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ABSTRACT 

The early repolarization is one form of heart’s electrical disorder. The scope of 
this thesis is to develop an algorithm, which detects the marks of the early 
repolarization from the electrocardiography data. The definition of the early 
repolarization was fine-tuned in 2015 and the updated definition is used in this 
thesis. The implementation of the algorithm is done with Matlab. 

The theory part of this work includes description of the heart’s structure, 
physiology and review of the most common heart diseases. The heart’s electrical 
functionality is explained in more detail and the principle of the 
electrocardiography is viewed, including the main precepts of the analysis of 
electrocardiography data. The definition of the early repolarization is presented 
in detail and the significance of this phenomenon is evaluated based on the 
research data. This work also includes short survey of some of the existing 
methods for detecting the early repolarization from the electrocardiography 
data. Thesis includes also the description of the algorithm developed in this work 
and the analysis of the results. 

The performance of the algorithm is evaluated with manually classified ECG 
test set. The sensitivity of the algorithm is 94.0% and the specificity is 92.2%. The 
correlation to mortality was also studied for few different versions of the 
algorithm with the Health 2000 data. The correlation to mortality is found with 
two algorithm versions. The algorithm version with slightly relaxed early 
repolarization definition shows increased risk for all-cause-mortality in inferior 
leads, when the slur detection is deactivated. The algorithm version with precise 
thresholds of the early repolarization definition shows increased risk for all-
cause-mortality and for cardiac death in inferior leads, when the slur detection is 
deactivated. 
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TIIVISTELMÄ 

Tämä diplomityö käsittelee sydämen sähköisen toiminnan häiriötilaa, jota 
kutsutaan aikaiseksi repolarisaatioksi. Työn tavoitteena on kehittää algoritmi 
havaitsemaan aikaisen repolarisaation merkit sydämen elektrokardiografia 
mittausdatasta. Tämä työ perustuu vuonna 2015 tarkennettuun aikaisen 
repolarisaation määritelmään. Työssä kehitetty algoritmi on toteutettu 
Matlabilla. 

Diplomityön teoriaosuudessa käydään läpi sydämen rakennetta, fysiologiaa ja 
yleisimpiä sydänsairauksia. Työssä tutustutaan tarkemmin sydämen sähköiseen 
toimintaan, elektrokardiografian tuottamaan dataan ja siihen, miten tätä dataa 
voidaan tulkita. Aikainen repolarisaatio käsitellään omana osionaan, jossa 
käydään läpi sen tarkka määritelmä, arvioidaan tutkimuksiin pohjautuen ilmiön 
merkitsevyyttä sekä esitellään muutamia olemassa olevia menetelmiä aikaisen 
repolarisaation havaitsemiseen elektrokardiografia datasta. Työ sisältää myös 
kehitetyn algoritmin esittelyn ja tulosten analysointia.  

Algoritmin suorituskyky todettiin testisetillä, joka sisältää manuaalisesti 
luokiteltuja elektrokardiografia signaaleita. Algoritmin sensitiivisyys on 94,0% 
ja spesifisyys 92,2%. Tämän lisäksi ajettiin testejä kuolleisuus korrelaation 
selvittämiseksi muutamalla algoritmin variaatiolla Terveys 2000 datalle. 
Korrelaatio kuolleisuuteen löytyi kahdella algoritmivariaatiolla. Algoritmiversio 
hieman väljennetyillä aikaisen repolarisaation kynnysarvoilla ennustaa 
kohonnutta riskiä kokonaiskuolleisuuteen inferiorisissa signaaleissa, slur-
tunnistuksen ollessa pois käytöstä. Algoritmiversio aikaisen repolarisaation 
määritelmän mukaisilla tarkoilla kynnysarvoilla ennustaa kohonnutta riskiä 
sekä kokonaiskuolleisuuteen että sydänperäiseen kuolemaan inferiorisissa 
signaaleissa, slur-tunnistuksen ollessa pois käytöstä.  
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FOREWORD 
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This master’s thesis describes a journey which target is to create an algorithm for 
detecting the early repolarization from the ECG data. This work consists of exploring 
the research in the field, studying heart’s anatomy and physiology, learning how to 
read ECG signal, creating the algorithm and its implementation with Matlab and 
reporting the results.      

As this project is ending, I would like to express my gratitude for Professor Tapio 
Seppänen, PhD Tuomas Kenttä and Professor Heikki Huikuri for proposing this topic 
and contributing to defining the scope for this thesis. I would like to thank Professor 
Seppänen for supervising, PhD Kenttä for technical supervising and second examiner 
D.Sc. (Tech.) Juha Partala for his review. Special thanks to Ari, my family and friends 
for their encouragement and support during this project. 

 
 

Oulu, 30th October 2020 
 
Minna Moilanen 

 

 



 

ABBREVIATIONS 

 
ACS Acute coronary syndrome 
ACM All-cause-mortality 
AF Atrial fibrillation 
CD Cardiac death 
CI Confidence interval 
CAD Coronary artery disease 
DCM Dilated cardiomyopathy 
ECG Electrocardiography 
ER Early repolarization 
ERP Early repolarization pattern 
ERS Early repolarization syndrome 
Exp(B) Hazard ratio 
HCM Hypertrophic cardiomyopathy    
HF Heart failure 
IVF Idiopathic ventricular fibrillation  
INF Inferior 
LAT Lateral 
MI Myocardial infarction 
RCM Restrictive cardiomyopathy  
SCD Sudden cardiac death 
Sig. Significance, p value 
SVT Supraventricular tachycardia 
VF Ventricular fibrillation 
VT Ventricular tachycardia 
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1. INTRODUCTION 
 

Inside our chest, behind the sternum, beats a vital organ called heart. The heart is 
central component of the blood circulation system. The beating of the heart is enabled 
by its complex structure. The heart is a combination of many different tissue types, 
signaling networks and biomechanical components. Malfunctions in this organ can 
have severe effect to our body. The disorders of this organ can be related to heart’s 
own metabolism, vascular problems of the body, structural defect in the heart or 
disorder in the heart’s electrical system. The anatomy and the physiology of the heart 
are described in Chapter 2.  

In this thesis, one form of the heart’s electrical dysfunction is studied. The early 
repolarization (ER) is a condition where electrical cycle of the heart is disturbed. The 
ER is described in more detail in Chapter 2. Issues in the heart’s electrical conductivity 
can be detected by the electrocardiogram (ECG) measurement. The ECG is the most 
commonly used tool when studying cardiac problems and its basic principle is 
described in Chapter 2. The main goal of this work is to design and implement an 
algorithm, which enables automatic detection of ER from the ECG data. The algorithm 
is implemented in Matlab environment. 

Over the years, studies regarding the ER have presented contradictory results about 
the severity of the condition. Early studies by Klatsky et al. (2003) concluded the ER 
to be benign phenomenon [1]. A few years later Haïssaguerre et al. (2008) found the 
connection between ER and increased risk of cardiac death [2]. After the study by 
Haïssaguerre et al. the maleficent nature of ER has been manifested also by many other 
research groups for example Nam et al. [3], Rosso et al. [4], Tikkanen et al. [5] and 
Antzelevitch and Yan [6]. In 2016 Roten et al. proposed ER to be divided in to 
harmless and maleficent forms [7].  

The research regarding the ER long suffered from the vague ER definition. The 
research groups around the world have applied slightly different principles in their 
studies what comes to this phenomenon. In 2015 and 2016 the group of leading 
cardiologists created a consensus papers about the precise definition of the ER [8, 9]. 
In the past there have been several algorithms presented for finding the ER from the 
ECG signal. Some of these methods are presented in Chapter 2. In the algorithm 
development of this work, the ER definition from the consensus is used.  

This thesis consists of six chapters. In the Chapter 2, the structure of the heart as 
well as its basic functionality, relation to the nervous system and electrical activity are 
described. In addition, the second chapter includes a brief review of the most common 
heart diseases and more detailed information about the ER condition. In the Chapter 
3, the design process of the algorithm is described. The third chapter includes also 
description of the algorithm and information about the ECG data used in this thesis. 
The results of the thesis are presented in Chapter 4 and discussed in the Chapter 5. 
Thesis is summarized in Chapter 6. 
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2. THE ANATOMY AND PHYSIOLOGY OF THE HEART 
 
The blood circulates through the body providing it with the vital oxygen and nutrients. 
The blood also collects waste products from the organs and carries them to waste 
disposal system. The blood is kept moving by the heart, which acts as a pump. The 
heart has complicated structure consisting of several blood inputs and outputs, four 
chambers, multiple valves, different tissue types and electrical network. The heart also 
has interfaces to other functional entities of the body such as nervous system.  

