above figure 35, it is observed that the band power differences are apparent
in phase 0, phase 3 & 4 and also slight variation seen in the power ratio at testing phases
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skp_nor ( Skype call interruption), m1_nor (1st Mouse interruption), and m2_nor (2nd
Mouse interruption) in channel F3.

Figure 36. Band power variation after and before contrast in each gaming phase for F4
channel.

For the F4 channel (figure 36), higher band power differences are perceived in
Ph0_dif, skp_dif (Skype call interruption), m1_dif (1st Mouse interruption). Also,
the power ratios are higher in skp_nor (Skype call interruption), m1_nor (1st Mouse
interruption), m2_nor (2nd Mouse interruptions).
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Figure 37. Band power variation after and before contrast in each gaming phase for F7
channel.

In figure 37, only a small difference is seen in Ph3_dif (phase 3) & Ph5_dif (phase
5). Other than no detectable changes observed in power ratios for all cases in figure
37.



51

Figure 38. Band power variation after and before contrast in each gaming phase for
F8 channel. Band power level changes is very low in skp_dif, Ph3_dif (phase 3) and
skp_nor, Ph3_nor (phase 3) as well.

Overall, presenting results indicate that band power level changes after and before
contrast are much higher in the F3- F4 than F7-F8. The power variations are notable
in F4 channels for both differences and ratios in each gaming interruption. Only a
little variation has been observed in phase 3 (in differences) in channels F8, unless no
changes have been seen associated with power level in channels F7 and F8.
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7.2. Frontal Alpha Asymmetry Analysis

We estimated Frontal Alpha Asymmetry Analysis (FAA) by computing the lateralized
band power ratios between left and right frontal EEG electrodes for each gaming phase.
In this stage, we compare relative changes in the alpha band power between 10 seconds
time windows of recorded EEG at the beginning of the gaming phase 0 and right after
interruptions or right before the end of each game phase. This experiment does not
have any baseline data. For this reason, we decided to compare band power changes
after each event with 10 seconds beginning of phase 0.

Figure 39. The Frontal Alpha Asymmetry (FAA) was measured between F3 and F4
channels. The gray lines represent individual band power ratio from the left to the
right cortex, the blue line indicating the FAA’s pseudo median, and the red shaded area
indicating the 95% confidence interval.
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Figure 40. The Frontal Alpha Asymmetry (FAA) was measured between F7 and F8
channels. The gray lines represent individual band power ratio from the left to the
right cortex, the blue line indicating the FAA’s pseudo median, and the red shaded area
indicating the 95% confidence interval.

Figure 39 presenting the result of lateralized band power ratios between F3 and F4
frontal EEG electrodes. In this result, we found that high volatility in phases 1 to 2,
low volatility in phases 0 and 3 to 5. It also indicates that the lateralized band power
ratio’s pseudo median increased from phase 0 to 1, then leveled off from phase 1 to 2,
and dropped from phase 2 to 3, no changes from 3 to 5. Moreover, a much variation
seen in the individual band power ratio from phase 0 to phases 1 and phase 2. This
may be the cause of varying individual emotional responses during the interruptions.
Figure 40 displaying the result of lateralized band power ratios between F7 and F8
frontal EEG electrodes. This result reports that the lateralized band power ratio’s
pseudo median slightly increased from phase 2 to 3, otherwise no remarkable changes
in the entire test phases. In comparing results from the figure (39 & 40), we conclude
that individual emotional responses are mostly associated with F3 and F4 channels.
Furthermore, our results confirm a high emotional response elicited (mostly negative)
in phases 1 and 2, indicating that the interruptions during game-play cause emotions
in test subjects, mostly irritation. Besides, we have not found any evidence of game
difficulty correlation with an emotional response in phases 3 to 5.

7.3. Statistical Test Result

Table 4 and 5 summarized the significant test statistics acquired from channels F3, F4,
and F7, F8, respectively. It is seen from the results presented in Table 4, significant test
statistics found for phase 1 (skype call ) phase 2 (Mouse interruption) in channels F3
and F4. We have not encountered any significant value for all gaming phases except
for step 5 in channels F7 and F8 .
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Table 4. Tests statistics for comparing emotional affect in each experimental phase
W , along with significance of the contrast to phase 0. ∗ marks indicate significance
p-value. This results obtain using channels F3 & F4.

Phase W p-value
1 83.0 0.027 ∗
2 87.0 0.015 ∗
3 62.0 0.275
4 55.0 0.437
5 35.0 0.864

Table 5. Tests statistics for comparing emotional affect in each experimental phase
W , along with significance of the contrast to phase 0. ∗ marks indicate significance
p-value.This results obtain using channels F7 & F8.

Phase W p-value
1 44.0 0.296
2 60.0 0.318
3 57.0 0.388
4 58.0 0.364
5 86.0 0.017 ∗
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8. DISCUSSION

Speedy technological advanced smart environments are expanding very fast. To secure
a healthy and comfortable life of the consumer in a smart sense, it becomes imperative
to measure wellbeing while engaging in this environment. This thesis mainly focused
on measuring emotional wellbeing in the digital game playing scenario by EEG signal
analysis. This work concentrated explicitly on evaluating the negative affects while the
test subjects were wholly immersed in the gaming situation.

