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ABSTRACT

Clinical data is the most valuable resource in healthcare development,
but it also comes with many challenges. When clinical researchers
are required to combine medical expertise with statistical and
programming knowledge, the need for data analysis tools arises. The
aim of this thesis was to design ClinFlow, an application for clinical
data processing and visualization based on user needs. R language and
Shiny framework were selected for creating this tool. The goal was to
give the means for the clinical researcher to conduct data analysis in
an interactive environment, with no need for statistical programming
knowledge. A case study using data from The Finnish Type 1
Diabetes Prediction and Prevention (DIPP) study was conducted to
demonstrate the feasibility of this application. The initial results
achieved in this case study support the previous research of the DIPP
study. ClinFlow shows potential for becoming a useful data analysis
tool for clinical research.

Keywords: ClinFlow, clinical data, analysis, visualization,
preprocessing, type 1 diabetes.
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1. INTRODUCTION

Medical data is a crucial resource in the process of healthcare progress,
fundamental to the development of good care practices for patients and the
success of clinical trials [1].Generally, raw medical data provides challenges with
the cleanliness, reliability and completeness. Medical data is usually stored in
a way that can’t be easily analyzed. Population health data can be large and
diverse. The variability in data types can impose a challenge, as well as merging
data from different sources or database types, and there is a need for a common
terminology consensus across various data sources. There are several sources for
uncertainty and errors in the medical data collection phase. From sources such as
lab results, medical visits or patient questionnaires, medical records are usually
manually introduced in a database which leaves them prone to human errors [2].
Data from these medical records is in a wrong format (free text format), irregular
and unstructured [3].
Data mining is the process of discovering patterns and previously unknown

relationships within data, and it involves statistical methods and machine learning
methods used for extracting novel information from a data set, in a more
understandable form for further analysis [4]. For the data mining techniques
to be successful in medicine, high quality medical data is needed. However,
different data sets have different specific issues that can’t be solved with a
general preprocessing algorithm. In order to obtain the data quality necessary
for efficiently applying data mining techniques, the data has to go through
a preprocessing step. The data preprocessing process includes data cleaning,
data integration, data transformation and feature extraction [5]. Data cleaning
removes inconsistencies and errors such as extreme outlier removal, deleting
duplicate entries, etc. Data integration refers to merging data from multiple
sources. Data transformation transforms the variables into appropriate forms
and includes scaling, normalization or conversion. Finally, feature extraction
refers to creating new, more interpretable and non-redundant features from the
existing ones.
A survey [6] conducted in 2018 among clinical trial researchers mainly in North

America and Europe found that the biggest challenge with clinical trial data
is data quality, followed by inconsistent data, which requires manual effort in
aggregating, cleaning and transforming this clinical data. Most of the respondents
in this survey experience issues with this manual process, which result in trial
delays.
While some preprocessing methods require extensive statistical programming

knowledge, others need the expertise of the medical professional, for example, in
feature extraction or outlier treatment. The work in this thesis is dedicated to
solving clinical data preprocessing and preparation challenges, prior to clinical
data analysis and offering a platform for the researcher to easily prepare and
analyze clinical data. This is achieved using the R programming language and
free software environment for statistical computing and graphics[7].



1.1. Objectives and scope

The main objective is to deliver an interactive application dedicated to analyzing
clinical data, that allows for some user-defined data preparation operations like
filtering, feature construction and outlier treatment, and a platform for visualizing
different analyses. The end goal is to facilitate the researchers to navigate data,
collect subsets of data based on their research hypothesis, extract new information
and perform analyses where statistical software knowledge is not necessary.
This tool is designed using the Shiny framework [8] - an R package for building

interactive applications straight from R. It uses open-source technologies to
offer an intuitive user interface that requires no coding or statistical software
knowledge. R was chosen due to its built-in statistical analysis capabilities, and
the Shiny framework makes it easy to embed R’s capabilities in an interactive
user interface.
We will conduct a case study to explore the need, requirements, and feasibility

of such a tool, to discuss it’s implementation, and to demonstrate it’s operation
and usefulness in processing clinical data. The case study will be conducted
using data from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP)
study [9], containing globally unique cohort data that has been studied widely
by several national and international research groups for the past two decades,
with the purpose of developing strategies for prevention of type 1 diabetes. A
secondary objective is to design a preprocessing framework for delivering clean
and interpretable information, focused on correcting errors found in the DIPP
data and extracting useful features that are well hidden in the raw data.
Following is an overview of the thesis. Chapter 2 presents a comprehensive list

of data visualization tools and discusses their capabilities. Chapter 3 describes
in detail the theoretical background of the statistical methods to be included in
the tool. In Chapter 4, the architecture of the tool is presented along with each
functionality explained. Chapter 5 contains the methodology of the case study,
the preprocessing of the DIPP data and the case study results. Chapter 6 includes
the discussion of the case study results and the applicability of the tool, as well
as limitations and future work. Finally, the thesis will be concluded in Chapter
7.
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2. BACKGROUND

Data collected during clinical trials comes with many challenges such as high
volume of data, unclean data, irregularities, as well as other problems related
to specific medical domains. Visualization is critical in the analysis of clinical
data, not only for discovering patterns in the patient’s medical visits, but also for
evaluating the data quality and validity, as well as evaluating whether there is a
need for improvement in the data collection practices [10].
Various tools for visualization, management and analysis of clinical trial data

have been created throughout all medical specialties. These tools have been
proven useful in understanding patients’ medical history and improving clinicians’
recognition of health trends [11].
Statistical techniques for observational analysis can be used for data derived

from the routine medical visits of entire populations. However, clinical trial data
can be very diverse depending on the medical domain and complex relationships
between the variables cannot be easily extracted without personalized tools
specific to the studied domain. Specific applications have to be adapted to domain
expertise [12].

2.1. Data Visualization Tools

Multiple visualisation tools are currently available for analyzing information in
the biological and clinical research. There’s a wide variety of data visualisation
tools including clinical, biological and general tools. EventFlow [13], LifeLines
[14], LifeLines2 [15] are tools designed for clinical data visualisation and
dashboard development for electronic health records (EHR). Deng and Denecke
[16] used a tag cloud from radiology reports, pathology reports and surgical
reports for summarising unstructured patient records. These tools are very
useful for researchers to summarize, aggregate and simplify a large volume of
electronic health records, for visually identifying patterns, and they offer also
some data wrangling and manipulation functionalities. However, they do not
include unsupervised learning methods, such as clustering, that can be useful in
clinical trial data analysis. VISualization of Time-Oriented RecordS (VISITORS)
[17] is used for visualizing time-oriended health records and Dynamics Icon
(DICON) [18] is used for clustering and finding similarities between clusters of
patients. These tools don’t offer options for data cleaning or wrangling operations.
Data visualisation tools, such as HARVEST [19], offer a web based infrastructure
for integrating, discovering and reporting data but are restricted to the data
captured in a data warehouse.
EHDviz [20] is a tool for realtime health data in a hospital setting, as well as

emulating EHR for population assesment. HTPMod [21] visualizes and models
biological data such as genomics and phenomics plant growth data. ExPanD [22]
is an R package and tool for generalized panel data which can include visit based
medical data. The last three applications include visualizations that can be used
for clinical data, but offer little to no preprocessing options. Table 1 summarizes
the advantages and limitations of these visualization tools.
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Table 1. Advatages and limitations of data visualization tools

Tool Used for Advantages Limitations
EventFlow
[13]
LifeLines
[14]
LifeLines2
[15]

Visualizing and
summarizing
patient records

Enables the visual analysis of
large scale patient records.

No statistical unsupervised
learning methods.

VISITORS
[17]

Exploration of
time-series data

Enables visualization of
similarities between variables
and groups of patients.

Uses raw data, no preprocessing.

DICON
[18] Cluster analysis

Highly interactive and suggestive
cluster visualizations and
similarity detection between
different groups.

No preprocessing options other
than grouping.

HARVEST
[19]

Data
visualizations

Supports incremental
visualization updates.
Tracks the user’s analysis
activities for better
recommendations of
visualizations.

Dedicated to business data.
No preprocessing options.

EHDviz
[20]

Time series
visualization of
health records

Has options for visualizing
individual patients, patients from
different hospital locations as
well as population and cohort
data visualizations.

Only time-series numeric
visualizations, no preprocessing
or statistical methods.

HTPMod
[21]

Visualization
and modelling
of large-scale
biological data

Has a wide variety of visualization
and modelling methods.

Dedicated mostly to plant growth
data and gene expression data.
Limited preprocessing options
and handling of missing values
with automated imputation.

ExPanD
[22]

Panel data
visualization

Options for subsetting data based
on categorical variables.
A variety of panel data
visualization methods including
time trends.
Builds fixed effects regression
models.

Not dedicated specifically to
clinical data.
Limited preprocessing options.
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Overall, the tools presented above offer a large pool of functionalities for various
data types, most of all for EHRs. However, one tool cannot be generalized to all
medical data, especially clinical trial data which can be highly diverse depending
on the domain. Knowledge about the data collection process and how the clinical
trial protocols are designed is also indispensable when processing and analyzing
clinical trial data. Most of these tools either do not have preprocessing or they
have automated preprocessing that can introduce bias if applied on the whole
dataset. The tool we are building integrates open source visualization technologies
included in some of the tools listed above, designed for the researcher to be
able to verify the availability and correctness of the data and utilize domain
knowledge when testing or creating hypotheses, combined with user defined data
preparation functionalities for filtering, feature construction and missing data
and outlier removal. As a case study, an analysis of the DIPP clinical data was
conducted, a preprocessing and feature construction segment customized for the
DIPP data was designed and integrated in the application. The application also
offers options of exporting the data into formats that are ready to be forwarded
into several other visualization tools without further preprocessing.



11

3. METHODS

Raw medical data is commonly stored in formats that cannot be easily analyzed
by computational methods. Medical data may be collected from various images,
interviews with the patient, laboratory data, and the physician’s observations
and interpretations, and is afterwards stored to a common database [23]. Clinical
trial data contains information that require several visits to the clinic, and follows
the development of the medical status of each participant. Medical records are
usually manually introduced in databases which leaves them prone to human
errors. Moreover, data from these medical records is in varying formats (e.g. free
text format), irregular and unstructured [2]. As a result, a data preprocessing step
is required. For successful preprocessing of the data, knowledge about the dataset
itself and the domain studied is crucial. The data visualization process has the
role of assisting the researcher to get insight into the data quality and outliers.
In clinical data, visualization allows the direct involvement of the medical expert,
which is an advantage over the automatic data mining techniques. Moreover,
unsupervised learning techniques such as clustering can offer valuable insight into
cohorts in clinical studies, and assist the researcher to generate new hypotheses,
that can be verified afterwards using machine learning or statistic techniques [24].

3.1. Clinical data preprocessing

Peterkova and Michaľčonok [3] presented some general guidelines for
preprocessing steps to follow to deliver clean and interpretable clinical datasets
to be used in medical applications. The aim of these guidelines is to reduce the
time spent on manual data preprocessing. However, this thesis underlines the
importance of customizing the preprocessing methods used for each individual
dataset.
Figure 1 presents a general framework that can be used for data preprocessing.