2.1. The structure of the heart 

The heart is an organ that is a little bit larger than its owner’s fist. The weight of a male 
heart is approximately 280 g to 340 g and female heart is approximately 230 g to 280 
g. Anatomically the heart can be divided in to two parts. The upper part of the heart is 
called basis and the lower part is called apex. Apex points towards the left hip and 
basis points towards the right shoulder. In the surface of the heart, there are grooves 
where the arteries and veins travel. [13 p.13] 

The heart has four chambers; right atrium, left atrium, right ventricle and left 
ventricle (Figure 1). The right atrium receives blood from systemic circulation and 
from the heart’s own coronary veins, (the systemic- and pulmonary circulations are 
explained in more detail in Chapter 2.2). The right ventricle forms the majority of the 
front side of the heart. The right atrium and the right ventricle are separated by the 
atrioventricular valve called tricuspid valve. The tricuspid valve enables the blood 
flowing only from atrium to ventricle direction. The right ventricle and the pulmonary 
artery are separated by the semilunar valve called pulmonic valve. The pulmonic valve 
enables the blood flow only from ventricle to artery direction. The left atrium forms 
major part of the back surface of the heart. The left atrium receives blood from the 
pulmonary circulation via three to five pulmonary veins. The left ventricle forms the 
lower part of the heart. The left atrium and the left ventricle are separated by the 
atrioventricular valve called mitral valve. The mitral valve enables blood flowing only 
from atrium to ventricle direction. The left ventricle and the aorta are separated by the 
semilunar valve called aortic valve. Muscular walls around the ventricles are thicker 
than walls around the atriums. The walls of the left atrium and the left ventricle are 
thicker than the walls at the right side. This is due to the left side of the heart deals 
with larger pressure. [13 p.13-14]  

The tree-part wall separates the right and the left side of the heart. The uppermost 
wall is separating the atriums, bottom wall is separating the ventricles and in-between 
is the atrioventricular wall. The wall between the atriums is developed in two phases 
during the development of the fetus. In the first phase, the blood flow between the 
atriums is enabled via hole in the connecting wall. This hole is built twice in different 
locations during this development phase. At the second phase there is valve structure 
replacing the hole. Valve enables the blood flow from the right atrium to the left 
atrium. For most people, after the birth, this channel is closed and small dip remains 
in the tissue. The wall between the ventricles is mainly muscle tissue. The upper part 
of this wall changes into connective tissue and continues as atrioventricular area wall. 
The atrioventricular valves are connected into this wall. The triangle of Koch is located 
in this area. The triangle of Koch is formed by the connective tissue in the attachment 
location of the atrioventricular valve and the valve of the inferior vena cava. One of 
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the main conduction system parts of the heart, the atrioventricular node, is located in 
the area of the triangle of Koch. [13 p.14-15] 

 
 

 
 

 
Figure 1. The simplified image of the structure of the heart.  

 
The heart is covered by the pericardium. The purpose of the pericardium is to 

protect the heart muscle and to prevent too large and sudden movements. The 
pericardium protects also the beginnings of the aorta and the pulmonary artery. The 
pericardium consists of two layers; parietal leaf and visceral leaf. Between these layers, 
there is an intermediate layer containing lubricant. Under the pericardium is the heart 
wall consisting of the epicardium, the myocardium and the endocardium layers. The 
epicardium forms from the visceral leaf. The epicardium consists of mesothelial cells, 
connective tissue and fat tissue. The heart’s own blood vessels and nerves coming to 
the heart are located at the epicardium. The myocardium layer consists of heart muscle. 
The endocardium creates the inner surface of the heart’s chambers. It consists of the 
endothelial layer, that is the surface of the chambers and also the surface of the 
connective tissue layer. The connective tissue layer is below the endothelial layer and 
it is connected to the myocardium connective cells. The connective tissue layer 
includes main parts of the conduction system of the heart. [13 p.12]  
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The heart’s own metabolism is secured by several coronary arteries and coronary 
veins. The coronary arteries branch from the beginning of the aorta and in resting state, 
if healthy, they transfer 4 - 5% of the circulating blood. There are usually two main 
coronary artery branches in the heart. Left main branch of the coronary artery is called 
arteria coronaria sinistra and it is divided into front and downward going branch and 
rotating branch. These branches are divided again into several smaller branches. Right 
main branch of the coronary artery is called arteria coronaria dextra and its smaller 
branches rotate to the backside of the heart. Four main coronary veins transfer the 
blood mainly to the right atrium. [13 p.15-16]  

2.2. The basic functionality of the heart 

The blood that has released the oxygen and the nutrients to the body and received waste 
products from the body is returned to the lungs. The heart pumps the blood between 
two circulations; the systemic circulation and the pulmonary circulation. In Figure 2 
the systemic- and the pulmonary circulations are visualized. The blood from the 
systemic circulation arrives at the right atrium via inferior and superior vena cava. The 
chamber contraction is controlled by the electrical system of the heart (electrical 
system is described in more detail in Chapter 2.4). When the electric signal is initiated 
in the heart, the atriums depolarize and contract. The contraction makes the blood flow 
from the atriums to the ventricles. After the contraction of the atriums, electrical signal 
travels to the ventricles, which are usually filled at this point, and they depolarize and 
contract. As the ventricles depolarize the pressure in the chambers closes the 
atrioventricular valves. Increasing pressure in the ventricles opens the semilunar 
valves and the blood flows into the arteries. In repolarization, chamber pressure drops 
below the artery pressure and the semilunar valves are closed. From the right ventricle, 
the blood is pumped towards the pulmonary circulation via the pulmonary artery. In 
the pulmonary circulation, the blood is cleaned and oxygenized. The blood returning 
from the pulmonary circulation travels via pulmonary veins into the left atrium and 
from there to the left ventricle. The blood is pumped into the systemic circulation via 
aorta. [13 p.16-17, 28-31] 

The cardiac cycle is divided into the systole and the diastole phases. The closing of 
the atrioventricular valves starts the systole phase of the cardiac cycle. When listening 
the heart with for example a stethoscope, the sound coming from the closing 
atrioventricular valves can be heard as the first heart sound. During the systole phase, 
the semilunar valves open and the blood flows to the arteries. The closing of the 
semilunar valves ends the systole phase and starts the diastole phase of the cardiac 
cycle. The closing of the aortic valve can be heard as the second heart sound [14 p.340]. 
Soon after this the atrioventricular valves opens, and the blood starts to flow from the 
atriums to the ventricles. [13 p.28-31] 
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Figure 2. The simplified image of the systemic- and the pulmonary circulation. 

2.3. The nervous system and the heart 

The autonomous nervous system affects the functionality of the heart. It influences the 
heart rate, the contractibility of the heart muscle and the tone of the peripheral arteries 
and veins. The autonomous nervous system influences the heart also in humoral 
manner, for example via catecholamine and renin. The catecholamine is a 
neurotransmitter and hormone from the adrenal gland. The renin is an enzyme emitted 
by kidney. The autonomous nervous system is divided in to the sympathetic and the 
parasympathetic nervous systems. [13 p.58] 

The activation of the sympathetic nervous system accelerates the heart functions. 
The sympathetic nervous system is activated when the body is experiencing stress. In 
stress the heart rate and the contractibility of the heart muscle is increased. Sympathetic 
nervous system influences the heart functionality mainly via beta1-receptors in the 
sinoatrial node area, the atrioventricular node area and in the heart muscle surrounding 
the chambers. [13 p.58] 

The parasympathetic nervous system acts as counterforce for the sympathetic 
nervous system. It controls the bodily functions such as the digestion and the diuresis 
during hibernation. The parasympathetic nervous system pacifies the heart functions. 
When this system is activated, heart rate slows down and the electrical conductivity 
decreases. The parasympathetic nervous system activation comes to the heart via 
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muscarinic receptors located mainly in the sinoatrial node area and the atrioventricular 
node area. [13 p.58] 

The baroreceptors are sensors that sense the stretching in the artery wall. The 
baroreceptors are located in the carotid arteries and at the arch of aorta. The 
baroreceptors have neural connection to the central nervous system. The signals from 
the baroreceptors indicate the status of the arteries and affect for example to the blood 
pressure. In addition to the baroreceptors, there are also chemical receptors in the same 
area. The carotid body is a main group of chemoreceptors and it is located in the carotid 
artery. The chemoreceptors supervise gases and acidity of the blood and sends signals 
to the nervous system. [13 p.59-60] 

2.4. The electrical activity of the heart 

The majority of the heart cells are contractile myocardial cells. In addition to the 
myocardial cells, the heart muscle includes cells that are optimized for electrical 
activity. Through these electrical conducting cells, electrical impulse can travel in 
heart muscle and cause contractions in the right location at the right time. Tissue 
around the heart’s four chambers acts as an electrical isolation. [13 p.16-18] 

The sinoatrial node, which is located at the upper part of the back wall of the right 
atrium, generates the electrical impulses. In Figure 3 the electrical network of the heart 
is visualized. From the sinoatrial node, the signal spreads to the walls of the right and 
the left atriums. This causes the contraction of the atriums and the blood flow into the 
ventricles. From the atriums, the impulse travels via the atrioventricular node and the 
bundle of His towards the ventricles. The bundle of His is an electrical conductor 
between the ventricle and the atria. The bundle of His spreads into the right and the 
left branches. The right and the left branches are again spread into the thin Purkinje 
fibers surrounding the ventricles. [13 p.17, 48] 

The flow of ions inside the cells and in the cell membranes enables the electrical 
activity of the heart. The sodium, the potassium and the calcium are the main ions that 
are involved in this electro-chemical process. The electrical conducting cells are 
electrically polarized having negative charge inside the cell in resting state. The 
potential difference over the cell membrane in resting state is usually -90 mV. The 
pumps in the cell membrane maintain this polarity. During the depolarization caused 
by the electrical impulse originated by the sinoatrial node, the electrical conducting 
cells charge changes momentarily. After the depolarization has travelled through the 
electrical conducting cells, the repolarization occurs, and cells return to their resting 
state. [13 p.48-49] 

The depolarization and the repolarization are processes, which can be measured 
noninvasively with electrodes from the skin surface. The ECG is a commonly used 
method for measuring the electrical activity of the heart. [15 p.11] 
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Figure 3. The simplified image of the electrical system of the heart. 

