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ABSTRACT

Osteoarthritis (OA) is the most common joint disorder in the world that affects
various joints particularly hand, hip, and knee joint. The knee OA has been
identified as the most impactful OA because it is the major cause of disability
worldwide. Generally, OA progression leads to joint replacement surgery and
causes enormous amount of financial costs. Thus, it is crucial to diagnose OA
at an early stage and prevent or slow down its progression. Currently, clinical
diagnosis of OA includes physical examination and clinical imaging. However,
they are insensitive to early OA changes. On the other hand, it was shown that
several imaging bio markers can be captured at an early stage of the disease. One
of the important imaging bio markers for OA is the alternations of subchondral
bone texture. Besides, there are other factors that cause these alternations such
as bone marrow lesions (BML).

Two sub-studies have been conducted in this thesis. The aim of the first sub-
study is to investigate the association between BML and OA diagnosis by using
subchondral bone texture from plain radiography. OA subjects are defined by
Kellgren-Lawrence (KL) grading scale. KL grade 0 and 1 represent no OA and
grade 2, 3, and 4 are OA subjects. In this work, subjects at the baseline (first
visit) of osteoarthritis initiative (OAI) dataset were selected. Then, they were
categorised into three groups including subjects who has BML in medial tibia
(group 1), subjects without BMLs at all (group 2), and lastly the subjects without
medial tibia BMLs (group 3). In the next step, region of interest (ROI) was
selected at the margin of medial tibia in plain radiographs. After that, 29 textural
features from 4 textural descriptors including grey-level co-occurrence matrix
(GLCM), histogram of image, absolute gradient, and fractal signature analysis
(FSA) were computed from the extracted ROI. Subsequently, Fisher’s exact test
and Mann-Whitney U test were used in order to discover how textural features
change among OA and non OA subjects in each group (first analysis) and how
those differences change across the groups (second analysis).

Our results showed that there are significant textural differences between OA
and non OA subjects when they have BMLs at medial tibia. Moreover, there were
no significant textural differences among subjects with no BMLs and subjects



with no BMLs in medial tibia. These results indicate that the presence of BML as
well as its location at subchondral bone may have association with OA incidence.

In the second sub-study, for research oriented purposes we built a deep
convolutional neural network (CNN) based models to automatically detect OA
from subchondral bone texture according to the Kellgren-Lawrence (KL) grading
scale. We selected subjects without BMLs to make a fair comparison between
magnetic resonance imaging (MRI) data and plain radiographs. In this study,
subjects with no BMLs who have sagittal 3-D Double Echo Steady State sequence
(3D DESS MRI) and plain radiography at the baseline of OAI were selected. In
both imaging modalities, square sized ROIs were chosen located at the marginal
region of medial tibia. Confusion matrix and area under the receiver operating
characteristics curve (ROC AUC) were used to evaluate the model performance.
Our results demonstrated that when subjects do not have BMLs, our model was

not able to detect OA from the subchondral bone texture.

Keywords: osteoarthritis, subchondral bone texture, bone marrow lesions, medial
tibia, region of interest, Fishers exact test, Mann—Whitney U test, convolutional

neural network
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1. INTRODUCTION

1.1. Osteoarthritis

Osteoarthritis (OA) is a common joint disease and it is one of the leading cause of pain
and disability throughout the world [1]. Based on recent OA studies and according to
the United Nations statistics, it has been predicted to come up to even higher ranks in
the foreseeable future [2]. The reason behind is that the prevalence of symptomatic
OA is mostly associated with rising age due to depletion in regenerative capacity
and muscle activity [2] (Figure 1). Today, there are more than 703 million people
aged 65 or older which this number is projected to reach 1.5 billion by 2050 [1, 3].
Currently, millions of people (18% of women and 10% of men aged over 60 year)
throughout the world are suffering from OA [4], which means that OA is connected to
extensive financial costs in many countries. To illustrate, in 2016 the UK experienced
185,000 primary hip and knee replacements because of OA disease. This number is
increasing rapidly because of ageing population [4]. In US, the annual rate of total
knee replacement has increased by a factor of two since 2000 and the total number of
non-surgical treatment process during each year now surpasses 640,000, with a total
annual cost of about $10.2 billion [5]. New Zealand has reported the constant rise in
the number of knee and hip replacement surgery during last decade [6] (see Figure 2).

OA may occur in various joints but the prevalence is higher for knees, hands,
hips and spine [4]. The prevalence of knee OA is generally high indicated by
multiple studies [7, 8, 9, 10, 11, 12]. For instance, in Framingham Study, age-
standardised prevalence of radiographic knee OA was roughly 19% for subjects aged
45 and older [13]. In the Johnston County Osteoarthritis Project, the prevalence
rate was 27% from the same age group and nearly 37% of subjects in the third
National Health and Nutrition Examination Survey (NHANES III) were suffering from
radiographic knee OA [13, 14]. Higher prevalence rate of knee OA means having more
negative impact on individual life and socioeconomic status [15, 16]. From individual
perspective, progression or incidence of OA leads to activity limitations, participation
restriction alongside with negative effects on life quality, mood and sleep [16]. From
socioeconomic perspective, some studies estimated that indirect costs of OA are eight
times greater than direct costs of OA even though in most countries the direct costs
are mainly considered [16, 17]. In conclusion, the burden of OA and its effects on
individual productivity and socioeconomic costs are already substantial. Immediate
actions should be taken to prevent or slow down the progression of this disease as our

world is considerably growing older [16].
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Figure 1. The reports of OA incidence from Spanish and UK general practice registry
indicated that risk factor of age, between 50-year to 75-year old period, has more effect
on knee joint rather than other joints and for female gender is much more male gender.
These figures illustrates age-specific and gender-specific incidence (per 1000 person-
years). This data is acquired from the randomly selected individuals from Catalonia
(Spain) [18].
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Figure 2. According to statistics from National Minimum Dataset (NMD) in New
Zealand, Number of knee and hip replacements in New Zealand has steady risen from
2005 to 2017 by 70.2% and 60.6% respectively [6].



One of the most important characteristics of OA is being heterogeneous considering
its onset and progression. For instance, knee OA might remain in the same stage over
decades or progress rapidly in a few years [19]. Hence, recognising its mechanism
and its risk factors is a crucial task for prevention of the disease and developing the
treatment strategies. Enormous number of studies have been conducted to investigate
risk factors of OA [20, 4]. According to recent study[21], OA risk factors may be
mainly divided into two groups: 1) Systemic factors, such as age, genetics, body mass
index, lifestyle, nutrition, sex hormones, bone density, 2) Mechanical factors including
joint structure and malalignment, trauma, physical activity, muscle strength. It should
be noted that not all of the aforementioned factors are used for OA diagnosis [22, 4].

Over a long period of time, it was believed that OA was mainly implies cartilage
degeneration [23]. Currently, however, OA is perceived as a group of joint diseases
or a multi-factorial disease [24]. For instance, structural changes in the various
tissues including cartilage degeneration, damaging articular cartilage (AC) structure
and function, remodelling of subchondral bone, emerging subchondral bone cysts,
and marginal osteophytes formation, may simultaneously happen as OA progresses
[25, 23, 24]. Recently it has been discovered that the cartilage is not the main source
of pain in the early stage of OA [26, 27]. Instead, other factors such as remodelling in
subchondral bone, synovial inflammation, damaging AC and ligament cause primarily

the pain or inflammation [20] (Figure 3).

1.2. Subchondral Bone

Several subchondral bone definitions based on its morphology and mechanical
properties can be found in literature [28, 29, 30, 31]. In this thesis, subchondral bone
refers to the bony lamella (cortical end-plate) lying directly to the calcified zone of
the articular cartilage which has two main components: 1) subchondral bone plate
and 2) spongy trabecular bone. subchondral bone plate is Located under cartilage
zone by cement line (see Figure 3). Its anatomical features such as thickness, density,
and composition, vary from one subject to another [32]. Trabecular bone has more
porous structure than subchondral bone plate [33]. As opposed to AC, subchondral
bone tissues have blood vessels and nerves in the marrow space where AC can receive
its nutrition from the blood supply [34]. Moreover, this structure allows subchondral
bone to absorb mechanical stress transmitted through the joint and this can affect
its structure as it has the capability of remodelling with mechanical load changes
[35, 25]. According to the recent publication of MacKay et al. [36], it is estimated that

subchondral bone structural changes may occur even before cartilage loss. Therefore,
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Figure 3. Schematic figure of a knee joint (left) and an articular cartilage (AC) (right).
Different zones of AC are shown in the figure

subchondral bone has a potential as a biomarker in terms of knee OA detection in the

early stages of knee OA.