It starts processing from raw-text files and the end result is a structured database.
To get a good general idea of the data and the studied problem, as well as to find

irregularities from the data, the dataset needs to be visualized. For identifying
the parameters, a medical hypothesis is required, defined by relevant literature
or a medical expert.
Parameters extraction depends on the data source. Data can come from one

or multiple sources like SQL database and/or text tables in different formats. A
programming language like R or Python is required for importing and merging
data from multiple sources, converting file formats and dropping irrelevant
variables.
Data cleaning deals with specific problems in the data and is different from

dataset to dataset. This step requires first the identification and definition of
errors and error types. For example, clinical data errors could be duplicated
entries, unreal entries such as birth date in the wrong century due to human
errors, missing values, extreme outliers, etc.
Data normalization in clinical research refers to the process of rationalizing

data to a terminology intended for algorithms to understand [25]. For example,



12

Figure 1. Medical data preprocessing diagram.

the variable formats need to be converted from "character" to "numeric" or "date",
converting different measurement units, text parsing, etc.
Finally, data transformation refers to converting the data from one structure to

another. This step can be intertwined with the data normalization. For example,
this can contain categorisation of continuous variables using a threshold value,
categorisation of text variables using certain string patterns. Another important
procedure that can be included in this step is feature construction. Feature
construction is a process that creates more efficient variables, derived from the
existing information through some functional mapping, and adds them to the
data in order to improve learning effectiveness [26].

3.2. Data visualization techniques

In order to characterize different visualization techniques, Daniel A. Keim [24]
introduced a classification according to three criteria, presented in Table 2: the
data type to be visualized (1), the visualization technique (2), and the type of
interaction and distortion technique (3).
Clinical data is usually multidimensional data, consisting of a large number of

records with multiple variables. It can be visualized using techniques for one-
dimensional data by visualizing individual variables, for two-dimensional data by
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Table 2. Visualization techniques according to three criteria [24].

Criteria Specific techniques

Data type to be visualized

One-dimensional data
Two-dimensional data
Multidimensional data
Text and hypertext
Hierarchies and graphs
Algorithms and software

Visualization technique

Standard 2D/3D displays
Geometrically transformed displays
Icon-based displays
Dense-pixel displays
Stacked displays

Interaction and distortion
technique

Interactive projection
Interactive filtering
Interactive zooming
Interactive distortion
Interactive linking and brushing

selecting two variables, and for multidimesional data by exploring more complex
properties of multiple or all variables.
The visualization techniques in this work are presented and briefly explained

below.

1. Charts
Charts are graphical representations of the data. They can be used to
explore the frequency of a single variable, such as histograms or bar plots,
which can also be colored according to a categorical variable.
Density plots visualize the density distribution of a numeric variable or
compare the densities of the variable according to another categorical
variable.
The relationship between a categorical and a numeric variable can be
explored through Bar plots, box plots, violin plots and stripcharts. They
all provide a representation of the numerical distribution for each category.
The relationship between two numeric variables can be visualized through
scatterplots, to which a third categorical variable can be added and points
coloured according to the category. The scatter plot visualization can also
be enhanced by fitting a regression line or a LOWESS(Locally Weighted
Scatterplot Smoothing) curve, for better understanding of the correlation
of two numeric variables.
Finally, all the plots listed above can be visualized into a plot matrix such
as a pairwise scatterplot, which allows easy comparison between multiple
or all the relationships in the data.
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2. Principal Component Analysis
One definition states that Principal Component Analysis (PCA) is a
"statistical procedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components"[27]. The first
principal component is the normalized linear combination of the features
that has the highest variance in a scalar projection of the data, the second
principal component is orthogonal to the first one and accounts for the
highest possible variance, and so on, as shown in Figure 2.

Figure 2. PCA of a multivariate distribution [28 p.67].

PCA is used for data reduction, but it can also be applied to cluster a
high dimesional dataset [29]. For a dataset of p variables and n entries
x11, x12,..., xnp, centered to have the mean 0 and standard deviation 1, the
first principal component is Z1 = [z11, . . . , zn1] of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip, (1)

where z11, z21, . . . , zn1 are called the scores and φ11, φ21, . . . , φp1 are the
loadings of the first principal component. The loadings can be interpreted
as the correlation of each element with the principal component and are
calculated by eigenvector ·

√
eigenvalue. Eigenvalues indicate the amount

of variance that can be explained by the component and the eigenvector
indicates the direction of the variance. The second principal component
is the linear combination with the highest variance out of all possible
combinations that are uncorrelated with Z1, and so on. Most of the
variance in the data is usually explained by the first two or three principal
components, which can be plotted in a 2D or 3D scatterplot. The scatterplot
can then be colored according to a categorical variable to highlight the
differences between the categories.
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3. t-Distributed Stochastic Neighbor Embedding
T-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique
for dimensionality reduction, like PCA, well-suited for high-dimensional
data [30]. It converts the Euclidean distances between datapoints
into conditional probabilities pj|i that represent similarities. For the
low dimesional data representation, similar conditional probabilities are
calculated for the correspondent data points in the low-dimensional space,
qi|j. The aim is to minimize the mismatch between pj|i and qi|j by
minimizing the Kullback-Leiber divergence (KL), also called the relative
entropy C, using a gradient descent method of the form

δC

δyi

= 4
∑

j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1, (2)

where C = ∑
i KL(Pi||Qi) = ∑

i

∑
j pj|i log pj|i

pi|j
, Pi is the conditional

probability distribution of data points in the high-dimensional space and
Qi is for the corresponding low-dimensional points in the embedding. This
way, t-SNE maps high-dimensional data to a lower dimensional space of
points with multiple features. It can be used for clustering the data based
on the similarity of data points, by plotting a 2D or 3D scatterplot.

4. Multi-dimensional Scaling
Multi-dimensional Scaling (MDS), like t-SNE is a technique designed to give
a representation of high-dimensional data in a low-dimensional space, by
preserving the distances between datapoints [31]. The distance measure can
be Euclidean or non-Euclidean. The aim is to find an optimal configuration
of points in 2-dimensional or 3-dimensional space. However, this optimal
configuration might be a very poor representation of the data. If so, this
will be reflected in a high stress value

stress =

√√√√∑(dij − d̂ij)2∑
d2

ij

, (3)

where dij is the actual distance and d̂ij is the predicted distance on the
lower-dimensional space.
Like t-SNE, the MDS map offers a 2D or 3D scatterplot with a
representation of the similarities or dissimilarities between the points in
the data, where clusters can be coloured according to categories or groups.
MDS is different from PCA in the way that PCA looks for similarities
between features by computing the covariance matrix to explain variance
in the data, while MDS is looking for similarities between datapoints and
plots the similar datapoints closer together on the map.

5. Self-Organizing Map
Self-Organizing Map (SOM) is a dimension reduction and clustering
technique, similar to MDS, that maps the high-dimensional data to a
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lower-dimension space, usually a 2D map [32 p. 105-176]. But unlike the
MDS or t-SNE, SOM is a competitive learning neural network, based on
unsupervised learning, meaning that it automatically assigns data points to
a class or, in this case, a cluster on the map.
The map is a collection of neurons in a 2D array. Each neuron has an
associated weight vector wij that corresponds to a point in the original high-
dimensional feature space x(t). Each observation in the dataset is assigned
to one of the neurons, according to which weight vector the observation
is closest to, starting with random weight vectors, and updating them as
follows

wij(t+ 1) = wij(t) + αi(t)βij(t)[x(t)− wij(t)], (4)

where t = (1, 2,...n) is the current iteration, αi(t) is the learning rate that
decreases monotonically with each iteration, and βij(t) is the neighbourhood
function’s influence calculated by

βij(t) = exp( −d
2

2σ2(t)), (5)

where d is the minimum Euclidean distance out of all the node’s calculated
distances, and σ(t) is the neighborhood function’s radius that also decreases
over time.
The end result can be interpreted as a combination of dimensionality
reduction and clustering, where each cluster corresponds to a neuron in
the 2D map. As seen in Figure 3, the SOM allows us to see structure in
the clustering, by coloring according to a categorical variable.

Figure 3. SOM with nine neurons. Each color corresponds to a
category in the data.

6. k-means Clustering
k-means Clustering is the simplest and most popular clustering method. It
works by initially randomly selecting k points in the data as the centroids of
the clusters, and measuring the Euclidean distance between each data point
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and each centroid, assigning that data point to the cluster with the nearest
centroid. Then, the centroid is updated as the mean of all the points in the
cluster. k-means Clustering is an iterative process and it stops when the
centroid’s values don’t change anymore, or when the predefined maximum
number of iterations is reached.
The optimal number of k can be decided using plots from various methods
such as the Elbow Method [33], The Silhouette Method [34] or the Gap
Statistic method [35] shown in Figure 4.

Figure 4. Plots generated by Elbow Method, Silhouette Method
and Gap Statistic Method, for choosing the optimal number of
clusters in k-means Clustering.

The Elbow Method plots the sum of the squared error (SSE) which is the
squared distance between each member of the cluster and the centroid, for
k = 1,...,10. The "elbow", where the line bends clearly to the right in the
plot is the optimal k. If the plot line does not bend clearly enough to be
able to identify the elbow, it may be better to use another method.
The Silhouette Method plots the coefficient Si = (bi − ai)/max(ai, bi) that
tells how close each point in one cluster is to points in the neighboring
clusters, where bi = minC d(i, C) is the smallest average dissimilarity d(i, C)
of each observation i to the members of the neighboring cluster C.
The Gap Statistic Method compares the total within intra-cluster variation
Wk = ∑k

r=1
1

2ir
Dr, where Dr is the pairwise distance of all the members

of cluster r to the centroid, for different values of k with a null reference
distribution of the data, i.e. a distribution with no obvious clustering. The
algorithm works as presented in Algorithm 1.

Algorithm 1 Steps of the Gap Statistic Method.
1: Compute within intra-cluster variation Wk varying the number of clusters k

from 1 to 10.
2: Generate B reference data sets with a random uniform distribution and with

the varying number of clusters k compute within cluster variation Wkb.
3: Compute the estimated gap statistic Gap(k) = 1

B

B∑
b=1

log(W ∗
kb)− log(Wk).

4: Compute standard deviation sk of Gap(k).
5: Choose k such as Gap(k) ≥ Gap(k + 1)− sk+1.
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4. SHINY APP

In order for this tool to meet the objective set in this thesis, a set of requirements
was defined. This chapter presents the requirements and the general architecture,
as well as the functionalities of the tool.

4.1. Requirements

The requirements for the application are divided into two categories:
preprocessing and visualization requirements. preprocessing requirements relate
to tasks that involve dataset cleaning, transforming, building and subsetting, and
visualization requirements relate to data analysis tasks that are available in this
tool.

