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ABSTRACT

Smart lighting systems have become more common as they provide energy
savings with various occupancy detection methods and better lighting control
opportunities for users. This thesis explores two aspects of these smart lighting
systems, configuration and control, by utilizing an ActiveAhead controlled smart
luminaire installation at the University of Oulu.

Smart luminaire identification is a common configuration task that needs to
performed before being able to control the individual luminaires and can be
especially tedious with large installations. However, this task can be partly
automated by positioning the smart luminaires based on passive infrared (PIR)
sensors or the received signal strength indicators (RSSI) the luminaires broadcast
with Bluetooth Low Energy (BLE) advertisements. For PIR sensor-based
positioning, a centroid-based method is presented and evaluated with two datasets
reflecting a typical and optimal scenarios of triggering the sensors. For RSSI-
based positioning, a log-distance path loss distance estimation with mean squared
error (MSE) based position optimization is presented and evaluated. Moreover,
relevant literature concerning the RSSI-based device positioning is discussed.

Second, the design, implementation and evaluation of a lighting control
prototype for collaborative spaces are presented. The prototype uses near-
field communication (NFC) tags to indicate the user position and to initiate a
lighting preference input to an Android application. The user preferences are
transmitted to a local server responsible for the control logic and communication
with the luminaires. The potential conflicts between users are resolved with
distance weighted preference averaging, which makes the prototype especially
convenient for cases where the users share the surrounding luminaires with
others. Furthermore, related smart lighting control systems are compared.

Keywords: PIR sensors, RSSI, locationing, smart lighting control



Ristimella E. (2020) Älyvalaisinten paikantaminen ja valaistuksen säätö
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TIIVISTELMÄ

Älykkäät valaistusjärjestelmät ovat yleistyneet mahdollistaen energiansäästöt
useilla läsnäolon tunnistusratkaisuilla ja paremmat valaistuksen
säätömahdollisuudet käyttäjille. Tämä työ käsittelee älyvalaistusjärjestelmiä
kahdesta näkökulmasta hyödyntäen ActiveAhead älyvalaisinasennusta Oulun
yliopistossa.

Älyvalaisinten paikan tunnistaminen on yleinen konfigurointivaihe ennen
kuin yksittäisiä valaisimia on mahdollista säätää ja se voi osoittautua
erityisen työlääksi suurissa asennuksissa. Tämä vaihe on kuitenkin mahdollista
automatisoida paikantamalla älyvalot hyödyntäen PIR-liiketunnistimia tai
vastaanotetun signaalin voimakkuutta (RSSI), joita valaisimet lähettävät
matalanenergian (BLE) Bluetoothin mainosviesteillä. PIR-liiketunnistimiin
pohjautuvaan paikantamiseen esitellään painopisteeseen perustuva metodi, joka
myös evaluoidaan kahdella datasetillä, jotka kuvaavat yleistä ja optimaalista
PIR-liiketunnistimien laukaisua. RSSI pohjaiseen paikantamiseen esitellään ja
arvioidaan metodi, joka hyödyntää logaritmisen signaalin vaimenemisen etäisyys-
mallia ja keskimääräiseen neliövirheeseen perustuvaa paikan optimointia.
Lisäksi esitellään käytettyjä menetelmiä RSSI-pohjaiseen paikantamiseen.

Toiseksi esitellään yhteisöllisiin työtiloihin tarkoitetun
valaistuksensäätöprotyypin suunnittelu, toteutus ja evaluointi. Prototyyppi
hyödyntää NFC (near field communication) tarroja käyttäjän sijainnin
ilmaisuun ja valaistuspreferenssien syöttämisen osoittamiseen Android
sovellukselle. Käyttäjäpreferenssit välitetään paikalliselle palvelimelle, joka
vastaa ohjauslogiikasta ja viestinnästä valaisimien kanssa. Mahdolliset konfliktit
käyttäjien välillä ratkaistaan etäisyydellä painotetulla keskiarvolla, mikä tekee
prototyypistä kätevän erityisesti tilanteisiin missä käyttäjät jakavat ympäröivät
valaisimet toistensa kanssa. Lisäksi vertaillaan muita älykkäitä järjestelmiä
valaistuksen säätämiseen.

Avainsanat: PIR anturit, RSSI, älykäs valaistuksenohjaus
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AP access point
APK Android application package
API application programming interface
BLE Bluetooth low energy
CRUD create, read, update and delete
GUI graphical user interface
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1. INTRODUCTION

Artificial lighting is used in every modern building. Traditionally, luminaires are
physically wired to form groups and controlled by a switch usually installed on a
nearby wall. Recently, more intelligent lighting systems have emerged; they contain
not only electrical lamps but also embedded chips and radio modules that enable the
communication between the luminaires, and depending on the used communication
technology, receiving lighting control commands from other smart devices. In addition
to the smart control, some of these smart lighting systems utilize motion detectors and
ambient light sensors to reduce energy consumption.

In this thesis, two aspects of these smart lighting systems are explored: First,
the work aims to partly automate the positioning and identification process of the
smart luminaires by utilizing the distance information from the transmitted received
signal strength indicators (RSSI) and passive infrared (PIR) sensors, which are often
installed in the luminaires. Secondly, an approach for the enabling users lighting
control in collaborative environments is explored. ActiveAhead smart lighting system
installation at the University of Oulu is utilized for these two purposes.

1.1. Smart Luminaire Positioning

In smart lighting systems, motion detectors are often used in lighting control to turn
the lights off when people leave the space. However, a direct control over a specific
luminaire is sometimes needed, for example, for adjusting the lighting directly at
your desk. In order to control that specific luminaire, the knowledge of the identifier
representing the luminaire in the group of other luminaires is required. The simplest
way to match the luminaires with their identifiers is to manually send a flash command
to every identifier, visually inspect the corresponding luminaires flashing in the space
and mark down their locations. Needless to say, this manual identification can be
tedious with larger installations. The manual luminaire identification is presented in
Figure 1a.

The challenges in the manual luminaire identification were presented by the
representatives of Helvar Oy Ab, who also suggested partly automating the luminaire
identification by estimating the luminaire positions by using the Received signal
strength (RSS) at the user smartphone and the triggers of the installed PIR sensors.
They also suggested gathering a reference position for the user scanning the RSSI and
triggering the PIR sensors with a help of a floorplan to make the luminaire positioning
simpler. Furthermore, the positions of the unidentified luminaires, i.e., luminaire
placeholders, were assumed to be known beforehand since they are often found in
the floorplans. This semi-automated luminaire identification developed in this thesis,
is illustrated in 1b.

1.2. Lighting Control Prototype for Collaborative Spaces

Controlling lighting is easy at home or other private space; you can simply toggle
the lights on and off from the nearest switch. In a public space, the setting changes:
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(a) Manual luminaire identification (b) Semi-automated luminaire identification
concept.

Figure 1. The steps needed for manual and semi-automated luminaire identification
concept.

switches can be hidden, and even if they are meant to be used, you may not want to
make lighting adjustments since the other people present could have different lighting
preferences than you. Despite these difficulties in adjusting lighting in public and
collaborative spaces, users can benefit from having a personal lighting control [1] [2]
[3].

Motivated by the previously done research and personal experiences when studying
in a public space with only the default lighting available, the second goal of this thesis
was to develop a prototype to enable personal lighting control in a public setting
and evaluate user attitudes for such a system. The prototype was developed to a
collaborative space, Business Kitchen, in Tellus1 at the University of Oulu as part of a
larger Smart Campus project.

1https://www.oulu.fi/tellusarena-fi/
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2. RELATED WORK

This chapter takes a look at the relevant research related to the problem of smart
luminaire positioning and previously implemented lighting control methods for
collaborative spaces with Sections 2.1 and 2.2 respectively.

2.1. Smart Luminaire Positioning

A common use case for Received signal strength indicator (RSSI) based positioning
is often locating a user with a personal device, usually a smartphone, which is able
to receive RSSI from stationary devices, whose location is known. These stationary
devices are often BLE beacons or Wi-Fi Access Points. One common approach for
positioning is based on a fingerprinting method, which consists of two stages: offline
and online stage. During the offline stage, RSSI values from the transmitting devices
are recorded at several calibration points forming fingerprints for those locations.
During the online stage, the user’s current RSSI fingerprint is then compared to
the offline fingerprints, and the best fitting location is selected as the user location.
Fingerprinting based user positioning has already been tested with ActiveAhead
luminaires by Gadicherla [4]. [5]

However, in the case of this thesis, the problem is reverse: the scanner location
is known but the location of the stationary devices, or in this case, luminaires, are
not. Furthermore, in this case the measured RSSI values are not available at the
luminaire locations, but a user smartphone is used for RSSI scanning. Therefore,
fingerprinting-based methods do not seem usable since they would require comparing
the fingerprint received at the luminaire with the calibration fingerprints, and in this
case, the luminaire fingerprint was not assumed to be available.

In addition to the user localization, another common use case for RSSI-based
positioning is locating the nodes in wireless networks. This type of device localization
is often performed with anchors, i.e., nodes with known positions used to locate the
rest of the nodes [6]. However, the anchor-based methods also require the RSSI
information between the anchor and their nearby nodes [7], and as stated previously,
this information was not assumed to be available. Therefore, anchor-based methods
did not seem to be of help for this thesis.

Trilateration utilizes the geometry of circles to locate an object with an unknown
location, in this case a luminaire, based on the distances to known locations [7], in
this case scan points. In the case of the device positioning, the distances to the known
locations can be estimated based on the RSSI with a help of a path loss model [5]. It
appeared that the described method could be applicable to the luminaire positioning
problem and hence, it is more thoroughly explained in the following Sections 2.1.1
and 2.1.2.

The PIR triggers from the luminaires’ PIR sensors were the second source of
location information. However, there seemed to be no significant research done to the
author’s best knowledge on identifying the PIR sensors based on the known position
of the triggers. The reverse problem of human position detection using a grid of PIR
sensors with known locations has been researched, but is not directly relevant for this
thesis.



11

2.1.1. RSSI-Based Distance Estimation

Received signal strength indicator (RSSI) is a measurement of power present in
the received radio signal, indicating how much the signal is attenuated between the
transmitter and the receiver. RSSI can be measured in milliwatts or decibels, but
generally only its variations are of interest in the context of device positioning. RSSI is
often quantized to integers which is the case also in Android BLE interface [8] which
is later used in the thesis.

RSSI is inversely proportional to the distance in an empty space, and this property is
utilized in RSSI-based distance estimation. This relation is commonly expressed with
a log-distance path loss model

RSS = A− 10n log10(d/d0), (1)

where A is the received signal strength at d0, n is a coefficient describing the
attenuation properties of the environment and d is the distance between the transmitter
and the receiver. Often d0 is set to one meter. [9].

In general, the coefficient n increases in environments with more obstacles [10]
and especially when there are obstacles between the transmitter and receiver [11].
Commonly used path loss exponents n with 2.4 GHz frequency band are [10],

• n=2 for free space,
• n=1.6 to 1.8 in building with line-of-sight (LOS) conditions and
• n=4 to 6 for obstructed building conditions.

Miranda et al. [10] have verified that these path loss exponent values seem to work
also in practice. Nevertheless, they are always subjective to the current environment
[12].

Equation 1 presents the ideal case for the log distance path loss estimation, but
in reality, it is not as straightforward. Usually, there are obstacles in the signal
propagation path in indoor spaces, which can introduce time-varying characteristics
to the signal with several ways:

• Reflections can occur when the radio waves propagating through the space
hit a surface larger than their wavelength and they are partially reflected and
partially penetrate the surface. In the case where the surface material is a perfect
conductor, the signal is reflected without an energy loss. [12]

• Diffractions can occur when there is an obstacle with sharp edges between the
transmitter and the receiver producing secondary waves which bend around the
obstacle. Thus, the radio signal has a non-zero strength in the shade of the
obstacle. [11, 12]

• Scattering can occur when the radio waves propagating through the space hit a
surface smaller or approximately equal to the wavelength. The reflected energy
is spread to all directions. [11, 12]

Generally, determining which of these phenomena has the greatest impact on RSSI
is not possible [12]. Human bodies also absorb 2.4 GHz frequency band signals
significantly, the absorption occurring stronger closer to the transmitter, which makes
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the amount of people in the room and the orientations of the users a factor in the signal
propagation [13][14]. Even the indoor temperature and humidity [15] conditions as
well as Wi-Fi scanning and network access [16] can have an effect on the measured
RSSI. Furthermore, different smartphones [17][4] can have an effect on the measured
RSSI. Also, in the context of the ActiveAhead, the luminaire casing can also affect on
the RSSI [4].