1.3. Bone Marrow Lesions (BML)

Bone marrow lesions (BMLs) often occur when fluid builds up in the bone marrow
in trabecular bone as a response to an injury or other conditions such as radiographic
knee OA [37]. BMLs are recognisable on magnetic resonance imaging (MRI) data
as excessive water signals while they are not visible in plain radiography (Figure 4)
[38]. BMLs can be defined as common subchondral bone alternations in MR images
among patients with knee OA. Multiple studies showed the association of BMLs and
OA progression [36, 39, 37, 40, 41].

According to MRI Osteoarthritis Knee Score (MOAKS), each sub-region is
separately assigned a number from O to 3 based on the percentage of areas of BMLs
[42]. BMLs may appear in one or more sub-regions. The more detailed information is
provided in Table 1.
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Figure 4. An illustration of intense bone marrow lesions (BML) at femur (red circle)
and scattered BML in tibia (blue circle) in a MR image (Sagittal T2 fat-saturated).

Table 1. Scoring system for bone marrow lesions (BML)

Size of BML by volume BML score
None 0
Less than 33% of subregional volume 1
Between 33-66% of subregional volume 2
More than 66% of subregional volume 3

1.4. Clinical Imaging

OA diagnosis primarily involves physical examination, review of medical history, and
identification of symptoms [43]. Typical symptoms of OA include gradual onset

of pain, morning stiffness with pain, restriction of movement, crepitus during joint
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movement, joint effusions, joint deformities and subluxations [44]. Medical imaging
modalities, particularly, plain radiography are commonly used to confirm the presence
and quantify severity of OA [43]. Plain radiography of a knee joint is typically captured
in a fixed-flexion standing position with fixed setting such as beam angle (Figure 7).
Severity of OA can be assessed from plain radiographs by the Kellgren-Lawrence (KL)
scoring system. There are many disadvantages of plain radiography, such as ionising
radiation while performing radiography, providing 2-D projection image from 3-D
tissue, insensitivity to early changes of OA, incapability in capturing soft tissues like
articular cartilage and menisci, etc [45]. In spite of these drawbacks, plain radiography
has been primarily used for OA imaging due to several advantages, such as being cost-
efficient, fast, and broadly available [46].

MRI is another clinically available modality that provide complementary and more
detailed information such as morphology and composition of cartilage, ligaments,
etc. As such, those modalities can be used for OA diagnosis and also OA research
purposes [47]. MR images are produced by creating strong magnetic fields and radio
waves. Compared to plain radiography, MRI does not have ionising radiation. MRI can
provide multiple quantitative and semi quantitative features which potentially involved
in OA such as BMLs, joint effusion, synovitis, etc. that are not visible in plain
radiographs [48]. Because of these properties, MRI for knee joint in OA studies and
also clinical practices is perceived as the most valuable imaging modality [49] (Figure
6).

1.5. Assessment of Osteoarthritis Severity

1.5.1. Kellgren-Lawrence Grading System

The first classification scheme for radiographic OA was presented in 1957 by Kellgren
and Lawrence [50]. The proposed scheme was established for classifying OA from
plain radiographs in eight joints including knee joint. The aim of such scheme was to
provide a tool to differentiate the radiographic stages of the disease [51]. Having such
classification scheme might greatly help healthcare institutions in terms of setting up
treatment strategy for OA patients [52].

According to the KL grading system, a grade, ranging from O to 4, is assigned to a
knee joint. Higher grades correspond to more severe stages of OA [50]. The grades
represent: no signs of OA (KL-0), doubtful OA (KL-1), mild OA (KL-2), moderate
OA (KL-3), severe OA (KL-4). The detailed explanation of each grade is provided in
Table 2.
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(b)
Figure 5. Two plain radiographs of knee joints of different subjects from the
Osteoarthritis Initiative (OAI) dataset at the first visit. They are captured in a fixed-
flexion standing position. Lateral and medial of tibia are illustrated in (a).
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(a) (b) ()

(d) (e) ()
Figure 6. Two examples of magnetic resonance imaging (MRI) data, 3D dual echo
steady state sequence (3D DESS) from OAI dataset. Figure shows three planes: axial
plane (a,d), coronal plane (b,e) and sagittal plane (c,f).

Table 2. The description of Kellgren-Lawrence (KL) classification system
KL grade | Description

0 No radiographic features of osteoarthritis

1 Possible joint space narrowing and osteophyte formation

2 Definite osteophyte formation with possible joint space narrowing
3 Multiple osteophytes, definite joint space narrowing, sclerosis, and

possible bony deformity

4 Large osteophytes, marked joint space narrowing,

severe sclerosis, and definite bony deformity

1.5.2. MRI Osteoarthritis Knee Score (MOAKS)

Whole-Organ MRI Score (WORMS) and Boston Leeds OA Knee Score (BLOKS)

were developed as the first methods to assess knee OA status from MR images
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[53][54]. Although both tools are broadly used in clinical practice and in OA research,
there are several limitations in using these methods. For instance, WORMS meniscal
scoring method combines several different factors and, in BLOKS, BML scoring is
extremely time-consuming and complicated [42] . In order to address these limitations,
MOAKS was proposed by Hunter et al. [42]. In MOAKS, knee joint is divided into
14 compartments including patella (medial patella and lateral patella), femur(medial
and lateral trochlea, medial and lateral central femur, medial and lateral posterior
femur), medial tibia (anterior, central and posterior), lateral tibia (anterior, central and
posterior), and tibial spines. Then, different individual features from various tissues
such as BML from trabecular bone, cartilage loss from AC, osteophyte from margins
of joint, synovitis from synovial tissue, meniscal extrusion, meniscus tear, meniscal
signal, and either absent or present anterior cruciate ligament tears, are then graded.
These features are mainly defined because they are informative and reproducible

enough in relation to OA progression and pain [42].

1.6. Related Studies

In OA research, there is a growing interest in subchondral bone alternation [55].
Currently, subchondral bone plays a critical role in diagnosis of musculoskeletal
conditions such as OA [56]. Such changes in subchondral bone can be detected through
textural analysis. Several studies have been performed in order to investigate whether
OA incidence or progression is associated with textural changes in subchondral bone
[57, 45, 58, 36, 39, 59, 60]. For instance, Janvier et al. [61], performed texture analysis
from medial tibia using plain radiographs in order to predict knee OA progression.
Their findings showed that trabecular bone textural parameters has a predictive ability
to diagnose knee OA. A paper from Hirvasniemi et al. [60] investigated the connection
between the differences in bone texture and radiography-based bone density among
controls, subjects with knee OA and subjects with BMLs by using minimal and clinical
post-processing. Their results showed that bone density and texture differences can
be evaluated from plain radiographs when using minimal post-processing. Another
study by Hirvasniemi et al. [57] was conducted in attempt to quantify the differences
in medial and lateral sides of subchondral bone plate, trabecular bone, and femur by
using plain radiography. Their results indicated that textural features were more robust
and reproducible than bone density-related parameters when imaging conditions for
all patient are different.

Apart from texture analysis from plain radiographs, several studies performed nearly

the same statistical analysis on different MRI sequences. For example, MacKay et al.
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(b)
Figure 7. All sub-regions defined by MRI Osteoarthritis Knee Score (MOAKS),
indicated in sagittal (a) and coronal (b) views. In sagittal view (b), femur is divided into
three region of trochlea (T), central (C), and posterior (P). Tibia has three equal sub-
regions including anterior, central and posterior. In coronal view (b), tibia is divided
into medial, subspinous (SS) and lateral sub-regions while femur is halved into the
medial and lateral femoral condyle

[36] analysed whether MRI subchondral bone textural changes over 12—18 months can
be used as an effective biomarker to predict OA progression over 36 months. Their

results revealed that there is a significant association between initial and 12—18-month
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MR textural changes in subchondral bone and OA progression at 36 months. Earlier
study from MacKay et al. [39], showed that texture analysis of tibial subchondral bone
from MR images has a potential role to play in OA pathogenesis and, thus, can be
potentially used in treatment decision making. Their method yielded 97% of accuracy
in the OA classification.