EEG activity has been using as an index or proxy for measuring physiological,
mental, and emotional states. Many EEG features evaluate individuals’ emotional
states, such as time domain, frequency domain, and time-frequency domain, which are
very common. Among them, EEG frequency band power is one of the famous indexes
extensively using for emotion recognition. We have tested three EEG frequency
bands, i.e., theta, alpha, and beta to assess the user’s emotions by observing power
level changes before and after in each gaming events and found that the EEG Alpha
frequency rhythm is more sensitive to vigilance changes than the other frequency
rhythms (results shown in the appendix). Henceforth, we focus only on the EEG
alpha oscillation for final analysis. We have chosen two algorithms, the Teager-
Kaiser Energy Operator (TKEO) and the EEG band power, to characterize the different
emotional states. EEG band power is computed using the Welch periodogram, and for
calculating TKEO, we decomposed the EEG signal utilizing discrete wavelet transform
(DWT) to separate the desired frequency band and then applied the TKEO operator
on the selected bands. We perform normality testing on Alpha band power and
TKEO Alpha to select the appropriate features in this analysis. Our statistical result
is indicating that TKEO does not follow the Gaussian distribution ( Q-Q plot shown
in appendices figure 11.45(a),11.45(b)). We decided to leave out TKEO alpha and
concentrated on alpha power for assessing the user’s emotional states.

Our analysis reveals that the band power variations are much higher in the F4 than F3
channels for both differences and ratios, and more notable in each gaming interruption.
On the contrary, there is no distinguished changes have been noticed in channels F7
and F8 in both differences and ratios. Only a little variation has been observed in phase
3 in F7-F8 channels. This finding implies, F3 & F4 channels are more significant than
F7 & F8 for evaluating the user’s emotion recognition. Moreover, the pseudo median
of FAA estimated using F3, and F4 also intimates a higher value in phase 1 and phase
2, the higher FAA shows that the alpha band power is lower in the right hemisphere
than left due to irritation elicited by interruptions in gameplay. This result infers that
human emotional responses are correlated more with channels F3 and F4, also confirm
that the disruption during gameplay produced high negative emotions in test subjects.
Furthermore, we did not encounter any sign of emotion ( positive or negative) in phases
3 to 5 in changing the game level toughness. Lack of proof might be the cause of some
reasons:

1. The small sample size might one of the reasons for . We had to discard some
experimental data due to the high contamination of artifacts.

2. In each test phase, the subjects played the same game, and it might be another
reason. The subject was familiar with this game, and the game difficulties did
not change the game player’s emotional states, either positive or negative.
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3. The subject was continuously involved in doing the task, either playing or
answering the game-related questions after each gaming phase. It might be the
other reason. If the test subject gave a minimum one-minute rest and recorded
EEG data, we can compare the gaming phase data with resting-state data. We
might get the desired outcome for phase 3 to 5.

Overall we conclude that interruption during the game playing elicited negative
affect, and the game player different states of emotion can be assessed by comparing
relative the alpha band changes between the left and right frontal EEG channels.And
emotions are more strongly reflects on F3 and F4 channels then F7 and F8.
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9. CONCLUSION

For this research, the EEG signal studied to assess the emotional wellbeing of smart
spaces. We used experimental data and measurement methods introduced by Halkola
et al [6]. We measured the Frontal alpha asymmetry to determine for both positive and
negative emotional responses of the test subjects. Alpha band power calculated from
both left and right cortical areas using F3 - F4 and F7 - F8 EEG channels to compare
the band power changes from the left to the right.

Our experimental result proved that the skype call ringing and mouse interruptions
elicited negative emotions to the volunteers during the game playing situation.On the
contrary, we did not get any evidence in our result for task difficulties that designed for
eliciting stress or negative emotion.Our studies did not find any evidence for the flow
that was supposed to happen in phase 5, according to Halkola et al. [6]. Although our
measurement and analysis provided a significant result for measuring users’ emotional
states during gaming situations, it had some limitations. We can improve our test
results by solving a few of them. We collected EEG data from eighteen healthy
volunteers. Among them, we had to discard four test data due to contamination noise
that was impossible to remove from the dataset. We recommend more data set to get
good statistical significant tests. We also suggested recording baseline data for the test
subject’s EEG signal before starting each of the experimental phases. When we have
baseline line data, we could relate to each experimental phase with the baseline, which
will provide a more pronounced outcome. We can record baseline data for one minute
before each phase, where the test subject closes her eyes in a relaxing mood and sits
quietly. In further studies, this experiment and analysis method will expand for stress
and flow monitoring in computer gaming situation to observe how a smart environment
can influence wellbeing.
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11. APPENDICES

In this section, we included our preliminary analysis result that we have done for
choosing the appropriate band power for emotion analysis. For this initial analysis
initial, we include 10 seconds of time frames right before and right after interruptions.
It also included 10 seconds time frame beginning of phase 4 and 10 seconds before the
end of phase 4. We calculated power difference and ratio after and before variance in
each selective experimental phase for comparing the different band power changes.

In the resulting graphs below, first three letters of boxes indicate the name of
frequency bands,_dif & _nor indicates differences & ratio between after and before
in the experimental events. Also 1,2,3, indicates 1st,2nd ,3rd interruptions,and 4
indicates phase 4. For example : thet_dif1 defines the theta band power difference
for interruption 1,and thet_nor1 defines the theta band power ratio for interruption 1.

Figure 41. Theta power differences after and before contrast in F4 channel.

Figure 42. Theta power ratio after and before contrast in F4 channel.
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(a) Power differences after and before contrast in F4 channel.

(b) Power ratio after and before contrast in F4 channel.

Figure 43. Results of beta band power changes in F4 channel.
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(a) TKEO differences after and before contrast in F4 channel.

(b) TKEO ratio after and before contrast in F4 channel.

Figure 44. Results of TKEO alpha changes in F4 channel.
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(a) Q-Q plot for TKEO alpha in F3 channel.

(b) Q-Q plot for TKEO alpha in F4 channel.

Figure 45. Q-Q plot for TKEO Alpha for normality testing.
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