Preprocessing requirements

Assuming that the data uploaded in the application is clinical data, the
application should offer two datasets. Patient data, containing constant variables
that do not change over time, and visit data, containing variables that change
over time for each patient or subject in the dataset.
The application should then provide a user interactive preprocessing interface

with options for visualizing and filtering missing data, interactive charts for
outlier selection, inspection and removal, a filter for subsetting the data according
to user-selected variables, creating new constant variables by aggregating the
visit data from a time interval chosen by the user or by categorizing numerical
variables by user-defined parameters, and converting the variables, both constant
and time-varying, into a panel data structure that can be uploaded directly into
other visualization apps for time series data, for example, the R-based Shiny
app "ExPanD"[22]. The tool should also offer the option of downloading the
preprocessed datasets in the form of ".csv" tables.
For the DIPP data case study, the application should take raw DIPP data

as input and deliver a preprocessed clean DIPP dataset, with new variables
defined and constructed according to literature review and user needs. This step
should offer clean data that can be used for analysis, without further cleaning
and preprocessing.

Visualization requirements

The tool should provide an interface containing a comprehensive set of interactive
methods for visualizing and analyzing the data. Visual inspection of data is a
powerful way to find relationships between different variables or different groups in
the data. The application should provide several unsupervised learning methods
for clustering, with the purpose of identifying similarities between data points
and exploring hidden patterns in the data. The application should also provide
the user with a wide range of univariate, bivariate and multivariate charts for
visualizing in detail the relationships between user selected variables and groups
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in the data. The visualization has a role of assisting the researcher in finding
patterns in the data, checking the validity of the findings as well as testing and
creating hypotheses.

4.2. Application Architecture

For building this app, we chose the Shiny framework, an R package developed by
the RStudio team enabling R programmers to create interactive visualizations for
the web [36, 8, 7]. R language is a powerful tool for solving analytical challenges,
but it requires programming knowledge. A Shiny app is an interface that allows all
of the advanced analytics of R to be made available to the non-R users who will be
making the decisions in the data analysis process. A Shiny app contains two parts.
A user interface (UI) which dictates the appearance of the user input elements,
and a server, which contains the backend processes. These are R scripts developed
in parallel, with variable names that match the UI elements with the server
calculations. In the server file, the programmer can define reactive expressions,
which means that the system responds to user input, such as for example clicking
a button to update the elements displayed in the UI. The shiny UI elements can
be buttons, sliders, text inputs and drop down menus, which can be combined
with other interactive elements from certain R packages, for example, interactive
plots built with the "ggplot2" R package [37].
A standard shiny UI page has a sidebar panel, usually for user input elements,

and a main panel where results are displayed, and optionally, some more user
input elements. It also contains navigation bars, for changing between different
Shiny pages, and tabs, to change between different main panels. A simplified
scheme of the Shiny UI layout can be seen in Figure 5.
The aim of this work was to build an application that integrates some of the

open-source visualization technologies found in other tools with a preprocessing
interface that allows the researcher to use the knowledge about the studied domain
and the data collection practices when filtering, dealing with missing data and
outliers, as well as checking the quality and availability of the data. Clustering
visualization methods were implemented in the application for allowing the user
to identify important relationships between variables and groups in the data,
as well as to discover groups of similar entries and how they are distributed in
the clustering space. Various types of exploratory charts were implemented for
summarizing the data. Combined with the clustering visualizations, the charts are
used to explore the patterns found in the data. The visualizations are intertwined
with the preprocessing as well, providing insight into any bias or need for further
preprocessing that might be present in the dataset. The tool, named ClinFlow,
has a modular architecture, which means that each module is a separate R script.
Removing, modifying or replacing a module in the code will not affect the rest
of the functionalities. Each functionality of the application has its own server
module, matched with the correspondent UI module, as illustrated in Figure 6.
The UI contains only three modules for each navigation bar. These are "Upload
and preprocess", "Visualizations" and "Panel data".
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Figure 5. Basic Shiny UI layout.

The Upload and Preprocess UI module corresponds to the uploading,
preprocessing, filter, aggregation, categorization, missing data map and outlier
removal server modules, each with its own tab. This module allows the user to
upload a dataset and perform actions of their choice to preprocess the data. In
this UI module, each UI tab has a server module with the following functionalities:

• The uploading server module inputs a ".csv" table into the app.

• The preprocessing runs the data through a preprocessing pipeline1 and
divides it into patient data and visit data.

• The filter subsets the data according to user defined criteria.

• The aggregation module creates a new patient variable from aggregated visit
data from a time interval defined by the user from the visit age variable.

• The categorization turns a numeric variable into a categorical variable
according to user selected cut-off points.

• The missing data map displays plots of the missing data.

• The outliers server module displays interactive plots, where the user can
check and delete outliers.

To match the requirements of this tool an existing Shiny module2 by Dijun Chen
et al. [21] was integrated into the app. This open-source application module was

1Depending on the column names in the data, some general preprocessing operations
described in Chapter 5: The DIPP Case Study are applied on the data.

2Code for this module is from the HTPdVis module of the HTPmod app, with the same UI
layout, by Dijun Chen et al. [21]. Source: https://github.com/htpmod/HTPmod-shinyApp
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Figure 6. Architecture of the Shiny app.

distributed under the GNU General Public License. The reasoning for selecting
this module is that it contains a wide range of visualization methods included in
the requirements for ClinFlow, useful for exploring multivariate diverse datasets,
including clinical data. The graphical representations in this module are visually
pleasing and intuitive, and the clustering computations are done with built-in R
functions. The integrated module required minor changes to better fit the purpose
of our tool. More user options were added for choosing the variables to be used
in the analysis and missing data treatment. The R package used for 3D plots was
changed because the 3D representations in the original application were showing
incorrect information when tested with the Iris dataset[38]. The functionalities of
the module are presented later in section 4.2. The Visualization UI module has
tabs for PCA, t-SNE, MDS, SOM and k-means Clustering methods and a tab
for charts. Only one server module is matched with this UI module, containing
a reactive function that performs analysis according to the selected tab.
The Panel data UI module is matched with the corresponding server module

for turning visit data into panel data. Panel data is a multi-dimensional data that
includes multiple subjects measured over a time period. In a long-term clinical
study of patients monitored from birth, age can be used as a time vector, but it is
impossible to have regular measurements from all the subjects at the exact same
age. This server module simulates a regular time period by creating time points
using age intervals, with user defined cut-off points, then it aggregates the visit
data grouped by patient code for each time point to create a structured panel.
Our tool ClinFlow uses several open source R gadgets and code from other

Shiny visualization apps listed in Table 3, along with R common and base
packages, to integrate interactive preprocessing and analysis functionalities.
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Table 3. Open source gadgets and applications used for developing ClinFlow

Name Type Used for
ggplot2 [37],
ggpubr [39],
scatterplot3d [40],
corrplot [41],
naniar [42]

R Packages interactive plots

esquisse [43] R Package and
Shiny module data filter

shinyWidgets [44],
shinyBS [45],
shinyjs [46],
htmlwidgets [47],
shinydashboard [48]

R Packages ui elements

pcaMethods[49] R Package PCA
kohonen [32] R Package SOM

HTPmod(HTPdVis)[21] Shiny app Clustering and
visualizations

ClinFlow is designed as a web application to be used in a web browser. The
application can be hosted on a cloud hosting service such as shinyapps.io [50], or
it can be locally hosted on any server that runs R.
The next section of this chapter is split into three subsections, one for each

navigation bar of the app, to demonstrate how it works. The only two conditions
that the data need to meet in order to use all the functionalities of the application
are:

• The data has a column named "code" that contains a unique identification
for each patient or group.

• The data has a column named "Age" that is a numeric vector representing
time.

4.3. Application Functionalities

For demonstration purposes, we simulate a clinical dataset using the famous
Iris flower dataset introduced by the British statistician and biologist Ronald
Fisher in 1936 [38]. The Iris dataset consists of 50 samples from each of three
species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were
measured from each sample: the length and the width of the sepals and petals, in
centimeters. The variable "Species" is a factor with three levels. We have added
a variable named "code" that has the same information as the "Species", so that
each species name represents a unique "patient code", and another variable named
"Age" that is a numeric vector, ranging from 1 to 50 for each species. Therefore,
our simulated clinical data contains three subjects: "versicolor", "setosa" and
"verginica", with four measurements taken regularly from age 1 to age 50. For
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a more realistic data, we have also randomly replaced entries in the table with
"NA" or missing values.

4.3.1. Upload and preprocessing

When opening the app, the user is first presented with a prompt in the sidebar for
uploading the ."csv" dataset. Then, in the Original Data Summary tab a sample
of the first rows of the uploaded raw table is displayed, along with buttons that
display a summary and structure of the data. The following tab, Preprocessed
Data displays the two tables, Visit and Patient data, along with buttons to
download or display the summary and structure of each table. The preprocessing
applied on the Iris data has added a new patient variable called "Age_follow_up"
for the maximum follow up age of each patient in the data, in our case, for each
species of Iris. The visit data still contains the patient variables, but the patient
data only contains the constant variables. Figure 7 shows these two tabs, and
the original and preprocessed table previews.

Filter Data

The next tab is the Filter Data tab, a functionality that allows the user to choose
either visit data or patient data, and to select variables to filter. For the numeric
variables, the filtering is done via a slider, and for the categorical ones, a multi-
choice selector. If the variables contain missing entries, there is also a switch for
filtering out the rows with missing values in the chosen variables. The filter is
shown in Figure 8.
The filtered table is updated dynamically as the user filters the data, and

the bar above the table shows in percents the amount of data preserved after
filtering. The button "Update Table" updates both the visit and patient data
displayed below, to include only the filtered information and it also updates the
filter options accordingly. There is an option for resetting the table, which brings
back the unfiltered preprocessed table from the start, and resets the filter options.
This page also contains a button for displaying a summary of the variables and
the variable types of the filtered data, and buttons for downloading the updated
patient and visit tables.

Missing Data

In this tab, the user can choose to display a missing data map of either the visit
or the patient table, and a scatterplot of missing vs. observed values from two
chosen variables, in order to study the missing data mechanism. This plot can
show whether the data is missing completely at random (MCAR), or not. We
have introduced missing values randomly in the data, so the scatterplot displayed
in Figure 9 does not show any reason for the missing values. In data analysis,
usually, entries that are MCAR can be treated either by deleting them, or by
imputation [51]. If the data is not MCAR, this table helps the user to study the
missing mechanism and make a decision on how to deal with the missing values
without introducing bias in the analysis results.
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Figure 7. Original and preprocessed data in the Shiny app.



25

Figure 8. The Filter Data tab in the Shiny app.