In addition to the variation caused by the previously mentioned phenomena, BLE
signal RSSI can vary even more than the measurement noise due to the use of three
advertising channels and frequency dependent fading [16]. Therefore, smoothing or
filtering the RSSI measurements is a necessity [16]. For this purpose, average and
weighted filters are some easily implementable options [14]. Kalman filtering is also
commonly used [6][9]. Having more RSSI measurements generally increases the
accuracy but also prolongs the scanning duration, i.e., filtering is always a trade-off
between speed and accuracy [14]. Another way for coping with the RSSI fluctuation
is to introduce a second Bluetooth gateway but with a known position to measure the
RSSI of the surrounding beacons [9].

Supervised learning with neural networks have also been suggested for RSSI-based
distance estimation [9] but this approach requires labelled training data, which in
this case would be the distances between the transmitters and the receivers with
the corresponding RSSI measurements. Similarly, parameters n and A for a log
distance path loss model could be optimized to fit the current signal propagation
environment as well as possible. However, these types of approaches do not seem
directly applicable. The luminaire positioning and identification is a one time effort,
and when the luminaire identifiers are determined, the problem is already solved and
there is no need for more accurate positioning anymore. It is possible to apply the
gathered training data to other spaces, but this type of approach would probably not
generalize well since the signal propagation environments are often unique.

2.1.2. Deriving the Luminaire Position from the Estimated Distances

Trilateration is a basic approach utilizing three or more overlapping circles to identify
the position P [5] as visualized in Figure 2. Measuring RSSI from a transmitter with
an unknown location P at p1 and at p2 leads to the knowledge that P must locate
either at P4 or P1. With the knowledge of the third distance d3, P (x, y) can be solved
analytically since it satisfies the three equations:

(Px − p1x)
2 + (Py − p1y)

2 = d1
2 (2)

(Px − p2x)
2 + (Py − p2y)

2 = d2
2

(Px − p3x)
2 + (Py − p3y)

2 = d3
2

Due to the errors in RSSI-based distance estimation, the circles may not intersect at
the same point making the equations unsolvable. Also, the analytical solution does not
scale very well due to the need for exactly three scan points.

One way to mitigate these drawbacks is to approach trilateration as an optimization
problem. In general, the goal in optimization is finding the best possible solution from
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Figure 2. The principle behind ideal trilateration: d1, d2, d3 represent the distances
estimated from RSS attenuation from unknown location P to p1, p2 and p3. P1

represents the true location for P whereas P2, P3, P4 are the other possible locations
for P when knowing only the measurements from two points from p1, p2 and p3.

a set of alternatives and possibly with given a set of constraints [18 p.1]. Finding
the best possible solution is done either by minimizing or maximizing an objective
function f(x), which is in minimization often referred to as a loss function L(x). The
best possible solution is worked towards in an iterative manner by, improving a given
initial guess, for example, based on the gradient of the objective function. For example,
mean squared error (MSE) can be used to represent the loss function

L(x) =

∑N
n=1[dn − dist(Pguess, pn)

2]

N
, (3)

where dn is the estimated distance based onRSSI between the nth scan point pn and
the transmitter location P , Pguess a guess for the transmitter location for each iteration,
and N the total number of scan points. There are several optimization methods, such
as least squares [14][9], that can be used for solving the optimization problem. Further
comparison of the optimization algorithms is not in the scope of this thesis.

2.2. Lighting Control Prototype for Collaborative Spaces

The second goal of the thesis was to design and implement a lighting control prototype
to a particular collaborative space, Business Kitchen, at the University of Oulu by
utilizing the installed ActiveAhead luminaires and possibly other sensors and hardware
if needed. Section 2.2.1 takes a look at some previously designed and implemented
smart lighting systems to gain insight into how personal lighting control could be
implemented in the Business Kitchen collaborative environment.
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2.2.1. Related Smart Lighting Systems

ActiveTune2 is a mobile application developed for ActiveAhead luminaires to enable
lighting control for a particular luminaire or a group of luminaires. To adjust
the intended luminaire(s), users need to scan a QR code which is usually placed
beneath the luminaire(s). A graphical user interface (GUI) is used to control the
lighting intensity and also temperature if the luminaire hardware supports temperature
adjustments. In Business Kitchen, ActiveTune would work well when the desks are
placed directly beneath a luminaire. However, generally this was not the case since
the luminaire layout was designed to provide general lighting to the whole area, not
task specific lighting to particular work desks. Furthermore, ActiveTune does not
support luminaire sharing which could be useful especially in the case where there
are luminaires located between users.

Zou et al. [19] have developed a lighting control approach named Winlight utilizing
Wi-Fi based occupancy sensing. User positions were estimated using Wi-Fi Access
Points (APs) with special firmware enabling listening to the Wi-Fi traffic of the users
and at the same time capturing the RSSI values. Lighting levels were calculated based
on the occupancy data according to a lighting control algorithm aiming to satisfy the
lighting preference of each person while minimizing the energy consumption. In the
case where there were multiple persons in the room, their preferences were averaged.
Also, the developed hybrid mobile application enabled the brightness adjustment from
a list of nearby luminaires. Users could also store luminaire presets which would be
activated when entering the same zone where the luminaires were located. [19]

The developed Wi-Fi based occupancy detection was able to identify the correct
zone from four equally divided zones in a 7m x 10m room by 98.66 %. Joining a
Wi-Fi access point was mandatory for the system to work, but the APs also provided
Internet access.[19]

A system proposed by Krioukov et al. [20] did not use any indoor positioning
technologies but a web interface which could be used to select zones where users
want to adjust the lighting. Also, QR codes with a direct link to the corresponding
luminaire in the web interface were placed to the corresponding zones to ease the use.
Timers with three hour duration were used to turn off the lighting. Campus credentials
were used for authentication and recognizing potential system abusers. There was no
automatic conflict resolution in place and the users were assumed to solve the potential
conflicts by themselves. [20]

In addition to the QR codes, Near Field Communication (NFC) tags with unique
identifiers have been utilized to detect the user presence and location by Petrushevski
[21] in a work desk setting. The system enabled input of the users’ lighting preferences
with an Android application after touching a NFC tag. The preferences were then
forwarded to a server module containing a space model with the luminaire and NFC
tag position information. The server module was also responsible for sending control
messages to the closest luminaires. Furthermore, the lighting output was adjusted by
utilizing the information of the smartphone’s illuminance sensor until the preferred
lighting level was achieved.

2https://helvar.com/fi/activetune-app/
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Chandrakar et al. [22] have also used NFC in their prototype for providing
lighting profiling. In their approach, the locations where lighting was intended to be
adjusted would be equipped with NFC readers and the different lighting preferences
were indicated by NFC tags which users carried with them. The drawback with
this approach is that the users would need to carry an additional NFC tag for each
preference they had. On the positive side, the system enabled accessibility for everyone
in the space since users did not need to have an application installed into a mobile
device or even the device with them. The system was intended for home use and
therefore did not have any type of conflict resolution. Comparison of the lighting
systems is presented in Table 1.

Table 1. Comparison of the related lighting systems
Company
/ Research
group

Occupancy
detection

Control User
Interface

Conflict
management

Authentica
tion

Helvar
Oy Ab,
ActiveTune

BLE
connection

Distributed Mobile app Left to users BLE
connection,
possible to set
a PIN code

Zou et al.
[19]

Wi-Fi
fingerprinting

Centralized Hybrid
mobile app

Preference
average

Wi-Fi
network,
application
credentials

Petrushevski
[21]

NFC Centralized Mobile app Preference
average
weighted by
distance

-

Krikov et al.
[20]

GUI, timeout Centralized Web app Left to users University
credentials
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3. BUSINESS KITCHEN INFRASTRUCTURE

The ActiveAhead smart lighting system utilized in this thesis had been installed to the
Business Kitchen at the University of Oulu. Business Kitchen, presented in Figure 3,
is a collaborative space containing several movable tables for studying or group work
and also a stage for giving presentations.

Figure 3. Business Kitchen. The ActiveAhead controlled Greenled luminaires are
attached to the yellow beams (green).

3.1. ActiveAhead Luminaires

There are a total of 84 smart luminaires which were utilized in this thesis installed
in Tellus at the University of Oulu Linnanmaa campus. Luminaires are the model
of Omega 44W3 manufactured by Greenled and controlled by ActiveAhead control
units4. Each control unit is equipped with a sensor unit5 containing a passive infrared
(PIR) sensor to detect motion and an illuminance sensor. Together these sensors
enable energy savings by turning off the lights when the space is not occupied and
by adjusting the luminaire’s artificial lighting output based on the variation of natural
light during the day. Since PIR sensors are essential technology for this thesis, their
general functionality is explained described in Section 3.1.1.

ActiveAhead control units are able to communicate with each other through a low-
energy Bluetooth mesh network, explained in Section 3.1.2, and can learn the general
routes people tend to walk based on the PIR triggers and pre-emptively light up.
Furthermore, the luminaires in Tellus can be used as actuators through an interface
which was kindly provided by the ActiveAhead manufacturer Helvar Oy Ab.

3https://greenled.com/lighting-products/product/omega-5/
4https://helvar.com/product/5605-activeahead-control-unit/
5https://helvar.com/product/active-sense-sensor/
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Other technologies, such as ZigBee6 and Wi-Fi7, has also been utilized for the smart
luminaire communication. For example, Philips Hue uses ZigBee8 and LIFX9 Wi-Fi
as their underlying communication technologies, but since the existing ActiveAhead
installation utilizes BLE Mesh, the other technologies are not explored further.

Figure 4. One of the smart luminaires in Tellus.

3.1.1. Passive Infrared Sensors

A passive infrared sensor (PIR) contains a sensing element made which generates
an electric charge when exposed to infrared (IR) radiation at the electromagnetic
spectrum. Usually PIR sensors are used to detect human motion, especially in security
and energy management systems. Therefore, the sensing element must be capable of
detecting far-infrared radiation from 4 to 20 µm which is the wavelength interval of
the radiation emitted by humans. [23 p.267]

The sensing element in a passive infrared sensor is commonly made from a
pyroelectric material and split into two halves which are wired up in a way that their
signals cancel each other out [23 p.268-269]. Thus, the sensor causes a trigger only
when either half detects either more (or less) IR radiation than the other half [24].
Therefore, only moving IR sources are detected, whereas the background IR radiation
is nullified. In other words, people who remain stationary cannot be detected [25]
which is often countered by setting timeouts in the context of lighting control.

The sensing elements by themselves can only cause triggers directly from the
direction they are faced. Therefore, a lens, most commonly Fresnel lens, is needed
to pinpoint the radiation from multiple directions to the two sensing halves making
the detection area wider and circular [23 p.270]. Even though the detection area is
made circular, it is good to note that it is not a perfect circle but consists of several
smaller areas depending on the pattern of the lens. The detection diameter of the PIR
sensors installed on the ActiveAhead control units is 8 meters at the ground level when
installed at 3 meter height [26].

Single PIR sensors are capable only for detecting if there is someone present in the
range of the sensor. However, when connected to a network of other PIR sensors partial

6https://zigbeealliance.org/
7https://www.wi-fi.org/discover-wi-fi
8https://www2.meethue.com/
9https://eu.lifx.com/
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counting, localizing and tracking become possible with the accuracy depending on the
number of nodes.[25]

3.1.2. Bluetooth Low Energy Mesh Network

Bluetooth low energy(BLE) is a communication technology operating on 2.4 GHz
industrial, scientific and medical (ISM) band of radio spectrum, specifically on the
area between 2402 MHz and 2480 MHz defined as part of Bluetooth 4.0 specification
[27]. As its name implies, BLE is a variant version of Classic Bluetooth with lower
power consumption having a data rate of 1 Mbps. Most modern smartphones, tablets
and laptops support BLE, which has contributed making it one of the dominant
technologies for Internet of Things (IoT) [28].

Since BLE channels are spaced with 2 MHz intervals, there are a total of 40
usable channels. The channels are utilized by the two modes of BLE communication:
advertising and communication-oriented modes. Channels 37, 38 and 30 act as a
medium for the advertising mode used for discovering other BLE devices, establishing
connections and broadcasting information. While a device is broadcasting, other
devices can scan the three channels one at a time to receive the information when
the scanner is in the range of the broadcast. The remaining 37 channels are used
for bidirectional communication between the connected devices. [29, 30, 28] Both of
these modes can be used for implementing Bluetooth mesh, but the advertising mode
has been chosen for Bluetooth Mesh Standard by the Bluetooth Special Interest Group
(SIG) [28].

