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Tiivistelmä 

Uniapneapotilailla havaitaan usein matalaa pitkän aikavälin sykevälivaihtelua, jonka tiedetään myös 

olevan riskitekijä useille sydän- ja verisuonisairauksille. Ei kuitenkaan tiedetä, miten uniapneaan 

liittyvät erimittaiset hengityskatkot tai niiden tyyppi vaikuttavat yksittäisten hengityskatkojen 

aikaiseen ja jälkeiseen ultralyhyeen sykevälivaihteluun ja sydämen lyöntien väliseen kestoon, ts. RR-

intervalleihin. Tässä tutkimuksessa tavoitteena oli tutkia ultralyhyen sykevälivaihtelun ja RR-

intervallien sukupuolisidonnaisia muutoksia eri mittaisten apneoiden ja hypopneoiden aikana ja 

jälkeen. Hypoteesina oli, että pidemmät hengityskatkot aiheuttavat suurempia muutoksia 

hengityskatkojen aikaisen ja jälkeisen keskimääräisen RR-intervallien kestojen välille ja siten 

korkeampaa ultralyhyttä sykevälivaihtelua. Oletettiin myös, että apneat aiheuttavat suurempia 

muutoksia kuin hypopneat ja havaitut muutokset ovat suurempia miehillä kuin naisilla. 

Potilasaineisto koostui 862 uniapneasta epäillyn potilaan sydänsähkökäyristä (EKG), jotka oli mitattu 

Prinsessa Alexandran sairaalassa (Brisbane, Australia) osana kliinistä unipolygrafiaa. Ultralyhyen 

sykevälivaihtelun määrittämiseen käytettiin keskimääräistä RR-intervallien kestoa ja aikatason 

sykevälivaihteluparametreja, jotka määritettiin hengityskatkojen aikaisista ja jälkeisistä (15 s 

hengityskatkon jälkeen) EKG-segmenteistä. Tutkittavat hengityskatkot jaettiin ryhmiin niiden tyypin 

(apneat ja hypopneat) ja keston (10 – 20 s, 20 – 30 s ja yli 30 s) perusteella. Lisäksi miesten ja naisten 

hengityskatkoja tutkittiin erikseen.  

Tutkimuksessa havaittiin, että hengityskatkojen aikaisten ja jälkeisten RR-intervallien ero sekä 

ultralyhyt sykevälivaihtelu kasvoivat hengityskatkojen keston kasvaessa riippumatta sukupuolesta 

tai hengityskatkojen tyypistä. Havaittiin myös, että ero hengityskatkojen aikaisten ja jälkeisten 

sykevälivaihteluparametrien arvojen välillä pieneni hengityskatkojen pidentyessä riippumatta 

sukupuolesta tai hengityskatkojen tyypistä. Apneat kuitenkin aiheuttivat suuremman muutoksen 

kuin hypopneat, ja muutokset olivat suurempia miehillä.  

Tulosten perusteella hengityskatkojen tyyppi ja kesto vaikuttavat ultralyhyeen sykevälivaihteluun ja 

RR-intervalleihin. Ultralyhyen sykevälivaihtelun ja hengityskatkojen ominaisuuksien huomioon-

ottaminen uniapnean diagnostiikassa voisi olla hyödyllistä arvioitaessa taudin vakavuutta ja 

sydänterveyteen liittyviä riskejä. Tämän tutkimuksen tuloksista on kirjoitettu tieteellinen artikkeli 

Hietakoste ym. Longer apneas and hypopneas are associated with greater ultra-short-term HRV in 

OSA, joka on lähetetty vertaisarvioitavaksi alan kansainväliseen tieteelliseen julkaisusarjaan.  
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Abstract 

Obstructive sleep apnea (OSA) patients have often reduced long-term heart rate variability (HRV) 

which is a known risk factor for several cardiovascular diseases such as hypertension and stroke. 

Albeit OSA being actively studied, it has remained uncharacterized how the duration and type of 

respiratory events affect the heart rate (HR), i.e. RR intervals, and ultra-short-term HRV during and 

immediately after the individual respiratory events. This study aimed to investigate whether the 

changes in ultra-short-term HRV and HR are modulated by the duration and type of the individual 

respiratory events and whether these changes are sex-specific. It was hypothesized that longer 

respiratory events cause higher ultra-short-term HRV and greater differences between RR intervals 

during and after the respiratory event. Moreover, it was hypothesized that the higher HRV and 

greater differences in HR are associated with apneas and men stronger than hypopneas and women. 

Electrocardiograms (ECG) of 862 suspected OSA patients were collected during clinical 

polysomnography (PSG) at the Princess Alexandra Hospital (Brisbane, Australia) and they were 

analyzed retrospectively. Ultra-short-term HRV was studied with time-domain parameters 

determined from the ECG segments measured during (in-event) and 15 seconds after (post-event) 

the respiratory event. The respiratory events of all subjects were divided into groups based on the 

sex, the type of the respiratory events (apneas and hypopneas), and the duration of the respiratory 

events (10 – 20 s, 20 – 30 s, over 30 s). 

A clear bradycardia-tachycardia rhythm associated with respiratory events was observed. The ultra-

short-term HRV and the difference between in- and post-event RR intervals increased with 

increasing respiratory event duration. However, the difference between in- and post-event HRV 

parameter values decreased with increasing duration of the respiratory events. Furthermore, higher 

ultra-short-term HRV and a greater decrease in RR interval were observed in apneas and men. 

Based on the results, the duration and type of the respiratory events modulate the HR and ultra-

short-term HRV during and after the respiratory events, and these phenomena appear to be sex-

specific. Therefore, considering the characteristics of respiratory events and ultra-short-term HRV 

could be useful in OSA diagnostics when estimating the OSA-related cardiac consequences.                    

A scientific article based on the results of this thesis, Hietakoste et al. Longer apneas and hypopneas 

are associated with greater ultra-short-term HRV in OSA, has been submitted to a peer-reviewed 

scientific journal. 
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1. Introduction 

Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders affecting globally almost 

1 billion people according to the latest estimations [1]. OSA is diagnosed with the in-laboratory 

polysomnography (PSG), a gold-standard protocol that includes the recording of multiple biosignals, 

such as the electrocardiogram (ECG), respiratory signals (e.g. airflow via nasal pressure sensor), and 

the electroencephalogram (EEG, i.e. the electrical activity of the brain), or alternatively with 

ambulatory Home Sleep Apnea Test (HSAT) including a limited number of signals [2]. ECG is 

standardly recorded during the PSG, and it would be easily implemented in the HSAT. However, ECG 

or heart rate variability (HRV) parameters are not systematically utilized in current clinical practice 

related to diagnostics of OSA. The suitability of the ultra-short-term (< 5 min) ECG measurements 

has been studied for clinical HRV assessment [3, 4], although long-term (~ 24 h) and short-term (~5 

min) analyses are considered to be the most suitable options for assessing HRV clinically [3, 5]. 