Figure 9. The "Missing Data" tab in the Shiny app.
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Create new patient feature

This tab allows the user to add new user-calculated variables to the data. First, it
prompts the user to type a new variable name. Then, a slider input lets the user
select a range of visit ages from which the data will be aggregated. A drop-down
menu allows choosing a visit variable to be aggregated and another drop-down
menu allows choosing a function (sum, mean or maximum) for aggregating. For
example, in Figure 10, we created a new patient variable called "sepal_max" that
marks the maximum value of "Sepal.Length" for each "patient code" from the
visits with age between 1 and 15. The page displays an "Updated Table" which is
a preview of the patient table containing the new variable. Once the button "Save
Table" is pressed, the patient data is saved and the new variable can be used in
all the other tabs. This functionality works with categorical variables as well, but
instead of a mathematical function, the code looks for a certain factor level. For
example, if the variable has the level "TRUE" in one or more visits in the chosen
age range, the new patient variable will mark "TRUE", otherwise "FALSE". This
is very useful for including a certain period in the life of a patient together with
the other non-constant features in the analysis. For example, in a clinical dataset,
the user can calculate the maximum weight that a patient reached in the first
year of life.

Figure 10. The "Create a new patient feature" tab in the Shiny app.

Create new categorical feature

This tab allows the user to create a new feature, either in the patient table or
the visit table, based on another numerical feature in that table. The user must
choose a numerical variable in the drop down menu, then type the cut-off points,
separated by comma, for splitting the variable into intervals closed on the left and
open on the right. The last interval is closed on both sides. A new categorical
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variable is created with as many levels as there are intervals, labeled as shown in
Figure 11. The "Updated Table" displays a preview of the table containing the
new categorical variable, and the "Save Table" button adds the new variable to the
dataset. The new feature can then be used for conducting group-based analysis.
For example, in Figure 11, we have created the variable "sepal_category" that
splits the data into two groups based on the sepal length.

Figure 11. The "Create a new categorical feature" tab in the Shiny app.

Outliers

This tab allows the user to plot a scatterplot and a boxplot (Figure 12) of two
chosen variables, and colour the points by a categorical variable, in order to
identify outliers. The scatterplot shows the points in the data and a regression
line. The points that are further from the regression line should be investigated
as possible outliers. The boxplot shows a representation of the distribution of
values on the Y axis, as a box with the edges as the first and third quartile and
a median line in between. If the X axis is a categorical variable, the boxplot
shows distributions of the data for each category. The values that are far away
from the median and the quartiles should be investigated as outliers. The data
can be either patient or visit data, and the plots are interactive. Clicking on
a point in the scatterplot, or selecting multiple points by dragging and then
pressing "Toggle points" will move those entries from the original table into the
outlier table, where the user can study them and decide whether they should
be removed from the data or not. Once the user presses the "Save new data"
button, the new data table without outliers is saved, and the toggled entries
are deleted. The "Reset" button, brings the table and the plots back to the
original state. This functionality is useful because it allows the user to use the
domain knowledge to decide whether an entry is an outlier or not. Sometimes
in clinical data, a value can fall far from the mean and still be considered
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normal, therefore, a generic outlier detection mechanism is not recommended,
without first applying expert knowledge. As stated in the U.S. Food and Drug
Administration’s guidelines "Statistical Principles for Clinical Trials" [52], "Clear
identification of a particular value as an outlier is most convincing when justified
medically as well as statistically, and the medical context will then often define
the appropriate action."
Once the table is saved in any of these tabs, the dataset is updated dynamically

and all the user input options are updated to the new dataset as well, which means
that any new created variables will appear in the drop-down menus and will be
available in the filter options. The dataset can be reverted back to the original
state in the Filter Data tab, by pressing the button "Reset Table". This will
delete any new created variables and will bring back any deleted or filtered out
entries.

Figure 12. The "Outliers" tab in the Shiny app.

This dynamic data preparation interface is useful because it allows the
researcher to easily create subsets and groups in the data according to the research
question, or quickly analyze and compare different groups in order to create a
hypothesis.
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4.3.2. Visualizations

The second navigation bar includes a tab for viewing the table to be analyzed
(Figure 13), tabs for different clustering methods (Figures 14, 15), and a tab for
various charts (Figure 16). In the sidebar, the user can select either the patient
or the visit table, then choose the variables and missing data treatment to use in
the clustering methods. The numeric variables are used for the clustering, and
the categorical variables can be used to customize the colours and the shapes of
the points in the cluster plots.
The user can choose how to treat missing values in the numeric variables used

for clustering, either by deleting the rows containing missing values, estimating
the missing values using bayesian PCA [53] or not treating them at all. The
clustering methods give an error if missing values are present in the numeric
data, so the user must make an informed decision on how to proceed. It is
recommended to study the missing mechanisms in the data and make a subset,
using the data filter, that doesn’t include missing values that are not MCAR.
Imputation or deletion of the missing entries that are not MCAR can introduce
bias in the analysis. If the categorical variables contain missing values, the
NA entries are automatically assigned the label "Missing" and they appear as
a category in the data, in order to preserve as much information as possible.
The clustering visualizations allow for user customization of some parameters,
rotation of the 3D plot, and saving the plots in various formats.
Clustering is useful in identifying groups of similar entries in the table.

Combined with the coloring and categorization options, the user can explore the
reasons behind the similarities found in the data points and identify important
relationships between variables.

Figure 13. The Visualization Sidebar and tables in the Shiny app.

The Charts tab (Figure 16) includes a drop-down menu for choosing different
types of charts for univariate, bivariate or multivariate plotting. According to
the chart type to be visualized, more user input fields are activated for selecting
which features to plot. The colors for the charts are set using the customization
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on the sidebar. This functionality can use the table with missing values, because
the plots delete the missing entries from the chosen features automatically.

Figure 14. The clustering visualization methods tabs in the Shiny app for PCA
and t-SNE.
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Figure 15. The clustering visualization methods tabs in the Shiny app for MDS,
SOM, k-Means.
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Figure 16. The Charts tab in the Shiny app.

4.3.3. Panel data

The last functionality in this application is a panel data creation tool that turns
the visit age into a timestamp and allows the user to choose the variables and the
functions to aggregate for each time point of each patient. The time points are
introduced manually, separated by comma, and they do not have to be regular.
The timestamp created is an ordinal factor. Other fields let the user choose which
variables to aggregate by maximum, sum, mean and also add patient variables to
the panel data. The constant patient values will repeat for each time point. The
result is a structured panel with multiple measurements over time for each patient
code (Figure 17). The panel data can be downloaded as a ".csv" table, and it
can be uploaded directly into other tools, such as the panel data tool "ExPanD"
[22] or used for time trend analysis, without any other preprocessing. Figure 18
shows an example of a time trend plot generated using panel data created with
ClinFlow.

Figure 17. The Panel Data tab in the Shiny app.
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Figure 18. A time trend plot example that used the Iris panel data generated
with ClinFlow.
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5. THE DIPP CASE STUDY

Finland has the highest incidence of type 1 diabetes (T1D) in the world among
children, the annual rate is currently 64/100,000 children under the age of 15 years
[54]. At the Pediatric Diabetes Clinic, Oulu University Hospital, approximately
60 children with newly onset type 1 diabetes are diagnosed annually.
The Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study [9] was

launched in Finland in 1994 as a large scale observational follow-up population
study, established in the university hospitals of Tampere, Turku and Oulu. The
study was designed for improvement of strategies for T1D prediction and for the
development of new techniques to prevent this disease. The data collected for this
study consists of an intensive longitudinal follow up of children with genetic risk
of T1D and their close relatives. There have been more than 220,000 newborns
screened for genetic susceptibility of T1D (data as of June 2017). Children with
an increased risk have had follow-up visits every 3 months for one year and then
every 6-12 months until approximately 15 years old, or until diagnosed with T1D.
The DIPP study is different from the usual clinical trial because it monitors

healthy children, and is focused on early prediction and prevention of a disease,
rather than treatment outcomes.
In this chapter, we will identify the most prominent topics in T1D prevention

research and present the DIPP case study. We will design a preprocessing
framework for the DIPP data and we will analyze the DIPP data using the Shiny
app, to replicate some of the results found in the reviewed literature.

5.1. Type 1 Diabetes

Type 1 diabetes is a chronic auto-immune disease characterized by the loss of
insulin producing beta cells in the pancreatic islets. It has a higher incidence
among those that are genetically susceptible. This disease can be held under
control only with regular insulin injections. T1D may become symptomatic in
the first years of life for some patients, while it might take more than 20 years
with no symptoms for others [55].
Although the process of autoimmune destruction takes place in genetically

susceptible individuals, the rapidly rising incidence strongly suggests that a
combination of genetic [56], environmental and immunologic factors are involved
in the pathogenesis of T1D. Some environmental factors included are certain
viruses and early life diet and gut microbiota. For example, rubella [57] and
enteroviruses [58] have been associated with an increased risk of T1D. Some
infections have been shown to cause diabetes in animals [59], however, common
vaccinations like MMR (vaccine for measles, mumps and rubella) have not caused
a decrease in the T1D incidence. Enterovirus infection has been associated with
an increased risk of T1D because in several studies enteroviruses have been found
in the pancreatic tissue obtained from organ donors with T1D, and more recently,
enteroviral structures have also been found from pancreatic biopsies of newly-
diagnosed T1D patients. These viruses are known to damage cell functions
through various mechanisms [60].
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The diet and gut microbiota also play a role although it is not yet clear. Some
studies [61] [62] have found that early introduction of cow’s milk and cereals in the
infant’s diet together with a short breastfeeding period may lead to increased risk
of T1D. However, prospective cohort studies have not confirmed these findings,
and results from Trial to Reduce IDDM in the Genetically at Risk (TRIGR) [63],
a large intervention trial, suggested that avoidance of cow’s milk during the first
eight months of life does not prevent from islet autoimmunity or development of
T1D.
Maternal consumption of sour milk and red meat was related to increased

disease risk [61] [64], but maternal consumption of root vegetables, potatoes,
berries, fresh milk and cheese have been associated with a decreased risk [65, 66].
Early microbial exposures from pets have also been studied and an association

between indoor dogs and a decreased risk of T1D has been found [67]. However,
this finding needs to be confirmed in other populations. Some studies found
evidence of an association between mother’s age at birth and T1D [68]. According
to the studies, a very small percentage of the increase in the incidence of childhood
type 1 diabetes in recent years could be explained by increases in maternal age.
However, the onset of T1D is preceded by the appearance of islet autoantibodies

detectable in the peripheral circulation. These autoantibodies may appear at
birth in the cord blood, if they are transmitted from the mother, but children
can start developing their own autoantibodies even as young as six months old
[69], while the seroconversion rate in the general population peaks at around two
years old [70].
There are five autoantibodies that are currently known to predict T1D. These

include islet cell antibodies (ICA), insulin autoantibodies (IAA), autoantibodies
to the 65 kDa isoform of GAD (GADA), the insulinoma-associated antigen
(IA2A), and zinc transporter 8 (ZnT8A). Individuals who have positivity in at
least two of the autoantibodies listed above have a 70% risk of developing T1D
in the following few months to fifteen years [71, 72].
Some factors like a young seroconversion age, higher titres of ICA, IAA and

IA2A at seroconversion and autoantibody multipositivity (positivity in more than
one autoantibody at the same time) have been associated with rapid disease
progression (1.5 years between seroconversion and diagnosis) [73]. Also, the
season of birth has been found to have an association with disease progression.
Slow progressors (>7.25 years between seroconversion and diagnosis) were born
more frequently in the fall, whereas other progressors were born more often in
the spring [74].
Recently, several large scale randomized controlled trials have been designed to

prevent T1D. The European Nicotinamide Diabetes Intervention Trial (ENDIT)
[75], The Diabetes Prevention Trial of Type 1 Diabetes (DPT-1) [76] and
The Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study [77]
have used nicotinamide, parenteral insulin, oral insulin [78] and nasal insulin.
Unfortunately, they did not prevent or delay the onset of T1D.
The factors that influence the risk of T1D, especially the mechanism of

autoimmune destruction, have been the subject of many DIPP articles. The
autoantibodies have an important role in the T1D disease progression, especially
the positivity of multiple autoantibodies [72]. The associations between
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seroconversion, autoantibody levels and disease progression have been widely
explored as well [79, 73, 74].
In this case study, we used the Shiny app to inspect the DIPP data from

Oulu University Hospital and the relationships between islet autoantibodies and
progression to T1D. We tried to confirm the findings in the study of Knip
et al, "Role of humoral beta-cell autoimmunity in type 1 diabetes" [79] that
demonstrated which type of autoantibodies, autoantibody combinations and age
at seroconversion have the highest risk of disease progression, and the article of
Pöllänen et al, "Characterisation of rapid progressors to type 1 diabetes among
children with HLA-conferred disease susceptibility", that demonstrated which
factors are the most prominent at seroconversion in those children with a rapid
disease progression.