Some of the recent studies discovered that there are other causes apart from OA
incidence which involved in textural changes in subchondral bone [62, 58]. For
instance, Wolski et al. [58], compared trabecular bone texture among subjects with and
without cartilage defects. Their results indicated that there are considerable changes in
trabecular bone texture between these two groups. Similarly, a paper by Hirvasniemi
et al. [62] which is the closest work to our study, demonstrated that subchondral bone
structure in plain radiography can have significant differences in subjects with and
without AC damage or BMLs. In their method, textural analysis were performed on
80 subjects with various OA severity. The results showed that there is association
between subchondral bone structure among subjects with and without cartilage damage
or BMLs. But in our study, besides the aforementioned analysis, we also investigate
the relationship between BMLs and presence of OA.

As mentioned previously, textural analysis of subchondral bone has quite critical
role in OA studies but it is also crucial to investigate which locations of subchondral
bone contain valuable textural information. Bayramoglu et al. [59] investigated the
impact of region of interest (ROI) location in subchondral bone in plain radiography
on texture analysis. They employed several texture descriptors to classify subjects
with and without OA. They presented a fully automatic algorithm to extract the
most influential region of subchondral bone by utilising their proposed adaptive
segmentation. They segmented bone region into several sub-regions and performed
texture analysis independently on each sub-regions. As a result, they showed that
selecting an adaptive ROI had positive effect on binary classification performance
in comparison with a standard ROI in subchondral bone used in prior studies in
OA detection. In fact, they reached to the conclusion that marginal sub-regions of
subchondral bone in tibia and femur have significant textural changes between subjects
with OA and without OA compared to other regions.

As the previous studies confirmed that textural changes of subchondral bone are
associated with OA progression and also with BMLs, it can be persuasive enough to
conduct more works to investigate BMLs contribution with OA incidence by analysing
subchondral bone texture.

The main focus of this thesis is to explore the effect of BML in OA diagnosis from
the subchondral bone texture by using plain radiography. To do so, we divided subjects

into three groups in accordance with their differences in BML presence and BML
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location. Then, statistical comparisons were made to discover whether BMLs can
make significant differences between OA and non OA subjects. Additionally, more
comparison were performed in order to discover the relationship between the presence
of BMLs and the location of textural changes affected by BMLs.

As a subsidiary aim of this thesis, we desired to implement deep convolutional
neural network (CNN) for OA detection by using subchondral bone texture from plain
radiography and MRI. The reasons behind this aim is to firstly investigate whether our
CNN model is able to detect OA when subjects have no BMLs. The second second
is to compare the subchondral bone textural features of plain radiography and MRI in
OA detection.
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2. METHODS AND MATERIALS

2.1. The Osteoarthritis Initiative (OAI) Dataset

This study uses data from The Osteoarthritis Initiative (OAI) (publicly available at
https://nda.nih.gov/oai). OAl is a prospective longitudinal study focusing
primarily on knee OA. It includes the medical images from seven imaging follow-up
visits (baseline, 12 months, 24 months, 36 months, 48 months, 72 months, 96 months)
from three subgroups: 1) individuals who are at risk of OA progression, 2) individuals
who are at high risk of OA progression, and 3) a normal control group. The total of
4796 individuals with age range of 45 to 79 participated in the study. In this thesis,
the baseline visit was merely used. At the baseline, all subjects underwent weight-
bearing posteroanterior fixed-flexion knee radiographic scanning (with beam angle
of 10°). The data acquisition was performed across the four centres. Nearly all the
plain radiographs (n=1974) at the baseline were graded based on semi-quantitative KL
scoring systems, while MOAKS BML scoring from MR images at the baseline was
not available for all subjects. The MOAKS scoring used in this thesis is provided by
Boston Imaging Core Lab [63]. Knee MRI section of OAI at the baseline contains the

following sequences:

Sagittal 3D dual echo steady state with Water Excitation (SAG 3D DESS WE)
Coronal Intermediate-Weighted 2-D Turbo Spin-Echo (Coronal IW 2D TSE)
Sagittal Intermediate-Weighted 2D Turbo Spin-Echo Fat Suppressed (Sagittal
IW 2D TSE Fat Suppressed)

Sagittal 2D multi-echo spin-echo (Sagittal 2D multi-echo SE)

2.2. Study Design

There are two sub-studies presented in this thesis:

1. The first and main sub-study started with selecting subjects from OAI dataset
in accordance with BMLs scores. Three groups based on the BML score and
location were determined. Subsequently, preprocessing techniques, including
ROI extraction, were employed. After extracting the ROIs, several textural
features in were computed from the ROI patches. Ultimately, statistical analysis
for establishing interpretable comparison between these three groups were
applied. The organisation of our method is elaborated in the following flowchart
(Figure 8).


https://nda.nih.gov/oai
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2. In the second sub-study, as a proof of concept, we utilised a CNN model to
classify subjects with and without OA by using the subchondral bone textures
from their 3-D DESS MRI and plain radiography. We only selected subject
with no BMLs in order to eliminate the effect of BMLs on subchondral bone
structure. In fact, our aim was to investigate whether our CNN model is able
to distinguish textural differences at subchondral bone between OA and non
OA subjects. Furthermore, we wanted to discover which modality has more
capability to capture textural differences among these two classes. Thus, we

conducted the experiments separately for MR images and radiographs.

. Textural Statistical
Subject . ROI S
. Preprocessing . Feature Significance
Selection Extraction . .
Extraction Alanylsis

Figure 8. The pipeline of the first sub-study contains 5 steps. The pipeline starts with
subjects selection, then implementing preprocessing (knee joint localisation, image
normalisation, image alignment), ROI extraction, feature extraction by 4 sets of texture
descriptors and finally culminate with statistical analysis.

The methods and results of the first sub-study is presented in the main text.
The second sub-study is organised in the Appendix as follows: subject selection,
preprocessing for MR images, networks and implementation, and finally results. The

summary of both sub-studies are shown in Table 3.

Table 3. Specification of the sub-studies implemented in the thesis. CNN -
convolutional neural network, FD - fractal dimension, BML - bone marrow lesion,
GLCM - Gray-Level Co-Occurrence Matrix

Sub-study Material Feature descriptors Method
First Subjects with and GLCM, absolute gradient, | Statistical significance tests
without BMLs histogram, FD (Fisher and Mann Whitney)
Second Subjects without BMLs CNN Binary classification
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2.3. Study Subjects

We selected subjects from the baseline of the OAI (see Figure 9). Then, subjects with
missing assessment information such as BML scores and KL. grades were excluded.
The selected subjects were categorised into three subject groups. The group 1 consisted
of subjects who had non-zero BML (BML score of 1,2 or 3) at least in medial tibia sub-
region, including posterior, anterior, or central. Other sub-regions in this group were
ignored and they might have or not have BMLs. The group 2 included subjects without
BMLs (BML score of 0) in femur and tibia in all sub-regions. Finally, the group 3 had
the subjects who did not have BMLs in medial tibia, but had BMLs, at least, in one of
the other sub-regions (see Table 4 and Figure 13).

Baseline Subject (n=4597)

Subject Exclusions .| Checking availability of
(n=2623) "] assessment info (KL and BML)

A 4

* Eligible subjects (n=1974 )
+ Subjects with both knees (n=365)
* Knees (n=2329)

Group I Group II Group IIT
Subjects with BMLs at Subjects with no Subjects with no BMLs
medial tibia BMLs at all at medial tibia
A
Eligible subjects (n=545) Eligible subjects (n= 626 ) Eligible subjects (n = 535)
*Knees (n=593) *Knees (n=671) *Knees (n=573)
*OA subjects (n = 84) *OA subjects (n = 545) *OA subjects (n=216)
*Non OA subjects (n =509 ) *Non OA subjects (n=126) *Non OA subjects (n =357 )

Figure 9. The flow-diagram for selection of study participants and dividing subjects
into three groups based on bone marrow lesion (BML) scores. OA - osteoarthritis, KL
- Kellgren and Lawrence system
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Table 4. Clarification of the considered subject groups in terms of BML presence

BML locations Group1 | Group2 | Group3

Tibial media BML No BML | No BML

Other sub-regions | Might have | No BML | Might have

2.4. Data Preprocessing: Plain Radiographs

The following preprocessing pipeline utilised on the plain radiographs composed of
image normalisation, knee joint localisation, and image alignment. Afterwards, the
ROI in subchondral bone was selected and then extracted. The codes of this pipeline
were provided by the Research Unit of Medical Imaging, Physics, and Technology
(MIPT), Oulu, Finland (https://github.com/MIPT-Oulu).