HRV is the interbeat variation of the heartbeats, i.e. variation of the RR intervals, caused by neuro-

cardiac interactions and the autonomic nervous system (ANS) [3]. The ANS is divided into the 

sympathetic and the parasympathetic nervous systems (SNS and PNS). They operate together to 

maintain the homeostasis: normally, stress causes rapid SNS activation (e.g. fight-or-flight response) 

whereas the PNS is dominant at rest [6, 7]. Elevated SNS activity is related to shorter RR intervals 

and thus reduced long-term HRV in a healthy person, whereas longer RR intervals and higher long-

term HRV reflect higher PNS activity [7]. During sleep, the sleep stages cause natural variation within 

the proportion of SNS and PNS activities [8]. 

In OSA, abnormal respiratory events, i.e. apneas and hypopneas, lead to intermittent hypoxemia, 

hypercapnia, pressure swings within the thorax, and recurrent arousals causing excess SNS 

activation and therefore reduced long-term HRV [9–11]. Moreover, elevated SNS activity can cause 

increased oxidative stress and vascular dysfunction [11] leading to possible structural and electrical 

cardiac remodeling [12]. Therefore, increased SNS activity elevates the risk of cardiovascular 

diseases, e.g. cardiac arrhythmias [11], stroke [13], and hypertension [14] in OSA patients. 

Decreased long-term HRV has been observed in OSA patients, even during the daytime, [15, 16] and 

RR intervals have been shown to shorten with increasing OSA severity [17]. Previously, Sola-Soler et 

al. [18] showed in their study of eight patients that RR intervals shorten more after longer apneas. 
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However, larger and more comprehensive studies are required to study the connection between 

respiratory event duration and HRV. It has been shown that apnea-related oxygen desaturations are 

more severe when compared to those of hypopneas [19], and deeper desaturations are associated 

with a higher risk of cardiovascular diseases [20, 21]. Yet, it has remained uncharacterized how HRV 

is affected by the type of respiratory event. Furthermore, differences related to sex should be 

considered in HRV studies within OSA patients. While men have a higher risk for cardiovascular 

diseases, they have significantly higher long-term HRV and lower parasympathetic input to cardiac 

regulation compared to age-matched women [22]. In addition, OSA is more prevalent in men 

compared to women [23, 24] and men tend to have more severe OSA with longer respiratory events 

[10]. Moreover, study populations include markedly more or only men as subjects when 

investigating the connection between OSA and HRV [16].  

This Master thesis aimed to study whether the respiratory event type and duration modulate the 

changes in RR interval within and after respiratory events and the ultra-short-term HRV and whether 

these modulations are sex-dependent. These aims were addressed by analyzing ECG recordings of 

862 suspected OSA patients and comparing the time-domain HRV parameters between apneas and 

hypopneas, between respiratory events of different durations, and between men and women. This 

thesis hypothesized that ultra-short-term HRV increases as the duration of respiratory events 

increases due to pronounced RR interval prolonging during and shortening after apneas and 

hypopneas. It was also hypothesized that apneas would cause higher HRV and that these 

phenomena are stronger in men compared to women. Based on the results of this thesis, a scientific 

article, Hietakoste et al. Longer apneas and hypopneas are associated with greater ultra-short-term 

HRV in OSA, has been submitted to a peer-reviewed scientific journal. 
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2. Obstructive sleep apnea (OSA) 

OSA is one of the most common sleep disorders. OSA patients suffer from complete or partial 

nocturnal breathing disruptions. A complete breathing cessation is called an apnea: the respiratory 

airflow decreases ≥ 90 % from the baseline for ≥ 10 s [2, 25]. If the respiratory airflow decreases        

≥ 30 % for ≥ 10 s and there is arousal or ≥ a 3 % drop in oxygen desaturation related to the respiratory 

event, the event is called a hypopnea [2, 25]. Earlier, the respiratory event was defined as a 

hypopnea if there was ≥ a 4 % drop in oxygen desaturation [26].  Respiratory events lead to 

intermittent oxygen desaturations, arousals from sleep, and other physiological consequences [10, 

27]. Intermittent desaturations activate the sympathetic nervous system (SNS) repeatedly [9, 28] 

and arousals cause sleep fragmentation [28, 29]. Due to these factors, OSA patients have excessive 

daytime sleepiness (EDS) and impaired vigilance increasing the risk for traffic accidents and 

importantly, have elevated risk for cardiovascular diseases [28–30].  

The diagnostic criteria of OSA rely on guidelines of the American Academy of Sleep Medicine (AASM) 

[2]. The current clinical parameter used to assess the severity of OSA and the necessity of treatment 

is the apnea-hypopnea index (AHI), which is solely based on the number of apnea and hypopnea 

events per hour of sleep [2]. Based on the AHI, patients are classified into four different OSA severity 

groups: no-OSA (AHI < 5), mild OSA (5 ≤ AHI < 15), moderate OSA (15 ≤ AHI < 30) and severe OSA 

(AHI ≥ 30) [2, 25]. Albeit AHI is the most commonly used parameter in OSA diagnostics, it is 

insufficient parameter alone in OSA severity assessment since it does not consider the duration of 

respiratory events, the severity of the associated blood oxygen desaturation events, or physiological 

changes that respiratory events may cause [31, 32]. 

 

2.1. Epidemiology and economic burden of OSA 

The estimated prevalence of OSA varies greatly depending on the used diagnostic methods and the 

criteria for hypopneas [25, 33]. In Finland, at least 300 000 adults suffer from OSA [34], but it has 

been estimated that the number of OSA patients (AHI ≥ 5) may be up to 1.5 million [1]. Senaratna 

et al. [35] reported that the global prevalence of OSA (AHI ≥ 5) in the adult population is 9 – 38 % 

and 6 – 17 % adult population suffer from moderate or severe OSA (AHI ≥ 15). The prevalence of 

OSA increases with age and obesity [23, 35, 36], and the most recent estimation is that globally 

almost 1 billion people are affected by OSA [1]. OSA is more common in men compared to women 
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[10, 23], but the probability of getting OSA increases in women after menopause [37]. For example, 

Heinzer et al. [24] have shown that 49.7 % of men have severe or moderate OSA whereas the 

prevalence in women was only 23.4 %. The prevalence of OSA has increased over time most likely 

due to increased obesity [38, 39], and approximately 70 % of the population diagnosed with OSA 

are obese [40]. Despite the awareness of OSA has increased in the last decades it is an 

underdiagnosed disease: it has been estimated that over 80 % of the population with OSA are still 

undiagnosed [41]. 