2.4.1. ECG measurement 

The ECG is the most common tool in investigating the functionality of the heart. The 
ECG system measures non-invasively changes in the voltage produced by the 
myocardial cells of the heart. In the ECG measurement, 10 electrodes are connected 
to the body and with these electrodes the 12-lead ECG is created [15 p.38]. The 
peripheral leads I, II, III, aVR, aVL and aVF measure potential differences between 
the limbs and show heart’s electrical changes in frontal plane. The chest leads, V1-V6, 
are positioned to the left side of the chest area and measure heart’s electrical activity 
in horizontal and sagittal plane. When studying some specific syndromes, some of the 
chest leads can be attached to alternative positions. For example, when studying the 
right ventricular infarction, the additional chest leads are positioned on the right side 
of the chest. The positioning of the chest leads too high or low will affect to ECG 
waveform. In addition, the position of the patient, lying or sitting, has an effect to ECG. 
Figure 4 shows the example of the signals of 12-lead ECG system. [16 p.31] 
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Figure 4. Example of the 12-lead ECG signals, permission to use this image acquired 

from the owner.  
 

The basic structure of the ECG signal is visualized in Figure 5. When the electrical 
impulse from the sinoatrial node arrives to the atriums, they contract. This contraction 
can be seen in the ECG as the P-wave. The atrial cells’ depolarizing characteristics in 
both atriums define the duration and the shape of the wave. During the P-Q interval of 
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the ECG signal, electrical impulse is traveling via the atrioventricular node and the 
bundle of His. This path is electrically narrow and the ventricles have enough time to 
fill with the blood. The depolarization of the ventricles forms the QRS complex in the 
ECG signal. The repolarization of the ventricles can be seen in the ECG signal as the 
S-T interval and the T-wave [17]. The origin of the occasionally seen U-wave is 
controversial; in different studies it has been associated to both repolarization 
processes of the heart and electromechanical functionality [17]. [16 p.31-32]. 

 
 

 
Figure 5. Simplified image of the ECG signal. 

 
 

The ECG signal is used for analyzing several different cardiac conditions. The form 
of the different parts of the ECG signal depends on the structure of the heart muscle 
and can expose hypertrophy, heart failure, ischemia, myocarditis and certain system 
level diseases. [13 p.126] 

The ECG measurement is prone to disturbances. Signal quality can be compromised 
for example by the muscle tension, the movement of the patient, the incorrectly 
connected electrodes or the alternating current. This type of disturbances can be seen 
in the ECG signal for instance as the fluctuation of the baseline, the high frequency 
noise and the inversion in the signal. [13 p.126-130] 

2.4.2. Medical analysis of the ECG signal 

The medical analysis of the ECG signal starts with the evaluation of the signal quality, 
finding possible disturbances and taking an overview of the signal. The next step is to 
study the speed and the regularity of the ventricular rhythm, the heart rate. The heart 
rate is defined from the sequential R peaks. If there is irregularity in RR-intervals, 
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several consecutive R peaks are used for calculating the average. The resting heart rate 
is usually between 60-100 beats per minute. [13 p.130-132] 

After the heartrate is defined, the location, the form and the duration of electrical 
activation of the atriums, the P-wave, is examined. Due to the structure of the heart 
and the ECG measurement locations the P-wave is positive in leads I, II and aVF. The 
P-wave morphology can reveal arrhythmia and abnormalities in the atriums such as 
the atrial hypertrophy or the interatrial and the intra-atrial conduction issues. [13 p.132] 

After the P-wave analysis the PQ-time, the conductance between the atrium and the 
ventricular, is measured. The duration of the PQ-time can be used for discovering the 
atrioventricular block or electrical shortcut. The long PQ-time usually refers to 
conduction issues in the atrioventricular node. This type of conduction issues can be 
caused by the drop in the sympathetic tone or the rise in vagal tone [16 p.32]. Cardiac 
drugs like digitalis or beta-adrenergic blocking agents cause similar affect as well as 
certain diseases that affect to atrioventricular junction [16 p.32]. The shortened PQ-
time can be caused by the impulses bypassing the atrioventricular node [16 p.32]. [13 
p.133-134] 

Next in the ECG signal comes the QRS complex. The QRS complex reflects the 
ventricle depolarization phase of the heart. The left ventricle is larger in size than the 
right ventricle. The depolarization of the left ventricle dominates in the QRS complex. 
From the QRS complex the duration and the amplitude are analyzed. The high 
amplitude might be a sign of the ventricular hypertrophy [13 p.134]. The fascicular 
blocks can be detected as changes in the early part of the QRS complex and as changes 
in the electrical axis in the frontal plane. The bundle branch blocks can cause wide 
QRS complex. The bundle branch blocks can be caused for example by the 
calcification or the fibrosis. [16 p.32-33] 

After the QRS complex, the T-wave is studied. The T-wave is caused by the 
ventricular repolarization. From the T-wave, the starting point and the peak are 
analyzed [13 p.137]. The T-wave can have one or two peaks [13 p.137]. The amplitude 
of the peak is measured. The T-wave can be symmetric, asymmetric or trench-like. It 
can be neutral, positive or negative. The T-wave direction is the same as the QRS 
complex direction. The T-wave is usually positive in leads I, V5 and V6 and negative 
in leads aVR and V1. The purpose of the T-wave analysis is to detect for example 
hypertrophy, myocardial ischemia or the stress in the right or the left side of the heart. 
[16 p.34-35]  

The T-wave is sometimes followed by the smaller U-wave and it can be difficult to 
separate the two. The source of the U-wave is disputable [17]. It can be detected easiest 
in leads V2, V3 and V4. The high U-wave amplitude can refer to the hypokalemia, but 
it can also correlate to usage of some cardiac drugs. [16 p.35] 

Next, the direction of the signal between the S and the T is interpreted. The ST area 
can reveal diseases like ischemia of the heart muscle, the acute pericarditis, the stress 
of the left chamber and the ER. The rising ST can be a sign of the ER, but it can be 
also found from healthy individuals. [13 p.137] 

As the final step of the ECG analysis the QT-time is measured. The QT-time 
includes both the depolarization and the repolarization phases. It is measured from the 
onset of the Q-wave to the end of the T-wave. Based on the literature the QT-time is 
longer with females than with males. Along with some heart diseases, the duration of 
the QT-time depends also on the heart rate. With fast heart rate the QT-time is shorter 
and with slow heart rate it gets longer. Due to this, there are correction factors used in 
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the QT-time analysis. The long QT-time can refer to hereditary ion channel disease, 
drug effect, ischemia or electrolyte imbalance. [16 p.35]  

2.5. Common heart conditions 

Due to the complexity of the heart, there are many structures that can be defected. In 
this chapter, some common heart diseases are shortly presented.    

The atherosclerotic coronary artery disease (CAD) is a group of coronary heart 
diseases. The atherosclerotic CAD is getting more common as obesity and type 2 
diabetes mellitus increases in population. The CAD group consists of the chronic 
stable angina, the acute coronary syndromes, the congestive heart failure, the sudden 
cardiac death (SCD) and the cardiogenic shock. [16 p.97].  

The myocardial diseases and the cardiomyopathy are conditions related to the heart 
muscle. There are three types of the cardiomyopathies; dilated, hypertrophic and 
restrictive. The dilated cardiomyopathy (DCM) is a functional problem of the left or 
both ventricles. In the DCM, the ventricles are dilated and have impaired contraction 
capability. The hypertrophic cardiomyopathy (HCM) is a heart disease where the left 
ventricle suffers from the hypertrophy. The HCM does not always cause symptoms 
and first sign of the disease can be the sudden cardiac arrest. The rarer form of the 
cardiomyopathy is the restrictive cardiomyopathy (RCM) which causes stiffness in the 
myocardium. The RCM prevents the heart tissue to stretch and fill with the blood 
normally [13 p.796]. Another heart muscle related disorder is he myocarditis. The 
myocarditis is inflammatory process. In the ECG, the myocarditis is usually seen as a 
nonspecific ST-segment and the T-wave changes, the atrial and the ventricular 
arrhythmias, the atrioventricular blocks and the wide QRS complex caused by the intra 
ventricular conduction issues. The heart failure (HF) is one form of the myocardial 
diseases. The HF is a syndrome where the left ventricle’s capability to fill or eject 
blood is decreased. The HF can be caused by underlying heart disease, for example the 
dysfunction of the myocardial muscle with simultaneous dilation or hypertrophy of the 
left ventricle. [16 p.145, 155, 161, 181, 184] 

The heart can suffer from the cardiac rhythm abnormalities. In the bradyarrhythmia 
the heart beats less than 60 beats per minute. The reason for the slow heartbeat in the 
bradyarrhythmia is a delay or a block in the conduction system of the heart. The 
problem can be in the electrical conduction network of the heart, drugs that change the 
functionality of the conductive cardiomyocytes or for example, diseases that affect the 
blood supply or the electrical conductivity of the heart. The supraventricular 
tachycardia (SVT) is the disease where the heartbeat is accelerated. The reasons behind 
the SVT are related to the disorder in the electrical system of the heart, locating above 
the His bundle. The SVT can be caused by the reentrant electrical circuit or by the 
atrial impulse outside the sinus node. The atrial fibrillation (AF) is the supraventricular 
tachyarrhythmia, which is originating from the random atrial activation. In the ECG 
the AF can be noticed as the P-wave abnormality. In the AF, the P-wave is replaced 
by the rapid oscillation. The ventricular tachycardia (VT) is the disease where the heart 
beats over 100 beats per minute. The cause of the VT is located in the conduction 
system distal to the His bundle or in the ventricular myocardium. In most of the VT 
cases, the ECG finding is a wide QRS complex. Patients with the VT usually have 
other heart diseases in the background. The syncope and the sudden cardiac death are 
also associated to the VT. [16 p.215, 223, 233, 241] 
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There are several different types of the valvular heart diseases. The blood flow from 
the left ventricle to the aorta can be limited by the aortic stenosis. The valvural aortic 
stenosis is disturbing the normal movement of the valve. Limited opening of the valve 
increases pressure in the left ventricle. This condition usually leads to the left ventricle 
hypertrophy and can cause abnormality of the left atrial. Another valve related 
condition is the aortic valve regurgitation. During the diastole, some of the blood from 
the aorta flows back in to the left ventricle. If the regurgitation is severe, it can cause 
the ventricle hypertrophy and lead to the systolic malfunction and the heart failure. In 
the mitral valve disease, the functionality of the mitral valve is decreased. This can be 
due to the mitral valve stenosis where the valve opening during diastole is not complete 
or the mitral regurgitation where the closing of the valve is not complete during the 
systole. This condition causes hypertrophy of the left atrium and the left ventricle and 
predisposes to the atrial fibrillation. [13 p.818-823, 835, 846-853] 