Bluetooth Mesh Standard enables many-to-many device communication by utilizing
flooding principle which means every node in the network transmits to its neighbors.
Since flooding can lead to scalability and robustness problems, a relay feature was
implemented to the mesh standard meaning that only specific relay nodes are able
to forward the messages by flooding. The standard also introduces time-to-live (TTL)
fields and a relay cache which ensure that the messages are transmitted only when TTL
is greater than 1 and the message has not gone through the same node before. BLE
mesh also introduces proxy nodes enabling older BLE devices such as smartphones to
be connected to the network. The proxy nodes also need to act as relay nodes so that
the messages from the smartphone are forwarded into the network. [28]

3.2. Determining the True Positions of the Luminaires

The true positions of the luminaires were determined by measuring the distances of
the PIR sensors between reference luminaires in x- and y-directions. The positions
of the remaining luminaires were derived assuming that the distances between the
luminaires were constant, which seemed to be the case with visual inspection. The
method resulted to a positioning error of 0.6 cm for the outermost luminaire in the
x-direction and 3.5 cm error in the y-direction for the outermost luminaire what could
be measured. The luminaires used for measuring the error are circled with blue
and red in Figure 5 for x- and y-directions respectively. The larger error to the y-
direction is most likely due to the fact that the PIR sensor units were not locked in
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place, whereas the x-direction was fixed since the luminaires were attached to existing
beam infrastructure. The method for determining the error is not conclusive since
all columns and rows of luminaires were not measured but considered acceptable as
well as the error itself, since the true positions would be approximations also in the
actual luminaire identification scenario. The luminaires were identified by manually
flashing each luminaire by using ActiveAhead Mobile application10 and recording the
corresponding identifier.

Figure 5. The positions of the luminaires at Tellus Business Kitchen. The Green
crosses represent the determined true positions of the luminaires’ PIR sensors. The
distance between luminaires is 2.0 meters to x-direction and 2.3 meters to y-direction.

10https://helvar.com/product/activeahead-mobile-app/
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4. SMART LUMINAIRE POSITIONING

This chapter investigates how the smart luminaire positioning can be performed by the
information from PIR sensor triggers and RSSI broadcasted by the luminaires.

The first step was to develop an application for recording user position, RSSI
values and PIR sensor triggers based on the problem definition, see Section 1.1. The
developed application was then used to record PIR EDA dataset containing around
80 minutes of walking in Business Kitchen. It was observed that PIR sensor triggers
seem to form clusters around the luminaire placeholders leading to a development
and evaluation of a centroid-based location estimation. The method provided 1.69
meter mean error at around 10 minutes with PIR EDA dataset, see Figure 15 for more
detailed results. Furthermore, it was reasoned that the developed centroid method is
highly dependent on the performed walking pattern, thus another dataset, PIR optimal
dataset, was gathered to observe if the method performs better with optimal walking
which indeed seemed to be the case: the method achieved a mean error of 0.47 meters
in 10 minutes with PIR optimal dataset, see Section 4.3.2.1 for more detailed results.

For the RSSI, 9 scan points with one minute duration were recorded, referred as
RSSI dataset. The RSSI-based method consisted of log-distance path loss distance
estimation and mean squared error (MSE) based optimization providing a 3.12 meter
mean error with path loss exponent of n = 1,6 at the maximum of 9 scan points.
The worse performance of the RSSI-based method compared to the PIR-based method
was to be expected due to the time-varying characteristics of the BLE RSSI indoors.
Nevertheless, RSSI can provide a fast way of getting approximates of the luminaire
positions in the case where the accuracy requirement can be relaxed. RSSI and PIR-
based methods are further compared in Section 4.5.1.

4.1. Application for Data Gathering

The following requirements were defined based on the problem definition presented in
Section 1.1:

• The user needs to be able to input the start and the end points for a walk
• The user needs to be able to start and end BLE scanning
• The user needs to be able to estimate his/her position in the space
• BLE RSSI values need to be timestamped and recorded
• PIR sensor triggers need to be timestamped and recorded
• The start and end points of the walk need to be timestamped and recorded

An Android mobile application was developed based on these requirements. Google
Maps software development kit (SDK)11 was used to provide a floorplan as a
background image and markers to indicate the current position on the floorplan.
Android Bluetooth API12 was used for scanning the BLE advertisement packets
broadcasted by the luminaires. The Android BLE scanning interface requires the user
to enable the device location and Bluetooth during scanning.

11https://developers.google.com/maps/documentation/android-sdk/intro
12https://developer.android.com/guide/topics/connectivity/bluetooth
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The intended flow for the data gathering process is presented in Figure 7 and the
GUI states for performing walks can be seen in Figure 6. The green and red markers
indicate the start and end points of a walk. The user is only allowed to walk between
the start walk and end walk events to maintain the knowledge of the user position at
all times. During a scan, the start (green) marker is placed automatically and cannot
be modified by the user since it is assumed that a new walk will always start from the
end point of the previous walk. If the user wants to continue the luminaire positioning
from a location other than where the previous walk ended, it is possible to end the scan,
move to the new location and start the process again. Also, dragging the start and end
point markers during a walk is disabled to avoid missclicks.

During prototyping, it was noticed that walks can go wrong by several ways: the
user might forget to press the "End walk"-button precisely when having finished the
walk, or the user might notice that she walked further than intended, both of which lead
to an error in the user position. Therefore, a functionality to discard previous walks
was implemented by adding a ”Discard”-button which writes a discard event to the log
file enabling the removal of the failed walks during the preprocessing of data.

(a) The initial state before
starting scan. User has moved
to the start point (green marker)
and prepares to walk to the end
point (red marker).

(b) Performing the walk from
the the start point (green marker)
to the end point (red marker).

(c) Placing an end point for the
next walk.

Figure 6. GUI states for performing walks.

Timestamps for user location events, i.e., when walks and scans started and ended,
are recorded with the location coordinates. Also, the RSSI values are stored with the
corresponding luminaire identifiers. The generated data is saved to a log file for which
the device storage permission is required.

Helvar Oy Ab provided an external device for connecting to the luminaire Mesh
Network and record the PIR sensor triggers during the scan. The triggers were recorded
as binary data (on/off) when any of the triggering sensors registered movement. The
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Figure 7. The steps for data gathering process using the application.

device supported a serial interface, thus a Python script was developed using Pyserial13

module to timestamp each incoming PIR trigger. The triggers were then recorded to a
log file so that the triggers could be later matched with the user location.

4.2. Data Preprocessing

The preprocessing of the gathered PIR triggers and RSSI values consisted of the
following steps:

1. Parsing the log file produced by the data gathering application,
2. discarding failed walks,
3. converting the coordinates from Google Maps’ latitude longitude to meters since

the width, height and the position of the floorplan on Google Maps were known,
4. estimating the walking speed of the user assuming that the speed was constant

during each walk,
5. estimating the position of the user for each received PIR trigger or RSSI value

assuming constant walking speed,
6. calculating the direction where the user was walking for each data point based

on the walk start and end points and
7. excluding PIR triggers before and after scans.

13https://pypi.org/project/pyserial/



23

A sample of the preprocessed data can be seen in Figure 8. Preprocessing was
conducted using Python 3.614 and Pandas data analysis library for Python15.

Figure 8. A slice of preprocessed RSSI data.

4.3. PIR-Based Method for Luminaire Positioning

The data gathering application presented in Section 4.1 was used for gathering two
datasets, PIR EDA dataset and PIR optimal dataset, in Business Kitchen. For both
datasets it was made sure that no one else was present in the space during the data
gathering to avoid PIR sensor triggers from anyone else but the data gatherer. The
data gathering was performed with Samsung Galaxy S8 smartphone with Android 7.0
operating system. The Python script for PIR recording was started on a laptop and left
running during the data gathering process. The triggers from ActiveAhead PIR sensors
were collected separately with a laptop by running the Python script.

4.3.1. PIR EDA Dataset

The goal of PIR EDA dataset was to gain a better understandin of the data with
Explorative Data Analysis (EDA). Especially how the PIR sensors trigger while
walking, and what patterns can be observed in the data afterwards, were areas of
interest. The tables and other pieces of furniture restricted the possible walking paths
since the walks needed to be direct from the start to the end point. Estimating the
start and end points from the floorplan during data gathering was easier near to known
landmarks, such as pillars and beams, that also affected the walk paths. The performed

14https://www.Python.org/
15https://pandas.pydata.org/
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walks are visualized in 9. PIR EDA dataset was gathered during three scans and later
combined containing 189 walks that took 80.5 minutes to be recorded.

Figure 9. All walk paths in PIR EDA dataset. Due to the obstacles, such as furniture,
chairs and tables, it was not possible to perform walks covering the whole space.

4.3.1.1. PIR Explorative Data Analysis (EDA)

The PIR sensors have a manufacturer announced range of 4 meters at 3 meter height
[26]. In the case of Business Kitchen, the luminaires were placed at 2.6 meter height
measured from the floor level which should make the range somewhat smaller. The
detection range of the sensors was also inspected for PIR EDA dataset by calculating
the distances between each trigger and the corresponding luminaire. The resulting
distribution is presented in Figure 10a.

According to the Figure 10, 89% of the sensors trigger when the data gatherer was
performing walks. The remaining 11% of the sensors trigger between the walks when
the data gatherer was placing an end point for the next walk thereby trying to stand
still. The movement during this phase could be caused from turning to the direction
for the next walk or just by slightly moving in place. It is also possible that the data
gatherer could have also pressed the "End walk" button slightly too soon. In any case,
it seems that not causing sensors to trigger by trying not to move between the walks is
very difficult or outright impossible.

The Figure 10 can also be interpreted in a way that if the distance between the
luminaires is at least 4.57 meters, simply identifying the nearest placeholder as the
trigger source results to a correct luminaire identification with 95% accuracy. Also,
comparing the 95th percentile, i.e., 4.57 m, to the announced PIR detection range of 4
m indicates that there are errors present. Some of the possible sources of error are

1. the user’s estimation of his/her position on the floorplan Efloorplan,
2. the derivation of the user position during a walk assuming constant speed and a

straight walking line Enonconstantspeed,
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(a) The PIR histogram with all triggers, 2450 in
total. 5% and 95% of the distances fall below
0.80 and 4.57 meters respectively. µ = 2.46 m,
σ = 1.17m

(b) The PIR histogram of the triggers when the
data gatherer was walking, 2192 in total. 5% and
95% of the distances fall below 0.82 and 4.64
meters respectively. µ = 2.53 m, σ = 1.17m

(c) The PIR histogram of the triggers when the
the data gatherer was being stationary, 258 in
total. 5% and 95% of the distances fall below
0.53 and 3.87 meters respectively. µ = 1.96 m,
σ = 1.04m

Figure 10. The distances between the triggering PIR sensors to the user positions at
the time when the sensor triggered. In the histogram the distances are divided to 0.25
m buckets.

3. PIR sensor detection pattern EPIR,
4. placeholder positioning error Eplaceholder,
5. the delay of receiving the triggers from the luminaire network and registering

them with the Python script Edelay.

Efloorplan depends on factors such as the amount landmarks on the floorplan, the
quality of the floorplan, the data gatherer’s focus when positioning the start and end
points for the walks and failing to indicate the start or end of the walks with the UI
button at the right time. Enonconstantspeed is only present during walks. EPIR is caused
by the fact that the PIR sensor detection pattern is not a perfect circle but is formed
from several areas, see Section 3.1.1. Eplaceholder has already been determined to be
in a scale of a couple centimeters in Section 3.2. Edelay was not inspected further but
assumed to be rather small compared to the other sources of error. Without further
experiments, it was not possible to quantify the errors further.

The recorded PIR triggers were also plotted to better understand the patterns in the
data. It was noticed that the triggers can form clusters around the sensor, of which an
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example can be seen in Figure 11a. There were also cases when the clusters did not
indicate the true position of the source luminaire, as can be seen in Figure 11b. The
limited walking paths were most likely the reason for this behavior since the triggers
can only be positioned to the walking paths. In the case of Figure 11b, for example,
the walks in the dataset intersected only one side of the possible sensor trigger area.

Figure 12 represents the recorded triggers and the corresponding luminaire sensors
for one of the performed walks. Generally, the luminaire sensors seemed to trigger
when the data gatherer was walking towards or perpendicular to the sensors, but also
triggers behind the data gatherer were observed during the start of the walks.

(a) All PIR triggers for the luminaire with id D4D4.
An example of clustering.

(b) All PIR triggers for the luminaire with id D4B3.
An example when the triggers did not seem to form
a cluster.