1. Normalisation: The histograms of 16-bit DICOM images (plain radiographs)
were truncated between the 5th and 99th percentiles and a global contrast
normalisation is applied to the images. Finally the images are converted to 8-
bit images.

2. Knee Joint Localisation: Knee joint localisation is performed based on
the anatomical landmarks provided by BoneFinder as it is done in [59, 22].
BoneFinder is a machine learning-based and fully automatic software tool to
outline and segment skeletal structure from 2D radiographs designed by the
Centre for Imaging Sciences at The University of Manchester, Manchester,
UK [64]. Firstly, the centre of the joint is determined by using the marginal
landmarks from tibia. Then, the width of the knee patches were calculated
depending on the spacing of each image. In this work, the width of knee patches
is 140 mm. Finally, the knee joints of both the left and the right legs were
extracted assuming that centre of the joint is the centre of the extracted area.

3. Image Alignment: Knee joints are not aligned from a subject to another.
Misaligned knee joint can effect negatively on interpretation of textural features
extracted from subchondral bone. Therefore, each knee joint image should be
rotated so that the line connecting the margins of knee joint becomes horizontal.
Rotation angle is calculated accordingly. All landmarks are then transformed
appropriately.

4. ROI Extraction: There has been several ROI extraction methods implemented
in this study but we eventually chose marginal region of medial tibia as previous
study suggested [59]. To extract marginal ROI, fixed size of 64x64 square pixels

was examined in which its top right vertex is overlapped with marginal landmark
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in medial tibia (see Figure 11). Before preprocessing, left knee images were

flipped horizontally.
Image
normalization
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Knee joint
localization
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Landmark
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Image
alignment
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\
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extraction
W

Figure 10. Preprocessing pipeline for plain radiographs. Histogram truncated and
global contrast normalisation was applied to images in the first stage. Then knee joint
was located and extracted. Afterwards, landmarks were annotated by BoneFinder
software. By using marginal landmarks, all knee joint images were rotated to be
aligned. Finally, region of interest (ROI) from margins of medial tibia were extracted.
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Figure 11. The figure presents the extraction of marginal region of interest (ROI) from
medial tibia in plain radiograghs

2.5. Texture Analysis

Features of subchondral bone textures at medial tibia were extracted by four textural
descriptors including Grey-level co-occurrence matrix (GLCM), Image histogram ,
Absolute gradient and fractal dimension (FD). In this section, we are going to explain

these descriptors and their features that we used in the statistical analysis.

1. Grey-level co-occurrence matrix (GLCM): GLCM is one of the first methods
proposed for extraction of textures. It was proposed for the first time by
Haralick back in 1973 [65]. Since then, it has been commonly used for wide
range of applications and studies that are in the domain of texture analysis.
Several texture features based on GLCM were presented in various literature
[66, 67, 68, 69].

Generally, GLCM is effective when the size of the texture samples is small
because of high dimensionality of the matrix and high processing time and
complexity [70]. Furthermore, it has been proved that the GLCM features from
images with a large amount of noises are not robust [70]. Due to the high
resolution of plain radiographs and small size of textures, we perceived GLCM

as one of the suitable textural descriptor in this study.
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GLCM can capture grey level spatial dependencies in different orientations
and distances by establishing a co-occurrence matrices. Based on the chosen
orientation and distances and GLCM can extract useful textural information from
its features [71]. The GLCM matrix is defined as a square matrix (G) of size of
N x N where N is the total number of intensity in the image. The element of
g in matrix G represents the number of times a pixel A with intensity value
i is separated from a pixel B with intensity value j at a particular distance r in
a particular direction d. GLCM parameters used in this thesis are as follows:
distances = 1 to 3 pixles, angles = 0, 45, 90, 135 degrees. Since we have 3x4
parameters, GLCM is calculated for 12 times. Finally, the mean value of all 12

computed GLCM was used for analysis.
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Figure 12. An illustration of GLCM with 4x4 image having intensity range of O to 3.
here, the orientation is 0 degree and the distance is 1.

We used six GLCM texture parameters including dissimilarity, contrast,
correlation, Entropy, Homogeneity, Uniformity or angular second moment
(ASM).

(a) Contrast: This parameter indicates the amount of variation in local gray-
level values. Higher contrast values indicate presence of edges, noise, or
wrinkled textures in the image.

(b) Homogeneity: It represents the smoothness of the the gray level
distribution of the image. It is roughly opposite of contrast. For instance,

if the contrast is small, usually homogeneity is large or vice versa.
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(c) Correlation: It measures the linear dependency of gray intensities on those
of neighbouring pixels; it provides a measure similar to autocorrelation
methods.

(d) Uniformity (ASM): It estimates the uniformity or orderliness of the gray-
level distribution in the image. Images with a smaller number of gray levels
have larger uniformity.

(e) Entropy: It measures the degree of disorder among pixels in the image;
it is inversely correlated with uniformity; images with a larger number of

gray levels have larger entropy.

2. Absolute Gradient: It is a very common operator for edge detection is the
Sobel operator. The Sobel is a discrete differentiation operator which computes
the convolution of an image with kernel D of odd sizes. 3x3 kernel was chosen in

this thesis. Horizontal and vertical structural changes can be obtained as follows:

-1 0 1
D,=1-2 0 2
-1 0 1

1 2 1

-1 -2 -1

G, =1I%D, (1)
G,=1x%D, )

Gy and Gy are vertical and horizontal derivative approximations, respectively. I

is the input image and Dy and Dy are horizontal and vertical kernels.

Another edge detector named Laplacian was also used in this work. Unlike the
Sobel operator, Laplacian calculates the second derivatives and uses a single
kernel. Before applying Laplacian filter, Gaussian filter is usually applied to
smoothen the image in order to eliminate the noises. Laplacian operator for 2-D

grey-scale images is defined as follows:

27 27
A it 3)

L =
(z,y) pre
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Features such as mean, variance, skewness, kurtosis and number of pixels with

non-zero gradient (NPWNZG) were computed from resulted images.

Mean
Variance
NPWZG

Skewness

Kurtosis

Absolute gradient dy

Input image- 64x64 ROI

Laplacian

Figure 13. An illustration of extracting absolute gradient features. Firstly, the gradient
(horizontal - dx, vertical - dy, and laplacian) is computed from the input image.
Then features including mean, variance, and number of pixels with non-zero gradient
(NPWNZG) were obtained from the output image. Other features including skewness
and kurtosis were computed from the histogram of the output image. These features
were separately estimated from the dx, dy, and laplacian.

3. Fractal Signature Analysis (FSA):

Fractal signature analysis (FSA) [62, 72, 73, 74] is an approach for measuring
fractal dimension (FD) which is connected with the roughness and complexity
of the image. High values of FD represent the high complexity of the image.
FD has been frequently used for textural analysis particularly for high resolution
images such as radiographs [62, 72, 73, 74, 75].

In FSA, fractal dimension of an image is estimated separately in vertical and
horizontal directions over various range of scales. In this thesis, the image
firstly underwent morphological transformations including dilation and erosion.
Subsequently, a base-ten logarithm of the differences between dilated and eroded
of the image was computed. This calculation was repeated with different values

of length r from 2 to 16 pixels.

The surface A(r) is calculated as follows:

A(r) = @)
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Fractal dimension is obtained from the slope of the line A - log(r). Eventually,
11 FD features was generated. Each of them represents FD in one scale. We
chose the first and last scale of FD for texture analysis (in the following, defined
as FD ver/hor 1 and FD ver/hor 2, respectively). The slope of two consequent

values of r is is defined by:

Log(A(r)) — Log(A(r — 1))
S(r) = Log(r) — Log(r — 1)

S

4. Histogram: Intensity histogram shows the distribution of gray-level values of
an image. In this thesis, four features including skewness, mean, variance, and

kurtosis were computed from the intensity histogram of the images.