5.2. Preprocessing of DIPP data

Since 1994 over 17 000 children with a genetic risk have had regular visits
every three months for one year, then every 6-12 months until approximately
fifteen years old. At each visit, standard clinical data such as weight and
height measurements, questionnaires about diet and breastfeeding, and blood
samples for measuring autoantibodies were collected. Before 2003, only ICA was
measured, and if the subject became ICA positive, the blood samples from the
past were analyzed for the IAA, IA2A, GADA and ZnT8A. After 2003, all samples
were analyzed for all the autoantibodies [73].
The DIPP data is stored accross different sources and has several problems that

can be present in other long-term clinical studies. These problems can be missing
data due to patients dropping out of the study, protocol changes, corrections that
need to be added to the original data, human errors, etc. Some of these issues
can be detected and solved using the interactive data preparation options in the
shiny app, while other more complex issues require the domain knowledge and
knowledge about data collection protocols in this study. For the latter part, we
created an automated preprocessing algorithm customized for this data only. The
preprocessing is integrated into the tool in the way that once the data is uploaded
in the app, it performs some general data cleaning operations such as deleting
duplicated entries, then it checks for column names of the DIPP parameters and
performs operations that are customized for these parameters only. The condition
for this preprocessing algorithm to deliver clean DIPP data is that the uploaded
raw data has the same column names and variable definitions presented in this
chapter. If a column name is missing from the data, all the operations that
depend on that variable are skipped. Part of this preprocessing algorithm can
also be generalized to other medical data sets, for the variables that are more
general such as "birth date" or "visit date", also similar rules and dependencies
can be later added to better suit other datasets, which is why we have integrated
it in the tool.
We have selected 33 parameters from the DIPP data to be used in our

tool.These parameters have been identified from previous articles studying T1D in
the DIPP study, for example blood samples with diabetes-related autoantibodies
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[79], information about virus infections [57, 58, 59, 60], etc. We collected
these parameters from various sources, merged them together in one ".csv" table
and added a few corrections manually. These are introduced in the following
subsection.

5.2.1. The data format

The patients in the DIPP data are identified by a unique combination of numbers
and letters that will be referred throughout this thesis as the "patient code". Each
medical visit has a visit date, and the combination of "patient code" and "visit
date" is used to identify each hospital visit.
The DIPP data from the Oulu University Hospital was stored in four separate

datasets from which we extracted the relevant information, matched by patient
code and visit date, and dropped the irrelevant columns. The source datasets
and their contents are listed below:
Dataset 1: Autoantibody values from blood samples together with some other

variables that we are not using.
Dataset 2: Exported SQL table with background information of the patient

(weight and height at birth, and in each visit, information about infections,
pregnancy duration, breastfeeding, etc.).
Dataset 3: Table containing all the patient codes from the subjects diagnosed

with diabetes, birth date and date of diagnosis.
Dataset 4: A curated table containing patient code, visit date and correct

heights and weights from visits.
We took the following actions in order to successfully merge all the information

in one table.

• In each dataset, dates have been checked and converted to the format
dd/mm/yyyy

• Columns that contain the same information have been renamed with a name
consistent accross all tables. For example, Dataset 1 had Finnish column
names and Dataset 2 had English names for the birth date and visit date
information,so we renamed all the columns in English.

• We replaced the visit height and weight from Dataset 2 with the curated
ones from Dataset 4, keeping the correct info that we have and replacing
the missing/incorrect values with curated values by matching them with
patient code and visit date.

• In Dataset 3, we calculated the patient’s age at diagnosis from date of
diagnosis and birth date of the patient.

• We merged Datasets 1, 2 and 3 based on patient code and visit date.

• We created binary factor variable indicating a positive diagnosis of T1D,
called "POS_diabetes".
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• We dropped the variables irrelevant for our application. For example, date
of diagnosis is dropped since we calculated the patient’s age at diagnosis.

The final dataset contains the variables listed in Table 4. Each row contains
patient code and visit date, patient data, and visit data. In the DIPP case,
patient data and visit data are defined as follows:

• Visit data: Each row contains blood sample autoantibody values from one
single visit and other measurements from one single visit like weight and
height.

• Patient data: Birth information and other info that is not time variant
and not connected to one single visit. Diagnosis information and age when
diagnosed.

This data has several important characteristics that have influenced the design
of the preprocessing framework. For each numeric autoantibody level in relative
units (RU), the DIPP study has a cut-off value for positivity [72]. ICA has a cut-
off value of 2 RU, GADA has 5.34 RU, IA2A has 0.42 RU. The IAA autoantibody
has been measured with two different methods during the years. There are two
variables: "mIAA_1.55" and "mIAA_3.47" that have a cut-off positivity value of
1.55 RU, respectively 3.47 RU. The IAA value is usually present in only one of
the two columns, while the other has a missing entry.
Some subjects can have positive autoantibodies transferred from the mother,

present at birth, in the cord blood or in the early life, that can last up to one
year old [69, 81]. These have been proven not to have an influence in the risk of
T1D [82], therefore, they need to be excluded from some analyses. It is a difficult
task to differentiate between samples containing transferred autoantibodies and
samples containing the subject’s own autoantibodies in early life, when the subject
might have both.
The patient code is a combination of numbers with a letter, where letter A

stands for a child that has been monitored since birth, X stands for their mother,
Y stands for their father, and B stands for their sibling. All family members share
the same combination of numbers. However, we should note that not all family
relationships can be identified in the data, because of the long-term nature of the
study. For example, multiple generations from the same families might have been
enrolled in the study as children and assigned a patient code with "A", and became
parents later, having their own children enrolled as well with a patient code "A".
The same person can appear as a child and later as a mother. Also children
that are siblings, but each has been enrolled in the study at birth, have different
patient codes containing "A" with no way of knowing they are siblings. The
same mother might appear multiple times in the dataset under a different code
matching each child. We treat each unique patient code as a different person, and
only consider family relations between patient codes that match. The mothers
and fathers in the dataset do not have follow up visits, they have only one visit
with measurements taken at the birth of their child. Not all the children have
mothers in the dataset.
The final dataset has 88,939 entries of raw, unclean data, that has several

problems:
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Table 4. Dataset variables and their explanations

Variable name Explanation
birth_date Date of birth.
code Unique patient identification code.
date_of_visit Visit date.
GADA_5.34
ICA_2
mIAA_3.47
mIAA_1.55
IA2A_0.42

Autoantibody cut-off values measured from
blood samples taken each visit.

height
weight
circle_of_head

Patient measurements taken during the visit.

is_pets
A binary indicator variable for pets in the
household (0 = no pets in the household, 1
= pets in the household). [67].

type_of_pets Description of the pets – free text field.
infections_airway
infections_ear
infections_fever
infections_gastric
infections_eye
infections_roseola
infections_chickenpox
infections_hospital_care
infections_other
infections_entero

A column for each type of infection with
a numeric value indicating the number of
infections occurred since previous visit.

birth_length
birth_weight
birth_circle_of_head

Dimensions at birth.

is_mom_t1d
is_dad_t1d

Indicator variables for T1D positivity of
the patient’s mother and father(0=negative,
1=positive, 2=unknown). They contain
many missing values.

duration

Pregnancy duration for each child – a free
text field with inputs of the form “weeks +
days”, for example: “37+5”, “38” or “38 +
0” (not structured) [80].

breastfeeding_only
breastfeeding_ended

Age when the child stopped exclusive
breastfeeding and age when the child stopped
any breastfeeding.

POS_diabetes Numeric column: 1 if the child has been
diagnosed with T1D and 0 if not (or not yet).

diagnosis_age

Age when the child has been diagnosed with
T1D. Contains missing values for the ones
who have not been (yet) diagnosed with
T1D.
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• Columns are in the wrong format, for instance numerical values are stored
in “string”-format.

• Some general patient information has been collected during one visit, but
it belongs to the patient data and it is not time-varying. For example, the
age when breastfeeding has ended appears only in one visit entry, and for
all the others it is missing.

• Some patients might have two different values for the same variable (for
example two different birth dates or birth weight) due to human error.

• Due to the two previous problems, there are duplicated entries (the same
patient code + visit date) appears multiple times, with different info in a
patient variable.

• Impossible entries (for example visit date is before birthdate).

• Some entries can be classified into two categories (positive/negative) based
on a numeric threshold or formula which is not visible in the raw data.

• Other relevant information is not easily available for analysis and needs to
be extracted first from the data.

5.2.2. Preprocessing pipeline

This automated preprocessing pipeline consists of a set of nested functions,
applied directly on the data, to tackle with the problems in the raw dataset.
It can be split in three stages: data cleaning, data transformation and feature
construction.

Data cleaning

This stage contains cleaning and normalization operations. The following list
describes in detail and motivates each cleaning action taken on the DIPP data.

1. Variables have inconsistent formats. For example, autoantibody values are
stored in character form, although they are numeric values.

• We converted all variables to appropriate class: numeric, factor ,
character, date.

2. Birth date is not constant for all visits of the same participant. Some have
two different birth dates (most are one day apart. One is a year apart).

• We replaced missing values in the birth date variable with the value
that is present in other visit rows.
• We chose (randomly) only one birthdate for the ones that have multiple

birthdates one day apart.
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• For the one patient with two birthdates one year apart, because the
visits started later than both birthdates, we chose the birthdate closest
to the first visit date.

3. Breastfeeding ending age is inconsistent, with missing values in some visit
rows while present in other visit rows for the same participant.

• We replaced all the missing values with the value present in other visit
rows for each participant.