Figure 11. Two examples of PIR triggers per luminaire sensor. The green cross
represents the luminaire sensor location, whereas the letter "A" is used to indicate the
direction of the walk when the PIR sensor was triggered. Upwards facing A indicates
a walk from bottom to top.

4.3.1.2. PIR Method - Centroid-based ranking algorithm

During EDA, it was discovered that some of the PIR sensors seemed to produce clusters
of triggers around them. Therefore, estimating luminaire positions as the centroid
of the trigger cluster, i.e., the average of the x- and y-coordinates, seemed a viable
option. The developed algorithm consisted of two steps: forming a candidate for every
placeholder by calculating the distances between every PIR cluster centroid described
in Algorithm 1, and placing the estimates to placeholders described in Algorithm 2.
Basically, the algorithm can be seen as fitting each centroid of the PIR trigger to each
luminaire placeholder and selecting the best candidate as the luminaire identifier.
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Figure 12. The PIR triggers for the walk 43 visualized. Yellow and pink squares
indicate the start and end points of the walk respectively. The points show the estimated
trigger location, whereas the crosses with the same color represent the PIR sensors
causing the trigger. Colors also indicate the duration of the walk.

Algorithm 1. Form the candidate identifiers for the placeholder, i.e., calculating
the distance between the PIR centroid and the placeholder for every luminaire
sensor that has detected movement.
1 def form_candidates(placeholder, pir_triggers):

Result: luminaire identifier candidates for the placeholder
2 candidates = []
3 for id in unique_ids_in_pir_triggers:
4 triggers_for_id = pir_triggers.filter(id)
5 x_coords = []
6 y_coords = []
7 for trigger in triggers_for_id:
8 x_coords.append(trigger.x)
9 y_coords.append(trigger.y)

10 centroid = Coordinate(calc_average(x_coords),
calc_average(y_coords))

11 d = calc_euclidean_distance(centroid, placeholder)
12 candidates.append(Candidate(d, id))
13 return candidates
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Algorithm 2. Map the candidate identifiers to the placeholders.
Input : placeholders, pir_triggers
Output: identified_placeholders

1 placeholders_with_candidates = []
2 for placeholder in placeholders:
3 candidates = form_candidates(placeholder, pir_triggers)
4 candidates.sort(key = distance)
5 placeholder_with_candidates = PlaceholderWithCandidates(
6 distance_to_nearest_candidate = candidates[0].distance,
7 placeholder = placeholder,
8 candidates = candidates
9 )

10 placeholders_with_candidates.append(placeholder_with_candidates)

11 placeholders_with_candidates.sort(key =
”distance_to_nearest_candidate”)

12 identified_placeholders = {}
13 for placeholder_with_candidates in placeholders_with_candidates:
14 placeholder = placeholder_with_candidates.placeholder
15 for candidate in placeholder_with_candidates.candidates:
16 if identified_placeholders.get(candidate.id) is not None:
17 continue
18 e[candidate.id] = placeholder
19 break

For the centroid method to be effective, a particular luminaire needs to be
approached at least from two opposite directions, D1 and D2. Assuming the sensor
trigger range is identical to both D1 and D2, and the walks are performed from both
of these directions, the centroid of the two triggers is located at the true position of the
luminaire. Performing one more walk (third in total) from D1, throws off the estimate,
whereas performing the fourth walk from D2 balances the estimation again. With
the previous reasoning, the algorithm should produce better results when the number
of walks is even. Furthermore, the error from odd walks should decrease when the
amount of walks is increased since the unbalanced odd walks have less weight in the
centroid calculation due to the higher number of walks in total.

The easiest way to achieve identical trigger range for the sensor from D1 and D2 is
to make them trigger as far away as possible, i.e., to approach them behind the trigger
range. In practice, it is not always possible. In some cases, the luminaires may be
placed near a wall or some other obstacle, which makes it impossible to start a walk
outside the luminaire maximum trigger range breaking the symmetry and producing
an error to the centroid estimation. This situation is illustrated in Figure 13 with the
luminaire L3.
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Figure 13. Calculating the centroids C1, C2 and C3 for luminaires L1, L2, and L3
respectively from the two walks. Red points represent the trigger locations and blue
points the centroid of the triggers for a given luminaire. Since the first walk ends and
the second walk starts under L3, C3 is not placed directly under L3. L1 and L2 are
positioned correctly.

4.3.1.3. Evaluation

Two types of metrics were used to measure the performance of the algorithm presented
in Section 4.3.1.2: mean error and accuracies for three different ranges. Mean error
indicates the average distance between the estimated and the true positions of the
luminaires. Accuracy metrics show how many of the luminaires were predicted to
correctly locate within a given range. For example, having a range0 accuracy of 20%
means that 20% of the luminaires were placed exactly at their true locations and a
range1 accuracy 80% means that 80% of the luminaires were placed at least one
placeholder away from its correct position. The three ranges used for accuracy are
visualized in Figure 14. The mean error was calculated before mapping the identifiers
to the placeholders, whereas the accuracy metrics were calculated after the mapping
phase.

Information gain for a walk

Iwalk =

Nid∑
n=1

Ntriggers∑
n=1

d(PIRlatest, P IRnearest), (4)

was also calculated for each walk and identifier by summing the distances between
the most recent trigger to its nearest trigger to indicate how much new information
had been gained from the walk. Simply presenting the new information with the walk
index was not considered sufficient since the amount of PIR triggers per walk varied.
The information gain for discovering a new sensor was set to the PIR EDA dataset
mean trigger range of 2.46 m.

Figure 15 presents the results of the centroid algorithm, presented in Section 4.3.1.2,
for PIR EDA dataset. Each point in the figure indicates the end of a walk, thus
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(a) range0 (b) range1 (c) range2
Figure 14. The ranges for accuracy metrics visualized. The red circle shows all the
luminaires labelled as correct when calculating the performance for a given metric.
The true position of the luminaire is circled with blue.

containing the triggers during planning the walk when standing still and the triggers
from the actual walk. There were three luminaires that did not cause any triggers,
therefore those luminaires were excluded from the performance evaluation. The
accuracy metrics were calculated by comparing the correctly identified luminaires to
all luminaires in the space.

The mean error (Figure 15a) declines until 1.5 m error is achieved at around 60
walks; the following walks decrease the mean error only slightly. Small fluctuations in
the mean error can be seen especially between the 10th and 60th walks, which can be
caused by the imbalanced number of walks and asymmetrical trigger deviation around
the sensors as seen, for example, in Figure 11b. At 10 minute mark a mean error of
1.69 was achieved with PIR optimal dataset.

The exact accuracy, or range0 (Figure 15b), produces a more fluctuating curve
compared to the mean error, but increasing the amount of walks generally leads to
better range0 accuracy. The more detailed results for PIR EDA dataset are presented
in the Appendix 1.

4.3.2. Optimal Walking

Earlier in this thesis, see Section 4.3.1.2, it was reasoned that the performance of
the centroid algorithm should increase when the data gatherer performs the walks
optimally, i.e., starts the walks in a way that there is enough distance to the nearest
PIR sensor so that the sensor is triggered from the maximum range. If the walks
were performed in this manner, the luminaire identification time should decrease since
only two triggers from opposite directions would be needed for a good estimate.
The walks in PIR EDA dataset were not performed optimally since the layout of the
luminaires and the space did not allow performing optimal walks. Therefore, a row
of luminaires was picked to test if the performance of the centroid algorithm indeed
increases with the optimal walks. This PIR optimal dataset dataset consisted of 36
walks and approximately 20 minutes of data gathering. The luminaires included in
the dataset can be seen in Figure 16. The same setup was used to gather the dataset as
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(a) Mean error (b) range0

(c) range1 (d) range2
Figure 15. Centroid algorithm performance for PIR EDA dataset.

with PIR EDA dataset, and the walking speed was attempted to be maintained constant
during the walks. As can be seen in Figure 16, the walks were also attempted to be
performed in straight lines directly under the PIR sensors as well as possible.

The mean distance between the user positions and the triggering sensors in PIR
optimal dataset seems to be considerably higher than in PIR EDA dataset, which makes
sense since the scenario attempted to trigger the sensors at maximum trigger distance
at all times since none of the walks ended underneath the luminaires. Also, all triggers
were caused during the walks, and therefore, only one distance histogram was plotted
in Figure 17 in comparison to the three figures with PIR EDA dataset.

4.3.2.1. Evaluation

Figure 18 presents the results cumulatively for the centroid algorithm with PIR optimal
dataset, i.e, the second plotted mean error in the figure contains the data from the first
and second walk and so forth. All the six luminaires were discovered already during the
first walk, and therefore, it did not matter if the accuracy was calculated by comparing
the correctly identified luminaires to the discovered or total amount of luminaires.

The mean error (Figure 18a) seems to validate the reasoning presented in Section
4.3.1.2: The first walk produces an error comparable to the mean trigger range of
5.444 m, but the second walk decreases the mean error close to zero. The following
even walks also seem to give better results in comparison to the adjacent odd walks.
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Figure 16. The 6 luminaires circled in red used for the PIR optimal dataset. The
triggers from the rest of the luminaires were excluded. Walks that were performed are
shown in blue lines.

Even walks do not seem to produce better results over time; in fact, the mean error
seems to slightly increase, whereas the accuracy with the odd walks increases over time
as predicted. The information gained from the walks after the second walk does not
seem to increase considerably, which also indicates that the following walks provide a
decreasing value. The mean error of 0.31 m is achieved at 5 minutes and 0.47 m in ten
minutes when only considering even walks since it can be assumed beforehand that the
even walks lead to better results.

The exact accuracy, or range0 (Figure 18b), produced 100% accuracy already with
the second walk and with the rest of the walks after the sixth walk. The method
was able to identify only one luminaire correctly with the imbalanced third and fifth
walks, again aligning with the predictions. The second walk was completed and 100%
accuracy achieved at around one minute, but walking the same path repeatedly made
the path planning slightly faster compared to the PIR EDA dataset since the application
automatically swapped the start and end points of the walks and the data gatherer did
not have to plan for the next walk.

4.4. RSSI-Based Method for Luminaire Positioning

The ActiveAhead luminaires form a Bluetooth Low Energy Mesh network and
therefore occasionally broadcast BLE advertisements. These advertisements can be
captured with any device supporting Bluetooth Low Energy also containing a RSS
value indicating the distance to the advertiser. In general, higher RSS values indicate
that the advertiser, in this case the luminaire, is closer. The goal of this section was
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(a) The PIR histogram with all triggers, 194 in
total. 5% and 95% of the distances fall below
4.80 and 6.17 meters respectively. µ = 5.44 m,
σ = 0.42 m

Figure 17. The distances between the triggering PIR sensors and the user positions
at the time when the sensor triggered with PIR optimal dataset. All the triggers were
caused while walking. The distances are divided to 0.25 m buckets.

to choose a method to utilize the RSS information and evaluate its performance in
identifying the luminaire in Business Kitchen.

4.4.1. The Chosen RSSI Method

Since the requirement was to capture the advertisements specifically with a
smartphone, anchor-based methods were out of the question since they would require
the RSSI received at the luminaire. Similarly, fingerprinting-based methods were also
excluded since the fingerprints at the luminaire locations were not available. Based
on the previous reasoning, a simple log path-loss model was chosen for estimating the
distance from the RSSI. Mean filtering was used smooth the RSSI fluctuations. The
distances between the scan points and the advertising luminaires were also converted to
match the same two dimensional coordinate system as the luminaires to take account
the fact that the signal propagation is spherical. This conversion was done with the
Pythagorean theorem by using the height from the luminaires to the approximate
smartphone height. The estimate for the luminaire position was found by minimizing
the mean squared distance from the location estimate to the scan points by utilizing a
SciPy implementation of Nelder-Mead16 optimization algorithm. The average of the
scan point coordinates was used as an initial guess for the optimization algorithm.

To identify the luminaires, luminaire candidate identifiers were formed for every
placeholder by calculating the distances between the placeholder and the estimated
luminaire position as presented in Algorithm 3. The best fitting candidates were placed
to the placeholders similarly to the PIR-based identification by using 2. In other words,
only the first step, i.e., the luminaire location estimation was different in the RSSI-
based identification.