2.6. Statistical Analysis

Two statistical analysis were used to investigate how the textural features change
between OA and non OA subjects when subjects have or not have BMLs (first analysis)
and how those changes differ across the groups (second analysis). In the first analysis,
all aforementioned textural features from extracted ROIs were computed. Then, each
feature was compared between the OA and non OA subjects in each group by using
two statistical significant tests including Fisher’s exact test and Mann—Whitney U
test. In fact, these tests were used in order to investigate which textural features are
significantly different between two classes of OA and non- OA subjects in each group
(OA vs. non OA in group 1, OA vs. non OA in group 2, OA vs. non OA in group 3).

The aim of using Fisher’s exact test here, is to examine whether there is a significant
association between the variables of two classes in a contingency tables such as
confusion matrix. Moreover, Mann—Whitney U test was used to discover how data
of two classes (OA vs. non OA) were differently distributed. Generally, T-test is used
for investigating significant differences between two independent data if the data have
normal distributions. Instead, we used Mann—Whitney U test because our data was not
normally distributed. Normality of each texture feature was evaluated by Shapiro-Wilk
Test. For Mann—Whitney U test and Fisher’s exact, p-value under 0.05 was considered
to be statistically significant.

For Fisher’s exact test, each textural feature was individually assessed by employing
binary classification (OA vs. non-OA). In binary classification, our model was trained
by the all data and all data were tested afterwards. Then, p-value and diagnostic

odds ratio (OR) were estimated from the resulted confusion matrix obtained from
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classification. Eventually, each feature has two values of p-value and OR. p-value
under 0.05 was perceived as significant and OR greater than 1 shows how strong the
association between two classes is. By looking at these values, significant features can
be identified among OA and non OA classes (OA = KL grade of 0, 1 and non OA =
KL grade of 2, 3, and 4).

For Mann—Whitney U test, the distribution of each textural feature for subjects with
and without OA was individually checked. Finally, a p-value from each textural feature
is obtained. The p-values determined whether the feature is significantly different
between OA and non-OA subjects. We should note that these tests were implemented
separately for all subject groups including subjects with BMLs in medial tibia , subjects
without BMLs and subjects with no BMLs in medial tibia.

In the second analysis, we performed Mann—Whitney U test once more between the
subject groups. In this test, textural features of one subject group was compared to
the textural features of another subject group. For instance, features of all subjects
with BMLs at least in medial tibia (group 1) was compared to features of all subjects
without BMLs (group 2). Such comparison was made between group 1 vs. group
2, group 1 vs. group 3 , and group 2 vs. group 3. Finally, results from this tests
examined which features between different subject groups were statistically different.
The interpretation of the results from these tests can determine whether presence of

BMLs can locally or globally effect on OA diagnosis.
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3. RESULTS

In this section, results from statistical analysis are provided. In the first part of analysis,
results from comparing textural differences among OA and non OA in each subject
group separately were obtained to uncover the effect of BML presence in OA detection
(section 3.1). In the second part of analysis, comparisons between the three subject
groups were performed to investigate the impact BML location in subchondral bone
texture (section 3.2). In this analysis, 29 textural features from 4 descriptors were
assessed by both Fisher’s Exact Test and Mann-Whitney U Test. After employing
these tests, significant differences between features of subjects with and without OA
were identified in each group (BMLs at medial tibia, no-BML and no-BML at medial
tibia). In the second part of analysis, same features were compared across the groups
by Mann-Whitney U Test.

3.1. Group-Wise: OA Vs. Non OA

In Table 5, all textural features for subjects with BMLs in medial tibia are shown.
As it is illustrated, 19 features from the total 29 features were significantly different
by acquiring p-values less than 0.05 from Fisher$ exact test. Results from Mann-
Whitney U test also showed that these 19 features between OA and non-OA were
differently distributed. Additionally, features such as mean-dx (p=0.059), contrast
(p=0.077), skewness-laplacian (p=0.067), variance-laplacian (p=0.077) showed
weakly significant differences between OA and non OA. They also have different
distributions according to Mann-Whitney U test (see Table 5).

Results of Fishers§ exact test for subjects without BMLs, however, was different
from subjects with BMLs (see Table 6). Only 5 features including variance-dy
(p=0.037), NPWNZG-dx (p=0.049), histogram skewness (p=0.008), and histogram
kurtosis (p=0.022) had significant differences between OA and non OA subjects. All
of them have different distributions according to Mann-Whitney U test. Among these
features, only histogram skewness obtained p-value less that 0.01.

Within subjects without BMLs in medial tibia (group 3), there were almost no
significant differences between subjects with and without OA (Table 7). Although
features such as mean-laplacian, FD vertical 1 and 2 and FD horizontal 1 have different
distributions between subjects with and without OA according to the Table 7, they had

no significant differences among OA and non OA according to Fisher test.
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Table 5. Comparison of subchondral bone textural features between subjects with and
without osteoarthritis (OA). Considered subjects had bone marrow lesions (BML) in
medial tibia (group 1). Values are: columns 2 and 3 - mean (standard deviation),
columns 4 and 5 - p value of Fisher’s Exact Test and Mann-Whitney U Test,
respectively. NPWNZG - number of pixels withnon-zero gradient, GLCM - gray-level
co-ocurrence matrix, ASM - angular second momentum, FD - fractal dimension.

Feature No OA (SD) OA (SD) p value | p value
Fisher test | U-test
Absolute Gradient
Mean (dx) 21.755 (6.407) 19.763 (7.469) 0.059 0.009
Mean (dy) 18.690 (5.773) 16.787 (6.449) 0.034 0.004
Mean (laplacian) 0.315 (0.360) 0.243 (0.326) 0.006 0.021
Variance (dx) 378.357 (234.411) | 363.924 (259.171) 0.721 0.171
Variance (dy) 398.828 (267.226) | 285.792 (233.872) 0.002 <0.001
Variance (laplacian) | 1282.119 (664.836) | 1087.968 (754.599) 0.077 0.002
Skewness (dx) 2.479 (0.509) 2.750 (0.702) 0.006 <0.001
Skewness (dy) 2.897 (0.632) 3.003 (0.723) 0.109 0.193
Skewness (laplacian) 3.317 (0.910) 3.615(1.117) 0.067 0.014
Kurtosis (dx) 6.222 (5.045) 7.661 (4.475) 0.013 <0.001
Kurtosis (dy) 8.376 (4.932) 8.969 (4.989) 0.1 0.170
Kurtosis (laplacian) 11.243 (8.041) 13.757 (9.734) 0.035 0.017
NPWNZG (dx) 0.952 (0.007) 0.948 (0.011) 0.011 0.001
NPWNZG (dy) 0.947 (0.010) 0.944 (0.012) 0.087 0.079
NPWNZG (laplacian) 0.969 (0.016) 0.963 (0.021) 0.035 0.011
GLCM
Dissimilarity 5.709 (1.660) 5.161 (1.942) 0.033 0.007
Correlation 0.934 (0.032) 0.939 (0.039) 0.009 0.126
Contrast 64.433 (33.868) 55.212 (36.585) 0.077 0.006
Homogeneity 0.188 (0.060) 0.214 (0.085) 0.037 0.011
ASM 0.001 (<0.001) 0.001 (0.001) 0.012 <0.001
Energy 0.030 (0.006) 0.033 (0.010) 0.006 <0.001
Histogram
Mean 162.181 (25.766) 171.263 (32.240) 0.019 <0.001
Variance 565.147 (241.371) | 545.445 (363.842) 0.333 0.02
Skewness 2.006 (3.548) 2.606 (2.318) 0.005 <0.001
Kurtosis 1.643 (0.543) 1.837 (0.547) 0.003 <0.001
Fractal Dimension
FD_ver_scale 1 2.805 (0.162) 2.790 (0.167) 0.044 0.07
FD_ver_scale 2 2.635 (0.293) 2.643 (0.290) 0.003 0.29
FD_hor_scale 1 2.736 (0.124) 2.735 (0.138) 0.814 <0.001
FD_hor_scale 2 2.781 (0.240) 2.655 (0.245) <0.001 0.36

3.2. Differences Between Subject Groups

Results of Mann-Whitney U test employed as the second part of statistical analysis,
show that subjects with BMLs at medial tibia have significant differences compared to

subjects with no-BML and subjects with no-BML at medial tibia (group 1 vs. group2
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Table 6. Comparison of subchondral bone textural features between subjects with and
without osteoarthritis (OA). Considered subjects did not have bone marrow lesions
(BML) (group 2). Values are: columns 2 and 3 - mean (standard deviation), columns 4
and 5 - p value of Fisher Exact Test and Mann-Whitney U Test, respectively. NPWNZG
- number of pixels withnon-zero gradient, GLCM - gray-level co-ocurrence matrix,
ASM - angular second momentum, FD - fractal dimension.

