
Decision criteria between microservice and

monolithic architecture

University of Oulu
Department of Information Processing
Science
Niklas Menard
03.09.2020

2

Abstract

In the contemporary software market companies face a challenge of continuously
developing and delivering their products quickly. To answer this challenge the correct
software architecture must be chosen. The conservative approach is a monolithic
architecture, where all the code base is in a single unit. This approach offers simplicity
and rapid initial deployment but faces challenges when companies need to scale their
software. A more novel approach is a microservice architecture, which was enabled by
the growth of cloud infrastructure. This architecture offers higher scalability and
autonomy but brings with it a higher level of complexity.

In this study I conducted a literature review to examine both architectures to understand
the advantages and disadvantages of both approaches. The intent was to get a clear
understanding of the underlying criteria that companies need to consider when making
an architectural related decision. The current literature revealed that the advantages and
disadvantages of both architectures are quite well known, but there is ambiguity
regarding the criteria that is outside of the functional requirements discovered during the
design phase. This study offers a baseline to further study decision criteria regarding
monolithic and microservice cloud-based applications. Further studies can be done to
further examine the criteria on a more detailed and practical level.

Keywords
software architecture, microservice architecture, monolithic architecture, DevOps

3

Contents

1. Introduction .. 4
2. Terminology ... 5

2.1 Software and service-oriented architecture .. 5
2.2 Microservice and monolith architecture .. 5
2.3 DevOps .. 5

3. Research methods ... 6
4. Prior research .. 7

4.1 Software Engineering .. 8
4.2 Software architecture ... 8

4.2.1 Software architecture decision making process.. 9
4.3 Microservice design approach ... 10

4.3.1 Advantages of a microservice design ... 11
4.3.2 Disadvantages of a microservice design ... 12

4.4 Monolithic design approach ... 12
4.4.1 Advantages of a monolithic design .. 12
4.4.2 Disadvantages of a monolithic design .. 13

4.5 Deciding between a monolithic and microservice approach 13
4.5.1 Migration experiences .. 13
4.5.2 Industry feedback ... 14
4.5.3 Cost and performance ... 14
4.5.4 Decision criteria .. 15

5. Findings and implications .. 17
5.1 Contributions ... 19
5.2 Limitations ... 19
5.3 Future research ... 19

6. Conclusions .. 20
References ... 21
Appendix A. Structure for the research plan
Appendix B. Reference chart

4

1. Introduction

This literature review focuses on the microservice software architecture and how it
compares to the traditional monolithic approach. We will first examine on a general
level what software engineering and what a software architecture is and then delve into
the details of a microservice architecture as well as a monolithic architecture. We will
compare the strengths and weaknesses of both approaches. The goal is to get an
understanding of the criteria on which architecture to use in different situations. The
research method used is literature review, in which we summarize the previous research
on the topic and deduct commonalities and principles.

The topic is current and important as more and more companies are trying to answer the
market demand for quick product delivery, something that microservice applications
can possibly deliver. As the research shows there are specific situations when to use
either software architecture. The microservice architecture is complex to execute and
can possibly create more issues than it can solve. The monolithic approach is simpler to
implement but will be complex to scale. Choosing the right architecture can save
companies a lot of time and resources.

The outcome of this review is a set of criteria that should be taken account when
deciding related to the software architecture being chosen. The criteria are presented on
a general level. One option for future studies is to delve into the details of the criteria
and examine what they mean on a practical level. The goal is to create a set of
guidelines that could help with the software architecture decision making process.

The motivation for the study was to get a better understanding of the contemporary
software architectures of modern cloud-based applications. The challenge of designing
software before implementing them is very interesting to me as it makes the whole
process a lot simpler when you have a roadmap to follow. The decision to switch
architectures is not a light one for companies so creating a decision framework would be
very beneficial for the process.

The structure of the study is the following: examine the relevant terminology, view
research methods, explore the prior research, and finally findings, implications, and
conclusions.

5

2. Terminology

In this chapter we will briefly go over the relevant vocabulary that is related to the
study. The goal is to give a quick overview of the relevant concepts and the larger
concepts will be examined in detail further on in the study. The relevant vocabulary and
concepts related to this study are as follows: software architecture, service-oriented
architecture, ESB, microservice architecture, monolithic architecture, and DevOps.

2.1 Software and service-oriented architecture

Software architecture can be described as a macro level blueprint of how the different
components of the program will be organized within the system, how they interact with
each other and how the environment affects their design and evolution (P. Eeles, 2006).
Service-oriented architecture is a software architecture where the purpose is to increase
usability of software components by separating them into services that offer
functionality through commonly used communication standards. The architecture makes
us of an ESB or enterprise service bus, which is a centralized component that executes
the integration to backend systems and forms service interfaces out of them. (IBM,
2019.)

2.2 Microservice and monolith architecture

Microservice architecture is a cloud native architecture where the application is split up
into services that each have their own stack and they communicate with other services
through REST APIs. The services are divided according to business capabilities. (IBM
Cloud Education, 2019.) The main difference between a microservice architecture and
service oriented architecture is the scope of the architecture and use of an ESB. Service
oriented architecture is an enterprise level architecture while microservice architecture
is an application level architecture. Microservice architectures generally do not utilize
ESBs as they restrict the autonomy of the services by creating a bottleneck that all
services must adhere to. (IBM, 2019.) Monolith architecture is a software architecture in
which the whole application is located in a single codebase. The application can consist
of different component that are all deployed and scaled as one unit. (Esposito,
Castiglione, & Choo, 2016.)

2.3 DevOps

DevOps is derived from the words “development” and “operations. In practical terms it
is a series of operations that aim to make the development and release of software
quicker by utilizing automation as well as integration. It builds on previously
established lean and agile practices. (Ebert, Gallardo, Hernantes, & Serrano, 2016.)

6

3. Research methods

The research method used in this study is a literature review. A literature review
consists of gathering information related to a specific subject from books, articles,
scholarly articles, or any other reliable sources. The goal is to create a description of the
issue, summarize it and examine it critically by comparing sources to each other. During
the process, each source should be examined according to the research problem that has
been formulated. (Grant & Booth, 2009.) The purpose of a literature review is to
determine how your own research fits the existing literature, provide an overview of
essential concepts, examine possible conflicts between sources, find new interpretations
of prior studies, identify possible research gaps and present the theoretical background
for what has already been established (A. Fink, 2020).

