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Abstract 
 

This thesis aims to answer how many stocks make a diversified portfolio in a continuous-time world. 

The study investigates what are the factors determining diversification effects in a real, continuous-

time, world as opposed to thoroughly studied theoretical single period world. Continuous-time world 

investors care about geometric, instead of arithmetic, rate of return. 

 

We show how methodology based on information theory can be utilized in investing context. Geometric 

risk premium is explained by the Shannon limit and its derivative, fractional Kelly criterion. Investing 

world counterpart for the Shannon limit, compounding process capacity, is derived. Geometric risk 

premium is decomposed to single stock risk premium and diversification premium. Method for 

estimating diversification premium is provided. Concept of realizable risk premium is derived and used 

in risk averse investor diversification metrics. Diversification effect is measured as a (realizable) risk 

premium ratio and as a (realizable) gross compound excess wealth ratio. Both ratios are between a 

randomly selected portfolio of selected size and fully diversified benchmark. 

 

We show, both analytically and empirically, that diversification in a continuous-time world is a negative 

price lunch as opposed to free lunch in a single period world. Investor is paid a diversification premium, 

implying higher geometric risk premium, for consuming a lunch. The magnitude of diversification 

premium difference to benchmark, the opportunity cost of foregone diversification, is shown to be equal 

to one half of portfolio’s idiosyncratic variance scaled by squared investment fraction. To maintain a 

constant wealth ratio, required level of diversification for a long-term risk neutral investor is 

approximately directly proportional to investment time horizon length. 

 

The factors determining required level of diversification in a continuous-time world are number of 

stocks in the benchmark, Sharpe ratio and variance of the benchmark, idiosyncratic variance of an 

average stock, investment fraction and time. At investment fraction 1.0, risk averse investor requires 

more than 100, 200 or 1000 stocks to achieve 90%, 95% or 99% of the maximum diversification benefit, 

respectively. For short-term risk neutral investor, the corresponding numbers are about 20, 40 or 200 

stocks and yet significantly more for long-term risk neutral investor. The numbers increase and decrease 

as investment fraction increase and decrease, respectively. We find that small firms require substantially 

more diversification compared to large firms and that there are substantial and consistent differences in 

diversification premiums between investing styles. 
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1 INTRODUCTION 

1.1 Background, motivation and aims of the thesis 

“Diversification is the only free lunch in investing”, “leverage is dangerous” and 

“stocks for the long-run”. These are familiar commentary to most investors, but are 

they true and how can we quantify them? In this thesis we develop analytical 

methodology and empirical tests to assess and quantify these statements from 

diversification point of view. We discover the price for diversification in a continuous-

time world and quantify how the need for diversification is affected by leverage, or 

more generally the fraction of portfolio allocated to stocks, and by the length of 

investment time horizon. 

Peters (2019) describes using expectation value of wealth interchangeably with long-

term time average of wealth as the ergodicity problem in economics. Peters explains 

that for ergodic observables their expectation value equals their infinitely long-run 

time average. From the point of view of an individual interested in the growth rate of 

his wealth, Peters argues, wealth is not ergodic meaning accumulated wealth over time 

averaged over all possible realizations (the expectation value of wealth) is different 

from long-run time average of accumulated wealth realized to a typical individual. 

Peters further argues that, in the context of expected utility theory, assuming ergodicity 

for wealth requires treating wealth as an aggregate over parallel ourselves.  

Similarly, we consider expected arithmetic returns as not a viable option to project 

individual’s financial wealth in the future. The fact that Bill Gates is a billionaire will 

increase the arithmetic mean wealth of a population tremendously, but does not 

directly affect the financial position of a typical individual. Mr. Gates, like all of us, 

lives his life and consumes his private assets, which are not accessible to typical 

individual. We do not experience our lives as an aggregate over parallel ourselves (we 

only have one life) or as an aggregate over all people (we live our individual lives). 

Therefore, it is the expected geometric, instead of arithmetic, returns that describe how 

a typical investor experience the growth of his wealth over time. In practice, expected 

geometric return project median wealth instead of mean wealth. 
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The ergodicity problem and the distinction between arithmetic and geometric mean 

returns are at the heart of this thesis. In agreement with Peters (2019), we consider the 

life of an individual as undiversifiable and irreversible, rendering the use of the 

expectation value (arithmetic mean) for wealth as not feasible. Unlike the life of an 

individual, stock holdings are easily diversifiable. Diversification is one of the most 

fundamental and important concepts in finance. Consequently, there is a fair amount 

of prior research on the topic and some of the results from the early research are deeply 

rooted both in the financial literature and in the knowledge base of the practitioners. 

Especially this is the case with the conventional wisdom that it takes no more than 

about ten stocks to make a sufficiently diversified portfolio.  

Importantly, the early literature and the results on diversification are mainly based on 

single period model comprising of expected arithmetic returns and their volatilities. 

Single period model by construction ignores the effect of time. Assumption of single 

period is a major simplification and, as we will show, has led to results which are not 

the most relevant to an investor who lives in a continuous-time world and aims to 

accumulate his investment wealth over time. Such investor, as much of the whole 

investment practitioner community to our knowledge, is more interested in expected 

geometric returns and volatilities. We will show that expected geometric returns, 

unlike expected arithmetic returns, are a function of level of diversification. This 

means diversification in a continuous-time world both reduce risk and increase 

expected (geometric) return, which in turn implies diversification is beneficial not only 

for risk averse but also for risk neutral investor, who only cares about the expected 

reward. Throughout the thesis, growth rates are expressed as instantaneous meaning 

continuously compounded rates unless otherwise stated. 

The aim of the thesis is to explore the diversification effects from the real investor 

point of view who lives in a continuous-time world with an aim to accumulate his 

wealth through time in contrast to academic diversification effect important for an 

imaginary investor who is interested in maximizing his expected utility in a mean-

variance single period world. Our practical investor reinvests her returns to fully 

benefit from the long-term effects of compounding. 
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The main research question is: How many stocks make a diversified portfolio in a 

continuous-time world? In a single period world this question is thoroughly researched 

using mean-variance optimization. More recent studies (see e.g. Domian, Louton & 

Racine, 2007; Bessembinder, 2018; Tidmore, Kinniry, Renzi-Ricci & Cilla, 2019), 

however, have considered the effect of diversification to long-term realized returns, 

which implicitly is about incorporating the effects of time and geometric returns into 

the analysis. In our study, we assess the diversification effect in a continuous-time 

world systematically by first building a theoretical framework and then by testing the 

predictions from that framework against empirical data. In addition to the main 

research question, these specific research questions rise in continuous-time 

framework: How diversification effect is affected by fraction of capital allocated to 

stocks (asset allocation)? How diversification effect is affected by time (investment 

horizon)? How diversification effect is affected by rebalancing frequency? How 

diversification effect is affected by investing style? 

1.2 Methodology and data 

The methodology used in our study is based on information theory. The work of 

Claude Shannon, John Kelly and Edward O. Thorp forms the basis on which we build 

our theoretical framework to assess diversification effect in a continuous-time world. 

Shannon is the inventor and the father of information theory, Kelly extended the 

applicability of Shannon’s theory to gambling and Thorp is a mathematician, known 

as the father of quantitative investing, who further extended and applied Kelly’s results 

to investing. 

We demonstrate different methods for deriving the formula for geometric risk 

premium and show how the maximum of the geometric risk premium relates to 

Shannon’s (1948) famous concept: information channel capacity, the Shannon limit. 

We associate the compounding process with information channel and call the investing 

world Shannon limit as compounding process capacity. Furthermore, we show, by 

drawing an analogy with digital communications, that utilizing a single period model 

implicitly corresponds to assessing a data transfer based on transmitted, instead of 

received, data rate. The square of the Sharpe ratio is shown to correspond to signal to 

noise ratio (SNR) in Shannon’s channel capacity equation. SNR can be thought to be 
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the single most important measure in digital communications, which explains the 

central role of Sharpe ratio in the investing word. 

Fractional Kelly criterion and its applications to investing context, as defined by Thorp 

(2006), form the grounds from where we derive our methodology and equations to 

assess diversification effects in the continuous-time world. Kelly criterion is a 

derivative of the Shannon limit and states the investment fraction (fraction of 

investment capital allocated to stocks) at which the Shannon limit (maximum 

geometric risk premium) is achieved. Furthermore, by using fractional Kelly criterion, 

we can determine the geometric risk premium at any given investment fraction. The 

fact that geometric risk premium is a function of level of diversification makes 

fractional Kelly criterion a perfect tool to assess diversification effect. 

Risk premium (throughout the thesis, risk premium refers to geometric risk premium 

unless otherwise stated) is decomposed to sum of a single stock risk premium and 

diversification premium. Diversification premium is the risk premium difference 

between a portfolio of selected size and a single stock portfolio. Linear regression-

based method is provided for estimating an average idiosyncratic variance for single 

stock portfolio from data comprising of exhaustive monthly risk premiums for 

individual stocks. Very large data set together with its exhaustiveness imply very high 

precision estimate. Diversification premium for a benchmark portfolio is derived 

utilizing the estimated average idiosyncratic variance for a single stock portfolio. We 

further provide methodology to calculate diversification premium for any portfolio 

size and define diversification premium difference to benchmark as the difference in 

diversification premiums between a portfolio of selected size and fully diversified 

benchmark portfolio. 

Risk premium is an expectation for infinitely long investment horizon. Human life and 

realistic investment horizons, on the contrary, are measured in years and decades. To 

account for the risks associated with limited life expectancies and investment time 

horizons, we derive a concept called realizable risk premium. Realizable risk premium 

is the proportion of the risk premium explained by the (expected) risk premium. The 

remaining proportion is explained by noise (risk). The key property of realizable risk 

premium metric is that it accounts for both dimensions (risk and reward), but expresses 



 15 

its value in a single (reward) dimension. At infinity, realizable risk premium equals 

risk premium, but in the meantime, realizable risk premium is an increasing function 

of investment time horizon length. In the short-term, we show that realizable risk 

premium is approximated by SNR weighted risk premium. Replacing risk premium 

with realizable risk premium in our diversification metrics change the investor type 

from risk neutral to risk averse.  

Risk premium describe the growth rate as an average over time and is the average 

direction of the change in wealth at any given moment. We therefore consider risk 

premium and realizable risk premium as short-term metrics. For a long-term investor, 

it is the wealth at the end of investment horizon that matters the most. We therefore 

consider the gross compound excess wealth (wealth including initial investment in 

excess of what investment in riskless rate would have produced) as the relevant long-

term metric. Gross compound excess wealth or realizable gross compound excess 

wealth is the wealth accumulated by compounding with risk premium or realizable 

risk premium as growth rate for risk neutral and risk averse investors, respectively. 

Using realizable in parenthesis (realizable) before the diversification metric means that 

we use the word “realizable” in case of risk averse investor metrics, but leave it out 

from risk neutral investor metrics. 

Three diversification metrics for the continuous-time world are defined: 1) number of 

stocks required to achieve a positive risk premium, 2) number of stocks required to 

achieve a proportion (e.g. 90%) of the (fully diversified) benchmark risk premium and 

3) number of stocks required to achieve a proportion of the benchmark gross 

compound excess wealth over time. The first metric is the absolute minimum level of 

required diversification, the second is a short-term diversification metric and the third 

is a function of investment time horizon and is used as a long-term diversification 

metric. Second and third metric are further divided to risk neutral and risk averse 

investor metrics. Risk premium and realizable risk premium are utilized in the 

diversification metric equations for risk neutral and risk averse investor, respectively.  

Our theoretical framework predicts risk premium, diversification premium difference 

to benchmark and the three defined diversification metrics for any portfolio size. What 

is remarkable about the predictions is that after deciding the investment fraction and 
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time horizon, only four empirical parameters are required: average monthly number of 

stocks in the benchmark portfolio, instantaneous Sharpe ratio of the benchmark 

portfolio, variance of the benchmark portfolio and the average idiosyncratic variance 

of a single stock portfolio. The developed linear regression-based method is used to 

estimate the last parameter and the three former parameters are calculated from the 

benchmark portfolio’s time series data. 

We test the predictions from the developed theoretical framework against empirical 

data from the U.S. stock market. Empirical data consists of monthly CRSP stock 

returns for all common stocks combined with one-month Treasury bill data from July 

1926 to June 2018. In addition, we combine annual accounting-based data for U.S. 

stock market from Compustat with CRSP and Treasury bill data for the period from 

August 1962 to June 2018. The primary period used in empirical tests is the 45.5-year 

time span from January 1973 to June 2018, which includes Nasdaq and contains all of 

the stocks listed in major U.S. stock exchanges. Monthly bootstrapping without 

replacement is used to create equally weighted portfolios of selected size randomly.  

We use in-sample test to investigate how well the theoretical predictions explain the 

empirical diversification effect. However, as we want to project the results into the 

future, we show both analytically and using log-normal simulator that forward-

looking, out-of-sample, diversification premium (and therefore the required level of 

diversification in general) is expected to be higher than the historical value. For risk 

premium, all else equal, the forward-looking risk premium is expected to be lower 

compared to historical realized risk premium. The reason is that not only the risk 

(standard deviation), but also the uncertainty about risk (the standard deviation of the 

standard deviation estimate) affect geometric metrics. Furthermore, we find that our 

in-sample predictions systematically slightly underestimate empirical diversification 

premium. We hypothesize the underestimation is attributable to fat-tailedness of the 

return distribution combined with less than theoretically optimal (less than infinite) 

monthly rebalancing frequency. Accounting for both the underestimation in the in-

sample tests and the uncertainty entailed in the future risk parameters, we consider the 

required level of diversification estimated by our theoretical framework as the lower 

bound.  



 17 

1.3 Results 

We test the in-sample predicted diversification metrics against bootstrapped empirical 

results. Based on the empirical tests the theoretical framework is able to predict the 

selected diversification effects and metrics very accurately. The slight systematic 

underestimation of the level of required diversification, which is present with all the 

metrics, disappears when we cut one percent from both tails of each month’s single 

stock risk premium data. With the fat tails cut, the predictions become extremely 

accurate. This supports our hypothesis that the underestimation of diversification 

premium is caused by fat-tailed risk premium distribution combined with lower than 

infinite rebalancing frequency and further supports the view that our predictions for 

required level of diversification should be taken as lower bounds.  

The most important implication from using geometric, instead of arithmetic, risk 

premium as the basis for assessing continuous-time world diversification effects is 

reflected by the price for diversification. We show both analytically and empirically, 

with very high statistical significance, that diversification in a continuous-time world 

is a negative price lunch as opposed to free lunch in a single period world. More 

diversification imply higher risk premium meaning investor is paid a diversification 

premium for consuming a lunch.  

How diversification effect is affected by fraction of capital allocated to stocks (asset 

allocation)? The cost of foregone diversification is the magnitude of diversification 

premium difference to benchmark, which is shown to be equal to one half of portfolio’s 

idiosyncratic variance scaled by squared investment fraction. The fact that investment 

fraction is squared means that for leveraged portfolios diversification is extremely 

important while for portfolios with low stock allocation the effect from diversification 

is smaller. At investment fraction one, the risk premium for a randomly picked equally 

weighted 10-stock portfolio in the 45.5-year period from January 1973 to June 2018 

was about 1.6 percentage points less than for a fully diversified benchmark portfolio. 

The corresponding number was 0.6 and 3.6 percentage points for investment fractions 

0.6 and 1.5, respectively. 1.6 percentage points corresponds to a cost of an expensive 

active mutual fund. In this light, ten stocks are hardly enough to make a diversified 

portfolio. 
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The concept of diversification premium difference to benchmark explains the 

difference in empirical expected geometric returns between a portfolio of selected size 

and a fully diversified benchmark in the Tidmore et al. (2019) study. 

How diversification effect is affected by time (investment horizon)? The aspect of 

investment time horizon length is reflected in our third, the long-term, diversification 

metric, the (realizable) gross compound excess wealth ratio. Remarkably, the required 

number of stocks to keep the gross excess wealth ratio constant for a risk neutral 

investor (e.g. at 0.9 implying 90% of the benchmark gross compound excess wealth) 

over time is approximately directly proportional to time horizon length. This means 

that the required number of stocks in the portfolio doubles when targeted investment 

time horizon length doubles. This is exactly opposite to risk premium based metrics 

(the conventional way to assess the effect of time) as the uncertainty related to risk 

premium decrease (and consequently realizable risk premium increase) as a function 

of time. However, wealth-based metrics, unlike risk premium-based metrics, account 

for the compounding effect. The diversification premium difference to benchmark 

compounds over time, hence the requirement for increased diversification as a function 

of investment time horizon length. 

How diversification effect is affected by rebalancing frequency? We find that while 

rebalancing is required to maintain the targeted equal weighting in the portfolio, which 

is theoretically the weighting that leads to highest risk premium, our theoretical 

predictions on the required level of diversification are not very sensitive to rebalancing 

frequency. Consequently, even though our theoretical framework assumes infinite 

rebalancing frequency, the predictions work well against monthly rebalanced 

empirical portfolios. However, when portfolios are leveraged aggressively, say beyond 

investment fraction 1.5, we start to see signs that monthly rebalancing frequency is too 

low as the risk premium declines more rapidly as a function of investment fraction 

than our theoretical framework predicts. 

How diversification effect is affected by investing style? Interestingly from a stock 

picker’s point of view, we find substantial differences in the level of required 

diversification as a function of investment style. Our results are in line with the well-

known fact that returns for small stocks are more volatile compared to big stocks. We 
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find that big stocks require less diversification than small stocks and the difference is 

especially large compared to microcap stocks. What is less well known, is that there 

are substantial differences in required level of diversification outside the size factor. 

We find that investing in high ROE, high momentum, value, or especially high 

earnings yield or high earnings yield combined with high momentum style requires 

substantially lower level of diversification compared to equally weighted market 

portfolio and especially compared to opposite investing styles. As an example, 

diversification premium for a benchmark portfolio for high earnings yield style is 

about 8.1 percentage points while it is about 25.6 percentage points for low earnings 

yield style. This implies that a 10-stock high earnings yield portfolio lose 

approximately 0.81 percentage points in risk premium to its benchmark, fully 

diversified high earning yield portfolio, while corresponding number for low earnings 

yield portfolio is approximately 2.56 percentage points. Furthermore, the styles 

(except for the size factor) that have historically required less diversification have also 

provided higher risk premium. Noteworthy, diversification premium differences 

between opposite investing styles, unlike risk premium differences, have historically 

been very consistent over time.  

We often hear that “diversification fails when it is the most needed” referring to bear 

markets. We find that the opposite is true: diversification premium is on average higher 

at 19.4 percentage points during bear markets compared to 13.3 percentage points 

during bull markets. The key is to measure relative diversification benefit by 

comparing diversification premiums between bear and bull markets instead of 

comparing absolute returns between bull and bear markets. If diversification were able 

to protect our portfolios from declining returns in bear markets, there would be no such 

thing as systematic risk and consequently no risk premium. 

Comparing continuous-time world diversification effects to single period world, the 

most striking differences are that in a continuous-time world diversification benefit is 

an increasing function of investment fraction and time horizon length and that not only 

risk averse, but also risk neutral investor enjoys from the benefits of diversification. 

For long-term risk neutral investor, the effect of investment fraction to required level 

of diversification is squared and the effect of time horizon length is approximately 

directly proportional to required number of stocks. For long-term risk averse investor, 
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the effect of investment fraction is increasing but milder than squared and increasing 

the time horizon length first decreases and then (typically after 10 to 20 years) 

increases the required level of diversification. For short-term risk neutral investor, the 

effect of investment fraction to required level of diversification is increasing but milder 

than squared. For short-term risk averse investor, the effect of investment fraction is 

increasing, but effect is the mildest among all metrics. For the absolute minimum level 

diversification metric, which ensures positive risk premium, the effect of investment 

fraction to required level of diversification is increasing but milder than squared. 

Changing target ratio for risk premium ratio and gross excess wealth ratio metrics 

approximately double and tenfold the required level of diversification as target ratio 

change from 90% of maximum diversification benefit to 95% and 99%, respectively.  

Even if an investor targets a long-term investment horizon, the long-term is a series of 

consecutive short-term periods. Therefore, risk averse long-term investor is affected 

by short-term risks and cannot ignore the short-term required level of diversification. 

For risk averse investor, the short-term metric is typically dominant and calls for high 

diversification. For a long-term investor with very high tolerance for short-term risks 

targeting a liability matching portfolio (e.g., an investor saving for retirement who is 

not risk neutral in the long-term as he has liabilities to cover), we consider the long-

term risk averse metric as the most relevant. For risk neutral investor, we consider the 

required level of diversification as the maximum between short-term and long-term 

risk neutral metrics. 

How many stocks make a diversified portfolio in a continuous-time world? The answer 

to this question is multifaceted. The required number of stocks given in following 

paragraphs are given by our theoretical framework based on empirical parameters from 

the period from January 1973 to June 2018. Average monthly number of stocks for the 

period is 5472. The numbers predicted by the theoretical framework are lower bounds 

and (historical) empirical values are typically about 15% higher. Additionally, when 

projecting the numbers far into the future, the uncertainty about the future level of 

average idiosyncratic variance implies the numbers should be slightly increased.  

The absolute minimum required level of diversification ensuring positive risk 

premium is 2, 2, or 4 stocks (the exact average numbers are 1.03, 1.91 and 3.31) for 
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investment fractions 0.6, 1.0 and 1.5, respectively. Below these levels of 

diversification, investor is expected to earn a higher geometric mean return by 

investing in riskless rate. 

At investment fraction 1.0, short-term risk neutral investor requires about 19, 38 or 

184 stocks to achieve 90%, 95% or 99% of the maximum diversification benefit, 

respectively. Corresponding numbers for short-term risk averse investor are 118, 238 

or 1033 stocks. At investment fraction 0.6, the corresponding numbers are 10, 21 or 

101 & 93, 190 or 854 stocks, while at investment fraction 1.5, the requirement is 33, 

65 or 312 & 156, 312 or 1293 stocks. 

At investment fraction 1.0, long-term risk neutral investor (at 20-year horizon) requires 

about 28, 57 or 279 stocks to achieve 90%, 95% or 99% of the maximum 

diversification benefit, respectively. Corresponding numbers for long-term risk averse 

investor are 55, 111 or 520 stocks. At investment fraction 0.6, the corresponding 

numbers are 10, 21 or 104 & 30, 60 or 291 stocks, while at investment fraction 1.5, 

the requirement is 62, 127 or 590 & 104, 208 or 912 stocks. At 40- and 60-year 

horizons, long-term risk neutral investor figures double and triple, respectively. Long-

term risk neutral investor figures asymptotically approach the risk averse investor 

figures. 

Furthermore, firm size makes a difference. For short-term risk neutral investor at 

investment fraction 1.0, about 8, 13 or 23 stocks are required to achieve 90% of the 

maximum diversification benefit for big, small and microcap stocks, respectively. The 

corresponding numbers for short-term risk averse investor are 54, 70 and 132 stocks. 

For long-term investor (at 20-year horizon), the corresponding numbers are 10, 17 or 

36 & 24, 37 or 66 stocks.  

Investment style affects the required level of diversification. For example, for short-

term risk neutral investor at investment fraction 1.0, about 6 or 58 stocks are required 

to achieve 90% of the maximum diversification benefit for high earnings yield and low 

earnings yield styles, respectively. The corresponding numbers for short-term risk 

averse investor are 62 and 204 stocks. For long-term investor (at 20-year horizon), the 

corresponding numbers are 15 or 47 & 20 or 154 stocks. 
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1.4 Roadmap to thesis 

This thesis proceeds as follows. In chapter 2 we give an overview of the diversification 

literature. In chapter 3 we derive necessary equations and build the theoretical 

framework to assess diversification effects in a continuous-time world. More 

specifically, in section 3.1 we further discuss the difference between single period and 

continuous-time worlds and the definition of risk premium. In section 3.2 we derive 

the formula for instantaneous geometric risk premium. In section 3.3, based on the risk 

premium formula derived in section 3.2, we define and derive the important concept 

of diversification premium and further develop the ideas originating from information 

theory to serve as the theoretical basis for this thesis. Diversification metrics for 

continuous-time world are determined in section 3.4. Section 3.5 defines the 

hypotheses about empirical diversification effects. In chapter 4 we describe the 

empirical data and the used methodology including the use of log-normal simulator. 

In chapter 5, we employ our theoretical framework to produce predictions for selected 

diversification metrics and compare predicted results to results bootstrapped from 

empirical data. In section 5.1 we show that fractional Kelly criterion accurately 

predicts the empirical risk premium. In section 5.2 we confirm statistically that 

diversification is a negative price lunch and in section 5.3 we show that the empirical 

opportunity cost of foregone diversification corresponds to our prediction from the 

theoretical framework. In sections from 5.4 to 5.6 we further illustrate the idea behind 

using (realizable) risk premium and (realizable) gross compound excess wealth as 

diversification measures. Furthermore, we show that empirical risk premium ratio and 

gross compound excess wealth ratio behave as expected based on our theoretical 

framework for both risk neutral and risk averse investors. In section 5.7 we present the 

number of stocks required to make a diversified portfolio in a continuous-time world 

both using figures and numerically in tables. In section 5.8 the empirical effects of firm 

size and investing style to required level of diversification are tested and shown. The 

consistency of the historical diversification premium over time is demonstrated in 

section 5.9. Finally, in chapter 6 we discuss the findings and summarize the thesis. 
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2 OVERVIEW OF DIVERSIFICATION LITERATURE 

2.1 Foundations for diversification 

Foundations for diversification from theoretical point of view were set up by Harry 

Markowitz, who in his seminal paper (Markowitz, 1952) argued that expected return 

alone is not sufficient for deciding the asset weights in a portfolio. Instead, Markowitz 

defined a framework where the variables of interest for diversification were expected 

return of each asset, expected variance of each asset and expected correlation between 

risky assets in the portfolio. The key of the theory is that while the portfolio expected 

return is simply the weighted average of the expected returns of the assets, portfolio 

expected variance is dependent not only on the expected variance of the assets, but 

also on the correlations between these assets. This implies that there is a benefit from 

diversification as the expected variance can be less than the weighted sum of the 

expected asset variances depending on correlation matrix of the portfolio. Markowitz 

showed that mean-variance optimal portfolio of risky assets lies in the efficient frontier 

where each point maximizes expected return for given expected variance or 

alternatively minimizes expected variance for given expected return. 

Tobin (1958) introduced the idea that risk/return profile of a portfolio can be selected 

by combining a portfolio of risky assets with single risk-free asset. Sharpe (1964) 

defined capital market line (CML) which combines a portfolio of all available risky 

assets with risk-free interest rate. All efficient portfolios lie on CML and desired 

risk/return profile can be selected along the line. 

From theoretical point of view the question on how much diversification is needed is 

trivial. As efficient portfolio is constructed by combining a portfolio of all risky assets 

and one risk-free asset, it follows that the right amount of stocks in a diversified 

portfolio of stocks is all stocks available. However, if we, e.g., consider the cost of 

diversification or possible desire to deviate from market return, including all stocks 

may not be feasible or desirable. This immediately justifies the consideration on the 

amount of stocks that makes a sufficiently diversified portfolio in a sense that, e.g., 

cost is sensible or that it is possible to differentiate from market return with tolerable 

risk.  
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It is assumed that expected return is not affected by the amount of diversification in 

the portfolio. Risk on the other hand is the subject of minimization in diversification 

no matter how risk is defined exactly. The exact definition of risk may however affect 

the required level of diversification and is therefore central in the literature discussing 

diversification. Additionally, number of studies consider the cost of diversification 

together with the benefits to find the equilibrium for diversification. 

2.2 Empirical evidence for sufficient diversification 

Evans and Archer (1968) pointed out that the optimal portfolio selection where 

unsystematic variance is completely eliminated as defined by Sharpe (1964) is not 

reasonable if the cost of diversification is a function of number of stocks of different 

companies added into portfolio. They put the comparison of marginal cost to marginal 

benefit from increased diversification into focus. Evans and Archer used 470 securities 

from Standards and Poor’s index from the beginning of 1958 to mid 1967 and observed 

the data semiannually. They formed 40 portfolios using random selection among the 

470 securities with different sizes ranging from 1 to 40 securities. 60 portfolios of each 

size were formed. From this they calculated the average reduction in standard 

deviation and the reduction in the mean standard deviation dispersion resulting from 

adding one security into portfolio for each examined portfolio size. t-tests were used 

to examine the impact to mean standard deviation and F-tests to test the impact to 

dispersion in the mean standard deviation when portfolio size is increased. 

The main finding of the Evans and Archer (1968) study is that increasing the portfolio 

size above 8 securities require significant increase in the number of securities to yield 

a statistically significant reduction in portfolio mean standard deviation or in the mean 

standard deviation dispersion. They observe the same visually by plotting the expected 

standard deviation as a function of number of securities in the portfolio. Evans and 

Archer conclude by stating that considering the costs of diversification, the benefits of 

increasing the portfolio size beyond ten or so securities are questionable. 

The data of Fisher and Lorie (1970) included also companies which were not listed 

throughout the whole period and thus they avoided the survivorship bias present in 

earlier studies like Evans and Archer (1968). They used 40 years of data from 1926 to 
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1965 with different non-overlapping time periods from one year to 40 years in length. 

In addition to random sampling they also used random sampling controlling for 

industry groups so that equal number of stocks were selected from each of the 34 

industry groups. Fisher and Lorie used three measurements for relative return 

dispersion: coefficient of variation, relative mean deviation and Gini’s coefficient of 

concentration. They used the universe of stocks available in NYSE and formed random 

portfolios consisting of 1, 2, 8, 16, 32, 128 and all stocks. 

The main result from the Fisher and Lorie (1970) study is that the diversification effect 

is greatly diminished after 8 stocks in the portfolio. Roughly 80% of the diversification 

potential is exhausted at portfolio size of 8 stocks, 90% at size 16 stocks, 95 at size 32 

stocks and 99% at size 128 stocks. Also, they note that industry diversification does 

not change the results significantly. 

Elton and Gruber (1977) developed an analytical parameter-based model for 

estimating mean variance. They used parameters obtained from earlier empirical 

studies. Elton and Gruber defined a total risk measure which consists of portfolio 

variance plus portfolio mean return difference to market mean return. They recognize 

that risk is not only the variation of the portfolio, but also the risk of deviating from 

market return as this deviation is a measure of portfolio mean return uncertainty. Like 

earlier studies, Elton and Gruber find that most of the diversification gain is realized 

with a low number of stocks in the portfolio. However, they also find that there still is 

significant diversification opportunity. For example, portfolio of 15 stocks has 32% 

more risk than a portfolio of 100 stocks when measured as total risk. 

Statman (1987) used Elton and Gruber (1977) model to estimate the effect of number 

of stocks in the portfolio to diversification gain. Statman determines diversification 

worthwhile as long as marginal benefit exceeds marginal cost. His innovation is to use 

return as a common measure for diversification benefit and cost. Statman defines a 

model where market return (SP500 index fund used as a proxy) is levered until 

volatility match the volatility of the portfolio size of interest. As the expected return of 

the market proxy and randomly selected portfolio is the same, the return difference 

between levered market portfolio and portfolio of interest is dependent on volatility 

difference between the portfolios, the excess of the borrowing rate over the risk-free 
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rate and estimated equity premium. Statman used 2% estimate for the borrowing rate 

excess over the risk-free rate and historical value 8.2% for equity premium.  

Statman (1987) finds that the return difference, e.g., between a stock portfolio of 10 

stocks and levered SP500 index fund is 1.502% (1.986% for lending investor who can 

operate without leverage). He assumes no cost for stock portfolio and takes the 0.49% 

cost for the SP500 index fund as the cost for further diversification. Statman finds that 

for borrowing investor the return benefit is greater than the diversification cost still at 

the size of 30 stocks and for lending investor at the size of 40 stocks. Based on these 

results, at least 30 stocks are required to make a diversified portfolio. 

Newbould and Poon (1993) found that typical text book recommended 8 to 20 stocks 

to be enough to eliminate diversifiable risk. They address origins of this 

recommendation to studies where average standard deviation for a portfolio of 

different sizes are considered. Newbould and Poon argue that for a risk averse investor 

who holds one portfolio, not average of many portfolios, it is important not only to 

assess the average standard deviation, but also the standard deviation in the standard 

deviation. By using this method and S&P500 stock universe from three-year period 

1988-1990, they find confidence intervals for average standard deviations. For an 8-

stock portfolio the 99% and 95% upper confidence limits for standardized average 

standard deviation of 100 are 141 and 131 respectively. For a 20-stock portfolio the 

corresponding confidence limits are 130 and 123. They find that the confidence limits 

for standard deviation converge much slower than the marginal diversification benefit 

diminishes when the number of stocks in the portfolio is increased. Newbould and 

Poon conclude that the minimum number of stocks needed to eliminate the 

diversifiable risk significantly exceeds 20. 

Average portfolio return standard deviation or variance is the risk in the theoretical 

models, but also other risk measures have been studied in the literature concerning 

diversification. According to Surz and Price (2000), reduction in average standard 

deviation is not the best measure for the magnitude of diversification. Instead, they 

argue that increase in r-squared (proportion of portfolio return variance explained by 

market returns) and reduction in tracking error are better measures. Surz and Price 

argue that reduction in standard deviation measures reduction in total risk (systematic 
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plus idiosyncratic risk) whereas increase in r-squared or reduction in tracking error 

imply reduction in idiosyncratic (uncompensated) risk. They used the Compustat stock 

universe from 1986 to 1999 to replicate Fisher and Lorie (1970) study. They added r-

squared and tracking error alongside standard deviation as metrics to measure the 

diversification effect as a function of number of stocks in the portfolio. 

Surz and Price (2000) find that r-squared and tracking error require significantly more 

stocks in the portfolio to exhaust the marginal diversification potential. When a 15-

stock portfolio accounts for 93% of the achievable standard deviation reduction, it only 

accounts for 79% of the achievable diversification benefit when measured as an 

average between r-squared and tracking error metrics. For a 60-stock portfolio, the 

numbers are 98% and 88% respectively. Surz and Price also point out that if we accept 

reduction in standard deviation as the measure of diversification gain, then we must 

accept that it is possible to diversify the portfolio risk below the level of market risk 

with very low number of stocks in the portfolio as already some of the simulated 15-

stock portfolios have lower standard deviation than market portfolio. This is not 

possible with any portfolio size if we use r-squared or tracing error to measure 

diversification gain. Utilizing the diversification metrics recommended by Surz and 

Price, portfolio size greater than 60 stocks is required to exhaust about 90% of the 

diversification potential that is exhausted with less than 15 stocks when measured by 

reduction in average standard deviation. 

Many of the seminal studies (Elton & Gruber, 1977; Evans & Archer, 1968; Fisher & 

Lorie, 1970) on the effect of diversification and number of stocks in the portfolio are 

from early days in 1960s and 70s after the theoretical framework for diversification 

was set up. Parameters impacting diversification effect and used in these studies are 

not time invariant. Campbell, Lettau, Malkiel and Xu (2001) address this in their study. 

Campbell et al. investigate firm, industry and market level volatility as a function of 

historical time periods using daily data from 1962 to 1997. In addition to volatilities, 

they also estimate average correlation between individual stock returns as a function 

of time periods. 

Campbell et al. (2001) find that there has been no trend in market and industry level 

volatilities between 1961 and 1997, but there is clear upwards trend in firm level 
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volatility. The reason why market or industry volatilities have not increased when firm 

level volatility has risen is that they also find that average correlation between 

individual stock returns has decreased. Average monthly correlation (measured from 

five years of data) between stocks has decreased from 0.28 in early 1960s to 0.08 in 

late 90s. Campbell et al. find that the same excess standard deviation for a portfolio 

compared to market portfolio that in the early 60s required 20 stocks in the portfolio, 

in the late 90s require 50 stocks. Due to increased firm level volatility and decreased 

average correlation between stocks, the required number of stocks in the portfolio went 

2.5-fold in less than 40 years. 

Statman (1987) had used the model and parameters obtained by Elton and Gruber 

(1977) in modeling the diversification effect and concluded that at least 30 stocks with 

the parameters available at that time were required to form a sufficiently diversified 

portfolio. However, given the study by Campbell et al. (2001) the parameters had 

changed and Statman (2004) reassessed the degree of diversification required based 

on this new information. In addition to increased firm level idiosyncratic volatility and 

decreased average correlation between stocks Statman updated other parameters too 

for the new study. New proxy for the market and full diversification was Vanguard 

total market index fund with annual cost of 0.20% compared to Vanguard SP500 index 

fund with 0.49% annual cost in the original study. New forward-looking estimate for 

equity premium was 3.44% compared to historical average or 8.2% in the original 

study. Additionally, Statman now assumed 0% excess cost for borrowing over the risk-

free rate whereas he had used 2% in the 1987 study. Finally, Statman now assumed 

0.14% annual cost for buying and holding a portfolio of individual stocks, compared 

to zero cost assumed in 1987. As a result, the net cost for further diversification became 

0.20% - 0.14% = 0.06% compared to 0.49% - 0.0% = 0.49% in the original study. The 

same methodology as in the original study was used in the 2004 study. The main 

finding of the study is that, with the new parameters and assumptions, more than 300 

stocks are needed for the marginal cost to exceed the marginal benefit of additional 

diversification.  

All of the studies reviewed above, except Surz and Price (2000), have used mean-

variance optimization as the framework in their assessment of diversification effect. 

Domian et al. (2007) however, take an alternative viewpoint by measuring shortfall 
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risk and deciding required level of diversification based on this measure. Domian et 

al. define shortfall risk as the possibility of ending wealth being below a target ending 

wealth at the end of the investment period. They argue that shortfall risk is a useful 

risk measure especially for investors with long investment horizons. Domian et al. use 

a 20-year investment period from 1985 to 2004 and a universe of 1000 stocks with 

largest market capitalization in their simulations to form randomly picked stock 

portfolios of various sizes. In addition, they use another 20-year period from 1965 to 

1984 as a robustness check. They measure the compound return for the portfolios over 

the 20-year period and compare this to risk-free 20-year treasury bond return from the 

same period. Shortfall is measured as a probability of a stock portfolio compound 

return being below the risk-free return from the period. In addition to random 

sampling, they also use an alternative sampling technique to ensure that each of the 10 

selected industries get equal amount of stocks in the portfolio. Various sizes of 

portfolios from 10 to 200 stocks are simulated. 

Domian et al. (2007) find that the number of stocks required to achieve significant 

diversification effect is substantially greater when assessing shortfall risk compared to 

previous studies focusing on mean-variance optimization. To reduce the probability of 

realizing a stock portfolio return below risk-free return over a 20-year period to 1%, 

168 stocks are required in the portfolio. To achieve 5% and 10% shortfall risk, 93 and 

63 stocks are required respectively. If only 10 stocks are included in the portfolio, the 

shortfall risk is 40.2%. Furthermore Domian et al. find that the magnitude of industry 

diversification effect, when present, can be matched by only slightly increasing the 

number of randomly selected stocks in the portfolio. E.g. for portfolio sizes 10 to 30 

stocks, 10% increase in the number of randomly selected stocks delivers the same 

diversification effect as diversifying across industry sectors. For larger portfolio sizes, 

there is no diversification effect from industry diversification. Domian et al. conclude 

that more than 100 stocks are needed to make a diversified portfolio. 

Bessembinder (2018), similarly as Domian et al. (2007), assess long horizon investing 

and shortfall risk. Bessembinder emphasize the fact that the cross-sectional return 

distribution of a portfolio of stocks resembles more lognormal than normal 

distribution. It follows that the cross section of individual stock returns is positively 

skewed which implies that median return is lower than mean return of the distribution. 
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The greater the skewness, the greater the difference between median and mean returns. 

This is especially true with longer time horizons as skewness in the lognormal 

distribution arises not only from the possible lognormal shape of the original one 

period return distribution, but from the effect of compounding consecutive time 

periods. Compounding induces skewness as skewness is a function of volatility and 

volatility increases as a function of square root of time. Bessembinder used monthly 

CRSP U.S. data from the period from 1926 to 2016 and calculated hypothetical 

realized portfolio returns assuming reinvested dividends. He compared the returns to 

monthly treasury bills (risk-free) return, value-weighted market return and nominal 

0% return threshold from the corresponding time period. Bessembinder used a 

bootstrap simulation where he randomly selected a value weighted portfolio of stocks 

for each month and linked the monthly returns for time periods of one, ten and ninety 

years. He formed portfolios with sizes of 1, 5, 25, 50 and 100 stocks. By this method 

he simulated the effect of randomly selecting a portfolio of stocks for a selected 

investment horizon and measured the shortfall metrics after the investment period. 

Bessembinder (2018) finds that the skewness risk is extreme at 90-year horizon, 

significant at 10-year horizon and exists already at one-year horizon. Skewness 

manifests itself in the shortfall metrics. At 90-year horizon, one stock strategy loses to 

risk-free return in 73% of simulations and to value weighted market benchmark in 96% 

of simulations. 49% of the simulations have negative return. Had Bessembinder used 

real returns, the result would be even more striking indicating more than half of the 

single stock strategy returns being negative. The results are similar but not as extreme 

when either number of stocks in the portfolio is increased or investment horizon is 

shortened. The effect of both is the same, i.e., volatility of the portfolio (which causes 

skewness) is decreased. With 100 stock portfolio and 10 years investment horizon 7% 

of simulations have lower return than risk-free return and 52.5% of simulated 

portfolios have lower return than market return. This is the effect of skewness risk as 

even with this high number of stocks in the portfolio, the portfolio return is likely to 

lose to market return while the expected value for the portfolio is equal to the expected 

value of the benchmark portfolio. 90-year period result gives some insight to 

diversification effect in the very long term. Comparison to market return reveals that 

the probability to have lower return than market increases monotonically when starting 

with 100 stock portfolio and ending with one stock portfolio. Even with 100 stock 
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portfolio, market return is higher in 57% of simulations. On the other hand, already 

with 25 stock portfolios, and with all simulated portfolios with greater number of 

stocks, 100% of simulated portfolios have return higher than risk-free return. 

Bessembinder does not provide numerical value for sufficient number of stocks in the 

portfolio, but gives a theoretical explanation and comprehensive simulation results 

which indicate that, even with 100 stock portfolio, an investor is likely to have a 

realized return lower than market return and the probability of losing to market return 

increases as investment horizon increases. Empirical results are similar, if not even 

more dramatic, for global stocks in the period from January 1990 to December 2018 

(Bessembinder, Chen, Choi & Wei, 2019). 

Tidmore et al. (2019) utilize the universe of Russel 3000 Index from January 1987 to 

December 2017 to assess the effect of diversification. Their method is to create 

randomly selected, quarterly rebalanced, equally weighted portfolios of different size 

and compare the average realized geometric rate of return to fully diversified 

benchmark portfolio. This return difference is called expected excess return. The most 

interesting finding of Tidmore et al. is that the empirical (geometric) expected excess 

return for a portfolio is an increasing function of number of stocks in the portfolio and 

that the expected excess return is always negative (or zero for very widely diversified 

portfolios). A single stock portfolio is expected to lose 9.9 percentage points while for 

a ten-stock portfolio the difference to benchmark is diminished to 1.0 percentage 

points. In other words, increasing diversification on average increases portfolio’s 

(geometric) expected excess return compared to fully diversified benchmark portfolio.  

2.3 Empirical evidence for the average investor level of diversification 

Literature debates about the number of stocks needed to make a sufficiently diversified 

portfolio and the evidence ranges from about ten to more than three hundred stocks. 

But what is the average or median level of diversification among retail investors?  

Goetzmann and Kumar (2008) study equity portfolio diversification and provide a 

distribution of number of stocks held by over 60000 individual investors in the time 

span from 1991 to 1996. Data was acquired from a large U.S. discount brokerage 

house. The data does not distinguish between direct stock holdings and other assets 
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possibly held by the investors meaning that on average the investors are better 

diversified than can be interpreted from the data used in the study. Nevertheless, the 

data gives us an idea how diversified the direct stock holding were during the period. 

The striking finding of the Goetzmann and Kumar (2008) study is that during the six-

year time span, about 28% of the investors had only one stock in their portfolio, about 

75% of investor had five or fewer stocks and less than 10% had more than ten stocks 

in their portfolio. Empirical evidence supports investing in about ten stocks at 

minimum, but less than 10% of the investors in the study exceeded this minimum 

recommendation.  

Findings of Polkovnichenko (2005) study are largely similar. Polkovnichenko utilize 

data from Survey of Consumer Finances carried out six times between 1983 and 2001. 

The survey provides data on U.S. households assets including direct and indirect equity 

holdings. Indirect holdings include diversified portfolios such as mutual funds. Our 

main interest is the results from direct equity holdings.  

Polkovnichenko (2005) summarize the direct holdings providing a median number of 

stocks held. Over the time period covered by the surveys, of the direct investors about 

80% held in maximum of five stocks and about 90% held less than ten stocks. About 

40% held only one stock in their direct equity portfolio. 

2.4 Summary of the literature 

Conventional wisdom has been and still is that a low number of stocks – say ten – is 

sufficient to make a diversified portfolio. Early studies support this view, but a large 

number of studies over the years argue that substantially larger number – say more like 

a hundred stocks – is needed. The disagreement originates from the definition of 

diversification effect. Early studies focus on the fact that the marginal benefit of 

diversification measured as a decrease in average portfolio standard deviation when 

adding one stock to portfolio diminishes quickly after few stocks are in the portfolio. 

There is no disagreement on this. Also, there is an agreement among the studies that 

industry diversification does not provide significant diversification effect. 
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Several studies suggest different measures for diversification effect instead of just 

focusing on average portfolio standard deviation or variance. Measures like 

uncertainty of the expected portfolio return, standard deviation in standard deviation, 

i.e., the uncertainty of the expected portfolio standard deviation, marginal 

diversification benefit measured as a difference between levered market return and 

portfolio return, focusing on reduction in uncompensated risk, time varying nature of 

the parameters determining diversification effect, shortfall probabilities for long 

horizon investors and increasing skewness risk as a function of investment horizon all 

call for substantially higher degree of diversification than mere assessment of mean 

standard deviation of the portfolio. 

Perhaps contrary to common belief, diversification can be deemed the more important 

the longer the investment horizon is due to skewness risk. If investment horizon is 

short and expected volatility of the portfolio is the risk that is to be diversified away, 

then the conventional wisdom of not holding more than ten stocks may be justified. 