The consequences of undiagnosed OSA, losses in both economic and well-being, are extensive. As 

OSA remains untreated, the risk for comorbidities and daytime sleepiness increases in OSA patients 

leading to an elevated risk for motor vehicle and workplace accidents and losses in productivity [30, 

42]. Frost & Sullivan [30] has estimated that the costs of diagnosis and treatment of OSA are 

approximately $ 2 100 per patient whereas the cost burden of undiagnosed OSA can be up to                

$ 6 400 per patient due to comorbidities, accidents and lost productivity. Hillman et al. [42] have 

estimated that the total burden of financial and nonfinancial costs of patients with inadequate sleep 

was approximately $ 25.41 billion in Australia between 2016 – 2017. Inadequate sleep of these 

patients was due to sleep disorders such as OSA. Within the same patients, the number of lost years 

of healthy life due to a disability or premature death was approximately 173 000 in 2016 – 2017. 

Albeit these estimates are large, they may still underestimate the economic burden of OSA and 

inadequate sleep [42].  

 

2.2. Pathophysiology and risk factors 

The pathophysiology of OSA is highly individual and several factors contribute to it, including for 

example abnormal anatomy of the pharynx, increased adipose tissue around upper airways, 

impaired physiology of muscles and nerves of upper airways, and decreased arousability [27, 29]. 

Especially the impaired function of genioglossus muscle predisposes to obstructions of the upper 

airways [43, 44]. Upper airways remain open during wakefulness due to higher activity of airway 

dilatator muscles, but during the sleep, the airways are more prone to collapsing due to decreased 

muscle activity [27]. 

The pharynx is a complex anatomic structure of muscles and other soft tissues: it participates in 

speech production, swallowing and it protects the lower airways from pathogens [29, 45]. It does 
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not have a rigid or bony supporting structure: upper airways are momentarily able to close and 

change shape voluntarily for example during speech and swallowing, but this also allows the airways 

to collapse involuntarily during sleep [29]. The pharynx is divided into three parts: nasopharynx, 

oropharynx, and laryngopharynx, of which oropharynx is the most prone to obstructions [43, 45]. 

Moreover, OSA patients tend to have a smaller cross-sectional area of the upper airways [45, 46], 

and narrower airways collapse more easily than wider [29].  

The cortical arousal from sleep is a reflex mechanism to protect the body from hypercapnia (i.e. 

excess carbon dioxide in the blood) due to upper airway obstruction [47]. The muscles of the 

pharynx activate quickly due to arousal to open the airways and recover the breathing to its normal 

level leading to normalization of respiratory gas levels in blood [28, 29]. Low arousal threshold is 

beneficial for the recovery of oxygen desaturation and muscle activity, but it may amplify the cyclical 

breathing pattern during sleep thus fragmenting sleep and leading to EDS [29, 47]. 

Obesity is one of the biggest risk factors for OSA [28, 35, 48], yet it is also a significant factor in OSA 

pathophysiology [41]. Excess adipose tissue deposits around the upper airways decrease the cross-

sectional area of the airways making it more prone to collapse and it has been shown to impair the 

function of airway dilatator muscles [49]. Moreover, increased adipose tissue deposit in the 

abdominal area decreases the lung volume leading to deeper oxygen desaturations during apneas 

and hypopneas [28, 29]. Therefore, weight loss has been shown to decrease the severity of OSA and 

the number of respiratory events in OSA patients [49, 50]. In addition, obesity is a risk factor for 

cardiovascular diseases and type 2 diabetes mellitus, which both are significant risk factors for OSA 

[40]. 

Other risk factors for OSA are male sex, older age, and smoking. OSA is shown to be more prevalent 

in men compared to women, most likely due to differences in anatomy, the activity of soft tissues 

and muscles of upper airways, and in hormonal regulation of breathing [51, 52]. However, the 

prevalence of OSA in women increases after menopause [37, 53] supporting the theory of hormonal 

effects on differences in OSA prevalence between men and women. The impairment in upper airway 

muscles and the changes in soft tissues due to decreased collagen production are thought to be the 

reason why higher age is a risk factor for OSA: elasticity of the soft tissues decreases with age leading 

to the higher probability of upper airway collapses [27, 54]. It has also been noticed that the adipose 

tissue increases around the upper airway with aging despite the systemic fat [29]. Smoking has also 
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a significant effect on the pathophysiology of OSA. Smokers have markedly increased risk for OSA, 

most likely due to inflammatory states of upper airways caused by smoking and due to restless sleep 

[55, 56]. 

The prevalence and severity of respiratory events are also dependent on the sleep stage and 

sleeping position. Sleep stages are divided into two categories: NREM (non-rapid eye movement) 

and REM (rapid eye movement). NREM is further divided into two stages of light sleep (N1 and N2) 

and into one stage of deep sleep (N3) [2]. In NREM, the physiological processes and the electrical 

functioning of the brains slow down towards deeper sleep stages [57]. In REM, the activity of SNS 

increases leading to increased blood pressure, HR, and electrical activity of the brain [57]. 

Respiratory events are more frequent, and they are usually longer in REM sleep compared to NREM 

leading to deeper oxygen desaturations during respiratory events [29, 51, 58]. The proportion of 

REM sleep, and thus the number and duration of respiratory events increases towards the morning 

[59, 60]. Similarly, respiratory events in the supine sleeping position are more frequent and longer 

compared to events in the non-supine sleeping position [61].  

 

2.3. Symptoms  

OSA is characterized by several symptoms that can be divided into daytime and nocturnal symptoms 

(Table 2.1). The most common daytime symptom of OSA is excessive daytime sleepiness (EDS) [51, 

62, 63]: approximately 15 – 42 % of OSA patients suffer from it [64]. EDS is caused by sleep 

fragmentation and hypoxemia. The sleep fragmentation prevents the brain from falling into an 

undisturbed deep sleep due to intermittent SNS activations caused by arousals [28, 29]. 

Furthermore, the nocturnal respiratory events cause oxygen desaturations and further hypoxemia 

leading to activation of the SNS even without arousals [65]. Together, sleep fragmentation and 

hypoxemia increase the physiological stress of the body. EDS can be experienced as fatigue or 

exhaustion, not necessarily as sleepiness, which makes it harder to recognize and interpret the EDS 

[66, 67]. Moreover, EDS can impair cognitive performance with other factors [51, 68] leading 

potentially to several mood disorders and memory problems [68, 69]. Headache after awakening is 

also a typical symptom of OSA: at least 18 – 29 % of patients suffer from it [70] although some 

studies have estimated the prevalence to be over 45 % [71]. For example, the nocturnal variation of 



12 
 

blood oxygen saturation and excess carbon dioxide due to respiratory events are thought to be the 

reason for OSA related headaches [71–73]. 