In this study we gathered literature from several peer-reviewed literature databases
including Scopus, EBSCOhost, and Google Scholar. The validity of sources was
verified by checking the reliability of the publication from Finnish Publication forum.
The search was limited to the architectural level of applications. The search in the
databases included phrases like: “Software AND Architecture”, “monolith AND
architecture”, “DevOps” and “Service AND Oriented AND Architecture”. The gathered
literature covered the topic from a variety of different angles and produced an overview
of the relevant information. Some of the definitions for terms used throughout the paper
were found from non-academic but otherwise trustworthy sources (e.g. IBM).

An important note is that the software industry is further ahead than the academic world
when it comes to microservices. A lot of the literature mentioned that there is still a lot
research to be done to establish the theory in an academic sense. The most current
information came from studies that were either based on quantitative questionnaires or
benchmarking techniques.

7

4. Prior research

Before we can examine the criteria that should be considered when choosing between
an microservice or monolithic approach, we must first explain briefly what software
engineering and architecture means. After we have examined the basic concepts of
software engineering and architecture, we will delve into the central concepts of the
microservice design approach as well as its counterpart the monolithic approach. We
will then examine the ways both approaches can be evaluated and then compare the
strengths and weaknesses of each approach. The goal is to get a clear picture of when to
use either approach as well as list the criteria that this decision should be based on.

To briefly summarise the most relevant literature related to the research are the
following:

• Aderaldo et al., (2017) give an overview of the microservice research and
examine the benchmark requirements to accurately measure microservice
applications for academic purposes (Aderaldo, Mendonça, Pahl, & Jamshidi,
2017).

• Jamshidi et al., (2018) explain the developmental stages microservices have
gone through and what the challenges are in the future (Jamshidi, Pahl,
Mendonca, Lewis, & Tilkov, 2018).

• Lewis and Fowler (2014) give a theoretical overview of the central concepts
related to microservices and how it compares to monolithic architecture (Martin
Fowler & James Lewis, 2014).

• Villamizar et al., (2015, 2016, 2017) examines the strengths and weaknesses of
the microservice and monolithic architecture through benchmarking cloud based
applications (Villamizar et al., 2015; Villamizar et al., 2016; Villamizar et al.,
2017).

• Soldani et al., (2018) review industry pain points in their literature research
related to microservices (Soldani, Tamburri, & Van Den Heuvel, W. -J., 2018) .

• Taibi, Lenarduzzi and Pahl (2017) conducted an empirical investigation in the
motivations, issues and processes related to microservice architecture migrations
(Taibi, Lenarduzzi, & Pahl, 2017).

• Balalaie, Heydarnoori and Jamshidi (2016) and Di Francesco, Lago and
Malavolta (2018) give an overview of the challenges faced during an application
migration process to an microservice architecture (Balalaie A., Heydarnoori A.,
Jamshidi P., 2016; Di Francesco P., Lago P., Malavolta I., 2018).

Other literature is related to central concepts and their purpose is to give a wider
perspective on the topic as well as a varied view.

8

4.1 Software Engineering

Pressman describes software engineering as a process of implementing a systematic
engineering approach to the development of software with an emphasis on quality. The
process itself is not a strict ruling of how to execute various software building tasks but
rather a general approach that people working on the project agree upon. Processes are a
collection of operations that need to be completed to achieve a certain task. On a general
level software engineering processes are built on foundational frameworks that establish
five activities: communication, planning, modelling, construction, and deployment.
(Pressman, 2010.)

Communications activities are crucial for determining the direction that the overall
project or the next development step should be taking. Communication activities
encompass all the correspondence that occurs between the development team and the
customer as well as other stakeholders. Planning activities create a blueprint or a
software project plan for the actions that must be executed to reach the functionality that
has been plotted. A software project plan imparts the technical tasks, risks, resources
required and the work schedule that is related to the developmental tasks of the project.
Modelling activities revolve around creating understandable visual models to
understand how the requirements of the software are met by the design of the software.
Construction activities are the execution of the design or in other words writing code
that reflects the design that has been laid out beforehand. Deployment activities are
implemented once the software product or partial iteration has been completed and the
results can be returned to the customer for further review. (Pressman, 2010.)

Software engineering activities are executed in small or large projects, and often
iteratively throughout the project. The goal is to create a small tested iteration that when
approved by the customer becomes a small part and progression of the larger software
project. In addition to the previously stated activities there are several complementary
umbrella activities that are executed to help and control progress, quality, change and
risk. These umbrella activities are for example risk management, technical reviews,
reusability management and measurements. (Pressman, 2010.)

It is important to note the several external or internal factors that affect the software
design process, including social, organizational, economic and political factors. All of
these factors create constraints on how the software can be developed and they cannot
be overlooked. After all it is a team of people who develop the software and it is crucial
that everybody understands the common goal and what is their role in the development
process. (Budgen, 2003.)

Some activities are more emphasized at different phases of the project and some are
crucial throughout the project. For example, maintaining clear communications is
important throughout the project but certain planning related tasks are more crucial at
the beginning of the project. One of these planning and modelling related tasks is
forming and designing the architecture of the software. (Pressman, 2010.)

4.2 Software architecture

In the 1980s software systems were running on a single computer or mainframe and
their architecture was contained within those systems. During this time software
architecture was not a developed discipline but it slowly started to take form when the
concept of encapsulation and modularization was introduced to structural programming
design techniques. The need for large scale software and the complexity that distributed
systems introduced helped to evolve the idea of software architecture. (Woods, 2016.)

9

Software architecture is a way to answer the technical needs of a software application
by creating a structured solution and blueprint. To start creating a structured solution it
is crucial to understand the underlying requirements of the application, how those
requirements shape into software elements, how those elements interact with each other
and how the overall design can be implemented. This is not always a simple task as
there are a multitude of ways perceive these requirements and designing them into
functional solutions. (Wolf & Perry, 1992.) It is important to differentiate software
architecture from software design as architecture is concerned more with the higher-
level structures and the underlying relationships. Architecture involves the
organizational, business and quality attributes, while software design mainly focuses on
the technical modules and how to organize the code within them. Broadly speaking
architecture involves the entire system and design is centred around the details. (Pillai,
2017.)

Wolf & Perry (1992) explain that after the requirements of the application have been
understood, the next step is to create a logical model of the solution. The software
architecture model can be imagined containing the following three parts: elements,
form, and rationale. The elements can be further deconstructed into three subclasses:
processing elements, data elements and connecting elements. Processing elements are
the components that execute processing functions, the data elements store the data and
connecting elements work as the glue elements of the application. Form of the
architecture model dictates the importance of properties and relationships. Properties are
constraints put on architectural elements and relationships are used for determining the
way different elements interact with each other. Lastly the rationale of the architecture
model condenses the thought process and motivation of the whole design. If correctly
done the software architecture design is a blueprint that designers can follow and
execute. (Wolf & Perry, 1992.)