On the other hand, if liability matching ending wealth is a concern, if investor is not 

comfortable bearing uncompensated risk or if time horizon is long, then one may be 

better advised by many more recent studies recommending rather 100 than 10 stocks 

to make a sufficiently diversified portfolio.  

Especially we note that when long-run realized return or metrics based on long-run 

realized return are used to assess the need for diversification, such as in studies by 

Domian et al. (2007), Bessembinder (2018) and Tidmore et al. (2019), then we are 

seeing much higher number of stocks required compared to studies focusing on 

annualized mean standard deviation mitigation. In our view, this is the case because, 

in the long-run, realized rate of return converges towards growth rate (geometric rate 

of return) and not towards arithmetic rate of return. The focus in our study is on the 

diversification effect metrics based on growth rate. 

While the number of stocks recommended by the academic studies ranges from about 

ten to hundreds, the bulk of number of stocks held directly by individual investors 

seem to range from one to ten. Even though direct holdings don’t represent the whole 

picture of the diversification, we have a reason to believe that diversification effect at 

the low range of number of stocks bears significance for individual investors. 
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3 DIVERSIFICATION IN A CONTINUOUS-TIME WORLD 

3.1 The essence of continuous-time world and risk premium 

3.1.1 Single period versus continuous-time world 

Practical investor lives in a continuous-time world where the word “return” refers to 

geometric rate of return. The concept and word “return” in people’s minds and in 

common parlance is associated to geometric returns so strongly that reporting 

arithmetic returns can be considered to be misleading or even cheating. Consequently, 

according to Hull (2015, p. 348), use of geometric returns in mutual fund reporting is 

ensured by regulation in some jurisdictions. 

As stocks are priced continuously in the markets, in the strictest interpretation, we can 

consider the single period world to exist only instantaneously at an infinitely short time 

period. Immediately when the time period is longer than infinitely short the 

compounding process takes place and we enter, a multiperiod, continuous-time world. 

Admittedly, the effects of compounding become more tangible at longer time horizons 

and require reinvesting dividends to fully realize, but the underlying state of affairs of 

an equity investor is always a continuous-time world. 

Markowitz (1959, pp. 116–125) and Thorp (1971) show that a portfolio selected based 

on optimizing the mean variance properties of a geometric growth rate and, the 

conventional way, optimizing mean variance of an arithmetic return, typically 

approximately lead to the same risky asset portfolio construction. Practical portfolio 

selection, including the central role of Sharpe ratio, therefore is not different between 

the single period and continuous-time worlds. The difference between these two 

worlds arises from the non-linearity of the continuous-time world. The fact that 

portfolio’s mean growth rate (mean annualized log return) as a function of portfolio 

volatility is non-linear, as opposed to linearly behaving portfolio arithmetic mean 

return, makes a difference in many aspects including diversification effect. 

According to Kelly (1956), the use of log return has nothing to do with the investor 

utility but the mathematical fact that it is the logarithm of period return which is 
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additive over periods and to which the law of large numbers applies. The fact that the 

logarithm of one plus the arithmetic return, the instantaneous geometric rate of return, 

is governed by the law of large numbers is the reason why realized rate of return tends 

toward geometric, not arithmetic, rate of return. As it is the wealth compounding at the 

rate of realized returns that the investors accumulate and eat, it becomes apparent why 

it is the geometric, not arithmetic, rate of return that they care about.  

The theoretical academic dispute over which return, geometric or arithmetic, is 

appropriate or what are the properties of the related utility functions may continue 

forever. Paul Samuelson (see e.g. Samuelson (1971) and Thorp (2008)) has perhaps 

been the most notable opponent of the adoption of geometric return metrics and the 

related Kelly criterion (Thorp, 2008). The practitioners, however, seem to have made 

their choice by almost exclusively measuring, reporting and debating about their 

performance using geometric rate of return. It really does not need to be more 

complicated than that. You measure what you care about. 

Practitioners, living in a continuous-time world, care about geometric rate of return. 

Our logical inference is that when assessing the effect of diversification, we should 

assess the effect on what we care about: the effect on expected geometric rate of return 

and related risk. This is the main aspect where our study differs from the majority of 

the existing literature which is focused on assessing the effect of diversification on 

expected arithmetic rate of return and related risk in a one period world. 

3.1.2 Definition of risk premium 

Equity risk premium is the mean return that investor earns in excess of a riskless 

investment alternative such as short-term government bills or government bonds. The 

logic is that investor is compensated for bearing the systematic market risk associated 

with equity investments. As put by Dimson, March and Staunton (2003), equity risk 

premium is by many, with a good reason, considered as “the most important number 

in finance”. One could argue that without equity risk premium there would be no 

private risky investments and therefore no system like capitalism as we know it. 
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The definition of equity risk premium, however, is not as unambiguous as one could 

assume from “the most important number in finance”. The same potential confusion 

that is practically present with all return related metrics in finance, arithmetic versus 

geometric, is there with risk premium as well. Typically, when we hear risk premium, 

we cannot be exactly sure if it is about the arithmetic or geometric mean excess returns.  

Dimson, March and Staunton (2003; 2011), however, make the distinction clear and 

separate the concept to two distinct numbers: arithmetic equity risk premium and 

geometric equity risk premium. Importantly, Dimson et al. appear to consider the 

geometric equity risk premium as the determinant of the arithmetic risk premium and 

not the other way around. Dimson et al. (2011), e.g., state that the historical geometric 

equity premiums are the sum of investors’ ex ante expectations and the random 

component of luck.  

Similarly, in our consideration the geometric equity risk premium is the primary risk 

premium over the arithmetic alternative as the realized return converge towards 

geometric mean, not arithmetic mean. At the end of the day if an investor is going to 

eat one of the returns, it will be the realized return which gravitates towards the 

geometric expectation. 

Historical risk premiums are typically measured and refer to large, practically fully 

diversified, value weighted indices such as country indices. In our study, equity risk 

premium or put shortly, risk premium, will refer to geometric risk premium. 

Additionally, our measure of risk premium is for equally weighted portfolio of 

different levels of diversification. Our risk premium of interest in this study is therefore 

a geometric risk premium for equally weighted portfolio which we denote as 𝑅𝑃𝐸𝑊,𝐺, 

where subscript 𝐸𝑊 denote equally weighted and 𝐺 geometric. Corresponding 

arithmetic risk premium is denoted as 𝑅𝑃𝐸𝑊,𝐴, where subscript 𝐴 denote arithmetic. 

Risk premium in this study will refer to geometric risk premium unless otherwise 

stated. 
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3.2 Derivation of the instantaneous geometric risk premium 

The expected excess portfolio growth rate is in the heart of our analysis. Excess growth 

rate means growth rate in excess of riskless rate of return corresponding to the 

definition of the “most important number in finance”: geometric risk premium of an 

equally weighted portfolio 𝑅𝑃𝐸𝑊,𝐺. Next, we derive the instantaneous expected excess 

growth rate formula, the instantaneous geometric risk premium, and show how it can 

be arrived at from different angles.  

3.2.1 Itô’s lemma for geometric Brownian motion approach 

First, we use Itô’s lemma to derive the instantaneous expected excess growth rate 

formula. Itô’s lemma is widely used in financial literature and, e.g., the famous Black 

and Scholes option pricing formula (Black & Scholes, 1973) is derived utilizing it.  

Hull (2015) shows how expected growth rate, i.e., constant drift rate of a logarithmic 

price process is derived utilizing Itô’s lemma. Hull (2015, p. 335) utilizes Itô process: 

 𝑑𝑥 = 𝑎(𝑥, 𝑡) 𝑑𝑡 + 𝑏(𝑥, 𝑡) 𝑑𝑧, 

 

(1) 

where a and b are functions of x and t while dz is a Wiener process. Variable x has a 

drift rate of a and variance rate of 𝑏2. 

By using Itô’s lemma Hull (2015, p. 335) shows function G, which is a function of x 

and t, follows the process: 

 𝑑𝐺 = (
𝜕𝐺

𝜕𝑥
𝑎 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑥2
𝑏2) 𝑑𝑡 + 

𝜕𝐺

𝜕𝑥
𝑏 𝑑𝑧, 

 

(2) 

where process G has a drift rate of 
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 𝜕𝐺

𝜕𝑥
𝑎 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑥2
𝑏2, 

 

 

and a variance rate of 

 (
𝜕𝐺

𝜕𝑥
)
2

𝑏2. 

 

 

Hull use the Itô’s lemma (2015, pp. 336–337) to derive a process followed by 

logarithmic stock price ln P when stock price P follows a process: 

 𝑑𝑃 =  𝑚𝑃 𝑑𝑡 +  𝑠𝑃 𝑑𝑧, 

 

(3) 

where m is the expected (arithmetic) return per year and s is the standard deviation of 

the stock price per year. Note that our notation differs from Hull’s notation. Hull use 

price S, expected return 𝜇 and standard deviation 𝜎. Our notation is compliant, where 

applicable, with Thorp (2006) notation which will be followed throughout the thesis. 

We replicate Hull’s derivation of the process followed by ln P with the exception, 

following Thorp (2006), that we derive a process for logarithmic portfolio value ln V 

and we add riskless rate r and investment fraction f (fraction of capital allocated to 

stocks) into process of portfolio value: 

 𝑑𝑉 =  [𝑟 + 𝑓(𝑚 − 𝑟)]𝑉 𝑑𝑡 +  𝑓𝑠𝑉 𝑑𝑧. 

 

(4) 

The portfolio consisting of fraction 𝑓 allocated to stocks and 1 –  𝑓 allocated to riskless 

investments (such as one-month government bonds) is assumed to be rebalanced 

continuously and dividends are assumed to be reinvested immediately. (𝑟 +

𝑓(𝑚 − 𝑟)) is the drift rate and 𝑓2𝑠2𝑉2 is the variance rate of portfolio value 𝑉.  
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Applying Itô’s lemma as in equation (2), we get: 

 𝑑𝐺 = (
𝜕𝐺

𝜕𝑉
𝑎 + 

𝜕𝐺

𝜕𝑡
+ 

1

2

𝜕2𝐺

𝜕𝑉2
𝑏2) 𝑑𝑡 + 

𝜕𝐺

𝜕𝑉
𝑏 𝑑𝑧. 

 

(5) 

Next, we calculate the derivates needed in constructing the process followed by G = 

ln V: 

 𝜕𝐺

𝜕𝑉
= 

1

𝑉
,
𝜕2𝐺

𝜕𝑉2
= −

1

𝑉2
,
𝜕𝐺

𝜕𝑡
=  0, 

 

(6) 

and substitute the calculated derivates from equation (6) and portfolio value drift rate 

and variance rate from equation (4) into equation (5): 

 𝑑𝐺 = (
1

𝑉
[𝑟 + 𝑓(𝑚 − 𝑟)]𝑉 + 0 − 

1

2

1

𝑉2
𝑓2𝑠2𝑉2) 𝑑𝑡 + 

1

𝑉
𝑓𝑠𝑉 𝑑𝑧 

                          =  [𝑟 + 𝑓(𝑚 − 𝑟) − 
𝑓2𝑠2

2
]  𝑑𝑡 +  𝑓𝑠 𝑑𝑧, 

 

(7) 

implying G = ln V has a constant drift rate, i.e., growth rate 𝑔∞ =  𝑟 + 𝑓(𝑚 − 𝑟) −

 
𝑓2𝑠2

2
 and a constant variance rate of 𝑓2𝑠2. Following Thorp (2006) notation, subscript 

∞ denotes instantaneous drift rate, i.e., continuous compounding. We will from now 

on denote continuous compounding with subscript ∞. 

We are interested in expected portfolio excess growth rate (excess of riskless rate) so 

we denote expected instantaneous excess return as 𝑚𝑒 = 𝑚 − 𝑟 and expected 

instantaneous excess growth rate as 𝑔∞
𝑒 = 𝑔∞ − 𝑟. Note that now 𝑠𝑒 = 𝑆𝑑𝑒𝑣(𝐺∞

𝑒 ) in 

the equation (8) compared to 𝑠 = 𝑆𝑑𝑒𝑣(𝐺∞) in equation (7). This means that 𝑠𝑒 now 

represents standard deviation of continuously compounding excess growth (excess of 

riskless rate growth) instead of standard deviation of continuously compounding 
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growth s. Note that expected instantaneous excess growth rate is equal to instantaneous 

geometric risk premium for equally weighted portfolio 𝑅𝑃𝐸𝑊,𝐺∞. We therefore have: 

 𝑅𝑃𝐸𝑊,𝐺∞ = 𝑔∞
𝑒 = 𝑓𝑚𝑒 − 

𝑓2𝑠𝑒
2

2
. 

 

(8) 

With f = 1 and r = 0, equation (7) is identical to derivation of lognormal property of 

stock prices given by Hull (2015, pp. 336–337). It follows that expected portfolio 

excess value (value in excess of what riskless rate earns) is lognormally distributed 

and expected logarithmic excess value of a portfolio, i.e., expected instantaneous 

excess growth rate of a portfolio is normally distributed between time 0 and some 

future time T with mean 𝑔∞
𝑒 𝑇 and variance 𝑓2𝑠𝑒

2𝑇. 

3.2.2 Power series expansion approach 

Thorp (2006) derives the expected growth rate formula differently compared to Itô’s 

lemma approach. While Thorp arrives to the same formula, the important difference is 

that Thorp, as opposed to Itô’s lemma approach, does not assume normal distribution 

of logarithmic returns or the log-normal distribution of returns. This is important as 

empirical logarithmic stock returns are well known to not be normally distributed but 

to entail fat tails (Gabaix, Gopikrishnan, Plerou & Stanley, 2003). Skewness in the 

distribution of empirical logarithmic returns is not precluded either. 

Thorp (2006, p. 406) starts by definitions: X is a random variable with 

𝑃(𝑋 = 𝑚 + 𝑠) = 𝑃(𝑋 = 𝑚 − 𝑠) = 0.5 and 𝐸(𝑋) = 𝑚, 𝑉𝑎𝑟(𝑋) = 𝑠2. Thorp then 

defines 𝑉0 as the initial capital and, variables introduced in equations (3) and (4), m, r 

and f. This leads to formula for capital as a function of investment fraction: 

 𝑉(𝑓) =  𝑉0[1 + (1 − 𝑓)𝑟 + 𝑓𝑋] =  𝑉0[1 +  𝑟 + 𝑓(𝑋 − 𝑟)], 

 

(9) 

leading to expected portfolio growth rate: 
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𝑔(𝑓) = 𝐸[𝐺(𝑓)] = 𝐸 (𝑙𝑛

𝑉(𝑓)

𝑉0
) 

           = 𝐸(𝑙𝑛[1 +  𝑟 + 𝑓(𝑋 − 𝑟)]) 

           = 0.5𝑙𝑛[1 + 𝑟 + 𝑓(𝑚 − 𝑟 + 𝑠)] + 

                                   0.5𝑙𝑛[1 + 𝑟 + 𝑓(𝑚 − 𝑟 − 𝑠)]. 

 

(10) 

Next, Thorp (2006, p. 406), keeping the same drift and total variance, subdivide the 

time interval into n equal independent steps. This requires dividing m, 𝑠2 and r by n. 

We now have 𝑋𝑖, 𝑖 = 1,… , 𝑛 with probabilities: 

 𝑃 (𝑋𝑖 =  
𝑚

𝑛
+ 𝑠𝑛−1 2⁄ ) =  𝑃 (𝑋𝑖 = 

𝑚

𝑛
 −  𝑠𝑛−1 2⁄ ) = 0.5, 

 

(11) 

leading to compound return: 

 𝑉𝑛(𝑓)

𝑉0
=  ∏ [1 + (1 − 𝑓)

𝑟𝑖

𝑛
+ 𝑓𝑋𝑖]

𝑛
𝑖=1 . 

 

(12) 

According to Thorp (2006, p. 406), by taking 𝐸[ln (∙)] both sides of equation (12) and 

expanding the result in power series, gives the formula for expected capital growth 

rate: 

 𝑔(𝑓) = 𝑟 + 𝑓(𝑚 − 𝑟) − 
𝑠2𝑓2

2
+ Ο(𝑛−1 2⁄ ), 

 

(13) 

which, as 𝑛 → ∞ in equation (13), gives the expected instantaneous capital growth 

rate: 
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 𝑔∞(𝑓) = 𝑟 + 𝑓(𝑚 − 𝑟) − 
𝑠2𝑓2

2
. 

 

(14) 

According to Thorp (2006, p. 407), standard deviation 𝑠, in the limit when 𝑛 → ∞, is 

equal for return and growth: 𝑠 = 𝑆𝑑𝑒𝑣(𝑋) = 𝑆𝑑𝑒𝑣(𝐺∞). 

We note that equation (14) is identical to drift rate in equation (7) which was derived 

using Itô’s lemma. By subtracting r from equation (14) we get expected instantaneous 

excess growth rate 𝑔∞
𝑒 (𝑓) which is identical to equation (8) derived using Itô’s lemma. 

The basic principle of the instantaneous compounding process leading to instantaneous 

geometric risk premium 𝑅𝑃𝐸𝑊,𝐺∞ , i.e., the expected instantaneous excess growth rate 

𝑔∞
𝑒 (𝑓), is shown in Figure 1. We associate the instantaneous expected excess return 

𝑚𝑒 to signal and the standard deviation of the excess return, equaling to standard 

deviation of continuously compounding excess growth, 𝑠𝑒 to noise. This association 

will be explained later. 

 

Figure 1. The principle of the instantaneous compounding process. 

Importantly Thorp (2006, p. 407) notes that there are no requirements regarding the 

distribution of random variable X except that X must be bounded with mean m and 

variance 𝑠2. This means, as opposed to Itô’s lemma derivation, there is no assumption 

of lognormality of returns in Thorp’s derivation. For equation (8) and equation (14) to 
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hold, normal distribution of logarithmic returns, the expected instantaneous capital 

growth rate, is therefore not required. 

3.2.3 Euler’s number identity approach 

Next, we show an alternative method for deriving equation (8) utilizing the definition 

of Euler’s number: 

 𝑒 = lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

. 

 

(15) 

Thorp (2006 p. 409) notes that by using expected excess return, excess growth rate or 

excess growth instead of expected return, growth rate or growth respectively, the 

equations simplify and excess metric equations have complexity equal to non-excess 

metric equations where r is set to zero. Our interest is in excess growth rate and by 

substituting 𝑉𝑒(𝑓) = 𝑉(𝑓) − 𝑉0𝑟 and 𝑚𝑒 = 𝑚 − 𝑟 we enter the domain of excess 

metrics as desired and get the simpler math as a bonus.  

First, we derive excess (in excess of riskless capital) capital 𝑉𝑒(𝑓). 𝑉(𝑓) is obtained 

from equation (9): 

 𝑉𝑒(𝑓) = 𝑉(𝑓) − 𝑉0𝑟 =  𝑉0[1 +  𝑟 + 𝑓(𝑋 − 𝑟)] − 𝑉0𝑟 

                             = 𝑉0[1 +  𝑓(𝑋 − 𝑟)]. 

 

(16) 

Then we derive excess growth rate 𝑔𝑒(𝑓). With 𝑅 denoting the random variable which 

expected value is the riskless rate 𝑟, 𝑠𝑒 now denotes the standard deviation of the 

excess return 𝑆𝑑𝑒𝑣(𝑋 − 𝑅), which is equal to 𝑠 = 𝑆𝑑𝑒𝑣(𝑋) if 𝑆𝑑𝑒𝑣(𝑅) = 0. 
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𝑔𝑒(𝑓) = 𝐸[𝐺𝑒(𝑓)] = 𝐸 (𝑙𝑛

𝑉𝑒(𝑓)

𝑉0
) =  𝐸(𝑙𝑛[1 + 𝑓(𝑋 − 𝑟)]) 

                             = 0.5𝑙𝑛[1 + 𝑓(𝑚 − 𝑟 + 𝑠𝑒)] +  0.5𝑙𝑛[1 + 𝑓(𝑚 − 𝑟 − 𝑠𝑒)], 

 

(17) 

Next, we substitute 𝑚𝑒 = 𝑚 − 𝑟 into equation (17) and simplify: 

 𝑔𝑒(𝑓) = 0.5(𝑙𝑛[1 + 𝑓(𝑚𝑒 + 𝑠𝑒)] +  𝑙𝑛[1 + 𝑓(𝑚𝑒 − 𝑠𝑒)]). 

 

(18) 

Following Thorp (2006), we subdivide the time to n equal individual steps by dividing 

𝑚𝑒, 𝑠𝑒
2 and r by n. This gives us equation (18) divided to n time steps: 

 

𝑔𝑒(𝑓) = 0.5(
∑ ln [1 + 𝑓 (

𝑚𝑒,𝑖

𝑛
+
𝑠𝑒,𝑖

√𝑛
)]𝑛

𝑖=1 +

∑ ln [1 + 𝑓 (
𝑚𝑒,𝑖

𝑛
−
𝑠𝑒,𝑖

√𝑛
)]𝑛

𝑖=1

). 

 

(19) 

We simplify and rearrange equation (19) to contain auxiliary function 𝑎(𝑓) and 

equation (15) form (for intermediate steps, see Appendix 1): 

 𝑎(𝑓)   =  2𝑓𝑚𝑒 + 𝑓
2 (

𝑚𝑒
2

𝑛
− 𝑠𝑒

2), 

 

(20) 

 
𝑔𝑒(𝑓) =  

𝑎(𝑓)

2
𝑙𝑛 [(1 + 

𝑎(𝑓)

𝑛
)

𝑛

𝑎(𝑓)
]. 

 

(21) 

Next, we use equation (15) identity. When 𝑛 → ∞ in equations (20) and (21), we have: 

 𝑎∞(𝑓)   =  2𝑓𝑚𝑒 − 𝑓
2𝑠𝑒
2, 

 

(22) 
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 𝑔∞
𝑒 (𝑓) =  

𝑎∞(𝑓)

2
ln 𝑒 =  

𝑎∞(𝑓)

2
=  𝑓𝑚𝑒 −

𝑓2𝑠𝑒
2

2
. 

 

(23) 

Again, in equation (23), we have expected instantaneous excess growth rate 𝑔∞
𝑒 (𝑓) 

which is identical to equation (8). As our assumptions are based on Thorp (2006) 

power series expansion derivation, our derivation does not rely on excess growth rate 

being normally distributed. 

3.2.4 Information theory approach 

To derive expected instantaneous excess growth rate based on Shannon’s (1948) 

information theory, we look into concepts of entropy and mutual information (MI). 

Entropy 𝐻(𝑋) is a measure of average uncertainty in a single random variable X. The 

higher the entropy, the more information on average is required to describe the random 

variable. Conditional entropy 𝐻(𝑋|𝑌) is the entropy, i.e., the average (remaining) 

uncertainty of random variable X conditional to knowledge of random variable Y. 

Mutual information 𝐼(𝑋; 𝑌) is a measure of dependence between two random variables 

X and Y. Mutual information is the average amount of information obtainable on 

random variable X by observing random variable Y and vice versa. (Cover & Thomas, 

2005). 

Following Cover and Thomas (2005), we denote the entropy of a continuous variable 

with lower case ℎ as opposed to capital 𝐻 which is used for discrete random variables. 

Then, e.g., the entropy ℎ(𝑋) is a measure of uncertainty in a single continuous random 

variable X.  

According to Cover and Thomas (2005), mutual information is defined as a function 

of input entropy ℎ(𝑋) and conditional entropy ℎ(𝑋|𝑌) or alternatively as a function of 

output entropy ℎ(𝑌) and conditional entropy ℎ(𝑌|𝑋): 
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 𝐼(𝑋; 𝑌) = ℎ(𝑋) − ℎ(𝑋|𝑌) = ℎ(𝑌) − ℎ(𝑌|𝑋). 

 

(24) 

Shannon (1948) calls ℎ(𝑌) as the entropy of the received signal and ℎ(𝑌|𝑋) as the 

entropy of the noise. 

According to Shannon (1948), entropy 𝐻(𝜙) of a normally distributed random 

variable, whose standard deviation is 𝜎, is given as: 

 ℎ(𝜙) = ln(√2𝜋𝑒𝜎). 

 

(25) 

Entropy ℎ(ln𝜙) of a log-normally distributed random variable is given by Cover & 

Thomas (2005, p. 662). Denoting excess return as 𝜇, it can be written as: 

 ℎ(ln𝜙) = ln(𝜎𝑒(𝜇 − 𝜎
2 2 ⁄ + 1 2⁄ )√2𝜋). 

 

(26) 

To apply mutual information formula into investing context, we assume a model where 

excess return (output or received signal of our investment process) is log-normally 

distributed. We assume a channel noise distribution equal to normally distributed 

single period excess return (input or the transmitted signal of our investment process). 

We can think this in terms of Figure 1 where 𝑚𝑒 is the expected excess input (to 

multiplicative compounding process) return (signal) and 𝑠𝑒 is the standard deviation 

of the input (noise). We therefore define the entropy of a log-normally distributed 

random variable as the output entropy ℎ(𝑌), i.e., the entropy of the received signal, 

and the entropy of a normally distributed random input variable ℎ(𝑋) as being equal 

to the conditional entropy ℎ(𝑌|𝑋), i.e., the entropy of the noise. To be consistent with 

our previous equations, we add investment fraction f in the equations of ℎ(𝑌) and 

ℎ(𝑌|𝑋) to enable leveraging of excess returns. Substituting equations (25) and (26) 

with investment fraction f into equation (24) gives mutual information: 
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 𝐼(𝑋; 𝑌) = ℎ(𝑌) − ℎ(𝑌|𝑋) 

               = ln(𝑓𝜎𝑒(𝑓𝜇 − 𝑓
2𝜎2 2 ⁄ + 1 2⁄ )√2𝜋) − ln(√2𝜋𝑒𝑓𝜎) 

               = ln(√2𝜋𝑓𝜎𝑒(𝑓𝜇 − 𝑓
2𝜎2 2 ⁄ + 1 2⁄ )) − ln(√2𝜋𝑓𝜎𝑒1 2⁄ ) 

               = ln (
√2𝜋𝑓𝜎𝑒1 2⁄ 𝑒(𝑓𝜇 − 𝑓

2𝜎2 2 ⁄ )

√2𝜋𝑓𝜎𝑒1 2⁄
) 

                               = 𝑓𝜇 −
𝑓2𝜎2

2
. 

 

(27) 

(28)  

We can write equation (27) as a function of entropies ℎ[𝑋(𝑓)], ℎ[𝑌(𝑓)] and 

ℎ[(𝑌(𝑓)|𝑋(𝑓))] and arrive to the result of equation (28): 

 

𝐼(𝑋; 𝑌) = ln(
𝑒ℎ[𝑌(𝑓)]

𝑒
ℎ[(𝑌(𝑓)|𝑋(𝑓))]

) 

              = ln(
𝑒ℎ[𝑋(𝑓)]𝑒(𝑓𝜇 − 𝑓

2𝜎2 2 ⁄ )

𝑒
ℎ[(𝑌(𝑓)|𝑋(𝑓))]

) 

              = ln (
𝑒ℎ[𝑋(𝑓)]𝑒(𝑓𝜇 − 𝑓

2𝜎2 2 ⁄ )

𝑒ℎ[𝑋(𝑓)]
) 

                              = 𝑓𝜇 −
𝑓2𝜎2

2
. 

 

(29) 

We can see from equation (29) that simplification reduces the term 𝑒ℎ[𝑋(𝑓)] from the 

equation. Simultaneously the entropy of the normally distributed random input 

variable, i.e., the input entropy ℎ[𝑋(𝑓)] is reduced away. This happens as the noise 

entropy ℎ[(𝑌(𝑓)|𝑋(𝑓))] is equal to input entropy ℎ[𝑋(𝑓)]. In other words, the 

inherent uncertainty in the input signal is equal to the uncertainty remaining about the 

input signal after knowing the output signal. Intuitively, the reason why input entropy 

would be equal to noise entropy is that we can think of transmitting the expected return 

and receiving a realized return. The received signal, a realized return, is the expected 

return plus the noise which are the mean and the standard deviation from the same 

input distribution, respectively. The fact that the input entropy ℎ[𝑋(𝑓)] is reduced 
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from the equation suggests that the distribution of the input signal is not significant to 

resulting mutual information 𝐼(𝑋; 𝑌). This would imply the resulting mutual 

information is not dependent on input signal being normally distributed. 

Now when we change to our notation where 𝑚𝑒 ≡ 𝜇 and 𝑠𝑒 ≡ 𝜎, equation (28) is 

identical to equation (8). As 𝑚𝑒 and 𝑠𝑒 are expressed as yearly instantaneous metrics, 

it means we can interpret the mutual information as growth per unit of time: nats per 

year. We will later show that compounding (𝐶) rate 𝑓𝐶  is reduced from the growth rate 

formula in the limit when it approaches infinity (which will happen here as we have 

instantaneous metrics). We therefore can write the expected instantaneous excess 

growth rate as equal to mutual information: 

 𝑔∞
𝑒 =  𝐼(𝑋; 𝑌), 

 

(30) 

which means, considering our assumed lognormal excess return model, expected 

instantaneous excess growth rate is equal to the mutual information between normally 

distributed input (or transmitted) and log-normally distributed output (or received) 

random variables. We can think this in conjunction with Figure 1. We input (the 

feedback arrow in the figure) the instantaneous single period normally distributed 

excess return X and, after n multiplications in the compounding channel/process, get 

an output in the form of log-normally distributed excess return Y. The output is 

transformed to expected instantaneous excess growth rate equaling mutual information 

by taking an expectation of the natural logarithm of the Y. Furthermore, as discussed 

above, it appears that the equality between expected instantaneous excess growth rate 

and mutual information is not tied to lognormal model, but is more general similarly 

as we have shown that for the expected instantaneous excess growth rate equation (8) 

to hold, normally distributed returns are not required.  

Furthermore, as we are in the investing context, the expected instantaneous excess 

growth rate is better described as mutual excess capital growth (MG) than mutual 

information. MG is the expected amount of excess capital growth realizable from the 

average excess arithmetic single period return (the input) after (at output) the 
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compounding process (the channel). By comparison, as defined by Cover and Thomas 

(2005), MI is the average amount of information obtainable on the input by observing 

the output after the channel. 

3.3 Derivatives of the instantaneous geometric risk premium formula 

3.3.1 Definition and derivation of diversification premium 

Next, based on the instantaneous geometric risk premium formula, we will define and 

derive the central concept of our study which we label as diversification premium. 

Diversification premium is the average difference in instantaneous excess growth rate 

between a portfolio of selected size and a single stock portfolio. We will further define 

diversification premium difference to benchmark as portfolio diversification premium 

difference between a portfolio of selected size and a fully diversified benchmark 

portfolio. We will show that there is a premium, in terms of higher expected growth 

rate, associated with accepting more diversification like there is a premium for 

accepting more risk. 

Diversification premium for a portfolio of 𝑛𝑃 stocks (where n is number of stocks and 

P denotes portfolio) is defined as the instantaneous geometric risk premium (the 

instantaneous expected excess growth rate) difference between portfolio of 𝑛𝑝 stocks 

and single stock (𝑛𝑃 = 1) portfolio: 

 𝐷𝑃𝑃 = 𝑅𝑃𝐸𝑊,𝐺∞
𝑃 − 𝑅𝑃𝐸𝑊,𝐺∞

𝑛=1 = 𝑔∞
𝑒,𝑃 − 𝑔∞

𝑒,𝑛=1 = 𝑔∞
𝑃 − 𝑔∞

𝑛=1, 

 

(31) 

where 𝑅𝑃𝐸𝑊,𝐺∞
𝑃  is the instantaneous geometric risk premium of a portfolio of 𝑛𝑃 stocks 

and 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1  is the instantaneous geometric risk premium of a single stock portfolio.  

𝑔∞
𝑒,𝑃

 is the expected instantaneous growth rate of a portfolio of 𝑛𝑃 stocks and 𝑔∞
𝑒,𝑛=1

 

is the expected instantaneous growth rate of a single stock portfolio. Diversification 

premium can be calculated similarly using expected instantaneous growth rates 𝑔∞
𝑃  

and 𝑔∞
𝑛=1 instead of expected instantaneous excess growth rates. 
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It is obvious from equation (8) that, given a constant expected instantaneous excess 

return 𝑚𝑒, expected instantaneous excess growth rate difference between two 

portfolios is determined solely by the variance of the excess return 𝑠𝑒
2. This is because 

in case of a population of 𝑛𝐵𝑀 (where BM denotes benchmark) stocks we have a 

constant expected instantaneous excess return 𝑚𝑒 leaving 𝑠𝑒
2 as the only differentiator 

between portfolios of different sizes. We can substitute equation (8) into equation (31) 

and show that: 

 𝐷𝑃𝑃 = 𝑔∞
𝑒,𝑃 − 𝑔∞

𝑒,𝑛=1 

          = 𝑓𝑚𝑒
𝑃 − 

𝑓2(𝑠𝑒
𝑃)2

2
− (𝑓𝑚𝑒

𝑛=1 − 
𝑓2(𝑠𝑒

𝑛=𝑓=1
)
2

2
) 

          = 𝑓𝑚𝑒 − 
𝑓2(𝑠𝑒

𝑃)2

2
− (𝑓𝑚𝑒 − 

𝑓2(𝑠𝑒
𝑛=𝑓=1

)
2

2
) 

                          =
𝑓2

2
[(𝑠𝑒

𝑛=𝑓=1
)
2
− (𝑠𝑒

𝑃)2]. 

 

(32) 

We denote average variance of a single stock portfolio (𝑠𝑒
𝑛=𝑓=1

)
2
 as 𝑉𝑎𝑟𝑛=𝑓=1 and 

average variance of a 𝑛𝑃–stock portfolio (𝑠𝑒
𝑃)2 as 𝑉𝑎𝑟𝑃. Furthermore, we denote 

average idiosyncratic (firm specific) variance for a single stock portfolio and 𝑛𝑃 stock 

portfolio as 𝐼𝑣𝑎𝑟𝑛=𝑓=1 and 𝐼𝑣𝑎𝑟𝑃 respectively. Subscript n=f=1 is to emphasize that 

the variable is for single stock portfolio with 100% allocation to stocks. Fully 

diversified benchmark portfolio (consisting of all stocks in the population) variance is 

denoted as 𝑉𝑎𝑟𝐵𝑀. With this notation, utilizing the orthogonality between systematic 

variance 𝑉𝑎𝑟𝐵𝑀 and idiosyncratic variance (𝐼𝑣𝑎𝑟𝑛=𝑓=1 or 𝐼𝑣𝑎𝑟𝑃), we decompose 

variance terms and enter the domain of idiosyncratic variance with mathematically 

convenient zero average correlation between individual stocks.  

Average variance of a 𝑛𝑃–stock portfolio 𝑉𝑎𝑟𝑃 is a sum of systematic benchmark 

variance and portfolio’s idiosyncratic variance. The idiosyncratic variance term can be 

further decomposed as a function of both, number of stocks in the portfolio 𝑛𝑃 and 

number of stocks in the benchmark 𝑛𝐵𝑀. Involving 𝑛𝐵𝑀 in the equation allows us to 
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derive exact formulas instead of settling for approximations. We can write average 

variance of a 𝑛𝑃–stock portfolio as: 

 
𝑉𝑎𝑟𝑃 = 𝑉𝑎𝑟𝐵𝑀 + 𝐼𝑣𝑎𝑟𝑃 = 𝑉𝑎𝑟𝐵𝑀 +

𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝑃
−
𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝐵𝑀
 

                           = 𝑉𝑎𝑟𝐵𝑀 + (
1

𝑛𝑃
−

1

𝑛𝐵𝑀
) 𝐼𝑣𝑎𝑟𝑛=𝑓=1, 

 

(33) 

which reduces to systematic benchmark variance exactly when 𝑛𝑃 = 𝑛𝐵𝑀. 

We then can rewrite equation (32) and have diversification premium for a portfolio of 

𝑛𝑃–stocks: 

 
𝐷𝑃𝑛>1

𝑃 =
𝑓2

2
(𝑉𝑎𝑟𝑛=𝑓=1 − 𝑉𝑎𝑟𝑃) 

          =
𝑓2

2
[(𝑉𝑎𝑟𝐵𝑀 + 𝐼𝑣𝑎𝑟𝑛=𝑓=1)  

− (𝑉𝑎𝑟𝐵𝑀 +
𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝑃
−
𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝐵𝑀
)] 

          =
𝑓2

2
(𝐼𝑣𝑎𝑟𝑛=𝑓=1 −

𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝑃
+
𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝐵𝑀
) 

                          = (1 −
1

𝑛𝑃
+

1

𝑛𝐵𝑀
)
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
𝑓2. 

 

(34) 

Note that above equation holds for portfolios larger than one stock. When 𝑛𝑃 = 1, then 

the diversification premium is zero. In the limit, when 𝑛𝐵𝑀 → ∞, diversification 

premium simplifies to: 

 𝐷𝑃𝑛𝐵𝑀→∞
𝑃 = (1 −

1

𝑛𝑃
)
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
𝑓2. 

 

(35) 
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When 𝑛𝐵𝑀 is large compared to 𝑛𝑃, equation (35) can be used to approximate the 

diversification premium of a 𝑛𝑃–stock portfolio. 

It turns out that the approximate diversification premium equation (35) is basically the 

same equation that Erb and Harvey (2006) provide for diversification return: 

 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 =
1

2
(1 −

1

𝐾
)𝜎2(1 − 𝜌̅), 

 

(36) 

where K is the number of securities in the portfolio, 𝜎2 is average variance of a security 

and 𝜌̅ is the average correlation of a security. In equation (35) we have entered the 

domain of idiosyncratic variance implying average variance of a security (𝜎2) 

corresponds to idiosyncratic variance of a security (𝐼𝑣𝑎𝑟𝑛=𝑓=1) and average 

correlation (𝜌̅) between securities is zero. Finally, K corresponds to 𝑛𝑃 implying 

equations (35) and (36) are inherently identical with the exception that our equation 

(35) includes additional parameter investment fraction f, which is assumed to be one 

in equation (36). 

Equation (35) is also consistent with the diversification bonus and rebalancing bonus 

formulas derived by Bernstein and Wilkinson (1997) who give an approximate (for 

practical rebalancing frequencies instead the theoretical infinite frequency, hence the 

“≈”) formula for rebalancing bonus as: 

 
𝐺 − 𝐺′ ≈ [∑𝑋𝑖(1 + 𝐺𝑖)

𝑖

] − [∑𝑋𝑖(1 + 𝐺𝑖)
𝑁

𝑖

]

1 𝑁⁄

 

                   +∑𝑋𝑖𝑋𝑗 (
𝑉𝑖𝑖
2
+
𝑉𝑗𝑗

2
− 𝑉𝑖𝑗)

𝑖<𝑗

. 

 

(37) 

where 𝐺 is geometric return of rebalanced portfolio and 𝐺′ is the geometric return of 

the corresponding portfolio that is not rebalanced. 𝑋𝑖 and 𝑋𝑗 are asset weights (sum of 

𝑋𝑖 is constrained to one) of the i-th and j-th asset respectively while 𝐺𝑖 is the geometric 
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return of the i-th asset. 𝑁 is the number of compounding periods and 𝑉𝑖𝑖 and 𝑉𝑗𝑗 are 

variances while 𝑉𝑖𝑗 is covariance. The term in the second line is called diversification 

bonus and the sum 𝑖 < 𝑗 means the sum over all asset pairs 𝑖 and 𝑗 for which 𝑖 < 𝑗.  

Comparing equation (37) to our equation (35) we first note that the expected geometric 

return between each of the randomly picked stocks in our portfolio is equal. In 

accordance with how Bernstein and Wilkinson (1997) interpret their formula, equal 

expected asset returns imply the right-hand side of the first row of their formula 

vanishes leaving the second row, the diversification bonus, equal to rebalancing bonus. 

Now, as our equation is in the idiosyncratic variance domain, also the covariance term 

𝑉𝑖𝑗 vanishes from the second row. Furthermore, investment fraction in Bernstein and 

Wilkinson equation is assumed to be one and asset weights in our equation are assumed 

to be equal. After substituting investment fraction one into our equation and equal 

weighting into Bernstein and Wilkinson equation, equations (35) and (37) are the 

same. For example, for a two-stock portfolio, both equations imply diversification 

premium (diversification bonus in Bernstein and Wilkinson terms) equal to one fourth 

of a single stock idiosyncratic variance. 

When 𝑛𝑃 < 𝑛𝐵𝑀, randomly picked portfolio of 𝑛𝑃 stocks from the benchmark 

population of stocks will always have an average excess return variance greater than 

the average excess return variance of a fully diversified benchmark portfolio of 𝑛𝐵𝑀 

stocks. This implies, when 𝑛𝑃 < 𝑛𝐵𝑀, that expected instantaneous excess growth rate 

of a randomly picked portfolio of 𝑛𝑃 stocks from this population of stocks will always 

be lower in comparison to fully diversified benchmark portfolio of 𝑛𝐵𝑀 stocks. Hence, 

there is a premium, i.e., greater expected growth rate paid for accepting more 

diversification. 

We can calculate diversification premium for benchmark portfolio, i.e., expected 

growth rate difference between fully diversified portfolio and single stock portfolio. 

In this case 𝑛𝑃 = 𝑛𝐵𝑀 and substituting to equation (34) gives: 
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 𝐷𝑃𝐵𝑀 =
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
𝑓2 = 𝐷𝑃𝑓=1

𝐵𝑀𝑓2, 

 

(38) 

where we can see that diversification premium for benchmark portfolio with 𝑓 = 1 is: 

 𝐷𝑃𝑓=1
𝐵𝑀 =

𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
. 

 

(39) 

We can see the diversification premium, i.e., the expected portfolio growth benefit 

from diversification, for a benchmark portfolio is directly proportional to average 

idiosyncratic variance of a single stock and proportional to the square of investment 

fraction. 

We will further define diversification premium difference to benchmark as portfolio 

diversification premium difference between a 𝑛𝑃–stock portfolio and fully diversified 

benchmark portfolio. This equals the difference in the expected instantaneous excess 

growth rates. New symbol 𝑔∞
𝑒,𝐵𝑀

 in the equation is the expected instantaneous excess 

growth rate of a benchmark portfolio: 

 Δ𝐷𝑃𝑛>1
𝐵𝑀 = 𝑔∞

𝑒,𝑃 − 𝑔∞
𝑒,𝐵𝑀 = 𝐷𝑃𝑃 − 𝐷𝑃𝐵𝑀 

               = (1 −
1

𝑛𝑃
+

1

𝑛𝐵𝑀
)
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
𝑓2 −

𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
𝑓2 

               = −
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
(
1

𝑛𝑃
−

1

𝑛𝐵𝑀
) 𝑓2 

                               = (
1

𝑛𝐵𝑀
−

1

𝑛𝑃
)𝐷𝑃𝑓=1

𝐵𝑀𝑓2. 

 

(40) 

Note that above equation holds for portfolios larger than one stock. When 𝑛𝑃 = 1, 

portfolio’s diversification premium is zero and diversification premium difference to 

benchmark is equal to the opposite of diversification premium of a benchmark 

portfolio: 
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 Δ𝐷𝑃𝑛=1
𝐵𝑀 = −𝐷𝑃𝐵𝑀 = −𝐷𝑃𝑓=1

𝐵𝑀𝑓2 = −
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
𝑓2. 

 

(41) 

Diversification premium difference to benchmark gives us the 𝑛𝑃–stock portfolio 

expected instantaneous excess growth rate difference to benchmark. Diversification 

premium difference to benchmark is always negative when 𝑛𝑃 < 𝑛𝐵𝑀. 

In the limit, when 𝑛𝐵𝑀 → ∞ in equation (40), diversification premium difference to 

benchmark simplifies to: 

 Δ𝐷𝑃𝑛𝐵𝑀→∞
𝐵𝑀 = −

𝐼𝑣𝑎𝑟𝑛=𝑓=1

2𝑛𝑃
𝑓2 = −

𝐼𝑣𝑎𝑟𝑃

2
𝑓2 = −

𝐷𝑃𝑓=1
𝐵𝑀

𝑛𝑃
𝑓2 = −

𝐷𝑃𝐵𝑀

𝑛𝑃
. 

 

(42) 

When 𝑛𝐵𝑀 is large compared to 𝑛𝑃, equation (42) can be used to approximate 

diversification premium difference to benchmark for a 𝑛𝑃–stock portfolio as a function 

of idiosyncratic variance of a single stock portfolio with 100% stock allocation. 

Alternatively, we can think of equation (42) as a function of idiosyncratic variance of 

a 𝑛𝑃–stock portfolio with 100% stock allocation 𝐼𝑣𝑎𝑟𝑃. This is because when 𝑛𝐵𝑀 is 

large compared to 𝑛𝑃, idiosyncratic variance of a 𝑛𝑃–stock portfolio is approximated 

by the idiosyncratic variance of a single stock portfolio with 100% stock allocation 

𝐼𝑣𝑎𝑟𝑛=𝑓=1 divided by 𝑛𝑃.  

Furthermore, when 𝑛𝐵𝑀 is large compared to 𝑛𝑃, we can see from equation (42) that 

the diversification premium difference to benchmark for an investment portfolio is 

approximated by the diversification premium of a benchmark portfolio divided by the 

number of stocks in the investment portfolio. 

3.3.2 Estimation of diversification premium 

We have established that portfolio diversification premium is a function of average 

idiosyncratic variance of a single stock portfolio 𝐼𝑣𝑎𝑟𝑛=𝑓=1. Next, we will show that 

𝐼𝑣𝑎𝑟𝑛=𝑓=1 can be estimated from exhaustive historical stock return data by using a 
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linear ordinary-least-squares (OLS) regression. In addition, we will show how 

diversification premium can be arrived to from several different angles by utilizing 

different regression outputs leading to three different formulas expressing 

diversification premium difference to benchmark. Important property of our approach 

is that it utilizes exhaustive data consisting of the whole selected benchmark 

population of individual stock returns from selected time period. The approach is 

enabled by deriving equations describing the generalization of the parameters 

estimated from individual stock data to any 𝑛𝑃–stock size portfolio. 

As we are interested in geometric rate of return, we use logarithmic returns instead of 

arithmetic (simple) returns in our regression. Our regression model is the following: 

 𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 = 𝛼 + 𝛽𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡 + 𝜖𝑡,𝑖. 