The two-layered membrane called the pericardium surrounds the heart. The acute 
pericarditis is the inflammation of the pericardium usually caused by virus or bacteria. 
The acute pericarditis shows in the ECG as various changes in the T wave morphology 
in different stages of the disease. [13 p.912-915] 

High blood pressure, the hypertension, is a contributor in many coronary events. 
The hypertension is caused by the increased resistance of the vessels, which forces the 
heart to use excess energy for pumping the blood. In time, the hypertension can lead 
to the left ventricle hypertrophy. [13 p.945] 

2.6. The early repolarization  

 
The electrical impulse is initiated in the sinoatrial node and it travels through the heart 
tissue causing contraction in the chambers as explained in Chapter 2.4. The ventricular 
depolarization shows as the QRS complex in the ECG signal [16 p.32]. The ER is 
premature regression of the polarization and is seen as a certain type of fragmentation 
at the end of the QRS complex [8]. The terminology related to the ER is two folded. 
The ER syndrome (ERS) is the condition where the VF or the VT is present together 
with the ER and patient does not have organic heart disease [9]. Otherwise, the ER 
condition can be referred to as the ER pattern (ERP) [9]. 

2.6.1. Significance of the ER 

The prevalence of the ER varies between 1 - 24% of the population depending on the 
study and most likely also on the applied ER definition [1, 5, 18, 19]. The ER has 
originally been considered harmless [1], but the study of Haïssaguerre et al. in 2008 
showed that there is a connection between the ER and the increased risk of cardiac 
death [2]. In the study by Haïssaguerre et al. the ECG signals of the group of patients 
with the idiopathic ventricular fibrillation (IVF) were analyzed. The finding was that 
the 31% patients having the IVF had the ER compared to the control group where the 
prevalence of the ER was 5%. The connection between the IVF and the ER was found 
also in the studies by Nam et al. in 2008 [3] and by Rosso et al. in 2008 [4].  

There have been many publications made concerning the ER during the last decade. 
Tikkanen et al. concluded in 2009 that for middle-aged people the ER in the inferior 



 

 

19 

leads of the ECG can be connected to the increased risk of the cardiac death [5]. In 
2010, the ER was connected with the ventricular fibrillation storms by Antzelevitch 
and Yan [6]. The ER notching in the inferior leads has been associated with the 
increased risk of the CAD patients’ life-threatening ventricular arrhythmias in research 
by Patel et al. in 2010 [20]. Based on the research by Tikkanen et al. in 2012, the ER 
is one component causing the fatal arrhythmia during the acute myocardial ischemia 
[21]. Kawata et al. reported 2013 that the ER in the inferolateral leads has aggravating 
effect on the Brugada syndrome in patients with the underlying VF [22]. Coexistence 
of the long QT time and the ER with high J-point elevation has been associated with 
cardiac symptoms in study of Laksman et al. in 2014 [23]. Stumpf at al. studied group 
of long-term endurance sport athletes and reported in 2016 that the ER is suspected to 
be one factor inducing the AF in athletes [24]. Research by Roten et al. 2016 proposes 
dividing the ER into the malignant and the benign forms based on the T-wave analysis 
[7]. The harmfulness of the ER can depend on the race based on Walsh et al. 2019 
[25]. In 2019, Haïssaguerre et al. reported that also late depolarization can appear as 
the J-wave in the ECG signal [26]. Holkeri et al. studied connection between the ER 
and the SCD [27]. Their result shows that in the case of Caucasian adults of age under 
50 years, the ER can be associated with the SCD. 

The definition of the ER was imprecise until 2015 when group of lead scientists in 
the area of cardiology published the first consensus paper to clarify the characteristics 
of the ER [8]. The work continued with the consensus conference report in 2016 [9]. 
The purpose of the consensus work was to provide guidelines for the future research. 
The content of the consensus is described in the Chapter 2.6.2.  

2.6.2. Definition of the ER 

The ER can be seen in the ECG signal as the notch (Figure 6) or the slur (Figure 7) in 
the downslope of the R peak. MacFarlane et al. have presented the definition for the 
ER pattern in the consensus paper [8]. In the consensus paper, the recommended 
terminology is following: the J onset means the onset of the notch, the J peak means 
the peak of the notch or the onset of the slur and the J termination means the end of 
the notch or the slur. [8] 

In the consensus paper, it is stated that the ER notch or slur is visible on the final 
50% of the downslope of the R peak. The notch and the onset of the slur are located 
above the baseline. The amplitude of the J peak must be at least 0.1 mV. Based on the 
consensus the notch or the slur is present in at least two contiguous inferior and/or 
lateral signals, excluding signals V1-V3. The consensus team’s proposal is that the QRS 
duration is measured from the signal, which does not have notch or slur. In the case of 
the ER, the QRS duration should be smaller than 120 ms. If the ER includes the ST 
segment rising towards the T-wave it is called the “early repolarization with an 
ascending ST segment”. Again, if ER includes the horizontal or downhill ST segment 
it is called the “early repolarization with a horizontal/descending ST segment”. [8] 
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Figure 6. The simplified image of the ECG with the ER notch morphology. 
 

 

 
 

Figure 7. The simplified image of the ECG with the ER slur morphology. 
 
 
The proposal in the consensus paper is to take following measurements when 

studying possible notch 
- the amplitude of the J onset 
- the amplitude the J peak  
- the amplitude the J termination of the notch 
- the duration from the J onset to the J peak of the notch 
- the duration from the J onset to the J termination of the notch 

The proposal in the consensus paper is to take following measurements when 
studying possible slur 

- the amplitude of the J peak 
- the amplitude of the J termination of the slur 
- the duration from the J peak to the J termination of the slur 
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In defining the ST-segment slope, the consensus proposal is to measure the 
amplitude difference between the J termination of the notch or the slur and the ST-
segment level at 100 ms after the J termination. If the ST-segment value is the same 
or less than the J termination value, the ST-segment is considered to be horizontal or 
downward sloping. If the ST-segment value is greater than the J termination value, the 
ST-segment is classified as upward sloping. [8] 

2.6.3. Methods for detecting the ER 

There are several different algorithms developed for the automatic detection of the ER 
over the years. Some of the existing methods are presented in this chapter. Maheshwari 
et al. developed 2013 a method for the automatic detection of the general QRS 
fragmentations [10]. In this method, the ECG is first preprocessed by correcting the 
baseline wandering and removing the noise. Then the QRS complex is extracted from 
the ECG by utilizing the information of the QRS morphology in time-domain and 
using gradient-based feature extraction algorithm. The QRS fragmentation is detected 
with the discrete wavelet transform using Haar wavelet. The morphology of the 
detected fragmentation is studied. The performance of this method was tested the with 
data from 31 patients whose data was evaluated by two cardiologists. The ECG data 
used in the study is from PhysioNet’s PTB data set. Out of the 372 leads, method 
correctly analyzed 334 leads. The sensitivity of this approach is 89.7% and the 
specificity is 89.9%. [10] 

Clark et al. introduced 2014 an automated algorithm for detecting the ER [11]. They 
utilized previously developed method for finding the notch by tracking changes in the 
ECG signal. The slur onset is detected by using two lines collinear to the R peak slope; 
one locked at the top of the R peak and another locked at the end of the slope. These 
two lines are settled over the R slope the way that the combined area between the signal 
and the lines is minimized. In this study, 100 ECGs from healthy young men (circa 22 
– 28 years) from West of Scotland were used and they were randomly split into the 
equal sized training and testing sets. The result is measured lead-wise and for the test 
set the sensitivity is 90.5 % and the specificity is 96.5 %. [11] 

Kenttä et al. developed an automated ER detection method 2015. As the 
preprocessing the studied signal is resampled to 500 Hz, the 50 Hz disturbance is 
removed, and signal is smoothed by using Savitzky-Golay filter. Next, the baseline of 
the signal is corrected, and the signal’s morphology type is analyzed. For detecting the 
notch, local peaks are searched from the R peak’s slope. If local peaks are found those 
are analyzed to determine if the notch criteria are met. If the local peaks are not 
detected the slur option is studied. The slur onset is searched by studying the changes 
in the angle of the R slope. If the angle change is larger than the defined threshold, the 
slur is detected. The ECG data used in this study is from Health 2000 data set. The 
sensitivity of the method is 96.2 % and specificity 90.1 %. [12] 

Tobón-Cardona et al. developed 2018 waveform prototype-based feature learning 
method for detecting the ER. In this approach, feature vectors are generated from the 
ER pattern location from the ECG signals. In the research, three classifiers were 
compared: the linear discriminant analysis, the k-nearest neighbor algorithm and the 
support vector machine. The support vector machine produced best results; the 
sensitivity of the method was 91.80% and specificity was 92.73%. [28] 
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3. AUTOMATIC DETECTION OF EARLY REPOLARIZATION  
 
The objective of this work is to create a method for the automatic detection of the ER 
from the ECG data. The ER definition used in this work is based on the consensus 
paper [8]. The algorithm implementation is done in the Matlab environment. The ECG 
data utilized in this work is pre-classified into the ER and the non-ER groups. The pre-
classified data is divided into the training set and the test set. Signals from the training 
set are used for the algorithm development. The signals from the test set are used only 
for the testing purpose. The description of the data is presented in Chapter 3.2. 