However, Pillai (2017) gives a more comprehensive explanation and divides the concept
of software architecture into four themes: system, structure, environment, and
stakeholder. A system is a collection of software components that are organized so the
desired functionality can be achieved. A structure is a collection of elements that are
organized according to a set rule or principle and the individual elements can be either
software of hardware components. The environment is the context that where the
system is being developed (e.g. business, entertainment) and stakeholders are the people
who have invested into the project. All these themes affect the architecture and they are
factors that need to be considered. On a basic level a software architecture defines the
structure of the system, it sets the elements that system contains, it determines the early
design decisions, it manages stakeholder needs, it influences the impacts the
organizational structure and it is influenced by its environment. (Pillai, 2017.)

4.2.1 Software architecture decision making process

To emphasize one of the most important factors to remember is that any architectural
decisions must be based on non-functional requirements that have been discovered
usually at the beginning stages of the development process. The architecture should
reflect these requirements and intend to correspond to them. (Jansen & Bosch, 2005.)
On a context design level software architecture is represented using architectural
context diagrams (ACD) that highlights the entities that the system interacts with. Once
the context has been established the next step is to define architectural archetypes,
which are abstractions or patterns that represent critical aspects of the design. The
process of designing the architecture is gradual and as the refinement of the architecture
proceeds, the essential components start to emerge. Components are formed according
to entities and technical infrastructure requirements that were identified previously.

10

Determining the level of modularity, cohesion and coupling of these components is one
of the most important aspects that the architecture must convey. The goal of a software
architecture is to have the right amount of modules that have the correct amount of
cohesion, they are reusable, easy to understand and maintain. (Pressman, 2010.)

The software decision process is comprised of the following elements: rationale , design
rules, constraints, and additional requirements. Rationale is the reasoning behind the
architectural decision and design rules, or constraints are the boundaries that future
software additions must adhere by. Additional requirements might emerge later in the
product life cycle and the software architecture must address these requirements.
(Jansen & Bosch, 2005.) An important step in the decision-making process is the
documentation of the decision-making process. It is crucial to have an explanation of
the rationale behind choosing the current architecture and why other alternatives were
not chosen. The lack of documentation can lead to knowledge vaporization related to
the systems architecture, which in turn delays development and incurs unnecessary
costs. (Harrison, Avgeriou, & Zdun, 2007.)

Lack of documentation and understanding of the underlying architecture can lead
several issues in the development of the software such as contradicting design decisions,
violating of previously established rules and constraints as well not removing unused
design decisions. (Jansen & Bosch, 2005.) Harrison, Avgeriou, & Zdun (2007) note that
one answer to the challenge of software architecture documentation is using a pattern
solution. Patterns are general solutions to problems that occur often. In the software
architecture context, they inherently capture critical information about the decision-
making process, they make documentation easier as each pattern conveys essential
information in itself and they fit well in the generally used architecting methods. The
use of patterns does not solve all documentation related issues, but they make it easier.
(Harrison, Avgeriou, & Zdun, 2007.)

4.3 Microservice design approach

Microservice design is a relatively new cloud based software design approach so the
academic research has not yet produced enough empirical data on the development,
evaluation and design of applications that implement this design (Aderaldo et al., 2017).
The previous research has mostly focused on the strengths and weaknesses of
microservices as well as the evolution that the design paradigm has went through
(Jamshidi et al., 2018). The idea of a microservice approach was first introduced in
2011 and the driving force behind it was a need to further improve the already in use
SOA (service-oriented architecture) approach. Microservice design has a firm base on
the SOA approach but it was developed further because a lot of designers felt that it did
not fully answer the need for scalability and continuous delivery. (Salah, Zemerly,
Yeun, Al-Qutayri, & Al-Hammadi, 2017.) Papazoglou (2003) describes that service
oriented architecture is a software integration solution where the software has the ability
to offer services to other programs through service application components.
Microservices has similarities with the service-oriented architecture but the main
difference is the scope and the use of an ESB. Service-oriented architecture scope is
enterprise level and it utilises an ESB. Microservices do not utilise an ESB and it is an
application level architecture. (IBM, 2019.)

According to Lewis and Fowler (2014) each service is designed to execute a certain task
and they share the following characteristics: they can communicate through networks
using a commonly used lightweight protocol (e.g REST or HTTP), they can be
deployed independently, they are designed to implement the company’s business
functions and they are separate services that can be implemented in any coding

11

language that fits best. Because every separate service executes a specific business
function, it is very easy to perceive the boundaries between services and understand
what the scope of the code (Salah et al., 2017). Due to the loose coupling of
components, it opens the possibility to execute continuous delivery of updates.
Continuous delivery means that the development team can make all types of changes to
the software quickly and safely without disrupting other parts of the program. To
execute continuous delivery properly and to ensure the integrity of the program,
development teams must monitor the software continuously. Continuous monitoring
gives the developers feedback related to performance and possible errors in operations.
(Lewis & Fowler, 2014.)

4.3.1 Advantages of a microservice design

The advantages of an microservice approach can be divided mainly into three benefits:
faster delivery, improved scalability, and greater autonomy. The benefits are a solution
to many issues that companies face with their software in today’s contemporary
software development. (Jamshidi et al., 2018.)

Faster delivery enables companies to make changes and add features to their product as
quick as possible. This is very desirable in the fast-moving global markets of today.
Microservices use lightweight containers and are uploaded on the cloud to achieve
quick delivery. (Zimmermann, 201.7) Lewis and Fowler (2014) add that a another
factor that greatly improves the software delivery time is the automation that is
implemented within microservice architecture. The concept of continuous delivery and
continuous integration are crucial parts of the microservice architecture. Both methods
make use of automation to carry out tests to ensure functionality and enable deployment
to production. (Lewis & Fowler, 2014.)

In reference to Jamshidi et al. (2018) scalability can either mean the accommodation of
additional users without a drop in performance or the amount of developers that can
work on the project simultaneously. In a microservice architecture scalability can be
fulfilled on each separate service according to their specific needs and without worrying
about interfering with other parts of software. This differs from a monolithic approach
where the whole program must be scaled. (Jamshidi et al., 2018.) Developers are
divided into separate teams that each develop one service. This improves developer
scalability as the scope of what they are developing is limited to that service and they do
not have learn the intricacies of the whole system. Teams are also expected to be
committed to their respective service for the lifetime of the product. This means that
support and development does not end when the product is delivered but continues
afterwards as well. It is a mind shift where the service being developed is thought as a
product that continuously improves rather than a project that has a set end point (Lewis
& Fowler, 2014.)