 

(43) 

In equation (43), 𝑖 = 1,… , 𝑛𝑡  denotes the 𝑖-th individual stock occurrence in sub-

period 𝑡, while 𝑛𝑡 is the number of individual stock occurrences in sub-period 𝑡. 𝑡 =

1, … , 𝑇 denotes the 𝑡-th sub-period, while 𝑇 is the number of sub-periods in whole 

period of interest. Our empirical sub-period length is one month. 𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 =

ln(1 + 𝑆𝑡𝑜𝑐𝑘𝐸𝑅𝑒𝑡𝑡,𝑖) and 𝑆𝑡𝑜𝑐𝑘𝐸𝑅𝑒𝑡𝑡,𝑖 is the 𝑖-th simple excess return of an 

individual stock in month 𝑡. 𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡 = ln(1 + 𝐵𝑚𝐸𝑅𝑒𝑡𝑡) and 𝐵𝑚𝐸𝑅𝑒𝑡𝑡 is the 

simple excess return of an equally weighted benchmark portfolio (including the whole 

population of benchmark’s stocks) in month 𝑡. 𝛼 is the intercept, i.e., the expected 

unexplained difference between 𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 and 𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡. 𝛽 is the sensitivity 

of  𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 to changes in 𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡 corresponding to the concept of market 

beta. 𝜖𝑡,𝑖 is the residual or the error term of 𝑖-th individual stock data point in month 𝑡. 

𝑆𝑡𝑜𝑐𝑘𝐸𝑅𝑒𝑡𝑡,𝑖 and 𝐵𝑚𝐸𝑅𝑒𝑡𝑡 have 100% allocation to underlying stocks implying 

investment fraction f is one. 

We are interested in portfolio’s expected excess growth rate which is used in the 

compounding process. Each sub-period (e.g. one month) has equal weight in the 

compounding process. The regression model described by equation (43) therefore is 

directly usable only if each sub-period in the data has equal number of individual stock 
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returns as the number of returns per sub-period equals the weight of a sub-period in 

the compounding process over the total period. Equal number of returns per sub-period 

is typically the case in simple simulations, but is not the case with empirical data 

where, e.g., the number of stocks per month varies and may differ significantly 

especially when the data spans a longer period of time like several decades. We 

therefore introduce two alternative regression model specifications which account for 

the differences in the number of data points per time sub-period.  

Alternative regression model specifications are such that we first calculate a 

normalization weight for each time sub-period, assign the weight to each stock return 

belonging to the sub-period, and then multiply both 𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 and 𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡 

in equation (43) with this weight to neutralize potential differences in the number of 

stock return data points and therefore equalize the weights among sub-periods. The 

lower the number of stock returns per sub-period is, the greater the weight for each 

individual stock return belonging to the sub-period will be and vice versa. The first of 

the alternative specifications has a normalization weight for stock returns in the 𝑡-th 

sub-period as follows: 

 𝑤𝑡
𝑛𝑜𝑟𝑚_𝛼 = 𝑛𝑡̅̅̅ 𝑛𝑡⁄ , 

 

(44) 

where 𝑛𝑡̅̅̅ is the average number of stock returns per sub-period over the whole period 

of interest and 𝑛𝑡 is the number of stock returns in the 𝑡-th time sub-period.  

The normalization weight for stock returns in the 𝑡-th sub-period for the second 

alternative specification is: 

 𝑤𝑡
𝑛𝑜𝑟𝑚_𝑉𝑎𝑟 = √𝑛𝑡̅̅̅ 𝑛𝑡⁄ . 

 

(45) 

The first alternative specification is then derived from regression equation (43) by 

normalizing logarithmic returns by 𝑤𝑡
𝑛𝑜𝑟𝑚_𝛼: 
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 𝑤𝑡
𝑛𝑜𝑟𝑚_𝛼𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 = 𝛼 + 𝛽𝑤𝑡

𝑛𝑜𝑟𝑚_𝛼𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡 + 𝜖𝑡,𝑖, 

 

(46) 

and similarly, the second alternative specification becomes: 

 𝑤𝑡
𝑛𝑜𝑟𝑚_𝑉𝑎𝑟𝑆𝑡𝑜𝑐𝑘𝐿𝑛𝐸𝑅𝑒𝑡𝑡,𝑖 = 𝛼 + 𝛽𝑤𝑡

𝑛𝑜𝑟𝑚_𝑉𝑎𝑟𝐵𝑚𝐿𝑛𝐸𝑅𝑒𝑡𝑡 + 𝜖𝑡,𝑖.  

 

(47) 

Note that when each sub-period in the data has equal number of individual stock 

returns, normalization weight becomes one and equations (46) and (47) simplify to 

equation (43). However, as the empirical number of individual stock returns typically 

differ between sub-periods, we choose to exclusively use either regression equation 

(46) or (47). As the notation in the normalization weight equations (44) and (45) 

suggests, former is used with alpha-based equations and latter with variance-based 

equations. The difference of the two normalization weights stems from the fact that 

alpha scales linearly while variance scales with a squared scale factor. We therefore 

take a square root when obtaining the normalized number of stocks per time sub-period 

in the variance-based case. We will refer to appropriate regression equation when the 

alpha- and variance-based equations are introduced. 

We start with a variance-based metric. Average idiosyncratic variance of a single stock 

portfolio 𝐼𝑣𝑎𝑟𝑛=𝑓=1 can now be obtained from the residual of the regression equation 

(47): 

  𝐼𝑣𝑎𝑟𝑛=𝑓=1 = 𝑉𝑎𝑟(𝜖𝑡,𝑖). 

 

(48) 

Alternatively, we can arrive to diversification premium difference to benchmark 

formula by simply using alpha from the regression equation (46). As we have defined, 

the diversification premium difference to benchmark for a single stock portfolio is the 

expected growth rate difference between single stock portfolio and fully diversified 

benchmark portfolio. This is the exact definition of 𝛼 in regression equation (43) and 
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therefore also in (46). To be consistent with the notation 𝐼𝑣𝑎𝑟𝑛=𝑓=1, we denote alpha 

as 𝛼𝑛=𝑓=1 emphasizing that alpha is for single stock portfolio with 100% stock 

allocation. We can write 𝛼𝑛=𝑓=1 equal to 𝑛𝑃 = 1, 𝑓 = 1 and equation (39) substituted 

into equation (41) and have alpha for single stock portfolio with 100% stock allocation: 

 𝛼𝑛=𝑓=1 = Δ𝐷𝑃𝑛=𝑓=1
𝐵𝑀 = −

𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
. 

 

(49) 

We can solve 𝐼𝑣𝑎𝑟𝑛=𝑓=1 from equation (49): 

 𝐼𝑣𝑎𝑟𝑛=𝑓=1 = −2𝛼𝑛=𝑓=1, 

 

(50) 

which by substituting equation (39) gives: 

 𝐷𝑃𝑓=1
𝐵𝑀 = −𝛼𝑛=𝑓=1, 

 

(51) 

and by substituting equations (50) and (51) into equation (40) we have diversification 

premium difference to benchmark as function of alpha: 

 Δ𝐷𝑃𝑛>1
𝐵𝑀 = 𝛼𝑛=𝑓=1 (

1

𝑛𝑃
−

1

𝑛𝐵𝑀
) 𝑓2 

                                = 𝐷𝑃𝑓=1
𝐵𝑀 (

1

𝑛𝐵𝑀
−

1

𝑛𝑃
) 𝑓2. 

 

(52) 

Note that above equation holds for portfolios larger than one stock. When 𝑛𝑃 = 1, 

portfolio’s diversification premium is zero and diversification premium difference to 

benchmark is equal to the opposite of diversification premium of a benchmark 

portfolio which now equals the alpha scaled by the squared of investment fraction: 
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 Δ𝐷𝑃𝑛=1
𝐵𝑀 = −𝐷𝑃𝐵𝑀 = −𝐷𝑃𝑓=1

𝐵𝑀𝑓2 = 𝛼𝑛=𝑓=1𝑓
2. 

 

(53) 

In the limit, when 𝑛𝐵𝑀 → ∞, equation (52) simplifies to: 

 Δ𝐷𝑃𝑛𝐵𝐸→∞
𝐵𝑀 =

𝛼𝑛=𝑓=1

𝑛𝑃
𝑓2 = −

𝐷𝑃𝑓=1
𝐵𝑀

𝑛𝑃
𝑓2. 

 

(54) 

When 𝑛𝐵𝑀 is large compared to 𝑛𝑃, equation (54) approximates instantaneous 

expected excess growth rate difference between 𝑛𝑃–stock portfolio and fully 

diversified benchmark portfolio as a function of alpha of a single stock portfolio with 

100% stock allocation.  

Yet another alternative to present diversification premium difference to benchmark 

formula is by utilizing R-squared metric from regression (47) (we can see from 

equation (55) that R-squared is a variance-based metric) and benchmark variance.  

R-squared can be expressed as one minus the ratio of the residual sum of squares (RSS) 

to the total sum of squares (TSS) (Brooks, 2014, p. 153). We can consider the RSS as 

the idiosyncratic variance of the portfolio 𝐼𝑣𝑎𝑟𝑃 and the TSS as the total variance of 

the portfolio which equals benchmark variance 𝑉𝑎𝑟𝐵𝑀 plus the idiosyncratic variance 

of the portfolio 𝐼𝑣𝑎𝑟𝑃. Now, when 𝑛𝑃 = 1 and 𝑓 = 1, we denote R-squared as 𝑅𝑛=𝑓=1
2  

emphasizing that R-squared from regression is for single stock portfolio with 100% 

stock allocation. Similarly, 𝐼𝑣𝑎𝑟𝑃 = 𝐼𝑣𝑎𝑟𝑛=𝑓=1. We therefore can write the R-squared 

as a function of benchmark variance and idiosyncratic variance of a single stock 

portfolio with 100% stock allocation.  

 
𝑅𝑛=𝑓=1
2 = 1 −

𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑉𝑎𝑟𝐵𝑀 + 𝐼𝑣𝑎𝑟𝑛=𝑓=1
 

                               =
1

1+𝐼𝑣𝑎𝑟𝑛=𝑓=1 𝑉𝑎𝑟𝐵𝑀⁄
. 

 

(55) 



 61 

Next, we solve 𝐼𝑣𝑎𝑟𝑛=𝑓=1 from equation (55): 

 𝐼𝑣𝑎𝑟𝑛=𝑓=1 = (
1

𝑅𝑛=𝑓=1
2 − 1)𝑉𝑎𝑟𝐵𝑀, 

 

(56) 

which by substituting (39) gives: 

 𝐷𝑃𝑓=1
𝐵𝑀 = (

1

𝑅𝑛=𝑓=1
2 − 1)

𝑉𝑎𝑟𝐵𝑀

2
, 

 

(57) 

and substituting equations (56) and (57) into equation (40) gives diversification 

premium difference to benchmark as function of R-squared and benchmark variance: 

 
Δ𝐷𝑃𝑛>1

𝐵𝑀 = (1 −
1

𝑅𝑛=𝑓=1
2 )

𝑉𝑎𝑟𝐵𝑀
2

(
1

𝑛𝑃
−

1

𝑛𝐵𝑀
) 𝑓2 

                                = (
1

𝑛𝐵𝑀
−

1

𝑛𝑃
)𝐷𝑃𝑓=1

𝐵𝑀𝑓2. 

 

(58) 

Note that above equation holds for portfolios larger than one stock. When 𝑛𝑃 = 1, 

portfolio’s diversification premium is zero and diversification premium difference to 

benchmark is equal to the opposite of diversification premium of a benchmark 

portfolio: 

 Δ𝐷𝑃𝑛=1
𝐵𝑀 = −𝐷𝑃𝐵𝑀 = −𝐷𝑃𝑓=1

𝐵𝑀𝑓2 = (1 −
1

𝑅𝑛=𝑓=1
2 )

𝑉𝑎𝑟𝐵𝑀

2
𝑓2. 

 

(59) 

In the limit, when 𝑛𝐵𝑀 → ∞, equation (58) simplifies to: 



 62 

 Δ𝐷𝑃𝑛𝐵𝑀→∞
𝐵𝑀 = (1 −

1

𝑅𝑛=𝑓=1
2 )

𝑉𝑎𝑟𝐵𝑀

2𝑛𝑃
𝑓2 = −

𝐷𝑃𝑓=1
𝐵𝑀

𝑛𝑃
𝑓2. 

 

(60) 

When 𝑛𝐵𝑀 is large compared to 𝑛𝑃, equation (60) approximates instantaneous 

expected excess growth rate difference between 𝑛𝑃–stock portfolio and fully 

diversified benchmark portfolio as a function of R-squared of a single stock portfolio 

with 100% stock allocation and benchmark variance. 

Equation (56) decompose idiosyncratic variance into two components: First 

component (
1

𝑅𝑛=𝑓=1
2 − 1) which is a function of R-squared and second component 

𝑉𝑎𝑟𝐵𝑀 which is the systematic risk, i.e., the variance of the fully diversified benchmark 

portfolio. This decomposition gives us good intuition what drives the diversification 

premium difference between 𝑛𝑃–stock portfolio and fully diversified benchmark 

portfolio in equation (58). R-squared basically tells us how representative the 

benchmark is to individual stock risks, i.e., what proportion of the risks, and therefore 

expected growth rate, is explained by the benchmark. The first component therefore is 

the size, in relation to systematic risk component size, of a single stock portfolio risks 

not explained by the benchmark, i.e., relative size of idiosyncratic, costly risk. The 

second component tells us how risky the benchmark is by itself. Multiplying the first 

and the second component together gives us the absolute amount of idiosyncratic risk 

for a single stock portfolio.  

From above decomposition of idiosyncratic variance, it seems like a reasonable 

hypothesis that investment style may affect the diversification premium difference 

between 𝑛𝑃–stock portfolio and fully diversified benchmark portfolio. Investment 

style loads on additional risk factors, not just market factor. For example, small cap 

value style loads on market, size and value factors which should increase the 𝑅𝑛=𝑓=1
2  

metric which now accounts for exposure to three factors instead of one1. Additionally, 

                                                 
1 Since we have rebalanced equally weighted benchmarks instead of buy and hold value weighted, we 

acknowledge that there is some base exposure to size, value and momentum factors because of the equal 

weighting per se. Regardless the base factor exposures, deliberate exposure to distinct investment style 

is expected to be reflected in the factor exposures associated with the style. 
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it is obvious that the benchmark variance affects the diversification premium 

difference to benchmark. If we think of focusing on different firm sizes as investment 

style and compare two benchmarks, small cap stocks and large cap stocks, we expect 

small cap stocks benchmark to have higher variance. This supports the hypothesis that 

investment style affects diversification premium difference to benchmark. 

3.3.3 Diversification is a negative price lunch 

As opposed to one period world where diversification is famously “a free lunch”, in 

continuous-time, multi-period world, diversification is “a negative price lunch”. This 

is based on the fact that in the one period world idiosyncratic risk is “uncompensated 

risk” whereas in the continuous-time world idiosyncratic risk is “costly risk”. The 

costly nature of the idiosyncratic risk in the continuous-time world is obvious from the 

approximate diversification premium difference to benchmark equation (42) where we 

can see that expected instantaneous growth rate of a 𝑛𝑃–stock portfolio is the expected 

instantaneous growth rate of fully diversified benchmark portfolio minus half the 

portfolio’s idiosyncratic variance. To be precise, in continuous-time world also the 

systematic risk, while compensated, is simultaneously costly as can be seen from 

equation (8) where any variance, including systematic variance, decreases the growth 

rate. 

More specifically, one half of the portfolio’s idiosyncratic variance approximates the 

magnitude of diversification premium difference to benchmark, the opportunity cost 

of foregone diversification. In one period world arithmetic rate of return is constant 

regardless the level of diversification, i.e., idiosyncratic risk is unnecessary and 

uncompensated, but not costly.  

The opportunity cost above holds for portfolio’s with exactly 100% stock allocation 

implying investment fraction one. Importantly, as shown by equation (42), the effect 

of asset allocation between risky and riskless assets dramatically affects the 

opportunity cost of foregone diversification as the impact from idiosyncratic variance 

is multiplied by the square of the investment fraction. Accounting for asset allocation, 

we can more precisely determine one half of the portfolio’s idiosyncratic variance 

scaled by the squared investment fraction as approximating the magnitude of 
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diversification premium difference to benchmark, the opportunity cost of foregone 

diversification. 

What “a negative price lunch” means is that an investor is paid for consuming the 

lunch of diversification. An investor earns the higher expected portfolio growth rate 

the more diversification he accepts. This description bears a similarity to description 

of the term “risk premium”: An investor earns the higher expected portfolio growth 

rate the more (systematic) risk he accepts. Hence the term “diversification premium”. 

In continuous-time world risk is polarized. All risk is costly, but systematic risk is 

compensated while idiosyncratic risk is not. Risk therefore is either potentially 

beneficial (compensated systematic risk) or plain costly (idiosyncratic risk), there is 

no middle ground. The only way to earn a potentially higher geometric risk premium 

is to bear more systematic risk(s) while any exposure to idiosyncratic risk will only 

decrease the geometric risk premium.  

Even the compensated systematic risk entails the underlying costly nature common to 

all continuous-time world risks. Therefore, even the systematic risk, as we will learn 

in the coming discussion about the Kelly criterion, when overdosed, may decrease the 

expected growth rate of a portfolio. 

3.3.4 Kelly criterion and the magic of Sharpe ratio 

Kelly (1956) utilized information theory, introduced by Shannon (1948), in the context 

of gambling. Kelly introduced a new interpretation of Shannon’s information rate. This 

interpretation is known as the Kelly criterion. Kelly criterion states that gambler, 

playing positive expectation games, shall not target maximizing the expected value of 

his bankroll, but instead targets maximizing the expected growth rate (the expected 

value of the logarithm) of his bankroll in consecutive bets. The gambler will, by 

following the policy of betting a constant fraction (as given by Kelly criterion) of his 

bankroll, achieve the maximum expected growth rate for his bankroll while 

simultaneously (given indefinitely divisible bets) ensure that the probability of ruin 

approaches zero. Alternative strategy of maximizing the expected value of his bankroll 

would imply betting the whole bankroll at each trial and, in the long term, would lead 
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to almost certain ruin. The key is to maximize expected growth rate, not expected 

value. (Kelly, 1956; Thorp, 2006). 

Thorp (2006), derives a continuous variable, continuous-time version of the discrete 

variable, discrete time Kelly criterion. Thorp provides us with tools to input the 

standard metrics in finance, expected return and volatility of the returns, into Kelly 

criterion formula and shows how the instantaneous drift rate, i.e., log return or 

expected growth rate of a portfolio is a non-linear function of risk (volatility of the 

growth rate) and fraction of capital allocated to risky assets. Thorp shows how the 

implications and conclusions from Kelly criterion as determined by Kelly (1956) in 

discrete gambling domain can be transferred into continuous stock investment domain. 

Thorp (2008) cites an interview where Warren Buffett is asked about diversification 

and his view on position sizing. Buffett says he has two views on diversification: Those 

who are not professional and don’t have stock picking skill (edge) should diversify 

maximally, while those who are professional and have an edge use Kelly and 

concentrated portfolios.  

Kelly criterion is applicable in two aspects. The first aspect is the portfolio selection 

which maximizes the reward to risk trade-off. Stock picking skill combined with 

concentrated, properly weighted bets can increase the expected return and hence 

improve the portfolio selection outcome. The second aspect is the portfolio risk level 

selection or minimization for the overall portfolio. Buffett can actively utilize both 

aspects by selecting and weighting the stocks while keeping an eye on the risk level of 

his potentially leveraged portfolio. Diversifier takes a passive stance towards the first 

aspect but can maximally utilize the second. Importantly, Kelly criterion makes 

evident that passive diversifier has one significant advantage over the active 

concentrated bettor. Namely a higher expected portfolio growth rate before accounting 

for the potential edge of the stock picker. This is the edge of the diversifier arising 

from lower risk. The stock picker therefore needs a skill level high enough to overcome 

the opportunity cost of foregone diversification edge to make his concentrated stock 

picking efforts worthwhile. 
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Our application of Kelly criterion will assume market efficiency which corresponds to 

investors without stock picking skill and emphasizes the role of diversification. We 

will assume randomly picked equally weighted stock portfolio and seek to explain the 

characteristics of that portfolio using the Kelly criterion. We emphasize the importance 

of rebalancing and assume a continuously rebalanced and continuously compounding 

portfolio. We will show how Sharpe ratio plays a key role as the most important 

parameter determining the opportunity set for a continuous-time world investor. We 

touch the subjects of rational weight on risky assets and the efficient frontier and how 

they differ between a single-period and continuous-time world investor. We also show 

how Sharpe ratio based on geometric returns is very different metric compared to 

Sharpe ratio based on arithmetic returns. Importantly from typical individual investor 

point of view, who as shown by Goetzmann and Kumar (2008) and Polkovnichenko 

(2005) is poorly diversified, we show how Kelly criterion explains the poor expected 

geometric risk premium at the low end of the level of diversification. 

Thorp (2006, p. 407) shows that maximum expected instantaneous growth rate, 

applicable to an investment portfolio, is achieved at point 𝑓∗: 

 𝑓∗ =
𝑚−𝑟

𝑠2
, 

 

(61) 

where 𝑚 is the expected instantaneous (arithmetic) return per year, 𝑟 is the 

instantaneous riskless rate per year and 𝑠 is the standard deviation of the continuously 

compounding growth per year, i.e., the standard deviation of the logarithmic return per 

year. 𝑓∗ is obtained by differentiating equation (14) with respect to f and finding the 

maximum. 𝑓∗ can be referred to as “full investment fraction” or “full Kelly”. 

According to Thorp (2006, p. 407), in the infinitely short compounding interval the 

standard deviation of the continuously compounding growth of a continuously 

rebalanced portfolio, i.e., the standard deviation of logarithm of one plus arithmetic 

return is equal to standard deviation of the arithmetic returns. 
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Similarly, we can find the investment fraction f delivering the maximum expected 

instantaneous excess growth rate by differentiating equation (8) with respect to f. “Full 

Kelly” then is: 

 𝑓∗ =
𝑚𝑒

𝑠𝑒
2 , 

 

(62) 

Where expected instantaneous (arithmetic) excess return 𝑚𝑒 = 𝑚 − 𝑟 per year and 𝑠𝑒 

is standard deviation of the continuously compounding excess growth (excess of 

riskless rate growth) per year. 

Following Thorp (2006, p. 407), we substitute equation (62) into equation (8) and have 

maximum expected instantaneous excess growth rate: 

 𝑔∞
𝑒 (𝑓∗) =

𝑚𝑒

𝑠𝑒
2 𝑚𝑒 − 

(𝑚𝑒 𝑠𝑒
2⁄ )
2
𝑠𝑒
2

2
=

𝑚𝑒
2

2𝑠𝑒
2. 

 

(63) 

Sharpe ratio, the corner stone of modern portfolio theory, is central also in the 

continuous-time world where investors care about the growth rate, i.e., the geometric 

rate of return. Thorp (2006, p. 407) shows that for fixed riskless rate, maximum 

expected instantaneous growth rate depends only on Sharpe ratio. This means that 

maximum expected instantaneous excess growth rate for a portfolio depends on Sharpe 

ratio and nothing else.  

Now, remember that the definition of the general (ex ante) Sharpe ratio (SR) as given 

by Sharpe (1994) is: 

 𝑆𝑅 =
𝑑̅

𝜎𝑑
, 

 

(64) 
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where 𝑑̅ is the expected differential return between fund arithmetic return 𝑅𝐹 and 

benchmark arithmetic return 𝑅𝐵 and 𝜎𝑑 is the predicted standard deviation of the 

differential return 𝑑 = 𝑅𝐹 − 𝑅𝐵.  

In our case, portfolio’s instantaneous expected excess return 𝑚𝑒 corresponds to 

expected differential return 𝑑̅ and predicted standard deviation of the continuously 

compounding excess growth 𝑠𝑒 corresponds to predicted standard deviation of the 

differential return 𝜎𝑑. Note that there is a subtle difference both between returns and 

standard deviations. 𝑑̅ is periodically compounded rate while 𝑚𝑒 is an instantaneous 

(continuously compounded) rate. 𝜎𝑑 is the predicted standard deviation for the 

periodically compounded arithmetic differential return whereas 𝑠𝑒 is the predicted 

standard deviation for the continuously compounded excess growth, i.e., the predicted 

standard deviation for the logarithm of one plus the arithmetic differential return. We 

follow Baz and Guo (2017) and call our Sharpe ratio as the instantaneous Shape Ratio 

and use subscript ∞ to denote the instantaneousness: 

 𝑆𝑅∞ =
𝑚𝑒

𝑠𝑒
. 

 

(65) 

It is the instantaneous Sharpe ratio that Thorp (2006, p. 407) shows is the determinant 

of maximum expected instantaneous growth rate together with riskless rate. When 

compounding and balancing periods are infinitely short, the standard deviation of the 

arithmetic differential return equals the standard deviation of the logarithm of one plus 

the arithmetic differential return (Thorp, 2006, p. 407). Also, periodically compounded 

excess return becomes instantaneous excess return when period becomes infinitely 

short. Therefore, at infinite compounding and rebalancing frequency the conventional 

and instantaneous Sharpe ratios are equal. 

When compounding and rebalancing frequency is lower than infinite, we can think of 

the difference between the standard deviations between instantaneous and periodically 

compounding returns as the difference between the standard deviation of a normally 

distributed instantaneous return and the standard deviation of an associated log-normal 

distribution, which is the result from compounding the normally distributed returns 
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over time. When the arithmetic expected return is greater than zero, the standard 

deviation for the log-normal distribution is always greater than the standard deviation 

for the normal distribution and the difference increases as a function of time (length of 

rebalancing period). On the other hand, the excess return component of the Sharpe 

ratio is slightly greater for periodically compounded excess return and the difference 

increases as a function of time, which help to compensate the Sharpe ratio difference 

arising from the difference between standard deviations. When utilizing monthly 

return data, we find the difference between conventional and instantaneous Sharpe 

ratio with typical stock market return parameters is negligible. 

Rebalancing is essential. In addition to assumed infinite compounding frequency, a 

Kelly investor, who cares about the portfolio growth rate which (as will be shown) is 

a function of Sharpe ratio, will rebalance his portfolio theoretically at infinite 

frequency (Thorp, 2006, p. 408). Rebalancing now entails both rebalancing between 

riskless rate and stock portfolio (maintaining desired investment fraction f) and 

rebalancing among stocks to maintain equal weighting. As can be seen from the 

equation (37) derived by Bernstein and Wilkinson (1997), the rebalancing bonus, and 

therefore the expected growth rate of a portfolio, for assets with equal expected growth 

rate is the greatest when asset weights are equal. Rebalancing bonus is the expected 

growth rate difference between rebalanced and non-rebalanced portfolio. The results 

for rebalancing bonus for assets with equal expected growth rate apply to our case as 

we treat each randomly picked individual stock as sharing the characteristics of an 

average stock in the benchmark population. Weights in a non-rebalanced, buy and 

hold, portfolio increasingly deviate from original weights as time passes on. This 

implies the greater the rebalancing frequency the more equal the weighting among 

stocks and theoretically, not accounting for costs or any empirical phenomena like 

momentum, the greater the expected excess growth rate for our randomly picked stock 

portfolio. 

The literature about rebalancing does not support very frequent rebalancing for 

practitioners. Typically, monthly, quarterly, and annual rebalancing frequencies don’t 

produce significantly differing results when measured as average portfolio growth rate. 

If anything, after costs, too frequent rebalancing may cause a growth rate disadvantage. 

According to empirical tests by Jaconetti, Kinniry and Zilbering (2015), rebalancing 
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broadly diversified stock and bond asset allocation using monthly, quarterly or annual 

frequency does not yield a significant difference in reward or risk characteristics 

between rebalanced portfolios. Jaconetti et al., however, do find a significant 

difference between the rebalanced portfolios and never rebalanced portfolio and 

conclude that, at reasonable frequencies, rebalancing is foremost a method to maintain 

desired reward/risk trade-off rather than to target enhancing portfolio growth rate. 

Kuhn and Luenberger (2010) specifically study the effect of rebalancing frequency to 

growth rate for log-optimal portfolio. They show that continuous rebalancing 

mathematically yields the highest possible growth rate. This implies that infinite 

rebalancing frequency theoretically maximizes instantaneous Sharpe ratio. However, 

Kuhn and Luenberger also show theoretically that the difference in achieved growth 

rate before costs is negligible between continuous rebalancing (infinite rebalancing 

frequency) and annual rebalancing.  

Based on the literature it seems safe to assume that no significant portfolio growth rate 

difference is expected when deviating from the theoretical continuous rebalancing as 

long as the rebalancing takes place at a reasonable frequency which we consider to be 

once per year at lowest. Therefore, even though our equations assume continuous 

rebalancing, we expect the equations to very closely approximate the results obtainable 

at practical and reasonable rebalancing frequencies. There is one caveat however. 

Contrary to most studies, our analysis includes investment fraction 𝑓 which means the 

portfolio can be leveraged. If portfolio is aggressively leveraged, it will deviate from 

typical parameters used in studies. Use of leverage therefore could potentially change 

the rebalancing frequency requirements for a portfolio. Intuitively, if anything, 

increased 𝑓 should call for higher rebalancing frequency. 

Now, building on the instantaneous Sharpe ratio, substituting equation (65) into 

equation (63) gives us maximum expected instantaneous excess growth rate as a 

function of instantaneous Sharpe ratio: 

 𝑔∞
𝑒 (𝑓∗) =

𝑆𝑅∞
2

2
. 

 

(66) 
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What is remarkable is that the maximum achievable expected instantaneous excess 

growth rate of a portfolio is a function of instantaneous Sharpe ratio and nothing else. 

This is the expected instantaneous excess growth rate at “full Kelly”, i.e., at investment 

fraction 𝑓∗. “Fractional Kelly”, as determined by Thorp (2006, p. 408), is the Kelly 

fraction c multiplied by “full Kelly” investment fraction 𝑓∗ leading to investment 

fraction 𝑓 = 𝑐𝑓∗. For example, “half Kelly” corresponds to investment fraction 𝑓 =

1

2
𝑓∗. When Kelly fraction c in a long-only portfolio is increased from zero to one, 

expected growth rate and risk (standard deviation of the growth) monotonically 

increase until the maximum growth rate and risk at “full Kelly” reached. As the 

rational Kelly fraction opportunity set spans from zero to one, the associated expected 

instantaneous excess growth rate determines the rational frontier. At rational frontier, 

expected instantaneous excess growth rate is always the highest achievable given the 

level of risk or alternatively the level of risk is the lowest achievable given the level or 

expected instantaneous excess growth rate. What all this means is that Kelly fraction 

c and instantaneous Sharpe ratio 𝑆𝑅∞ together determine the whole rational expected 

instantaneous excess growth rate opportunity set (rational frontier) available to a 

continuous-time world investor. 

Thorp (2006, p. 409) derives investment fraction 𝑓 = 𝑐𝑓∗ as a function of Kelly 

fraction c and “full Kelly” investment fraction 𝑓∗: 

 𝑓 = 𝑐𝑓∗ =
𝑐(𝑚−𝑟)

𝑠2
, 

 

(67) 

which in our notation corresponds to: 

 𝑓 = 𝑐𝑓∗ =
𝑐𝑚𝑒

𝑠𝑒
2 . 

 

(68) 

Following Thorp (2006, p. 409), we substitute equations (68) and (65) into equation 

(8) and find the expected instantaneous excess growth rate as a function of Kelly 

fraction and instantaneous Sharpe ratio: 
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𝑔∞
𝑒 (𝑐𝑓∗) =

𝑐𝑚𝑒

𝑠𝑒2
𝑚𝑒 − 

(𝑐𝑚𝑒 𝑠𝑒
2⁄ )2𝑠𝑒

2

2
= (𝑐 −

𝑐2

2
) (
𝑚𝑒

𝑠𝑒
)
2

 

                                  = 𝑐 (1 −
𝑐

2
) 𝑆𝑅∞

2 . 

 

(69) 

It is easy to interpret from equation (69), and is visualized in Figure 2, that expected 

instantaneous excess growth rate is at maximum when Kelly fraction 𝑐 = 1, zero 

when 𝑐 = 0 or 𝑐 = 2 and negative when 𝑐 < 0 (implying short position on stocks) or 

𝑐 > 2. The shape of the curve is parabolic and therefore symmetric around the 

maximum at 𝑐 = 1. The implication is that the rational opportunity set, i.e., the rational 

frontier of a continuous-time world investor spans from Kelly fraction zero to one. 

Risk neutral investor, who only cares about maximizing growth rate and is indifferent 

to risk, in the absence of leverage constraints will always choose full Kelly (𝑐 = 1) 

allocation. For risk averse investor, Kelly fraction 1 < 𝑐 ≤ 2 is irrational (on irrational 

frontier) as investor can always obtain the same expected instantaneous excess growth 

rate from the rational frontier (0 ≤ 𝑐 ≤ 1) with lower risk. Naturally Kelly fraction 

leading to negative expected instantaneous excess growth rate is irrational as well. 

Negative expected instantaneous excess growth rate implies negative instantaneous 

geometric risk premium meaning that investor is expected to earn a portfolio growth 

lower than expected growth of riskless rate.  

The above considers the Kelly fraction choice set 0 ≤ 𝑐 ≤ 1 as being the rational 

frontier for a portfolio. As is evident from Thorp (2008), if the portfolio itself is the 

instantaneous Sharpe optimal portfolio (portfolio with the greatest possible 

instantaneous Sharpe ratio), then the rational frontier is also the geometric efficient 

frontier of a continuous-time world investor who cares about expected growth rate 

(geometric rate of return), not the rate of (arithmetic) expected return. Thorp (2008) 

describes the relationship between fractional Kelly strategies and the geometric 

efficient frontier. Maximum diversification will lead to maximum instantaneous 

Sharpe ratio implying any portfolio with less than perfect diversification will lie below 

the parabola of the instantaneous Sharpe optimal portfolio and will be off the 

geometric efficient frontier. At any targeted level of reward, a portfolio off the 

geometric efficient frontier will offer a lower reward to risk ratio (expected 
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instantaneous excess growth rate relative to predicted standard deviation of the excess 

growth rate) compared to what is offered by a portfolio on the geometric efficient 

frontier. 

 

Figure 2. Expected instantaneous excess growth rate normalized by its maximum. 

Equation (69) crystallizes that Kelly fraction c and instantaneous Sharpe ratio 𝑆𝑅∞ 

together determine the whole expected instantaneous excess growth rate opportunity 

set available to an investor. Rational opportunity set is the part of the whole 

opportunity set that lies on the rational frontier. Differentiating equation (69) with 

respect to c leads to maximum expected instantaneous excess growth rate of 
1

2
𝑆𝑅∞

2  

when 𝑐 = 1. This is in line with the result from equation (66). As shown by Thorp 

(2006, p. 409), we can further calculate the expected instantaneous excess growth rate 

of fractional Kelly allocation relative to full Kelly allocation: 
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 𝑔∞
𝑒 (𝑐𝑓∗)

𝑔∞
𝑒 (𝑓∗)

= 𝑐 (1 −
𝑐

2
) 𝑆𝑅∞

2 (
𝑆𝑅∞

2

2
) = 𝑐(2 − 𝑐)⁄ . 

 

(70) 

Equation (70) implies, and Figure 2 demonstrates, that while risk (predicted standard 

deviation for the continuously compounding excess growth rate) decreases linearly as 

Kelly fraction is decreases, the expected instantaneous excess growth rate in relation 

to full Kelly allocation decreases more slowly and non-linearly. For example, as can 

be seen from Figure 2, half Kelly allocation entails half of the risk but retains three 

quarters of the expected instantaneous excess growth rate compared to full Kelly 

allocation. Because of this diminishing marginal benefit from increasing the risk, the 

riskier part of the rational frontier, as Kelly fraction approaches one, may not be very 

attractive to risk averse investor. It is not only pure risk aversion, but the fact that the 

uncertainty about the future reflected in the parameter estimates, such as expected 

return, rationalize a conservative Kelly fraction in its own right (Thorp, 2006, pp. 411–

412).  

By substituting equation (65) into equation (62) and solving 𝑆𝑅∞ we find a connection 

between the instantaneous Shape Ratio and the standard deviation at full Kelly as given 

also by Baz and Guo (2017): 

 𝑆𝑅∞ = 𝑓∗𝑠𝑒 = 𝑆𝑑𝑒𝑣[𝐺∞
𝑒 (𝑓∗)]. 

 

(71) 

In other words, as visualized by “the instantaneous Sharpe triangle” in Figure 3, 

instantaneous Sharpe ratio equals the risk at full Kelly, i.e., the risk at investment 

fraction delivering the maximum expected instantaneous excess growth rate. That is, 

instantaneous Sharpe ratio equals the standard deviation of the continuously 

compounded excess growth of the portfolio 𝐺∞
𝑒  levered to full Kelly 𝑓∗. Instantaneous 

Sharpe ratio is equal to the standard deviation at the maximum point on the rational 

frontier of a continuous-time world investor. Instantaneous Sharpe ratio therefore is 

equal to the maximum risk rational continuous-time world investor with a given 

portfolio shall ever take. Finally, instantaneous Sharpe ratio of a maximally diversified 

Sharpe optimal portfolio is equal to the maximum risk on the geometric efficient 
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frontier which is the maximum risk any rational continuous-time world investor will 

ever take. 

The instantaneous Sharpe triangle in Figure 3 describes how everything is linked and 

determined by instantaneous Sharpe ratio (0.5 in the figure) when portfolio is levered 

to the rational maximum risk 𝑠𝑒𝑓
∗ equaling full Kelly allocation 𝑐 = 1. It is well 

known from modern portfolio theory that the slope of the arithmetic efficient frontier 

is equal to Sharpe ratio. This is the case in the instantaneous Sharpe triangle (the slope 

of the hypotenuse) as well as shown by the arcus tangent function in the figure. In 

addition to the slope, at full Kelly allocation, rational maximum risk (the length of the 

horizontal cathetus) is equal to instantaneous Sharpe ratio, expected excess return and 

the variance of the portfolio (the length of the vertical cathetus) are equal to the square 

of instantaneous Sharpe ratio and finally the expected excess growth rate equals half 

of the square of instantaneous Sharpe ratio. This gives us an intuitive understanding 

what the instantaneous Sharpe ratio means in the continuous-time world and how it 

completely characterizes the investment opportunity available to a risk neutral investor 

operating at maximum rational risk and maximum expected reward. 

The figure shows how the benefit (the expected excess return of the portfolio) equals 

the cost (the variance of the portfolio) exactly at full Kelly allocation. The expected 

excess growth rate, i.e., the geometric risk premium is maximized as marginal cost 

equals marginal benefit. Exceeding the full Kelly allocation implies that marginal cost, 

which is a squared function of investment fraction, exceeds marginal benefit, which is 

a linear function of investment fraction, causing the geometric risk premium to decline. 

The figure also displays the difference between a one period world and continuous-

time world. The former is bound by Sharpe ratio which determines the slope of the 

arithmetic efficient frontier but the risk and reward may otherwise be chosen freely 

and both may grow up to infinity. The continuous-time world is bound by Sharpe ratio 

in a much more restrictive manner. The rational frontier (the efficient frontier in case 

of a fully diversified portfolio), and therefore the whole continuous-time world 

opportunity set for a rational investor exists only within the boundaries of the 

instantaneous Sharpe triangle. The risk and reward may be chosen freely inside the 
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triangle implying risk may grow up to instantaneous Sharpe ratio and reward up to one 

half of the squared instantaneous Sharpe ratio. 

 

Figure 3. The instantaneous Sharpe triangle. 

It is worth noting the surprisingly little-acknowledged fact that Markowitz (1976) 

himself, the inventor of the assessment of diversification effect in an arithmetic one 

period model, concluded his paper by cautiously recommending not to present the part 

of the arithmetic efficient frontier that exceeds the risk level of full Kelly point. His 

rationale was that a long-term investor should not expose himself to higher short-term 

variability and lower long-term return than what would be expected below full Kelly 

point which Markowitz referred to as “Kelly-Latané” point. In Figure 3 Markowitz 

recommendation would imply ending the blue arithmetic efficient frontier at full Kelly 

point 𝑠𝑒𝑓
∗. 

We have derived the expected instantaneous excess growth rate as a function relative 

risk fraction, Kelly fraction c. However, in practical applications we often operate with 

absolute risk fraction, investment fraction 𝑓. To change to absolute risk domain, we 

first solve c from equation (68): 
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 𝑐 =
𝑓𝑠𝑒

2

𝑚𝑒
= 𝑓

𝑉𝑎𝑟(𝐺∞
𝑒 )

𝑚𝑒
= 𝑓

𝑠𝑒

𝑆𝑅∞
, 

 

(72) 

and substitute to equation (69) to obtain the expected instantaneous excess growth rate 

as a function of investment fraction, standard deviation and instantaneous Sharpe ratio: 

 𝑔∞
𝑒 (𝑓) = 𝑓 (𝑚𝑒 −

𝑓𝑠𝑒
2

2
) = 𝑓𝑠𝑒 (𝑆𝑅∞ −

𝑓𝑠𝑒

2
). 

 

(73) 

At full Kelly (𝑓 = 𝑓∗), substituting equation (71) into equation (73) magically reduces 

the dependencies down to instantaneous Sharpe ratio and gives equation (66). 

Hudson and Gregoriou (2015) show that the arithmetic expected excess returns as the 

numerator of Sharpe ratio, as originally specified by Sharpe (1966), is often used 

interchangeably with geometric expected excess returns in the literature. They show 

that arithmetic and geometric returns are different concepts implying resulting two 

Sharpe ratios, both theoretically and from practical point of view, are two different 

metrics and should not be used interchangeably. We agree with Hudson and Gregoriou 

and derive an instantaneous geometric Sharpe ratio 𝑆𝑅𝐺∞  (where subscript 𝐺 stands 

for geometric growth and the subscripts subscript ∞ denotes instantaneous geometric 

growth) with expected instantaneous excess growth rate as the numerator. 

Instantaneous arithmetic Sharpe ratio is important as it determines the expected 

instantaneous excess growth rate opportunity set (as shown by equation (69)) for a 

continuous-time world investor. Instantaneous geometric Sharpe ratio, however, is the 

metric that better describes the reward to risk trade-off for a continuous-time world 

investor whose reward is measured as a geometric excess growth rate, not as arithmetic 

excess return.  

Expected instantaneous excess growth rate as a function of Kelly fraction c relative to 

standard deviation of instantaneous excess growth scaled by Kelly fraction gives us 

the instantaneous geometric Sharpe ratio at a given level of risk. By substituting 
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equations (69) and (71) respectively, we have the instantaneous geometric Sharpe ratio 

as a function of instantaneous arithmetic Sharpe ratio 𝑆𝑅∞ and relative risk fraction 𝑐: 

 
𝑆𝑅𝐺∞(𝑐𝑓

∗) =
𝑔∞
𝑒 (𝑐𝑓∗)

𝑐𝑆𝑑𝑒𝑣[𝐺∞
𝑒 (𝑓∗)]

= 𝑐 (1 −
𝑐

2
) 𝑆𝑅∞

2 𝑐𝑆𝑅∞⁄  

                                      = (1 −
𝑐

2
) 𝑆𝑅∞, 

 

(74) 

which, by substituting equation (72), can be written as a function of instantaneous 

arithmetic Sharpe ratio 𝑆𝑅∞, standard deviation 𝑠𝑒 and absolute risk fraction 𝑓: 

 𝑆𝑅𝐺∞(𝑓) = 𝑆𝑅∞ −
𝑓𝑠𝑒

2
. 

 

(75) 

An important difference between instantaneous arithmetic Sharpe ratio and 

instantaneous geometric Sharpe ratio is that while the former is constant in relation to 

risk the latter is a linearly decreasing function of risk. The two Sharpe ratios approach 

each other when risk approaches zero. Figure 4 illustrates the relation between the two 

Sharpe ratios as function of relative risk fraction, i.e., Kelly fraction c. In the figure, 

the Sharpe ratios are normalized by instantaneous arithmetic Sharpe ratio to highlight 

their relation. Importantly, the greater risk a continuous-time world investor takes, the 

lower risk adjusted instantaneous excess growth rate he should expect.  A one period 

world investor, on the contrary, is set to receive a constant level of risk adjusted 

arithmetic excess return no matter how much risk he takes. Clearly excess risk taking 

and leveraging appears more appealing to a one period world investor or, perhaps more 

realistically, to an investor who invests in a continuous-time world but assess his 

strategy in a one period framework. 
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Figure 4. Instantaneous geometric Sharpe ratio in relation to instantaneous arithmetic Sharpe 

ratio 

We showed and visualized in Figure 3 how the instantaneous Sharpe ratio 

characterizes the investment opportunity available to a risk neutral investor at fully 

Kelly allocation. However, it is not only the specific full Kelly point, but equations 

(69) and (73) determine the whole expected instantaneous excess growth rate 

opportunity set available to a risk averse continuous-time world investor. Rational 

opportunity set is the rational frontier (the green line in Figure 2 and Figure 3) which 

is a function of the rational stock allocation opportunity set spanning from Kelly 

fraction zero to one or, when expressed as an investment fraction, from zero to fraction 

𝑓∗ which, when equation (65) is substituted into equation(62), can be expressed as: 

 𝑓∗ =
𝑆𝑅∞

𝑠𝑒
. 

 

(76) 
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The bottom line is, as shown by equation (69), that a rational continuous-time world 

equity investor only has two parameters to care about: The instantaneous Sharpe ratio 

𝑆𝑅∞ and the Kelly fraction c. Maximizing the former involves maximizing 

diversification and the latter is chosen from the rational stock allocation opportunity 

set 0 ≤ 𝑐 ≤ 1 based on desired expected reward to predicted risk trade-off. 

3.3.5 The Shannon limit as a function of square of Sharpe ratio 

Thorp (2006) builds his continuous variable, continuous-time results based on Kelly 

criterion introduced by Kelly (1956). Kelly in his part, derives Kelly criterion based 

on information theory provided by Shannon (1948). Therefore, we should study 

Shannon’s work to understand where and how continuous variable and time 

applications of Kelly criterion originate from. 

Shannon’s information theory lays the foundations for digital communications. We 

have a vast literature on information theory and its applications to digital 

communications and signal processing. We will show how information theory, by 

applying standard methods from digital signal processing, can be used to explain and 

analyze the diversification effect in continuous-time world. 