The algorithm design work started with the literature review concerning the ER 
phenomenon. The basic idea of the algorithm started to form by visually studying the 
ECG signals of the training set, analyzing the different shapes of the QRS 
configurations of the ER and the non-ER signals and reflecting these signals in to the 
ER definition from the consensus paper [8]. The ECG data consists of 12 signals: I, II, 
III, aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6. The consensus paper defines eight ECG 
signals to be used in the ER detection: the five lateral signals I, aVL, V4, V5, V6 and 
the three inferior signals II, III, aVF. [8] 

3.1. Description of the algorithm 

The structure of the automatic ER detection algorithm developed in this master’s thesis 
is presented in this chapter. The different functional entities of the implementation, 
such as the R peak location estimation, the baseline determination, the notch detection 
and the slur detection, are separated as sub-functions inside the main function. During 
the development of the implementation, the training set of the ECGs is used for 
development phase testing and improving the functionality.  

At the early stage of the processing there are quality checks for estimating if the 
signal is good enough for the automatic ER detection. If the ECG signal has quality 
issues, for example one or more of the eight signals are empty; the automatic ER 
detection cannot be done reliably. In case of the quality issues, the signal is not 
automatically processed but the signal ID is saved to text file for manual evaluation. 

3.1.1. Preprocessing of the ECG 

The first step is to read in the patient’s 12 lead ECG. Next, the signals are arranged 
into the matrix so that first eight signals contain the INF and the LAT leads. After this 
the content of the first eight signals are checked for validity. If any of these signals are 
containing only zeros, the ECG is not further processed. In this case, the signal is added 
to the list of signals to be manually examined. After this, the signals’ sampling 
frequency is checked. If the sampling frequency is under 500 Hz, then signals are 
resampled to achieve 500 Hz sampling frequency.  

Some ECG signals used in the development suffer from the 50 Hz disturbance. 
Based on the trials during the algorithm development it became evident that the 
removal of this disturbance is not straightforward. The signal morphology is slightly 
affected by the 50 Hz notch filtering. The need for the filtering is decided based on the 
power spectrum of the signal. If there is clear peak at the 50 Hz then the filtering can 
be performed. Since the signal morphology is affected by the 50 Hz notch filtering, 
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filtering was left as the optional step and it was not utilized for test set results. Example 
of the 50 Hz notch filtering in Figure 8. 

 
 

 
 

Figure 8. Left signal with interference, right the result of 50 Hz notch filtering. 
 

3.1.2. Locating the R peak 

The estimate about the R peak location is useful information for the later processing 
steps. Most commonly, the normal ECG signal has one high peak, which is the R peak. 
The R peak location has generally the same timing in all the 12 ECG signals. However, 
there are ECG signals, which might have fragmentation in top area of the R peak. 
Fragmentation can appear for example as there would be two or more lower peaks 
instead of one higher peak. In some signals, also the T wave top can be higher than the 
R peak. Due to these reasons, locating the R peak is more complicated than locating 
the highest peak of the ECG signal. In this implementation, the R peak location 
estimating is performed by utilizing all eight signals. First, the highest point and its 
location is searched for each of the eight INF and LAT signals. After this, the mean 
value of the locations is calculated. This is done for increasing the reliability of the 
general estimate of the R peak location. The local maximum value is then searched for 
each signal of the ECG, using the mean value of the previously calculated R location 
estimations as the center value and the experimentally selected range around it. After 
the R peak location is estimated, the information about the signals’ possible 
abnormality is evaluated. This is done by smoothing the signals, for the purpose of this 
processing step, and finding all the peaks. Then the largest peaks are compared to the 
R peak estimate achieved earlier. If the signal obtains more than two almost as high 
peaks as the R peak, the signal is defined as abnormal and added to list of signals to 
be manually examined. Estimations of the R peak location of the ECG are utilized in 
baseline defining step. Example of the R peak location estimation in Figure 9. 
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Figure 9. Example of the R peak location estimation, R peak location is the green 
circle in the image. 

3.1.3. The baseline level 

Defining the baseline level is important for achieving the as accurate as possible the 
slur and the notch related amplitude measurements. In this work, the baseline (zero 
level) of the ECG is decided to be the even area between the end of the P wave and the 
start of the QRS wave. The baseline calculation is performed by using the histogram 
data of the area between the P-end and the QRS start. Before calculating the histogram, 
the signal is smoothed from the studied area for the purpose of this step. The idea is 
that the most common value in the histogram data is considered to point out the true 
baseline. If there are more than one as common values found in the histogram these 
are studied further. In case these values are close to each other, their average is selected 
to be the baseline. If these values have large difference, the one that is closest to the 
original zero level is selected to be the baseline. In most cases, in the training set 
signals, there is only one most common value in the histogram data. In the case of the 
one common value, its validity is further evaluated. If the most common value differs 
very much from the original zero level, it is not trusted. In this case, the next most 
common values from the histogram are evaluated and the one closest to original zero 
level is selected to be the baseline. After the baseline is found, the zero level of the 
ECG signals is corrected for further processing steps. Example of the baseline level 
defining in Figure 10.  
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Figure 10. The example of the baseline level defining, the new baseline is dotted red 

line in the image. 

3.1.4. Duration of the QRS complex 

Next step is the QRS complex duration estimation. This starts by finding the Q starting 
position. By utilizing the R peak location estimation, the R peak top is defined. After 
this, using the R peak’s amplitude, the root of the R peak’s rising edge is located and 
the area from the R peak’s root towards the P wave is selected for the evaluation. The 
adjacent value differences are defined, and signal’s sign changes are analyzed for 
estimating the Q bottom location. After the estimation of the Q bottom is available, 
same principle is used for locating the Q start. Finding the QRS complex end position 
is performed with the same principles as the locating of the Q bottom and the Q start. 
From some ECG signals, it is difficult to locate both the Q start and the S end position 
reliably. In addition to this, the QRS complex duration should be measured from 
signals free from the ER. In this implementation, the QRS duration calculation is 
performed to all eight ECG signals. If from one of the eight ECG signals the Q start 
can be found reliably and the S end can be detected from another signal, this 
information is in this implementation combined to get the estimate of the QRS 
complex duration. In this work, the QRS complex calculation is left as an optional step 
and is not utilized in official test set results. This is due to the ECG signals in training 
and testing sets have been selected so that all signals have the QRS complex duration 
less than 120 ms. Example of the Q-start and S-end estimation in Figure 11. 
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Figure 11. Example of Q-start and S-end estimation, red asterisk marks these 
positions.  

 

3.1.5. Detecting the ER notch 

Next step is to detect the possible notches. All the eight ECG signals are processed 
consecutively. Detecting the ER notch starts with determining the R peak amplitude. 
Next, the 50% value of the R peak amplitude is calculated for later use. After this, area 
from the R peak towards the T wave is processed. For this area of the ECG signal, the 
adjacent value differences are defined and from that data sign changes are evaluated. 
Sign change locations are further studied to discover the possible notch morphologies. 
If the notch morphologies are found, the J peak (notch peak) value is checked. The 
notch, which is under 50% of the R peak amplitude and over the set ER notch 
amplitude threshold is marked as the notch candidate. If the signal has too high or too 
low notches, this information is saved for later processing steps. In case there is the 
notch candidate found processing continues with ensuring that the J onset (onset of the 
notch) and the J termination (notch termination) are above the baseline. If these rules 
are met, the notch related measurements are defined. The measurements include the 
amplitude of the J onset, the amplitude the J peak, the duration from the J onset to the 
J peak of the notch “D1”, the duration from the J onset to the J termination of the notch 
“D2”and the ST type “M”. Example of the J peak and J termination presented in Figure 
12. 
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Figure 12. Example of notch detection, J peak is the red circle and J termination is 
the green circle. 

3.1.6. Detecting the ER slur 

After the possible notches are found the processing proceeds to the slur detection. All 
the eight ECG signals are processed consecutively, excluding the signals which have 
valid notch, too high or too low notch and the signals which S bottom is significantly 
under the baseline. The slur detection starts with defining the signal’s maximum 
steepness from the R peak top onwards. After the maximum steepness is defined, 
signal’s steepness changes are monitored from 52% location of the R peak’s amplitude 
towards the T wave. Sudden change in the steepness in this area is treated as the 
possible J peak of the ER slur. Next, the amplitude of the J peak is defined, and the 
slur angle measured. The slur morphology can be either the shoulder shaped or the 
gentle slope. If signal has the shoulder, the slur angle is measured between the J peak 
to the shoulder end. If the signal has the gentle slope, the measurement is performed 
from the J peak to the J termination. The slur angle is compared to the angle measured 
from the area of the maximum steepness. If the difference of these angles is larger than 
the ER slur definition limit, the J peak’s amplitude is fulfilling the ER slur amplitude 
definition limit and the J peak’s amplitude is less than 50% of the R peak’s amplitude, 
the signal is judged to have the ER slur. In case the signal is judged to have the ER 
slur, rest of the measurements are performed. The duration from the J peak to the J 
termination of the slur and the ST type “M” are measured. For all the signals which 
are processed, and which have the slur morphology, even if the ER slur definition is 
not met, the J peak amplitude and the angles are saved for the later use. An example 
of the slur detection measuring points in Figure 13. Reference steepness is the slope 
between blue and yellow marks and slur steepness is measured between red and green 
marks. 
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Figure 13. The example of the slur measurement locations. 