One of the most appealing aspects of the microservice design approach is the greater
level of autonomy that each separate microservice has. Greater autonomy gives the
development teams of different services the ability to make localized decisions.
(Alshuqayran, Ali, & Evans, 2016.) According to Lewis and Fowler (2014) this greater
autonomy is achieved by decentralizing data management and governance as well as
using the concept of “smart end point and dumb pipes”. Decentralizing data
management in the microservice architecture context means that each service has its
own database that it manages. Other services can access this data through requests.
(Lewis & Fowler, 2014.)

12

Decentralizing governance gives development teams of separate services more freedom
to make decisions on how to build that service. Decisions can be related to what coding
language or database to use. This differs from a monolithic approach where the tools
being used are standardized across the software. The smart end points and dumb pipes
principle supports decentralization by making sure that all the complex logic is done
inside the components. The communication with other components is done through
simple request and response protocols or by using messaging over a lightweight
message bus. If executed properly this principle leads to a more decoupled and cohesive
application. (Soldani et al., 2018.)

4.3.2 Disadvantages of a microservice design

The issue with microservice design starts when it is thought as an answer for all the
software architectural issues that design teams face. The approach should not be used in
situations where the inherit complexity brings costs that outweigh the benefits. In some
situations, developments teams use the design in an appropriate situation but do not
execute it properly. (Jamshidi et al., 2018.) A crucial step to execute microservices
correctly is the division of software into separate microservice components and making
sure that software fits the component. The division should be done so that future
refactoring wont overstep this division. Additionally, if the components are not
constructed according to the “smart end point and dumb pipes” principles, it will lead to
ambiguity of where the actual logic is being executed. (Lewis & Fowler, 2014.)
Zimmerman (2017) adds that another issue that makes division of software into
microservice components difficult is specifying the size of each component. There are
varying interpretations of what the size of a service should be and the lack of proper
patterns to help with specifications make this task even harder (Zimmermann, 2017).
Lewis and Fowler (2014) also point that another important aspect to consider is the
expertise of the development team. They explain that executing a microservice design
requires that the whole team understands the intricacies that the design possesses.

4.4 Monolithic design approach

The traditional way of designing software systems is using a monolithic approach, in
which the whole application is stored in a single codebase and all developers share this
codebase (Villamizar et al., 2015). From a structural point of view monolithic
applications combine several components to form a single program. The components
can be related to authorization, presentation, business logic, database layer or
application integration (Esposito et al., 2016). The data management and governance are
centralized, which is opposite of microservice design. All technical decisions regarding
the programming language and database type must be standardized. From
organizational point of view the development teams are divided according to the
technology. For example, there are teams that focus on the UI side of the application
and another team that focuses on the database. (Soldani et al., 2018.)

4.4.1 Advantages of a monolithic design

The strength of a monolithic approach is that it is generally easier to monitor, debug,
test, simpler to develop and deploy. Monitoring monolithic applications is easier
because everything is contained within one codebase. You do not have to conduct
monitoring throughout several service modules. (Villamizar et al., 2015.) Due to the
same reason monolithic applications are easier to debug, as its clearer which
components are connected. Testing can also be done in an end-to-end fashion as

13

everything is in a single unit. Deploying is simple as the whole application is contained
within one file or directory. As the monolithic approach is the traditional way of
developing programs, most developers are familiar with the methodologies and no time
must be invested into training your personnel. (Lewis & Fowler, 2014.)

4.4.2 Disadvantages of a monolithic design

The weakness of a monolithic approach usually appears when teams want to grow the
application. When teams want to add functionality or remove it, they must be wary of
not unintentionally affecting other components. Scaling is also not without issue as
when you scale one aspect of monolithic applications, the whole application must be
scaled at the same time. (Taibi et al., 2017.) Villamizar (2015) explained that as you add
features to the program the complexity increases throughout the application which
stifles innovation and slows down product deployment.

4.5 Deciding between a monolithic and microservice approach

In this chapter we will examine the and criteria on which you should make the design
decision between a monolithic and microservice approach. We will examine the issue
from several perspectives including experiences when migrating to microservice,
industry feedback, infrastructure cost and performance.

4.5.1 Migration experiences

In the context of monolithic and microservice architecture the decision to choose
between either option is made either when creating a whole new application or when
migrating an application to a new architecture. It is common that companies start out
with a monolithic architecture and then migrate it into a microservice architecture once
it becomes too complex to maintain and scale. (IBM Cloud Education, 2019.)

According to the industrial survey done by Di Francesco et Al., (2018) related to
companies switching their software to a microservice model, migration was usually
done in small increments and iteratively. Among the respondents, formal models were
rarely used for designing the architecture or to portray the architecture. There were no
established protocols or templates to adhere by. Agile development approaches were
commonly used. The advantages that the migration brought was the implementation of
new functionalities that were impeded by the previous monolithic model or
improvement of old functionalities. The challenges were related to the complexity of the
architecture and initial implementation of services. Companies struggled with migrating
their previous data model to the microservice model, which in turn undermined the
decoupling benefits that the architecture brings. (Di Francesco P., Lago P., Malavolta I.,
2018.)

In reference to the case study conducted by Balalaie, Heydanoori and Jamshidi (2016)
they implemented an DevOps approach in addition to agile methods while migrating
their application to a microservice architecture. According to Balalaie, Heydarnoori and
Jamshidi the motivation to migrate to a new architecture was the need for reusability,
decentralized data governance, automated deployment, and scalability. From their
perspective they were able to achieve improvements in scalability and adaptability with
their application but faced several challenges along the way. The main challenges they
faced included complexity in initial development, relationships between services, lack
of service development templates and personnel expertise. The answer to these

14

challenges was using DevOps practices to bridge the gap between development and
operational teams. Using these practices created an overall understanding of the
architecture and how to implement it within the personnel. After the migration process,
they reviewed the design patterns used to mitigate the practical issues when
implementing the architecture. (Balalaie A., Heydarnoori A., Jamshidi P., 2016.)

4.5.2 Industry feedback

The general industry pain points of microservice design can be divided into three
distinct categories based on the software lifecycle: design, development, and operation.
During the design phase the main concerns are related to architecture and security of the
application. When developing the concerns are related to the separate services, storage,
and testing. Once the application is in operation the concerns are related to application
management, monitoring and resource consumption. (Soldani et al., 2018). Gouigoux &
Tamzalit (2017) confirm that in the design phase the pain points in architecture are the
overall complexity and size of microservice applications as well determining the size of
the separate services. Taibi et al. (2017) point out that identifying the business
capabilities that the service boundaries are based on is hard to determine. Determining
the API structure between services and designing them in a way that they are used only
when needed is also a complex issue. The increased exposure that microservice API
brings is a pain point from security perspective. (Taibi et al., 2017.)