In digital communications and signal processing, signal to noise ratio (SNR) is the 

center of analysis. More specifically, SNR refers to signal power divided by noise 

power. It is essential to notice that power domain is utilized to assess effect size, not 

amplitude domain. In finance we often hear that returns are noisy and hear people 

referring to signal. However, in finance, we don’t find such systematic use or 

accurately quantified definition for SNR as we do in the digital communications 

engineering. Information theory and the concept of SNR is central in digital 

communications and signal processing and we see no reason why the same would not 

be the case in finance. 

Sharpe ratio is well known to be a function of diversification. We have shown how 

Kelly criterion and Sharpe ratio are connected. We have also shown that rebalancing 

frequency is a determinant of Sharpe ratio. Next, we will show how a square of Sharpe 

ratio is equivalent to SNR which in turn is a determinant of Shannon’s channel 
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capacity, the Shannon limit. In addition, we hypothesize a link between channel 

bandwidth, the other determinant of channel capacity, and portfolio compounding 

frequency or compounding bandwidth. We therefore hypothesize a connection 

between the core concepts in the worlds of finance (Sharpe ratio & compounding) and 

digital communications (SNR & bandwidth). The common application is information 

channel capacity which we call compounding process capacity in the world of finance. 

The compounding process capacity is equivalent to the maximum expected 

instantaneous excess growth rate, the maximum instantaneous geometric risk 

premium, achieved at full Kelly allocation. It is the Shannon limit that no rational long-

term capital compounder will attempt to exceed. Squared Sharpe ratio implies that the 

significance of diversification as a determinant of the Shannon limit is raised to second 

power. It follows that the important concepts of diversification, risk premium, Kelly 

criterion, Sharpe ratio, compounding frequency, rebalancing frequency, SNR and 

channel bandwidth appear to be linked and related to the concept of channel capacity, 

the Shannon limit. Information theory therefore appears applicable to finance, 

including diversification effect, similarly as it is applicable to digital communications. 

Perhaps the most influential result by Shannon (1948) is the determination of 

information channel capacity, also known as the Shannon limit. Information channel 

capacity 𝐶 is the upper theoretical bound for average information transfer rate per 

channel use (per symbol) between source and target in a given channel and can be 

written in a general form as show by (Cover & Thomas, 2005, p. 184): 

 𝐶 = 𝑚𝑎𝑥{𝐼(𝑋; 𝑌)} = 𝐼𝑀𝐼
𝑀𝑎𝑥. 

 

(77) 

The interpretation is that the theoretical maximum average information transfer rate at 

an arbitrary low error-rate is bound by the maximum mutual information between the 

source transmitting 𝑋 and target receiving 𝑌. Exceeding the capacity implies 

communication errors which in a communications system means lower average 

information transfer rate than would be achieved at a source rate adjusted to channel 

capacity. This is necessarily the case regardless how sophisticated the transmitter or 

the receiver is. (Cover & Thomas, 2005, pp. 6–9; Shannon, 1948).  
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In equation (77) the channel capacity is expressed as information per transmitted 

symbol. In practice, as shown by Chen (pp. 81–82), the information per symbol is often 

multiplied by symbol rate 𝑓𝑆 expressed as symbols per unit time. The result of this 

multiplication yields information rate per unit time. In digital communications the 

maximum 𝑓𝑆 = 𝑓𝑁 where 𝑓𝑁 is Nyquist rate (Proakis, 1995, pp. 13–14). This yields 

channel capacity expressed as information per unit time (bits per second): 

 𝐶 = 𝑓𝑁𝐼𝑀𝐼
𝑀𝑎𝑥. 

 

(78) 

Shannon (1948) shows that when the noise is white thermal noise (with average power 

N) and we have a limited constant average transmit power (P), the channel capacity C 

per unit time for a limited bandwidth W is given as: 

 𝐶 = 𝑊𝑙𝑜𝑔2 (
𝑃+𝑁

𝑁
). 

 

(79) 

Equation (79) can be written as a function of signal power to noise power ratio SNR: 

 𝐶 = 𝑊𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅). 

 

(80) 

Equations (79) and (80) give us the theoretical maximum achievable average 

information transfer rate as bits per second as the base of the logarithm is two and the 

unit of the bandwidth in communications systems is hertz which is one per second. We 

can see that the channel capacity depends only on the communication bandwidth W 

and the SNR of the received signal. 

Proakis (1995, p. 384) shows that the noise power can be decomposed to components 

W and power spectral density 𝑁0 for the additive white gaussian noise (AWGN) 

giving, when substituted to equation (79), the capacity as: 
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 𝐶 = 𝑊𝑙𝑜𝑔2 (
𝑃+𝑊𝑁0

𝑊𝑁0
) = 𝑊𝑙𝑜𝑔2 (1 +

𝑃

𝑊𝑁0
). 

 

(81) 

The unit of 𝑁0 is watts per hertz which is equivalent of watt-seconds meaning 𝑁0 is 

the average noise power per unit of bandwidth. We therefore can define 𝑆𝑁𝑅0 as 

average signal power to average noise power per unit of bandwidth ratio: 

 𝑆𝑁𝑅0 =
𝑃

𝑁0
, 

 

(82) 

implying we can write equation (81) as: 

 𝐶 = 𝑊𝑙𝑜𝑔2 (1 +
𝑆𝑁𝑅0

𝑊
). 

 

(83) 

Now let’s consider channel capacity 𝐶∞ in the theoretical case of infinite 

communication bandwidth W. If W is infinite, the only capacity limiting factor in 

equation (80) is SNR and given a constant noise power per unit of bandwidth 𝑁0 the 

limiting factor becomes the average signal power P. Proakis (1995, p. 385) shows that 

𝐶∞ is a function of P and 𝑁0 and by substituting equation (82) we have: 

 𝐶∞ =
𝑃

𝑁0
𝑙𝑜𝑔2 𝑒 =

𝑃

𝑁0 ln2
=

𝑆𝑁𝑅0

ln2
, 

 

(84) 

giving the maximum bits/s communication rate when capacity is limited entirely by 

𝑆𝑁𝑅0 or, given a constant 𝑁0, more precisely by average signal power P.  

More generally, as can be seen from equation (83), when 𝑆𝑁𝑅0 is small meaning 

average signal power P is small in relation to 𝑁0, the effect from sub-dividing the 

power to smaller transferrable chunks by shortening the transmission time interval 

(TTI) and proportionally increasing the communication bandwidth W becomes small. 
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In this case we are said to be in a power-limited regime of channel capacity (Tse & 

Viswanath, 2005, p. 174). The opposite occurs when 𝑆𝑁𝑅0 is large as a result of 

average signal power P being large in relation to 𝑁0, in which case we are in a 

bandwidth-limited regime (Tse & Viswanath, 2005, p. 174). 

 

Figure 5. Normalized channel capacity C with infinite W in relation to normalized C as a function 

of 𝑺𝑵𝑹𝟎 (adapted from Tse & Viswanath, 2005, p. 174).  

Figure 5 illustrates how average signal power to average noise power per unit of 

bandwidth ratio 𝑆𝑁𝑅0 affects the channel capacity sensitivity to channel bandwidth 

W. Black horizontal line is the channel capacity normalized by itself representing the 

maximum capacity that is achieved as channel bandwidth W approaches infinity. We 

can see how at the lowest 𝑆𝑁𝑅0 value 0.2 (red line) channel capacity very quickly 

approaches capacity limit when the channel bandwidth starts increasing from zero. 

This implies that channel capacity very quickly enters power-limited region and 

channel bandwidth has little effect. On the other hand, when 𝑆𝑁𝑅0 is substantially 

higher at 5 (green line), the effect from channel bandwidth is retained longer as the 
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bandwidth increases. Middle 𝑆𝑁𝑅0 value 1 (orange line) yields a bandwidth sensitivity 

between the extreme 𝑆𝑁𝑅0 values. 

We now consider digital communications systems specific parts in channel capacity 

equations (83) and (84). By removing the impact of the digital communications 

systems specific parts from these equations, we intend to find a more general form 

expressing channel capacity. Proakis (1995, pp. 13–14) gives Nyquist rate 𝑓𝑁: 

 𝑓𝑁 = 2𝑊, 

 

(85) 

which is the maximum symbol rate per second that can be utilized in bandwidth-

limited communications systems. Simultaneously Nyquist rate is the lowest sampling 

frequency avoiding frequency aliasing (Proakis, 1995, p. 72). This means, as can be 

also seen from Chen (pp. 81–82), that we can write equation (78) by decomposing the 

symbol rate 𝑓𝑁: 

 𝐶 = 𝑓𝑁𝐼𝑀𝐼
𝑀𝑎𝑥 = 2𝑊𝐼𝑀𝐼

𝑀𝑎𝑥, 

 

(86) 

where the multiplier 2 is a specific feature related to communication systems allowing 

for two symbols per carrier wavelength to be transmitted. Additionally, in the context 

of finance, we don’t transmit bits but our interest is in the expected continuously 

compounded excess growth rate which implies “transmitting” nats, i.e., utilizing a 

logarithm with base e. To compensate for these digital communications specific 

features in equation (84), we change the base of the logarithm to e, divide 𝐶∞ by two 

(to remove the effect from Nyquist rate) and finally substitute equation (82) to find a 

more general (𝐺) form for 𝐶∞
𝐺 : 

 𝐶∞
𝐺 =

1

2

𝑃

𝑁0
ln 𝑒 =

𝑃

2𝑁0
=

𝑆𝑁𝑅0

2
, 

 

(87) 
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giving the maximum average generalized information rate equal to half of the signal 

to noise per unit of bandwidth ratio expressed in units of nats/(1/unit of bandwidth).  

The general equation (77) states that channel capacity is equal to maximum mutual 

information. We know from equation (30) that expected instantaneous excess growth 

rate 𝑔∞
𝑒  is equal to mutual information and from equation (66) that 𝑔∞

𝑒  finds its 

maximum, one half of the instantaneous Sharpe ratio squared, at full Kelly when 

investment fraction is 𝑓∗. Furthermore, as equation (66) concerns a continuously 

compounded equally weighted portfolio, we consider the compounding (and 

rebalancing) frequency as infinite. We therefore have channel capacity or a better 

describing term compounding process (CP) capacity 𝐶∞
𝐶𝑃 for the theoretical case of 

infinite compounding (and rebalancing) frequency: 

 𝐶∞
𝐶𝑃 = 𝑔∞

𝑒 (𝑓∗) =
𝑆𝑅∞

2

2
. 

 

(88) 

By squaring equation (65) we have: 

 𝑆𝑅∞
2 =

𝑚𝑒
2

𝑠𝑒
2 =

𝑚𝑒
2

𝑉𝑎𝑟(𝑋𝑒)
=

𝑚𝑒
2

𝑉𝑎𝑟(𝐺∞
𝑒 )

, 

 

(89) 

Where 𝑉𝑎𝑟(𝑋𝑒) is the variance of the excess return and 𝑉𝑎𝑟(𝐺∞
𝑒 ) is the variance of 

the excess growth. These two variances are equal when we have infinitely short 

compounding and rebalancing interval, i.e., instantaneous metrics.  

We can consider the instantaneous expected excess return 𝑚𝑒 as the signal we are 

transmitting and the standard deviation of the excess return (and excess growth) 𝑠𝑒 as 

the noise. This implies square of the instantaneous expected excess return 𝑚𝑒
2 is the 

signal power and square of the standard deviation 𝑠𝑒
2 is the noise power. At the 

receiving end we see 𝑚𝑒
2 𝑠𝑒

2⁄  as the signal to noise ratio for the realized instantaneous 

arithmetic excess return 𝑚̌𝑒 after the communication channel. The check accent 

denotes “realized”. Using yearly values for 𝑚𝑒 and 𝑠𝑒, we have the average signal 
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power to average noise power per unit of compounding frequency ratio for realized 

instantaneous arithmetic excess return: 

 𝑆𝑁𝑅0
𝑚̌𝑒 = 𝑆𝑅∞

2 . 

 

(90) 

In case the rebalancing frequency is lower than infinite, we don’t have instantaneous 

Sharpe ratio but conventional Sharpe ratio and the noise term 𝑠𝑒 in Sharpe ratio is: 

𝑠𝑒 = 𝑆𝑑𝑒𝑣(𝑋𝑒) ≠ 𝑆𝑑𝑒𝑣(𝐺∞
𝑒 ) implying we theoretically must use the standard 

deviation of the excess return, not the standard deviation of the logarithmic excess 

return. To be consistent with the definition of the conventional Sharpe ratio, we also 

need to use periodically compounding rate (instead of instantaneous rate) for the 

realized arithmetic excess return. The equality then becomes: 

 𝑆𝑁𝑅0
𝑚̌𝑒 = 𝑆𝑅2. 

 

(91) 

The interpretation is that the square of Sharpe ratio is a SNR metric for realized excess 

return. It is worth noting here that Treynor and Black (1973) preferred a square of 

Sharpe ratio over the traditional ratio. Treynor and Black therefore were in favor of 

using a power domain metric over an amplitude domain metric as is conventional when 

applying information theory in digital communications. 

As a result, equations (90) and (91) state that a square of Sharpe ratio is a SNR and 

equation (88) establish a square of instantaneous Sharpe ratio divided by two as the 

compounding process capacity 𝐶∞
𝐶𝑃. We therefore can write the compounding process 

capacity for infinite compounding (and rebalancing) frequency as: 

 
𝐶∞
𝐶𝑃 = 𝑔∞

𝑒 (𝑓∗) = 𝑅𝑃𝐸𝑊,𝐺∞(𝑓
∗) =

𝑆𝑅∞
2

2
=

𝑆𝑁𝑅0
𝑚̌𝑒

2
, 

 

(92) 
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which is the perfect financial world counterpart for the generalized digital 

communications channel capacity as given by equation (87). Equation (92) therefore 

gives us the maximum average excess growth rate equal to half of the signal to noise 

per unit of compounding frequency ratio expressed in units nats/year (continuously 

compounded excess growth per year) equaling the maximum instantaneous geometric 

risk premium achievable at full Kelly allocation.  

Similarly, as with channel capacity, exceeding the compounding process capacity 

necessarily implies lower expected instantaneous excess growth rate than would be 

achieved at a portfolio stock allocation level, meaning investment fraction f or Kelly 

fraction c, adjusted to compounding process capacity 𝑓 = 𝑓∗ or 𝑐 = 1.  

Earlier we regarded the instantaneous geometric Sharpe ratio 𝑆𝑅𝐺∞  as a better measure 

of reward to risk trade-off for a continuous-time investor compared to its arithmetic 

counterpart 𝑆𝑅∞. Following the same procedure as for 𝑆𝑁𝑅0
𝑚̌𝑒 in equation (90), we 

can calculate SNR for the realized instantaneous excess growth rate 𝑔̌∞
𝑒  by considering 

the expected instantaneous excess growth rate 𝑔∞
𝑒  as the signal instead of the expected 

instantaneous excess return 𝑚𝑒. The average signal power to average noise power per 

unit of compounding frequency ratio for realized instantaneous geometric excess 

growth rate then is: 

 𝑆𝑁𝑅0
𝑔̌∞
𝑒

= 𝑆𝑅𝐺∞
2 . 

 

(93) 

Intuitively, we hypothesize compounding frequency as a counterpart for channel 

bandwidth W. Both are frequencies, the former is expressed in units of 1/year while 

the latter is expressed as 1/second, i.e., as hertz. We can compensate for the digital 

communications specific features in equation (81), similarly as we did for equation 

(84) to acquire a more general equation (87), by changing the base of the logarithm to 

e and by dividing by two: 
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  𝐶𝐺 =
𝑊

2
𝑙𝑛 (1 +

𝑃

𝑊𝑁0
) =

𝑊

2
𝑙𝑛 (1 +

𝑆𝑁𝑅0

𝑊
). 

 

(94) 

We then substitute channel bandwidth 𝑊 with compounding (C) frequency or 

compounding bandwidth 𝑊𝐶, average signal power P with 𝑚𝑒
2, average noise power 

𝑁0 with 𝑠𝑒
2 and 𝑆𝑁𝑅0 with 𝑆𝑁𝑅0

𝑚̌𝑒 giving compounding process capacity 𝐶𝐶𝑃 as a 

function of compounding bandwidth 𝑊𝐶: 

 
𝐶𝐶𝑃 =

𝑊𝐶

2
𝑙𝑛 (1 +

𝑚𝑒
2

𝑊𝐶𝑠𝑒2
) 

         =
𝑊𝐶

2
𝑙𝑛 (1 +

𝑆𝑅2

𝑊𝐶
) 

                         =
𝑊𝐶

2
𝑙𝑛 (1 +

𝑆𝑁𝑅0
𝑚̌𝑒

𝑊𝐶
), 

 

(95) 

where the Sharpe ratio is conventional Sharpe ratio instead of instantaneous Sharpe 

ratio.  

In the discussion related to equation (30) we called the mutual information in the 

investing context as mutual excess capital growth which we now denote as 𝐼𝑀𝐺 . 

Maximum average 𝐼𝑀𝐺  is denoted as 𝐼𝑀𝐺
𝑀𝑎𝑥. Mutual excess capital growth is measured 

as nats per compounding period 𝑇𝐶. Compounding period is the counterpart for 

symbol. Compounding rate (the counterpart for Nyquist rate) is denoted as 𝑓𝐶  and is 

measured as 𝑇𝐶 per year. As visualized in Figure 1, compounding process feeds back 

its output into input. There is one indivisible multiplicative serial compounding 

process implying exactly one compounding period at a time occupying the 

compounding process. Compounding rate therefore must be equal to compounding 

frequency implying 𝑓𝐶 = 𝑊𝐶. High level version of equation (95) then can be written 

as:      
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 𝐶𝐶𝑃 = 𝑓𝐶𝐼𝑀𝐺
𝑀𝑎𝑥 = 𝑊𝐶𝐼𝑀𝐺

𝑀𝑎𝑥. 

 

(96) 

Building on the hypothesis that compounding frequency is the counterpart for channel 

bandwidth W, we can interpret Figure 5 in the context of investing. Annual Sharpe 

ratio of about 0.45 can be considered typical for a stock market. 0.45 squared yields a 

𝑆𝑁𝑅0
𝑚̌𝑒  of about 0.2 which corresponds to red line in the figure. Daily compounding 

implies compounding bandwidth 𝑊𝐶 = 252 (assuming 252 trading days per year). We 

can see from the figure that daily compounding yields a capacity very close (99.96%) 

to maximum capacity achieved at infinite bandwidth which would correspond to 

capacity of continuously compounded stock portfolio. Empirically, we can expect the 

compounding frequency to be higher than daily as stocks are priced continuously in 

the markets. The relevant timeline for pricing the most liquid stocks is fractions of a 

second and even the most illiquid stocks presumably don’t fall far from the daily 

pricing frequency. Albeit the markets aren’t always open, it seems safe to assume that 

practical compounding process capacity is entirely in the power-limited regime where 

compounding bandwidth 𝑊𝐶 doesn’t play any practical role. This implies that the 

practical compounding process capacity is entirely determined by the (square of) 

instantaneous Sharpe ratio. 

The square of Sharpe ratio is a function of noise power. We therefore compare the 

noise power component in digital communications to noise power in investing. In 

digital communications the noise power per unit of bandwidth, the power spectral 

density 𝑁0, of the underlying thermal noise is constant with regard to channel 

bandwidth but is a function of temperature. In investing context, the equivalent noise 

power per unit of compounding bandwidth, variance 𝑠𝑒
2, is a function of rebalancing 

(RB) frequency or rebalancing bandwidth 𝑊𝑅𝐵. Variance 𝑠𝑒(𝑊𝑅𝐵)
2 approaches its 

minimum as rebalancing frequency approaches infinity.  

Theoretically, as the square of Sharpe ratio is a function of rebalancing frequency, a 

more precise form for equation (95) determining compounding process capacity 𝐶𝐶𝑃 

is given as a function of rebalancing frequency 𝑊𝑅𝐵: 
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𝐶𝐶𝑃 =

𝑊𝐶

2
𝑙𝑛 (1 +

𝑚𝑒
2

𝑊𝐶𝑠𝑒(𝑊𝑅𝐵)2 
) 

         =
𝑊𝐶

2
𝑙𝑛 (1 +

𝑆𝑅(𝑊𝑅𝐵)
2

𝑊𝐶
) 

                         =
𝑊𝐶

2
𝑙𝑛 (1 +

𝑆𝑁𝑅0
𝑚̌𝑒(𝑊𝑅𝐵)

𝑊𝐶
). 

 

(97) 

As discussed earlier, however, practical rebalancing frequencies, like monthly or even 

yearly, don’t significantly change the expected capital growth rate compared to 

theoretical infinite rebalancing frequency. The impact of 𝑊𝑅𝐵 therefore can be 

considered negligible at practical rebalancing frequencies and with typical stock 

market parameters. It is not clear, however, if less typical parameters associated, e.g., 

with different investment styles or aggressive use of leverage change the impact of 

rebalancing frequency. 

As a sanity check, we can rearrange the equation (97): 

 
𝐶𝐶𝑃 =

1

2
𝑆𝑅(𝑊𝑅𝐵)

2 ln (1 +
𝑆𝑅(𝑊𝑅𝐵)

2

𝑊𝐶
)
𝑊𝐶 𝑆𝑅(𝑊𝑅𝐵)

2⁄

. 

 

(98) 

In the limit, when 𝑊𝐶 = 𝑓𝐶 → ∞ and 𝑊𝑅𝐵 → ∞, implying rebalancing bandwidth 

denoted as 𝑊𝑅𝐵∞, we substitute the Euler’s number identity given in equation (15) into 

equation (98) and have: 

 
𝐶∞
𝐶𝑃 =

𝑆𝑅∞(𝑊𝑅𝐵∞)
2

2
=

𝑆𝑅∞
2

2
=

𝑆𝑁𝑅0
𝑚̌𝑒

2
, 

 

 

which is identical to equation (92) as we expect. We note that in the limit the 

compounding rate 𝑓𝐶  or the equaling compounding frequency/bandwidth 𝑊𝐶 reduce 

away from the compounding process capacity formula. 
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Figure 6. The Shannon limit in digital communications and in finance. 

In Figure 6 we attempt to summarize what we have hypothesized about the connection 

between channel capacity in digital communications and compounding process 

capacity in the context of finance and investing. There are two main differences. The 

first difference is that digital communications measure bits per second while in 

investing we care about capital growth measured as continuously compounded yearly 
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growth rate. Hence the base of logarithm is 2 and e for digital communications and 

finance respectively. The second main difference is that Nyquist allows packing two 

symbols into channel per carrier wavelength implying symbol rate twice the carrier 

bandwidth. In compounding there is no such trick and we need to settle for 

compounding rate equal to compounding frequency. On a more positive note, we can 

utilize the compounding bandwidth up to infinity as there is no shared resource like 

radio channel bandwidth in communication systems.  

3.3.6 Further illustrative analogies between finance and digital communications 

We will demonstrate the applicability of information theory and the concept of channel 

capacity, the Shannon limit, to finance by showing four analogies with digital 

communications: 1) diversification effect on investment portfolio and digital data 

transfer, 2) mutual information as a determinant of utility both in investing and data 

transfer, 3) correspondence of the channel capacity and compounding process capacity 

and similarities in the options of exploiting the capacity and 4) the correspondence, 

and thereby the apparent absurdness, between utilizing a single period investment 

assessment framework in a continuous-time world and assessing a data transfer based 

on transmitted, instead of received, data rate. 

The first analogy relates to diversification where we show how additional diversifying 

receiver (RX) antennas in a mobile phone are the counterpart for additional 

diversifying stocks in an investment portfolio. The former increases channel capacity, 

the latter compounding process capacity. 

It is important to notice that the compounding process capacity is a function of 

diversification. This is because the compounding process capacity is a function SNR 

which is a function of Sharpe ratio. Denominator of Sharpe ratio is standard deviation 

which is a function of diversification. Exactly the same phenomenon is observed and 

utilized in wireless digital communications where the equivalent of portfolio 

diversification is called RX-diversity. RX-diversity means utilizing more than one 

receiver antenna placed adequately apart from other antennas to ensure low cross-

correlation.  
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In mobile phones RX-diversity suppresses the non-coherently additive noise in 

relation to coherently additive signal implying higher SNR leading to higher channel 

capacity. It is beneficial to utilize diversification as long as the marginal benefit 

exceeds the marginal cost. In a mobile phone this limit is quickly reached as both the 

physical limits and economical cost/benefit considerations limit the attractiveness of 

increasing channel capacity by additional diversity. However, in case of portfolio 

diversification, given modern cost-effective diversification technology (index funds, 

ETFs), there is practically no limit allowing for thousands of diversifiers in comparison 

to typically two to four in case of modern mobile phones. In the absence of the physical 

limitations and given a similar cost structure as in portfolio diversification today there 

is no question typical mobile phones would be equipped with vastly higher number of 

RX-antennas. 

The second analogy with digital communications relates to utility. We will show how 

the utility from a data download is analogous to the utility function of a continuous-

time world risk neutral investor. Additionally, we will show how the utility from a data 

download and the utility from investing in a continuous-time world both are functions 

of mutual information. 

In digital communications, when downloading a large data file, the utility is the 

average received data rate which is the mutual information between the transmitter and 

the receiver. In case of errors in the communication channel the communications 

protocol ensures the erroneous part is quickly retransmitted meaning there is no harm 

from errors as long as they don’t compromise the received data rate. This means there 

is no risk associated with the proportion of channel capacity utilized for maximizing 

the information rate. In the absence of risk, the only rational choice is at all times to 

target utilizing the whole channel capacity maximizing the average received data rate, 

the utility.  

We can consider data download being “risk neutral” in the spirit of a continuous-time 

world risk neutral investor whose utility is the average excess growth rate (mutual 

information) of his capital and who is indifferent to risk. For risk neutral investor the 

only rational choice is at all times to target utilizing the whole compounding process 

capacity, by investing at full Kelly allocation, maximizing the average excess growth 
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rate of his capital. Risk averse investor cares about the average excess growth rate 

(mutual information) but also the risk. Therefore, risk averse investor will not attach 

his utility entirely to mutual information but also incorporates the associated risk. Risk 

averse investor takes the compounding process capacity as an upper bound for the 

portfolio growth rate, not as a target, when choosing the reward to risk tradeoff by 

choosing his investment fraction. Nevertheless, mutual information, analogously to 

digital communications, is part of the risk averse continuous-time world investor’s 

utility function. 

Third analogy is about the correspondence of the channel capacity of digital 

communications and the compounding process capacity that we have formulated. 

Channel capacity is well known to set a hard limit to maximum achievable information 

rate. However, channel capacity can alternatively be exploited to increase 

communication reliability which corresponds to decreasing risk in the context of 

investing. We will show how maximizing compounding process capacity should be 

the primary goal of any investor regardless of the level or existence of risk averseness.  

Besides data download, there are other use cases in digital communications. Take 

Ultra-Reliable Low-Latency Communication (URLLC) in 5G standard for cellular 

communications as an example. URLLC is designed for communication with very 

high communication reliability (low error rate) and very low latency requirement to 

allow, e.g., self-driving cars to operate safely. Failing to deliver very low error rate 

and low latency may in such context lead to severe consequences. In other words, 

short-term risk becomes significant and maximizing the data rate no longer serves as 

the sole driver for utility. Now adequately high data rate together with very low error-

rate and low latency (very low risk) constitutes the utility function. We can think 

URLLC use case as the counterpart for risk averse investor. Both care about 

sufficiently high reward delivered with sufficiently low risk.  

In digital communications it is possible to increase communication reliability 

(decrease communication error rate) by transmitting redundant information bits along 

with systematic (non-redundant) information bits. The ratio between systematic 

information bits and total (systematic plus redundant) transmitted bits is called code 

rate. Increasing redundancy by adjusting code rate lower leads to lower information 
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rate but also lower error rate. In terms of finance, this corresponds to lower reward 

(geometric risk premium) but also lower risk, which is achieved by lowering 

investment fraction. Adjusting code rate in digital communications corresponds to 

adjusting investment fraction in the world of investing. Theoretical maximum code 

rate is one (all systematic information bits) while theoretical maximum investment 

fraction is infinite. Both of the theoretical maximums are achieved when SNR, and 

consequently channel capacity, is infinite. Assuming finite signal power (finite 

squared excess growth rate), infinite SNR occurs when channel is perfect meaning 

completely noiseless (riskless) which corresponds to arbitrage in finance. Furthermore, 

the code rate that achieves the maximum data rate is the code rate (information 

allocation) corresponding to full Kelly allocation 𝑓∗ in investing. 

It is important to notice that channel capacity can be materialized as maximizing the 

information rate, as minimizing the error rate or as a combination of the two. The 

greater the channel capacity the greater the potential for maximizing information rate 

and/or minimizing the communication error rate. It follows that no matter what is the 

use case, the greater the channel capacity the better the outcome. Maximizing the 

channel capacity therefore is in the core of digital communications. Same applies to 

finance. No matter whether the investor is risk neutral or risk averse, the primary goal 

should always be maximizing the compounding process capacity and then utilizing 

that capacity to maximize the expected excess growth rate, to minimize the risk 

associated to excess growth rate or any combination of the two. In finance, the recipe 

for maximizing the compounding process capacity is simple: maximize Sharpe ratio 

by maximizing diversification. The second step after maximizing the capacity is to 

select the desired expected reward to risk tradeoff (average data rate to error rate 

tradeoff in digital communications) level by choosing the investment fraction (code 

rate in digital communications). 

In the fourth analogy we will argue that projecting realized multiperiod returns for the 

future by utilizing a single period framework, which is the standard in finance, is akin 

to assessing a data download performance in digital communications based on average 

transmitted, not received, data rate. 
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In a data download, the received data rate, the mutual information, is equal to 

transmitted data rate if the channel is perfect, i.e., noise power is zero or alternatively 

if the transmit power has no constraint (Cover & Thomas, 2005, p. 261). Both cases 

imply the received signal SNR, and therefore the capacity, is infinite. We focus on the 

former case, the perfect channel. We can see the same in the context of investing. We 

know from equation (30) that the expected instantaneous excess growth rate, as given 

by equation (8), is equal to mutual information. From equation (8) we can see that the 

expected instantaneous excess growth rate, the mutual information, is equal to 

expected arithmetic single period return, the “transmitted” rate, when the standard 

deviation 𝑠𝑒 is zero meaning the noise power in the compounding process, the channel, 

is zero. 

In which instance then the standard deviation 𝑠𝑒, the risk, is zero? Naturally we can’t 

expect to earn a risk premium without a risk implying 𝑠𝑒 cannot be zero due to portfolio 

risk being zero. This rule out the possibility of a perfect noiseless compounding 

process (channel). However, the 𝑠𝑒 experienced by the compounding process (the 

channel) can be zero if we are in a single period world that encompasses no 

compounding. This case also appears in our analysis if we invest in a continuous-time 

world but utilize a single period framework to evaluate our investment strategy or to 

project future investment outcomes. Projecting realized multiperiod returns for the 

future by utilizing a single period framework therefore is akin to assessing a data 

download performance in digital communications based on average transmitted, not 

received, data rate. Communication is mutual information and assessing 

communication based on how high the source rate is would be considered absurd. 

As a curiosity, the standard deviation 𝑠𝑒 experienced by the compounding process can 

be zero also if the beginning of period capital, which is input to compounding process, 

is guaranteed to have zero variance. This case corresponds to example given by Kelly 

(1956) describing a gambler whose wife limits his gambling funds to exactly one dollar 

per weekly bet placed on an event yielding the highest expected value. Constant 

gambling budged per bet implies that returns are not reinvested and ensures zero 

variance for each beginning of period capital. In this example, the gambler will enjoy 

arithmetic, instead of geometric, mean returns, but cannot enjoy from the effect of 

compounding capital. To enjoy the benefits of compounding, one has to reinvest the 
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returns and bear the risk 𝑠𝑒 in the compounding process implying, assuming rational 

investor, one has to operate below or at the compounding process capacity in 

accordance with his subjective risk appetite. 

3.3.7 Derivation of realizable risk premium 

We have established the significance of SNR in the context of expected excess growth 

rate and related metrics such as Sharpe ratio. Next, we show how R-squared metric 

can be expressed as a function of SNR or Sharpe ratio making it a SNR-based risk 

adjustment scale value. This risk adjustment scale value, ranging from zero to one, 

then can be used as a multiplier to express instantaneous geometric risk premium, the 

expected instantaneous excess growth rate, in risk adjusted terms. The interpretation 

of our R-squared is the proportion of portfolio realized instantaneous geometric risk 

premium (realized instantaneous excess growth) explained by instantaneous geometric 

risk premium (expected instantaneous excess growth). We then multiply instantaneous 

geometric risk premium (expected instantaneous excess growth) by R-squared, 

implying we derive an instantaneous geometric risk premium weighted by its average 

realizable proportion (the average proportion of realized instantaneous excess growth 

explained by its expectation), hence the term “realizable risk premium”. 

We will derive a formula for realizable instantaneous geometric risk premium and 

show that it is a function of time. This is important as it allows us to mathematically 

capture the well-known property that realized portfolio growth rate converges towards 

its expectation as investment time horizon increases. We will also show that realizable 

risk premium can be used as a risk adjusted risk premium metric which accounts for 

two dimensions: expected growth rate and the associated risk, but expresses itself in 

one intuitive dimension as a growth rate. Importantly, realizable risk premium is a 

function of diversification. We argue the metric can be considered as a diversification 

effect measure for risk averse continuous-time world investor. However, we argue 

realizable risk premium should preferably be used as a short-term measure as it does 

not account for the long-term compounding effect for wealth. The absolute value of 

typical realizable risk premium will be very small. Realizable risk premium is 

therefore best presented as basis points (bps) which corresponds to one hundredth of a 

percent. To convert the result into bps, the realizable risk premium given by the 
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formula needs to be multiplied by ten thousand. We also define and derive a minimum 

investment time horizon for a stock portfolio. The minimum investment horizon is 

defined as the time required for SNR of the realized instantaneous excess growth rate 

to exceed one (zero decibels). This corresponds to time required for realizable risk 

premium to exceed half of the (expected) risk premium which is the point in time 

where less than half of the realized instantaneous excess growth rate constitute noise. 

Importantly, the minimum investment time horizon for a stock portfolio is a function 

of diversification. 

Instantaneous excess growth rate will converge to its expected value as investment 

horizon approaches infinity. Near certainty at infinity, for any investor, is an awfully 

distant goal. Practical long-term investor considers long-term ranging from years to 

decades. Risk neutral investor is indifferent to risk, but most investors are risk averse 

and value lower risk over higher risk. Risk neutral investor will value the expected 

reward alone and is drawn to full Kelly allocation maximizing the continuous-time 

world investor expected reward and indirectly also maximize the rational risk to which 

he is indifferent to. Risk averse investor, however, faces a more complex choice-set as 

he values both high reward and low risk which are contradicting goals. In order to 

make risk averse investor choice easier to analyze, we transform the choice-set domain 

from reward & risk domain to risk adjusted reward domain, in other words, realizable 

risk premium domain. The trick is that risk adjustment is a unitless scale value 

implying the choice-set domain is transformed from two dimensions (reward & risk) 

to one dimension (realizable risk premium). This is in the spirit of what Statman (1987; 

2004) did when he expressed the diversification benefit as a return difference by 

transforming a standard deviation difference to return difference which is easier and 

more intuitive to interpret. In our case the transformation simplifies the interpretation 

even more as it reduces the dimensions of the metrics that need to be interpreted in 

addition to focusing on the more intuitive metric of the two. The remaining one 

dimension, the realizable risk premium, is the expected instantaneous excess growth 

rate scaled (multiplied) by a SNR-based scale value, a coefficient of determination, R-

squared.  

Next, we derive the coefficient of determination, R-squared, as a function of SNR. 

Equation (55) gives us R-squared as a function of portfolio idiosyncratic variance 
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relative to benchmark variance. Variances are power-metrics and power relatives make 

a SNR. Idiosyncratic variance is the noise power while benchmark variance represents 

the signal power. We can think of the benchmark rate of excess returns as a predictor 

signal for portfolio rate of excess returns, idiosyncratic excess returns as noise and 

their squared relation as signal to noise ratio of the benchmark rate of excess return as 

a portfolio rate of excess return predictor signal. We therefore have a general form for 

R-squared as a function of SNR: 

 𝑅2 =
1

1+𝐼𝑣𝑎𝑟𝑃 𝑉𝑎𝑟𝐵𝑀⁄
=

1

1+1 𝑆𝑁𝑅⁄
. 

 

(99) 

When R-squared is defined as above, both signal and noise being a random variable, 

both signal and noise accumulate non-coherently as a function of time implying SNR 

or R-squared, as defined in equation (99), are not functions of time. 

We showed earlier in equation (90) how the average signal power to average noise 

power per unit of compounding frequency ratio for realized arithmetic rate of excess 

return 𝑆𝑁𝑅0
𝑚̌𝑒  is a function of squared instantaneous Sharpe ratio 𝑆𝑅∞. In case of a 

Sharpe ratio, the signal is the expected rate of excess return 𝑚𝑒 of a portfolio, which 

is not a random variable. We therefore don’t use variance but square the expected rate 

of excess return to obtain signal power. Noise power is the variance of the portfolio’s 

predicted excess growth rate 𝑠𝑒
2 = 𝑉𝑎𝑟(𝑋𝑒) = 𝑉𝑎𝑟(𝐺∞

𝑒 ). When considering expected 

rate of excess return of a portfolio as a predictor for realized portfolio rate of excess 

returns, we can write equation (99) as a function of instantaneous Sharpe ratio 𝑆𝑅∞(𝑡) 

or as a function of average signal power to average noise power per unit of 

compounding frequency ratio for realized arithmetic rate of excess return 𝑆𝑁𝑅0
𝑚̌𝑒(𝑡). 

As the signal component is an expectation, not a random variable, it accumulates 

coherently while noise accumulates non-coherently. This implies both the 𝑆𝑅∞ and 

𝑆𝑁𝑅0
𝑚̌𝑒  are now functions of time: 
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 𝑅(𝑡)2 =
1

1 + 1 𝑆𝑅∞(𝑡)2 ⁄
=

1

1 + 1 𝑆𝑁𝑅0
𝑚̂𝑒(𝑡)⁄

 

                            =
1

1+1 (𝑡𝑆𝑅∞
2 ) ⁄
=

1

1+1 (𝑡𝑆𝑁𝑅0
𝑚̂𝑒)⁄

. 

 

(100) 

In this case, as 𝑆𝑅∞ and 𝑆𝑁𝑅0
𝑚̌𝑒  are functions of time, R-squared is a function of time 

and interpreted as the proportion of realized arithmetic rate of excess return determined 

by the expected arithmetic rate of excess return within a portfolio. 

Alternatively, we can use the instantaneous geometric Sharpe ratio 𝑆𝑅𝐺∞(𝑡) and its 

relation to average signal power to average noise power per unit of compounding 

frequency ratio for realized instantaneous geometric excess growth rate 𝑆𝑁𝑅0
𝑔̌∞
𝑒

(𝑡) as 

defined in equation (93). R-squared then becomes: 

 𝑅(𝑡)2 =
1

1 + 1 𝑆𝑅𝐺∞(𝑡)
2⁄
=

1

1 + 1 𝑆𝑁𝑅0
𝑔̌∞
𝑒

(𝑡) ⁄
 

                          =
1

1+1 (𝑡𝑆𝑅𝐺∞
2 ) ⁄

=
1

1+1 (𝑡𝑆𝑁𝑅0
𝑔̌∞
𝑒
)⁄
. 

 

(101) 

In this case, R-squared is a function of time and interpreted as the proportion of 

realized instantaneous excess growth rate determined by the expected instantaneous 

excess growth rate within a portfolio. 

Assuming time series for excess returns are not correlated, SNR in equations (100) and 

(101) are perfectly additive as a function of time meaning SNR scales linearly with 

slope one with time. It is therefore obvious from these equations that as time 

approaches infinity, SNR approaches infinity and R-squared approaches one. In other 

words, in the very long-term, portfolio expected rate of excess return or growth 

approaches as being a perfect predictor of portfolio realized rate of excess return or 

growth meaning the proportion determined by the expectation approaches one, which 

corresponds to 100%. It is not as obvious, but can be shown, that as time approaches 
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zero, R-squared approaches SNR. In a practical short term, SNR value, which now 

approximates R-squared, always falls to the range from zero to one corresponding to 

percentage range from 0% to 100%. In other words, in the short-term, portfolio 

expected rate of excess return or growth is as good a predictor for portfolio realized 

rate of excess return or growth as its SNR as a predictor signal is. This means that the 

practical SNR-based scale value, a coefficient of determination, R-squared ranges 

from about value equal to SNR in the short term to about one in the very long-term. 

Practical short-term here is, e.g., a month while the long-term typically is in minimum 

several decades or much more depending on what the annualized SNR is.  

We derive realizable instantaneous geometric risk premium 𝑅𝑃̃𝐸𝑊,𝐺∞  equaling 

realizable expected instantaneous excess growth rate 𝑔̃∞
𝑒 (𝑡), where the tilde accent 

denotes “realizable”, for a portfolio as expected instantaneous excess growth rate 𝑔∞
𝑒  

scaled (multiplied) by the proportion of realized instantaneous excess growth rate 

determined by the expected instantaneous excess growth rate which is the R-squared 

𝑅(𝑡)2 from equation (101): 

 𝑅𝑃̃𝐸𝑊,𝐺∞ = 𝑅(𝑡)2𝑅𝑃𝐸𝑊,𝐺∞   

                  =
𝑅𝑃𝐸𝑊,𝐺∞

1 + 1 𝑆𝑅𝐺∞(𝑡)
2⁄
=

𝑅𝑃𝐸𝑊,𝐺∞

1 + 1 𝑆𝑁𝑅0
𝑅𝑃̌𝐸𝑊,𝐺∞(𝑡) ⁄

= 

𝑔̃∞
𝑒 (𝑡)      = 𝑅(𝑡)2𝑔∞

𝑒  

                                  =  
𝑔∞
𝑒

1+1 𝑆𝑅𝐺∞(𝑡)
2⁄
=

𝑔∞
𝑒

1+1 𝑆𝑁𝑅0
𝑔̌∞
𝑒
(𝑡) ⁄

, 

 

(102) 

where 𝑡 is investment time horizon. 

By using R-squared, which is a function of time, as a scale value for expected 

instantaneous excess growth rate, we determine an realizable expected instantaneous 

excess growth rate which is a function of time. Notice that expected instantaneous 

excess growth rate 𝑔∞
𝑒  is not a function of time. By measuring risk adjusted (realizable) 

rewards, in case of two portfolios with identical expected instantaneous excess growth 

rates, risk averse investor will choose the one with lower risk, i.e., the one with higher 
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realizable expected instantaneous excess growth rate. Furthermore, in case of perfectly 

and imperfectly diversified portfolio the former has lower expected growth rate but 

also higher standard deviation. The difference in attractiveness between the portfolios 

therefore must be greater than the difference in expected growth rates alone. Realizable 

risk premium difference will reflect both the difference in expected growth rate and 

the difference in risk. Realizable risk premium difference therefore can be considered 

a diversification effect measure for risk averse continuous-time world investor.  

Second scenario is a case of one portfolio but two alternative investing time horizons. 

In this scenario, the realizable reward is higher for longer time horizon implying an 

investor with fixed risk adjusted reward target may increase his investment fraction 

(stock allocation) when the time horizon increases. At the extreme, when investment 

time horizon approaches infinity, the probability for the realized growth rate deviating 

from the expected growth rate approaches zero and it is intuitively clear we should 

weight expected instantaneous excess growth rate of the portfolio very highly in 

relation to the predicted risk of the portfolio. In this extreme case the scale factor 

approaches one implying the realizable reward approaches the reward without risk 

adjustment, i.e., the expected instantaneous excess growth rate of the portfolio.  

There is yet another scenario where realizable reward can be applied. This third 

scenario considers realizable reward of a portfolio as a function of stock allocation 

measured, e.g., as Kelly fraction. We can write the realizable expected instantaneous 

excess growth rate in equation (102) as a function of Kelly fraction, instantaneous 

Sharpe ratio and time by substituting equation (69) and equation (74). Notice that only 

𝑅(𝑡)2 is a function of time: 

 
𝑔̃∞
𝑒 (𝑐𝑓∗) =  𝑅(𝑡)2𝑐 (1 −

𝑐

2
) 𝑆𝑅∞

2 =
𝑐(1 − 𝑐 2⁄ )𝑆𝑅∞

2

1 + 1 𝑆𝑅𝐺∞(𝑡)
2⁄

 

                                  =
𝑐(1−𝑐 2⁄ )𝑆𝑅∞

2

1+1 [(1−𝑐 2⁄ )2𝑡𝑆𝑅∞
2 ]⁄

, 

 

(103) 

which by substituting equation (90) becomes a function of Kelly fraction and 𝑆𝑁𝑅0
𝑚̌𝑒 

and time: 
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𝑔̃∞
𝑒 (𝑐𝑓∗) =

𝑐(1−𝑐 2⁄ )𝑆𝑁𝑅0
𝑚̌𝑒

1+1 [(1−𝑐 2⁄ )2𝑡𝑆𝑁𝑅0
𝑚̌𝑒]⁄
 . 

 

(104) 

Alternatively, we can write the realizable expected instantaneous excess growth rate 

as a function of investment fraction, standard deviation, instantaneous Sharpe ratio and 

time by substituting equation (72) into equation (103): 

 𝑔̃∞
𝑒 (𝑓) =  

[1−𝑓𝑠𝑒 (2𝑆𝑅∞)⁄ ]𝑓𝑠𝑒𝑆𝑅∞

1+1 ([1−𝑓𝑠𝑒 (2𝑆𝑅∞)⁄ ]2𝑡𝑆𝑅∞
2 )⁄

, 

 

(105) 

which at full Kelly, when 𝑓 = 𝑓∗, by substituting equation (71) simplifies to: 

 
𝑔̃∞
𝑒 (𝑓∗) =

𝑆𝑅∞
2

2[1+4 (𝑡𝑆𝑅∞
2 )⁄ ]

=
𝑆𝑁𝑅0

𝑚̌𝑒

2[1+4 (𝑡𝑆𝑁𝑅0
𝑚̌𝑒)⁄ ]

. 

 

(106) 

Figure 7 gives an example how the realizable expected instantaneous excess growth 

rate, as given by equation (103) or (104), is maximized at Kelly fraction ranging from 

half to one depending on investment time horizon 𝑡. Realizable expected instantaneous 

excess growth rate in the figure is normalized by its maximum value to emphasize how 

the value in relation to maximum value evolves as a function of investment horizon. 