 

Table 2.1. Common daytime and nocturnal symptoms of OSA [51]. 
 

Daytime Prevalence (%) Nocturnal Prevalence (%) 

Excessive sleepiness 15 – 42 [64] Snoring 70 – 95 [64] 

Involuntary periods of sleep 23 – 29 [64] Sweating 50 [64] 

Headache 18 – 29 [70] Nocturia 28 [64] 

Memory problems 66 [67, 68] Heartburn 54 – 76 [74] 

Concentration problems 78 [67, 68] Dry mouth 74 [64] 

Mood disorders 7 – 70 [69, 70]  Insomnia 28 – 59 [75] 

Impotence 30 [64] 
Awakening accompanied by 
choking 

18 – 31 [64] 

OSA = Obstructive sleep apnea 

 

The most prevalent nocturnal symptom of OSA is snoring [51, 62, 76]. Most of the snorers suffer 

from OSA, yet snoring is not always a symptom of OSA and every OSA patient does not snore [51, 

77, 78]. Over 70 % of OSA patients are snorers [64] and the prevalence of the snoring as an OSA 

symptom has been estimated to be even up to 95 % [64]. Snoring is caused by a partial obstruction 

of upper airways in the area of the oropharynx and it occurs mostly in the supine sleeping position 

[56]. Another common nocturnal symptom is sweating: approximately half of OSA patients suffer 

from it [64] and the prevalence of night sweats is 3-fold in OSA patients compared to the healthy 

population [79]. Night sweats are most likely caused by elevated SNS activity [80] due to 

intermittent hypoxemia. In addition to snoring and night sweats, dry mouth and insomnia are 

common symptoms in OSA patients. Dry mouth is associated with decreased salivation, but the 

more probable reason for dry mouth is sleeping mouth open [64, 81]. Patients with severe OSA are 

shown to report mouth dryness more often compared to patients with mild OSA [81]. As for 

insomnia, arousal from sleep and SNS activation may increase alertness and prevent OSA patients 

to fall asleep again [75]. It has been proposed that insomnia increases the severity of OSA and those 

patients experience often symptoms of mood disorders such as anxiety and depression [82]. 
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2.4. Comorbidities 

OSA patients are often multimorbid [27, 83]: some of the comorbidities are caused by OSA risk 

factors, e.g. obesity, whereas some may be caused directly by respiratory events and their 

consequences [27, 51]. Long follow-up studies have shown that risk for sudden death is significantly 

increased in OSA patients [84, 85]. Young et al. [85] have shown that even after the removal of 

factors elevating the risk of sudden death, such as age and obesity, the mortality was nearly 4-fold 

during an 18-year follow-up period in patients with untreated severe OSA compared to patients 

without OSA. Therefore, untreated OSA is strongly associated with an increased probability of 

sudden deaths [85]. Punjabi et al. have shown similar results: in OSA, the risk for all-cause mortality 

is elevated especially in men aged 40 – 70 years [86]. 

Several comorbidities of OSA are among cardiovascular diseases (Table 2.2). The respiratory events, 

apneas, and hypopneas lead to oxygen desaturations and further intermittent activations of SNS [9–

11]: this burdens the circulatory and neurohormonal regulatory systems [87]. When the patient tries 

to breathe despite the obstructed airways the negative intrathoracic pressure increases leading 

possibly to vasoconstriction of thoracic blood vessels [11, 65]. Therefore, OSA patients have an 

elevated risk of heart failure [65, 88]. Arousals and further increased SNS activity affect the 

regulation of the circulatory system and blood pressure [65]. Nocturnal blood pressure and HR 

cannot return to their normal levels due to increased SNS activity, and this is thought to be the most 

likely reason for increased numbers of hypertensive OSA patients compared to healthy controls [24, 

89]. It has been shown that OSA patients have over 6-fold risk to develop hypertension, and even 

after considering the effect of obesity, age, and smoking, the risk is over 2-fold [24, 90]. OSA patients 

have also markedly increased risk for arrhythmias due to increased hypoxemia-induced pulmonary 

hypertension, negative intrathoracic pressure, and sympathetic tone [11, 91]: the risk for 

arrhythmias is increased nearly an 18-fold shortly after individual respiratory events [92]. 
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2.5. Diagnostics 

The diagnostics of OSA is currently based on clinical sleep studies and the interviews of the 

suspected patient and possible living companion. Interviews survey the clinical picture of symptoms 

(e.g. EDS, snoring) and risk factors (e.g. obesity, smoking), and based on the interview, the patient 

is referred to a clinical sleep study [51]. A gold standard for clinical diagnostics of OSA is the in-

laboratory polysomnography (PSG) being more thorough, but in some countries, such as in Finland, 

the home sleep apnea test (HSAT) is more often used due to its better accessibility and cost-

effectiveness [51, 98].  

PSG is conducted at the hospital or in a sleep laboratory. It records the electrical activity of the brain 

and heart, oxygen saturation of the blood, movement of the eyes and legs, breathing, sleeping 

position, and snoring [2, 83, 99]. Electroencephalography (EEG) is used to assess the electrical 

activity of the brain and identify the sleep stages [2]. The electrical function of the heart is measured 

with the electrocardiogram (ECG) and pulse oximetry is used for determining the blood oxygen 

saturation. The movement of the eyes and facial (chin) muscles are measured with electro-

oculography (EOG) and electromyography (EMG), respectively. Breathing during apneas is assessed 

with measuring the respiratory airflow with the thermistor and during hypopneas with the nasal 

pressure sensor [2]. Moreover, breathing is assessed by measuring the movement due to breathing 

with respiratory belts around the thorax and diaphragm [2]. The type of apnea can be determined 

with analysis of breathing movements: the respiratory movement continues through obstructive 

apnea but in central apnea, they stop [2]. Mixed apneas contain characteristics of both types starting 

usually as central and turning into obstructive apneas [2]. Sleeping position is determined with 

Table 2.2. Prevalent comorbidities of OSA patients and their relative 
risks compared to non-OSA patients. 

Comorbidity Relative risk 

Hypertension 1.6 – 6.8 [24, 89, 90] 

Coronary artery disease 4.6 [93] 

Atrial fibrillation 2.2 – 4.0 [94, 95]  

Stroke 2.0 – 4.0 [13, 96] 

Heart failure 2.0 – 2.4 [88, 97] 

Diabetes mellitus, type 2 2.0 [24] 

OSA = Obstructive sleep apnea  
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accelerometer and snoring is registered either by audio recording or by registering the vibrations 

due to snoring with a piezoelectric sensor. Moreover, video recording is used to assess visually the 

restless sleep and awakenings. 