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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(a) Mean error (b) range0

(c) range1 (d) range2
Figure 18. Centroid algorithm performance for PIR optimal dataset.
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Algorithm 3. Form the candidate identifiers for the placeholder with RSSI-based
position estimation.
1 def form_candidates(placeholder, rssi_values, scan_points):

Result: luminaire identifier candidates for the placeholder
2 candidates = []
3 distance_estimates = []
4 for scan_point in scan_points:
5 for id in scan_point.ids:
6 rssi_values_for_id_at_scan_point =

rssi_values.filter(scan_point, id)
7 smoothed_rssi_value =

smooth_rssi(rssi_values_for_id_at_scan_point)
8 d = convert_rssi_to_distance(smoothed_rssi_value)
9 d = convert_from_3D_to_2D(d)

10 distance_estimates.append([scan_point, id, d])
11 for placeholder in placeholders:
12 distance_estimates_for_id =

distance_estimates.filter(scan_point, placeholder.id)
scan_points_for_id = scan_points.filter(placeholder.id)

13 estimate_coord = optimize_location(scan_points_for_id,
distance_estimates_for_id)

14 d = calc_euclidean_distance(estimate_coord, placeholder)
15 candidates.append(Candidate(d, placeholder.id))
16 return candidates

4.4.2. Log-Distance Path Loss Model Parameters

The log-distance path-loss distance estimation, which was presented in Equation 1,
required measuring a calibration RSSI, A, from a known distance to the transmitter.
To determine this calibration value, the RSSI was measured in Business Kitchen for
three distinct luminaires by placing a Samsung Galaxy S8 smartphone one meter away
from the transmitter with a help of a camera stand. The resulting RSSI for one of these
luminaires, C1, can be seen in Figure 19, and the minimum, maximum and mean RSSI
of these three luminaires in Table 2. The average of the RSSI means for C1, C2 and
C3 (-74.722) was selected as the calibration RSSI, A.

With all three luminaires, it was noticed that the RSSI behaved in a relatively
periodic manner, which was probably caused by the fluctuating power levels of BLE
advertising and it has been seen in other studies [16][9] as well. In the case of C1, the
first period seems to be completed at around 20 seconds, while the following cycles
seem to be more difficult to distinguish. The observed periodic nature of the RSSI
indicates that the scans need to contain at least one full period to be able to capture the
true RSSI characteristics at a scan point.
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Figure 19. RSSI for luminaire C1 for two minutes.

Table 2. Calibration results
Luminaire Min Max Mean Count
C1 -82 -70 -75.031 65
C2 -81 -72 -75.636 66
C3 -78 -71 -73.500 66
Average -80.333 -71.0 -74.722 -

4.4.3. RSSI Dataset

The RSSI dataset represents the case where there is not necessarily a line-of-sight
between the transmitting luminaire and the receiving smartphone, which is the case
in some areas in Business Kitchen since there are pillars, walls and other obstacles
attenuating the signal. As was seen in Figure 19, the RSSI seems to behave in a
periodic pattern, thus the scans need to be long enough to capture the full periods.
Therefore, PIR EDA dataset was not used for evaluating the method since the durations
of the stays between the walks were generally considered too short, leading to the
gathering of RSSI dataset, which contained nine scan points, each having a scan
duration of one minute. The Samsung Galaxy S8 martphone was used to scan the
BLE advertisements, and it was held in hand approximately at the same height, one
meter from the ground, during the recording of the dataset. A smartphone stand was
not used since it was considered too cumbersome to use also in the actual luminaire
identification setting, and the goal of this thesis was to to make configuration easier.
During scanning, 58 of the possible 68 luminaires were discovered, the remaining ten
did not broadcast any messages at the time.

A coefficient describing the attenuation properties of the environment, usually
referred to as n, needed to be defined for the log-distance path loss model. Commonly,
n is set from 1.6 to 1.8 indoors with line-of-sight conditions [10] and increased when
the signal is attenuated by obstacles. For RSSI dataset, n was also estimated with
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Figure 20. Scan point locations used for RSSI dataset.

the SciPy implementation of the least squares optimization17 based on the estimated
distances to the transmitting luminaires from the scan points and the RSSI values.
Since the scan points were estimated from the floorplan by the data gatherer, there
is also an estimation error present in comparison to more accurate positioning such
as laser measuring tool. The other necessary parameter, RSSI at one meter A, was
measured (Table 2), and therefore it was not used as a parameter for fitting the model
to the dataset since the calibration measurements were considered more accurate.

The resulting fit with the least squares optimization and the data points for RSSI
measurements with distance is presented in Figure 21. According to the optimization
result, the value of 1.52 for n seems to minimize the residuals between the model and
the measured RSSI. It also seems that a higher RSSI indeed indicates smaller distance,
but the variance in the data is high; the average absolute distance, or residual, between
the model and measurements is 4.73 m. This result supports the fact that RSSI-based
distance estimation is challenging. It is likely that a more complex model could lead
to a better fit, but the log-distance path loss model was nevertheless chosen to avoid
overfitting since the data represents only the Business Kitchen signal propagation
environment and is likely to be different elsewhere.

The reference RSSI at one meter, A, needs to be measured in the space before the
luminaire identification process since the luminaire casing, the transmitter location in
the luminaire and the used smartphone can affect the RSSI. Another option would be
to measure general values for A beforehand. However, the latter option could decrease
the performance if the different luminaires or smartphones are not taken into account
but would slightly speed up the identification process.
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Figure 21. Log-distance path loss model fitted to the RSSI dataset.

4.4.4. Evaluation

Figure 22a presents the mean error for n with 0.1 increments and cumulative data for
each RSSI scan point, for example, scan point 2 contains the data from scan points 1
and 2, etc. According to the results, the mean error seems to considerably decrease
after having more than two points, which supports the trilateration theory. In general,
having more scan points seemed to lead to better results except after the 8th scan point
when n < 1,6, which is probably due to the low n value. Also, the mean error tends
to increase as n increases when n < 1,6, which aligns with the knowledge that the
optimal n parameter is 1.52 (see Figure 21).

The minimum mean error of 2.79 meters is achieved with n = 1,3 at seven scan
points. However, measuring the performance of the method with the best possible
parameter combination is not feasible since n is not known beforehand. As stated
previously, values between 1.6 - 1.8 could be selected as n since they are generally used
with the log-distance path loss model indoors. When limiting n to 1,6 <= n <= 1,8,
the minimum mean error is 3.12 meters with n = 1,6 at nine scan points.

4.5. Discussion

Even though the centroid-based PIR algorithm seemed to provide a better mean error
and accuracy, the RSSI-based method could be used as an pre-step to ease the manual
luminaire identification. To increase the performance of the PIR-based method, the
maximum trigger distance and the smartphone accelerometer data could be utilized.
For the RSSI-based method, the orientation of user during the scans could be useful.

17https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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(a) Mean error

(b) range0
Figure 22. RSSI method performance for RSSI dataset.

4.5.1. Comparing PIR Sensor-Based and RSSI-Based Methods

In Business Kitchen, the centroid-based PIR trigger estimation seemed to provide
smaller mean error in all conditions PIR EDA dataset than RSSI-based method with
RSSI dataset. Clearly, the challenges presented in Section 2.1.1 with BLE-based
RSSI distance estimation have an influence on the results. In optimal conditions,
the centroid-based method was able to achieve 100% identification accuracy already
after two walks. However, to avoid false PIR sensor triggers, it is required that no
one else but the person performing the luminaire identification is present in the space,
which is not always possible. This requirement can be loosened slightly by excluding
the triggers with a distance greater than the maximum trigger with error between the
triggering sensor and the user location at the time. With PIR EDA dataset and PIR
optimal dataset this threshold could be set to 7.5 meters, and if other people stayed at
least that far from the person performing the luminaire identification, no false triggers
would occur.
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The gathered PIR and RSSI data reflect only the conditions in Business Kitchen,
and therefore directly inferring the performance of the method in other environments
is not possible. However, in general, the performance of the methods should improve
the further away the luminaires are from each other. Also, decreasing the PIR sensor
trigger radius should lead to better performance in conditions where optimal walking
cannot be performed, but it comes with the tradeoff of usability since the sensors are
used to turn on the lighting.

Despite the worse accuracy, the RSSI data could augment the PIR-based method by
identifying the luminaires that have not yet caused a PIR trigger by utilizing the scans
between the walks assuming the scans are long enough. During the identification, these
RSSI-based estimates would then eventually be replaced by the PIR-based estimates.
The combined RSSI and PIR approach would be helpful especially in the case of large
installations where it takes time to cover the whole space with walks. Moreover, the
RSSI-based method could be beneficial in a case where the identification accuracy
is required to be 100% and performing optimal walks in the space is not possible,
thus requiring manual identification to be performed. In this case, a quick RSSI scan
with only a couple of scan points could provide a rough estimate of the location of
each identifier, which would possibly make the manual identification easier since the
identifiers would be nearby and hence easily detected visually.

4.5.2. Future Development

The knowledge of the maximum distance between the PIR sensor and the trigger
location, rangemax, could be utilized to avoid identification results that are not
possible when mapping the identifiers to the placeholders. For instance, this could
be achieved by using a backpropagation algorithm by checking if the placeholder is
further away than rangemax from the estimated location and reverting back to the
previous state if this is the case. However, the runtime could considerably increase
with the backpropagation approach.

Furthermore, to increase the accuracy of the trigger estimation, a smartphone
accelerometer and gyroscope could be used for speed detection during the walks
instead of assuming that the speed is constant. For example, Shrestha and Won [31]
have achieved a root mean squared error (RMSE) of 0.16m/s for this type of speed
detection when the smartphone was held in the participants’ pocket. However, holding
the smartphone in one’s hand, which is required for the data gathering application to
be able to end the walk at the correct time, could introduce a swinging motion and
therefore could pose a problem.

Also, the developed RSSI-based method could possibly be improved. For instance,
the direction the user is facing during scanning could be used to provide some
information on the luminaire positions since the user body seems to attenuate the
RSSI. Also, different filters, such as Kalman filters, and optimization algorithms could
be tried out and inspect their potentiality to increase the performance. Furthermore,
the problem could be presented as a simultaneous localisation and mapping (SLAM)
problem to remove the effort of inputting the position of the user by using
accelerometer and compass information [6]. However, this approach would make
the user position an estimate and therefore most likely decrease the performance.
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Nevertheless, several factors, such as the walls, furniture and the presence of people,
continue to pose a challenge for RSSI-based distance estimation.



42

5. LIGHTING CONTROL IN COLLABORATIVE SPACES

This chapter presents the process for developing a lighting control prototype to a
collaborative space, Business Kitchen, at the University of Oulu. The prototype used
uniquely identifiable NFC tags, or switches, to indicate the user position. Tapping the
NFC switch with an Android application launched a GUI to enable lighting preference
input to a web server that maintained the switch and luminaire state and adjusted
the ActiveAhead equipped luminaires accordingly. Possible conflicts were resolved
by distance-based averaging between the user preferences. The server was made
accessible only through a Wi-Fi access point (AP) to limit the service only to the users
in the space. The prototype is presented in Figure 23.

A user evaluation with fourteen participants was conducted and it showed a System
Usability Score (SUS) of 76.4 ranking in the top 30 percentile of general SUS scores.
The results showed that only five out of fourteen participants noticed that they were
controlling shared luminaires. Furthermore, two participants perceived the change of
light by the other participant disturbing, eight participants were not bothered with it,
and four did not have an opinion on the matter. The study and its results were also
published in the journal article [32].

Figure 23. The developed prototype. User 1 (U1) has set a preference of 100 and
user 2 (U2) to 0. The luminaires in between (in green) will be adjusted to 45 since
user 2 (U2) is a little closer to them. [32], c© 2020 by the authors, CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

5.1. Design

User scenarios and requirements for the system are presented in Section 5.1.1 and
Section 5.1.2, respectively. Section 5.1.3 continues by describing the reasons behind
the made design choices were made and also explores alternative solutions.
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5.1.1. User Scenarios

Two scenarios of how the system could work were outlined: one from the perspective
of an end user and one from the perspective of a system administrator. Only the
functionalities in the end user scenario were fully implemented, but the system
administrator scenario was also included to provide a better understanding about the
system as a whole.

5.1.1.1. Mark: student

Mark missed today’s lecture and wants to watch it online. Business Kitchen is still
crowded, but luckily there is a couple of free tables still available. It is 6 p.m. in
November, and the luminaires are burning bright. To avoid reflections from the laptop
display, he wants to dim the lighting a bit.

Mark sees a lightbulb icon on the table and next to it a QR-code which seems to
be a link to a "Personalized lighting" - mobile application. He proceeds to download
and open up the application. Mark sees a welcome screen which tells him to tap the
lightbulb icon on the table with his smartphone, and after tapping the icon, a view with
a slider opens in the application. Mark adjusts the lighting level to minimum and the
luminaires nearest to him dim accordingly. Now he can start watching the lecture on
his laptop.