We can see from the red line that, at very short investment horizon, one month, 

maximum is achieved at Kelly fraction very close, just slightly greater, to value 0.5. It 

can be shown that expected instantaneous excess growth rate scaled (multiplied) by 

SNR is maximized exactly when Kelly fraction 𝑐 = 0.5. On the other hand, we can 

see from the blue line that, at very long investment horizon, a thousand years, 

maximum is achieved at Kelly fraction very close to value one (approximately 0.98). 

It is obvious that as time approaches infinity, realizable reward approaches expected 

instantaneous excess growth rate which is maximized exactly at Kelly fraction one.  

Interestingly, we always find a maximum, the absolute best risk adjusted stock 

allocation expressed as Kelly fraction 𝑐, ranging as  0.5 < 𝑐 < 1 as investment horizon 
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𝑡  range as 0 < 𝑡 < ∞ respectively. Note, however, that this assumes infinite SNR for 

the parameters in equation (72) used in calculating Kelly fraction c. In reality, as 

stressed by Thorp (2006), those parameters are noisy estimates which calls for more 

conservative approach for selecting the risk level c. We consider the stock allocation 

range 0.5 < 𝑐 < 1 as being highly risky proposition for a real-world risk averse 

investor. Nevertheless, this approach provides us with a method for determining a 

theoretically best (providing the greatest realizable expected instantaneous excess 

growth rate) stock allocation level (Kelly fraction) for a given portfolio (instantaneous 

Sharpe ratio) as a function time. The exact maximum for intermediate (between 

infinitely short and infinitely long) investment horizons can be found by differentiating 

equation (103) with respect to 𝑐. 

 

Figure 7. Normalized realizable expected instantaneous excess growth rate at very short (one 

month) and very long (1000 years) investment time horizons. 

There are compelling arguments against the idea that stocks become less risky as the 

time horizon increases (see e.g. Kritzman (1994) or Kritzman and Rich (1998)). We 

do not state that increased SNR due to increased time horizon necessarily implies 
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lower risk. However, we do argue that as SNR increases as a function of time we 

should increase the weight we give for the information expressed as the expected 

excess growth rate as investment time horizon increases. The picture and conclusions 

may, however, be different when judged based on accumulated excess wealth instead 

of the rate of excess growth. This is because even though the rate of excess growth 

converges towards its expectation as time passes, the compounding excess wealth 

experiences exponential growth and the distribution tends to diverge, not converge, 

over time. Compounding effect can be dominant for the investor experience in the 

long-term. If the accumulated excess wealth describes the long-term investment result 

after the investment period, the average and variability of the excess growth rate 

describe the journey to that result. A journey, and the long-term as a concept, 

constitutes of a series of consecutive individual short-term periods. Therefore, in the 

diversification context, realizable risk premium is descriptive as a measure for short-

term diversification effect. 

We often hear stock returns described as being noisy and, as an implication, that 

investor willing to invest to stocks should have a sufficiently long investment horizon. 

But how to quantify noisy and sufficiently long investment horizon? We have provided 

a method, equation (93), for assessing the noisiness in terms of SNR, the average signal 

power to average noise power per unit of compounding frequency ratio for realized 

instantaneous geometric excess growth rate, 𝑆𝑁𝑅0
𝑔̌∞
𝑒

, to be exact. To assess the concept 

of sufficiently long investment horizon, we solve investment horizon 𝑡 from equation 

(101), substitute equation (93) and (74) to obtain investment horizon as a function of 

R-squared, instantaneous Sharpe ratio and Kelly fraction: 

 𝑡 =
1

(1 𝑅2−1⁄ )(1−𝑐 2⁄ )2𝑆𝑅∞
2 . 

 

(107) 

Or alternatively, substituting equation (75) instead of (74), we get investment horizon 

as a function of R-squared, instantaneous Sharpe ratio, investment fraction and 

standard deviation: 
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 𝑡 =
1

(1 𝑅2−1⁄ )[𝑆𝑅∞−𝑓(𝑠𝑒 2⁄ )]2
. 

 

(108) 

The sufficiently long investment horizon can be defined as time horizon which ensures 

at least half of the realized instantaneous excess growth rate being determined by the 

expected instantaneous excess growth rate of the portfolio/strategy. This corresponds 

to time required for realizable risk premium to equal or exceed half of the (expected) 

risk premium. This implies R-squared, as determined in equation (101), being at least 

one half, which corresponds to 𝑆𝑁𝑅0
𝑔̌∞
𝑒

 being at least one (zero decibels). We therefore 

can determine the sufficiently long investment horizon as the required minimum length 

for the investment horizon 𝑡𝑚𝑖𝑛 in years for a portfolio by substituting 𝑅2 = 0.5 into 

equation (108): 

 𝑡𝑚𝑖𝑛 = 𝑡𝑅2=0.5 = 𝑡(𝑅𝑃̃𝐸𝑊,𝐺∞ 𝑅𝑃𝐸𝑊,𝐺∞⁄ )=0.5 = 𝑡
𝑆𝑁𝑅0

𝑔̌∞
𝑒
=1=0𝑑𝐵

 

                            =
1

[𝑆𝑅∞−𝑓(𝑠𝑒 2⁄ )]2
=

1

𝑆𝑁𝑅0
𝑔̌∞
𝑒 . 

 

(109) 

As instantaneous Sharpe ratio 𝑆𝑅∞ is an increasing and standard deviation 𝑠𝑒 a 

decreasing function of diversification, it is clear that the required minimum length for 

the investment horizon 𝑡𝑚𝑖𝑛 is minimized when diversification is maximized. 

Similarly, it is clear that lower levels of diversification, as well as higher investment 

fraction 𝑓, call for longer investment horizon. 

We can derive a normalized investment horizon for a given Kelly fraction 𝑐 by 

normalizing (dividing) by the investment horizon of a full Kelly allocation. This is a 

general equation for normalized investment horizon and applies therefore for 

normalized minimum investment horizon as well. We can obtain this by utilizing 

equation (107) with fractional Kelly in the numerator divided by full Kelly in the 

denominator. The resulting equation applies generally as an investment horizon 

relative as both R-squared and instantaneous Sharpe ratio are reduced from the 

equation making it a function of Kelly fraction 𝑐 and nothing else: 
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 𝑡(𝑐𝑓∗)

𝑡(𝑓∗)
=

1

4(1−𝑐 2⁄ )2
. 

 

(110) 

As a sanity check, we note that utilizing the investment horizon 𝑡(𝑘, 𝑐𝑓∗), as given by 

Thorp (2006, p. 408), instead of equation (107), will yield exactly the equation (110). 

Thorp approached the investment horizon from the angle of confidence intervals (𝑘 

corresponding to a Z-score of a standard normal distribution) while our approach is 

based on the coefficient of determination, R-squared. Both approaches, however, 

result the same relationship 𝑡(𝑐𝑓∗) 𝑡(𝑓∗)⁄  for the investment horizon between a 

fractional Kelly allocation and full Kelly allocation. 

3.3.8 Decomposing risk premium 

We will next decompose the instantaneous geometric risk premium of a 𝑛𝑃–stock 

portfolio to crystallize the role of diversification. The decomposition has two parts: the 

risk premium of an average single stock portfolio and the diversification premium from 

additional stocks added into the portfolio. We find that diversification, especially at 

the low end of its spectrum, is a dominant factor determining the size of the 

instantaneous geometric risk premium. 

We have derived instantaneous geometric risk premium of an equally weighted 

portfolio 𝑅𝑃𝐸𝑊,𝐺∞ in equation (8) and diversification premium 𝐷𝑃𝑃 for a 𝑛𝑃–stock 

portfolio in equation (34) and for a benchmark portfolio 𝐷𝑃𝐵𝑀in equation (38). We 

denote instantaneous geometric risk premium for equally weighted 𝑛𝑃–stock portfolio 

as 𝑅𝑃𝐸𝑊,𝐺∞
𝑃  and for equally weighted benchmark portfolio as 𝑅𝑃𝐸𝑊,𝐺∞

𝐵𝑀 . A special case 

of 𝑅𝑃𝐸𝑊,𝐺∞
𝑃  is an instantaneous geometric risk premium of a single–stock portfolio 

which we denote as 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1 . With these ingredients, we can decompose the 

instantaneous geometric risk premium of an equally weighted benchmark portfolio. 

First, we write the risk premium of a 𝑛𝑃–stock portfolio as the risk premium of a 

single-stock portfolio plus the diversification premium of a 𝑛𝑃–stock portfolio (where 

𝑛𝑃 > 1) as given by equation (34). By substituting equation (38) we have: 
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 𝑅𝑃𝐸𝑊,𝐺∞
𝑃,𝑛>1 = 𝑅𝑃𝐸𝑊,𝐺∞

𝑛=1 + 𝐷𝑃𝑛>1
𝑃  

                                 = 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1 + (1 −

1

𝑛𝑃
+

1

𝑛𝐵𝑀
)𝐷𝑃𝐵𝑀, 

 

(111) 

where we can see that as the number of stocks in the portfolio approaches the number 

of stocks in the benchmark, the risk premium of the 𝑛𝑃–stock portfolio approaches the 

risk premium of the benchmark portfolio. For single stock portfolio (𝑛𝑃 = 1) the 

diversification premium term is zero. When the number of stocks in the portfolio is 

equal to number of stocks in the benchmark, we have the risk premium of the 

benchmark portfolio which equals the risk premium of a single-stock portfolio plus 

the diversification premium of a benchmark portfolio: 

 𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 = 𝑅𝑃𝐸𝑊,𝐺∞

𝑛=1 + 𝐷𝑃𝐵𝑀. 

 

(112) 

By substituting equation (113) into (111) and further substituting equation (40) we can 

alternatively write the risk premium of a 𝑛𝑃–stock portfolio as the risk premium of the 

benchmark portfolio plus portfolio’s diversification premium difference to 

benchmark: 

 𝑅𝑃𝐸𝑊,𝐺∞
𝑃,𝑛>1 = 𝑅𝑃𝐸𝑊,𝐺∞

𝐵𝑀 + Δ𝐷𝑃𝑛>1
𝐵𝑀 . 

 

(113) 

 

In the limit, when 𝑛𝐵𝑀 → ∞, risk premium of a 𝑛𝑃–stock portfolio, as given by 

equation (111), simplifies to: 

 𝑅𝑃𝐸𝑊,𝐺∞
𝑃,𝑛𝐵𝑀→∞ = 𝑅𝑃𝐸𝑊,𝐺∞

𝑛=1 + (1 −
1

𝑛𝑃
)𝐷𝑃𝐵𝑀 = 𝑅𝑃𝐸𝑊,𝐺∞

𝐵𝑀 −
𝐷𝑃𝐵𝑀

𝑛𝑃
. 

 

(114) 
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When 𝑛𝐵𝑀 is large compared to 𝑛𝑃, equation (114) can be used to approximate the 

risk premium of a 𝑛𝑃–stock portfolio.  

An important intuition arises from equations (111) and (114). As benchmarks are 

typically broad, implying large 𝑛𝐵𝑀, and their diversification premiums 𝐷𝑃𝐵𝑀 are 

large, number of stocks in the portfolio 𝑛𝑃 attain dominant role in these equations. 

Number of stocks in the portfolio is a measure of level of diversification. 

Diversification therefore, especially at the low end of its spectrum, is a dominant factor 

determining the size of the geometric risk premium. That being the case, all else equal, 

any friction limiting the level of diversification in a portfolio implies lower expected 

excess growth rate (lower geometric risk premium).  

Diversification premium difference to benchmark is a piece in the equity premium 

puzzle. It is easy to imagine greater frictions for diversification in the past when 

today’s cost-efficient diversification technology (index funds, ETFs) were not 

available. We can think the historical high transaction costs and large spreads to have 

increased the required risk premium in their own right, but they simultaneously have 

increased diversification costs such that investors have been forced to diversify less 

than perfectly. Theoretical equity premium measured for the fully diversified market 

portfolio therefore has been higher than practical equity premium required by (and 

realized for) less than perfectly diversified investors by the amount expressed by the 

diversification premium difference to benchmark. Today the cost for diversification is 

practically brought to zero implying the practical equity premium required by (and 

realized for fully diversified) investors is equal to the theoretical benchmark risk 

premium. 

Assuming that the majority of investors who set the level for required risk premium 

diversify as broadly as is cost-efficient, we should expect the future fully diversified 

benchmark risk premium to roughly correspond to risk premium required by investors. 

All other factors except cost-efficiency of diversification being equal, we should 

expect fully diversified investor today to earn a risk premium similar to risk premium 

realized to average investor in the past with less than perfect diversification. The level 

of that risk premium is the historical (benchmark) risk premium minus the magnitude 

of diversification premium difference to benchmark in average historical investor’s 
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portfolio. We therefore should expect the future benchmark risk premium to be lower 

than historical benchmark risk premium. Less than perfectly diversified investors 

today are expected to lag the forward-looking risk premium of a fully diversified 

investor by the amount equal to their diversification premium difference to benchmark. 

In the history, full diversification was not cost-efficient and therefore not feasible, 

implying benchmark level risk premiums were theoretical concepts. Today, practically 

perfect diversification is possible and cost-efficient, implying benchmark level risk 

premiums are useful to describe investor’s experience of the risk premium. This is one 

additional reason why one may not be well advised to extrapolate historical benchmark 

level risk premiums into the future2. Yet another implication from increased 

diversification leading to lower forward-looking market level risk premium is its 

impact to market valuations. All else equal, today’s cost-efficient diversification is 

expected to increase market valuations. 

3.3.9 Forward-looking geometric premiums in the presence of uncertainty about 

risks 

There is a difference between utilizing in-sample and out-of-sample data. So far, we 

have built the diversification effect analysis based on in-sample data, meaning that the 

parameters used in the equations are measured from exhaustive historical data. These 

parameters represent the exact population parameter values as they occurred in the 

data and therefore don’t exhibit uncertainty. What remains uncertain, however, is what 

the parameters, and consequently the diversification effect, will be in the future, in out-

of-sample data. 

Our focus is in in-sample data as we want to explore what explains the diversification 

effect. This is best achieved by using data with known population parameters. 

However, we eventually wish to use and project the learnings about the diversification 

effect into the future. This requires us to predict, or to estimate, the future parameters 

                                                 
2 The first time we read and start to think about the idea of diversification impacting the level of risk 

premium was in one of the blog posts by a blogger/financial theorist/commentator “Jesse Livermore”. 

Interpretation of our decomposition of the risk premium supports that idea. 
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somehow. This necessarily means we need to deal with the uncertainty related to future 

parameter estimates.  

We will show that, when all other factors are equal, historical geometric risk premium 

can be considered the upper bound and historical diversification premium the lower 

bound for corresponding forward-looking premiums. This is because the forward-

looking geometric metrics are impacted by both the expected risk and the uncertainty 

about the risk. The latter is zero in case of historical data is used, but the future is 

certain to entail uncertainty. We will derive forward-looking formulas for the 

geometric risk premium, Kelly criterion, diversification premium and the 

diversification premium difference to benchmark in the presence of uncertainty about 

the risks. The relevant risks, once again, are the systematic risk for the fully diversified 

portfolio and the idiosyncratic risk which determines the diversification effect. 

Importantly, the uncertainty about the idiosyncratic risk can be diversified away. 

Lastly, we will demonstrate how the uncertainty about the future fat-tailed systematic 

risk may be used to explain aggressive volatility spikes. 

Thorp (2006, pp. 411–412) discuss the uncertainty related to parameter estimates from 

a Kelly investor point of view. Thorp focus on the uncertainty related to the estimating 

future expected returns. As the growth rate, and the geometric risk premium, is 

determined as a function of both the expected return and predicted variance, we will 

now focus on the uncertainty related to the latter, the uncertainty about the risk. 

Uncertainty about the risk is particularly significant in the context of geometric metrics 

as any uncertainty, be it the predicted risk (predicted standard deviation) or uncertainty 

about the predicted risk (the standard deviation of the standard deviation estimator) 

decreases the expected growth rate or the expected risk premium. In case of arithmetic 

metrics, which are not a function of variance, there is no such effect and the uncertainty 

about the risk will not affect the expected return while it does make an investor less 

certain about the spread of the distribution of the future returns he faces. 

Jacquier, Kane and Marcus (2003) study the effect of uncertainty on the future 

parameter estimates related to arithmetic and geometric mean returns. They find that 

in the very long-term both arithmetic and geometric mean rate of return estimates 
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predicted based on historical values are upward biased forecasts of the typical future 

portfolio values. They also find that estimates of the arithmetic mean rate of return are 

more upward biased compared to their geometric counterparts. In our view the fact 

that historical mean rate of arithmetic returns are upward biased estimates of the 

typical realizable future portfolio returns is an expected result as it is the growth rate 

(the geometric return), not the arithmetic return that is governed by the law of large 

numbers (Kelly, 1956). The Jacquier et al. finding that even geometric mean rate of 

returns measured from historical data are upward biased estimates of the future 

geometric mean rate of returns is consistent with our view which we now elaborate 

analytically. 

We can think of the future parameter estimates as randomly drawn from a distribution 

for associated parameter estimators which are random variables. We denote the 

parameter estimators with hat accent: 𝑚̂𝑒 and 𝑠̂𝑒 are the estimators of 𝑚𝑒 and 𝑠𝑒 

respectively. We can think of the average error of a parameter estimate to be the 

standard deviation of the parameter estimator. We assume the parameter estimators to 

be unbiased implying expectation of the estimation error is zero. Following the 

methodology that Thorp (2006, p. 406) used in his growth rate derivation, we can 

express the instantaneous excess growth rate incorporating the average parameter 

errors as weighted average over all the combinations of the average parameter 

estimates. We have two parameters to be estimated so the number of possible average 

outcomes is four. The weight of each possible average outcome is its probability 0.25. 

We then can write: 

 𝑔∞
𝑒 = 𝑅𝑃𝐸𝑊,𝐺∞ = 

                            0.25

{
  
 

  
 (𝑓[𝑚̅̂𝑒 + 𝑆𝑑𝑒𝑣(𝑚̂𝑒)] −

𝑓2

2
[𝑠̅̂𝑒 + 𝑆𝑑𝑒𝑣(𝑠̂𝑒)]

2
) +

(𝑓[𝑚̅̂𝑒 + 𝑆𝑑𝑒𝑣(𝑚̂𝑒)] −
𝑓2

2
[𝑠̅̂𝑒 − 𝑆𝑑𝑒𝑣(𝑠̂𝑒)]

2
) +

(𝑓[𝑚̅̂𝑒 − 𝑆𝑑𝑒𝑣(𝑚̂𝑒)] −
𝑓2

2
[𝑠̅̂𝑒 + 𝑆𝑑𝑒𝑣(𝑠̂𝑒)]

2
) +

(𝑓[𝑚̅̂𝑒 − 𝑆𝑑𝑒𝑣(𝑚̂𝑒)] −
𝑓2

2
[𝑠̅̂𝑒 − 𝑆𝑑𝑒𝑣(𝑠̂𝑒)]

2
)    }

  
 

  
 

. 

 

(115) 
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Given the unbiased parameter estimators, we have the expected (bar accent denoting 

“mean”) parameter estimates equal to the true parameters: 𝑚̅̂𝑒 = 𝑚𝑒 and 𝑠̅̂𝑒 = 𝑠𝑒. By 

simplifying equation (115), the instantaneous expected excess growth rate, which is 

equal to the instantaneous geometric risk premium, of a portfolio in the presence of 

uncertainty about the risk can be written as: 

 

 
𝑔∞
𝑒 = 𝑅𝑃𝐸𝑊,𝐺∞ = 𝑓𝑚𝑒 −

𝑓2

2
[𝑠𝑒
2 + 𝑆𝑑𝑒𝑣(𝑠̂𝑒)

2] 

                             =  𝑓𝑚𝑒 −
𝑓2

2
[𝑠𝑒
2 + 𝑉𝑎𝑟(𝑠̂𝑒)] 

                                              = 𝑓𝑚𝑒 −
𝑓2

2
[𝑉𝑎𝑟(𝐺∞

𝑒 ) + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂[𝐺∞
𝑒 ])], 

 

(116) 

where we can see that the uncertainty about the excess return averages out but the 

uncertainty about the risk does not. The variance of the uncertainty about the risk, the 

variance of the estimated standard deviation of the excess growth rate, is added to the 

true variance of the excess growth rate. If there is no uncertainty about the risk, which 

is the case in an in-sample test utilizing the whole population of historical data, then 

the second variance term vanishes and equation (116) is equal to equation (8). We can 

see that 𝑔∞
𝑒 [𝑆𝑑𝑒𝑣(𝑠̂𝑒) > 0] < 𝑔∞

𝑒 [𝑆𝑑𝑒𝑣(𝑠̂𝑒) = 0] meaning that any uncertainty about 

the risk decreases the expected instantaneous excess growth rate which is the 

instantaneous geometric risk premium. It appears, perhaps characteristic to geometric 

measures in general, that any uncertainty related to growth, be it the uncertainty about 

the growth itself or the uncertainty about the uncertainty about the growth, will be 

detrimental to expected growth rate. 

By differentiating equation (116) with respect to 𝑓, we can derive a Kelly criterion in 

the presence of uncertainty about the risk: 



 115 

 𝑓∗ = 𝑚𝑒 [𝑠𝑒
2 + 𝑆𝑑𝑒𝑣(𝑠̂𝑒)

2]⁄  

      = 𝑚𝑒 [𝑠𝑒
2 + 𝑉𝑎𝑟(𝑠̂𝑒)]⁄  

                      = 𝑚𝑒 [𝑉𝑎𝑟(𝐺∞
𝑒 ) + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂[𝐺∞

𝑒 ])]⁄ , 

 

(117) 

which gives the full Kelly fraction 𝑓∗ in the presence of uncertainty about the risk. If 

there is no uncertainty about the risk, then the second variance term vanishes and 

equation (117) is equal to equation (62). We can see that 𝑓∗[𝑆𝑑𝑒𝑣(𝑠̂𝑒) > 0] <

𝑓∗[𝑆𝑑𝑒𝑣(𝑠̂𝑒) = 0] meaning that any uncertainty about the risk decreases the full Kelly 

fraction.  

Diversification premium for a portfolio, as derived in equations from (31) to (35), is 

based on geometric metrics and therefore is subject to be affected by the uncertainty 

about the risk. Specifically, the uncertainty about the idiosyncratic risk. We use the 

result from equation (116) and adapt the derivation from equation (34) to derive the 

diversification premium for a portfolio of 𝑛𝑃 stocks in the presence of uncertainty 

about the idiosyncratic risk (full derivation is given in Appendix 2). We denote 

𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1 as the parameter estimator for the idiosyncratic standard deviation of 

instantaneous excess growth rate of an average single stock portfolio with 100% 

allocation to stocks. 

𝐷𝑃𝑛>1
𝑃 =

𝑓2

2
{(1 −

1

𝑛𝑃
+

1

𝑛𝐵𝑀
) 𝐼𝑣𝑎𝑟𝑛=𝑓=1

+ [1 −
1

𝑛𝑃
−

1

𝑛𝐵𝑀

+
2

√𝑛𝑃𝑛𝐵𝑀
] 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)} . 

 

(118) 

By substituting 𝑛𝑃 = 𝑛𝐵𝑀 into equation (118) we find the diversification premium of 

a benchmark portfolio in the presence of uncertainty about the idiosyncratic risk: 
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 𝐷𝑃𝐵𝑀 =
𝐼𝑣𝑎𝑟𝑛=𝑓=1+𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)

2
𝑓2, 

 

(119) 

where we can see that the diversification premium of a benchmark is an increasing 

function of both the variance of the excess growth rate and the variance of the average 

error of the estimated idiosyncratic standard deviation of the excess growth rate. Both 

of these underlying measures are for an average single stock portfolio with 100% stock 

allocation denoted with subscript 𝑛 = 𝑓 = 1. In case of no uncertainty about the risk 

the equation will be equal to equation (38). 

Equation (118), when 𝑛𝐵𝑀 → ∞, substituting equation (119) simplifies to: 

 
𝐷𝑃𝑛𝐵𝑀→∞

𝑃 = (1 −
1

𝑛𝑃
)
𝐼𝑣𝑎𝑟𝑛=𝑓=1 + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)

2
𝑓2 

                                   = (1 −
1

𝑛𝑃
)𝐷𝑃𝐵𝑀. 

 

(120) 

Equation (120) approximates the diversification premium for a portfolio of 𝑛𝑃 stocks 

in the presence of uncertainty about the idiosyncratic risk when 𝑛𝐵𝑀 is large, or 

preferably very large as there is a term 2 √𝑛𝑃𝑛𝐵𝑀⁄  in equation (118) which descent 

towards zero, when 𝑛𝐵𝑀 → ∞, is decelerated by the square root. We can see that in 

case of no uncertainty about the idiosyncratic risk the second variance term vanishes 

and equation (120) is equal to equation (35) as we expect. Similarly, in case of no 

uncertainty about the idiosyncratic risk, equation (118) is equal to equation (34). 

By substituting equations (118) and (119) into equation (40) we have the 

diversification premium difference to benchmark in the presence of uncertainty about 

the idiosyncratic risk: 
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Δ𝐷𝑃𝑛>1

𝐵𝑀 =
𝑓2

2
{(

1

𝑛𝐵𝑀
−
1

𝑛𝑃
) 𝐼𝑣𝑎𝑟𝑛=𝑓=1

+ [
1

𝑛𝐵𝑀
−
1

𝑛𝑃
+

2

√𝑛𝑃𝑛𝐵𝑀
] 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)} . 

 

(121) 

When 𝑛𝐵𝑀 → ∞, equation (121) simplifies to: 

 Δ𝐷𝑃𝑛𝐵𝑀→∞
𝐵𝑀 = −

𝐼𝑣𝑎𝑟𝑛=𝑓=1+𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)

2𝑛𝑃
𝑓2, 

 

(122) 

which approximates the diversification premium difference to benchmark in the 

presence of uncertainty about the idiosyncratic risk when 𝑛𝐵𝑀 is large, or preferably 

very large. We can see that the more uncertainty there is about the idiosyncratic risk 

the greater the opportunity cost of foregone diversification. Now the opportunity cost 

of foregone diversification is approximated as one half of the portfolio’s sum of 

idiosyncratic variance and the variance of the idiosyncratic standard deviation 

estimator scaled by the squared investment fraction. This means, all else equal, that 

the historical opportunity cost can be considered as a lower bound for the forward-

looking opportunity cost of foregone diversification. 

We note that, in the spirit of information theory, we can alternatively interpret the 

opportunity cost of foregone diversification in terms of noise power as one half of the 

portfolio’s sum of the noise power of the average idiosyncratic risk and the noise 

power of the idiosyncratic risk estimator scaled by the squared investment fraction. 

Basically, any of the formulas that we have introduced that include the effect from 

standard deviation 𝑠𝑒 can be transformed into a forward-looking version incorporating 

the uncertainty about the risk. 

Contrary to geometric risk premium, which is a decreasing function of the uncertainty 

about the risk (risk here consists of both systematic and idiosyncratic risk), 

diversification premium increases as the uncertainty about the idiosyncratic risk 
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increases. All else equal and assuming the future entails uncertainty, we can consider 

the historical portfolio mean growth rate, such as the historical geometric risk 

premium, as the upper bound for forward-looking growth rate estimate, such as 

forward-looking geometric risk premium. In case of diversification premium, 

however, we can consider the historical diversification premium as the lower bound 

for forward-looking diversification premium. 

Finally, based on equation (112), we can write the forward-looking instantaneous 

geometric risk premium of the benchmark portfolio in the presence of uncertainty 

about the systematic risk 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) and uncertainty about the idiosyncratic risk 

𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1) as: 

 
𝑅𝑃𝐸𝑊,𝐺∞

𝐵𝑀 = 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1 [

𝑉𝑎𝑟𝐵𝑀 + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) ,

𝐼𝑣𝑎𝑟𝑛=𝑓=1 + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)
] 

                                      +𝐷𝑃𝐵𝑀[𝐼𝑣𝑎𝑟𝑛=𝑓=1 + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)], 

 

(123) 

where the terms are shown as a function of the risks and uncertainties about the risks. 

Note that the square brackets now indicate “function of”. 𝑆𝑑𝑒𝑣̂𝐵𝑀 is the parameter 

estimator for the standard deviation of the instantaneous excess growth rate of a 

benchmark. We can see that first term 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1  is a function of systematic risk 𝑉𝑎𝑟𝐵𝑀 

plus the uncertainty about the systematic risk 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) as well as idiosyncratic 

risk 𝐼𝑣𝑎𝑟𝑛=𝑓=1 plus the uncertainty about the idiosyncratic risk 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1). 

The second term 𝐷𝑃𝐵𝑀 is a function of the idiosyncratic risk plus its uncertainty only. 

Furthermore, the positive 𝐷𝑃𝐵𝑀 perfectly offsets the negative impact arising from the 

idiosyncratic components in the 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1 . This means that the risk premium of a fully 

diversified benchmark portfolio is a function of the systematic risk 𝑉𝑎𝑟𝐵𝑀 and its 

uncertainty 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) only.  

We can think of the expected systematic risk 𝑉𝑎𝑟𝐵𝑀 as a base rate of a forward-looking 

risk premium which arises from the historical realized risk premium while the 

uncertainty about the base rate, 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀), is subject to any new information 
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specific to the future systematic risk expectations. Given the fat tails of the empirical 

systematic risk distributions as described by Gabaix et al. (2003), we can think the 

term 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) as incorporating also the fat-tailed nature of the perceived future 

systematic risks which in part may help explain the sudden aggressive moves in stock 

market volatility as new risks with uncertain consequences suddenly arise. An 

important take away from equation (123) is that the uncertainty about the systematic 

risk is always a concern but the uncertainty about the idiosyncratic risk is completely 

avoidable by full diversification.  

3.4 Determination of diversification metrics in a continuous-time world 

We will next determine the diversification metrics which capture the effect of 

diversification in a continuous-time world. Diversification effect is not easily captured 

by one metric. There are many aspects like expected wealth after the target investment 

horizon, expected growth rate leading to expected wealth and the risk, the uncertainty, 

associated to both of these. We therefore will not try to capture the diversification 

effect with just one metric, but instead will have three metrics of which the two latter 

are determined separately for risk neutral and risk averse investors. 

We consider the diversification effects in the context of in-sample data with known 

population parameters meaning we utilize historical parameter values which entail no 

uncertainty. As discussed earlier, diversification effects determined using historical 

parameters can be considered as lower bounds for forward-looking diversification 

effects which account for the uncertainties about the future risks. Therefore, when all 

other factors are equal, the number of stocks required for a desired level of 

diversification benefit in the future is expected to be at least the amount required based 

on our metrics which are based on historical data. 

The first metric considers diversification effect around the absolute minimum 

acceptable investment outcome, the level of diversification ensuring positive 

geometric risk premium. The second, short-term, metric is based on comparing 

portfolio’s (realizable) risk premium to that of the benchmark. The third, long-term, 
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metric is based on comparing portfolio’s (realizable) gross compound excess wealth 

over time to that of the benchmark.  

The first metric focusses on the minimum level of diversification by comparing the 

expected reward from risk bearing to the expected reward from riskless investment. 

The reference point is the riskless investment delivering the riskless rate achieved with 

zero exposure to equity risk. The second and third metrics focus on the opportunity 

cost and risk arising from deviating from the benchmark portfolio. The reference point 

is the fully diversified benchmark portfolio.  

Second and third metrics are further divided for two investor types: risk neutral and 

risk averse investor. Risk neutral investor utilize risk premium and risk averse investor 

realizable risk premium in the equations determining diversification metrics. The fact 

that realizable risk premium entails the effect from two dimensions (reward and risk) 

and expresses its value in one dimension (reward) enables using realizable risk 

premium interchangeably with risk premium in the equations. 

Second and third diversification metrics are both functions of time but the effect of 

time is opposite. The second metric is based on ratios of (realizable) growth rates while 

the third metric is based on ratios of gross excess wealth compound at (realizable) 

expected growth rates. As time horizon lengthens, the distribution of (realizable) 

growth rates converges as the uncertainty around growth rates converges while the 

distribution of compound wealth diverges as the differences in (realizable) expected 

growth rates compound and expand the wealth differences exponentially. This is a 

common source of controversy and we attempt not to take sides but to address both 

aspects of the time effect. 

3.4.1 Number of stocks required for positive risk premium 

The first metric on the diversification effect is that an investor shall always expect a 

reward from bearing a risk. If riskless alternative provides a higher expected reward 

with no risk, there is no point investing in risky assets regardless whether the investor 

is risk neutral or risk averse. We therefore consider positive instantaneous geometric 

risk premium, meaning positive expected instantaneous excess growth rate, as our first 
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diversification effect and determine the average minimum number of stocks in a 

portfolio yielding a positive geometric risk premium as a measure for the absolute 

minimum level of diversification. 

We will show that the average minimum number of stocks in a portfolio yielding a 

positive geometric risk premium is simply and intuitively approximated by dividing 

the benchmark diversification premium by the benchmark’s geometric risk premium. 

This provides us a tool to assess the absolute minimum level of required diversification 

for any strategy, a sort of level of riskiness of the strategy. Strategies, meaning the 

benchmark stock populations, can be, e.g., plain vanilla meaning no risk factors except 

equally weighted market risk or different investment styles like small cap, value etc. 

From the decomposition of the risk premium of a 𝑛𝑃–stock portfolio in equation (111) 

we can solve the 𝑛𝑃 for the case that 𝑅𝑃𝐸𝑊,𝐺∞
𝑃,𝑛>1 ≥ 0 which means that we are solving 

the minimum number of stocks in the portfolio that guarantees a positive risk premium. 

As both risk premium and diversification premium are functions of investment fraction 

𝑓, we are solving 𝑛𝑃(𝑓): 

 𝑛𝑃(𝑓) ≥
𝐷𝑃𝐵𝑀(𝑓)

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 (𝑓)+𝐷𝑃𝐵𝑀(𝑓) 𝑛𝐵𝑀⁄

, 

 

(124) 

which, by substituting equations (8), (34) and (38) and after some simplification, can 

alternatively be written as: 

 
𝑛𝑃(𝑓) ≥

𝐼𝑣𝑎𝑟𝑛=𝑓=1

2𝑚𝑒 𝑓⁄ + 𝐼𝑣𝑎𝑟𝑛=𝑓=1 𝑛𝐵𝑀⁄ − 𝑉𝑎𝑟𝐵𝑀
 

            =
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2𝑅𝑃𝐸𝑊,𝐴
𝐵𝑀 𝑓⁄ + 𝐼𝑣𝑎𝑟𝑛=𝑓=1 𝑛𝐵𝑀⁄ − 𝑉𝑎𝑟𝐵𝑀

 

                            =
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞
𝐵𝑀 𝑓⁄ +𝐼𝑣𝑎𝑟𝑛=𝑓=1 𝑛𝐵𝑀⁄ −𝑉𝑎𝑟𝐵𝑀

, 

 

(125) 
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where 𝑅𝑃𝐸𝑊,𝐴
𝐵𝑀  is the arithmetic risk premium of an equally weighted benchmark 

portfolio. Equation (34) requires 𝑛𝑃 > 1 meaning that equation (125) is accurate when 

𝑛𝑃 > 1. Approximate equations (126) and (127) do not have this limitation. 

In the limit, when 𝑛𝐵𝑀 → ∞, minimum average number of stocks required to achieve 

a positive risk premium, as given in equation (124), simplifies to: 

 𝑛𝑃
𝑛𝐵𝑀→∞(𝑓) ≥

𝐷𝑃𝐵𝑀(𝑓)

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 (𝑓)

, 

 

(126) 

which, by substituting equations (8) and (38) and after some simplification, can 

alternatively be written as: 

 𝑛𝑃
𝑛𝐵𝑀→∞(𝑓) ≥

𝐼𝑣𝑎𝑟𝑛=𝑓=1

2𝑅𝑃𝐸𝑊,𝐴
𝐵𝑀 𝑓⁄ −𝑉𝑎𝑟𝐵𝑀

=
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞
𝐵𝑀 𝑓⁄ −𝑉𝑎𝑟𝐵𝑀

. 

 

(127) 

When 𝑛𝐵𝑀 is large, equations (126) and (127) can be used to approximate the 

minimum number of stocks required with a given investment fraction, 𝑛𝑃(𝑓), to 

achieve a positive risk premium. 

We find that the approximation of the average required minimum number of stocks in 

the portfolio to achieve a positive risk premium, i.e., a positive expected instantaneous 

excess growth rate, simplifies to remarkably simple and intuitive equation (126) which 

implies simply dividing the benchmark diversification premium by the benchmark risk 

premium. 

As typical number of stocks required for positive instantaneous geometric risk 

premium is very low (often close to one) and our empirical benchmark portfolios are 

large, we choose to use approximate equations (126) and (127) over the exact 

equations. 
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3.4.2 Number of stocks required for a proportion of benchmark risk premium 

The second diversification metric, risk premium ratio, is intended to serve as a short-

term diversification metric. In case of risk neutral investor, risk premium ratio is used 

while for risk averse investor we use realizable risk premium ratio. Risk averse 

investor cares about two aspects simultaneously: the expected excess growth rate, i.e., 

the geometric risk premium, and the associated risk. Both of these aspects are captured 

by one metric, the realizable risk premium. The diversification metric is the ratio 

between portfolio’s (realizable) risk premium and that of the benchmark. This ratio 

tells us how much of the maximum diversification benefit on average is realizable by 

the portfolio. Note that, in case the portfolio’s risk premium is negative the risk 

premium ratio (assuming benchmark risk premium is positive) is also negative.  

We will show that in the very long-term the realizable risk premium ratio approaches 

the ratio between portfolio’s (expected) risk premium and that of the benchmark, and 

in the short-term the ratio between portfolio’s SNR weighted risk premium and that of 

the benchmark. This means that the risk is important in the short-term while the 

expected reward dominates in the long-term. 

The realizable risk premium is a function of time as it converges towards the 

(expected) risk premium as time horizon increases. It does not, however, sufficiently 

reflect the effect of time on investor’s portfolio as is does not experience the 

exponential growth like wealth does. The realizable risk premium can be considered 

as a proxy for the investor’s experience of the journey towards the target wealth as it 

combines in one metric both the average direction (expected growth rate) and the risk 

(the volatility) along the way. 

By choosing not to diversify maximally, an investor accepts both lower expected 

growth rate and higher risk both of which are reflected in the realizable risk premium. 

By determining the realizable risk premium of a 𝑛𝑃–stock portfolio divided by the 

realizable risk premium of a fully diversified benchmark as a short-term diversification 

effect, we capture the opportunity cost of foregone diversification measured in the 

units of risk premium. Even a very long-term investor lives his life in short-term 
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increments. Therefore, the short-term effects, including short-term diversification 

effect, are meaningful to any risk averse investor.  

Based on equations (101) and (102), substituting (75) and (113), we can derive target 

realizable risk premium ratio for a portfolio with 𝑛𝑃 > 1 (tilde accent denotes 

“realizable”):  

 
𝑇𝑅𝑃̃𝑅𝑛>1 = 𝑅𝑃̃𝐸𝑊,𝐺∞

𝑃 𝑅𝑃̃𝐸𝑊,𝐺∞
𝐵𝑀⁄ =

𝑅(𝑡)𝑃
2

𝑅(𝑡)𝐵𝑀
2

𝑅𝑃𝐸𝑊,𝐺∞
𝑃

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀  

                   =
1 + 1 [𝑡(𝑆𝑅𝐺∞

𝐵𝑀)
2
]⁄

1 + 1 [𝑡(𝑆𝑅𝐺∞
𝑃 )

2
]⁄
(1 +

Δ𝐷𝑃𝑛>1
𝐵𝑀

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 ) = 

1 + 1 (𝑡 [(𝑆𝑅∞
𝐵𝑀)2 − 𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞

𝐵𝑀 +
𝑓2

4 𝑉𝑎𝑟𝐵𝑀])⁄

1 + 1 (𝑡 [
𝑉𝑎𝑟𝐵𝑀
𝑉𝑎𝑟𝑃(𝑛𝑃)

(𝑆𝑅∞𝐵𝑀)2 − 𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞𝐵𝑀 +
𝑓2

4 𝑉𝑎𝑟𝑃
(𝑛𝑃)])⁄

 

 × (1 +
Δ𝐷𝑃𝑛>1

𝐵𝑀 (𝑓, 𝑛𝑃)

𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞𝐵𝑀 −
𝑓
2𝑉𝑎𝑟𝐵𝑀

) , 

 

(128) 

which contains two terms which are functions of 𝑛𝑃: portfolio variance 𝑉𝑎𝑟𝑃(𝑛𝑃) and 

diversification premium difference to benchmark Δ𝐷𝑃𝑛>1
𝐵𝑀 (𝑓, 𝑛𝑃) determined by 

equations (33) and (40), respectively. The resulting equation is complicated and 

solving 𝑛𝑃 will not lead to simple and intuitive result. We therefore use computer to 

solve 𝑛𝑃. Regardless the complexity of the resulting equation, it still shows that after 

plugging in the size of the benchmark 𝑛𝐵𝑀 and deciding the investment fraction and 

target realizable risk premium ratio, we only need three parameters to predict the 

required number of stocks to achieve the target realizable risk premium ratio. The three 

parameters are: instantaneous Sharpe ratio of a benchmark portfolio (geometric risk 

premium would be equally good), the variance of a benchmark portfolio and the 

average idiosyncratic variance of a single stock portfolio. The last parameter is 

acquired as an output from the regression described by equation (47) and the two 

former parameters are calculated from the time series data of the benchmark portfolio. 
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In the limit, when 𝑡 → ∞, equation (128) simplifies to target risk premium ratio, the 

short-term diversification effect metric for a risk neutral investor: 

               𝑇𝑅𝑃̃𝑅𝑛>1
𝑡→∞

=𝑇𝑅𝑃𝑅𝑛>1 =
𝑅𝑃𝐸𝑊,𝐺∞

𝑃

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 = 1 +

Δ𝐷𝑃𝑛>1
𝐵𝑀

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀  

                                   = 1 +
Δ𝐷𝑃𝑛>1

𝐵𝑀 (𝑓,𝑛𝑃)

𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞
𝐵𝑀−

𝑓2

2
𝑉𝑎𝑟𝐵𝑀

, 

 

(129) 

where 𝑛𝑃, substituting equations (40) and (65), has a simple solution and becomes: 

               𝑛𝑃 =1 [
1

𝑛𝐵𝑀
+
(2𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞

𝐵𝑀−𝑓2𝑉𝑎𝑟𝐵𝑀)(1−𝑇𝑅𝑃𝑅𝑛>1)

𝑓2𝐼𝑣𝑎𝑟𝑛=𝑓=1
]⁄ . 

 

(130) 

Equation (129) show how the realizable target risk premium ratio 𝑇𝑅𝑃̃𝑅𝑛>1
𝑡→∞

 

approaches (expected) target risk premium ratio (𝑇𝑅𝑃𝑅𝑛>1) as investment time 

horizon 𝑡 approaches infinity. Equation (130) shows the number of stocks required to 

achieve desired diversification benefit level implying there is a diversification benefit 

for a risk neutral continuous-time world investor. This is remarkable compared to one 

period world where arithmetic expected return is constant regardless the level of 

diversification, implying there is no such concept as diversification benefit for a risk 

neutral investor. This means that diversification is beneficial to continuous-time world 

investor regardless the level or the existence of risk averseness. In fact, in the absence 

of stock picking skill, rational risk neutral continuous-time world investor will always 

diversify maximally to maximize his expected portfolio growth for a given investment 

fraction 𝑓 (which, in the absence of leverage constraints, will be Kelly allocation 𝑓∗).  

At the other extreme, when 𝑡 → 0, substituting (75) and (113) we find that equation 

(128) becomes: 
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𝑇𝑅𝑃̃𝑅𝑛>1

𝑡→0
=
𝑆𝑁𝑅0

𝑔̌∞
𝑒 ,𝑃
𝑅𝑃𝐸𝑊,𝐺∞

𝑃

𝑆𝑁𝑅0
𝑔̌∞
𝑒 ,𝐵𝑀

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀

=
(𝑆𝑅𝐺∞

𝑃 )
2
𝑅𝑃𝐸𝑊,𝐺∞

𝑃

(𝑆𝑅𝐺∞
𝐵𝑀)

2
𝑅𝑃𝐸𝑊,𝐺∞

𝐵𝑀
= 

[
𝑉𝑎𝑟𝐵𝑀(𝑆𝑅∞

𝐵𝑀)2

𝑉𝑎𝑟𝑃(𝑛𝑃)
− 𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞

𝐵𝑀 +
𝑓2

4 𝑉𝑎𝑟𝑃
(𝑛𝑃)] ×

[𝑓√𝑉𝑎𝑟𝐵𝑀 (𝑆𝑅∞
𝐵𝑀 −

𝑓
2√𝑉𝑎𝑟𝐵𝑀) + Δ𝐷𝑃𝑛>1

𝐵𝑀 (𝑓, 𝑛𝑃)]

𝑓√𝑉𝑎𝑟𝐵𝑀 (𝑆𝑅∞𝐵𝑀 −
𝑓
2√𝑉𝑎𝑟𝐵𝑀)

3  

 

(131) 

which shows that in the short-term, realizable risk premium ratio approaches the ratio 

of the SNR weighted risk premiums. SNR (the squared geometric Sharpe ratio) is the 

dominant term, meaning that risk dominates the metric in the short-term. In the long-

term, as shown by equation (129), the metric is dominated by the risk premium ratio. 

Equation (131) contains two terms which are functions of 𝑛𝑃: portfolio variance 

𝑉𝑎𝑟𝑃(𝑛𝑃) and diversification premium difference to benchmark Δ𝐷𝑃𝑛>1
𝐵𝑀 (𝑓, 𝑛𝑃) 

determined by equations (33) and (40), respectively. Computer can be used to solve 

𝑛𝑃 from the equation. 