3.1.7. The ER classification result 

At this point, the ECG data is studied, and the results can be combined. Merging the 
notch and the slur information from the processed eight signals reveals how many ER 
positive signals are in the INF leads and the LAT leads. The consensus defines that the 
ER exists if two or more contiguous leads in the INF leads or in the LAT leads fulfills 
the ER requirement [8]. It is not made truly clear if there is actual importance of the 
lead order within the INF and the LAT leads and the information of the neighboring 
signals is not clarified in the consensus [8]. In the basic form of this implementation, 
the ER definition is fulfilled if either the INF leads have two or more ER positive 
signals or the LAT leads have two or more ER positive signals. In case of one ER 
positive signal is detected within the eight signals, situation is re-evaluated. This is due 
to the J peak amplitude measurement is heavily depending for example on the correctly 
defined baseline level and there is room for misjudgment. Depending on which leads, 
the INF or the LAT, the ER positive signal has been found all other signals inside that 
entity are re-reviewed. In the previously performed notch and slur searching steps, data 
from all the processed signals has been saved for this purpose. This extra check is 
performed with the slightly relaxed ER limits. This is done for catching the signals 
which are just under the ER limit. If there are new ER positive signals found, by using 
slightly relaxed ER limits, the ECG is defined as ER positive.    

3.1.8. Reporting the results 

As the ER conclusion is now achieved and all the required measurements are 
performed result can be printed. In case a single ECG is processed, the results such as 
ER or not ER and the ST type can be directly printed on the Matlab’s command 
window. If larger amount of the ECGs is processed at once, it is more convenient to 
get the results collected in the text file. This implementation provides two alternatives 
for the results saving to the text files. The first approach is the simplified content, 
which includes the signal ID and the ER judgement for the INF and the LAT areas 
separately. The second option is to print more detailed information including the signal 
ID, the ER judgement for the ECG, the ER result in the INF, the ER result in the LAT, 
the QRS duration in ms, the ST analysis, the R peak location for the each eight leads, 
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the notch J onset amplitude as uV, the notch J peak amplitude as uV, the duration from 
the notch J onset to the notch J peak as ms, the duration from the notch J onset to the 
notch J termination as ms, the slur J peak amplitude as uV, the slur J termination 
amplitude as uV, the duration from the slur J peak to the slur J termination as ms. 

3.2. The ECG data used in this work 

The ECG signals used in this thesis are from the Health 2000 study. The Health 2000 
study was coordinated by the National Public Health Institute, KTL, and was carried 
out in Finland in 2000-2001. The population of the study was 30-year-old and older 
people living in mainland Finland. The study consisted of the health interview and the 
health examination, which included a 12-lead resting ECG measurement. The health 
examination data was collected from 6354 persons. In this data set each lead of the 12-
lead ECG is averaged from 10 second recording. 

In this work, the 480 ECGs from the Health 2000 are used for the algorithm training 
and testing. These ECG signals were manually classified according to the 2015 ER 
consensus [8]. The ECGs with low quality, existing pre-exitation syndrome, prolonged 
QRS complex (>120 ms) or existing nonsinus rhythm were excluded from the set. For 
this work, the ECG signals were divided into the training and the test sets, both sets 
including the 150 ER positive and the 90 ER negative signals. The full Health 2000 
data set is also utilized in this work for studying the algorithm predictability for the 
sudden cardiac death (SCD), the cardiac death (CD) and the all-cause-mortality 
(ACM). 
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4. RESULTS 
 

The ER detection algorithm is a binary classifier which has four alternative results; 
true positive, true negative, false positive and false negative which are explained in the 
Table 1. The algorithm’s ER classification result is compared to the manual ER 
classification of the test data set. 
 

Table 1. Explanations for true positive, true negative, false positive and false 
negative 

True positive The algorithm implementation has detected the ER in the ECG 
and the ECG has been classified as the ER positive in the manual 
inspection. 

True negative The algorithm implementation has not detected the ER in the 
ECG and the ECG has been classified as the ER negative in the 
manual inspection. 

False positive The algorithm implementation has detected the ER in the ECG, 
but ECG has been classified as the ER negative in the manual 
inspection. 

False negative The algorithm implementation has not detected the ER in the 
ECG, but ECG has been classified as the ER positive in the 
manual inspection. 

 
The result of the algorithm performance is presented as the sensitivity and the 

specificity values. The sensitivity describes how reliably the algorithm detects the 
existing ER and the specificity describes how reliably the algorithm detects the 
absence of ER. The sensitivity is the ratio between the true positive and the sum of the 
true positive and the false negative results:  
 
Sensitivity = true positives / (true positives + false negatives). 
 
The specificity is the ratio between the true negatives and the sum of the true negatives 
and the false positives: 
 
Specificity = true negatives / (true negatives + false positives). [29 p.273] 

4.1. The performance of the algorithm 

The algorithm developed in this thesis is tested with the 240 manually classified ECG 
signals. The result of the algorithm is the sensitivity 94.0% and the specificity 92.2% 
(Table 2). Although the manual classification of the ECG signals was done based on 
the consensus definition, the precise consensus threshold was not used in this 
algorithm version. This is due to the manual classification was evaluated not be exact 
and therefore the algorithm thresholds are slightly relaxed, a compromise between the 
consensus and the manual classification. The differences between the manual 
classification and the algorithm following the precise consensus thresholds can be 
caused for example by the divergence in evaluation of the baseline level.  
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Table 2. Algorithm results compared to manual ER classification  

Result type Algorithm’s classification Manual classification 
True positive 141 150 
True negative 83 90 
False positive 7 - 
False negative 9 - 

 

In the Table 3 the results of the algorithm developed in this thesis and the results of 
the few selected ER detection algorithms are compared. The descriptions of the 
compared algorithms are presented in Chapter 2.6.3. The approach of Maheshwari et 
al. is a general QRS fragmentation detection tool [10]. The algorithm by Clark et al. is 
specified for ER detection and presents enhanced method for previous slur detection 
approaches [11]. Kenttä et al. analyses the ECG signal morphology for ER detection 
[12]. Tobón-Cardona et al. compares supervised classification methods (waveform 
prototype-based feature vector) for ER detection [28]. The algorithm developed in this 
work has similar performance as these other methods when comparing the sensitivity 
and the specificity results. The direct comparison is however complicated due to many 
differences between the approaches, for example the amount of data used in training 
and testing, the quality of the pre-classification of the ECGs, the prevalence of the ER 
in the data set and different ER definition used. 

Table 3. Comparison of the results of different approaches  

Research group Year Sensitivity Specificity 
Maheshwari et al. 2013 89.7% 89.9% 
Clark et al. 2014 90.5% 96.5% 
Kenttä et al. 2015 96.2 % 90.1 % 
Tobón-Cardona et al. 2018 91.80% 92.73% 
Algorithm developed 
in this thesis 

2020 94.0% 92.2% 

 

4.2. The predictability of mortality  

The algorithm results are compared to the Health 2000 ECG data to see if the algorithm 
predicts the ACM, the CD or the SCD. The results for the six variations of the 
algorithm are presented. The motivation for testing several algorithm versions is to get 
an idea of the significance of the different parts of the consensus-based ER definition 
and to reflect the results to earlier studies in the area. 

The version 1 is the algorithm with the relaxed consensus thresholds. This is the 
same version as used for results in the Table 2. The version 2 is the algorithm with the 
relaxed consensus thresholds having the slur detection deactivated. At the early phase 
of the algorithm development, when the slur detection was not yet functioning 
properly, mortality correlation test was performed with Health 2000 data. At that point, 
the results showed statistically significant correlation to mortality. Therefore, couple 
of versions of the final algorithm which have the slur detection deactivated are 
included in this correlation study. The version 3 is the algorithm with the precise 
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consensus thresholds. This version is included to get information about the mortality 
correlation of the algorithm considering the ER consensus definition. The version 4 is 
the algorithm with the precise consensus thresholds having the slur detection 
deactivated. The version 5 is the algorithm with the otherwise precise consensus 
thresholds, but the J peak threshold set to 0.2 mV and the slur detection deactivated. 
This version is included in this test to compare the results with the findings by 
Tikkanen et al. [5]. The version 6 is the algorithm with the precise consensus 
thresholds with lead neighbors considered. In the consensus paper it is not very 
unambiguous whether the ER positive leads (within INF or LAT) should be adjacent 
to fulfill the ER definition. Therefore, the mortality correlation is tested also with the 
algorithm version considering only the adjacent ER positive leads. The short 
descriptions of the different versions are also shown in the Table 4.  
 

Table 4. The description of the algorithm versions used in mortality correlation study 

Version 1 The algorithm with the relaxed consensus thresholds (same version 
as used for results in the Table 2) 

Version 2 The algorithm with the relaxed consensus thresholds and the slur 
detection deactivated 

Version 3 The algorithm with the precise consensus thresholds 
Version 4 The algorithm with the precise consensus thresholds and the slur 

detection deactivated 
Version 5 The algorithm with the otherwise precise consensus thresholds but the 

J peak threshold set to 0.2 mV and the slur detection deactivated 
Version 6 The algorithm with the precise consensus thresholds and lead 

neighbors considered (neighboring order used: INF: II/aVF and 
aVF/III, LAT: I/aVL, V4/V5 and V5/V6) 

 
The statistical calculations with the SPSS for this chapter are provided by PhD 

Tuomas Kenttä from Medical Research Center, Institute of Clinical Medicine, 
University of Oulu. The Health 2000 ECG signals having the QRS length > 120 ms 
are excluded and depending on the case (ACM, CD or SCD) around 5557 ECGs were 
included. The results with the significance < 0.05 proceeded into the multivariate 
analysis. The multivariate analysis considers gender, age, regular smoking habit, body 
mass index, systolic blood pressure, cholesterol information, heart rate, left ventricular 
hypertrophy (combined Cornell and Sokolow-Lyon criteria), high blood pressure, 
diabetes, CAD, MI and the ER result.  