Another student, Lisa, arrives at the table next to Mark’s. Lisa wants to set her
lighting preference to maximum since she is reading a book and the current lighting
settings feels too dim for her taste. Lisa proceeds to adjust the lighting level the same
way as Mark did. Lisa sits in the table right next to Mark, which is why also the two
luminaires in between Mark’s and Lisa’s tables are adjusted halfway from Mark’s and
Lisa’s preferences.

After an hour, Lisa starts to leave and kindly releases the luminaires for others to
use by pressing a “Set Default”-button in the mobile application. The two luminaires
previously shared by both Mark and Lisa join Mark’s preference and dim down. Mark
finishes watching the lecture, realizes he is late for dinner and leaves in a hurry. A
short while after Mark has left Business Kitchen, the luminaires occupied by Mark
return to their default lighting setting. After a couple of minutes, the luminaires turn
off according to the ActiveAhead default behaviour since everyone has left the space.

5.1.1.2. John: Business Kitchen administrator

John has been tasked to install a new "Personalized lighting" system to Business
Kitchen. He has been given a box containing an introductory leaflet to the system,
a Raspberry Pi-looking device and a stack of NFC tags with lightbulb icons labelled
as Switches. The leaflet instructs John to place the Raspberry Pi-looking device to
an unreachable location in the space, plug it to a power source and start up a mobile
application.

John logs in to the system with admin credentials that came with the leaflet and
changes his password. The next view shows the floorplan of Business Kitchen



44

currently with no Switches. John presses the "Add a Switch"-button and sees
instructions to tap a Switch with his smartphone. A green box on the screen tells him
that this Switch is not in use yet. John proceeds to select the location for the Switch by
using the virtual Business Kitchen floorplan and attaches it on the corresponding table
in physical Business Kitchen. John continues to install 9 more Switches in the same
manner. He mostly attaches Switches on tables but also to pillars next to sofas.

After a month, John inspects the usage of Switches. He notices that two switches, S1
and S2 have been in low usage. John walks to Business Kitchen to check the situation
and notices that the table where S1 was placed has been moved. Therefore, John moves
S1 in the virtual floorplan to match S1’s new physical location. However, John cannot
find S2 from the location it was supposed to be. He only sees the remains of S2,
meaning someone must have ripped it off. John is not too concerned about the theft
since he knows that they can be used to adjust lighting only in the Business Kitchen
area. In any case, John chooses to disable S2 with the admin view in the application.

5.1.2. Requirements

The following software requirements were summarized based on the user scenario
presented in Section 5.1.1.1.

• Tapping a switch with a smartphone at a specific location will allow adjusting
lighting intensity at that location.

• Lighting preferences can be inputted using a GUI.
• System can only be used in Business Kitchen area even if the switches are

removed and taken elsewhere.
• Pressing a "Set Default"-button adjusts the currently occupied luminaires to the

default intensity level in the space. If other people are using the luminaires, the
control is transferred to them instead.

• The luminaires should be automatically adjusted to the default intensity level in
the space if the user forgets to do it manually a while after the user has left.

• The preference of a person who is closer to the luminaires has more weight in
the luminaire output compared to a person who is farther away.

In addition to the software requirements, the physical switches should enable
relocation but still be firmly attached to the surface. The material should also
be relatively durable to withstand several attachments and non magnetic to avoid
interference with the smartphone NFC reader. For the sake of this prototype, a simple
NFC sticker based solution was used and developing a long-term solution was left for
future work.

Two requirements for Scenario 5.1.1.2 were also summarized and are listed below.

• Administrators can add, relocate and remove switches.
• Administrators can inspect the usage of the switches.

As stated before, these administrator requirements were implemented only to the
server but not to the Android client.
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5.1.3. Design Choices

Business Kitchen, illustrated in Figure 3, is a public collaborative space containing
several tables suitable for group work and facilities for giving speeches and
presentations. Anyone visiting the campus during working hours is allowed to work
there, although the space seems to be favored by students. This section illustrates the
most relevant design choices which were made during the prototype design.

5.1.3.1. Lighting control method

The ActiveAhead equipped luminaires in Business Kitchen are placed evenly to a grid
formation to provide general lighting to the space. This means that the luminaires are
not targeted to any particular table, hence luminaire sharing with the adjacent tables
was thought necessary.

The next step was to decide how much individual luminaire control the users were
allowed to have. Krioukov et al. [20] and Zou et al. [19] provided a user interface to
adjust all the nearby luminaires individually. However, this approach did not seem to fit
well to Business Kitchen due to the high amount of luminaires in the user’s proximity,
which could potentially lead to confusion in selecting the appropriate luminaires and
would also require manual effort in adjusting all the luminaires individually. Therefore,
a single input that would adjust all the nearby luminaires at the user location was
thought to be a more user-friendly solution, in a similar fashion with Petrushevski
[21].

Two device choices for inputting the users’ lighting preferences were considered:
a smartphone or an embedded board. Due to the public nature of Business Kitchen,
a smartphone was selected since the embedded boards might attract some malicious
users wanting to steal them. Also, the costs of the embedded boards would scale
poorly with the increased amount of users in the space, whereas almost every person
visiting the space would most likely have a smartphone.

There was also a possibility to utilize the smartphone illuminance sensors to take
the background lighting into account in a similar manner as done by Petrushevski [21].
However, the idea was abandoned since orientating the illuminance sensor would have
an effect on the sensor reading and thus the lighting output, meaning that the users
would need to have their smartphones constantly facing up on the table, which would
prevent all other use of the smartphone.

Distance weighted preference averaging was chosen to resolve the potential conflicts
by giving the users closer to the luminaire more weight to its output. After
experimenting, it was also noticed that the luminaires roughly more than two meters
away from the switch did not have a considerable effect to the lighting and could
potentially irritate people who do not use the system. Therefore, the control of the
nearby luminaires was restricted to the luminaires within two meters. In the case
where there were no other users nearby, the current user was given the full control
of the luminaires within the range. To implement the presented conflict resolution
model, a component with the knowledge of all luminaire positions and the preferences
of the current users were needed. Thus, centralized control was needed.
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5.1.3.2. Positioning technology

To enable location based lighting adjustment, the user position needed to be
determined. Since the luminaires were installed relatively close to each other with
approximately 2 m and 2.3 m distances in between to the x and y directions, the
positioning needed to be relatively accurate.

RF (radio frequency) based indoor positioning systems (IPS), i.e., Wi-Fi and BLE
when considering smartphones, were determined too inaccurate since they generally
achieve 1-2 m accuracy in controlled environments but can perform even worse
depending on the factors, such as the amount of collected fingerprints, the up-to-
dateness of the the fingerprint database and RF coverage in the area [5]. During
the designing of the prototype, a BLE beacon based indoor positioning system was
installed to the campus and could have been used for this prototype without having the
need to install other systems. However, as in line with the performance of the previous
systems [5], it was not considered accurate enough for this use case.

Instead of utilizing an IPS, unique identifiers were chosen to mark the locations
where the lighting could be adjusted with a help of the Business Kitchen floorplan.
This floorplan based solution was thought to be considerably easier to implement and
it would enable getting user feedback regarding the system without a considerable
positioning error comparing to IPS-based solutions. On the downside, placing the
switches to the space would add some manual effort. Also, the number of locations
for lighting adjustment would be limited to the amount of placed switches, whereas
IPS-based solutions could potentially provide a continuous lighting adjustment.

The unique identifiers marking the switch locations could be written to NFC tags, as
done by Petrushevski [21], but also QR codes could be used for this purpose as done by
Krioukov et al. [20]. Ideally, both technologies could be used simultaneously, which
would give the user an option to choose based on her preference, but NFC was chosen
to be implemented first for the prototype.

5.1.3.3. Authentication and security

Only the people present in Business Kitchen were allowed to adjust the lighting to
prevent accidents, misuse and hacking. Therefore, the lighting control server was made
accessible only through a local Wi-Fi access point (AP) placed to Business Kitchen,
meaning the users were required to join "Business Kitchen" Wi-Fi AP. BLE was also
an option for communication between the application and the lighting control server,
but Wi-Fi was thought to perform better for a high number of concurrent connections.
The drawback of the Wi-Fi based access limitation was that all users’ Internet traffic
needs to be routed through the AP. If the AP would not provide an Internet access,
Android would automatically try to connect to another previously used AP or fall back
to cellular connection.

Krioukov et al. [20] and Zou et al. [19] required also credentials for using their
systems. The organizational credentials would mitigate the application misuse by
being able to identify the user causing trouble and deny the access to the service.
Limiting the service only to persons with university credentials did not suit Business
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Kitchen well, since it would exclude other visitors than university students or faculty
members from using the system, and was therefore not implemented.

Physical hacking in the case for the prototype could mean rewriting, stealing or
moving the NFC tags or being able to access or steal the server or the Wi-Fi AP. By
default, anyone who had an appropriate smartphone application installed could rewrite
the NFC tags, but this was prevented by locking the tags to be read-only before use.
Stealing the NFC tags would not be a significant loss due to their cheap price, and
since the Wi-Fi connection would be needed, the potential attacker could only control
the corresponding switch in the Wi-Fi range. The most obvious and easiest way for
the physical hacking would simply be turning off the lights from a physical switch,
but this option would be present despite the presence of the prototype. The likelihood
for physical hacking was also considered to decrease due to the restrictions to access
the space off working hours and the presence of security cameras in the space. If
NFC-based physical hacking was to succeed, it would result in the hacker being able
to adjust another person’s lighting and most likely being an annoyance for the users at
worst, and finding the hacker would be relatively easy since the attacker would be in
the Wi-Fi range.

To protect the users’ privacy, the server component did not store any information
where the users could be identified. Only the events for adjusting lighting or setting
the lighting to the default level were stored with the information of the used switch
and its location, timestamp and the user preference. If the system stored the identifiers
representing the users, it would result to a tool for the administrators to inspect when
particular identifiers have been in the space. By itself this would not be a problem,
but since the service was only accessible from the Wi-Fi range, the administrators
would be able to relate the identifiers to real persons by simply walking to the space
and watching who is currently using each switch, also revealing all other times when
that person has been in the space. Even if the administrators would be trusted with an
opportunity to know when each user has been in the space, the Raspberry Pi placed to
the space and running the server could be stolen.

Encrypting the messages between the server and the Android client was not
considered necessary since the messages did not contain any personal information,
and adjusting the lighting in the space was decided to be accessible for everyone
in the space anyway. However, transport layer encryption would be recommended
for any administrator tasks, for which the regular users do not have access, such as
repositioning and adding switches.

5.1.3.4. User presence detection

The arrival of the user was possible to detect with NFC, and for leaving the space,
disconnecting the Wi-Fi network was chosen as an indicator. In addition, closing the
application was considered leaving the switch. A "Set default"-button meant for the
user to indicate that she is leaving and wants to set the lighting back to the default
level was also thought necessary if the user wanted to remain in the range of the WiFi
but still free the luminaires for others to use. The last user tapping the NFC switch
was chosen to given the switch control and override the previous user preference. This
functionality was considered useful in the case where a user would forgot to set the
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lighting to default level with the "Set default"-button when leaving the space but still
staying within the range of Wi-Fi.

The campus BLE-based IPS could also have been utilized for more accurate user
presence detection, but it would have also required the user to turn on location and
Bluetooth services causing manual effort and increasing battery consumption. As it
has been stated previously in Section 3.1.1, the PIR sensors in general are not able to
identify the persons, and thus the sensors in the luminaires could not be used for the
user presence detection. Timer based solutions were also neglected since they were
thought to require too much effort for the user.

5.2. Implementation and Testing

The system consisted of two types of components: a client for the users to adjust
the lighting and a server for maintaining the list of current users, updating their
preferences and transferring the lighting control commands to the luminaires. The
system architecture is presented in Figure 24.

Figure 24. The system architecture.

The client was implemented as an Android mobile application. The reason for this
choice was the need to maintain a connection to the server even if the user wanted
to turn the smartphone screen off or use other applications. Otherwise, in the case
when the connection to the was lost, the lighting intensity would be recalculated even
if the user still wanted to maintain her lighting preference. The Android foreground
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service18 solved this problem but required showing a notification to the user that she is
still occupying the switch. To the author’s best knowledge, maintaining a connection
to the server while not interacting with the application was not possible with the web
based clients working in a mobile browser application. Furthermore, Material Design
components19 was used for GUI development. The NFC switch is presented in Figure
25a and the GUI for inputting the user lighting preference in Figure 25b.