In the development stage the difficulty with storage is related to the distributed nature of
data in microservices and assuring data consistency. The separation of services
increases complexity through the development process which especially affects testing
and measuring performance. Measuring user experience and testing interfaces is
specifically difficult. (Taibi et al., 2017.) Once the application is in operation the
difficulties are once again related to the complexity and size of the architecture. If the
design and the separation of services is not executed properly it will lead to increase in
network consumption as the API calls between services will slow down the system as
well as cause difficulties in managing and monitoring the system. Unclear boundaries
and failed isolation between services makes it hard understand which parts are
connected as well as how to monitor them. Microservices generate vast amount of
distributed logs for each service, so if separation and isolation have not been done
properly, it will be very hard to find the source of the problem. (Soldani et al., 2018.) In
essence the complexity of microservice design brings a lot of issues that need to be
taken into account. With applications that are simpler and do not have to be scaled, it is
more efficient to choose a monolithic approach. (Jamshidi et al., 2018.)

4.5.3 Cost and performance

In reference to Villamizar et al. (2016) in the context of cloud web applications the
microservice design approach is more cost effective and efficient than the monolithic
architecture. Web applications in the cloud that are designed with the microservice
approach reduce infrastructure costs substantially and offer higher performance.
However, there is an initial cost for companies that have not implemented an
microservice design before and must spend resources to learn new practices,
methodologies, and processes. (Villamizar et al., 2017)

The clearest performance advantages microservices bring compared to a monolithic
approach are the speed of delivery and the ability to scale. In the fast-paced market of
today there is an increasing need to deliver quickly and microservices have delivered an
answer for this need. In practice microservices typically answer this need by using

15

lightweight packaging technologies, validated DevOp practices and automation. (Lewis
& Fowler, 2014.) Combining these three elements enables companies to deliver services
quickly in changing schedules and very little centralized management. In a microservice
context scaling can refer to performance or the amount of developers working on
application simultaneously. Both types of scaling can be achieved better in a
microservice approach than in a monolithic design. (Villamizar et al., 2016.) Each
service is a separate unit so they can be scaled during runtime according to the need that
is related to that service. Services have their own separate development teams that make
localized decisions. Resources and personnel can easily be allocated to specific services
according to development needs. Features can be developed in parallel as they do not
interfere with other parts of the program. All these qualities bring a reduction in cost
and an increase in performance as companies can more accurately allocate resources as
well as answer market needs quicker. (Jamshidi et al., 2018.)

4.5.4 Decision criteria

Architecture decisions should be based on the non-functional requirements that are
established during the early phases of the design process (Pressman, 2010). However,
there are other factors that affect the architecture decision. When deciding on which
architecture to choose you should consider the following variables: team size, expertise,
simplicity of the application, need to scale and the urgency to launch the application
(Jamshidi et al., 2018). We will first examine situations when an architectural decision
should be made. Then we will examine the criteria and situations where it is preferable
to choose a monolithic approach and then consider when a microservice architecture is
optimal.

An important factor to consider is when an architectural decision is made. The two
situations where an architectural decision must be made is when you are creating a
completely new application or migrating an old architecture into a new one. Companies
commonly start out by using a monolith architecture and then refactor into a
microservice architecture if there is a need to scale. (IBM Cloud Education, 2019.)
However, if there is a definite and recognized need to scale a new application from the
start of the development, then it can be wise to implement an microservice architecture
if the required expertise is met. The added complexity that the microservice architecture
brings compels companies to educate personnel on the execution of the design and
create developmental templates to adhere by. (Balalaie A., Heydarnoori A., Jamshidi P.,
2016; Di Francesco P., Lago P., Malavolta I., 2018.)

If the team size is small, it is not optimal to choose an microservice architecture as the
existing personnel will be split into teams that each work on their respective service.
Each team should have various skillsets to implement and maintain the service properly.
(Balalaie A., Heydarnoori A., Jamshidi P., 2016.) In order to successfully implement a
microservice architecture the required level of expertise throughout the personnel has to
be acceptable. A misaligned understanding of how the architecture works and how
different services should be split up will lead to an inefficient and hard to maintain
application. (Taibi et al., 2017.) If the application that you are developing is relatively
simple and does not require high business logic, scalability or flexibility, then
microservices is not the right architecture. The trade-off that you get with microservices
is that you get high scalability, flexibility and a way to split your application according
to your company’s business logic, but the it brings with an increase in complexity that
in turn can create issues. (Jamshidi et al., 2018.) Monolithic applications are also
quicker to launch as you can deploy it in a single unit. Applications using the
microservice architecture must launch in several deployments. In situations where the

16

application is simple and it is critical to launch the application quickly, the monolithic
approach is preferable. (Lewis & Fowler, 2014.)

On the opposite side of the spectrum if there is a need to scale the application and your
company has enough capable employees, microservices bring a lot of advantages. They
are more cost effective and easier to maintain in the long run. It is easier to scale up
separate services according to needs instead of scaling the whole application. The
separate teams can make optimal decisions that are confined within the service they are
developing. (Taibi et al., 2017.) If there is no immediate need to launch your
application, microservices offer easier maintainability in the long run. Correctly
implemented microservice applications offer distinct components that are divided
according to the business logic of the company. This makes it easier to understand the
operation of the application and recognize possible needs to scale certain services within
the program. (Lewis & Fowler, 2014.)

17

5. Findings and implications

Software architecture is based on the non-functional requirements that are established in
the early phases of the design process. A proper architecture follows a clear rationale
and establishes design rules and constraints that must be followed throughout the
development project. (Jansen & Bosch, 2005.) A software architecture conveys the level
of modularization and cohesion of the software. A higher level of cohesion can lead to
increased complexity and difficulty in maintaining the software as components are
either too tightly coupled or they affect each other in ways that are hard to detect. The
goal of every software architecture is to answer to the requirements discovered during
the design process and create a clear and distinct blueprint of the software and the
modules it is constructed of. A successful architecture strikes the correct balance
between the right level of modularity and cohesion between modules. (Pressman, 2010.)
In the context of cloud-based applications the essential question is what level of
scalability is required. Microservice architecture is a very loosely coupled architecture
which brings with it a high level of scalability if executed properly. (Lewis & Fowler,
2014.)