The results indicate that two variations of the algorithm predict mortality. The 
results for the ACM are presented in the Table 5. The algorithm with the relaxed 
consensus thresholds with the slur detection deactivated (Table 5, Version 2) has 
correlation to the ACM in inferior leads. The results are Exp(B) 2.194, 95.0% CI 1.345 
- 3.580 with p = 0.002 and after the multivariate adjustment Exp(B) 2.225, 95.0% CI 
1.353 - 3.656 with p = 0.002. The algorithm with the precise consensus thresholds with 
the slur detection deactivated has correlation to the ACM in inferior leads (Table 5, 
Version 4). The results are Exp(B) 2.278, 95.0% CI 1.355 - 3.828 with p = 0.002 and 
after the multivariate adjustment Exp(B) 2.742, 95.0% CI 1.619 - 4.645 with p = 0.000. 
The algorithm version 2 indicates 2.2-fold increased risk for ACM and algorithm 
version 4 indicates 2.7-fold increased risk for ACM.  
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Table 5. The correlation to the ACM in the Health 2000 data set 

Algorithm ER/INF/LAT Exp(B) 95.0% CI for Exp(B) Sig. 
Version 1 ER 0.774 0.574 - 1.044 0.094 

INF 0.752 0.496 - 1.141 0.181 
LAT 0.792 0.543 - 1.155 0.226 

Version 2 ER 1.359 0.844 - 2.189 0.207 
INF 2.194 1.345 - 3.580 0.002 
Multivariate 
adjusted INF 

2.225 1.353 - 3.656 0.002 

LAT 0.170 0.024 - 1.208 0.076 
Version 3 ER 0.753 0.552 - 1.028 0.074 

INF 0.759  0.511 - 1.127 0.171 
LAT 0.723 0.464 - 1.126 0.151 

Version 4 ER 1.461 0.883 - 2.418 0.140 
INF 2.278 1.355 - 3.828 0.002 
Multivariate 
adjusted INF 

2.742 1.619 - 4.645 0.000 

LAT 0.210 0.029 - 1.496 0.119 
Version 5 ER 1.726 0.430 - 6.935 0.442 

INF 3.381 0.841 - 13.581 0.086 
LAT 0.050 0.000 - 5795.215 0.614 

Version 6 ER 0.900 0.635 - 1.275 0.553 
INF 0.979 0.655 - 1.463 0.916 
LAT 0.718 0.393 - 1.311 0.281 

 
The results for the CD are presented in the Table 6. The algorithm with the precise 

consensus thresholds with the slur detection deactivated has correlation to the CD in 
inferior leads (Table 6, Version 4). The results for the CD correlation are Exp(B) 2.552, 
95.0% CI 1.035 - 6.292 with p = 0.042 and after the multivariate adjustment Exp(B) 
3.002, 95.0% CI 1.189 - 7.582 with p = 0.02. This result means that algorithm version 
4 indicates 3-fold increased risk for CD. This algorithm version could be used as a tool 
for detecting patients with higher risk for CD.   
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Table 6. The correlation to the CD in the Health 2000 data set 

Algorithm ER/INF/LAT Exp(B) 95.0% CI for Exp(B) Sig. 
Version 1 ER 0.575 0.313 - 1.056 0.074 

INF 0.513 0.208 - 1.264 0.147 
LAT 0.609 0.281 - 1.317 0.208 

Version 2 ER 1.261 0.512 - 3.109 0.614 
INF 2.157 0.875 - 5.318 0.095 
LAT 0.048 0.000 - 40.693 0.378 

Version 3 ER 0.571 0.304 - 1.073 0.082 
INF 0.655 0.303 - 1.418 0.283 
LAT 0.450 0.165 - 1.227 0.119 

Version 4 ER 1.534 0.622 - 3.781 0.353 
INF 2.552 1.035 - 6.292 0.042 
Multivariate 
adjusted INF 

3.002 1.189 - 7.582 0.020 

LAT 0.049 0.000 - 85.375 0.428 
Version 5 ER 0.049 0.000 - 140159.341 0.692 

INF 0.050 0.000 - 43015099.393 0.775 
LAT 0.050 0.000 - 101857011.545 0.784 

Version 6 ER 0.651 0.315 - 1.345 0.246 
INF 0.879 0.406 - 1.903 0.744 
LAT 0.214 0.030 - 1.536 0.125 

 
The results for the SCD are presented in the Table 7. The algorithm with the precise 

consensus thresholds with the slur detection deactivated has correlation to both the 
ACM and the CD, it is interesting to evaluate the result also for the SCD for inferior 
leads. The result for the SCD case for this algorithm version in inferior leads is Exp(B) 
2.642, 95.0% CI 0.963 - 7.252 with p = 0.059 (Table 7, Version 4). Since the 
significance value concerning the SCD is above 0.05, the result is considered non-
significant and the multivariate analysis is not performed. 
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Table 7. The correlation to the SCD in the Health 2000 data set 

Algorithm ER/INF/LAT Exp(B) 95.0% CI for Exp(B) Sig. 
Version 1 ER 0.625 0.320 - 1.221 0.169 

INF 0.530 0.193 - 1.456 0.218 
LAT 0.679 0.294 - 1.568 0.364 

Version 2 ER 1.304 0.475 - 3.579 0.607 
INF 2.233 0.814 - 6.130 0.119 
LAT 0.048 0.000 - 100.831 0.437 

Version 3 ER 0.607 0.301 - 1.223 0.162 
INF 0.730 0.316 - 1.687 0.462 
LAT 0.435 0.137 - 1.383 0.158 

Version 4 ER 1.585 0.577 - 4.351 0.371 
INF 2.642 0.963 - 7.252 0.059 
LAT 0.049 0.000 – 232.522 0.484 

Version 5 ER 0.049 0.000 - 1084562.551 0.727 
INF 0.050 0.000 - 797082500.445 0.802 
LAT 0.050 0.000 - 1775442872.474 0.809 

Version 6 ER 0.743 0.340 - 1.623 0.456 
INF 0.980 0.424 - 2.264 0.962 
LAT 0.277 0.038 - 1.993 0.202 

 
The results in this chapter indicates that the two variation of the implementation has 

correlation to the mortality within population participated in the Health 2000 study. 
The algorithm version with the relaxed ER consensus thresholds correlates with the 
ACM in inferior leads when the slur detection is deactivated. The algorithm version 
with the precise ER consensus thresholds correlates with the ACM and the CD in 
inferior leads when the slur detection is deactivated.  

Algorithm version 1 with relaxed consensus thresholds and version 3 with precise 
consensus thresholds do not correlate to the ACM, the CD or the SCD in this study. 
The ER detection results in Chapter 4.1 indicate that this algorithm version can detect 
manually classified ER quite reliably. Although the amount of test data used for the 
results in Chapter 4.1 is relatively small, it is expected to include also signals with slur 
morphology. Considering this it seems based on this study, that the ER slur does not 
have connection to mortality. 

Algorithm version 5 represents precise consensus threshold with the exceptions of 
J peak threshold raised to 0.2 mV and slur detection deactivated. This version does not 
correlate to the ACM, the CD or the SCD in this study. Same conclusion could be 
drawn from the results of the algorithm version 6 which has precise consensus 
thresholds with neighboring order considered. The selected signal order within INF 
and LAT used in this work is represented in Table 4. In this version the slur detection 
is included so that will probably have some impact on the results. 

The mortality correlation statistics were generated as a very last step in this project 
with preselected algorithm versions. Although six different versions of the algorithm 
were included, while analyzing these results, it becomes evident that even more 
versions could have been tested to get more clear understanding of the limits of this 
implementation.  
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5. DISCUSSION 
 

The purpose of this thesis was to create the automatic detection of the ER from the 
ECG signal. One main point in this work was to use the 2015 updated definition of the 
ER [8]. In the beginning of the project, the algorithm performance was agreed to be 
officially evaluated utilizing the manually classified ECG test set. Although the goal 
for this work was relatively clear, the journey turned out to be extensive learning 
experience.  

One of the limitations of this work is the small data amount used in the training and 
the testing. The original idea was to use almost the full set of ECGs of the Health 2000 
for official testing, but the existing ER classification of the Health 2000 required re-
examination and due to time constraints, a smaller data set was agreed to be re-
classified to comply the consensus definition [8].  

The consensus paper [8] was used as the basic specification for the implementation. 
In addition to that, manually classified training set of the ECG signals was utilized for 
the development. During the implementation it became clear that the manual 
evaluation is not, maybe ever cannot be, as systematic in measurements as the Matlab 
code. Due to this dualism, the implementation is a compromise between the ER 
thresholds defined in the consensus paper [8] and the manually classified training set. 
Even though the official results were run with the slightly modified consensus 
thresholds, the strict consensus thresholds were included in set of the algorithm 
variations, which were tested for correlation to mortality with the Health 2000 data set.   