In addition to PSG, HSAT is a clinically approved method for OSA diagnostics. It is conducted usually 

at the home of the suspected patient making HSAT more cost-effective and comfortable compared 

to PSG conducted at the hospital [98–100]. HSAT differs from PSG by the number of recorded 

signals: neither EEG, EOG, nor EMG are recorded during HSAT [2]. Therefore, it is not possible to 

determine the total sleep time or the sleep stages based on HSAT, and e.g. total sleep time must be 

estimated from the other signals. Due to lack of EEG recording, arousals, or hypopneas related to 

them cannot be recognized in HSAT [98]: the severity of OSA may be underestimated using HSAT 

[33, 98]. Despite the potential differences in OSA severity between diagnostic methods, HSAT is 

precise enough as a method for OSA diagnostics and it can be safely used instead of PSG [98]. 

However, HSAT is not suitable for all OSA patients, and therefore, PSG is recommended as a primary 

diagnostic method for OSA patients with e.g. severe insomnia, movement disorders related to sleep, 

or severe cardiorespiratory disease [100]. 

Using PSG, the OSA diagnosis is made based on the apnea-hypopnea index (AHI), the number of 

respiratory events per hour of sleep (2.1). The oxygen desaturation index (ODI), the number of 

desaturations per hour of sleep (2.2), may be used in addition to AHI [2]. When HSAT is used, the 

diagnosis is based on respiratory event index (REI), the number of respiratory events per hour of 

recording (2.3), due to lack of the EEG. 

𝐴𝐻𝐼 =
𝑛𝑎 + 𝑛ℎ

𝑡𝑠
, [ℎ−1] 

𝑂𝐷𝐼 =
𝑛𝑑

𝑡𝑠
, [ℎ−1] 

𝑅𝐸𝐼 =
𝑛𝑎 + 𝑛ℎ

𝑡𝑚
, [ℎ−1] 

in which 𝑛𝑎, 𝑛ℎ, and 𝑛𝑑 are the total numbers of apneas, hypopneas, and oxygen desaturations, 

respectively. 𝑡𝑠 and 𝑡𝑚 are the total sleep time and total monitoring time, respectively, both usually 

expressed as hours. The AHI is the most used from these parameters and it is used for the 

assessment of the OSA severity [25, 99]. It has been recommended that the severity of EDS should 

be included in the assessment of OSA severity in addition to AHI, and the final severity categorization 

(2.1) 

 

(2.2) 

 

(2.3) 
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should be chosen by the more severe parameter (Table 2.3) [25]. The problem with AHI, ODI, and 

REI is that they do not consider the severity of individual respiratory events or their physiological 

consequences. For example, an apnea lasting 10 seconds is considered to affect AHI, ODI, and REI 

similarly as a 60-second apnea. The duration of respiratory events has been shown to vary within 

patients with similar AHI [101], and longer respiratory events lead to deeper oxygen desaturations 

[19]. Moreover, patients with severe OSA have been shown to have longer respiratory events 

compared to patients with mild or moderate OSA, but paradoxically, the AHI cannot increase along 

with the increasing respiratory event duration [101].   

 

2.6. Treatment 

The most common treatment method is continuous positive airway pressure (CPAP) treatment [27, 

83]. CPAP machine includes an external air pump, hose, and nasal mask. With the CPAP machine, a 

continuous airflow is produced into the airway of the patient preventing the obstructions of the 

upper airways [102, 103]. CPAP treatment helps to reduce the symptoms of OSA even after first 

nights of treatment: it effectively decreases the number of respiratory events decreasing for 

example the snoring and EDS [62, 103]. CPAP treatment does not necessarily reduce the risk for 

cardiovascular diseases but it decreases hypertension in OSA patients [104, 105]. CPAP treatment is 

mainly used for patients with moderate and severe OSA (AHI > 15) [51], but this is an arbitrary 

decision of the healthcare professionals; CPAP treatment has shown to increase the quality of life 

Table 2.3. Assessment of OSA severity based on AHI and EDS [25]. 

Severity AHI EDS 

Mild 5 ≤ AHI < 15 
Unwanted sleepiness and/or involuntary sleep episodes occurring during 
activities requiring little attention. Symptoms produce minor occupational 
or social function impairment. 

Moderate 15 ≤ AHI < 30 
Unwanted sleepiness and/or involuntary sleep episodes occurring during 
activities requiring some attention. Symptoms produce moderate 
occupational or social function impairment. 

Severe AHI ≥ 30 
Unwanted sleepiness and/or involuntary sleep episodes occurring during 
activities requiring active attention. Symptoms produce major 
occupational or social function impairment. 

OSA = Obstructive sleep apnea, AHI = Apnea-hypopnea index, EDS = Excessive daytime sleepiness 
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of patients with mild OSA in addition to patients with moderate or severe OSA [106]. CPAP 

treatment adherence is relatively low: only 60 – 70 % of patients commit to CPAP therapy [27]. Low 

adherence level to treatment may be due to discomfort of the mask [62, 103] and some patients 

also suffer from dryness of nose and mouth and allergic reactions. Alternative treatments for 

patients to who CPAP is not suitable are bilevel positive airway pressure (BiPAP) and auto-titrating 

positive airway pressure (APAP) [27, 107]. The difference of BiPAP to CPAP therapy is adjusted 

positive pressure instead of continuous pressure: the machine adjusts the pressure according to 

inspiration and expiration. BiPAP may be preferred if the patient has expiratory pressure discomfort 

[27]. In APAP, the positive pressure is varied based on, for example, sleep stage or sleeping position 

[27].  

Weight loss and long-term changes in living habits are essential in the treatment of OSA, especially 

for obese patients [51, 62]. Weight loss has been shown to decrease the number of respiratory 

events, especially short apneas and hypopneas, and thus reduce the severity of OSA [102, 108]: even 

3 – 18 % weight loss can reduce the AHI over 60 % [109]. Moreover, weight loss can decrease the 

effects of OSA risk factors and may even prevent the occurrence of comorbidities [103, 109]. 

Positional sleep apnea can be treated with conservative positional treatment that prevents the OSA 

patient from sleeping in a supine position in which respiratory events are more frequent [61, 62]. 