The prior research indicates that the microservice approach was an evolution of service-
oriented architecture. It takes the concept of offering functionality to other applications
through an interface and takes it a step further by omitting the ESB and offering
functionality through APIs from each separate service. The underlying factors for a
microservice approach were the development of cloud infrastructure and a growing
need for high scalability as well as quick continuous delivery. The advantages of having
a microservice architecture is high scalability, continuous delivery, reduced
maintenance costs and greater autonomy. The drawbacks are complexity of the design
and a higher initial investment. Most of the industry feedback on the pain points of the
microservice architecture is derived from the lack of expertise of the personnel. A
flawed design and understanding of the architecture will create numerous problems in
the future. A proper implementation of the architecture yields higher performance and
reduction in costs. (Gouigoux & Tamzalit, 2017; Jamshidi et al., 2018; Lewis & Fowler,
2014; Taibi et al., 2017; Villamizar et al., 2015; Villamizar et al., 2016; Villamizar et
al., 2017; Zimmermann, 2017.)

According to the research the traditional software architecture used is a monolithic
architecture, in which the whole application is contained within one codebase.
Monolithic applications utilize modularization, but they do not achieve the same level
decoupling as microservice applications. The advantage of having a monolithic
architecture is that it is easier to deploy initially, the architecture is easier to understand,
and it is commonly used so there is no initial investment to train personnel. (Esposito et
al., 2016; Lewis & Fowler, 2014, 2014; Villamizar et al., 2015.)

18

The purpose of the study was to examine the decision criteria in addition to the
functional requirements that companies must consider when either creating a
microservice architecture or migrating a monolithic model into one. The criteria were
not directly presented but it could be deduced from the issues that companied had when
trying to implement an microservice architecture. The criteria are the following: teams’
size, expertise, simplicity of the application, need to scale and urgency to launch the
application. In the table below you can find the criteria and sources where they were
deduced from.

Table 1: Summary of decision criteria deduced from sources

Criteria Source(s)

Team size Balalaie A., Heydarnoori A. (2016),
Jamshidi P. (2016), Di Francesco P., Lago
P., Malavolta I. (2018), Soldani et al
(2018)

Expertise Soldani et al (2018), Balalaie A.,
Heydarnoori A. (2016), Jamshidi P.
(2016)

Simplicity of the application Jamshidi et al., (2018), Soldani et al
(2018), Taibi et al., (2017), (Villamizar et
al., (2015, 2016, 2017)

Need to scale Jamshidi et al., (2018), Lewis & Fowler,
(2014), Soldani et al (2018), Taibi et al.,
(2017)

Urgency to launch application Jamshidi et al., (2018), Lewis & Fowler,
(2014), Soldani et al (2018), Taibi et al.,
(2017)

Balalaie & Heydarnoori (2016) explained that changing into a microservice architecture
required the personnel to be split into teams according to the specified services. This
separation enabled teams to create smaller agile teams that conformed with DevOp
practices. The prerequisite was that each team had the required expertise to run and
maintain the service. Having the required amount of capable employees is an important
thing to consider before implementing a microservice architecture. (Balalaie A.,
Heydarnoori A., Jamshidi P., 2016.) Di Francesco, Lago and Malavo (2018) as well as
Soldani et al., (2018) had similar results in their research.

The complexity of a microservice architecture brings with it a high initial investment,
slower launch of the application and a risk of failing to implement the design correctly.
The advantages are higher scalability, reduced maintenance costs and greater autonomy.
If the application is simple and there is an urgency to reach the market quickly, then a
microservice architecture is not the right design. (Jamshidi et al., 2018; Lewis &
Fowler, 2014; Soldani et al 2018; Taibi et al., 2017.)

19

5.1 Contributions

This study is relevant as the need for scaling applications is growing. Making the right
architectural decision can save companies substantial time and resources. To assist on
making the decision there should be a decision framework to follow. There is yet to be
enough empirical data to create and accurate framework, but this study gives the general
outline on what the criteria within the framework should be based on.

5.2 Limitations

The academic literature is behind the industry in regards of studying the effectiveness of
the microservice architecture. There is still a gap in gathering relevant empirical
information on the performance benefits of the design. There are no clear established
guidelines on how to execute the architecture, which in turn creates ambiguity. The best
source of academic research is industry surveys and case studies where participants
explain how they were able to implement the architecture successfully. The lack of
empirical data makes it challenging to specify decision making criteria in a detailed
level.

5.3 Future research

Future research should focus on further defining the criteria and examining them on a
more detailed level. Definition of a team size, some scale of expertise, level of
simplicity and measurement of urgency should be defined. Of course, it is impossible to
give universal definitions, but some guidelines would be worth establishing.
Additionally, the academic world is behind of the private industry in microservice
research and more effort should be placed gathering empirical data on the effectiveness
of the architecture.

20

6. Conclusions

The research method used in this study was a literary review, that consisted of 17
separate studies related to software, monolith and microservice architecture. The
research problem was examining the decision criteria that should be considered when
choosing between a monolith and microservice architecture. The study was limited by
the lack of empirical data that has been related to the subject and because of this it was
not possible to determine the criteria on a detailed level. However, it was possible to
deduce the decision criteria in a general level from the literature. To recap the decision
criteria deduced from the literature are the following: team size, expertise, simplicity of
the application, need to scale and the urgency to launch the application

The strength and weaknesses of both approaches are well established but reaching the
benefits of a microservice architecture is challenging due to complex nature of the
architecture. There are no clear established patterns or guidelines on how to execute the
design and the best source of information was industrial surveys and case studies where
a successful implementation of the architecture was explained. Some common
characteristics with microservice implementations was the use of agile and DevOps
methodologies. The main obstacle was creating an overall understanding as well as a
division of work within the personnel and these methodologies helped to achieve that.
In successful implementations of the microservice design there were performance and
cost benefits in the long run.

21

References

A. Fink. (2020). Conducting research literature reviews: From the internet to paper (Fifth

Edition ed.). London: SAGE.

Aderaldo, C. M., Mendonça, N. C., Pahl, C., & Jamshidi, P. (2017). Benchmark

requirements for microservices architecture research. Paper presented at

the Proceedings - 2017 IEEE/ACM 1st International Workshop on Establishing the

Community-Wide Infrastructure for Architecture-Based Software Engineering, ECASE

2017, pp. 8-13

Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in microservice

architecture. Paper presented at the Proceedings - 2016 IEEE 9th International

Conference on Service-Oriented Computing and Applications, SOCA 2016, pp. 44-51.

Balalaie A., Heydarnoori A., Jamshidi P. (2016). Microservices architecture enables

DevOps: Migration to a cloud-native architecture. IEEE Software, 33(3), 42-52.

Retrieved from https://www.scopus.com

Budgen, D. (2003). Software design. Essex CM20 2JE England: Pearson Education

Limited.

Di Francesco P., Lago P., Malavolta I. (2018). Migrating towards microservice

architectures: An industrial survey. Icsa 2018, pp. 29-38.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps Retrieved from

SCOPUS database. Retrieved from https://www.scopus.com

Esposito, C., Castiglione, A., & Choo, K. -. R. (2016). Challenges in delivering software in

the cloud as microservices. IEEE Cloud Computing, 3(5), 10-14.