4. Some patients have two or more different breastfeeding ending ages.

• We replaced all values with the maximum breastfeeding ending age
present for each subject.

5. Some visit rows show that exclusive breastfeeding ended later than non
exclusive breastfeeding (not possible).

• For these subjects, we chose the earlier value in both exclusive and
non exclusive breastfeeding.

6. Mother diabetes and father diabetes columns are inconsistent and have
missing values.

• We converted to factor columns, with TRUE for the visit rows of
patients where it’s clear that the mother or father have diabetes (value
= 1), and FALSE for the ones with “unknown”, "0" or missing value.
Here, we assumed that in the context of a T1D study, if the parents
would be diagnosed with T1D, they would have definitely mentioned
it. If this information is missing or unknown, it is most likely because
they don’t have T1D.

Data transformation

In this stage, we converted character variables that are difficult to read into
categorical variables that are easier to read. Depending on the variable and
considering the domain literature, appropriate categorization of the variable has
been done, while keeping the original features as well. The following list describes
each transformation applied to the DIPP variables.

1. Autoantibody values have threshholds for positive/negative values but they
are not obvious in the dataset.

• Created factor variables for each autoantibody TRUE/FALSE if the
value goes over the positive threshold.

2. Pregnancy duration column is in character form, with duration as weeks +
days.

• We converted the variable "duration" into a factor column with three
levels: “premature”, ”normal”, “prolonged”.
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• We performed text parsing for the number of weeks (<37 - premature,
>41 - prolonged).

3. The month of birth might have influence on diabetes risk[83].

• We created month of birth factor column “birth_month” from the
birth date.

4. Pets variable is in free text format.

• We created a visit variable “pets” factor with three levels: “cat/dog”,
“other”, “no pets”.
• If in the type_of_pets we find the following string patterns : “koir”

or “kiss”, we assign factor “cat/dog” (because in this dataset, most of
them appear together in the same entry).
• If in the type_of_pets there is missing value or empty string “” and

in the variable “is_pets” is 0, we assign “no pets”.
• If in the type_of_pets there is anything other than the text patterns

“koir” or “kiss”, including missing value or empty string “” and in the
variable “is_pets” is 1, we assign “other”.
• If in the variable “is_pets” is value 2 or missing and in the

type_of_pets is missing or empty string “”, we assign NA (we don’t
know if there is a pet or not) [67].

5. Dataset contains children monitored from birth, their parents and their
siblings in the same set, with different letters in the patient code but no
other clear distinction between them.

• We created a variable named “who” with four categories: “child” -
for children monitored since birth, “mother”, “father”, and “sibling” -
for the siblings of children monitored from birth, by text parsing the
patient code. Here, we know that the children monitored from birth
are most likely to have the information from early life.

Feature construction

This stage is the most important and complex. While the tool also enables
some user-defined feature construction operations, we have constructed some
ready-made features that are relevant for the DIPP study based on domain
literature. Some of them are derived from variables that are most prevalent
in clinical data, but most of them are specific to the DIPP study. Some of these
feature construction techniques can be later generalized to other datasets of the
same type. For the new more complex variables that consider autoantibody
values, we need to take into account and exclude from calculations the positive
autoantibodies transferred from the mother or present in the cord blood. For this,
we have assumed that a positive sample has autoantibodies from the mother or
cord blood if it meets the following criteria:
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Figure 19. Flowchart of detection of samples with positive autoantibodies
transferred from the mother.

1. The child’s mother is present in the dataset and has positive autoantibodies
OR the child’s cord blood sample is present in the dataset and is positive.

2. The sample is from before the age of one year old.

3. The sample is not preceded by a negative sample.

We consider positive, any sample that has one or more positive autoantibodies.
We created a variable called "mother_samp" that marks TRUE for the samples
meeting the above criteria, and FALSE for all the other samples. A logical scheme
of this process is presented in the flowchart in Figure 19.
The following list describes each feature construction technique applied on the

DIPP data.

1. Age at the visit is not present in the data.

• We calculated age at that visit with birth date and visit date.

2. Maximum follow up time is important. Data should be compared from
patients with similar follow up times.

• We created a new variable called "Age_follow_up" that marks the
maximum visit age of each patient.

3. Disease progression time is important [73, 74].
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• We created a variable "progression_time that marks the time passed
between the seroconversion and the diagnosis dates. For the patients
who never got diagnosed with T1D the progression_time is NA.

4. Age of the mother at birth could have an impact on analysis [68].

• We calculated age of mother at birth from the mother’s birth date
and her (corresponding patient code) child birth date, and created a
variable “Mom_birth_age”

5. Blood sample from a visit is positive if any >=1 of the autoantibodies is
positive.

• We created a binary factor visit variable “pos_sample” to mark if the
sample(row) is positive in any >=1 antibody.

6. Two consecutive positive samples in any >= 1 antibody for a patient is
considered true positivity [73]. For each individual patient code:

• We excluded positive samples that were identified as transferred from
the mother.
• If at any point there are two or more consecutive TRUE visit rows in

any of the four columns with antibodies, we assign a factor variable
"POS_antibodies" = TRUE for that patient.

7. Age of seroconversion has an importance in analyses [73, 79]. We found
the first positive sample in any >=1 antibodies and retrieved age from that
visit as follows:

• We excluded positive samples that were identified as transferred from
the mother.
• We created a variable called "Age_seroconv" that contains the age of

the first positive sample.
• For the patients who never had a positive antibody sample,

Age_seroconv is NA.

8. Seroconversion type is important [73]. Are multiple autoantibodies present
at seroconversion and which ones?

• We created a factor variable to mark whether only one
antibody was positive at seroconversion, or multiple, and
whether it was IAA or other[79]. Factor levels are:
“ICA”,”GADA”,”IAA”,”IA2A”,"multipositivity IAA" for the ones
with IAA combined with other autoantibodies at seroconversion,
and "multipositivity" for the ones with 2+ positive antibodies at
seroconversion but no IAA.

9. The type of positivity after seroconversion is important [73].
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• We excluded positive samples that were identified as transferred from
the mother.
• We created a factor variable "positivity_type" with three levels:

"single" for patients with at least two consecutive positive samples in
only one autoantibody at a time, "multi" for patients with at least two
consecutive positive samples in two or more autoantibodies in the same
time, and "negative" for patients with one or zero positive samples in
any autoantibodies.

10. Antibody titre at seroconversion for each autoantibody is important [73].

• We retrieved the antibody value from visit rows where visit age =
seroconversion age.
• We created a new titre variable for each autoantibody that contains

the value of that autoantibody at seroconversion, regardless of the
seroconversion type.
• Patients who never seroconverted have NA in these variables.

The output of this preprocessing algorithm contains two datatables: Visit data
and Patient data. Patient data is separated from the visit data as Visit data is
time series data which requires different analyses and further preprocessing, for
example, into panel data or survival data. Visit data can contain the patient data
as well, but patient data can only contain aggregated visit data (summarized for
a certain period), for example, a summarized patient variable that states TRUE
if the child has had a pet in the first twelve months of life. This can be done
by the user of the data according to the research question. Adding this type of
new constructed features to the datatable gives the user a possibility of easily
splitting the data into groups or perform comparative analyses, while the original
information is still available for checking and/or further processing. The final
data variables and their definitions are presented in Tables 5 and 6 for Patient
data and Visit data respectively.

5.3. Analysis of DIPP data with ClinFlow

From the preprocessed dataset we have extracted the children and their siblings,
using the Filter Data tab in the app, then, using the Outliers tab we have plotted
the follow up age against the "POS_diabetes" variable and we selected and deleted
all entries that were not diagnosed with T1D and the follow up age was below
180 months old, or fifteen years old. We were left with 1,196 patients, 186 who
progressed to T1D and 1,010 who have had follow up visits until at least fifteen
years old and have never been diagnosed with T1D.
We previously defined the positivity type as "multi" if the patient had persistent

positivity in two or more autoantibodies, "single" if the patient had persistent
positivity in only one autoantibody at a time, and "negative" if the patient did
not have persistent positivity. Persistent positivity is defined as two or more
consecutive positive samples.
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Table 5. Patient Data variables and their definitions

Variable name Variable
Type Variable definition

code Factor Unique patient code
birth_date Date Patient birth date in the format of dd/mm/yyyy
birth_length Numeric Length at birth in cm. Mothers and fathers have NA.
birth_weight Weight at birth in g. Mothers and fathers have NA.

birth_circle_of_head Head circumference at birth in cm. Mothers and fathers
have NA.

duration Factor Gestation period for each child with levels: "premature",
"normal", "prolonged"

is_mom_t1d
is_dad_t1d Factor Parent’s diabetes for each child’s parents: "TRUE" or

"FALSE"
breastfeeding_only
breastfeeding_ended Numeric Age in months when exclusive breastfeeding respectively

any breastfeeding has ended.

POS_diabetes Factor TRUE if the child has been diagnosed with T1D. All the
others are FALSE.

diagnosis_age Numeric Age in months when the child has been diagnosed with
T1D. The ones with POS_diabetes = FALSE have NA.

mother_pos Factor TRUE if the child has a mother with positive
autoantibodies in the data. All the others have FALSE.

Mom_birth_age Numeric
Age at birth, in years, for the children’s mother present
in the dataset. If the child’s mother is not in the data,
they have NA.

POS_antibodies Factor

TRUE if the patient has had at least two consecutive
positive samples in any >=1 autoantibody at any point
in their life, excluding the autoantibodies transferred
from the mother. Otherwise, FALSE.

birth_month Factor The name of month of birth.

Age_seroconv Numeric

Age at seroconversion, in months, for the patients who
had at least one positive sample in any autoantibody,
except samples transferred from the mother. The others
have NA.

GADA_5.34_titre
ICA_2_titre
mIAA_3.47_titre
mIAA_1.55_titre
IA2A_0.42_titre

Numeric

The value of each autoantibody at the first positive
sample, for the ones who had at least one positive sample
of any autoantibody, except in herited samples. The
others have NA.

seroconv_type Factor

Mentions which autoantibody was positive at
seroconversion, or if there were multiple. Levels
are: "GADA", "ICA", "IAA", "IA2A", "multipositivity".
The ones who never seroconverted have NA.

positivity_type Factor

"multi", for the ones with POS_antibodies = TRUE,
that has two or more positive autoantibodies in the same
time, for at least two consecutive samples, "single" for
the ones with only one positive autoantibody in at least
two consecutive samples. All the others are "negative".

who Factor Variable with levels "child", "sibling", "mother", "father".

progression_time Numeric
Number of moths between the seroconversion date and
the diagnosis date, for the ones who have POS_diabetes
= TRUE. The others have NA.

Age_follow_up Numeric Maximum age in the dataset for each child, in months.
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Table 6. Visit Data variables and their definitions

Variable name Variable
Type Variable definition

code Factor Unique patient code
date_of_visit Date Visit date in the format of dd/mm/yyyy
Age Numeric Age at the visit.
GADA_5.34
ICA_2
mIAA_3.47
mIAA_1.55
IA2A_0.42

Numeric
Autoantibody values. Samples from before 2003
that had negative ICA have NA in the other
autoantibodies.