(a) A switch for prototype. (b) UI adjusting the lighting.
Figure 25. The application enabling personal lighting control. [32], c© 2020 by the
authors, CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

The server API was implemented with Python and Django web framework20 and
communicated with a SQLite21 database. Django Channels22 was utilized to form a
Websocket connection between the client and the server indicating an occupation of
a switch. Django REST framework23 was used to implement create, read, update and
delete (CRUD) operations for Switch and Luminaire resources authorized only for
administrators. The switch actions to modify the lighting level and set the level to
the default were authorized for all users in the network. The true positions of the
luminaires were derived during luminaire identification presented in Section 3.2 and
added to the database with a Python Script.

The lighting controller unit (LCU) ran in another thread and communicated with
the luminaire mesh network by an external device provided by Helvar Oy Ab through
a Serial interface using Pyserial module24. LCU was built to enable a transfer to a

18https://developer.android.com/guide/components/services
19https://github.com/material-components/material-components-android
20https://www.djangoproject.com/
21https://www.sqlite.org/index.html
22https://channels.readthedocs.io/en/latest/
23https://www.django-rest-framework.org/
24https://pythonhosted.org/pyserial/
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different manufacturer luminaires if needed by overriding set_level and set_default
methods which would adjust the luminaire intensity and return the intensity back to a
default level.

The server was deployed to a Raspberry Pi 4, which is a low-cost single-board
computer using a Daphne25 server. Furthermore, an external application was used
for reading, writing and locking the NFC switches. The interaction of the components
in the system is presented in Figure 26.

Figure 26. The use case sequence diagram.

The most important server functionality such as the endpoint authorization as well
as the distance-based lighting output calculation were unit tested. Also, an integration
test simulating the server and LCU behavior with multiple users was implemented.
Finally, a manual end-to-end test was performed for the whole system before the user
evaluation. Django, Django REST Framework and Django Channels testing tools were
used for test automation. The end-to-end tests are further described in Appendix 3.

5.3. Evaluation

The goals of the evaluation were to gather user experiences about the shared lighting
control, evaluate system usability and identify potential usability problems. The

25https://github.com/django/daphne
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evaluation was conducted with seven pairs of participants (thus, overall fourteen
participants). Each participant had control of four luminaires: two shared and two
of their own. The setup, illustrated in Figure 27, aimed to maximize the effect of the
luminaire sharing by placing the switches directly between the luminaires, so that both
participants had equal control to the shared luminaires. The participants were first
introduced to the system, then the tasks to be performed were given one at a time after
accomplishing the previous task. The participants were assigned either a role of Reader
or Programmer to make it easier to give instructions. The tasks are listed below:

1. Participants are given smartphones with the Android client installed, NFC
disabled and Wi-Fi turned off.

2. Both: open up the application and follow instructions shown in the application.
(The application prompts to enable NFC and join Wi-Fi.)

3. Waiting until both participants have the GUI to adjust lighting open
4. Reader: adjust preference to minimum (0).
5. Programmer: adjust preference to minimum (0).
6. Reader: adjust preference to maximum (100).
7. Programmer: adjust preference to maximum (100).
8. Reader: adjust preference to half way (50).
9. Programmer: adjust preference to half way (50).

10. Reader: adjust preference to maximum (100)
11. Programmer: adjust preference to minimum (0)
12. Reader: leave Business Kitchen and set lighting back to the default level.

Programmer: continue working.
13. Waiting that the Programmer will see the effect of Reader leaving
14. Experiment ends. Both participants fill out the questionnaire.

After completing the tasks, participants filled out a System Usability Scale (SUS)
[33] questionnaire with additional questions related to the shared luminaire control
and continuing using the system in the future. Since there were several roof windows
in Business Kitchen, the evaluation was conducted at evening time to eliminate the
effect of natural lighting. Also, the lighting intensity for the rest of the luminaires,
which were not used in the study, was set to the default level (85 on a scale from 0 to
100). The lights in nearby cubicles were turned on. The evaluation setup attempted to
maximize the effect of the shared luminaires as can be seen in Figure 27.

5.3.1. System Usability

System usability scale (SUS) [33] was chosen as a usability metric due to its popularity
and simplicity. The developed prototype gained a SUS score of 76.4. Generally, the
average SUS score is 68 [34]. Thus, the SUS score of the developed prototype ranks
in the top 30 percentile [34]. The SUS score distribution with the fourteen participants
is presented in more detail in Figure 28.

Half of the participants had not used NFC before, therefore, they needed some
practicing to get used to the interface. Two users had particular challenges with using
NFC technology and were aided with the tapping of the NFC switch. At the end, only
one participant commented that NFC is too difficult to use for this application. [32]
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Figure 27. Circles indicate the positions where participants P1 and P2 sat during the
evaluation. P1 had the total control of the luminaires marked in blue and P2 for the
luminaires marked in red. Both participants had equal weight to the shared luminaire
control, marked in green.

During the evaluation, it was also observed that users tended to accidentally close
the popup instructing to enable NFC and join the Business Kitchen Wi-Fi and therefore
be unsure how to proceed. In the case when popup was dismissed, the users were told
to open up the application again. After the evaluation, the client was updated to prevent
the users accidentally closing the popups.

5.3.2. Experiences on Shared Lighting Control

The results show that five out of fourteen participants did not notice that they were
controlling shared luminaires, whereas the rest of the participants did pay attention to
the shared control. Moreover, eight participants were not bothered with the change of
lighting by the other participants, two participants found the change disturbing, and
four did not have an opinion on the matter. Commonly, having different lighting levels
in the task, surrounding and background areas does not seem to irritate users [35]. [32]

Seven out of fourteen participants wanted to continue using the system when
working in Business Kitchen, whereas three of them considered the default lighting
good enough and one of the participants was also afraid to affect the lighting conditions
of the other users of the space. The participants also gave comments on desired
features, such as changing the lighting temperature. The participants also indicated
a desire to use a similar lighting control method in other spaces such as home. [32]

Since the evaluation was limited only to two participants, further research is needed
for the group dynamics in luminaire sharing. Also, how the perception of the other
participants adjusting lighting changes when the shared luminaires have less effect on
the participant’s task area, could be studied further.
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Figure 28. The SUS questionnaire distribution.

5.4. Limitations and Future Work

The required configuration before starting to use the system is one of the most
significant limitations. This configuration consists of identifying the luminaires,
although it can be made easier by the techniques presented in Section 4, and
of positioning the NFC switches both physically and virtually. As stated before,
positioning the switches could be avoided by using a BLE or Wi-Fi based indoor
positioning system to locate the user, but the locationing accuracy was not considered
sufficient. The administrator tasks, namely physical and virtual switch positioning and
relocationing, were not in the focus of this thesis and should be defined, implemented
and tested further before introducing users as the system administrators.

Moreover, limiting the access to the service through a Wi-Fi access point also meant
that all user Internet traffic is routed through the AP requiring the user trusting the
organization providing the AP. Wrapping the service to a particular network this way
can cause problems in situations where there are multiple different organizations with
their own networks but a common workspace for everyone. One potential solution for
limiting the service only to a specific area could be to use BLE to broadcast a dynamic
one-time password (OTP). The OTP could possibly be broadcasted by the Raspberry
Pi with BLE beacon emulation. The clients would then need to continuously scan the
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advertised BLE OTP and connect to the server through their mobile network, i.e., the
server would need to be made accessible to the Internet. The OTP could change, for
example, in every five minutes to mitigate the malicious use and enable detecting the
clients who have left the space. The described BLE-based authentication concept needs
to be researched further, but it could potentially replace Wi-Fi as making the service
available only for the space users. Static BLE OTP broadcasting has already been
proposed to include the location to a multi-factor authentication scheme[36]. From the
user perspective BLE scanning requires activating location and Bluetooth services [37]
but the need to join to the Wi-Fi AP would be removed.

There are also features that could enhance the user experience if implemented. User
could have a preset preference value, which would automatically be updated when
tapping the NFC switch. This preset could be switch specific or a common preference
for all switches. Currently, the user always needs to adjust the lighting to her preference
by using the GUI. It would also be possible to make the preset change based on the
previous switch usage. The data needed for this kind of system should probably be
saved to the client to protect users’ privacy, although the non-identifiable lighting
preference data stored on the server could be used as a general starting point.

Furthermore, walls, pillars and other lighting obstacles are not currently taken into
account by the conflict resolution. Ideally, the users should not be able to adjust the
luminaires whose lighting output is covered by these obstacles. This would require
inputting the location and the size of the obstacles to the system, possibly by utilizing
the floorplan and a GUI to draw the obstacles. On the downside, this would increase
the administrator configuration effort.
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6. CONCLUSION

This thesis explored two aspects of these smart lighting systems with a help of an
ActiveAhead installation at the University of Oulu.

First, the use of the distance information from Bluetooth Low Energy (BLE)
broadcasted received signal strength indicators (RSSI) and the passive infrared (PIR)
sensor triggers were explored to position the smart luminaires. For the PIR data,
a centroid-based location estimation method was developed and evaluated with two
datasets, PIR EDA dataset and PIR optimal dataset reflecting a typical and optimal
scenarios of triggering the PIR sensors. The method provided 1.69 and 0.47 meter
mean errors at around 10 minutes of configuration for PIR EDA dataset and PIR
optimal dataset respectively.

For the RSSI data, a method consisting of a log-distance path loss distance
estimation and mean squared error (MSE) based position optimization was evaluated
providing a 3.12 meter mean error assuming a path loss exponent of n = 1,6 at the
maximum of 9 scan points with a duration of one minute. Due to the layout of the
space and luminaires and also the unique signal propagation environment, the results
cannot be directly generalized to other spaces and should be considered more as a
guideline.

Secondly, a lighting control prototype for collaborative environments was designed,
implemented and evaluated. The prototype used near-field communication (NFC)
tags to indicate the user position and to initiate a lighting preference input using
an Android application. The user preferences were transmitted to the local server,
which was responsible for the lighting control logic and adjusting the luminaires
accordingly. Distance-based averaging between the user preferences was used for
resolving potential conflicts. A user evaluation with fourteen participants was
conducted indicating a System Usability Score (SUS) of 76.4 ranking in the top 30
percentile of general SUS scores.
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[12] Kochláň M. & Miček J. (2014) Indoor propagation of 2.4 ghz radio signal
propagation models and experimental results. In: The 10th International
Conference on Digital Technologies 2014, IEEE, pp. 125–129. DOI: https:
//doi.org/10.1109/DT.2014.6868703.

[13] Fet N., Handte M. & Marrón P.J. (2013) A model for wlan signal attenuation of
the human body. In: Proceedings of the 2013 ACM international joint conference
on Pervasive and ubiquitous computing, pp. 499–508. DOI: https://doi.
org/10.1145/2493432.2493459.

[14] Wang Y., Yang X., Zhao Y., Liu Y. & Cuthbert L. (2013) Bluetooth
positioning using rssi and triangulation methods. In: 2013 IEEE 10th Consumer
Communications and Networking Conference (CCNC), IEEE, pp. 837–842.
DOI: https://doi.org/10.1109/CCNC.2013.6488558.

[15] Guidara A., Fersi G., Derbel F. & Jemaa M.B. (2018) Impacts of temperature
and humidity variations on rssi in indoor wireless sensor networks. Procedia
Computer Science 126, pp. 1072–1081. DOI: https://doi.org/10.
1016/j.procs.2018.08.044.

[16] Faragher R. & Harle R. (2014) An analysis of the accuracy of bluetooth
low energy for indoor positioning applications. In: Proceedings of the 27th
International Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS+ 2014), vol. 812, vol. 812, pp. 201–210.

[17] Ma Z., Poslad S., Bigham J., Zhang X. & Men L. (2017) A ble rssi ranking
based indoor positioning system for generic smartphones. In: 2017 Wireless
Telecommunications Symposium (WTS), IEEE, pp. 1–8. DOI: https://doi.
org/10.1109/WTS.2017.7943542.

[18] Snyman J.A. (2005) Practical mathematical optimization. Springer.

[19] Zou H., Zhou Y., Jiang H., Chien S.C., Xie L. & Spanos C.J. (2018) Winlight: A
wifi-based occupancy-driven lighting control system for smart building. Energy
and Buildings 158, pp. 924 – 938. DOI: https://doi.org/10.1016/j.
enbuild.2017.09.001.

[20] Krioukov A., Dawson-Haggerty S., Lee L., Rehmane O. & Culler D.
(2011) A living laboratory study in personalized automated lighting controls.
In: Proceedings of the Third ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, BuildSys ’11, Association
for Computing Machinery, p. 1–6. DOI: https://doi.org/10.1145/
2434020.2434022.