Gouigoux, J. -., & Tamzalit, D. (2017). From monolith to microservices: Lessons learned on

an industrial migration to a web oriented architecture

22

Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and

associated methodologies Retrieved from SCOPUS database. Retrieved

from https://www.scopus.com

Harrison, N. B., Avgeriou, P., & Zdun, U. (2007). Using patterns to capture architectural

decisions. IEEE Software, 24(4), 38-45. Retrieved from SCOPUS database. Retrieved

from https://www.scopus.com/inward/record.uri?eid=2-s2.0-

34547120204&doi=10.1109%2fMS.2007.124&partnerID=40&md5=779f5209faedf7b48

fa316fca5ed728b

IBM. (2019). SOA (service-oriented architecture). Retrieved 08.05., 2020,

from https://www.ibm.com/cloud/learn/soa

IBM Cloud Education. (2019). What are microservices? Retrieved 08.05., 2020,

from https://www.ibm.com/cloud/learn/microservices

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The

journey so far and challenges ahead. IEEE Software, 35(3), 24-35.

Jansen, A., & Bosch, J. (2005). Software architecture as a set of architectural design

decisions. Paper presented at the Proceedings - 5th Working IEEE/IFIP Conference

on Software Architecture, WICSA 2005, , 2005. pp. 109-120. Retrieved from SCOPUS

database. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-

33947154413&doi=10.1109%2fWICSA.2005.61&partnerID=40&md5=1d42167abc72b

89205eec7ec97904ed2

Martin Fowler, & James Lewis. (2014). Microservices. Retrieved 07.04., 2020,

from https://martinfowler.com/articles/microservices.html

P. Eeles. (2006). What is a software architecture? Retrieved 08.05., 2020,

from https://www.ibm.com/developerworks/rational/library/feb06/eeles/index.html

Papazoglou, M. P. (2003). Service -oriented computing: Concepts, characteristics and

directions. Paper presented at the Proceedings - 4th International Conference on Web

Information Systems Engineering, WISE 2003, pp. 3-12.

Pillai, A. B. (2017). Software architecture with python. Birmingham, UK: Packt Publishing.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547120204&doi=10.1109%2fMS.2007.124&partnerID=40&md5=779f5209faedf7b48fa316fca5ed728b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547120204&doi=10.1109%2fMS.2007.124&partnerID=40&md5=779f5209faedf7b48fa316fca5ed728b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547120204&doi=10.1109%2fMS.2007.124&partnerID=40&md5=779f5209faedf7b48fa316fca5ed728b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947154413&doi=10.1109%2fWICSA.2005.61&partnerID=40&md5=1d42167abc72b89205eec7ec97904ed2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947154413&doi=10.1109%2fWICSA.2005.61&partnerID=40&md5=1d42167abc72b89205eec7ec97904ed2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947154413&doi=10.1109%2fWICSA.2005.61&partnerID=40&md5=1d42167abc72b89205eec7ec97904ed2

23

R.Pressman. (2010). Ls.

Software engineering: A practitioner’s approach (7th ed.). New York: McGraw-Hill.

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2017). The

evolution of distributed systems towards microservices architecture Retrieved from

SCOPUS database. Retrieved from https://www.scopus.com/

Soldani, J., Tamburri, D. A., & Van Den Heuvel, W. -J. (2018). The pains and gains of

microservices: A systematic grey literature review

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, motivations, and issues for

migrating to microservices architectures: An empirical investigation Retrieved from

SCOPUS database. Retrieved from https://www.scopus.com

Villamizar, M., Garces, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., et al.

(2015). Evaluating the monolithic and the microservice architecture pattern to deploy

web applications in the cloud

Villamizar, M., Garces, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., et al.

(2016). Infrastructure cost comparison of running web applications in the cloud using

AWS lambda and monolithic and microservice architectures

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., et al.

(2017). Cost comparison of running web applications in the cloud using monolithic,

microservice, and AWS lambda architectures

Wolf, A., & Perry, D. (1992). Foundations for the study of software architecture. Acm

Sigsoft, 17(4), 40-46.

Woods, E. (2016). Software architecture in a changing world. IEEE Software, 33(6), 94-97.

Zimmermann, O. (2017). Microservices tenets: Agile approach to service development and

deployment

24

Appendix A. Structure for the research plan

Introduction

When creating cloud applications companies must make a crucial decision on the
underlying software architecture. The conservative choice has been using a monolithic
software architecture approach, where the application is a single unit that usually
consists of a user interface, business logic, data interface and a database. As cloud
infrastructure has advanced so has the need for software scalability, flexibility, and
agility. The answer to this need has been the microservices software architecture
approach, which splits the monolithic model into several smaller units. Each unit is an
independent module that has its own functionality and they each cover a certain service.
The units have their own databases and they communicate to other units through API
functionality. Microservices units can be scaled and updated separately.

Research problem and research methods

Essentially the research problem is to analyse both software architecture models
separately and then compare them to each other. We want to answer the question “On
what criteria should I decide which design approach I should use?”. To answer this
question, we must analyse the strengths and weaknesses of both software architecture
models and when are they used. We will then form the criteria that should be evaluated
when choosing one or the other software architecture. The research method is a
literature review.

Limitations

This research will be limited to the design level of the software architecture. The focus
will not be on how to execute the architecture on a practical level or how to program
certain features. The research will stay on a general level and not examine details of
each architecture.

Preliminary earlier research

The need for a scalable software architecture that can be easily maintained has risen
after the growth of cloud infrastructures (Alshuqayran et al., 2016). The microservice
design has answered this need by creating an architecture that is based on dividing the
functionality of the program in separate services that communicate through API calls
(Jamshidi et al., 2018). Microservices offer several advantages compared to the tradition
monolithic approach. These advantages include scalability, flexibility, and agility. The
drawback is that the architecture is considerably more complex and it there is a greater
risk of making a mistake in the design. Executing the design properly requires expertise
withing the personnel. (Jamshidi et al., 2018) The criteria that the design decision
should be based on comes down to team size, expertise, simplicity of the program and
need for scalability (Taibi et al., 2017).

25

List of main prior literature in relation to the background theory

Aderaldo, C. M., Mendonça, N. C., Pahl, C., & Jamshidi, P. (2017). Benchmark
requirements for microservices architecture research. Paper presented at the Proceedings
- 2017 IEEE/ACM 1st International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering, ECASE 2017, pp. 8-13.

Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in microservice
architecture. Paper presented at the Proceedings - 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications, SOCA 2016, pp. 44-51.