3.4.3 Number of stocks required for a proportion of benchmark wealth over time 

The third, long-term, diversification metric is based on the fact that at the end of the 

day, at the end of the investment horizon that is, an investor will not eat the growth 

rate of his portfolio but the accumulated wealth. Excess growth rate is the means while 

the accumulated excess wealth is the end. By defining a diversification effect based on 

gross compound excess wealth of a portfolio, the gross compound wealth in excess of 

what is expected from compounding riskless rate, instead of expected instantaneous 

excess growth rate, we avoid confusing the means to the end that really matters. By 

(realizable) gross compound excess wealth, we mean the gross wealth that is 

continuously compounded using (realizable) risk premium as growth rate. Gross 

means the initial investment is included in the final wealth. In case of long-term risk 

averse investor, realizable risk premium replaces risk premium (which is used in case 

of long-term risk neutral investor) in the equations. Our third diversification metric is 
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best suitable for a long-term investor who seeks to benefit from the compounding 

effect on accumulated capital. 

We will derive two versions of the gross excess wealth-based diversification effects: 

risk neutral and risk averse versions. Risk neutral version will not account for the risk 

and is based solely on gross excess wealth accumulated by compounding geometric 

risk premium. Geometric risk premium is the expected excess growth rate of the 

portfolio which can be considered to be realizable at infinitely long investment time 

horizon. However, realistic investment time horizons are nowhere close to infinity 

implying the risk, not only the expected excess growth rate, becomes significant. Risk 

averse version of the metric will account for the risk by scaling the risk premium based 

on how much of the realized risk premium at a given time horizon is explained by the 

(expected) risk premium. 

We will see that in the continuous-time word, even a risk neutral investor benefits 

greatly from diversification. In fact, a risk neutral investor with no stock picking skill 

should diversify maximally to maximize the expected growth of his wealth. Risk 

neutral investor with stock picking skill should optimize his level of diversification to 

serve the competing goals: goal of increasing diversification to decrease the 

diversification premium difference to benchmark and goal of decreasing 

diversification to allow for better analysis per stock in the portfolio.  

In some cases, an investor with very high tolerance for short-term volatility who can 

be considered as risk neutral in the short-term may be risk averse in the long-term. For 

example, a person saving for retirement can be risk neutral in a sense that he is 

psychologically immune to short-term stock market volatility. However, if the 

retirement saver defines his investing to be success in case he has accumulated a 

liability matching amount, then long-term risk matters regardless the risk neutrality in 

the short-term. 

3.4.3.1 Risk neutral wealth ratio 

We will first define a minimum target wealth ratio and then the number of stocks 𝑛𝑃 

required to achieve this ratio as our diversification metric. The minimum target wealth 
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ratio is maintained continuously as a function of time and is defined as the portfolio’s 

gross excess wealth compound at its instantaneous expected excess growth rate 

divided by the benchmark’s gross excess wealth compound at its instantaneous 

expected excess growth rate. We will then derive formulas for the diversification 

effect, the required number of stocks 𝑛𝑃, based on three alternative regression outputs: 

the idiosyncratic variance 𝐼𝑣𝑎𝑟𝑛=𝑓=1, alpha 𝛼𝑛=𝑓=1 and finally R-squared 𝑅𝑛=𝑓=1
2  

together with benchmark variance 𝑉𝑎𝑟𝐵𝑀. The formulas decompose the diversification 

effect and allow us to acquire intuition on the aspects that constitute the diversification 

effect. We will show that the main aspect is the overall size of the exposure to the 

costly idiosyncratic risk. More detailed, we will show that the main drivers for a higher 

required level of diversification are low number and homogeneity of portfolio’s risk 

(investment style) exposures, preference for high risk investment styles, long 

investment time horizon, and perhaps most notably, high investment fraction meaning 

large fraction of the capital allocated to stocks. 

Importantly, growth rate is indifferent to time while accumulated wealth experiences 

the passage of time very vividly in the form of exponential growth, compounding. We 

aim at capturing the effect of time in our diversification effect metric. The effect of 

time becomes eminent as a tiny difference in excess growth rate compounds to 

increasingly meaningful difference in the accumulated gross excess wealth over time. 

We therefore determine the gross compound excess wealth at the end of the investment 

horizon as our third diversification effect and determine the gross compound excess 

wealth of a portfolio divided by the gross compound excess wealth of a fully 

diversified benchmark as a normalized diversification benefit, a measure of exhausted 

diversification benefit potential. This allows us to assign a minimum target level for 

the normalized diversification benefit at the end of the investment horizon, the 

minimum target for gross compound excess wealth ratio, and to calculate the average 

number of stocks required to achieve that target. When we say “at the end of the 

investment horizon” we mean at any given time in the future meaning that the 

minimum target for gross compound excess wealth ratio is maintained continuously. 

We denote this minimum target for gross compound excess wealth ratio as 𝑇𝑊𝑅 where 

𝑇 denote target, 𝑊 wealth and 𝑅 ratio. The highest possible value for 𝑇𝑊𝑅 is one 
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which implies full diversification meaning that investment portfolio is identical to 

benchmark portfolio. When a lower than full diversification is desired, then the 

expected excess growth rate, the geometric risk premium, for a randomly picked 

portfolio will necessarily be lower compared to benchmark and 𝑇𝑊𝑅 need to be set 

accordingly to a value lower than one. For example, 𝑇𝑊𝑅 = 0.9 would imply that 

investor is targeting in minimum 90% of the gross compound excess wealth of the 

benchmark portfolio at any given time in the future. We say in minimum 90% as 90% 

is the expected result when the investor chooses the stocks randomly. We can assume 

90% of the gross compound excess wealth of the benchmark portfolio applies for an 

investor with no stock picking skill3, which given the stock market efficiency makes a 

good base assumption. This implies that the investor needs a considerable amount of 

skill just to climb from the 90% level to the 100% level equaling the gross compound 

excess wealth of the fully diversified benchmark portfolio. This is the skill that needs 

to be consumed to compensate for the portfolio diversification premium difference to 

benchmark Δ𝐷𝑃𝐵𝑀, which was derived in equation (40). 

First, we derive the minimum target for gross compound excess wealth ratio 𝑇𝑊𝑅. 

The ratio is simply portfolio’s gross compound excess wealth after investment time 

horizon 𝑡 compound at the expected instantaneous excess growth rate divided by the 

corresponding measure for the fully diversified benchmark: 

 
𝑇𝑊𝑅 =

𝑒𝑡𝑔∞
𝑒,𝑃

𝑒𝑡𝑔∞
𝑒,𝐵𝑀 = 𝑒

𝑡(𝑔∞
𝑒,𝑃−𝑔∞

𝑒,𝐵𝑀) = 𝑒𝑡Δ𝐷𝑃
𝐵𝑀

. 

 

(132) 

Next, we take ln (∙) both sides and substitute equation (40), which assumes 𝑛𝑃 > 1, 

yielding ln 𝑇𝑊𝑅: 

 

                                                 
3 In reality an investor with no skill often is an investor with psychological biases which may imply less 

than 90% of the accumulated excess wealth of the benchmark portfolio. 
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 ln 𝑇𝑊𝑅𝑛>1 = 𝑡(𝑔∞
𝑒,𝑃 − 𝑔∞

𝑒,𝐵𝑀) = 𝑡Δ𝐷𝑃𝑛>1
𝐵𝑀  

                                = −
𝐼𝑣𝑎𝑟𝑛=𝑓=1

2
(
1

𝑛𝑃
−

1

𝑛𝐵𝑀
) 𝑓2𝑡, 

 

(133) 

which is the difference in expected excess capital growths between the investment 

portfolio and the benchmark. 

We can solve the 𝑛𝑃 giving the average number of stocks required to achieve the 

minimum target for gross compound excess wealth ratio 𝑇𝑊𝑅𝑛>1 as a function of 

idiosyncratic variance 𝐼𝑣𝑎𝑟𝑛=𝑓=1 estimated based on regression equation (47): 

 𝑛𝑃 =
𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝐼𝑣𝑎𝑟𝑛=𝑓=1𝑓
2𝑡 𝑛𝐵𝑀−2 ln𝑇𝑊𝑅𝑛>1⁄

𝑓2𝑡, 

 

(134) 

which in the limit, when 𝑛𝐵𝑀 → ∞, substituting equation (39) gives: 

 𝑛𝑃
𝑛𝐵𝑀→∞ =

𝐼𝑣𝑎𝑟𝑛=𝑓=1

−2 ln𝑇𝑊𝑅
𝑓2𝑡 =

1

− ln𝑇𝑊𝑅
𝐷𝑃𝑓=1

𝐵𝑀𝑓2𝑡. 

 

(135) 

When 𝑛𝐵𝑀 is large compared to resulting 𝑛𝑃, equation (135) can be used to 

approximate the average number of stocks required to achieve the minimum target for 

gross compound excess wealth ratio 𝑇𝑊𝑅.  

Equation (135) simply and intuitively determines the average number of stocks 

required as a function of targeted diversification benefit level 1 (− ln𝑇𝑊𝑅)⁄ , 

diversification premium of an unlevered benchmark portfolio 𝐷𝑃𝑓=1
𝐵𝑀 , square of an 

investment fraction 𝑓2 and finally time 𝑡. Remarkably, after deciding the desired 

diversification benefit level target, fraction of portfolio allocated to stocks and the 

investment time horizon the average number of stocks required in a portfolio is a 

function of diversification premium of the unlevered benchmark portfolio alone. 
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Alternatively, we can solve the 𝑛𝑃 giving the average number of stocks required to 

achieve the minimum target for gross compound excess wealth ratio 𝑇𝑊𝑅, by 

substituting equation (50) into equation (133), as a function of alpha 𝛼𝑛=𝑓=1 estimated 

based on regression equation (46): 

 𝑛𝑃 =
1

1 𝑛𝐵𝑀+ln𝑇𝑊𝑅𝑛>1 𝛼𝑛=𝑓=1𝑓
2𝑡⁄⁄

, 

 

(136) 

or by substituting equation (56) into equation (133) as a function of R-squared 𝑅𝑛=𝑓=1
2  

estimated based on regression equation (47): 

 𝑛𝑃 =
1

1 𝑛𝐵𝑀+2 ln𝑇𝑊𝑅𝑛>1 [(1−1 𝑅𝑛=𝑓=1
2⁄ )𝑉𝑎𝑟𝐵𝑀𝑓2𝑡]⁄⁄

. 

 

(137) 

In the limit, when 𝑛𝐵𝑀 → ∞, equations (136) and (137) simplify to: 

 𝑛𝑃
𝑛𝐵𝑀→∞ =

𝛼𝑛=𝑓=1

ln𝑇𝑊𝑅
𝑓2𝑡, (138) 

and: 

 
𝑛𝑃
𝑛𝐵𝑀→∞ =

(1−1 𝑅𝑛=𝑓=1
2⁄ )𝑉𝑎𝑟𝐵𝑀

2 ln𝑇𝑊𝑅
𝑓2𝑡, (139) 

respectively. 

When 𝑛𝐵𝑀 is large compared to resulting 𝑛𝑃,, equations (138) and (139) can be used 

to approximate the average number of stocks required to achieve the minimum target 

for gross compound excess wealth ratio 𝑇𝑊𝑅. 
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By restructuring equation (139) we can maximize our intuition about what affects the 

average number of stocks required to achieve the minimum target for gross compound 

excess wealth ratio 𝑇𝑊𝑅. The restructured equation has six terms: 

 𝑛𝑃
𝑛𝐵𝑀→∞ =

1

2

1

− ln𝑇𝑊𝑅
(

1

𝑅𝑛=𝑓=1
2 − 1)𝑉𝑎𝑟𝐵𝑀𝑓

2𝑡. (140) 

The first term 
1

2
 is a constant. The second term 

1

− ln𝑇𝑊𝑅
 is a multiplier entailing the 

impact from the diversification target. The term, when the target is in its reasonable 

range, say from 90% to 99% of the maximum diversification benefit, is roughly 

approximated by 1 (1 − 𝑇𝑊𝑅)⁄ . This yields approximate multipliers 10, 20 and 100 

for targets 0.9, 0.95 and 0.99 respectively. The third term (
1

𝑅𝑛=𝑓=1
2 − 1) is the size, in 

relation to systematic risk component 𝑉𝑎𝑟𝐵𝑀 size, of one–stock portfolio risks not 

explained by the benchmark, i.e., the relative size of idiosyncratic, costly risk. R-

squared determines how representative the benchmark is to individual stock risks, i.e., 

what proportion of the individual stock risks is explained by the benchmark.  Fourth 

component 𝑉𝑎𝑟𝐵𝑀 is the absolute size of the systematic risk. Fifth component 𝑓2is the 

square of the investment fraction. Finally, the sixth component is the length of the 

investment time horizon.  

The interpretation is that number of stocks required is higher when the diversification 

target level is higher or when the multiplication of third and fourth term yielding the 

absolute size of the idiosyncratic risk is high, i.e., when relative idiosyncratic variance 

size is high and/or the systematic variance is high. Investment fraction’s contribution 

to the required number of stocks is important to the second power and investment 

horizon length scales the requirement linearly with slope equaling one. 

A more practical interpretation may give investor some valuable viewpoint: The lower 

the level of diversification, the more skill is needed just to overcome the portfolio 

growth rate difference to benchmark to reach the level from where additional skill 

starts to benefit the selected strategy. The more exposure an investor have to 

compensated risk factors (e.g. by exposure to investing styles), the lower the 
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proportion of costly idiosyncratic risk and the greater the expected portfolio growth 

rate. The riskier the benchmark, i.e., the population of the selected stock picking 

universe, the more severe the impact from the idiosyncratic risk exposure is. In other 

words, stock picking from a low systematic risk universe (benchmark) requires less 

diversification compared to stock picking from high systematic risk universe. If an 

investor intends to leverage his portfolio, diversification becomes of extreme 

importance. The longer the time horizon, the more important diversification becomes.  

Low level of diversification combined with lack of compensated investing style(s), 

high systematic risk benchmark, leverage and long investment horizon is the recipe for 

financial underperformance and, especially with leverage, financial ruin. 

Finally, the most concise interpretation what affects the number of stocks required in 

a portfolio is provided by equation (135). We can see that it is all about total 

idiosyncratic variance which consist of average unlevered idiosyncratic variance of a 

single stock portfolio levered by the square of investment fraction and time. In other 

words, it all depends on the size of the exposure to the costly idiosyncratic risk. 

3.4.3.2 Risk averse wealth ratio 

Equations in section 3.4.3.1 are based on gross excess wealth accumulated by 

compounding instantaneous geometric risk premium over time. This, however, will 

not account for the risk and can be considered as risk neutral metric. To account for 

the risk and to derive risk averse version for the diversification effect expressed as 

gross excess wealth ratio, we derive equations utilizing realizable gross excess wealth.  

Target realizable gross compound excess wealth ratio 𝑇𝑊̃𝑅𝑛>1 for a portfolio with 

𝑛𝑃 > 1 (tilde accent denotes “realizable”) can be derived similarly as we derived target 

realizable risk premium ratio in equation (128). The difference is that we now replace 

risk premium ratio with gross compound excess wealth ratio and, by substituting 

equation (132), arrive to equation: 
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𝑇𝑊̃𝑅𝑛>1 = 𝑊̃𝐸𝑊,𝐺∞

𝑃 𝑊̃𝐸𝑊,𝐺∞
𝐵𝑀⁄ =

𝑅(𝑡)𝑃
2

𝑅(𝑡)𝐵𝑀
2 𝑇𝑊𝑅𝑛>1 

                   =
1 + 1 [𝑡(𝑆𝑅𝐺∞

𝐵𝑀)
2
]⁄

1 + 1 [𝑡(𝑆𝑅𝐺∞
𝑃 )

2
]⁄
𝑒𝑡Δ𝐷𝑃𝑛>1

𝐵𝑀
= 

1 + 1 (𝑡 [(𝑆𝑅∞
𝐵𝑀)2 − 𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞

𝐵𝑀 +
𝑓2

4 𝑉𝑎𝑟𝐵𝑀])⁄

1 + 1 (𝑡 [
𝑉𝑎𝑟𝐵𝑀
𝑉𝑎𝑟𝑃(𝑛𝑃)

(𝑆𝑅∞𝐵𝑀)2 − 𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞𝐵𝑀 +
𝑓2

4 𝑉𝑎𝑟𝑃
(𝑛𝑃)])⁄

 

 × 𝑒𝑡Δ𝐷𝑃𝑛>1
𝐵𝑀 (𝑓,𝑛𝑃), 

 

(141) 

which contains two terms which are functions of 𝑛𝑃: portfolio variance 𝑉𝑎𝑟𝑃(𝑛𝑃) and 

diversification premium difference to benchmark Δ𝐷𝑃𝑛>1
𝐵𝑀 (𝑓, 𝑛𝑃) determined by 

equations (33) and (40), respectively. 𝑛𝑃 can be solved by computer. 

Target realizable gross compound excess wealth ratio accounts for the risk (noise) 

associated with realizable risk premium which compounds to gross excess wealth over 

time. The greater the proportion of the realized risk premium explained by noise, the 

lower the weight given to risk premium. After the risk weighting, resulting risk 

adjusted risk premium is used as the excess growth rate when compounding the gross 

excess wealth over time. This process accounts for the spread of the gross excess 

wealth distribution. Diversification makes a great difference to the resulting wealth 

distribution and the spread in the distribution can be considered as caused by noise and 

representing risk. 

3.5 Hypotheses about the empirical diversification effects 

We will determine seven empirically testable hypothesis based on the derived theory. 

Hypothesis 1: Taking less risk, by investing a fraction of the portfolio in riskless rate, 

can increase the geometric risk premium for poorly diversified portfolios. This result, 

and the geometric risk premium in general, is explained by the fractional Kelly 

criterion. 
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Hypothesis 1 is based on section 3.3.4 including several equations which support this 

hypothesis. In particular equation (62) shows how full Kelly point is a decreasing 

function of portfolio’s variance. Variance will be high for poorly diversified portfolios 

which implies low full Kelly point. Figure 2 shows how geometric risk premium has 

a maximum at fully Kelly point and increasing stock allocation beyond the full Kelly 

point will decrease the risk premium. 

Hypothesis 2: Diversification is a negative price lunch implying that diversification 

premium exists. 

Hypothesis 2 is a direct consequence of equation (8) where we can see that any 

additional variance caused by less than perfect diversification will decrease the 

geometric risk premium. Equation (34) determines diversification premium which is a 

formal proof that diversification is a negative price lunch as described in section 3.3.3. 

Hypothesis 3: One half of the portfolio’s idiosyncratic variance closely approximates 

the magnitude of diversification premium difference to benchmark, the opportunity 

cost of foregone diversification. 

Hypothesis 4: Diversification premium difference to benchmark for a portfolio is a 

function of portfolio’s squared investment fraction. 

Hypotheses 3 and 4 are based on equation (42) as explained in section 3.3.3. 

Hypothesis 5: For a risk neutral long-term investor, the number of stocks required to 

make a diversified portfolio is approximately directly proportional to investment time 

horizon length. 

Hypothesis 6: For a risk neutral long-term investor, the number of stocks required to 

make a diversified portfolio is an increasing, approximately squared, function of 

investment fraction. 

Hypotheses 5 and 6 are based on equation (135) as explained in section 3.4.3. 
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Hypothesis 7: Number of stocks required to make a diversified portfolio is a function 

of investment style.  

Hypothesis 7 is based on equation (140) which shows that both exposure to risk factors 

and the variance of the benchmark portfolio affect the number of stocks required to 

make a diversified portfolio. 
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4 DATA AND RESEARCH METHODOLOGY 

4.1 Data description 

4.1.1 Three distinct periods and stock populations 

The stock data used in empirical analysis is retrieved from the merged Center for 

Research in Securities Prices (CRSP) and Compustat database. The data contains 

monthly U.S. stock market return data from January 1926 to June 2018. One-month 

Treasury bill data, our proxy for riskless rate, is retrieved from Kenneth French’s 

website. Combining the stock data with available riskless rate data yields monthly 

excess return data spanning from July 1926 to Jun 2018 totaling 92 years. We include 

all common stocks which comprises of CRSP share codes 10, 11 and 12. Delisting 

returns are taken into account when calculating stock specific monthly excess returns. 

Generally, our stock return data selection follows Bessembinder (2018), with the 

exception that our time span extends 18 months longer. 

In addition, we utilize annual accounting-based data for U.S. stock market from 

Compustat. The data from Compustat is merged with the CRSP/Treasury bill based 

monthly excess return data and selected risk factor data. The risk factor data is 

retrieved from Kenneth French’s website. Combined CRSP/Compustat/Treasury 

bill/risk factor data is utilized selectively for the time period spanning from August 

1962 to June 2018. 

Initially, as visualized by Figure 8, starting from July 1926, our stock excess return 

data contains the universe of NYSE securities. Starting from August 1962, the universe 

of NYSE Amex securities is included alongside NYSE securities. The stock universe 

of Nasdaq securities was included into CRSP database in 1973. Since January 1973, 

the CRSP monthly database includes the whole universe for common stocks 

comprising of all three major stock exchanges in the U.S.: NYSE, NYSE Amex and 

Nasdaq. Our primary interest therefore is the data spanning from January 1973 to June 

2018, totaling 45.5 years and containing the whole U.S. common stock universe. We 

call this time span as “the modern era of U.S. stock returns”.  
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Figure 8. Number of stocks per month over the period from Jul-1926 to Jun-2018. 

We can see from Figure 8 that there are three distinct time periods which have very 

different average number of stocks. The average number of stocks is 856, 2183, 5472 

and 3289 for period 1, period 2, period 3 and the whole time span, respectively. The 

monthly number of stocks varies substantially in the third period which includes the 

whole universe of common stocks. 

In Figure 9 we can see how the average firm size characteristics change when we 

change from period to another. We follow Fama and French (2008) and use NYSE 

breakpoints to distinguish between small and big stocks (the 50th percentile) and 

microcaps (the 20th percentile). In addition, we show megacaps as the 80th percentile. 

We assign the stocks to percentiles monthly.   
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Figure 9. Monthly firm size representation based on NYSE breakpoints over the period from Jul-

1926 to Jun-2018.   

In the first, the NYSE, period we can see that the NYSE breakpoints accurately 

describe the firm size characteristics. Measured as number of stocks, big stocks 

represent 50%, small stocks 30% and microcaps 20% of the stock universe. Megacaps 

are the top 20%. This is as expected as we only have the NYSE stocks in our stock 

population. In the second, the NYSE Amex, period we see a big change as smaller 

Amex firms are added into our population of stocks. Now microcaps populate close to 

half of all stocks and big stocks represent about 30% of all stocks. Yet another big 

move takes place as on average tiny Nasdaq stocks are added into database at the 

beginning of the third period in January 1973. The modern era of U.S. stock returns is 

dominated by microcaps which on average represent more than 60% of all stocks while 

big stocks are left with 20% and megacaps just slightly more than 5% of the stock 

population. In addition, we see that the representation of firm sizes fluctuates 

significantly in the third period.  

Looking at Figure 8 and Figure 9, it is clear that the time span from July 1926 to June 

2018 is not a period of one common stock population. We can see three distinct stock 
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populations which differ both by the number of stocks and by the firm size 

characteristics. 

It is worth noting that just based on seeing these two figures, Figure 8 and Figure 9, 

the number of stocks required to make a diversified portfolio can be expected to differ 

significantly depending which time period the data is from. This potentially is one 

reason why the early literature settles to lower number of stocks compared to more 

recent studies. 

4.1.2 Descriptive statistics 

Next, in Table 1, we show some descriptive statistics from the whole period from July 

1926 to June 2018 and the three identified sub periods. We show statistics for number 

of months and stocks (# designates “number of”), for equally weighted market 

portfolio and for average single stock portfolio. The idiosyncratic variance and 

idiosyncratic standard deviation, Ivar and Isdev, respectively, are calculated with 

normalized data based on regression equation (47). This means that single stock 

portfolio statistics are not for pooled data over the time period, but for average monthly 

values. This ensures each month has equal weight regardless the number of stocks that 

month. We can see from the data that the last period has the greatest average number 

of stocks per month. By using pooled data, the last period would greatly dominate the 

statistics from that pool. By eliminating the effect of number of stocks from the single 

stock portfolio data, we eliminate the dominance of highly populated months and 

simultaneously ensure the statistics is compatible with our random sampling 

(bootstrapping) method. We use bootstrapping to create random portfolios from 

monthly data and compare the characteristics of bootstrapped portfolios. 

Bootstrapping results reflect equal weight for each month regardless the number of 

stocks populating each month.  

We can see from the data that number of stocks is the greatest in the last period. This 

correlates with the idiosyncratic variance for single stock portfolios, which is in line 

with the dominance of microcap stocks populating the last period. Just by comparing 

the single stock standard deviation and idiosyncratic standard deviation (or 

idiosyncratic variance) figures between periods, it is possible to conclude the last 
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period, by a wide margin, must have the greatest potential for diversification benefit. 

It also means we have three different periods with different stock populations and 

analyzing them as one period extending from 1926 to 2018 is not the most informative 

choice. We therefore will mostly focus on the most recent period from January 1973 

to June 2018, which also contains most of the monthly return data, close to three 

million samples. 

Table 1. Descriptive statistics for empirical data. 

Metric 
Jul-1926 to   

Jun-2018 

Jul-1926 to   

Jul-1962 

Aug-1962 to 

Dec-1972 

Jan-1973 to 

Jun-2018 

#Months  1104 433 125 546 

Avg. #stocks per month 3289 856 2183 5472 

#Distinct stocks 26373 1645 3511 24952 

#Distinct returns 3630744 370453 272815 2987476 

EW MKT geom. RP 0.0885 0.1038 0.0824 0.0778 

EW MKT avg. return 0.1516 0.1628 0.1447 0.1442 

EW MKT avg. RF rate 0.0329 0.0131 0.0442 0.0460 

EW MKT geom. RP Sdev  0.2451 0.3003 0.1923 0.2041 

EW MKT SR   0.4841 0.4984 0.5225 0.4812 

Avg. 1-stock geom. RP Ivar  0.2125 0.1360 0.1158 0.2953 

Avg. 1-stock geom. RP Isdev 0.4610 0.3688 0.3403 0.5434 

Avg. 1-stock geom. RP Sdev 0.5221 0.4755 0.3909 0.5805 

Avg. 1-stock SR 0.2272 0.3147 0.2571 0.1692 
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4.2 Research methodology 

4.2.1 Log-normal simulator 

4.2.1.1 Motivation and description of the log-normal simulator 

Log-normal simulator is implemented to allow for large samples of data to be created 

using parameters extracted from empirical data. We have 92 years of empirical data of 

which last 45.5 years is our primary stock population. In many cases, single 45.5-year 

history is too little to confidently draw conclusions from statistics. This is where the 

log-normal simulator steps in. Using the simulator, we can create as many, as long and 

as broad alternative histories as we like, limited only by simulation time constraints. 

The log-normal simulator utilizes the fact that systematic and idiosyncratic variances 

are orthogonal by definition. We first create alternative histories (set of periods) for 

the benchmark by randomly drawing equally weighted monthly market (EW MKT) 

returns from a log-normal distribution. Empirical EW MKT mean return and standard 

deviation are used as parameters. We will use each randomly drawn logarithmic EW 

MKT return (logarithm of one plus return) as an arithmetic mean return for the 

individual stock returns for that particular period. For each period, monthly individual 

stock returns are then randomly drawn from log-normal distribution by utilizing the 

period specific mean return drawn in the first step and forming the standard deviation 

by summing the empirical systematic and idiosyncratic variances and taking a square 

root. By selecting the number of periods and number of stocks per period, we can draw 

as long (number of periods) and broad (number of stocks per period) alternative 

histories as we like.  

4.2.1.2 Simulation to select the regression output for empirical tests  

We can use three alternative inputs to equations determining diversification premium 

and diversification premium difference to benchmark. Inputs can be idiosyncratic 

variance, alpha or R-squared, which is used together with benchmark variance, 

obtained from a regression utilizing exhaustive single stock log return data. This is 

described in details in sections 3.3.1 and 3.3.2. 
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Based on our equations, the three alternative regression outputs are asymptotically 

identical. This means they are supposed to converge to same value given an infinite 

amount of data. In order to test the convergence properties of these three candidate 

metrics with finite data, we utilize a log-normal simulator to create data for different 

time period lengths. We need to have a large number of very long time series to be 

sure about the convergence which means empirical data with one realization of 

maximum length of 92 years or 1104 months will not be enough. 

 

Figure 10. Convergence of a diversification premium of a benchmark portfolio by utilizing 

alternative estimates.  

Figure 10 shows how the estimate of diversification premium of a benchmark portfolio 

converges when alternative estimates based on idiosyncratic variance, R-squared and 

benchmark variance or alpha are used. The simulation uses monthly individual stock 

return data for time period lengths of 1, 10, 50 and 500 years. The parameters of the 

data are acquired from the empirical modern era of U.S. stock returns. Each estimate 

is calculated 500 times per time horizon length. Each estimate is calculated based on 

simulation which randomly creates 5472 individual monthly log-normally distributed 

stock returns for each month belonging to the time period.  
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Firstly, we can see from Figure 10 that all three estimates indeed do seem to converge 

to common value. Secondly, there are clear differences in how quickly the estimates 

converge. Alpha based estimate, as in equation (51), is the slowest to converge while 

idiosyncratic variance-based estimate, as in equation (39), is the quickest. R-squared 

and benchmark variance-based estimate, as in equation (57), is in between. Based on 

this result we choose to use the idiosyncratic variance-based metric in our empirical 

tests as it should be the most accurate given the finite empirical data. 

As we will use idiosyncratic variance-based metric, it implies that the regression 

specification to be used in empirical tests is given by equation (47). 

4.2.1.3 Simulating forward-looking geometric premiums with uncertain risk 

We hypothesized in section 3.3.9 that, because of uncertainty about future risks, 

forward-looking geometric risk premium will be overestimated and diversification 

premium underestimated when estimates are based on historical averages. We now test 

and confirm this hypothesis with log-normal simulator.  

In case of geometric risk premium, we create the uncertainty about risk by not using 

the expected value of standard deviation in simulation, but instead introducing a 

standard deviation for the standard deviation. This is achieved by subtracting 0.05 from 

the standard deviation in half of simulation runs and adding 0.05 in other half of the 

runs. This creates a standard deviation of 0.05 for the standard deviation. This is 

repeated using values 0, 0.05, 0.1 and 0.2. Value 0 corresponds to case where we have 

no uncertainty about risk and the expected value for the standard deviation is used. 

Historical values from January 1973 to June 2018 are used for excess return and 

standard deviation in this simulation. We use the log-normal simulator to create 1000 

years of return history 100 000 times for both low and high standard deviation values 

and use 5472 monthly firm returns. Historical idiosyncratic variance is used as a 

parameter. We average the simulation results and end up with aggregated 200 000 000 

years of simulated return history where we calculate the geometric risk premium. 

Geometric risk premium converges extremely slowly to its expectation, but using such 

very long data set we achieve convergence. Results of the simulation are shown in 

Figure 11. Simulation is run for each investment fraction value with step size 0.01 
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yielding up to about 500 simulations per one curve. We can see that risk premium is 

lower when standard deviation of standard deviation is higher. Predicted and simulated 

risk premium curves are practically identical and predicted full Kelly point locates at 

maximum risk premium. This simulation shows that equations (116) and (117), 

predicting geometric risk premium and full Kelly point in the presence of uncertainty 

about risk, respectively, work. 

 

Figure 11. Risk premium and full Kelly fraction in the presence of uncertainty about risk. 

We run similar simulation for diversification premium. We repeat the simulation for 

three investment fraction values. This time, for the lowest non-zero standard deviation 

for standard deviation value, 0.05, we create the uncertainty by drawing the standard 

deviation from normal distribution with standard deviation 0.05. For the larger values, 

0.1 and 0.2, we use the same method as in risk premium simulation to avoid negative 

standard deviation values. We simulate 20 times 500 years with 5472 monthly firm 

returns resulting to 10 000 years of aggregated data. We have a lot of data, but 

diversification premium still converges much quicker compared to geometric risk 

premium. Simulation calculates diversification premium using regression equation 

(47). We can see from Figure 12 that predicted diversification premium match with 
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simulated value. Based on this, equation (119), predicting diversification premium in 

the presence of uncertainty about risk, works.   

 

Figure 12. Diversification premium as a function of uncertainty about idiosyncratic risk. 

4.2.2 Empirical data 

The empirical part of the research is based on randomly forming stock portfolios of 

different sizes from selected benchmark stock populations and utilizing equations 

derived in section 3 to measure diversification effects. Portfolios are formed monthly. 

All portfolios, including benchmarks, are formed by weighting the stocks equally and 

by rebalancing the weights on a monthly basis. 

The method used to form random portfolios from empirical data is bootstrapping 

without replacement. Bootstrapping without replacement means random picking 

without replacing the picked stock return in the data. This implies each stock can be 

picked only once per month per portfolio. Investment fraction is simply a multiplier 

for the monthly excess returns. This implies we assume the cost of borrowing to be 

equal to interest rate of monthly T-bills. This is not a realistic assumption for an 
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average investor implying the geometric risk premiums for leveraged portfolios are 

theoretical upper bounds. 

Research methodology is based on the properties of the geometric risk premium. We 

utilize the geometric risk premium as given in equation (8), implied results from 

section 3.3 and diversification effect metrics defined and derived in section 3.4. All 

these are explicitly described by equations.  

We use monthly empirical data for individual stock returns and riskless rate. If we 

denote monthly return for 𝑖-th stock in the month 𝑡 as 𝑚_𝑟𝑒𝑡𝑡,𝑖 and monthly riskless 

rate in the month 𝑡 as 𝑚_𝑟𝑓𝑡, we calculate monthly excess return for 𝑖-th stock in month 

𝑡 as 

 𝑚_𝑒𝑟𝑒𝑡𝑡,𝑖 = exp [ln(1 + 𝑚_𝑟𝑒𝑡𝑡,𝑖) − ln(1 + 𝑚_𝑟𝑓𝑡)] − 1. 

Monthly excess return for 𝑖-th stock, 𝑚_𝑒𝑟𝑒𝑡𝑡,𝑖, is used for empirical calculations. For 

example, bootstrapping process randomly pick monthly excess returns to form 

portfolios of selected size. Scaling by investment fraction 𝑓 is implemented in the 

empirical data by multiplying each 𝑚_𝑒𝑟𝑒𝑡𝑡,𝑖 by 𝑓. 

The empirical parameters used in equation (8) (and in many other equations we have 

derived) are the mean instantaneous (arithmetic) excess return per year, 𝑚𝑒, and the 

standard deviation for the continuously compounded excess growth per year, 𝑠𝑒.  

Mean portfolio instantaneous (arithmetic) return per year, 𝑚, is calculated from 

monthly returns by first calculating monthly means over all portfolio’s stock returns 

per month (𝑚𝑒𝑎𝑛𝑖) and then the mean over monthly means (𝑚𝑒𝑎𝑛𝑡) as follows: 

 𝑚 = 12 ∗ 𝑙𝑛 (1 + 𝑚𝑒𝑎𝑛𝑡[𝑚𝑒𝑎𝑛𝑖(𝑚𝑟𝑒𝑡𝑡,𝑖
)]). 
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Mean instantaneous riskless rate per year, 𝑟, is calculated from monthly riskless rates 

as a mean over all months as follows: 

 𝑟 = 12 ∗ 𝑙𝑛[1 + 𝑚𝑒𝑎𝑛𝑡(𝑚_𝑟𝑓𝑡)]. 

Mean instantaneous (arithmetic) excess return per year, 𝑚𝑒, is calculated by 

subtracting mean instantaneous riskless rate from mean instantaneous return: 

 𝑚𝑒 = 𝑚 − 𝑟. 

The portfolio standard deviation for the continuously compounded excess growth per 

year, 𝑠𝑒, is calculated from portfolio’s monthly excess returns by first calculating mean 

over all stocks per month and then calculating the standard deviation for the 

logarithmic monthly means: 

 𝑠𝑒 = √12 ∗ 𝑆𝑑𝑒𝑣[𝑙𝑛(1 + 𝑚𝑒𝑎𝑛𝑖[𝑚_𝑒𝑟𝑒𝑡𝑡,𝑖])]. 

By first calculating the mean over all stocks per month, when calculating 𝑚 and 𝑠𝑒, 

ensures that each month is equally weighted regardless the number of stocks in the 

data per month. When bootstrapping is used to form the portfolios, then equal number 

of stocks per month is guaranteed, but for example for benchmark portfolios the 

number of stocks vary per month.  

Any relevant additional information, specific to each empirical test, will be given in 

the related section where test and the results are described. 
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5 EMPIRICAL DIVERSIFICATION EFFECTS 

5.1 Fractional Kelly criterion explaining geometric risk premium 

5.1.1 Predicted vs. realized geometric risk premiums 

We know from equation (114) that approximate instantaneous geometric risk premium 

of a portfolio is equal to instantaneous geometric risk premium of the benchmark 

portfolio plus portfolio’s diversification premium difference to benchmark. By further 

substituting equations (8) and (38) we can write the approximate instantaneous 

geometric risk premium equation as: 

 
𝑅𝑃𝐸𝑊,𝐺∞

𝑃,𝑛𝐵𝑀→∞ = 𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 −

𝐷𝑃𝐵𝑀

𝑛𝑃
 

                                       = 𝑓√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞
𝐵𝑀 −

𝑓2

2
(𝑉𝑎𝑟𝐵𝑀 +

𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝑃
). 

 

(142) 

The above equation is the same form as fractional Kelly equation (73). The variance 

of the portfolio is the sum of systematic and idiosyncratic variances. Based on this, we 

can use the fractional Kelly criterion in the form of equation (142) to predict the 

instantaneous geometric risk premium of a 𝑛𝑃–stock portfolio. Remarkably, we only 

need three empirical parameters to predict the instantaneous geometric risk premium 

at any given investment fraction for any given portfolio size (if we used the exact 

equation (111), we would additionally need average monthly number of stocks in the 

benchmark portfolio). The needed three parameters are the instantaneous Sharpe ratio 

of a benchmark portfolio (instantaneous excess return would be equally good), the 

variance of a benchmark portfolio and the average idiosyncratic variance of a single 

stock portfolio. The last parameter is acquired as an output from the regression 

described by equation (47) and the two former parameters are calculated from the 

benchmark portfolio’s time series data. In case of benchmark portfolios, we set the 

idiosyncratic variance of the portfolio to zero instead of setting 𝑛𝑃 to average number 

of stocks in the benchmark portfolio. This has very small impact on prediction 
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accuracy as the number of stocks in our benchmarks is so large, ranging from 1001 to 

5472.  

We will next use fractional Kelly based equation (142) to predict the instantaneous 

geometric risk premium as a function of investment fraction for different portfolio 

sizes in the time period from January 1973 to June 2018, in the modern era of U.S. 

stock returns. According to Goetzmann and Kumar (2008) and Polkovnichenko 

(2005), typical individual investor is poorly diversified. We will therefore use 

relatively small portfolio sizes in our tests. Small portfolio sizes also allow us to best 

observe the effect of diversification. 

Bootstrapping without replacement is used to form portfolios from empirical data. We 

continue leveraging the bootstrapped portfolios as long as we encounter the first 

occasion where the loss exceeds 100% for a portfolio. This should theoretically never 

happen based on the Kelly criterion. However, theoretically we are rebalancing 

continuously at infinite frequency and there are no jumps in returns. In reality in our 

test we are rebalancing once per month and the empirical excess returns have fat tails 

meaning they entail sudden and large moves. In the figures we can observe where we 

first encountered a loss greater than 100% as lines for each portfolio size end at that 

point. This is one additional way to see the effect of diversification. The more 

diversification, the more leverage the portfolio tolerates before we first observe that 

some investor suddenly loses more than he has. As an example, single stock portfolio 

does not tolerate leverage at all. This is because some stocks have a monthly excess 

return of around -99% and when leveraged they immediately exceed the 100% loss 

threshold. Single stock portfolio curves therefore typically end exactly at investment 

fraction one. 

In the figures, we denote the predicted geometric risk premiums with dashed lines and 

the geometric risk premiums for bootstrapped, randomly from empirical data formed 

portfolio’s, with solid lines. Portfolio sizes are color coded. Note that one stock 

portfolios are exhaustive meaning that there is no bootstrapping but all available data 

is used to calculate the geometric risk premiums. The tick-marks on the x-axis in the 

figures are set to investment fraction values 0.6, 1.0, 1.5, etc. The reason why we 

always have these values is that 0.6 corresponds to classic 60/40 allocation, 1.0 is the 
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100% stock allocation and 1.5 corresponds to 50% leveraged portfolio which we will 

consider as an example of leveraged portfolio in our later analysis.  

For bootstrapping we form 50 000 portfolios each month. For the benchmark portfolio 

(BM), we show the average number of stocks per month calculated over the whole 

time period. As there is only one benchmark portfolio, we don’t use bootstrapping but 

use directly the risk premium calculated for the benchmark. 

In Figure 13 we have the instantaneous geometric risk premiums calculated from the 

population of all stocks. We first observe the parabolic shape of the curves as expected 

based on the fractional Kelly criterion as depicted in Figure 2 and Figure 11. 

 

Figure 13. Geometric risk premium for all stocks between Jan-1973 and Jun-2018. 

Predictions in Figure 13 are extremely accurate for the smallest portfolio sizes, 

especially for one stock portfolio size. Overall the predicted values match well with 

the bootstrapped values, but we can observe two deviations. First is that after 

investment fraction value of about 1.5, the bootstrapped values start to increasingly 

deviate from the predicted values. This is best visible for the benchmark portfolio. 

Second deviation from prediction is that for the intermediate portfolio sizes, from 2 or 
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5 to 25, we can see that there is some difference between predicted and realized risk 

premiums already at lower investment fractions.  

Our hypothesis is that the first deviation from the prediction is related to rebalancing 

frequency. The Kelly criterion, and therefore the predicted value, assumes infinite 

rebalancing frequency and we rebalance monthly. We suspect that the increasing 

leverage as the investment fraction is increased, especially given the fat tails of the 

excess returns, contributes to the difference between the predicted and the realized risk 

premium. For the second deviation, we hypothesize it is caused by the fat tails of the 

monthly excess return distribution. The fat tail hypothesis will be studied in section 

5.2.2. 

Loud and clear, the Figure 13 says asset allocation, expressed by investment fraction 

in our two asset tests, and diversification make all the difference. Comparing the (red) 

single stock portfolio curve to the (black) benchmark portfolio curve tells it all. In a 

continuous-time world, as opposed to single period world, asset class risk premium of 

stocks is not generalizable to less than perfectly diversified stock portfolio’s risk 

premium.  

For the smallest portfolio sizes, one, two and five stocks, the geometric risk premium 

is lower at investment fraction one than at some lower investment fraction value.  

Against the core principle of the single period world, and finance in general, that risk 

and reward go hand in hand, poorly diversified continuous-time world investor on 

average earns a higher reward by investing part of his portfolio into riskless rate instead 

of stocks. In other words, higher reward is expected by taking less risk. 

We can see from the two-stock portfolio size curve that it goes to zero at investment 

factor slightly greater than one. This means that positive geometric risk premium is 

achieved at portfolio size slightly smaller than two stocks. Using equation (126) we 

find that 1.91 stocks leads on average to zero geometric risk premium which agrees 

with our visual estimation from Figure 13.  

One clear message is that too much leverage is too much. Every portfolio size has its 

limit, the Shannon limit, for maximum reward. Even the maximally diversified 
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benchmark portfolio which has a predicted theoretical limit at 11.58% at investment 

fraction 2.36 (at full Kelly) and realized limit at 11.22% at investment fraction 2.16. 

However, we can see how the compounding process capacity, the Shannon limit, is 

very much a function of diversification. For comparison to fully diversified 

benchmark, single stock portfolio’s maximum predicted theoretical risk premium is 

1.43% at investment fraction 0.29 while realized maximum is 1.36% at the same 

investment fraction 0.29. Exceeding the full Kelly allocation increases the risk while 

decreases the reward. Especially we note that the realized reward is even lower than 

the predicted reward when full Kelly allocation is exceeded. The real-world reward to 

risk ratio for monthly rebalanced portfolios therefore is even worse than predicted 

reward to risk ratio for corresponding portfolios rebalanced at theoretical infinite 

frequency. 

At investment fraction one the risk premium for the fully diversified benchmark 

portfolio is 7.74%. Corresponding realized value is 7.78%. This sounds as a rather 

large risk premium, but we need to bear in mind that this is the risk premium of an 

equally weighted portfolio dominated by microcap stocks. Value weighted portfolios 

would probably have a lower risk premium for the same time period. Also, we need to 

keep in mind that such equally weighted microcap loaded portfolio may not be entirely 

realistic benchmark as such fund or ETF would probably run into trouble with the low 

liquidity of the microcaps. Nevertheless, such equally weighted benchmark portfolio 

provides us a fair comparison in a sense that we tend to treat stock portfolios as equally 

weighted when we consider diversification benefits.  

As we use equally weighted portfolios, the modern era of U.S. stock returns is 

dominated by microcap stocks as is visible in Figure 9. To have a better understanding 

of the risk premium, we present corresponding figures for three size groups: microcap 

stocks, small stocks and big stocks. 

Average monthly number of big stocks plus small stocks plus microcap stocks is less 

than total average monthly number of stocks because there is one-month lag when 

assigning stocks to size groups. This means that not only the first month (Jan-1973) of 

the whole timespan is removed but also the first month of each individual stock added 

to data set during the time span. 
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In Figure 14 we have the geometric risk premium for microcap stocks. Predicted risk 

premiums are well in line with their bootstrapped counterparts, with similar caveats as 

in Figure 13. We can see that the risk premium of the two-stock portfolio is slightly 

negative. This implies that the number of stocks required to achieve a positive risk 

premium should be slightly higher than two. For portfolio sizes one, two and five 

stocks, the geometric risk premium is lower at investment fraction one than at some 

lower investment fraction value. 

 

Figure 14. Geometric risk premium for microcap stocks between Feb-1973 and Jun-2018. 

Figure 15 shows the risk premium for small stocks. Based on the figure, we expect that 

on average more than one stock is required to achieve a positive risk premium at 

investment fraction one. For portfolio sizes one and two stocks, the geometric risk 

premium is lower at investment fraction one than at some lower investment fraction 

value. 
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Figure 15. Geometric risk premium for small stocks between Feb-1973 and Jun-2018. 

 

Figure 16. Geometric risk premium for big stocks between Feb-1973 and Jun-2018. 

In Figure 16 we see the risk premiums for big stocks. The risk premium of the single 

stock portfolio is positive at investment fraction one. This means that the average 
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number of stocks required to achieve a positive risk premium is less than one. For 

portfolio sizes one and two stocks, the geometric risk premium is lower at investment 

fraction one than at some lower investment fraction value. 