GADA_POS
ICA_POS
IAA_POS
IA2A_POS

Factor TRUE if the autoantibody is positive, otherwise
FALSE.

pos_samp Factor TRUE if one or more autoantibodies are positive
in this sample. False if they are all negative.

mother_samp Factor TRUE if the positive sample is transferred from
the mother. False if otherwise.

height
circle_of_head
weight

Numeric

Height at the visit in cm.
Weight at the visit in kg.
Head circumference at the visit in cm. Head
circumference is measured until 2 years old, after
that it is NA.

infections_airway
infections_ear
infections_fever
infections_gastric
infections_eye
infections_roseola
infections_chickenpox
infections_hospital_care
infections_other
infections_entero

Numeric Number of infections.

pets Factor

Levels: "cat/dog" if the patient owns a dog or a
cat at the time of the visit. "other" if the patient
doesn’t have a dog or cat but has other pets, and
"no pets" if the patient does not have any pets. NA
if it is unknown.
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Out of the total number of patients, 178 have progressed to multipositivity,
with persistent positivity in two or more autoantibodies at the same time, and
189 have had single positivity - persistent positivity in only one autoantibody at
a time. Out of 828 children who were found negative, 33 seroconverted, meaning
they had at least one positive sample recorded, but no persistent positivity.
After these operations, the data showed that 74.16% of the children who

presented multipositivity and only 5.82% of the ones with single positivity
progressed to T1D. As for the ones that tested negative, with only one or no
positive samples, 5.19% progressed to T1D. This is quite a high percent, compared
to other studies [79], so we decided to investigate them further, and check the
correctness and completeness of these entries. Using the Filter Data tab, we
subsetted 43 patients that appear negative but they progressed to T1D. Out of
these, 25 appear that they never seroconverted to positive autoantibodies, and 18
appear that they seroconverted, but no persistent positivity. Using the Outliers
tab, we checked if they have been followed up until diagnosis, or if they dropped
out of the study and haven’t been followed up until diagnosis. 24 children with
gaps of 20-150 months between the last visit and the diagnosis were discovered
and eliminated from the analysis (Figure 20). Then, from the Visit table, we
plotted each visit age against the diagnosis age, and found six more patients
with gaps between the second to last and the last visit of more than 20 months.
They were eliminated as well, one by one, using the Outliers Interactive Plot, by
selecting them from the plot and checking the entries in the table (Figure 21).

Figure 20. Entries that have had a gap between the last visit and diagnosis
(Green points on the left side of the plot), and their corresponding follow up age
(months) and diagnosis age (months) table entries.

After these operations, we were left with thirteen patients that have negative
autoantibody values and progressed to T1D. They appear as though they
progressed in less than one year, and they either haven’t been recorded or
haven’t had multipositivity before diagnosis. We kept these in the analysis.
From the 1,166 patients left after the filtering and eliminating the outliers, 392
seroconverted and 156 progressed to T1D. 84.6% of the progressors have had
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Figure 21. Patient visit age plotted against the diagnosis age, of all the patients
diagnosed with T1D. Each vertical line represents a patient and each dot is a visit.
All patients had multipositivity except for the green one, who was negative. We
can observe that this patient had a gap in the visits. Between 36.6 months old
until 131 months old this patient had no visits.

multipositivity, 7.1% had single positivity, and 6.4% were recorded negative,
with only one positive sample, but no persistent positivity. Only three patients
making up 1.9% of the progressors appear as they never seroconverted. From the
1010 non-progressors, 77.8% appear negative, with either no positivity or non-
persistent positivity, 17.6% have been recorded with single positivity - persistent
positivity in only one autoantibody, and only 4.6% have had multipositivity
(Figure 22).
Out of 392 patients who seroconverted, 46% had ICA seroconversion type,

followed by 23.6% with multipositivity IAA. 12% had only IAA seroconversion,
9.4% had GADA as the only positive autoantibody at seroconversion, 9% had
multipositivity without IAA and none of them seroconverted to only IA2A.
We studied the relationship between autoantibodies and T1D progression with

a PCA clustering analysis on a subset of 257 patients who had at least one positive
sample in any autoantibody, using the scaled birth dimensions, autoantibody
titres at seroconversion, the age at seroconversion and new patient variables
created with the Create New Patient Feature tab, that contain the maximum
recorded value for each autoantibody during the visits of each patient, excluding
the autoantibodies transferred from the mother. We chose these numeric variables
due to the fact that they don’t contain as many missing values as the rest of the
numeric patient variables. Using the Create New Categorical Feature tab, we
split the variables used for clustering into categories in order to color the clusters
by category using the customization options that allow coloring the points in
the plot by a categorical variable, and check whether the autoantibody levels
at seroconversion, the seroconversion age, the maximum autoantibody values
recorded and the seroconversion type have an influence on T1D progression or
multipositivity.
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Figure 22. Non progressors (left) vs. progressors(right) by positivity type.

We plotted the first three principal components against each other, and
coloured the plot according to different categories. From Figure 23, we can
observe that the data is clustered in two main clusters. The shape of the points
in the plot stands for progressors - circles and non-progressors - triangles. We
coloured the points according to positivity type and we can see theassociation
between multipositivity - yellow, and T1D progression. These plots already show
that the values of the numeric variables used for clustering have an influence on
multipositivity and diabetes progression.
To study how the values affect these clusters, we created categorical variables

that split the numeric values into intervals, and we coloured the points according
to the interval that they belong to. For the maximum values of GADA, IA2A
and IAA autoantibodies we chose cut-off points at the threshold for positivity
and at the value of third (highest) quartile for each autoantibody. For ICA, we
chose an extra cut-off point at the median, because the ICA values have a much
higher range. While the other autoantibody values go up to maximum 1,200 RU,
the ICA values can reach up to over 2,600 RU. Figure 24 shows that most people
who had multipositivity and progressed to T1D also seroconverted young, before
72 months, or six years old. They also had mostly multipositivity with IAA
at seroconversion, followed by multipositivity without IAA, followed by GADA.
Most patients who seroconverted first to ICA, did not progress to multipositivity
and T1D. The maximum values of autoantibodies seem to affect the same way as
long as they are positive, except for ICA. A positive value of ICA (>=2) is found
in most non-progressors, however, higher values of ICA are found in progressors
(Figure 25).
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The PCA clustering shows the relationship between multipositivity, T1D
progression, early seroconversion, multipositivity at seroconversion and high
autoantibody titres. There is no obvious relationship between the birth
dimensions and multipositivity or T1D progression. However, the clustering
methods only used a subset of the data, with no missing values in any of the
numeric variables. These relationships can be investigated in more detail using
the Charts tab, with the whole dataset. The charts will only ignore the entries
with missing values in the plotted variables, therefore, they use more data. In the
dataset, there are 392 patients who seroconverted. Out of these, 178 progressed
to multipositivity, 189 had single positivity and 25 are negative, which means
that they had positive samples, but no persistent positivity. The seroconversion
age ranges from 1.9 months up to 298.1 months which is approximately 24
years old, with a mean of 80 months or 6.6 years old. 44% of patients
who developed multipositivity had multipositivity with IAA at seroconversion,
followed by 20% with multipositivity without IAA. Figure 26 shows that patients
who progress to multipositivity have an earlier seroconversion. The mean age of
seroconversion is 47.4 months, which is approximately 3.6 years old for patients
with multipositivity, and 109.4 months or approximately nine years old for
patients with single positivity. Also, it appears that patients who have the IAA
autoantibody at seroconversion have an earlier age of seroconversion than the
ones without IAA. Patients who seroconverted first to ICA have the highest
seroconversion age. The mean age for multipositivity with IAA at seroconversion
is 28.5 months or 2.4 years old, and for the other types of seroconversion, it is
94.2 months which is approximately 7.8 years old.
The GADA titres at seroconversion have a weak positive correlation with

the seroconversion age, for patients who progressed to multipositivity, with a
correlation coefficient of R = 0.29 and a p value of 0.0001. This means that with a
later seroconversion age, there are higher GADA titres for multipositive patients.
The IAA titre has a weak negative correlation with the seroconversion age, with
a R of -0.37 and a p value of 0.0002 for multipositive patients and a stronger R
of -0.68 with p = 0.003 for negative patients (Figure 27). We verified this finding
further by using the Filter Data tab to check group summary statistics. A group
of 90 multipositive patients with GADA seroconversion titres belonging in the
lower 75% of the whole population have a mean age of seroconversion of 33.4
months or 2.7 years old. 88 multipositive patients with GADA seroconversion
titres in the third quartile of the whole population have a mean seroconversion
age of 61.8 months or five years old. 167 multipositive and negative patients
with IAA seroconversion titres in the lower 75% of the population have a mean
seroconversion age of 59.4 months or five years old, whereas the patients with
high IAA titres belonging in the third quartile of the whole population have a
mean seroconversion age of 33.8 months or 2.8 years old. There have not been
any associations found between the other patient variables, enterovirus infections
or pets and multipositivity in this sub-sample of the data.
We also studied the progressors and the association between the autoantibodes

and the disease progression time defined as the time that passed between
seroconversion and diagnosis, in months. There are 153 progressors in the
dataset, with the disease progression time ranging from 0 to 204.58 months
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which is approximately 17 years, with a median of 49.7 months, or 4.1 years.
The progression time of 0 corresponds to the negative patients, which means
they have been diagnosed at their first visit, when they had their first positive
sample. The progressors have seroconversion ages between three months old up
to 186 months or 15.5 years old, with a median of 24 months old or two years
old. We split the seroconversion age into four intervals, with cutoff points at the
first quartile, median and third quartile. The lowest seroconversion age interval,
between three and thirteen months old, has a mean disease progression time
of 43.65 months. The highest seroconversion age interval, between 48 and 186
months, has a mean progression time of 58.8 months.
Patients who seroconverted multipositive with IAA have the most rapid

progression time, with a mean of 41.2 months, followed by multipositivity without
IAA, with a mean of 54.9 months and IAA seroconversion, with a mean of 58.1
months. Patients who seroconverted first to GADA have a mean progression time
of 59.6 months, and the ones who seroconverted first to ICA have the slowest
disease progression, with a mean value of 68.1 months. Figure 28 shows the
difference in progression time for the seroconversion types and seroconversion
age intervals.
All autoantibody titres have a weak negative correlation with the progression

time, with correlation coefficient R ranging from -0.22 to -0.29 but with
statistically significant p values, except for GADA, that has R = -0.06 and non-
significant value of p = 0.42 (Figure 29).
These findings underline the importance of studying the association between

early multipositive seroconversion combined with high IAA, IA2A and ICA
autoantibody titres at seroconversion and a rapid disease progression. The GADA
titre at seroconversion and the other patient variables did not show a significant
association with the disease progression time.