Feature No OA (SD) OA (SD) p value | p value
Fisher test | U-test
Absolute Gradient
Mean (dx) 21.249 (6.826) 20.439 (7.147) 0.552 0.130
Mean (dy) 19.025 (6.476) 18.327 (6.481) 0.424 0.143
Mean (laplacian) 0.358 (0.383) 0.310 (0.336) 0.552 0.164
Variance (dx) 356.374 (230.006) | 360.026 (248.889) 0.553 0.426
Variance (dy) 436.981 (305.398) | 377.114 (256.499) 0.037 0.040
Variance (laplacian) | 1307.654 (928.381) | 1159.486 (709.565) 0.766 0.042
Skewness (dx) 2.482 (0.441) 2.630 (0.654) 0.096 0.011
Skewness (dy) 2.917 (0.631) 2.990 (0.796) 0.532 0.378
Skewness (laplacian) 3.356 (0.960) 3.531(1.159) 0.168 0.084
Kurtosis (dx) 5.948 (2.217) 7.118 (6.703) 0.091 0.003
Kurtosis (dy) 8.427 (4.113) 9.251 (7.856) 0.519 0.351
Kurtosis (laplacian) 11.472 (7.930) 13.306 (12.544) 0.195 0.100
NPWNZG (dx) 0.952 (0.007) 0.950 (0.011) 0.049 0.021
NPWNZG (dy) 0.947 (0.010) 0.945 (0.014) 0.526 0.258
NPWNZG (laplacian) 0.968 (0.017) 0.965 (0.020) 0.333 0.150
GLCM
Dissimilarity 5.672 (1.860) 5.441 (1.877) 0.920 0.125
Correlation 0.943 (0.036) 0.944 (0.033) 0.553 0.472
Contrast 65.166 (39.418) 60.483 (35.927) 0.844 0.139
Homogeneity 0.192 (0.065) 0.202 (0.073) 0.170 0.110
ASM 0.001 (0.001) 0.001 (0.001) 0.261 0.013
Energy 0.029 (0.006) 0.031 (0.011) 0.268 0.012
Histogram
Mean 157.163 (32.089) 155.844 (33.439) 0.839 0.32
Variance 663.593 (338.154) | 619.970 (296.530) 0.316 0.09
Skewness 1.262 (2.785) 3.087 (15.028) 0.008 <0.001
Kurtosis 1.470 (0.505) 1.713 (1.026) 0.022 <0.001
Fractal Dimension
FD_ver_scale 1 2.808 (0.178) 2.787 (0.163) 0.165 0.02
FD_ver_scale 2 2.583 (0.304) 2.611 (0.283) 0.116 0.49
FD_hor_scale 1 2.718 (0.119) 2.715(0.119) 0.921 0.49
FD_hor_scale 2 2.750 (0.261) 2.711 (0.246) 0.322 <0.001

and group 1 vs. group 3). Subjects with BMLs at medial tibia and with no-BML (group
1 vs. group 2) have significant differences in 18 textural features. Likewise, 15 textural
features were significantly different between subjects with BMLs at medial tibia and
subjects with no-BML at medial tibia (group 1 vs. group 3). On the other hand, among
subjects with no-BML and with no-BML at medial tibia (group 2 vs. group 3), there
were almost no significant differences (see Table 9).
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Table 7. Comparison of subchondral bone textural features between subjects with
and without osteoarthritis (OA). All considered subjects have no bone marrow lesions
(BML) in medial tibia (group 3). Values are: columns 2 and 3 - mean (standard
deviation), columns 4 and 5 - p value of Fisher§ Exact Test and Mann-Whitney U Test,
respectively. NPWNZG - number of pixels withnon-zero gradient, GLCM - gray-level
co-ocurrence matrix, ASM - angular second momentum, FD - fractal dimension

Feature No OA (SD) OA (SD) p value | p value
Fisher test | U-test
Absolute Gradient
Mean (dx) 20.641 (7.147) 20.665 (7.089) 0.931 0.393
Mean (dy) 18.564 (6.554) 19.212 (6.768) 0.605 0.113
Mean (laplacian) 0.314 (0.383) 0.365 (0.363) 0.069 0.049
Variance (dx) 342.595 (259.576) | 369.441 (250.877) 0.083 0.076
Variance (dy) 427.671 (311.507) | 451.898 (324.499) 0.728 0.204
Variance (laplacian) | 1260.873 (889.004) | 1213.507 (757.679) 0.730 0.477
Skewness (dx) 2.548 (0.543) 2.598 (0.550) 0.659 0.150
Skewness (dy) 2.997 (0.714) 2.952 (0.664) 0.719 0.188
Skewness (laplacian) 3.425 (1.024) 3.437 (0.974) 1.000 0.452
Kurtosis (dx) 6.435 (4.738) 6.680 (3.455) 0.464 0.138
Kurtosis (dy) 9.105 (6.351) 8.790 (4.739) 0.854 0.267
Kurtosis (laplacian) 12.163 (10.122) 12.161 (8.615) 1.000 0.444
NPWNZG(dx) 0.951 (0.009) 0.950 (0.009) 0.536 0.309
NPWNZG (dy) 0.945 (0.012) 0.946 (0.011) 0.719 0.229
NPWNZG (laplacian) 0.967 (0.018) 0.966 (0.017) 0.716 0.440
GLCM
Dissimilarity 5.530(1.910) 5.593 (1.888) 0.795 0.249
Correlation 0.944 (0.032) 0.937 (0.037) 0.342 0.019
Contrast 62.968 (40.987) 65.225 (39.887) 0.491 0.177
Homogeneity 0.198 (0.067) 0.198 (0.068) 0.589 0.409
ASM 0.001 (0.001) 0.001 (0.001) 0.319 0.060
Energy 0.030 (0.009) 0.031 (0.008) 0.082 0.059
Histogram
Mean 153.652 (33.353) 154.764 (33.553) 0.598 0.32
Variance 640.251 (328.289) | 601.498 (323.116) 0.428 0.09
Skewness 2.518 (11.778) 2.549 (5.078) <0.001 <0.001
Kurtosis 1.622 (0.875) 1.754 (0.633) <0.001 <0.001
Fractal Dimension
FD_ver_scale 1 2.808 (0.178) 2.787 (0.163) 0.165 0.03
FD_ver_scale 2 2.583 (0.304) 2.611 (0.283) 0.116 <0.001
FD_ver_scale 1 2.808 (0.178) 2.787 (0.163) 0.165 0.01
FD_ver_scale 2 2.583 (0.304) 2.611 (0.283) 0.116 0.1

From another perspective, subjects across the groups can be compared in terms
of the number of features which have significant differences between OA and non
OA subjects. To elaborate more, 19 textural features from subjects with BMLs in
medial tibia (group 1) were significantly different between OA and non OA while this
number for subjects without BMLs (group2) and subjects without BMLs in medial
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tibia (group3), were 4 and 2, respectively. Similarly, subjects with medial tibia BMLs
(group 1) have relatively higher OR values than the other groups. In nearly all features,
OR values for subjects with BMLs were higher that 1.5 while for subjects with no
BMLs (group 2) and subjects with no BMLs at medial tibia (group 3) were almost
below 1.5. To clarify more, the mean and standard deviation of each feature from
both OA and No OA subjects in all groups are shown via error bar charts. Significant
differences between OA and no OA subjects are specified with star (see Figure 14 and
Figure 15).
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Table 8. Odds Ratio (OR) for each subject group was computed from binary
classification based (OA vs. non OA defined by Kellgren and Lawrence (KL) system).
Columns 2: OR of subjects with BMLs in medial tibia (group 1), columns 3: subjects
with no BMLs (group 2) and columns 4: subjects with no BMLs in medial tibia (group
3), respectively.