The results for the automatic ER detection developed in this work, are presented in 
the Chapter 4.1. The algorithm performance compared to test set of the manual ER 
classification is the sensitivity 94.0% and the specificity 92.2%. In the Table 3, this 
result is compared to the few other published ER detection implementation results. 
There are some aspects to be considered when comparing the results between different 
implementations. Maheshwari et al. are detecting fragmentations in QRS complex and 
have used data from 31 patients (372 leads) for testing the lead-based performance 
[10]. The classification of the data is done by two cardiologists. The result of this 
approach is the sensitivity of 89.7% and the specificity of 89.9%. Clark et al. are 
detecting ER introducing enhanced method for slur detection [11]. The ECG data is 
measured from 100 young male and data set is divided to equal sized training and test 
sets. The lead-based result, with ER definition prior to the consensus, is the sensitivity 
90.5 % and the specificity 96.5 %. Kenttä et al. are analyzing the signal morphology 
for detecting the ER [12]. The ER definition used in this study is prior to the consensus. 
The data set used for testing is the Health 2000 (over 6000 ECGs) and is ER classified 
by two experienced reader. The result of this approach is the sensitivity of 96.2 % and 
the specificity of 90.1 %. Tobón-Cardona et al. compared three machine learning 
solutions for detecting the ER [28]. The data used in the study is Health 2000 data set. 
The data is preprocessed to remove unsuitable signals for the machine learning 
methods. The ER definition in the study is based on the consensus. The best performer 
of the machine learning options is found to be the support vector machine with the 
sensitivity of 91.80% and the specificity of 92.73%. The direct comparison of the 
results of these different implementations is not straightforward. There are differences 
in ER definition used, amount of data used in training and testing, probable quality 
differences in the manual classification, the prevalence of the ER in the used data, 
different rules applied for excluding part of the data as unsuitable for the method and 
the results are reported either lead level or ECG level. The algorithm developed in this 
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work is classifying the ECG for ER or non-ER group at INF and LAT level. Compared 
to that the results of the lead-based approaches can be considered stricter.  

During the development of the algorithm of this work, it was noticed that quite 
small adjustments in the thresholds affect to the classification results of this 
implementation. In addition, the effect of the absence of the slur detection was found 
to be interesting already at the early point of the development. Due to these 
observations, Chapter 4.2 includes results of correlation to the ACM, the CD and the 
SCD within the Health 2000 data set for the six variations of the implementation. The 
contents of these six different variations are explained in Chapter 4.2 and listed in the 
Table 4. The results in the Table 5 and the Table 6 shows that with this algorithm 
implementation there are correlations found with the mortality if the slur detection has 
been deactivated. The algorithm version 2, with the relaxed consensus thresholds with 
the slur detection deactivated, has correlation to the ACM in inferior leads. The result 
after the multivariate adjustment is Exp(B) 2.225, 95.0% CI 1.353 - 3.656 with p = 
0.002. This result indicates 2.2-fold increased risk for the ACM. The algorithm version 
4, with the precise consensus thresholds with the slur detection deactivated, shows 
correlation to the ACM and the CD in inferior leads. The result after the multivariate 
adjustment for the ACM is Exp(B) 2.742, 95.0% CI 1.619 - 4.645 with p = 0.000. The 
result suggests 2.7-fold increased risk for the ACM. The result after the multivariate 
adjustment for the CD is Exp(B) 3.002, 95.0% CI 1.189 - 7.582 with p = 0.02. This 
result refers to the 3-fold increased risk for the CD. The correlation results for the SCD 
are presented in the Table 7. There are no significant correlations found. With the SCD, 
the algorithm version 4 in inferior leads is closest to significance level (Exp(B) 2.642, 
95.0% CI 0.963 - 7.252 with p = 0.059), but since the p value is > 0.05 the multivariate 
analysis is not performed. The correlation to mortality when the slur detection is 
deactivated, could indicate that either the slur detection implementation is not working 
accurately enough, the consensus definition of the slur is not optimal or that the 
existence of the ER slur does not predict mortality at all or within the Health 2000 
population. Considering the relatively high sensitivity and specificity in the results in 
the Chapter 4.1. the slur detection could be expected to work tolerably. The presented 
results concerning the slur are conflicting with findings by Tikkanen et al. [5], but 
similar with findings from Rollin et al. [30]. 

Another observation from the results with this implementation is that the ER in the 
lateral leads seems not to correlate with the mortality. The importance of the ER in the 
inferior leads has been reported also by Tikkanen et al. [5] and Sinner et al. [18]. In 
the research of Tikkanen et al. [5], the connection between cardiac based death and the 
inferior ER (definition prior consensus) with threshold 0.2 mV has been detected 
within middle age subjects. Due to this, the algorithm version 5 in this work has the 
0.2 mV J peak threshold along with the slur detection deactivation. With this algorithm 
within the full Health 2000 population, there was no significant correlation found with 
the higher J peak threshold and the mortality. This could be studied further with 
different age groups. The result for algorithm version having the 0.2 mV threshold 
with the slur detection activated is not available. Rollin et al. have studied the effect of 
higher J peak amplitude and they did not find significant difference in mortality rates 
between J peak under or above 0.2 mV [30]. Algorithm version 6 is included for 
investigating the effect of the significance of the lead neighboring order. The results 
of the algorithm version 6 in the Table 5, the Table 6 and the Table 7 are non-
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significant. In the future, neighboring effect could be tried with the slur detection 
deactivated.  

It would be interesting to see what kind of results the algorithm developed in this 
work would give for different age groups and different data sets. Tikkanen et al. [5] 
and Holkeri et al. [27] have indicated higher risk for the SCD in certain age groups 
with the ER. Sinner et al. [18] have also connected certain age groups having the ER 
with the increased risk of the cardiac death. There are also many possibilities for the 
further developing this implementation. The automatic ER detection algorithm can be 
optimized in many ways to support the ECG data varieties and signal qualities. During 
the development, the most challenging phases were the slur detection, the notch and 
the slur termination detection and defining the correct baseline. All these functions 
have room for further optimization. In the future, it would also be interesting to refine 
the QRS length evaluation to be less sensitive to signal quality issues and to develop 
an improved method for alternating current interference removal.  

The ER detection implementation developed in this thesis could be considered as 
prescreening tool for detecting the consensus [8] based ER from the ECG signal. For 
improving the prescreening performance, the sensitivity could be increased by 
adjusting the thresholds of the main variables of the implementation. This would lead 
to having more false positives, but as a prescreening tool, it would catch true positives 
more comprehensively. Holkeri et al. have developed the ECG risk score for predicting 
the increased risk for the SCD [31]. The developed score considers several different 
heart related conditions and is able to identify patients with increased risk for the SCD. 
The variations of the implementation developed in this thesis could be considered to 
be used an additional tool for evaluating the increased risk for the ACM or the CD, 
independently or as a part of some combined tool such as the ECG risk score.     

One very intriguing part of this work has been the possibility to study the heart and 
its electrical functionality. The complexity of this organ is astonishing. Studying the 
heart’s electrical conduction system, the ER definition and going through large amount 
of ECG signals raised some questions. Since the R peak’s amplitude can vary from 
patient to patient and also lead to lead, is the fixed notch J peak amplitude threshold 
optimal approach in the ER definition or should it be in proportion to the R peak’s 
amplitude? Another obscurity is related to preprocessing of the ECG signals. The 
implementation created in this work takes the 12 ECG signals as an input. Like ECGs 
used in this work, some ECG measuring systems create 12 lead ECG signals by 
combining the signal from several consecutive waves from each lead. In this case, each 
final signal is an average of these consecutive pulses. Even though this is one way of 
reducing the noise of the signal, it also has disadvantages. In case the patient would 
have for example arrhythmia, which would appear during the measurement, the 
resulting signal morphology would be distorted. Same issue would appear if one of the 
consecutive signals would be deformed due to momentary heart event. When trying to 
detect automatically features or abnormalities from the ECG signal it would be 
beneficial to have the raw data for optimal results. 

The time spent with this project has taught many things about the heart, the ECG 
and the signal processing. The most importantly this thesis has taught how much there 
is still to learn. For developing high quality biomedical signal processing algorithms, 
the medical knowledge of the measured system is as important as is the understanding 
of the measurement system. Cardiology is a fascinating field, and it has been a 
privilege to get a glance of this complex area during this project. The current research 
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around predicting the increased risk for the CD and the SCD is intense. The constantly 
increasing knowledge about the significant markers of the CD and the SCD are 
enabling better analysis-tools for preventing the premature deaths.       
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6. SUMMARY 
 

In this thesis, one type of the heart’s electrical malfunction, the ER, is studied. The 
primary purpose of this thesis is to develop and implement an algorithm for automatic 
detection of the ER from the ECG data, considering the 2015 refined ER definition. 
The implementation of the algorithm is done in Matlab. Since the ER is visible and 
defined in time domain in the ECG signal, the time domain approach is also selected 
to be used in the automatic detection algorithm developed in this thesis.  

This thesis includes basic information about the heart; its structure, functionality 
and common heart related diseases. In more detail the electrical activity of the heart, 
fundamentals of the ECG measurement, the ECG signal interpretation and the ER 
phenomenon are described. Some of the current methods for the automated ER 
detection are reviewed and the algorithm developed in this thesis is described. The 
presentation of the results and the analysis of the results conclude the thesis. 

The performance of the ER detection algorithm developed in this thesis is the 
sensitivity 94.0% and the specificity 92.2%. The algorithm results’ correlation to 
mortality is also studied with the Health 2000 data. The two variations of the algorithm 
show correlation to mortality within the Health 2000 population. The algorithm 
version with the slightly relaxed consensus thresholds indicates increased risk for all-
cause-mortality in inferior leads, when the slur detection is deactivated. The algorithm 
version with the precise consensus thresholds indicates increased risk for all-cause-
mortality and cardiac death in inferior leads when the slur detection is deactivated.  

The algorithm developed in this work can be considered as a prescreening tool for 
detecting consensus-based ER. The algorithm versions which have correlation to 
mortality could be used for evaluating the increased risk for the ER based ACM or 
CD.     
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