Summary

The study of Knip et al. [79] of over 7,000 children recruited by the DIPP study
[79], found that most progressors had multiple autoantibodies already in the first
positive sample. This study found that the appearance of IAA autoantibody had
a peak around the second year of life, whereas GADA emerged around the fourth
and fifth years of life. A young age of seroconversion is associated with a higher
risk of T1D progression. The positivity for multiple autoantibodies is associated
with a risk of around 70% for progression to T1D in the following ten years, and
single positivity does not lead to T1D progression and is harmless.
The article of Pöllänen et al. [73] on disease progression, including 7,400

children from the DIPP study, found that rapid progressors have a younger age,
higher ICA, IAA and IA2A titres at seroconversion, and multipositivity.
In the analysis, we found a strong relationship between persistent

multipositivity and progression to T1D, and no relation between single
persistent positivity and progression to T1D. An association was found between
multipositivity at seroconversion and progression to persistent multipositivity and
T1D. The analysis showed that the IAA autoantibody appears earlier then the
other autoantibodies, with a mean age of appearance of 2.5 years old. GADA as
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the first autoantibody appears later, with a mean age of appearance at 5.4 years
old. The age of seroconversion for patients who progressed to multipositivity is
on average 5.1 years earlier than for patients with single positivity. These findings
seem to support the results of Knip et al [79].
Weak correlations have been found between IAA and GADA titres at

seroconversion and the age at seroconversion. Higher titres of GADA seem
to be related to a later seroconversion age for patients who progressed to
multipositivity, and higher titres of IAA at seroconversion are associated with
an early seroconversion age. These findings are not reported in the study of Knip
et al. [79], therefore, they will need to be investigated in more detail and validated
on larger datasets.
Studying the disease progression time, we found that patients with a younger

age and multipositivity at seroconversion had a shorter disease progression time.
A weak negative correlation was found between ICA, IAA and IA2A autoantibody
titres at seroconversion and disease progression time, but not GADA. These
findings support the results of Pöllänen et al. [73].
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Figure 23. PCA clustering using birth dimensions, autoantibody titres at
seroconversion, age at seroconversion and autoantibody maximum values, colored
by positivity type and shapes of the points according to T1D progression.
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Figure 24. First two principal components plot colored by seroconversion type
(left) and seroconversion age (right). Shape of the points according to T1D
progression
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Figure 25. First two principal components plot colored by each autoantibody
maximum level. Shape of the points according to T1D progression.
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Figure 26. Age at seroconversion (months) for each positivity type (left) and
seroconversion type (right). The error bard represent the 95% confidence interval
of the mean.
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Figure 27. Correlation between the seroconversion age (months) and GADA titre
at seroconversion (left) and correlation between the seroconversion age (months)
and IAA titre at seroconversion (right), colored by the positivity type.
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Figure 28. Disease progression time (months) by seroconversion type and
seroconversion age intervals. The error bars represent the 95% confidence interval
of the mean.
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Figure 29. Disease progression time (months) negative correlated with all the
autoantibody titres at seroconversion, except GADA.
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6. DISCUSSION

The goal of this thesis was to build an interactive tool for processing and exploring
clinical data which allows the user to select different subsets of the data based
on the user’s needs, navigate data, extract new information and perform analyses
where statistical software knowledge is not necessary. In order to validate the
applicability of this tool, a case study was conducted on the DIPP study data. A
preprocessing pipeline was created in order to format the data into a meaningful
form while preserving the existing information. While some of the preprocessing
techniques used here can be extended to clinical data in general, the whole
preprocessing algorithm is customized to the raw DIPP data. The preprocessing
was integrated in the tool.

Major findings

The dataset used for this case study was rather limited compared to the dataset
used by Knip et al. [79] in their article "Role of humoral beta-cell autoimmunity
in type 1 diabetes" and by Pöllänen et al. [73] in their article "Characterisation of
rapid progressors to type 1 diabetes among children with HLA-conferred disease
susceptibility" which motivated this study. We had access to a smaller subset of
the DIPP study data, from Oulu University Hospital, from which we analyzed
1,166 participants. However, the results from the case study conducted using
ClinFlow on this subsample of the DIPP data support the findings of the two
articles that used larger numbers of patients from the DIPP study, therefore,
confirming the general patterns of T1D disease progression mechanism.
A weak positive correlation between GADA seroconversion titres and the age at

seroconversion for patients who progressed to multipositivity, and a weak negative
correlation between IAA titres at seroconversion and age at seroconversion were
found in this case study. These two results were not reported in the reference
articles. Further research will be required to validate these findings.
The application has proven useful for easily verifying, filtering and removing

the incorrect entries in the data, therefore, removing some of the bias that these
entries would have introduced in the analysis. The Filter Data functionality and
the reactive properties of the filtered datatable have offered the possibility of easily
checking group summary statistics in the data. This is helpful for the user to get
a general idea about what kind of analysis results will be obtained even before
conducting the actual analysis. It can also be applied for verifying the correctness
of the results and checking whether there is any biased results introduced by the
removal of missing entries found in the analyzed variables, therefore, having a
valuable contribution on the user’s analysis methodology choices.

Applicability and Requirements

A first requirement for this tool was to provide the user with a Patient dataset
containing the constant variables and a Visit dataset with the time-varying
variables. When uploading a dataset, the application detects the constant and
time-varying variables and automatically splits the data into Patient and Visit
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data. It also removes duplicated entries, provides the user with a preview of the
tables and the option of visualizing summary statistics, therefore, meeting this
requirement.
A second requirement was to provide the user with an interactive preprocessing

interface. The application’s Filter Data functionality has proven very useful in
the DIPP case study, combined with the Outliers functionality for detecting and
removing entries that could have introduced bias in the results. The Filter was
also helpful in quickly subsetting groups in the data and verifying their validity.
The Create a New Patient Feature functionality makes it easy to analyze periods
from the patient’s visit history, and The Create a New Categorical Feature
functionality allows the user to define groups in the data based on the numeric
value of a variable.
In the DIPP case study, these functionalities were used for delivering

meaningful graphical representations of the relationships between variables and
groups in the data. For example, we created categories in the data in order
to color the clustering plots by categories and visualize the distances between
these categories in the 2D and 3D cluster space. The new categorical variables
also helped in generating mean-by-group bar plots. These plots can be easily
downloaded from the application as ".png" or ".svg" images and inserted in
reports and presentations. The new patient features created in the DIPP case
study allowed us to visualize relationships between the autoantibody values
and progression to multipositivity or diabetes. We observed that differences in
autoantibody values recorded during the visits do not have a high impact on
the outcome, as long as they are positive, a result that supports the prevalent
methods of defining the antibody positive thresholds [72].
The user-defined preprocessing in the application has room for improvement,

with more user filtering options that include queries involving several variables
and possibilities of deriving new information based on a formula that includes
multiple variables.
Another part of the user-defined preprocessing interface is the Panel Data

creation tool, that allows the user to create a timestamp based on splitting the
visit age into intervals and summarize the information for each time point or age
interval. Then, the user can download the panel data and use it for different
time-series analyses without the need of further preprocessing. This functionality
was not used with the DIPP data case study, however, we introduced a preview
of how the preprocessed panel data of the Iris dataset [38] in Chapter 4 of this
thesis.
The final requirement was a platform for unsupervised learning and

visualizations. The various visualization and clustering options in the application
offer a dynamic platform for exploring the data. In the DIPP case study, the PCA
clustering visualization has proven useful in identifying the numeric variables
that influenced the multipositivity and T1D progression. By categorizing these
variables and coloring the plot according to different intervals, allowed us to
visualize the way in which the points in the clusters are similar. The various
charts were used for exploring the relationships in the data in detail, and most of
the results were similar to the ones obtained from research done on larger datasets
of the same type. For this case study, we reported the results only from the PCA
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clustering, but we also checked the other clustering methods on the same data
which showed the same patterns.
Overall, the application meets the preprocessing and visualization

requirements. The dynamic nature of the application allows the user to
try different analysis approaches within a single session. This makes it fast to
get a general idea about the dataset and what kind of results could be expected.
Various online resources such as online tutorials, R packages and open source

applications from the Shiny gallery [84] had a valuable contribution in the building
process. The open source HTPVis Shiny app by Dijun Chen [21] and the
"FilterDF" Shiny module from the R package "esquisse" [43] contributed the most
in building the visualizations and filter functions.

Limitations

The application’s current version can be viewed as a proof-of-concept. ClinFlow
requires extensive validation and usability testing before actual deployment.
At the moment, the application is customized for the DIPP dataset, with
limited generalizability to other clinical datasets. The case study was done
on a subsample of the DIPP data, and although the results were compared
with the domain articles, the general applicability of the findings would require
validation with larger DIPP datasets. Like any clinical dataset, the DIPP data
has very specific requirements that needed to be addressed by preprocessing. A
big part of successful clinical data preprocessing is domain knowledge combined
with knowledge about the data collection, and very few preprocessing operations
can be generalized to fit more datasets. While this tool offers an interface for
some user defined general preprocessing operations, it does not cover the complex
challenges that are specific to the domain and data collection practices of each
clinical dataset.
Performance requirements for this application have not been set at the moment.

With the DIPP data available for this case study, the application did not display
major loading times for executing different operations. However, the performance
of the application has not been tested with larger datasets. This might raise the
need for code optimizations in order to improve performance.

Future Work

Thorough validation, usability testing and deployment of the tool have been left
for the future due to limited time. The application can be locally hosted, making
it safe to use from the data privacy point of view. Future work also includes
experiments with different datasets and increasing the generalizability to fit more
types of clinical data. Some improvement ideas for the functionalities of the
application that could be implemented in the future are listed below.

1. Including a general preprocessing pipeline along with user options for
the more complex preprocessing operations, which can adapt to various
datasets, not just the DIPP dataset.
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2. Including filtering options in the Filter Data functionality for more complex
filtering operations that use several variables of different types. This would
allow for easier subsetting of entries that match more complex criteria.

3. Options to create new features in the data using complex formulas that
include multiple variables, not just one variable at a time.

4. Implementing supervised learning methods such as regression or
classification models along with the visualizations present in the app.
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7. CONCLUSIONS

The main objective of this thesis was to design an interactive application for
clinical data analysis with the purpose of helping the clinical researchers gain
insight into the patterns found in the medical records of patients, as well as
explore the data quality and availability. Common challenges for analysing
clinical data were examined such as unclean data, irregularities, and the need
for domain knowledge in preprocessing. Based on these challenges, a variety
of existing visualization tools were studied and their advantages and limitations
were acknowledged. A list of requirements for the new application was comprised,
and the tool was built to meet these requirements by integrating dynamic
preprocessing and visualization functionalities. The tool was evaluated with a
case study on T1D data from the DIPP study. A separate preprocessing pipeline
customized for the DIPP data was also integrated in the tool.
ClinFlow was proven to be a useful tool when analysing the clinical data in the

case study. The tool provided results that support the existing domain knowledge
and it shows interesting prospects for future development as well.
ClinFlow seeks to fill the gap between information technology and clinical

research. It aims to provide an interactive interface that allows the clinical
researcher to include domain expertise into the analysis process, without the need
for statistical programming knowledge. ClinFlow has the potential of becoming
a valuable tool in clinical research.
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