Feature Group 1 | Group 2 | Group 3
Absolute Gradient

Mean (dx) 1.610 1.143 0.977
Mean (dy) 1.670 1.173 0.910
Mean (laplacian) 1.949 1.138 1.381
Variance (dx) 1.112 0.885 1.359
Variance (dy) 2.118 1.529 1.078
Variance (laplacian) 1.548 1.066 0.937
Skewness (dx) 2.061 1.425 1.084
Skewness (dy) 1.553 1.136 0.929
Skewness (laplacian) 1.633 1.347 1.017
Kurtosis (dx) 2.004 1.417 1.155
Kurtosis (dy) 1.591 1.150 0.955
Kurtosis (laplacian) 1.766 1.326 0.996
NPWNZG(dx) 1.940 1.496 1.119
NPWNZG (dy) 1.566 1.143 0.921
NPWNZG (laplacian) | 1.781 1.247 1.073
GLCM

dissimilarity 1.697 1.022 1.054
correlation 1.916 1.135 1.179
contrast 1.528 1.044 1.133
homogeneity 1.750 1.346 1.122
ASM 1.924 1.272 1.220
energy 1.990 1.268 1.362
Histogram

Mean 1.766 1.055 0.899
Variance 1.270 1.246 1.161
Skewness 1.996 1.698 2.552
Kurtosis 2.044 1.582 2.023
Fractal Dimension

FD_hor_scale 1 1.078 0.970 1.282
FD hor_scale 2 3.988 1.239 0.933
FD_ver_scale 1 1.670 1.594 1.293
FD_ver_scale 2 4.123 0.692 1.667




36

=== No OA == No OA
= with OA | 30 = with OA
151 " «
i 1
10 20
01 0
Grohp | Grohp 1l Grodp 1 Grohp | Grohp 1l Groﬁp 11l
Kurtosis (dx) Kurtosis (laplacian)
(@) (b)
30 === No OA 1.001 === No OA
. = with OA |—| = with OA
[ 0.99+
251
0.981
20 0.97
0.961
151
0.951
10 0.941
Group | Group |l Group I Group | Group Il Group Il
Mean (dy) Npwzg (laplacian)
(© (d)
4.0
mmm No OA
* m with OA
35{ "]
3.0
2.5
2.0
Group | Group Il Group Il

Skewness (dx)

(e)

Figure 14. Mean and 95% confidence intervals of gradient-based features. Computed
in relation to OA/non-OA and for each subject group independently. group 1: subjects
with BMLs in medial tibia. group 2: subjects without BMLs. group 3: subjects without

BMLs in medial tibia (group3). * p < 0.05
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Figure 15. Mean and 95% confidence intervals of GLCM-based features. Computed
in relation to OA/non-OA and for each subject group independently. group 1: subjects
with BMLs in medial tibia. group 2: subjects without BMLs. group 3: subjects without
BMLs in medial tibia. * p < 0.05
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Figure 16. Comparison of odds ratio (OR) obtained from binary classification (OA
vs. non OA) between gray-level co-occurrence matrix (GLCM) features of group 1
(subjects with bone marrow lesions (BML) in medial tibia), group 2 (subjects without
BMLs), and group 3 (subjects without BMLs in medial tibia)
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Figure 17. Comparison of odds ratio (OR) obtained from binary classification (OA
vs. non OA) between absolute gradient features of group 1 (subjects with BMLs in
medial tibia), group 2 (subjects without BMLs), and group 3 (subjects without BMLs
in medial tibia)
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Figure 18. Comparison of odds ratio (OR) obtained from binary classification (OA vs.
non OA) between histogram features of group 1 (subjects with BMLs in medial tibia),
group 2 (subjects without BMLs), and group 3 (subjects without BMLs in medial tibia)
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Figure 19. Comparison of odds ratio (OR) obtained from binary classification (OA vs.
non OA) between fractal dimension (FD) features of group 1 (subjects with BMLs in
medial tibia), group 2 (subjects without BMLs), and group 3 (subjects without BMLs
in medial tibia)



42

Table 9. p values of Mann-Whitney U Test for each textural feature among subjects
with BML at medial tibia (group 1), subjects without BML (group 2) and subjects
without BMLs at medial tibia (group 3)

Mann-Whitney U Test

Feature p (Group 1 | p(Group1 | p (Group 2
vs. Group 2) | vs. Group 3) | vs. Group 3)

Absolute Gradient
Mean(dx) 0.005 0.103 0.100
Mean(dy) <0.001 <0.001 0.383
Mean(laplacian) <0.001 <0.001 0.337
Variance(dx) 0.474 0.359 0.369
Variance(dy) <0.001 <0.001 0.297
Variance(laplacian) <0.001 0.001 0.151
Skewness(dx) <0.001 0.002 0.016
Skewness(dy) 0.090 0.405 0.136
Skewness(laplacian) <0.001 0.005 0.118
Kurtosis(dx) <0.001 0.001 0.039
Kurtosis(dy) 0.194 0.241 0.050
Kurtosis(laplacian) <0.001 0.004 0.119
NPWNZG(dx) <0.001 0.005 0.116
NPWNZG(dy) 0.007 0.070 0.185
NPWNZG(laplacian) <0.001 0.018 0.117
GLCM
Dissimilarity <0.001 0.001 0.290
Correlation 0.009 0.386 0.016
Contrast <0.001 <0.001 0.483
Homogeneity <0.001 0.008 0.121
ASM? <0.001 <0.001 0.001
Energy <0.001 <0.001 0.001
Histogram
Mean <0.001 <0.001 0.07
Variance <0.001 <0.001 <0.001
Skewness <0.001 <0.001 <0.001
Kurtosis <0.001 <0.001 <0.001
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4. DISCUSSION

In this work, we analysed subchondral bone texture from 2-D plain radiographs
in order to investigate the association of BMLs with OA diagnosis. Our findings
demonstrate that the presence of BMLs can lead to significant changes at subchondral
texture. Moreover, it may cause significant textural differences between OA and non
OA subjects. Besides, our results indicated that BMLs may be locally associated
with textural changes of subchondral bone. Meaning that the presences of BMLs in
particular sub-regions probably cannot affect bone texture in other sub-regions in tibia
(or femur).

There were no sufficient evidence to imply that alterations of subchondral bone
structure observed in radiographic images directly arose from BMLs. However, recent
studies indicated that subchondral bone textures are different between subjects with
and without BMLs from plain radiographs and MR images [62, 58]. It means that the
presence of BMLs as well as the presence of OA, is associated with textural changes in
subchondral bone [60]. Nevertheless, the effect of BMLs on knee OA diagnosis based
on the subchondral bone texture, has not been fully investigated yet.

We discovered that individuals with and without OA have the most significant
differences in the textural features when they have BMLs in medial tibia (see Figure
14 and Figure 15). Possible explanation is that by taking BMLs into account,
textural changes in subchondral bone between subjects with and without OA became
more visible or distinguishable and this will help diagnosing knee OA from plain
radiographs. Additionally, there are no noticeable differences in subchondral bone
texture between subjects without BMLs and subjects without BMLs in medial tibia.
The number of features which have significant differences between OA and non OA
in both groups were considerably low compared to the subjects with BMLs in medial
tibia. Comparisons between these two groups can raise a question of whether location
of BMLs is an influential factor that should be considered in texture analysis of
subchondral bone in OA studies. Subjects with no-BML at medial tibia included
individuals whom have BMLs in sub-spinous or lateral sub-regions of tibia. One
interpretation is that the presence of BML in each sub-region may presumably effects
on textural features in the same sub-regions. Otherwise, these two groups would have
achieved more significant differences in textural features than subjects with no-BML.
Nevertheless, further study needs to be done to support this hypothesis. In fact, since
we consider binary BML score for this work, the chances might be high that one group
might have higher BML scores than the other groups. Thus, the reliability of statistical

analysis results will be enhanced if we consider multi-score BMLs instead of binary.



44

In this study, we showed that features from GLCM, absolute gradient, and FD
were able to distinguish the differences between these subject groups but histogram
features had less significant differences between OA and non OA compared to other
descriptors. Merely mean and variance out of total 4 features from histogram showed
differences between the groups. On the contrary, GLCM for group 1 had 5 features
(of total 6 features) had significant differences among OA and non OA while it failed
to distinguish OA and non OA subjects for group 2 and group 3. This reveals that
GLCM is able to catch textural differences between OA and non OA subjects when
the differences are associated with BMLs. After GLCM, absolute gradient and FD
features had the best performance in differentiation of subjects with OA and without
OA.