[21] Petrushevski F. (2012) Personalized lighting control based on a space model. In:
Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp
’12, Association for Computing Machinery, p. 568–571. DOI: https://doi.
org/10.1145/2370216.2370311.

https://doi.org/10.1109/ISIEA.2010.5679486
https://doi.org/10.1109/DT.2014.6868703
https://doi.org/10.1109/DT.2014.6868703
https://doi.org/10.1145/2493432.2493459
https://doi.org/10.1145/2493432.2493459
https://doi.org/10.1109/CCNC.2013.6488558
https://doi.org/10.1016/j.procs.2018.08.044
https://doi.org/10.1016/j.procs.2018.08.044
https://doi.org/10.1109/WTS.2017.7943542
https://doi.org/10.1109/WTS.2017.7943542
https://doi.org/10.1016/j.enbuild.2017.09.001
https://doi.org/10.1016/j.enbuild.2017.09.001
https://doi.org/10.1145/2434020.2434022
https://doi.org/10.1145/2434020.2434022
https://doi.org/10.1145/2370216.2370311
https://doi.org/10.1145/2370216.2370311


58

[22] Chandrakar N., Kaul S., Mohan M., Vamsi C.S. & Prabhu K. (2015) Nfc based
profiling of smart home lighting system. In: 2015 International Conference
on Industrial Instrumentation and Control (ICIC), IEEE, pp. 338–341. DOI:
https://doi.org/10.1109/IIC.2015.7150764.

[23] Fraden J. (2004) Handbook of modern sensors: physics, designs, and
applications. Springer Science & Business Media, 267-270 p.

[24] Pir motion sensor. URL: https://cdn-learn.adafruit.com/
downloads/pdf/pir-passive-infrared-proximity-motion-
sensor.pdf. Accessed 19.8.2020.

[25] Teixeira T., Dublon G. & Savvides A. (2010) A survey of human-sensing:
Methods for detecting presence, count, location, track, and identity. ACM
Computing Surveys 5, pp. 59–69.

[26] Activeahead sense (5630) datasheet. URL: https://helvar.com/wp-
content/uploads/2020/06/5630_DATASHEET_EN.pdf. Accessed
12.08.2020.

[27] Bluetooth S. (2010), Specification of the bluetooth system-covered core package
version: 4.0.

[28] Baert M., Rossey J., Shahid A. & Hoebeke J. (2018) The bluetooth mesh
standard: An overview and experimental evaluation. Sensors 18, p. 2409. DOI:
https://doi.org/10.3390/s18082409.

[29] Gomez C., Oller J. & Paradells J. (2012) Overview and evaluation of bluetooth
low energy: An emerging low-power wireless technology. Sensors 12, pp.
11734–11753. DOI: https://doi.org/10.3390/s120911734.

[30] Darroudi S.M. & Gomez C. (2017) Bluetooth low energy mesh networks:
A survey. Sensors 17, p. 1467. DOI: https://doi.org/10.3390/
s17071467.

[31] Shrestha A. & Won M. (2018) Deepwalking: Enabling smartphone-based
walking speed estimation using deep learning. In: 2018 IEEE Global
Communications Conference (GLOBECOM), IEEE, pp. 1–6. DOI: https:
//doi.org/10.1109/GLOCOM.2018.8647857.

[32] Gilman E., Tamminen S., Yasmin R., Ristimella E., Peltonen E., Harju M., Lovén
L., Riekki J. & Pirttikangas S. (2020) Internet of things for smart spaces: A
university campus case study. Sensors 20, p. 3716. DOI: https://doi.org/
10.3390/s20133716.

[33] Brooke J. et al. (1996) Sus-a quick and dirty usability scale. Usability
evaluation in industry 189, pp. 4–7. DOI: https://doi.org/10.1201/
9781498710411-35.

[34] Sauro J. (2018), 5 ways to interpret a sus score. URL: https://
measuringu.com/interpret-sus-score/. Accessed 08.08.2020.

https://doi.org/10.1109/IIC.2015.7150764
https://cdn-learn.adafruit.com/downloads/pdf/pir-passive-infrared-proximity-motion-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/pir-passive-infrared-proximity-motion-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/pir-passive-infrared-proximity-motion-sensor.pdf
https://helvar.com/wp-content/uploads/2020/06/5630_DATASHEET_EN.pdf
https://helvar.com/wp-content/uploads/2020/06/5630_DATASHEET_EN.pdf
https://doi.org/10.3390/s18082409
https://doi.org/10.3390/s120911734
https://doi.org/10.3390/s17071467
https://doi.org/10.3390/s17071467
https://doi.org/10.1109/GLOCOM.2018.8647857
https://doi.org/10.1109/GLOCOM.2018.8647857
https://doi.org/10.3390/s20133716
https://doi.org/10.3390/s20133716
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1201/9781498710411-35
https://measuringu.com/interpret-sus-score/
https://measuringu.com/interpret-sus-score/


59

[35] de Bakker C., Aarts M., Kort H. & Rosemann A. (2018) The feasibility of highly
granular lighting control in open-plan offices: Exploring the comfort and energy
saving potential. Building and Environment 142, pp. 427–438. DOI: https:
//doi.org/10.1016/j.buildenv.2018.06.043.

[36] van Rijswijk-Deij R. (2010) Simple location-based one-time passwords. Utrecht:
Technical Paper .

[37] Bluetooth low energy overview. URL: https://developer.android.
com/guide/topics/connectivity/bluetooth-le#terms.
Accessed 19.8.2020.

https://doi.org/10.1016/j.buildenv.2018.06.043
https://doi.org/10.1016/j.buildenv.2018.06.043
https://developer.android.com/guide/topics/connectivity/bluetooth-le#terms
https://developer.android.com/guide/topics/connectivity/bluetooth-le#terms


60

8. APPENDICES

Appendix 1 PIR centroid algorithm results for PIR EDA dataset
Appendix 2 PIR centroid algorithm results for PIR optimal dataset
Appendix 3 End-to-end test cases for the lighting control prototype



Appendix 1. PIR centroid algorithm results for PIR EDA dataset 61

Walk range0 range1 range2 range3 Mean
error (m)

Duration
(min:s)

0 0.000 0.000 0.000 0.000 1.820 00:08
5 0.032 0.270 0.476 0.619 2.209 02:17
10 0.286 0.825 0.889 0.905 1.899 04:12
15 0.333 0.746 0.873 0.921 1.803 06:11
20 0.349 0.778 0.857 0.905 1.730 08:13
25 0.317 0.762 0.857 0.873 1.717 10:53
30 0.444 0.937 0.952 0.952 1.579 12:41
35 0.492 0.905 0.937 0.952 1.628 15:41
40 0.381 0.841 0.937 0.952 1.560 18:39
45 0.333 0.810 0.921 0.952 1.566 20:41
50 0.381 0.889 0.937 0.968 1.545 24:52
55 0.444 0.873 0.937 0.968 1.511 26:33
60 0.460 0.873 0.905 0.952 1.488 29:21
65 0.508 0.952 0.952 0.984 1.527 31:17
70 0.508 0.952 0.952 0.984 1.519 33:08
75 0.492 0.921 0.921 0.984 1.515 35:07
80 0.587 0.905 0.937 0.968 1.525 36:42
85 0.540 0.889 0.937 0.968 1.520 38:42
90 0.429 0.905 0.921 0.968 1.526 41:01
95 0.444 0.905 0.921 0.968 1.503 42:27
100 0.508 0.937 0.952 0.984 1.497 44:49
105 0.508 0.937 0.968 0.984 1.501 47:14
110 0.524 0.921 0.952 0.984 1.489 49:27
115 0.603 0.937 0.952 0.984 1.475 51:24
120 0.619 0.937 0.968 0.984 1.460 53:32
125 0.603 0.921 0.937 0.984 1.458 55:27
130 0.603 0.921 0.937 0.984 1.434 57:29
135 0.524 0.889 0.905 1.000 1.417 59:23
140 0.492 0.905 0.921 0.968 1.428 61:33
145 0.492 0.921 0.921 0.984 1.426 62:42
150 0.556 0.952 0.952 1.000 1.413 64:54
155 0.508 0.889 0.905 1.000 1.408 66:53
160 0.492 0.921 0.968 1.000 1.404 68:59
165 0.460 0.937 0.968 1.000 1.408 70:28
170 0.571 0.921 0.968 1.000 1.408 72:46
175 0.571 0.937 0.968 1.000 1.390 76:02
180 0.556 0.921 0.968 1.000 1.392 78:13
185 0.524 0.905 0.952 0.968 1.391 79:50



Appendix 2. PIR centroid algorithm results for PIR optimal dataset 62

Walk range0 range1 range2 range3 Mean
error (m)

Duration
(min:s)

0 0.333 0.333 1.0 1.0 5.635 00:26
1 1.000 1.000 1.0 1.0 0.192 00:57
2 0.667 1.000 1.0 1.0 1.707 01:26
3 1.000 1.000 1.0 1.0 0.477 01:58
4 0.667 1.000 1.0 1.0 1.096 02:29
5 1.000 1.000 1.0 1.0 0.350 03:01
6 1.000 1.000 1.0 1.0 0.682 03:31
7 1.000 1.000 1.0 1.0 0.307 04:07
8 1.000 1.000 1.0 1.0 0.701 04:39
9 1.000 1.000 1.0 1.0 0.348 05:15
10 1.000 1.000 1.0 1.0 0.727 05:46
11 1.000 1.000 1.0 1.0 0.307 06:23
12 1.000 1.000 1.0 1.0 0.642 06:55
13 1.000 1.000 1.0 1.0 0.363 07:35
14 1.000 1.000 1.0 1.0 0.570 08:11
15 1.000 1.000 1.0 1.0 0.500 08:45
16 1.000 1.000 1.0 1.0 0.656 09:17
17 1.000 1.000 1.0 1.0 0.484 09:51
18 1.000 1.000 1.0 1.0 0.559 10:23
19 1.000 1.000 1.0 1.0 0.418 10:59
20 1.000 1.000 1.0 1.0 0.535 11:31
21 1.000 1.000 1.0 1.0 0.486 12:04
22 1.000 1.000 1.0 1.0 0.564 12:33
23 1.000 1.000 1.0 1.0 0.471 13:05
24 1.000 1.000 1.0 1.0 0.600 13:38
25 1.000 1.000 1.0 1.0 0.499 14:16
26 1.000 1.000 1.0 1.0 0.603 14:47
27 1.000 1.000 1.0 1.0 0.528 15:24
28 1.000 1.000 1.0 1.0 0.657 15:54
29 1.000 1.000 1.0 1.0 0.501 16:27
30 1.000 1.000 1.0 1.0 0.617 17:01
31 1.000 1.000 1.0 1.0 0.475 17:36
32 1.000 1.000 1.0 1.0 0.582 18:05
33 1.000 1.000 1.0 1.0 0.482 18:42
34 1.000 1.000 1.0 1.0 0.586 19:12
35 1.000 1.000 1.0 1.0 0.466 19:43



Appendix 3. End-to-end test cases for the lighting control prototype 63

Type Description Result

Manual end-to-end test
including the whole
system

User opens up the mobile application. The application
prompts the user to enable NFC. The user enables
NFC. The application instructs the user to tap the NFC
switch. The user taps the switch. The application
prompts the user to join Business Kitchen Wi-Fi.
The user joins the Business Kitchen Wi-Fi. The
application shows the user a GUI to adjust the lighting
at the location of the switch. The user adjusts the
lighting to her preference and the nearby luminaires
react accordingly. The user presses the "Set Default"-
button. The luminaires return back to the default level.

PASS

The server end-to-end test
with multiple users

Luminaire L1 is positioned at (1,3), luminaire L2
at(3,2) and luminaire L3 at (2,2). Switch S1 is
positioned at (2,3) and Switch S2 at (3,3). Switches
have an effect on the luminaires within 2 meters,
and so S1 affects luminaires L1, L2 and L3 and
S2 luminaires L1 and L2. User U1 sets S1 to 50,
Lighting Control Unit (LCU) sets L1, L2, L3 to 50
also. User U2 sets S2 to 5, LCU sets L2 and L3 to
25 and 30 respectively. U1 sets S1 to 5, LCU sets
L1, L2 and L3 to 5 also. U1 leaves and lighting is
recalculated: LCU sets L1 to the default level of 85
and L2 and L3 to 5. U2 leaves, LCU sets L2 and L3
to the default level.

PASS
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