Options for positional therapy are, for example, a tennis ball attached to the back of the nightwear, 

a pillow under the back, or a sleep apnea belt. Mild OSA can be treated with oral devices that move 

the jaw of the patient forward making the upper airways wider and thus preventing the obstructions 

and snoring [27]. Moreover, a variety of surgical operations can be used to widen the upper airways 

and thus preventing respiratory events [110]. These operations may be chosen over other therapies 

for example due to abnormal anatomy of upper airways.  
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3. Heart rate variability (HRV) 

Seemingly steady resting heart rate of a healthy subject is naturally highly irregular due to 

continuous regulation by neuro-cardiac interactions. This beat-to-beat variation is called heart rate 

variability (HRV). It is a useful, non-invasive tool for assessment of the autonomic regulation of 

cardiac functions [111]. HRV is regulated via the autonomic nervous system (ANS). HRV can be 

divided into three categories based on the time interval used to determine the HRV. The period 

used to measure long-term HRV varies from hours to days, but usually, it is measured with 24 h 

Holter-ECG [3]. Short-term HRV measurements last for approximately 5 minutes whereas HRV 

measurements lasting << 5 minutes are called ultra-short-term HRV [3]. Long-term and short-term 

recordings are the recommended HRV measurements. Yet, the ultra-short-term measurements 

have shown promise in HRV analysis [3, 4]. HRVs of different time-interval, for example, long-term 

and short-term HRV, are not interchangeable, and thus they cannot reliably be compared to each 

other [3]. 

 

3.1. Autonomic nervous system 

ANS is the most important system regulating HRV. It cannot be affected directly with voluntary 

actions, but these actions can affect the activity of ANS indirectly. ANS is regulated by the medulla 

of the brainstem, limbic system, and hypothalamus, from which medulla regulates breathing and 

the functioning of the heart and vascular system [80]. ANS is divided into sympathetic and 

parasympathetic nervous systems (SNS and PNS, respectively) and enteric division. The enteric 

division can function independently, but it is mainly controlled by SNS and PNS [80]. Typically, the 

homeostasis of viscera is controlled by both SNS and PNS while they usually regulate the viscera in 

a contradictory manner [7, 80, 111]. For example, SNS increases the heart rate (HR) whereas PNS 

decreases it. The functioning of the target organ is determined by the balance of the SNS and PNS 

activities.  

SNS is mainly activated through physical activity and stress [80]. Sympathetic activation can lead 

either to massive, non-specific or discrete, organ-specific responses. Strong SNS activation prepares 

the body for stressful situations via survival mechanism, the flight-or-fight response, by activating 

several body functions simultaneously. For example, increased SNS activity leads to increased blood 
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pressure, and sweating, increased blood glucose levels and decreased insulin secretion, increased 

blood circulation in skeletal muscles, and decreased gastrointestinal activity (Table 3.1) [80]. 

Moreover, increased SNS activity increases HR due to the increased release of noradrenaline in 

sympathetic synapses [80, 111]. This also increases the conduction velocity of neural impulses in the 

conduction system of the heart and thus increases the contractility of the heart [80, 111]. Increased 

HR leads to decreased long-term HRV, that is associated with several morbidities and all-cause 

mortality, such as OSA, hypertension, coronary artery disease, diabetes mellitus, heart failure, and 

myocardial infarction [7, 15, 112] most likely due to increased relative SNS activity and reduced 

regulatory capacity [7, 111]. SNS regulates HR effectively in frequencies below 0.10 Hz [5] and exerts 

its effects relatively slowly, in 5 – 30 seconds, due to slow reabsorption and metabolization of 

noradrenaline [111, 113]. All sympathetic neurons emerge from the thoracic and upper lumbar 

spinal cord (T1 – L3) [80]. 

 

 

While SNS activates due to stress, PNS is dominant at rest leading to a resting HR of approximately 

75 beats per minute (bpm) [7, 80]. Opposing SNS, PNS acts only organ-specifically mediating reflexes 

to the target organs [80]. For example, PNS increases the gastrointestinal activity, stimulates 

digestion, constricts airways, and slows the HR (Table 3.1) [80]. The slowing of HR is mediated 

through the excretion of acetylcholine in parasympathetic synapses [80, 111]. Acetylcholine 

Table 3.1. The physiological effects of sympathetic and parasympathetic nervous systems 
(SNS and PNS, respectively) on the viscera [80, 114]. 

 

Target organ SNS PNS 

Heart 
Heart rate increases 

Contraction force increases 
Heart rate decreases 

Lungs Dilates bronchi Constricts bronchi 

Eyes Dilates pupils Constricts pupils 

Sweat glands Increases sweating  

Stomach Inhibits digestion Stimulates digestion 

Liver 
Stimulates the production and 

release of glucose 
 

Intestines Inhibits peristalsis Stimulates peristalsis 

Urinary bladder Relaxes the bladder Contracts the bladder 
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decreases the conduction velocity of neural impulses in the conduction system of the heart leading 

to decreased HR and increased HRV [80] and further reflecting normal regulatory capacity [7, 111]. 

Acetylcholine has a very short latency period and thus the effects of PNS are almost immediate          

(< 1 s) [111, 113]. This enables PNS to regulate HR on a beat-to-beat basis in a frequency range of   

0 – 0.5 Hz [5]. Parasympathetic neurons controlling vital functions, such as breathing and the 

functioning of the heart, emerge from the medulla via the tenth cranial nerve (CN X, nervus vagus) 

[80].  

 

3.2. Heart and HRV 

The human heart is a muscular pump consisting of two atria and two ventricles and weighing 250 – 

350 grams (Figure 3.1, based on [114]) [7]. Oxygenated blood flows through the left atrium to the 

left ventricle and is pumped from there the aorta and further systemic circulation [80, 114]. On the 

left side of the heart, the atrioventricular valve (mitral valve) prevents the blood flowing from the 

ventricle to the atrium, and aortic valve prevents the blood from returning to the ventricle [114]. 

Deoxygenated blood flows through the right atrium and is pumped from the right ventricle to the 

pulmonary circulation [80, 114]. The tricuspid valve prevents deoxygenated blood from flowing back 

to the right atrium from the right ventricle and the pulmonary valve stops the blood returning to 

the right ventricle [114].  

The main components of the conductive system of the heart are the sinoatrial (SA) and 

atrioventricular (AV) nodes, the bundle of His, and the Purkinje fibers (Figure 3.2, based on [80]) [80, 

114]. The pacemaker of the heart, SA node in the right atrium, generates action potentials 

spontaneously causing also the AV node to fire action potentials [7, 80, 114]. This leads to 

depolarization and thus contraction of the atria. The action potentials of the AV node are conducted 

through the bundle of His to the upper septum of the heart [80, 114]. From there the action 

potentials are conducted to the ventricular myocardium via Purkinje fibers leading to the 

depolarization and further contraction of the ventricles [7, 80]. Without the cardiac regulation by 

the ANS and hormonal activity, the intrinsic HR initiated by the SA node can be over 100 bpm, but 

the average HR is approximately 75 bpm mostly due to PNS activity [80, 115]. 
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The electrical activity of the heart, and thus HR, is measured with ECG. Standard ECG is measured 

with 12 leads, but for example in OSA diagnostics lead II is used as a standard ECG [2]. The movement 

of action potentials through the cardiac myocytes generate small extracellular electrical signals, and 

thus the electrical field produced by the cardiac function can be measured as a potential difference 

with electrodes attached to the skin. Normal ECG can be divided into P, Q, R, S, and T waves [80, 

114]. The depolarization of the atrial myocardium produces the P wave, whereas the QRS complex 

and T wave represent the de- and repolarization of the ventricular myocardium, respectively   

(Figure 3.3, based on [80]) [80]. According to the established practice, the high R wave, or R peak, is 

used to determine the HR. HRV is defined as the variation of successive heartbeats, i.e. interbeat 

intervals [111]. HRV can be also obtained from the pulses of the photoplethysmography (PPG) signal 

recorded with a pulse oximeter [7].  