One and probably the most important limitation of our study is that the subject
groups were not adjusted for KL grade, gender, age, and body mass index. Adjusting
such terms among subjects could establish more fair comparisons. Aside from that,
the number of subjects were different between groups and also the ratio between OA
and no OA classes were not same for all groups. Although we used the tests which are
designed for imbalanced data, these unadjusted terms may have potential to change the
results.

In future studies, employing same statistical analysis on MR images can be
studied. Although, this suggestion seems convenient and straightforward, it has major
challenges that we did not undergo in this thesis. For instance, it should be considered
how to deal with the location of BMLs in MR images when using 2-D slices. In
addition, automation of ROI extraction from MR images should be considered since
it can bypass the time-consuming procedure of manual segmentation or annotation.
Another future work can have one or multiple MOAKS features in textural analysis
unlike this thesis which used only BML. In section 1.6, we have mentioned two papers
[62, 58] that their findings indicated the effect of cartilage damage, besides BMLs, on
subchondral bone texture. Perhaps, taking other features into account give us more
understanding of subchondral bone alternation and its relation to OA.

In conclusion, we analysed textural features of subchondral bone for OA diagnosis
and our results suggested that presence of BMLs can create detectable textural
differences in subchondral bone between subjects with and without OA. However,
it is crucial to consider the location of BMLs as well as its presence. Meaning that
textural differences in medial tibia between OA and non-OA can be identified only
when medial tibia has non-zero BML scores. In other words, having BMLs in other
sub-regions may not effect on subchondral bone texture among OA and non-OA joints.

All codes used in this thesis will be published on the research unit’s GitHub page
(https://github.com/akazemtarghi/OABML.git).


https://github.com/akazemtarghi/OABML.git
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6. APPENDIX A

6.1. Sub-Study Overview

In the following, the second sub-study is described. The aim of this sub-study is to
investigate whether our convolutional neural network (CNN) model is able to detect
OA by using subchondral bone texture when subjects have no bone marrow lesions
(BML). In the first section, we described our subject selection. Then preprocessing
methods were explained. Subsequently, information related to implementation and our

proposed CNN network was provided. At the end, the results were reported.

6.2. Subject Selection

Study Subjects for MR images: We selected the subjects who had available SAG 3D
DESS WE sequence besides plain radiography with no BML (0 BML score according
to MRI osteoarthritis knee score (MOAKYS)) in both femur and tibia at the baseline.
Subjects with missing assessment information were excluded. After exclusions, there
were 658 images from 613 subjects (some subjects have two images from the both
knees). Among them, 123 and 535 images were with and without OA, respectively.
In order to have more balance data set, we randomly eliminated nearly half of images
without OA. Finally, we had 250 images without OA and 123 with OA (see Figure
A.l).

6.3. Preprocessing of 3-D DESS MR Images

Preprocessing steps for MRI data are 1) selection of the most central coronal slice
for each subject 2) manual annotation of the bone contour and 3) extracting the ROI
(Figure A.2).

1. Slice Selection: slices which show the most central part of the tibia and femur
were selected. Manual selection was adopted because the most central slice of
each subject was different compared to others. Since, in sagittal view, femur
and tibia are not aligned vertically, we select two slices, one for central tibia
and another for central femur. The choosing the central slice of each bone was
challenging due to different shape of these bones from a subject to another.

For manual selection of central slice, We used medical image viewer named
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Subject Exclusi J *  Checking the availability of X-Rays and 3D DESS I
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* Knees with no BML (n=658)
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Figure A.1. The flow-gram of subject selection for deep learning-based study

The Medical Imaging Interaction Toolkit (MITK) developed by German Cancer
Research Center, Heidelberg, Germany [76].

. Manual Annotation: For landmark annotation, VGG Image Annotator
developed by Department of Engineering Science, University of Oxford,
England, was used [77, 78]. Annotation was performed according to BoneFinder
landmarks for plain radiographs in which 18 from total landmarks for tibia were
chosen (see Figure A.3).

. ROI Extraction: The marginal ROI could not be used for MR images
considering the fact that extracted ROIs most likely might contain soft tissues.

Therefore, for MR images, we selected the standard ROI patches used in several
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OA studies [59, 79, 62, 80, 81, 58]. In this ROI selection method, square patches
with sizes proportional to the width between marginal medial tibia point and the

centre of the medial condyle were localized beneath the tibial plateau (see Figure

A.4). Same ROI was used for plain radiographs

Slice Manual ROI
Selection Annotation Extraction

Figure A.2. The pipeline of magnetic resonance imaging (MRI) data preprocessing.
The first step was selecting the most central slice, then annotating the landmarks and
in the last step, region of interest (ROI) in medial tibia was extracted

6.4. CNN Architecture and Implementation

Network: In this study, deep CNN models are used to extract textural features. Our
proposed network contains four convolutional layers followed by one fully connected

layer (see Figure A.5). We considered a small architecture with minimal layers.
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Figure A.3. One example of annotated MR image. 18 landmarks were selected on the
edge of tibia. The annotation was perfromed by VGG Image Annotator [77, 78].

The network uses a stack of 3x3 convolutional filters. Each of them is followed by
hyperbolic tangent (tanh) as a non-linear activation function. In the second layer,
we used 3x3 max-pooling with a convolution stride of 2 where each one reduced
computations. Last layer of our network contains two fully connected with two tanh
activation function and two outputs OA and non OA. For regularisation, one dropout
layer with ratio of 0.25 was used to avoid over-fitting.

Implementation: The sizes of our input imageswere not fixed since the standard
ROIs was proportional to the size of the bone. Re-scaling the images to the same size
could lead to the distortion of the subchondral bone textures. Instead, we selected
fixed-size square from the centre of the ROIs to maintain the original textures. Fixed
patches from input images were cropped and considered as the new inputs.

The dataset was divided into training, validation and testing parts with a rate of
14:3:3 (70 % , 15 % , 15 % ). In order to implement binary classification, the data
were categorised to OA (with KL grade of 1 and 2) and non OA (with KL grade of 2,
3, 4) classes. In our experiments, we used stochastic gradient descent optimiser and a
cross-entropy loss function. We optimised the network with the fixed learning rate of

le3.
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Figure A.4. Region of interest (ROI) used for MR images. The size of ROI is
proportional to the size of the bone (the width between margin of tibia point and the
centre of the medial condyle)

A stratified 5-fold cross-validation based on the number of labels (OA and non OA)
was applied in order to obtain better analysis over the training dataset since it provides
a range of results across the dataset. In stratified K-fold cross-validation, the training
data is divided into K equal segments but the ratio of samples from each class is
preserved in each segment. Then K-1 segments are trained and the remaining one
is considered as the predictive performance which is, in other words, the expected loss
on unseen future data. This process happens K times, using different test partitions.
The results would be the average of outputs of all folds.

The area under the receiver operating characteristic curve (AUC-ROC) which is also
called c-index and normalised confusion matrix was chosen as assessment tools of
our algorithm performance. It is a common and effective method for evaluating the
performance of the classification learning algorithm since ROC is representing the

probability curve and AUC is a measure of separability.
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Fcs, drop Fc6,
3136x1024 out 1024x1024
No OA

Figure A.5. The convolutional neural networks (CNN) architecture composing 6
layers, 4 convolutional followed by two fully connected layer. The kernel size of
convolutional filter is 3x3.

6.5. Results

We present ROC AUC values and confusion matrices of binary classification from
MR images and plain radiographs (Figure A.6). According to confusion matrix, all
subjects were wrongly predicted as non OA subjects. One explanation can be the
textual features might be not robust enough to discriminate the OA and non OA
subjects. This hypothesis can be supported by ROC AUC which show that the model
was failed to learn the textural features between the non OA subjects from OA subjects.
Although variety of regularisation methods were used in order to avoid overfitting, the
performance of the model did not improve.

Before experiment, we expected that the model for plain radiographs would have
better performance than MRI because plain radiograph is a projection image of 3-D
object and contain much more structures than single slice of MR image. However,
the results from both modalities are almost similar. No differences between results of
MRI and plain radiography raise a question of whether textural features between OA
and non OA subjects who have no BMLs, are significantly discriminant. However, it
should be noted that limitations such as the low number of data (373 knee images) may

have potential to affect the results.
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Figure A.6. Confusion matrix and Area Under the Receiver Operating Characteristic
curve (AUC ROC) from binary classification. Results from MRI data (a) and (b), and

from plain radio graphs (c) and (d).
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