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The
journey so far and challenges ahead. IEEE Software, 35(3), 24-35.

R.Pressman. (2010). Ls.Software engineering: A practitioner’s approach (7th ed.). New
York: McGraw-Hill.

Soldani, J., Tamburri, D. A., & Van Den Heuvel, W. -J. (2018). The pains and gains of
microservices: A systematic grey literature review

M, Fowler., & J, Lewis. (2014). Microservices. Retrieved 07.04., 2020,
from https://martinfowler.com/articles/microservices.html

Timetable

Work will be completed during the summer

Preliminary structure of contents

1. Introduction

2. Terminology

3. Research methods

4. Previous research

5. Discussion and implications

6. References

https://martinfowler.com/articles/microservices.html

26

Appendix B. Reference chart

Source Purpose of the

study

Research

methods

Background

theory

Findings Implications Future

research

Aderaldo, C.
M.,

Mendonça, N.
C., Pahl, C.,
& Jamshidi,
P. (2017).

Benchmark
requirements

for
microservices
architecture

research

Benchmarking Microservice
architecture,

DevOps

The
applications
analyzed in

the study are
not mature

enough to be
used in

benchmark
studies

Empirical software
architecture research
must develop further

Creating an
ideal

benchmark
for

conducting
research for
microservice

studies.

Alshuqayran,
N., Ali, N., &

Evans, R.
(2016)

A systematic
mapping study
in microservice

architecture

Systematic
mapping

study,
qualitative

and
quantitative

synthesis
method

Microservice
architecture

Challenges
microservice
systems face,
diagrams used

to represent
the

architecture,
quality

attributes

Research is behind
the industry;

challenges are related
to design and

execution of the
architecture

Systematic
literary

review that
researches

other
architectural

factors
related to

microservice
architecture

Balalaie A.,
Heydarnoori
A., Jamshidi

P. (2016)

Microservices
architecture

enables
DevOps:

Migration to a
cloud-native
architecture

Case study Microservice
architecture,

DevOps

Design
patterns and

design
methods used

in the
migration
process

Establishment of
policies that supports
application migration

to a microservice
architecture

Further
establish

patterns and
customer to

support
migration
projects

Di Francesco
P., Lago P.,
Malavolta I.

(2018).

Migrating
towards

microservice
architectures:
An industrial

survey

Survey Microservice
architecture

Industry
Experiences

with
migrating to a
microservice
architecture

Migrations are done
incrementally, agile
methods used

Establishing
customs and

patterns

Esposito, C.,
Castiglione,
A., & Choo,

K. -. R.
(2016)

Challenges in
delivering

software in the
cloud as

microservices

Article Microservice
architecture

There must be
a balance
between

security and
performance

There must be
different options to
improve security of
microservice design

How to
improve

security of
microservices

Gouigoux, J.
-., &

Tamzalit, D.
(2017).

From monolith
to

microservices:
Lessons

learned on an
industrial

migration to a
web-oriented
architecture

Case study Microservice
architecture

Switching to
a

microservice
architecture
has brought
numerous

advantages
and savings

Switching to a
microservice

architecture has
benefits

Development
of agile

methods to
support

switching
architectures

27

Source Purpose of the

study

Research

methods

Background

theory

Findings Implications Future

research

Jamshidi, P.,
Pahl, C.,

Mendonca,
N. C., Lewis,
J., & Tilkov,

S. (2018)

Microservices:
The journey so

far and
challenges

ahead.

Article Microservice
and

monolithic
architecture,
development
of software
architecture

How
software

architecture
has evolved

The evolution of
microservices and the

advantages/disadvantages

Future
research on

the
advantages

and
disadvantages

of
microservices

M, Fowler.,
& J, Lewis.

(2014).

Microservices Article Microservice
architecture

Basics of
microservice
architecture

Theoretical framework of
microservice architecture

-

Papazoglou,
M. P. (2003).

Service -
Oriented

Computing:
Concepts,

Characteristics
and Directions

Article Service-
Oriented

computing

Extended
service-
oriented

architecture

The usage of service-
oriented architecture

-

Pillai, A. B.
(2017)

Software
architecture
with python.

Book Software
architecture,
programming

How to
program
software

architectures
with python

- -

Soldani, J.,
Tamburri, D.

A., & Van
Den Heuvel,
W. -J. (2018)

The pains and
gains of

microservices:
A systematic

grey literature
review

Book Literature
review

Industry
feedback on

the
microservice
architecture

Most pain points are
related to the complexity

of the architecture

Systematic
review for

grey literature

Villamizar,
M., Garces,
O., Castro,
H., Verano,

M.,
Salamanca,
L., Casallas,

R., et al.
(2015)

Evaluating the
monolithic and

the
microservice
architecture
pattern to

deploy web
applications in

the cloud

Case study Microservice
architecture,

cloud
computing

Benefits and
issues with

the
microservice
architecture

It is the right architecture
in certain situations

Performance
tests

28

Source Purpose of
the study

Research
methods

Background
theory

Findings Implications Future
research

Villamizar,
M., Garces,

O., Ochoa, L.,
Castro, H.,
Salamanca,
L., Verano,
M., et al.
(2016)

Infrastructure
cost

comparison of
running web
applications
in the cloud
using AWS
lambda and
monolithic

and
microservice
architectures

Case study Microservice
architecture,

service-
oriented

architecture,
cloud

computing

Microservice
architecture
offers cost

benefits
compared to
a monolithic
architecture

in cloud
computing

context

Microservice
architecture is more

cost effective in cloud
computing

applications

Future
performance

tests
regarding
technical
concerns

Villamizar,
M., Garcés,

O., Ochoa, L.,
Castro, H.,
Salamanca,
L., Verano,
M., et al.
(2017)

Cost
comparison of
running web
applications
in the cloud

using
monolithic,

microservice,
and AWS
lambda

architectures

Case study Microservice
architecture,

cloud
computing

Microservice
architecture
offers cost

benefits
compared to
a monolithic
architecture

in cloud
computing

context

Microservice
architecture is more

cost effective in cloud
computing

applications

Cost of
migrating

legacy
software to

an
microservice

model

Wolf, A., &
Perry, D.
(1992)

Foundations
for the study
of software
architecture

Article Software
architecture

Basics of
software

architecture

- -

Woods, E.
(2016)

Software
architecture in

a changing
world

Article Software
architecture

The
evolution of

software
architecture

- -

Zimmermann,
O. (2017).

Microservices
tenets: Agile
approach to

service
development

and
deployment

Article Software
architecture,
microservice

design,
service-
oriented

architecture

Seven tenets
of

microservice
design

- -