Table 2 summarizes the parameters used in predicting the risk premiums in Figure 13 

to Figure 16. Some key risk premium metrics from these figures are given in Table 3, 

where we have used the fractional Kelly criterion to predict the values and compare 

the predicted values to actually realized values for benchmark and single stock 

portfolio. Additionally, we show the minimum number of stocks required on average 

to achieve a positive risk premium calculated using equation (127). 

Table 2. Parameters used as inputs to risk premium predictions. 

 All stocks Microcaps Small stocks Big stocks 

𝑆𝑅∞
𝐵𝑀  0.4812 0.4932 0.4360 0.4491 

𝑉𝑎𝑟𝐵𝑀  0.0416 0.0491 0.0442 0.0304 

𝐼𝑣𝑎𝑟𝑛=𝑓=1  0.2953 0.3838 0.1813 0.1067 

We can see from Table 3 that overall the predictions are accurate. The predicted 

geometric risk premiums are particularly precise at investment fraction 1, at 100% 

stock allocation. There is some deviation in the predictions at the maximum risk 

premium and the associated full Kelly fraction. Our hypothesis is that this deviation is 

at least partly explained by our less than optimal rebalancing frequency combined with 

the sudden large changes by the fat tailed stock excess returns. The minimum number 

of stocks required on average to achieve a positive risk premium seems accurate when 

comparing to figures. 
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Table 3. Summary of predicted vs. realized risk premium metrics from Jan-1973 to Jun-2018. 

 All stocks Microcaps Small stocks Big stocks 

Predicted 𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀

 7.74% 8.48% 6.96% 6.31% 

Realized 𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀

 7.78% 8.52% 7.01% 6.35% 

Predicted 𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 (𝑓∗) 11.58% 12.16% 9.50% 10.08% 

Realized 𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 (𝑓∗) 11.22% 11.93% 9.23% 9.71% 

Predicted 𝐵𝑀 𝑓∗ 2.36 2.22 2.07 2.58 

Realized 𝐵𝑀 𝑓∗ 2.16 2.09 1.92 2.34 

Predicted 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1 (𝑓∗) 1.43% 1.38% 1.85% 2.23% 

Realized 𝑅𝑃𝐸𝑊,𝐺∞
𝑛=1 (𝑓∗) 1.36% 1.27% 1.96% 2.34% 

Predicted 1-stock 𝑓∗ 0.29 0.25 0.41 0.57 

Realized 1-stock 𝑓∗ 0.29 0.24 0.43 0.59 

Min #Stocks for 𝑅𝑃𝐸𝑊,𝐺∞
𝑃 > 0 1.91 2.26 1.30 0.85 

Table 3 shows that at 100% stock allocation level bearing systematic risk is 

compensated. Microcap stocks has the highest and big stocks the lowest risk premium 

𝑅𝑃𝐸𝑊,𝐺∞
𝐵𝑀 . This is as we would expect as the microcap stocks are the riskiest and big 

stocks the least risky as shown by benchmark variances in Table 2. However, at full 

Kelly allocation 𝑓∗ we find that the maximum risk premium, the Shannon limit, is not 

the lowest for big but for small stocks. This is explained by the relatively low volatility 

of the big stocks that allows for more leverage to achieve a higher full Kelly fraction. 

Notice that to predict the maximum risk premium, we only need to input the 

instantaneous Sharpe ratio into equation (66).  Single stock portfolio’s full Kelly 

fraction and maximum risk premium show how microcap single stock portfolio does 

not tolerate more than 24% stock allocation at maximum which is expected to deliver 

a dismal 1.27% risk premium. The greater the market cap, the greater the investment 

fraction that portfolio tolerates and the more the portfolio is expected to deliver at 

maximum allocation. Similar story is told by the minimum number of stocks required 

on average for positive risk premium. One stock portfolio delivers a positive risk 
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premium for big stocks while small stocks require two and microcaps three stocks. For 

all stocks category the numbers are close to microcap numbers as most of the stocks 

are microcaps. A minimum of two stocks is needed to secure a positive risk premium 

for all stocks category. 

In Figure 17 we show only the smallest portfolio sizes ranging from one to five stocks. 

This time also single stock portfolio size is bootstrapped instead of using exhaustive 

data. 

 

Figure 17. Geometric risk premium for poorly diversified portfolios between Jan-1973 and Jun-

2018. 

We can observe that at this poor diversification, each of the portfolio sizes will have 

lower geometric risk premium at investment fraction one (at 100% stock allocation) 

compared to some lower stock allocation. In other words, taking less risk, by investing 

a fraction of the portfolio in riskless rate, will yield a greater geometric risk premium. 

The interpretation of figures from Figure 13 to Figure 17 and the Table 3 seem to 

support our hypothesis 1: 
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Hypothesis 1: Taking less risk, by investing a fraction of the portfolio in riskless rate, 

can increase the geometric risk premium for poorly diversified portfolios. This result, 

and the geometric risk premium in general, is explained by the fractional Kelly 

criterion. 

5.1.2 Predicting required number of stocks for positive risk premium 

Next, we show that our prediction for required number of stocks for positive risk 

premium works. To test the accuracy of approximate equation (127), we first solve 𝑓: 

 𝑓 =
2√𝑉𝑎𝑟𝐵𝑀𝑆𝑅∞

𝐵𝑀

𝑉𝑎𝑟𝐵𝑀+𝐼𝑣𝑎𝑟𝑛=𝑓=1 𝑛𝑃⁄
. 

 

(143) 

Equation (143) should now give the investment fraction where geometric risk premium 

goes to zero.  

Accuracy of the equation is tested by the data used in Figure 17. We use the data for 

bootstrapped risk premium which is measured for each investment fraction value using 

step size 0.01 until risk premium becomes negative. For 4 and 5 stock portfolios, the 

bootstrapped data does not extend to negative risk premium. Portfolio sizes 1, 2, and 

3 stocks can be used to evaluate the accuracy of predicted investment fraction 𝑓 when 

risk premium is zero. Predicted value is given by equation (143) and is compared 

against the bootstrapped investment fraction when risk premium first gets negative. 

Result of the test is given in Table 4. We can see that the prediction is very accurate at 

portfolio size of one stock and remains relatively accurate for portfolio sizes two and 

three stocks. Similarly, as we saw with risk premium predictions, there is some 

deviation between predicted and bootstrapped value as investment fraction increases. 

Based on this test, we conclude that equation (127) accurately predicts the required 

number of stocks to achieve a positive risk premium. 
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Table 4. Predicted versus bootstrapped investment fraction for zero risk premium. 

 Number of stocks 

 1            2 3       

Predicted f 0.58 1.04 1.40 

Bootstrapped f 0.58 1.02 1.38 

 

5.2 Diversification is a negative price lunch 

5.2.1 Diversification premium difference to benchmark in different time periods 

In 5.1 we saw how the parabolic curves for instantaneous geometric risk premiums for 

portfolios of different sizes all were below the parabola of the benchmark portfolio. 

We now turn our focus in the diversification premium difference to benchmark which 

is the portfolio risk premium minus the benchmark portfolio risk premium.  

We will show predicted and bootstrapped diversification premium differences for 

various portfolio sizes in different time periods. The predicted metric, for portfolios 

greater than one stock, is based on equation (40) and, after deciding the investment 

fraction and portfolio size of interest, only needs two inputs, the idiosyncratic variance 

of a single stock portfolio and number of stocks in the benchmark portfolio. For single 

stock portfolios, we use equation (41) which only requires the idiosyncratic variance 

of a single stock portfolio in addition to investment fraction as an input. Idiosyncratic 

variance of a single stock portfolio is acquired as an output from regression specified 

by equation (47).  

We will show the results for the whole time period extending from July 1926 to June 

2018 and for the three subperiods shown in Figure 8. In addition, to demonstrate the 

effect of fat tails, we will show the results for two additional sets of data from the third 

time period, January 1973 to June 2018, where we cut the tails of the distribution.  
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For each of the diversification premium difference to benchmark figures, we will show 

the portfolio sizes up to 500 or 1000 stocks, depending on the minimum monthly 

number of stocks for the period. 1000 will be used as the maximum whenever the 

monthly minimum exceeds that amount. Similarly, as with the figures in the section 

5.1, we will plot the lines until the investment fraction is high enough for the first 

bootstrapped portfolio to exceed 100% loss.  

Figure 18 shows the diversification premium difference to benchmark for the whole 

92-year time period. Bootstrapping without replacement is implemented by creating 

25 000 random portfolios per portfolio size each month. Given that the time period 

consists of three distinct stock populations as shown by Figure 8 and Figure 9, the 

predicted value is surprisingly close to bootstrapped realized values.  

 

Figure 18. Diversification premium difference to benchmark between Jul-1926 and Jun-2018. 

The single stock portfolio prediction, for which the realized value is based on 

exhaustive data rather than bootstrapped, is particularly accurate. Also, the larger 

portfolio sizes seem very accurate although small differences are difficult to spot from 

figure.  
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In Figure 19 we show the diversification premium difference to benchmark for the 

NYSE stock era. 75 000 random portfolios are created per portfolio size each month.  

 

Figure 19. Diversification premium difference to benchmark between Jul-1926 and Jul-1962. 

The era contains a tail event, the Great Depression, and on average large firm sizes 

compared to forthcoming time periods. Despite the massive tail event, the predicted 

values still appear to explain the realized diversification premium difference to 

benchmark rather accurately. On the other hand, when the tail event occurs on the 

market level, stocks on average “ride on top of the market wave” and therefore may 

not be that susceptible to the tail event. Because of this “market neutral” nature of the 

diversification premium, it can be hypothesized to be resilient against market volatility 

implying diversification may actually be highly beneficial regardless the market 

moves. This would be against the conventional wisdom that diversification is 

beneficial until it is most needed during a severe bear market. The reference for the 

value of diversification should be relative not absolute. Using relative reference, as in 

our case, is about comparing the outcomes between perfect and less than perfect 

diversification. Using absolute reference, as in the case of the conventional wisdom, is 

about assessing the outcome of perfect diversification when the market falls. If 
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diversification indeed could prevent bear markets, would there be such thing as equity 

risk or equity risk premium? 

In Figure 20 we can see the diversification premium difference to benchmark for the 

NYSE Amex stock era. 100 000 random portfolios are created per portfolio size each 

month during this relatively short period of time. 

 

Figure 20. Diversification premium difference to benchmark between Aug-1962 and Dec-1972. 

Our main interest is the modern era of U.S. stock returns, the 45.5-year period 

extending from the beginning of the 1973 until June 2018. This period is characterized 

and dominated by microcap stocks which on average are very volatile and exhibit very 

large idiosyncratic variance. Another characteristic of the microcaps is fat tailed and 

positively skewed monthly excess returns. Returns between portfolios loaded with 

volatile, skewed and fat tailed microcap stocks can differ wildly, which should put our 

diversification metrics to real test. Fortunately, there are plenty of stocks and monthly 

excess returns, 2 987 476 in total. The large number of data points ensures relatively 

accurate predictions. However, regardless the huge data, we still see from Figure 21 

that the realized metrics for the intermediate portfolio sizes don’t exactly align with 

the predictions. 
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Figure 21. Diversification premium difference to benchmark between Jan-1973 and Jun-2018. 

Table 5 summarizes the diversification premium difference to benchmark metrics at 

investment fraction one for different time periods. Predicted and realized values are 

shown for different portfolio sizes. Predicted and realized values are typically almost 

identical for portfolio size one. Predictions are fairly accurate also for larger portfolio 

sizes, but we notice a trend that the absolute value of the realized diversification 

premium difference to benchmark is typically slightly greater than the absolute value 

of the predicted metric. We suspect this is mainly due to fat tailed monthly excess 

returns and will further investigate this hypothesis in section 5.2.2. 
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Table 5. Summary of predicted vs. realized diversification premium differences to benchmarks. 

Diversification premium 

difference to benchmark [pp] 

Jul-1926 to   

Jun-2018 

Jul-1926 to   

Jul-1962 

Aug-1962 to 

Dec-1972 

Jan-1973 to 

Jun-2018 

Predicted Δ𝐷𝑃𝑛=1
𝐵𝑀   -10.626 -6.799 -5.790 -14.765 

Realized Δ𝐷𝑃𝑛=1
𝐵𝑀   -10.682 -6.890 -5.904 -14.783 

Predicted Δ𝐷𝑃𝑛=10
𝐵𝑀   -1.059 -0.672 -0.576 -1.474 

Realized Δ𝐷𝑃𝑛=10
𝐵𝑀   -1.166 -0.741 -0.634 -1.642 

Predicted Δ𝐷𝑃𝑛=25
𝐵𝑀   -0.422 -0.264 -0.229 -0.588 

Realized Δ𝐷𝑃𝑛=25
𝐵𝑀   -0.467 -0.288 -0.246 -0.682 

Predicted Δ𝐷𝑃𝑛=100
𝐵𝑀   -0.103 -0.060 -0.055 -0.145 

Realized Δ𝐷𝑃𝑛=100
𝐵𝑀   -0.113 -0.070 -0.055 -0.171 

By observing the diversification premium difference to benchmark metrics in the latest 

time period, from January 1973 to June 2018, we can see the head start that the investor 

has given to fully diversified benchmark investor by being content with low 

diversification. Ten-stock and twenty-five-stock portfolios are often considered as 

sufficiently diversified. Based on Table 5, however, in the absence of stock picking 

skill, a ten-stock portfolio on average has lost more than 1.6 percentage points in risk 

premium compared to fully diversified benchmark portfolio. A twenty-five-stock 

portfolio has lost close to 0.7 percentage points. A difference of 1.6 percentage points 

is comparable to the cost of an expensive active mutual fund. 

In addition to our empirical results, we can apply the concept of diversification 

premium difference to benchmark to empirical results in Tidmore et al. (2019) study. 

Tidmore et al., as described in section 2.2, measure the difference in expected 

(geometric) excess return between a portfolio of selected size and the fully diversified 

benchmark portfolio and call this difference as average expected excess return. This is 

the same metric as our diversification premium difference to benchmark. Tidmore et 

al. find that for a single stock portfolio the expected excess return is -9.9 percentage 

points. It is not clear whether this is continuously or annually compounded rate, but it 

does not make a practical difference. Alpha in our regression equation (46) estimates 
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single stock portfolio’s geometric mean return difference to geometric mean return of 

a fully diversified benchmark portfolio. The -9.9 percentage points for a single stock 

portfolio in the Tidmore et al. study is the empirically measured return difference to 

benchmark and can be considered as approximately equal to alpha in equation (46). 

We therefore can consider the -9.9 percentage points to represent the alpha in our 

approximate alpha-based equation (54) for diversification premium difference to 

benchmark. Table 6 shows the relationship between our predicted (based on the -9.9 

percentage points acquired for single stock portfolio) diversification premium 

difference to benchmark and empirical results from Tidmore et al. study. Equation (54) 

accurately explains the empirical Tidmore et al. expected excess return for different 

portfolio sizes.  

Table 6. Tidmore et al. results explained by approximate diversification premium difference to 

benchmark equation. 

 Diversification premium difference to benchmark [pp] 

Portfolio size Prediction based on eq. (54) Tidmore et al. result 

5 -2.0 -2.0 

10 -1.0 -1.0 

15 -0.7 -0.7 

30 -0.3 -0.4 

50 -0.2 -0.2 

100 -0.1 -0.1 

200 0.0 -0.1 

500 0.0 0.0  

 

5.2.2 The effect of fat tails 

In sections 5.1 we hypothesized that the difference between the predicted and realized 

values would be due to low rebalancing frequency and the fat tails of the excess return 

data. In case of diversification premium difference to benchmark the rebalancing 



 167 

frequency possibly partially cancels out as we subtract the benchmark portfolio risk 

premium from the investment portfolio risk premium as both portfolios suffer from 

less than optimal rebalancing frequency. However, we suspect that the effect of the fat 

tailed excess returns does play a role in the difference between the predicted and 

realized values.  

Our observation that the predicted diversification premium difference to benchmark 

systematically underestimates the empirically realized value is consistent with Taleb 

(2020, pp. 152–153). Taleb notes that the risk of a fat-tailed return distribution is 

underestimated (implying the required level of diversification is underestimated) by 

frameworks assuming thin-tailed return distributions. Our framework does not assume 

thin-tailed return distribution, but it does assume theoretical infinite rebalancing 

frequency. We hypothesize that the fat-tailed return distribution emphasizes the impact 

from less than optimal rebalancing frequency as the tails of the return distribution have 

one month, instead of an infinitely short period, to deviate from the equal weighting 

of the portfolio.  

To test the hypothesis that the difference is caused by the fat tails, we cut the tails of 

the distribution. We have two tests. The first is to cut the permille tails of the 

distribution. This means removing the 0.1st percentile (the worst) and the 99.9th 

percentile (the best) monthly excess returns from the data. We do this for each month. 

The second test is similar except now we cut the percent tails meaning the 1st percentile 

and the 99th percentile. We use the data from January 1973 to June 2018 with an 

average of 5472 monthly stock excess returns. In the first test we remove on average 

6 worst and 6 best monthly excess returns from each month’s data. This is closer the 

1.1 permille, but close enough. In the second test, we remove on average 55 worst and 

55 best monthly excess returns from each month’s data. Both tests utilize 50 000 

randomly created portfolios each month. 

Figure 22 shows the result from cutting the permille tails. Comparing to Figure 21, we 

can see that the match is clearly better now after cutting the extreme tails. Another 

striking observation from the data is that the realized geometric risk premium for the 

benchmark portfolio now, after cutting the permille tails, is 6.24% while it was 7.74% 

before the tails were cut. Removing just one permille of the worst and best excess 
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returns each month lowers the geometric risk premium by 1.5 percentage points. This 

illustrates the enormous effect the positive tail has to the mean. It also shows how 

diversification is about including those rare outsized winners rather than excluding the 

extreme losers.   

 

Figure 22. Diversification premium difference to benchmark between Jan-1973 and Jun-2018 for 

data with permille tails cut. 

Comparing Figure 23 to Figure 22 we see that cutting the percent tails leads to even 

better match. Judging by the eye, the match is extremely good. The realized geometric 

risk premium for the benchmark portfolio now is 3.08%, 4.66 percentage points less 

than with the tails. Of course, it is not very likely that one ends up avoiding the percent 

tails of the excess return distribution every month, but nevertheless this shows how the 

fat positive tail of the distribution dominates the mean geometric excess return. 
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Figure 23. Diversification premium difference to benchmark between Jan-1973 and Jun-2018 for 

data with percent tails cut. 

Table 7 summarizes the effect of fat tails. Removing the permille tails helps the 

realized diversification premium difference to benchmark to converge more quickly 

and the realized values are close to predicted values. When percent tails are removed, 

we can see that the predictions become extremely accurate. Prediction error for percent 

tails cut data is ranging from 0.000 to 0.037 percentage points (pps), which equals a 

range of 0 to 3.7 basis points (bps). One basis point (bp) is one hundredth part of a 

percentage point (pp). We also notice how cutting the tails decreases the diversification 

premium to benchmark. In other words, the fat, positively skewed tails of the excess 

return distribution emphasize the importance of diversification. 
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Table 7. The effect of cutting the tails of the monthly excess return distribution. 

Diversification premium 

difference to benchmark [pp] 

Jan-1973 to Jun-2018 

Full data 

Jan-1973 to Jun-2018 

Permille tails cut   

Jan-1973 to Jun-2018 

Percent tails cut 

Predicted Δ𝐷𝑃𝑛=1
𝐵𝑀   -14.765 -13.067 -9.710 

Realized Δ𝐷𝑃𝑛=1
𝐵𝑀   -14.783 -13.046 -9.673 

Predicted Δ𝐷𝑃𝑛=10
𝐵𝑀   -1.474 -1.304 -0.969 

Realized Δ𝐷𝑃𝑛=10
𝐵𝑀   -1.642 -1.352 -0.972 

Predicted Δ𝐷𝑃𝑛=25
𝐵𝑀   -0.588 -0.520 -0.387 

Realized Δ𝐷𝑃𝑛=25
𝐵𝑀   -0.682 -0.547 -0.393 

Predicted Δ𝐷𝑃𝑛=100
𝐵𝑀   -0.145 -0.128 -0.095 

Realized Δ𝐷𝑃𝑛=100
𝐵𝑀   -0.171 -0.136 -0.095 

 

5.2.3 Statistical evidence 

To find some statistical evidence that diversification is a negative price lunch, 

implying diversification premium exists, we turn to regression analysis. We use the 

bootstrapped (except for single stock portfolio, for which we use exhaustive data) data 

from January 1973 to Jun 2018. Data contains 546 months and 50 000 bootstrapped 

portfolios per month. We use simple OLS regression where the left-hand side is 

logarithmic excess return of a portfolio of selected size and the explanatory variable is 

the logarithmic excess return of a benchmark portfolio. Intercept captures the alpha 

which is the mean difference in logarithmic excess returns between the portfolio of 

interest and benchmark portfolio. In other words, the alpha is the diversification 

premium difference to benchmark. For exhaustive single stock portfolio data, which 

has varying number of stocks per month, we normalize the logarithmic returns based 

on equation (44) to ensure equal weight for each month. 

The null hypothesis is that alpha is zero. Alternative hypothesis is that alpha is different 

from zero. We summarize the regression results in Table 8. The null hypothesis is 



 171 

convincingly rejected. Statistical significance is extraordinarily high, which is 

attributable to our very large sample size and the fact that we are testing a mathematical 

inevitability. At lowest, the t-statistic for the alpha is 11.61. This occurs when portfolio 

size is 1000 meaning that even this large portfolio still has a statistically highly 

significant diversification premium difference to benchmark. Economically the alpha 

for a 1000-stock portfolio is hardly significant at 1.3 basis points. We can see that the 

beta is very close to one at small portfolio sizes and approaches exactly one the larger 

the portfolio size gets. R-squared tells us that more than 90% of the portfolio variance 

is explained by the benchmark only after portfolio size is 100 or higher. This is one 

indication of the prevalence of the costly idiosyncratic variance at low portfolio sizes. 

Table 8. Regression results for portfolio sizes ranging from one to thousand stocks. 

Portfolio size 1(exhaustive) 2 5 10 25 

Alpha -1.474E-01 -7.528E-02 -3.144E-02 -1.619E-02 -6.716E-03 

 (1.094E-03) (2.551E-04) (1.660E-04) (1.197E-04) (7.687E-05) 

Beta 0.9939 0.9917 0.9951 0.9970 0.9986 

 (1.517E-03) (3.590E-04) (2.337E-04) (1.684E-04) (1.082E-04) 

R2 
0.1257 0.2184 0.3991 0.5621 0.7573 

N 2987476 27300000 27300000 27300000 27300000 

Portfolio size 50 100 200 500 1000 

Alpha -3.387E-03 -1.681E-03 -8.055E-04 -2.873E-04 -1.301E-04 

 (5.464E-05) (3.865E-05) (2.714E-05) (1.670E-05) (1.120E-05) 

Beta 0.9994 0.9996 0.9998 0.9999 1.0000 

 (7.690E-05) (5.439E-05) (3.820E-05) (2.350E-05) (1.577E-05) 

R2 
0.8608 0.9252 0.9617 0.9851 0.9933 

N 27300000 27300000 27300000 27300000 27300000 

Our conclusion from the Table 8 is that alpha is always convincingly negative 

implying diversification premium, and therefore diversification difference to 
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benchmark, exists and is statistically highly significant throughout the whole spectrum 

of tested portfolio sizes. We therefore consider hypothesis 2 as confirmed.  

Hypothesis 2: Diversification is a negative price lunch implying that diversification 

premium exists. 

5.2.4 The difference in lunch pricing illustrated 

We use an example from the data demonstrating what the negative price lunch means. 

We have 20 000 bootstrapped portfolios created for each month during the 45.5 years 

period from January 1973 to June 2018. We link the monthly portfolio excess returns 

to form 20 000 individual, randomly created, excess return histories. In Figure 24 we 

show the distributions for the annualized randomly created 45.5-year return histories 

for three portfolio sizes. Number of stocks in the portfolio, 𝑛𝑃, is 1, 5 or 100 stocks. 

Initially the standard deviations in the figure may appear as low, but we need to 

remember that annual standard deviations are mitigated by a factor of square root of 

45.5. Vertical dashed lines mark the mean values. We have the annualized geometric 

(logarithmic) excess return distribution and the annualized arithmetic excess return 

distribution on the left and right, respectively.  

Using the lunch analogy, we can put it like this: on the left in Figure 24 we see a 

continuous-time world investor and, on the right, a one period world investor at their 

lunches, respectively. In the upmost figures we witness a fasting meaning no lunch at 

all, in the middle an order from the appetizer menu is enjoyed and in the lowest figures 

a lunch buffet is consumed. The figures on the right visualize how the diversification 

is a free lunch in the one period world as the expected arithmetic excess return is not 

compromised when lunch is consumed but the risk decreases as the lunch portion 

increases. Unchanged expected reward equals zero cost. The figures on the left vividly 

demonstrate what the negative price lunch in the continuous-time world is all about. 

Like in one period world, the risk decreases as the lunch portion is increased, but now 

simultaneously the expected geometric excess return increases as a greater portion of 

lunch is consumed. In a continuous-time world, an investor lowers the risk and 

increases the expected reward simultaneously by accepting more diversification. 

Increased expected reward equals negative price. 
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Being advised by Markowitz is good. You will be encouraged to enjoy a decent size 

free lunch, which will save you from expected starvation. But internalizing some of 

the work by Shannon, Kelly and Thorp is even better. It may convince you to enjoy a 

larger portion as you learn you will be paying a negative expected price. 

 

Figure 24. Negative price lunch on the left as opposed to free lunch on the right. 
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5.3 Opportunity cost of foregone diversification 

5.3.1 One half of portfolio’s idiosyncratic variance 

Our hypothesis 3 states that opportunity cost of foregone diversification is 

approximated by the one half of portfolio’s idiosyncratic variance, which is equal to 

the magnitude of the diversification premium difference to benchmark. We next show 

some statistics supporting the hypothesis. 

First, however, we can visually evaluate if the hypothesis seems to hold. The series of 

figures from Figure 18 to Figure 23 show us the predicted and realized magnitudes of 

diversification premium difference to benchmark for different portfolio sizes. We 

know from equation (42) that the magnitude of diversification premium difference to 

benchmark is approximated by one half of portfolio’s idiosyncratic variance when 

benchmark is broadly diversified. We can see from the figures that realized 

opportunity cost of foregone diversification typically is well approximated by the 

prediction.  

To assess the hypothesis using some statistics, we use the prediction error and 

prediction error to prediction percentage ratio. By showing these statistics, we can 

evaluate both the absolute and the relative error as a function of portfolio size at 

investment fraction one. Prediction error is defined as predicted diversification 

premium difference to benchmark minus the corresponding realized metric.  

Table 9 presents the metrics for the full data and the data with percent tails cut spanning 

from January 1973 to June 2018. For the full data, prediction errors are always below 

twenty percent and the highest at intermediate portfolio sizes. Cutting the fat tails has 

a large effect. Error is typically less than one percent and less than eight percent at 

highest.  
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Table 9. Prediction errors for diversification premium difference to benchmark. 

 Jan-1973 to Jun-2018, full data Jan-1973 to Jun-2018, percent tails cut 

          

Portfolio size 

                

Prediction error 

Prediction error to 

prediction ratio % 

                

Prediction error 

Prediction error to 

prediction ratio % 

1(exhaustive) 1.73E-04 0.12 -3.69E-04 -0.38 

2 2.12E-03 2.88 -1.77E-04 -0.37 

5 2.33E-03 7.88 -9.81E-06 -0.05 

10 1.68E-03 11.41 3.20E-05 0.33 

25 9.43E-04 16.04 6.61E-05 1.71 

50 5.05E-04 17.25 -1.89E-05 -0.98 

100 2.60E-04 17.95 -3.78E-06 -0.40 

200 1.12E-04 15.71 -3.88E-06 -0.83 

500 2.30E-05 8.57 6.88E-06 3.91 

1000 1.12E-05 9.28 6.20E-06 7.85 

Based on visual evaluation of the figures and by evaluating the prediction errors, we 

find supporting evidence for hypothesis 3. 

Hypothesis 3: One half of the portfolio’s idiosyncratic variance closely approximates 

the magnitude of diversification premium difference to benchmark, the opportunity 

cost of foregone diversification. 

5.3.2 A function of squared investment fraction  

Next, we assess the effect of investment fraction to the diversification premium 

difference to benchmark. Based on hypothesis 4, we expect the opportunity cost of 

foregone diversification to be a function of squared investment fraction. 

Visually, based on figures ranging from Figure 18 to Figure 23, we can see that the 

predicted values match well with their realized counterparts.  
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In Table 10 we have the relative prediction errors for the full data and percent tails cut 

data as a function of three investment fractions: 0.6, 1.0 and 1.5. The data is again from 

the period from January 1973 to June 2018. NA in the table means no data available. 

We observe that the relative error is relatively constant as a function of investment 

fraction. We can see that without the fat tails the prediction error is very small. We 

interpret this as evidence that our realized diversification difference to benchmark 

indeed is in line with the corresponding predicted metric which in turn assumes 

scalability as a function of squared investment fraction.  

Table 10. Prediction errors to prediction ratios [%] for different investment fractions. 

 Jan-1973 to Jun-2018, full data Jan-1973 to Jun-2018, percent tails cut 

           Prediction error to prediction ratio [%] Prediction error to prediction ratio [%] 

Portfolio size 𝑓 = 0.6 𝑓 = 1.0 𝑓 = 1.5 𝑓 = 0.6 𝑓 = 1.0 𝑓 = 1.5 

1(exhaustive) 1.10 0.12 NA -0.69 -0.38 NA 

2 6.66 2.88 NA -0.33 -0.37 NA 

5 11.31 7.88 5.85 -0.03 -0.05 0.82 

10 14.44 11.41 9.30 0.48 0.33 0.90 

25 19.66 16.04 13.67 2.53 1.71 1.82 

50 20.37 17.25 15.23 -1.88 -0.98 -0.06 

100 20.92 17.95 16.07 -0.80 -0.40 0.24 

200 16.95 15.71 14.77 -1.90 -0.83 0.13 

500 4.38 8.57 10.40 5.84 3.91 3.37 

1000 5.49 9.28 10.89 13.15 7.85 5.60 

Table 11 shows predicted and realized diversification premium differences to 

benchmarks as a function of investment fraction for selected portfolio sizes. The data 

is from January 1973 to June 2018. In parenthesis we have the diversification premium 

difference to benchmark ratio between the investment fraction of interest and 

investment fraction one. As we assume a squared relationship, we expect the ratio to 

be 0.36 at investment fraction 0.6 and 2.25 at investment fraction 1.5. We can see that 

for predicted values this is accurate. The small variation is due to rounding. For 
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realized values the ratio is fairly close to expected value. For percent tails cut data this 

would be very accurate. Comparing the diversification premium difference to 

benchmark across investment fractions gives us some insight about the significance of 

the investment fraction defining the diversification effect. For example, at portfolio 

size of ten stocks the realized opportunity cost of foregone diversification is more than 

1.6 percentage points. At investment fraction 0.6 the corresponding value is much 

more tolerable at about 0.6 percentage points. However, leveraging the portfolio to 

investment fraction 1.5 implies opportunity cost to rise to more than 3.6 percentage 

points. Especially when leveraging the portfolio, one is well advised to diversify 

broadly.  

Table 11. Diversification premium differences to benchmarks for different investment fractions. 

 

Diversification premium difference to benchmark [pp] 

 
𝑓 = 0.6 ( / 𝑓 = 1.0) 𝑓 = 1.0  𝑓 = 1.5 ( / 𝑓 = 1.0) 

Predicted Δ𝐷𝑃𝑛=1
𝐵𝑀   -5.316 (0.360) -14.765 NA 

Realized Δ𝐷𝑃𝑛=1
𝐵𝑀   -5.374 (0.364) -14.783 NA 

Predicted Δ𝐷𝑃𝑛=10
𝐵𝑀   -0.531 (0.360) -1.474 -3.316 (2.250) 

Realized Δ𝐷𝑃𝑛=10
𝐵𝑀   -0.607 (0.370) -1.642 -3.625 (2.208) 

Predicted Δ𝐷𝑃𝑛=25
𝐵𝑀   -0.212 (0.361) -0.588 -1.323 (2.250) 

Realized Δ𝐷𝑃𝑛=25
𝐵𝑀   -0.253 (0.371) -0.682 -1.504 (2.205) 

Predicted Δ𝐷𝑃𝑛=100
𝐵𝑀   -0.052 (0.359) -0.145 -0.326 (2.248) 

Realized Δ𝐷𝑃𝑛=100
𝐵𝑀   -0.063 (0.368) -0.171 -0.379 (2.216) 

Based on visual evaluation of the figures and by evaluating the prediction errors as a 

function of investment fraction, we find convincing supportive evidence for hypothesis 

4. 

Hypothesis 4: Diversification premium difference to benchmark for a portfolio is a 

function of portfolio’s squared investment fraction. 
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5.4 Risk premium ratio as a diversification effect measure 

5.4.1 Utilizing realizable risk premium ratio to account for the risk 

We defined realizable risk premium in section 3.3.7 and determined it as our short-

term diversification effect measure in section 3.4.2. Any long-term period consists of 

series of short-term periods meaning short-term, at least to risk averse investor, is 

always meaningful regardless of the investment horizon. We will now show step by 

step how the realizable risk premium is constructed. In addition, we will show that our 

theoretical prediction relatively accurately corresponds to corresponding metric 

measured from empirical data.  

Realizable risk premium captures the effect of risk and reward in a single number by 

scaling the geometric risk premium (the expectation) by the proportion the realized 

geometric risk premium is explained by its expectation. As shown in section 3.3.7, in 

the short term, this is equivalent to scaling the geometric risk premium by its SNR. 

 

Figure 25. Predicted geometric risk premium. 
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Figure 26. Predicted SNR for the geometric risk premium. 

We show the two components, geometric risk premium (Figure 25) and its SNR 

(Figure 26), as a function of investment fraction and finally the realizable risk premium 

(Figure 27), which results from multiplying these two measures together. 

Comparing figures Figure 25 and Figure 26, we observe that the SNR of the geometric 

risk premium for an investment portfolio is markedly lower than for SNR for the 

benchmark even for relatively large portfolio sizes, whereas for geometric risk 

premium the difference to benchmark is small for all but the smallest portfolio sizes. 

This means that the SNR of the geometric risk premium tends to dominate the short-

term realizable risk premium metric. In the short-term, it is the risk (the noise power 

component in the SNR measure) that dominates.  

Interestingly, we see from the one-stock curve in Figure 26 how the SNR starts to get 

higher shortly after the risk premium goes negative. This may seem odd at first, but it 

just means that the negative risk premium becomes the more certain to realize in the 

short-term the more we exceed the full Kelly point multiplied by two. 
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Figure 27. Predicted short-term realizable risk premium. 

Figure 27 shows the resulting short-term realizable risk premium. The maximum is 

slightly higher than one percentage point (100 basis points) in annualized terms. 

Maximum occurs at half Kelly fraction, which corresponds to investment fraction 

slightly greater than one for the benchmark portfolio. For less than perfectly diversified 

portfolios, half Kelly fraction and maximum realizable risk premium occurs at lower 

investment fraction. The maximum realizable risk premium for ten-stock portfolio is 

below 40 basis points at investment fraction substantially below one, which shows 

how the risk dominates this short-term metric. Even for 200-stock portfolio, we still 

see a clearly lower value compared to benchmark. 

Figure 28 shows the predicted and bootstrapped risk premium ratio for different 

portfolio sizes as a function of investment fraction. Risk premium ratio is the risk 

premium (shown in Figure 25) of a portfolio of selected size divided by the risk 

premium of a fully diversified benchmark portfolio. Notice, that the value can be 

negative when portfolio risk premium is negative. However, the metric only makes 

sense as long as the benchmark risk premium is positive. In other words, the metric 

makes sense only up to the investment fraction where benchmark risk premium turns 
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negative, which theoretically occurs exactly at two times the benchmark full Kelly 

fraction. Predicted risk premium ratio is calculated based on equation (129). 

 

Figure 28. Predicted vs. bootstrapped risk premium ratio. 

We can see that equation (129) predicts bootstrapped risk premium ratio very 

accurately. There is some deviation especially at very high investment fractions, which 

we attribute to fat tailed return distribution combined with less than infinite 

rebalancing frequency. Based on visual examination of the figure, close to 25 stocks 

are required to achieve 90% of the maximum risk premium ratio at investment fraction 

one. 

Figure 29 shows the instantaneous realizable risk premium ratio. This is the same ratio 

as in Figure 28, except that now infinitely short-term realizable risk premium is used 

in place of infinitely long-term realizable risk premium, which is better known as risk 

premium. Predicted realizable risk premium is calculated based on equation (131). The 

metric only makes sense as long as the benchmark risk premium is positive.  
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Figure 29. Predicted vs. bootstrapped short-term realizable risk premium ratio. 

Equation (131) predicts realizable risk premium relatively accurately. Now both 

determinants of the realizable risk premium, the SNR of the risk premium and the risk 

premium, suffer from inaccuracy introduced by fat tails. Consequently, we see a larger 

deviation from predicted value compared to risk premium ratio, where only one ratio 

suffered from the inaccuracy. Based on visual approximation, more than 100 stocks 

are required to achieve 90% of the maximum realizable risk premium ratio at 

investment fraction one. 

In Figure 29, the short-term is infinitely short-term (instantaneous), which not very 

practical. However, practical short-terms, such as one-month period, result to very 

similar realizable risk premium. Figure 30 shows the instantaneous (SNR weighted) 

and monthly (R-squared weighted) realizable risk premiums which are shown to be 

practically identical. We find that practical short-term periods ranging between 

infinitely short and several months all lead to very similar result. We conclude that 

SNR weighted risk premium can be used to model and to predict practical short-term 

realizable risk premium. 



 183 

 

Figure 30. Instantaneous vs. monthly predicted realizable risk premium ratio. 

5.4.2 Minimum investment horizon length for different portfolio sizes 

We utilized the SNR of the geometric risk premium to determine realizable risk 

premium. Now we will show how the effect of time on SNR can be used to determine 

the minimum investment horizon as a function of portfolio size and investment 

fraction. 

We assume time periods are uncorrelated implying SNR is directly proportional to 

investment time horizon length and we can utilize equation (109) to calculate 

minimum investment time horizon which equals the time required to have the SNR of 

the geometric risk premium equal one. SNR equaling one means half of the realized 

risk premium is explained by noise (risk) while the other half is explained by signal 

(reward, i.e., the risk premium). When SNR is greater than one, more than half of the 

realized risk premium is explained by the (expected) risk premium. Equation (109)  

shows that the minimum investment time horizon is simply the reciprocal of SNR. 

Figure 31 shows the empirical (calculated based on realized empirical risk premium 

SNR) minimum investment time horizons for different portfolio sizes and for the fully 
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diversified benchmark. We can see that diversification greatly affects the required 

investment time horizon length. As an example, at investment fraction one, benchmark 

requires 6.9 years, while a 10-stock portfolio requires 19.6 years to have in minimum 

half of the realized risk premium explained by the (expected) risk premium. With 

leverage, the difference is even more dramatic. At investment fraction 1.5, 

corresponding numbers are 9.5 and 40.3 years. 

 

Figure 31. Minimum empirical investment time horizon. 

5.4.3 Predicting required number of stocks for maintaining constant risk premium 

ratio 

Next, the required level of diversification to achieve target risk premium ratio for 

selected investment fraction will be calculated and shown as a function of time. We 

will show separate metrics for risk neutral and risk averse investors. Risk averse metric 

will further be divided to short-term and long-term versions, while risk neutral metric 

is for short-term only. 

Risk neutral metric is risk premium ratio calculated based on equation (129). Target 

risk premium ratio in Figure 32 is 0.90 meaning that 90% of the maximum risk 
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premium ratio is achieved at about 20-stock portfolio size. Short-term risk averse 

metric is based on equation (131), which defines short-term as infinitely short. Long-

term risk averse metric is based on equation (128), which takes time horizon as an 

input. The long-term metric is a function of time and as the SNR of the realized risk 

premium increase when time horizon increase, the required number of stocks to 

achieve 90% of the maximum realizable risk premium ratio decreases as a function of 

time. 

 

Figure 32. Required number of stocks for 0.90 risk premium ratio when 𝒇 = 𝟏. 

Figure 32 shows the discussed three (realizable) risk premium ratio-based 

diversification metrics for investment fraction one as a function of time. Equations 

(130) (risk neutral), (131) (short-term risk averse) and (128) (long-term risk averse) 

are used to calculate the required number of stocks 𝑛𝑃. In case of equations (131) and 

(128), 𝑛𝑃 is solved by computer. Close to 20 and 120 stocks are required to achieve 

90% of the maximum short-term diversification benefit for risk neutral and risk averse 

investor, respectively. As the annualized standard deviation decreases as a function of 

a square root of time, the long-term realizable risk premium ratio based required 

number of stocks for risk averse investor decreases as a time horizon lengthens. 

However, we consider risk premium ratio primarily as a short-term metric and do not 
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include the long-term risk averse metric in the set of our final diversification metrics. 

We do, however, utilize the long-term realizable risk premium when calculating 

realizable gross excess wealth ratio in section 5.6.3.  

5.5 The effect of diversification on gross compound excess wealth illustrated 

We will illustrate how thinking solely in terms of growth rates can be misleading. 

Although our focus is in geometric risk premium, we need to keep in mind the risk 

premium is not the final goal of a long-term investor. The final goal is the accumulated 

gross excess wealth over time, the total wealth accumulated by compounding 

geometric risk premium over time. We will measure the accumulated excess wealth, 

the wealth in excess of what compounding riskless rate over time produces, to assess 

the benefit of bearing risk. 

As time horizon lengthens, the distribution of geometric rate of excess return 

converges towards its expected value, the geometric risk premium. It is tempting to 

interpret this convergence as a favorable effect of time as the uncertainty about the 

excess growth rate decreases as time horizon increases. However, when assessed in 

terms of what really counts to an investor, the amount of wealth after the investment 

horizon, we find the distribution of the final excess wealth, as opposed to the 

distribution of the excess growth rate, diverges as the time horizon lengthens. The 

effect of time therefore can be considered as increasing the uncertainty about the 

investor’s excess wealth at the end of the investment horizon. 

Next, we illustrate the diversification effect expressed as the gross compound excess 

wealth difference to benchmark over time. We use gross excess wealth implying the 

initial investment is included in final wealth. Four figures, from Figure 33 to Figure 

36, show the cross-sectional distribution for the 50 000 bootstrapped total gross excess 

returns (wealths) at the end of the 45.5 year investment horizon. As this is a cross-

sectional distribution, the variance is entirely idiosyncratic and the systematic variance 

plays no role. We can think of the whole cross-sectional distribution as riding on an 

uncorrelated common systematic benchmark-beta wave, the time series variance of the 

benchmark. 
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We have four metrics shown in the figures. Portfolio mean (over the 50 000 portfolios) 

realized gross excess return is expected to correspond to benchmark gross compound 

excess wealth. Benchmark gross compound excess wealth is the realized benchmark 

gross excess wealth. Portfolio median (over the 50 000 portfolios) realized gross 

excess return is expected to match closely with the portfolio gross compound excess 

wealth which is the continuously compound excess wealth using geometric risk 

premium (mean excess growth rate over the 50 000 portfolios) as growth rate. Bin 

width in the histograms is 0.1 and y-axis shows the number of occurrences per bin. 

Figure 33 shows the cross-sectional distribution for bootstrapped single stock 

portfolios. We don’t show the portfolio gross compound excess wealth nor the 

portfolio median realized gross excess return as these metrics are very close to zero (at 

0.042 corresponding to -95.8% excess return) and would hide the bulk of the 

distribution also concentrated close to zero. The distribution is fat-tailed and extremely 

positively skewed. In other words, typical gross excess return is very, very different 

from the mean gross excess return dominated by rare very high returns. Furthermore, 

despite the very large number (50 000) of bootstrapped return histories, the portfolio 

mean fails to converge to its expectation, the benchmark gross compound excess 

wealth. This is expected in the light of Taleb, Bar-Yam and Cirillo (2020) showing 

how the mean converges very slowly and is typically underestimated in the presence 

of fat-tails accompanied with positive skewness.  

It seems clear that assessing the long-term expected return for a single stock portfolio 

based on the expected return of a benchmark makes no practical sense at all. This 

implies that utilizing a one period model, which implicitly assumes benchmark 

properties (apart from variance) as generalizable to any portfolio size, to assess 

diversification effect must be practically insufficient.  

Figure 33 is a manifestation of the ergodicity problem described by Peters (2019). The 

experience of a typical (median) individual long-term single stock investor is 

completely different compared to the experience of aggregated (mean) single stock 

investors. We live our lives as individuals and hence our experience is better described 

by the excess wealth accumulated using geometric, instead of arithmetic, risk premium 

as a growth rate. 
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Figure 33. Cross-sectional gross excess return distribution for bootstrapped 1-stock portfolios. 

 

Figure 34. Cross-sectional gross excess return distribution for bootstrapped 10-stock portfolios. 

Figure 34 shows the distribution for ten-stock portfolios. Considering the conventional 

wisdom that about ten stocks make a diversified portfolio, this figure speaks entirely 

different language. Skewness of the distribution is still very well visible. Typical 

portfolio total gross excess return, measured as portfolio gross compound excess 

wealth or as a median of the distribution, is less than half of the benchmark gross 



 189 

compound excess wealth. Now we notice that the mean has converged to its 

expectation, i.e., the portfolio mean realized gross excess return and benchmark gross 

compound excess wealth are equal in visual examination. 

 

Figure 35. Cross-sectional gross excess return distribution for bootstrapped 25-stock portfolios. 

 

Figure 36. Cross-sectional gross excess return distribution for bootstrapped 100-stock portfolios. 
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Figure 35 and Figure 36 show the distributions for twenty-five and hundred stock 

portfolios, respectively. 25 stocks still show a large difference between typical and 

mean values and there is a small, but clearly observable, difference even in the 100-

stock distribution.  