Figure 3.1. The physiology of the heart. The blood is pumped from the atria to ventricles from where it is pumped 

to the aorta and pulmonary arteries. Arrows indicate the direction of the blood flow.  
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Figure 3.3. Schematic shape of one heartbeat in ECG. The depolarization of atria produces the P wave, the 

depolarization of ventricles generates the QRS complex and T wave is produced by the repolarization of the 

ventricles. Shapes and amplitudes of the waves vary between individuals and are also modulated by the lead used 

to record the ECG. 

 

Figure 3.2. The conductive system of the heart. The pacemaker of the heart, the sinoatrial node, produces action 

potentials spontaneously exciting the atrioventricular node. They make atria to depolarize. Action potentials are 

conducted from atria via bundle of His and further Purkinje fibers to the ventricular myocardium causing the 

ventricles to depolarize. Arrows represent the direction of the electrical signal conduction.  
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R peak detection 

One of the several R peak detection methods is the Pan-Tompkins method [116]. At the first step of 

signal preprocessing, the detrended ECG signal is bandpass filtered (5 – 15 Hz) to suppress noise and 

power-line interference. Next, the derivative filter is applied to amplify the QRS complex and 

suppress the P and T waves. Third, the signal is squared. Squaring further amplifies the QRS complex 

and suppresses P and T waves. As the last operation of the signal processing, the moving window 

integrator smoothes the squared signal. The Pan-Tompkins algorithm detects the peaks of the 

signal, i.e. the points where the increasing signal changes its direction to decrease, from the 

integrated signal. After the detected beat there is about 200 ms physiological refractory period 

during which the ventricular depolarization cannot occur. Each detected peak is considered as a QRS 

complex, and to reduce the number of false QRS complexes, the dual thresholding is used to decide 

if the detected peak an actual QRS complex or noise. If the detected peak amplitude is under the 

first threshold, the noise level is updated. If the amplitude is greater than the second threshold, the 

detected peak is compared to the bandpass filtered signal to confirm a true QRS complex. The 

algorithm also searches the missed QRS complexes if there is no detected QRS complex within a 

period of 166 % of the mean RR interval. There is a possibility that some of the T waves are detected 

as QRS complexes. If there is a detected peak within 160 ms after the refractory period, it is 

evaluated if the peak is T wave. If the slope of the detected peak is less than half of the previous 

slope of the QRS complex, the peak is considered as a T wave and it is discarded. The detected QRS 

complexes are then used for HR determination and further HRV analyses. 

 

3.3. HRV parameters  

There are several methods for HRV assessment from which time-domain and frequency-domain 

measurements are the most used. Time-domain measurements assess the temporal changes in HR. 

Time-domain measurements can be used for all long-, short-, and ultra-short-term HRV analyses, 

yet the long-term Holter ECG analysis is recommended [3, 5, 117]. In time-domain measurements, 

HRV is determined by measuring the variation of RR intervals. Typical time-domain parameters 

(Table 3.2) are the mean RR interval (3.1), number of adjacent RR intervals differing more than          

50 ms (RR50), the proportion of the number of adjacent RR intervals differing more than 50 ms to 

the total number of RR intervals (pRR50, 3.2), standard deviation (SD) of RR intervals (3.3), and root 
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mean square of successive differences (RMSSD, 3.4), [3, 5]. PNS and SNS contribute to SD that 

estimates the total variation of RR intervals [3]. It is the gold standard for cardiac risk assessment 

during long-term measurements, and reduced SD values predict morbidity and mortality [3]. RMSSD 

is used to assess the vagal effects on HRV [3].  

𝑅𝑅𝑎𝑣 =  
∑ 𝑅𝑅𝑖
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where 𝑅𝑅 is RR interval, 𝑅𝑅𝑎𝑣 is the mean RR interval, 𝑁 is the number of the RR intervals, and 

𝑛𝑅𝑅50 is the number of the successive RR intervals differing > 50 ms from each other. Time-domain 

parameters are often expressed as milliseconds. 

Frequency-domain measurements (Table 3.2) are used to assess the dynamic changes in HR and 

estimate the activities of SNS and PNS. Short-term HRV measurements are preferred with 

frequency-domain analysis [5, 117]: more accurate results can be obtained with short-term analysis 

due to the ectopic beats, a greater number of artifacts, and non-stationary behavior of HR in long-

term recordings [111]. However, very-low-frequency oscillations of HR may not be detected with 

short-term measurements [117]. Power spectral density is calculated from the HRV signal and it can 

be divided into four spectral ranges: ultra-low-frequency (ULF) < 0.003 Hz, very-low-frequency (VLF) 

< 0.04 Hz, low-frequency (LF) 0.04 – 0.15 Hz and high-frequency (HF) 0.15 – 0.4 Hz [3, 5]. The HF 

power reflects the PNS activity and therefore is highly correlated with RMSSD and pRR50 [3, 118]. 

HF range requires a minimum of 1 minute to be measured [3]. The interpretation of LF power is 

more complicated since it may be affected primarily by the PNS, by blood pressure regulation, or by 

the PNS, SNS, and blood pressure regulation together [3, 118]. Thermo- and hormonal regulation 

are usually the reasons for the variability within VLF power and the circadian rhythms are one 

probable driver of changes in ULF power requiring long-term measurements [3, 119]. The relative 

(3.1) 

 

(3.2) 

 

 

(3.3) 

 

 

(3.4) 
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activities of SNS and PNS, i.e. sympathovagal balance, can be estimated with the relation of the LF 

and HF powers (LF/HF): high LF/HF implies the dominance of SNS whereas low LF/HF can be 

interpreted as increased PNS activity [3]. 

Table 3.2. Time- and frequency-domain HRV parameters. 
 