These distributions are from a 45.5-year time span. As time horizon lengthens, the 

standard deviation and the skewness both increase as a function of a square root of 

time. Increase in variance, including the costly idiosyncratic variance, is directly 

proportional to time. This implies that the cross-sectional excess return distribution 

diverges as a function of time, which means the difference between the excess wealth 

of an average portfolio and its benchmark increases as a function of time. In other 

words, the diversification becomes more important as a function of time. Equations 

(134) and (135) show that to maintain the desired wealth ratio (portfolio gross 

compound excess wealth ratio to corresponding benchmark metric), which is 

equivalent to maintaining the shape of the distribution, number of stocks needs to 

increase directly proportionally to increase in investment time horizon length.  

The magnitude of the diversification effect is very different depending whether we 

consider it in the context of time indifferent excess growth rate or in the context of 

accumulated excess wealth over time. We illustrated the former diversification effect 

in the time period from January 1973 to June 2018 in Figure 21 and for selected 

portfolio sizes in Table 5. The diversification premium difference to benchmark is 

quickly decimated as the number of stocks in the portfolio is increased from one to 

ten, twenty-five or hundred stocks. Realized diversification premium difference to 

benchmark in Table 5 is around -14.8pp, -1.6pp, -0.7pp and -0.17pp, for the portfolio 

sizes respectively. Judging solely based on the excess growth rates, it would be easy 

to conclude that 10, 25 or certainly 100 stocks are sufficient as the growth rate 

difference to benchmark seems tolerable. The effect of time, however, may call for 

reconsideration. 

In Table 12 we summarize some key metrics from the figures when considering the 

diversification effect in the context of gross compound excess wealth over time. The 

data used in the table is identical to those used in assessing the diversification premium 
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difference to benchmark in Figure 21 and in Table 5. Additionally, the portfolio sizes 

match with those in Table 5.  

The data in the table shows that the effect of diversification on gross compound excess 

wealth ratio, the portfolio gross excess wealth divided by that of the benchmark, is 

dramatic. For a 10-stock portfolio, less than half of the benchmark gross wealth no 

longer sounds as tolerable as the about 1.6pp annualized growth rate difference. 10-

stock portfolio lose to benchmark in close to three quarters of all portfolios and to risk 

free rate about in one out of a hundred portfolios. About one out of ten portfolios 

produce more than twice the benchmark wealth and the best portfolio out of 50 000 

produce close to fifty times the benchmark wealth.  

Table 12. Key cross-sectional gross excess wealth metrics. 

 Portfolio size 

 1 10 25 100 

Gross excess wealth ratio 0.001 0.475 0.735 0.927 

Gross excess wealth < BM [%] 96.7 73.3 65.5 57.8 

Gross excess wealth < RF [%] 80.9 1.0 0.0 0 

Gross excess wealth > 2*BM [%] 2.1 11.7 9.8 2.5 

Max gross excess wealth ratio 5303.9 49.4 24.1 5.4 

For a single stock portfolio, it is realistic to assume that practically all wealth is lost in 

the long-run. On average, when compounding the geometric risk premium over time 

to form the final gross excess wealth, about one permille of the benchmark gross 

wealth is expected in 45.5-year period. Furthermore, more than four out of five 

portfolios are expected to accumulate less wealth than compounding riskless rate 

would. However, for those into lottery, the best single stock portfolio provides a 

phenomenal wealth, more than 5300 times that of the benchmark. It is noteworthy, that 

single stock portfolio is not more likely than the 100-stock portfolio to produce a 

wealth greater than twice the benchmark wealth, but does produce some extreme 

winners which contribute enormously to the mean. Mean return therefore bears no 

information, expect reminding that some rare lottery winners exist, for typical investor.  
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5.6 Gross compound excess wealth ratio as a diversification effect measure 

5.6.1 The effect of time 

Next, we will show how the effect of time on maintaining constant gross compound 

excess wealth ratio is approximately directly proportional to required portfolio size. 

This linear relationship holds very accurately in the range from one to about one 

hundred stocks and remains relatively accurate until portfolio size is several hundreds 

of stocks. This implies the longer the investment time horizon, the more important 

diversification becomes. 

As illustrated in section 5.5, the wealth distribution after a long investment horizon is 

very much a function of diversification. The gross excess wealth ratio decreases while 

the asymmetry and fat tailedness, skewness and excess kurtosis of the excess gross 

wealth distribution, respectively, increase as a function of idiosyncratic variance of the 

portfolio’s growth rate. The level of idiosyncratic variance is affected both by the level 

of diversification and time. It is well known that standard deviation is a function of a 

square root of time implying variance is directly proportional to time. Furthermore, 

skewness is a function of a square root of time. Controlling the effect of time is beyond 

us, but we can control the level of diversification to affect the wealth distribution at 

the end of the investment horizon. 

As time irresistibly marches on, we need to increase our level of diversification as a 

function of time if we intend to keep the expected wealth distribution asymmetry 

unchanged meaning if we intend to prevent the gross compound excess wealth ratio 

from decreasing as a function of time. As shown in section 5.5, increasing idiosyncratic 

variance implies diverging gross excess wealth difference between investment 

portfolio and benchmark. As idiosyncratic variance of a portfolio increases directly 

proportionally to time and decreases approximately inversely proportionally to number 

of stocks in the portfolio, the effect of time on wealth distribution is compensated by 

increasing the level of diversification approximately directly proportionally to increase 

in investment time horizon. This is shown by approximate equation (135) and by the 

corresponding exact equation (134), which accounts for the finite average number of 

stocks in the benchmark.  
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Due to this approximately inverse proportionality between time and number of stocks 

in a portfolio, we can think of the 45.5 year investment time horizon gross excess 

wealth ratios in Table 12 alternatively so that the one stock portfolio wealth ratio is 

interpreted as the ten-stock portfolio wealth ratio after 10*45.5=455 years. Or we can 

interpret the hundred-stock portfolio wealth ratio as the ten-stock portfolio wealth ratio 

after 45.5/10=4.55 years. 

We will test the accuracy of the exact equation (134) empirically using the data from 

January 1973 to June 2018. Empirical portfolio size per time horizon is selected based 

on equation (134). Solid lines in Figure 37 and Figure 39 are based on exact equation 

(134) while the dashed lines are based on approximate equation (135). The data is from 

a 45.5 period which equals 546 months. To test the effect of time, we accept only 

(selected) time periods by which the 546 months is divisible to ensure identical full 

data is always utilized for each tested sub-period length. We select a target wealth ratio 

(TWR) to present the targeted gross compound excess wealth ratio between an 

investment portfolio and the benchmark at the end of an investment time horizon. Our 

equations predict the approximate (exactly linear relationship with time) and exact 

(approximately linear relationship with time) number of stocks required to keep the 

wealth ratio at target at as a function of investment time horizon.  

Figure 37 shows the result for TWR 0.90, 0.95 and 0.99, which correspond to wealth 

target of 90%, 95% and 99% of the benchmark gross excess wealth at any investment 

time horizon length. Y-axis on the left is the average gross compound excess wealth 

ratio while y-axis on the right is the portfolio size. Table 13 provides the portfolio sizes 

predicted by the exact equation (and used to form empirical portfolios) and the 

difference between exact portfolio size and linear approximation for each TWR. We 

can see from the figure that TWR are stable and horizontal except for the first point on 

the 0.90 TWR curve which is explained by inaccuracy from rounding the decimal 

number provided by the formula to integer (1.5 rounded to 2). Overall, all three 

targeted gross excess wealth ratios remain constant as the investment time horizon 

lengthens implying the exact equation (134) predicts the effect of investment time 

horizon well empirically. Approximate (dashed line) portfolio size curves are exactly 

linear in the figure. When we compare the exact (solid line) portfolio size curves to 

approximate curves within each TWR, we can see that the curves are almost exactly 
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aligned when portfolio size is about one hundred or less. It means that portfolio sizes 

smaller than about one hundred, which the range meaningful to most stock pickers, are 

in the range where linear approximation very accurately captures the effect of time. 

Linear approximation remains reasonably accurate for larger portfolio sizes too, but 

we can see there is a noticeable difference when portfolio size is in the range of several 

hundreds of stocks. As the portfolio sizes approach the benchmark size, linear 

approximation will cease to work.  

 

Figure 37. Approximately linear relationship between time and portfolio size to maintain constant 

TWR. 
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Table 13. Predicted required number of stocks to maintain constant wealth ratio as a function of 

time. 

 Predicted exact num. of stocks (approx. - exact) 

Time horizon [years] TWR = 0.90 TWR = 0.95 TWR = 0.99 

1.08 2 (0) 3 (0) 16 (0) 

3.50 5 (0) 10 (0) 51 (0) 

7.58 11 (0) 22 (0) 109 (2) 

15.17 21 (0) 43 (1) 214 (9) 

22.75 32 (0) 65 (0) 315 (19) 

45.50 63 (1) 128 (3) 596 (72) 

In Figure 38 we can observe the TWR curves (solid lines) shown in Figure 37 more 

accurately. Table 14 shows the same numerically. We can see that realized average 

gross excess wealth ratios are slightly below the targeted ratios. This is in line what 

we saw in Figure 21 where realized diversification premium differences to benchmark 

were slightly larger compared to corresponding predictions. Cutting the fat tails helped 

to converge the curves in case of diversification premium differences to benchmark 

metric. Figure 23 shows the result after cutting the percent tails from each month’s 

data. For TWR tests, we show the effect of cutting the percent tails in Figure 38 using 

dashed lines. Cutting the tails makes the realized average gross excess wealth ratios 

extremely accurate. The remaining noticeable inaccuracy in the short time intervals 

(small portfolio sizes) is due to rounding. Our takeaway is that in the presence of fat 

tails the number of stocks required to maintain the desired TWR, as given by equations 

(134) and (135), is the lower bound and required portfolio sizes using monthly 

rebalancing are expected to be slightly higher than predicted by these equations. Again, 

we see how the fat tails make diversification more important. 
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Figure 38. The effect of fat tails on realized target gross excess wealth ratio. 

Table 14. Realized average wealth ratios for full and percent tails cut data. 

 Realized avg. wealth ratio: Full data; Percent tails cut data 

Time horizon [years] TWR = 0.90 TWR = 0.95 TWR = 0.99 

1.08 0.9216; 0.9014 0.9461; 0.9490 0.9884; 0.9892 

3.50 0.8959; 0.8939 0.9456; 0.9529 0.9892; 0.9907 

7.58 0.8921; 0.8996 0.9430; 0.9477 0.9877; 0.9893 

15.17 0.8854; 0.9008 0.9401; 0.9510 0.9870; 0.9901 

22.75 0.8877; 0.8990 0.9427; 0.9499 0.9885; 0.9894 

45.50 0.8841; 0.9016 0.9421; 0.9497 0.9883; 0.9891 

We consider the empirical results shown in this section to be highly supportive to 

hypothesis 5.  
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Hypothesis 5: For a risk neutral long-term investor, the number of stocks required to 

make a diversified portfolio is approximately directly proportional to investment time 

horizon length. 

5.6.2 The effect of investment fraction 

Time is approximately linearly related to required portfolio size to maintain a constant 

gross excess wealth ratio. Next, we will show that in the investment fraction dimension 

we need to multiply the portfolio size by approximately squared investment fraction 

to maintain the wealth ratio constant. This is in line with what was shown in 5.3.2, 

where we showed that the diversification premium difference to benchmark is a 

function of squared investment fraction. 

In Figure 39 we test the accuracy of equation (134) empirically by setting the 

investment time horizon constant (45.5 years) and changing the investment fraction in 

the range from 0.6 to 1.5. For portfolio sizes, we show both the prediction by exact 

(solid line) and approximate (dashed line) equations, (134) and (135) respectively. 

Empirical portfolio size per investment fraction is selected based on equation (134). 

Table 15 shows the portfolio sizes predicted by the exact equation and the difference 

between exact portfolio size and quadratic approximation for each TWR. We can see 

that the approximation (squared investment fraction relationship) is very accurate in 

portfolio sizes below about one hundred stocks and remains reasonably accurate up to 

portfolio sizes of several hundreds of stocks. Overall, realized TWR remains very 

stable as a function of investment fraction implying equation (134) predicts the effect 

of investment fraction well empirically. Take TWR 0.90 as an example and we can see 

how big a difference the investment fraction makes. The difference in required 

portfolio size between investment fractions 0.6 and 1.5 is more than six-fold (6.09). 

Using quadratic approximation, the expected difference would be 1.52 0.62⁄ = 6.25. 
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Figure 39. Approximately quadratic relationship between investment fraction and portfolio size 

to maintain constant TWR. 

Table 15. Predicted required number of stocks to maintain constant wealth ratio as a function of 

investment fraction. 

 Predicted exact num. of stocks (approx. - exact) 

Investment fraction TWR = 0.90 TWR = 0.95 TWR = 0.99 

0.6 23 (0) 47 (0) 231 (10) 

0.8 41 (0) 83 (1) 397 (31) 

1.0 63 (1) 128 (3) 596 (72) 

1.25 98 (2) 197 (8) 877 (167) 

1.5 140 (3) 280 (15) 1180 (324)  

We consider results shown in Figure 39 and Table 15 as supportive to hypothesis 6. 

Hypothesis 6: For a risk neutral long-term investor, the number of stocks required to 

make a diversified portfolio is an increasing, approximately squared, function of 

investment fraction. 
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5.6.3 Predicting required number of stocks for maintaining constant wealth ratio 

Next, we will show our long-term diversification metrics for risk neutral and risk 

averse investors work with empirical data. We use wealth ratio-based metrics to 

describe the long-term diversification effect. Risk neutral investor metric is gross 

compound excess wealth ratio, while realizable gross compound excess wealth ratio is 

used for risk averse investor. 

Figure 40 shows the predicted and bootstrapped gross compound excess wealth ratios 

for different portfolio sizes as a function of investment fraction. Investment time 

horizon is 45.5 years. Predicted values are based on equation (132). Bootstrapped 

values closely follow predicted values. There are deviations for moderate portfolio 

sizes and at high investment fraction values, which we attribute to fat-tailed return 

distribution and less than infinite rebalancing frequency. At investment fraction one, 

the resulting gross excess wealth ratios for portfolio sizes 1, 10, 25 and 100 stocks are 

identical with the values given in Table 12. Corresponding cross-sectional gross excess 

return distributions, for those four portfolio sizes, can be seen in figures ranging from 

Figure 33 to Figure 36. We can see from Figure 40 how investment fraction 

dramatically affects the gross excess wealth ratio at small portfolio sizes. 

In Figure 41, we have predicted and bootstrapped realizable gross compound excess 

wealth ratios for different portfolio sizes as a function of investment fraction. The 

difference to gross compound excess wealth ratios in Figure 40 is that now realizable 

risk premium is used in the place of risk premium. Realizable risk premium, given by 

equation (128), is an increasing function of time. Predicted realizable gross excess 

wealth ratio is based on equation (141). Bootstrapped values closely follow predicted 

values. Deviations are similar to deviations in Figure 40. Similarly, as with the risk 

neutral metric, investment fraction dramatically affects the realizable gross excess 

wealth ratio at small portfolio sizes. 
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Figure 40. Predicted vs. bootstrapped gross excess wealth ratio at 45.5-year investment horizon. 

 

Figure 41. Predicted vs. bootstrapped realizable gross excess wealth ratio at 45.5-year horizon. 

By utilizing gross compound excess wealth ratio and realizable gross compound 

excess wealth ratio for risk neutral and risk averse investors, respectively, we calculate 
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the required number of stocks to achieve 90% of the maximum diversification benefit 

and show the result for investment fraction one in Figure 42. Equations (134) and (141)  

are used to calculate the required number of stocks 𝑛𝑃. In case of equation (141),  𝑛𝑃 

is solved by computer. We can see that the level of required diversification for risk 

neutral investor is approximately directly proportional to investment time horizon 

length. The longer the investment time horizon, the more important diversification is. 

For risk averse investor, the required level of diversification first decreases as a 

function of time as the realizable risk premium ratio decrease as a function of time (as 

shown in Figure 32). However, as the realizable gross compound excess wealth ratio 

asymptotically approach gross compound excess wealth ratio, which is an increasing 

function of time, eventually realizable gross compound excess wealth ratio starts to 

increase as a function of time. Risk averse metric finds its minimum at about 55 stocks 

around 15 years mark before starting to increase towards benchmark portfolio size as 

time horizon increases towards infinity. 

 

Figure 42. Required number of stocks for 0.90 gross excess wealth ratio when 𝒇 = 𝟏. 
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5.7 How many stocks make a diversified portfolio in a continuous-time world? 

Finally, we show all of the selected diversification metrics in one figure. First metric, 

number of stocks required for positive risk premium (as defined in section 3.4.1 and 

shown to work empirically in section 5.1.2), is shown in black. Second metric, number 

of stocks required for a proportion of benchmark risk premium (as defined in section 

3.4.2 and shown to work empirically in section 5.4) is shown in blue. Third metric, 

number of stocks required for a proportion of benchmark wealth over time (as defined 

in section 3.4.3 and shown to work empirically in section 5.6) is shown in red.  For the 

second and third metrics, we show risk averse and risk neutral investor variants in 

dashed and solid line types, respectively. Risk premium-based metrics are used to 

describe short-term diversification effects, while gross excess wealth-based metrics 

are for the mid to long-term. Empirical data is the 45.5-year time span from January 

1973 to June 2018. 

Based on tests not shown here, the empirical number of stocks for the second and third 

metric, both for risk averse and risk neutral investors, is about 15% higher than 

predicted by our equations and shown in the figures and tables in this section. The 

systematic underestimation by our theoretical framework is attributable to less than 

infinite rebalancing frequency combined with fat-tailed return distribution as discussed 

in section 5.2.2.   

We define the number of stocks required by risk neutral investor as the maximum 

between the risk premium and wealth-based metrics (the maximum among solid lines 

in the figures). In the short-term, risk premium ratio determines the required level of 

diversification. In the long-term, as compounding starts to have an effect, gross excess 

wealth ratio dominates and determines the required number of stocks. Similarly, we 

define the number of stocks required by risk averse investor as the maximum between 

the realizable risk premium and realizable wealth-based metrics (the maximum among 

dashed lines in the figures). Realizable risk premium ratio dominates and determines 

the required level of diversification for risk averse investor until the very long-term 

(close to hundred years). 
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However, realizable gross excess wealth ratio-based metric for risk averse investor 

(red dashed line in the figures) has a special interpretation. Long-term investor 

targeting a liability matching portfolio (e.g., an investor saving for retirement) can be 

thought to have succeeded if he achieves the targeted portfolio size at targeted date 

and failed if he falls short of the targeted portfolio size. Such investor does not 

particularly care about the upside after achieving the targeted portfolio size. A long-

term investor targeting liability matching portfolio, even if he has a high tolerance for 

short-term volatility, can be thought to be risk averse in the long-term as he greatly 

dislikes the volatility (likes the predictability) of the ending wealth. Such investor is 

risk averse in the long-term even if he is totally unaware of the market moves (and 

therefore has infinite risk tolerance in the short-term) before the target date.  

Red dashed line can be interpreted as a diversification metric for long-term risk averse 

investor while blue dashed line can be interpreted as a diversification metric for short-

term risk averse investor. The red dashed line decreases in the mid-term as realizable 

risk premium increases, but rises in the long-term as the compounding of 

diversification premium difference to benchmark starts to have an effect. The blue 

dashed line is about the bumpiness of the ride, the short-term volatility, which investor 

must survive regardless the targeted investment horizon length. 

Figure 43, Figure 44 and Figure 45 show the required number of stocks to achieve 

90% of the maximum diversification benefit at investment fractions 1.0, 0.6 and 1.5, 

respectively. Comparing these figures shows how increasing investment fraction 

requires more diversification. First time horizon value in the figures is one month.  
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Figure 43. Required number of stocks for 90% diversification benefit when 𝒇 = 𝟏. 

 

Figure 44. Required number of stocks for 90% diversification benefit when 𝒇 = 𝟎. 𝟔. 
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Figure 45. Required number of stocks for 90% diversification benefit when 𝒇 = 𝟏. 𝟓. 

Figure 46 and Figure 47 show the required number of stocks at investment fraction 

one to achieve 95% and 99% of the maximum diversification benefit, respectively. 

Required number of stocks (for all metrics except the black solid line) to achieve 90% 

of the maximum diversification benefit are multiplied roughly by two and ten when 

moving from 90% to 95% and 99% of the diversification benefit, respectively. In 99% 

figure, we see that wealth ratio-based metric for risk neutral investor (red solid line) 

starts to lose its linearity as the resulting portfolio size starts to approach benchmark 

portfolio size.  
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Figure 46. Required number of stocks for 95% diversification benefit when 𝒇 = 𝟏. 

 

Figure 47. Required number of stocks for 99% diversification benefit when 𝒇 = 𝟏. 

Table 16 and Table 17 summarize the required level of diversification numerically for 

the short and long-term, respectively. Both tables show the required level of 
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diversification as a function of three different investment fractions and for risk averse 

and risk neutral investor separately. Table 16 additionally shows the minimum number 

of stocks required for positive risk premium, while Table 17 shows the long-term 

required level of diversification for four investment time horizons.  

It is evident from these tables that investment fraction plays a significant role as a 

determinant of diversification effects in a continuous-time world. Similarly, for a long-

term risk neutral investor, it is evident that the required level of diversification 

increases approximately directly proportional to investment time horizon. Risk averse 

investor always requires more diversification compared to risk neutral investor, but the 

difference decreases as a function of time. The remarkable property of diversification 

in a continuous-time world is that long-term risk neutral investor benefits from it 

almost as much as risk averse investor. In a single period world, there is no such thing 

as diversification benefit for a risk neutral investor. 

Table 16. Required number of stocks for the short-term.  

Investment fraction 0.6 

2 

1 1.5 

25 
Positive RP 1.03 

27300000 

1.91 3.31 

27300000 
 Panel A: 90% of the maximum diversification benefit 

Risk averse RP ratio 92.9 

-7.528E-02 

118 156 

-6.716E-03 
Risk neutral RP ratio 10.3 

0.9917 

19.0 32.9 

0.9986 
 Panel B: 95% of the maximum diversification benefit 

Risk averse RP ratio 190 

-7.528E-02 

238 312 

-6.716E-03 
Risk neutral RP ratio 20.6 

0.9917 

37.9 65.4 

0.9986 
 Panel C: 99% of the maximum diversification benefit 

Risk averse RP ratio 854 

-7.528E-02 

1033 1293 

-6.716E-03 
Risk neutral RP ratio 101 

0.9917 

184 312 

0.9986 
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Table 17. Required number of stocks for the long-term. 

Investment fraction 0.6 

2 

1 1.5 

25 
Time horizon [years] 10/20/40/60 10/20/40/60 10/20/40/60 

 Panel A: 90% of the maximum diversification benefit 

Risk averse wealth ratio 36.5/29.7/31.3/37.8 

-7.528E-02 

56.8/55.2/71.0/93.6 94.2/104/147/200 

Risk neutral wealth ratio 5.0/10.1/20.1/30.1 14.0/27.9/55.5/82.8 31.4/62.3/123/183 

 Panel B: 95% of the maximum diversification benefit 

Risk averse wealth ratio 74.2/60.1/63.4/76.8 115/111/143/188 188/208/294/394 

Risk neutral wealth ratio 10.3/20.6/41.1/61.5 28.6/57.0/113/167 64.0/127/247/363 

 Panel C: 99% of the maximum diversification benefit 

Risk averse wealth ratio 358/291/307/370 535/520/659/842 838/912/1226/1552 

Risk neutral wealth ratio 52.4/104/204/300 143/279/531/759 312/590/1065/1456 

 

5.8 Investing style driving diversification effects 

5.8.1 Firm size makes a difference 

The time period from January 1973 to June 2018 is dominated by microcap stocks. On 

average, more than 60% of the stocks are microcaps. Diversification premium and 

consequently all of our diversification metrics are very much functions of firm size. 

We show that diversification premium increase monotonically as a function of firm 

size (measured as market capitalization) decile and that especially big, but also small, 

stocks require substantially less diversification compared to microcap stocks. 

Figure 48 shows the diversification premium for benchmark portfolio as a function of 

firm size decile. Simultaneously, geometric risk premiums are shown for benchmark 

and single stock portfolios. Standard deviation for the benchmark geometric risk 

premium is shown as well. Stock deciles are formed monthly based on previous month 

market capitalization. 



 209 

 

Figure 48. Diversification premium as a function of firm size. 

We can see from Figure 48 that diversification premium increase monotonically as a 

function of firm size decile implying the cost of foregone diversification increase as a 

function of decreasing firm size. Single stock risk premium is positive for the two 

largest deciles and negative for the remaining 8 deciles. Two first size deciles roughly 

correspond to big stocks universe which on average consist of about 1000 firms. By 

randomly picking a single stock from the 8 smallest deciles, investor is expected to 

earn less than riskless rate. Diversification premium is a function of idiosyncratic 

variance. Idiosyncratic variance seems to somewhat correlate with systematic variance 

(standard deviation of the benchmark). Small stock premium for equally weighted 

portfolios appears to be fully explained by the very large risk premium for the smallest 

decile. 

Figure 49, Figure 50 and Figure 51 show the required number of stocks to achieve 

90% of the maximum diversification benefit at investment fraction one for microcap, 

small and big stocks, respectively. On average, close to three times more stocks are 

typically required for microcap portfolio compared to big stock portfolio. 
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Figure 49. Required number of microcap stocks for 90% diversification benefit when 𝒇 = 𝟏. 

 

Figure 50. Required number of small stocks for 90% diversification benefit when 𝒇 = 𝟏. 
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Figure 51. Required number of big stocks for 90% diversification benefit when 𝒇 = 𝟏. 

Table 18 and Table 19 summarize the short-term and long-term required number of 

stocks to achieve 90% of the maximum diversification benefit for each firm size group 

at investment fraction one. 

Table 18. Short-term required number of stocks per firm size for 90% diversification benefit at 

investment fraction one. 

 Short-term diversification metric 

Firm size Positive RP Risk neutral RP ratio Risk averse RP ratio 

Big stocks 0.85 8.4 53.6 

Small stocks 1.30 12.9 70.3 

Microcap stocks 2.26 22.5 132 
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Table 19. Long-term required number of stocks per firm size for 90% diversification benefit at 

investment fraction one. 

 Long-term diversification metric [10/20/40/60 years] 

Firm size Risk neutral wealth ratio Risk averse wealth ratio 

Big stocks 5.0/10.0/19.9/29.5 26.1/23.7/27.7/34.9 

Small stocks 8.5/16.9/33.3/49.2 38.1/36.6/44.7/57.1 

Microcap stocks 18.1/36.0/71.3/106 65.6/66.1/88.2/117 

 

5.8.2 Factor exposures determining diversification effects 

In addition to firm size, we find that other commonly known investing styles 

significantly affect the required level of diversification. Exposure to high ROE (high 

earnings to book, i.e., high E/B), high momentum (high MOM), value stocks (high 

book to price, i.e., high B/P) or any combination of these (high earnings to price, i.e., 

high E/P) or high E/P combined with high MOM (high E/P&MOM) require 

significantly less diversification compared to portfolio with no factor exposure or 

opposite exposures to these factors. Notice that earnings yield E/P = (E/B)*(B/P) 

implying that high E/P is a combination of high ROE and value strategies. E stands for 

earnings, B for book value of equity, P for price and MOM for momentum. 

We form the style portfolios by selecting highest and lowest 30% of the stocks to high 

and low style portfolios respectively. For example, value style portfolio (high B/P) is 

formed by selecting 30% of the stocks with highest B/P value each month, while 

growth style portfolio (low B/P) is formed by selecting the 30% of the stocks with the 

lowest B/P value each month. Six months lagged values are used for accounting 

variables (book value of equity and earnings) to avoid look ahead bias. Momentum is 

calculated based on last 12 month (excluding the last month) cumulative return. Book 

value of equity is defined following Brandt, Santa-Clara & Valkanov (2009) as total 
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assets minus liabilities plus balance sheet deferred taxes and investment tax credits 

minus preferred stock value.  

Stocks are ranked to 20 quantiles based on each style factor. Each quantile is given a 

quantile score corresponding to quantile rank. We combine earnings yield and 

momentum styles by summing the earnings yield and momentum quantile scores and 

by selecting the high earnings yield & high momentum style (high E/P&MOM) stocks 

as the top 30% (quantiles 15-20) of stocks with the new combined score. Low earnings 

yield & low momentum style (low E/P&MOM) is the 30% (quantiles 1-6) of stocks 

with the lowest score.  

Figure 52 summarizes the diversification premium for benchmark portfolio as a 

function of investing style. Additionally, geometric risk premiums are shown for 

benchmark and single stock portfolios and standard deviation for the benchmark 

geometric risk premium is given. There is a dramatic difference in the diversification 

premium between the high and low exposures to tested investing styles. High earnings 

yield with high momentum (high E/P&MOM) requires the least diversification while 

low earnings yield (low E/P) requires the most. The difference is visible also in the 

average single stock risk premium which is positive for the high style exposures and 

very negative for the low exposures. This means that investing in a single high 

E/P&MOM style stock is expected to deliver a risk premium of 6.9% while investing 

in a single low E/P&MOM style stock is expected to deliver a risk premium of -21.4%. 

Style portfolio risk premium starts to increase from these figures as portfolios become 

more diversified achieving the benchmark risk premium (single stock risk premium + 

diversification premium) at full diversification. Similarly, as with the size deciles, we 

can see that there is some correlation between systematic variance (benchmark SD) 

and idiosyncratic variance (diversification premium). Also, the styles with high 

benchmark risk premium tend to require less diversification, which differs from the 

size decile test where high benchmark risk premium for the highest decile was 

associated with the greatest diversification premium. 
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Figure 52. Diversification premium as a function of investment style. 

Figure 53 and Figure 54 show the required level of diversification to achieve 90% of 

the maximum diversification benefit at investment fraction one for high earnings yield 

and low earnings yield styles, respectively. Low earnings yield style requires three to 

ten times more diversification depending on the diversification metric. Long-term risk 

averse wealth ratio (red dashed line) approaches its risk neutral counterpart (red solid 

line) very quickly and very slowly for high and low earnings yield styles, respectively. 

Long-term risk averse liability matching portfolio targeting investor who tolerates 

short-term risk cares mostly about the red dashed line. In case of high earnings yield 

style, the red dashed line in the long-term is very close to red solid line, the long-term 

risk neutral investor metric. For this particular investor type combined with this 

particular investing style, the risk seems to dissipate in the long-term. 
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Figure 53. Required number of high E/P stocks for 90% diversification benefit when 𝒇 = 𝟏. 

 

Figure 54. Required number of low E/P stocks for 90% diversification benefit when 𝒇 = 𝟏. 

Table 20 and Table 21 summarize the short-term and long-term required number of 

stocks to achieve 90% of the maximum diversification benefit for each investing style 
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at investment fraction one. We can see that the required level of diversification 

correlates strongly with the diversification premium. All of the metrics indicate much 

greater required level of diversification for the low exposures to selected investment 

styles compared to corresponding high exposures.  

Table 20. Short-term required number of stocks per investing style for 90% diversification benefit 

at investment fraction one. 

 Short-term diversification metric 

Investing style Positive RP Risk neutral RP ratio Risk averse RP ratio 

High E/P&MOM 0.51 5.1 54.8 

High E/P 0.61 6.1 61.5 

High E/B 0.82 8.2 63.5 

High MOM 0.86 8.6 69.3 

High B/P 0.95 9.5 84.7 

EW MKT 1.91 19.0 118 

Low B/P 9.61 90.0 272 

Low E/B 3.70 35.9 149 

Low MOM 7.62 72.5 238 

Low E/P&MOM 8.15 77.0 246 

Low E/P 6.05 58.0 204 

Basically, selecting a style with low diversification requirement implies that stock 

picker is exposed to risk factors associated to the style already at low levels of 

diversification. On the other hand, selecting a style with high diversification 

requirement implies that stock picker is exposed relatively less to risk factors, but more 

to firm specific, idiosyncratic factors. For example, an investor investing to high 

earnings yield stocks very quickly gets exposed to the risks and rewards associated 

with that style whereas the success of an investor investing to low earnings yield stocks 

depends more on his firm selection than style selection at low levels of diversification. 
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Further study is required to better understand the drivers for the different 

diversification needs behind investing styles. For example, DuPont analysis could 

reveal in more detail why high ROE style and its derivatives such as high earning yield 

style require so little diversification compared to low ROE and low earnings yield 

styles. 

Table 21. Long-term required number of stocks per investing style for 90% diversification benefit 

at investment fraction one. 

 Long-term diversification metric [10/20/40/60 years] 

Investing style Risk neutral wealth ratio Risk averse wealth ratio 

High E/P&MOM 6.8/13.6/26.9/40.0 

5.1 

14.3/17.6/28.9/41.3 

High E/P 7.6/15.2/30.1/44.6 17.0/20.3/32.6/46.3 

High E/B 8.1/16.0/31.7/46.9 23.4/24.8/36.3/50.0 

High MOM 10.2/20.2/39.9/59.0 24.1/28.0/43.8/61.6 

High B/P 12.0/23.8/46.9/69.2 26.5/31.7/50.8/71.8 

EW MKT 14.0/27.9/55.5/82.8 56.8/55.2/71.0/93.6 

Low B/P 18.0/35.5/69.2/101 212/216/226/239 

Low E/B 21.7/42.8/82.8/120 100/100/119/145 

Low MOM 22.5/44.3/86.1/125 183/186/198/217 

Low E/P&MOM 22.8/44.8/86.8/126 190/194/206/224 

Low E/P 23.9/47.0/91.0/132 153/154/169/192 

We consider the results shown in section 5.8 as supportive to hypothesis 7. 

Hypothesis 7: Number of stocks required to make a diversified portfolio is a function 

of investment style.  

5.9 Evidence on the consistency of the historical diversification premium 

We have shown how geometric risk premium can be decomposed into single stock risk 

premium and diversification premium. Furthermore, we have shown that the 
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diversification premium varies substantially as a function of firm size and investing 

style. Diversification premium is an average over time. But how consistent 

diversification premium is as a function of time? The answer is very consistent. 

Figure 55 shows the equally weighted market risk premium (blue line) decomposed to 

single stock risk premium (black line) and diversification premium (red line) as a 

function of time. Premiums are monthly values (not annualized). We get the blue line 

by summing black and red lines. What is immediately clear is that it is the single stock 

risk premium that is responsible for the large variance (risk) of the market risk 

premium. Diversification premium’s contribution to the variance of the market risk 

premium is negligible. The time series variance of the diversification premium is very 

small compared to time series variance of risk premium. In other words, compared to 

risk premium, diversification premium is very consistent as a function of time. And 

unlike risk premium, diversification premium is always positive. 

 

Figure 55. Decomposed EW market geometric risk premium. 

Figure 56 allows us to have a more detailed picture of the same diversification 

premium as in Figure 55. In addition to diversification premium (red line), we show 

drawdowns (blue line) and bear markets (with black line) as a function of time. We 
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consider bear market to begin when cumulative monthly equally weighted market 

return falls 20% from recent highs and to end when cumulative return rises 20% from 

the recent lows. Crossing the 20% mark must last at least three consecutive months. 

We can see that diversification premium is relatively low when the market is calm and 

drawdowns small. Around large drawdowns, diversification premium is relatively 

high. There appears to be a correlation such that diversification is most beneficial when 

uncertainty is high and the market is volatile.  

We find that diversification works when it is the most needed meaning the bear 

markets. Diversification premium (annualized) is on average 19.4 percentage points 

compared to 13.3 percentage points during bear and bull markets, respectively. There 

are 129 and 417 bear and bull market months, respectively.  

 

Figure 56. Association between diversification premium, drawdowns and bear markets. 

Finally, Figure 57 compares diversification premium ratios for opposite investing 

styles as a function of time. Ratios are based on monthly values. We have shown in 

Figure 52 that diversification premium, calculated as an average over time, is much 

higher for low exposures to E/B (ROE), MOM (momentum) and B/P (value) compared 

to high exposures to corresponding factors. Diversification premium ratio has 

straightforward interpretation as telling how much more diversification is required for 

low end exposure compared to high end exposure for a selected style to keep the cost 
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of foregone diversification equal. For example, based on the black line, monthly high 

ROE style requires roughly 1 to 8.5 times less diversification compared to low ROE 

style. Diversification premium ratios do vary as a function of time, but we can see that 

there are very few values below one. This means that the high exposure to a factor 

very consistently requires less diversification compared to low exposure to that 

particular factor. 

 

Figure 57. Diversification premium ratios within factors. 

In Table 22 we compare how consistent the diversification premium difference is 

compared to risk premium difference between opposite styles within one factor. For 

example, it is well known that even though value has outperformed growth in the very 

long-run, there are long periods of time when growth has outperformed. Calculated 

based on monthly risk premium difference (value RP - growth RP), we find that value 

has outperformed on slightly more than six out of ten months. However, when 

comparing the diversification premium ratio, we find that value has required less 

diversification than growth on close to nine out of ten months. The difference in 

consistency is the most striking for high ROE versus low ROE style comparison where 

we find that high ROE has required less diversification in 544 out of 546 months. We 
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conclude that the difference in diversification requirement has been far more consistent 

and reliable than the difference in risk premiums between investing styles. 

Table 22. Comparing consistencies of risk premium difference and diversification premium ratio. 

 Investing style 

Metric [#months] ROE Momentum Value 

RP difference > 0 58.1% 65.2% 61.7% 

DP ratio > 1 99.6% 92.5% 86.6% 
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6 CONCLUSIONS 

In this thesis we searched for the answer to question: how many stocks make a 

diversified portfolio in a continuous-time world? The question is thoroughly 

researched, but in the context of a theoretical single period model. Our contribution is 

to bring the question to the realm of continuous-time world which we show to 

fundamentally change the answer.  

As the single period framework is inadequate in continuous-time setting, we derive a 

completely new, information theory based, theoretical framework to assess 

diversification effects in a continuous-time world. The fundamental difference 

between single period and continuous-time worlds is the use of arithmetic versus 

geometric mean returns, respectively. Academic world typically utilizes arithmetic 

returns, but the vast majority of investment practitioners care about geometric rates of 

returns making our results of interest to large audience. 

Perhaps the most fundamental difference between single period and continuous-time 

worlds is that in a single period world there is no such concept as diversification benefit 

for risk neutral investor, but continuous-time world risk neutral investor benefits from 

diversification as geometric mean return is an increasing function of level of 

diversification. Consequently, we show that diversification in a continuous-time world 

is a negative price lunch as opposed to free lunch in a single period world.  

Further fundamental differences arise when we explore the effect of asset allocation 

(or leverage) and investment time horizon length to required level of diversification. 

Diversification effect in single period model is indifferent to fraction of assets 

allocated to stocks and, by construction, does not consider the effect of time. In a 

continuous-time world, we show that asset allocation is a dominant determinant for 

the required level of diversification implying leveraged portfolios call for very wide 

diversification while 60/40 portfolio requires significantly less diversification than a 

portfolio with 100% stock allocation. For a long-term risk neutral investor, we use 

wealth ratio-based diversification metric and show that the required level of 

diversification increases directly proportionally to investment time horizon. 

Furthermore, different investment styles have vastly different requirements for the 
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level of diversification. Small stocks, particularly microcaps, require more 

diversification than big stocks. High ROE, high momentum, value, high earnings yield 

and high earnings yield combined with high momentum require substantially less 

diversification compared to equally weighted market portfolio and particularly 

compared to opposite styles.  

The conventional wisdom, based on the early empirical results utilizing single period 

model, states that no more than about ten stock are required to make a sufficiently 

diversified portfolio. We find that in a continuous-time world, risk averse investor with 

100% stock allocation requires more than hundred stocks to exhaust 90% of the 

diversification benefit potential, while risk neutral investor requires about twenty 

stocks in the short-term and substantially more in the long-term. 

In a single period world one stock portfolio is sufficiently diversified for risk neutral 

investor. In a continuous-time world rational risk neutral investor without stock 

picking skill will diversify to all stocks as maximum diversification implies maximum 

geometric risk premium. In this case the number of stocks that makes a sufficiently 

diversified portfolio is all stocks. 

The number of stocks required to make a diversified portfolio is predicted by the 

developed theoretical framework using empirical parameters as inputs. The 

predictions are shown to be consistent and accurate, but with a slight tendency for 

underestimation. The underestimation is attributable to fat-tailedness of the monthly 

portfolio risk premium distributions combined with monthly rebalancing frequency. 

Fat-tailedness further increases the need for diversification, but also implies that we 

need to be careful and require very large sample sizes before drawing conclusions. 

Investors can benefit from these results by better understanding the factors affecting 

the required level of diversification. Instead of one simple answer, our study provides 

the tools to assess the need for diversification based on investor’s individual 

circumstances and investing targets. Stock pickers, in particular, may benefit from 

understanding the differences in diversification benefits between investing styles. 
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Finally, our thesis offers one piece to equity premium puzzle. This piece is the 

diversification premium difference to benchmark, which is the difference in 

(geometric) risk premiums between a less than perfectly diversified portfolio and 

perfectly diversified benchmark portfolio. Before the easy and cheap access to 

diversification available today, investors were not able to diversify broadly because of 

the associated costs. The aggregate of less than perfectly diversified investors set the 

required level for risk premium. Historical theoretical risk premium for fully 

diversified benchmark, not realizable for less than perfectly diversified investors, 

therefore is higher (by the magnitude of average diversification premium difference to 

benchmark) than practical risk premium required by (and realized for) investors. 
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Appendix 1 

Derivation of the instantaneous geometric risk premium using Euler’s number 

identity approach 

We continue the derivation from equation (19):  

 

𝑔𝑒(𝑓) = 0.5(
∑ ln [1 + 𝑓 (

𝑚𝑒,𝑖

𝑛
+
𝑠𝑒,𝑖

√𝑛
)]𝑛

𝑖=1 +

∑ ln [1 + 𝑓 (
𝑚𝑒,𝑖

𝑛
−
𝑠𝑒,𝑖

√𝑛
)]𝑛

𝑖=1

). 

 

 

𝑔𝑒(𝑓) =
1

2
∑(ln [1 + 𝑓 (

𝑚𝑒,𝑖

𝑛
+
𝑠𝑒,𝑖

√𝑛
)] + ln [1 + 𝑓 (

𝑚𝑒,𝑖

𝑛
−
𝑠𝑒,𝑖

√𝑛
)])

𝑛

𝑖=1

 

             =
𝑛

2
(ln [1 + 𝑓 (

𝑚𝑒

𝑛
+
𝑠𝑒

√𝑛
)] + ln [1 + 𝑓 (

𝑚𝑒

𝑛
−
𝑠𝑒

√𝑛
)]) 

             =
𝑛

2
ln ([1 + 𝑓 (

𝑚𝑒

𝑛
+
𝑠𝑒

√𝑛
)] [1 + 𝑓 (

𝑚𝑒

𝑛
−
𝑠𝑒

√𝑛
)]) 

             =
𝑛

2
ln[𝑏(𝑓)𝑐(𝑓)] 

𝑏(𝑓)𝑐(𝑓) = 1 + 𝑓
𝑚𝑒

𝑛
− 𝑓

𝑠𝑒

√𝑛
+ 𝑓

𝑚𝑒

𝑛
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𝑚𝑒
2

𝑛2
− 𝑓2𝑠𝑒

𝑚𝑒

𝑛3 2⁄
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2
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2
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2
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2
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            =
1

2
𝑎(𝑓)

𝑛

𝑎(𝑓)
 ln [1 +

𝑎(𝑓)

𝑛
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𝑎(𝑓)

2
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𝑎(𝑓)

𝑛
]
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) 

We can substitute: 

𝑥 =
𝑛

𝑎(𝑓)
 

And have: 

𝑔𝑒(𝑓) =
𝑎(𝑓)

2
 ln ([1 +

1

𝑥
]
𝑥

) 

By utilizing Euler’s number identity given in equation (15), when 𝑛 → ∞ implying 

𝑥 → ∞, we can write: 

lim
𝑛→∞

𝑔𝑒(𝑓) = 𝑔∞
𝑒 =

lim
𝑛→∞

𝑎(𝑓)

2
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𝑛→∞

ln([1 +
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]
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𝑥
]
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2

2
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2
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Appendix 2 

Derivation of diversification premium in the presence of uncertainty about 

idiosyncratic risk 

We denote 𝑆𝑑𝑒𝑣̂𝐵𝑀, 𝑆𝑑𝑒𝑣̂𝑃 and 𝑆𝑑𝑒𝑣̂𝑛=𝑓=1 as the parameter estimator for the standard 

deviation of instantaneous excess growth rate of a benchmark, portfolio and single 

stock portfolio with 100% allocation to stocks respectively. In addition, we denote 

𝐼𝑠𝑑𝑒𝑣̂𝑃 and 𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1 as the parameter estimator for the idiosyncratic standard 

deviation of instantaneous excess growth rate of a portfolio and single stock portfolio 

with 100% allocation to stocks respectively. 

𝐷𝑃𝑃 =
𝑓2

2
([𝑉𝑎𝑟𝑛=𝑓=1 + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝑛=𝑓=1)] − [𝑉𝑎𝑟𝑃 + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝑃)]) 

Assumption: zero correlation between 𝑆𝑑𝑒𝑣̂𝐵𝑀 and 𝐼𝑠𝑑𝑒𝑣̂𝑃. 

𝐷𝑃𝑃 =
𝑓2

2
([𝑉𝑎𝑟𝐵𝑀 + 𝐼𝑣𝑎𝑟𝑛=𝑓=1 + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)]

− [𝑉𝑎𝑟𝐵𝑀 + 𝐼𝑣𝑎𝑟𝑃 + 𝑉𝑎𝑟(𝑆𝑑𝑒𝑣̂𝐵𝑀) + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑃)]) 

          =
𝑓2

2
([𝐼𝑣𝑎𝑟𝑛=𝑓=1 + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)] − [𝐼𝑣𝑎𝑟𝑃 + 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑃)]) 

From equation (33) we have: 

𝐼𝑣𝑎𝑟𝑃 =
𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝑃
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𝐼𝑣𝑎𝑟𝑛=𝑓=1

𝑛𝐵𝑀
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1

𝑛𝑃
−

1

𝑛𝐵𝑀
) 𝐼𝑣𝑎𝑟𝑛=𝑓=1 

Similarly, we can derive: 

𝐼𝑣𝑎𝑟̂𝑃 = (
1

𝑛𝑃
−

1

𝑛𝐵𝑀
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1
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𝐷𝑃𝑃 =
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1
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2
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] 𝑉𝑎𝑟(𝐼𝑠𝑑𝑒𝑣̂𝑛=𝑓=1)] 
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