Time-domain Frequency-domain 

RRAV [ms] Used for HR calculation TP [ms2] Total variation in RR intervals 

RR50 Estimation of HF HR oscillations ULF [ms2] Reflects circadian rhythms 

pRR50 [%] Reflects PNS activity VLF [ms2] 
Reflects the effects of thermal and 

hormonal regulation 

SD [ms] Total variation in RR intervals LF [ms2] Reflects SNS and PNS activities 

RMSSD [ms] Reflects PNS activity HF [ms2] Reflects PNS activity 

  LF/HF  Relative SNS/PNS balance 

Abbreviations: HRV = Heart rate variability, HR = Heart rate, RRAV = Mean RR interval, RR50 = Number of successive RR 
intervals differing more than 50 ms, pRR50 = Percentage of the number of successive RR intervals differing more than 
50 ms, SD = standard deviation of RR intervals, RMSSD = Root mean square of the successive RR intervals, TP = Total 
power, ULF = Ultra-low-frequency, VLF = Very-low-frequency, LF = Low-frequency, HF = High-frequency, SNS = 
Sympathetic nervous system, and PNS = Parasympathetic nervous system. 

 

3.4. Factors affecting HRV 

In addition to ANS, several other factors affect HRV. HRV has been shown to decrease with age being 

the highest in young adults and lowest in people over 60 years [7, 120, 121]. It has been proposed 

that aging-related changes in the neural system, such as the loss of neurons in the central nervous 

system, degrade the signal transmission and further reduce the capability to adapt to stressful 

situations [7, 122]. There are also differences in HRV between men and women [120, 121, 123]. Men 

have significantly lower parasympathetic input to cardiac regulation and higher long-term HRV than 

age-matched women [22, 123]. Moreover, Umetani et al. [120] noticed that the differences in HRV 

between men and women decrease with increasing age: women aged < 30 years had lower long-

term HRV than men, but there were no differences in HRV between men and women over 50 years. 

Women had also higher HR until they were 50-years-old after which the differences between sexes 

disappeared [120]. Hormonal regulation may partly explain the differences in HRV between men 

and women. Postmenopausal women with estrogen replacement therapy have been shown to have 

higher HRV than women without it [124]. Estrogen has also been shown to decrease the SNS 
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regulation and increase the PNS regulation elevating the high-frequency HRV [125]. Moreover, 

wakefulness, sleep, and sleep stages affect the HRV [8, 126–129].  

During wakefulness, SNS is dominant,  but when passing from wakefulness to NREM, the proportion 

of PNS activity is increased [8]. NREM sleep is characterized by prevailed PNS and reduced SNS 

activities leading to decreased HR and thus increased HRV [8, 126]. HRV is also observed to gradually 

increase from N1 to N3 in NREM [127]. In REM, the SNS activity increases markedly compared to 

NREM increasing the HR and decreasing HRV [8, 126]. Yet, the SNS activity is reduced in REM 

compared to wakefulness [8]. Moreover, arousals related to respiratory events activate the 

sympathetic nervous system (SNS) decreasing the HRV [128]. 

In OSA, the sympathetic tone is elevated. Respiratory events, i.e. apneas and hypopneas, cause 

intermittent blood oxygen desaturations that lead to hypoxemia and hypercapnia and further 

intrathoracic pressure swings and cortical arousals from sleep [9–11]. During the respiratory event, 

HR decreases, but at the resumption of breath, the HR increases abruptly [130]. This is called cyclical 

heart rate variation. In addition, intermittent hypoxia elevates the chemosensitivity of the carotid 

body [131]. Together these factors activate SNS and lead to cyclical changes in HR and reduced long-

term HRV. Low nocturnal blood pressure is thought to protect the normal functioning of the cardiac 

system, but in OSA patients, the intermittent SNS activation elevates the blood pressure during 

sleep [8] leading to elevated risk for hypertension [14, 24, 89]. Moreover, this increases the risk for, 

and may even cause, cardiovascular diseases [8]. Together with hypoxemia, hypercapnia, and 

elevated SNS activity, pulmonary hypertension and negative intrathoracic pressure increase the risk 

for arrhythmias in OSA patients [11, 12, 91]. The relative risk for nocturnal arrhythmias is increased 

nearly 18-fold within 90 s after the end of the respiratory event in OSA [92]. Furthermore, increased 

SNS activity can also cause oxidative stress, systemic inflammation, and vascular dysfunction [11] 

leading to possible structural and electrical cardiac remodeling in the long run [12]. In addition to 

increased risk for hypertension and arrhythmias, these changes elevate the risk for heart failure 

[132] and stroke [13]. 
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4. Aims and hypotheses of the study 

Low long-term HRV is a significant risk factor for several health consequences such as cardiovascular 

diseases [7]. It has been shown that OSA patients have reduced long-term HRV [15, 16] and that 

they have the shorter RR intervals the more severe OSA is [17]. It has also been observed that the 

decrease in RR intervals after apneas increase with increasing apnea duration, but the population 

in this study included only 8 patients [18]. Thus, larger and more comprehensive research is required 

to investigate the link between the respiratory event duration and HRV. Furthermore, the effect of 

the respiratory event type on HRV is rarely studied. Men are observed to have significantly higher 

long-term HRV and lower parasympathetic input to cardiac regulation compared to age-matched 

women albeit they have a higher risk for cardiovascular diseases  [22]. Men also tend to have more 

severe OSA with longer respiratory events compared to women [10]. Thus, it is evident that men 

and women should be studied separately when investigating the connection between OSA and HRV. 

Therefore, this Master thesis aimed to study whether the sex and the respiratory event type and 

duration affect ultra-short-term HRV and the changes in RR interval during and after respiratory 

events. Consequently, this thesis hypothesized that 1) longer respiratory events are related to an 

elevated ultra-short-term HRV due to pronounced RR interval prolonging during and shortening 

after apneas and hypopneas, 2) apneas cause higher ultra-short-term HRV and a greater decrease 

in RR intervals after the event and 3) these phenomena are stronger in men compared to women. 
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5. Methods 

The dataset used in this Master thesis was collected between 2015 and 2017 at the Princess 

Alexandra Hospital (Brisbane, Australia). The Institutional Human Research Ethics Committee of the 

Princess Alexandra Hospital approved the data collection (HREC/16/QPAH/021 and 

LNR/2019/QMS/54313). Full diagnostic PSG was conducted for 892 patients due to the clinical 

suspicion of OSA using the Compumedics Grael acquisition system (Compumedics, Abbotsford, 

Australia). The recordings were scored manually by ten experienced scorers who participate 

regularly in intra- and inter-laboratory scoring concordance activities. According to the prevalent 

AASM scoring criteria [2], the respiratory event was scored as apnea if there is complete breathing 

cessation for ≥ 10 seconds during which the airflow is decreased  ≥ 90 %. The respiratory event was 

scored as hypopnea if the airflow is partially decreased (≥ 30 %) for ≥ 10 seconds and the event is 

associated with arousal or there is a ≥ 3 % oxygen desaturation from the baseline before the 

respiratory event [2].  

The scored PSGs were retrospectively utilized in this study. 30 patients, who had incomplete 

demographic data or did not have any respiratory events, were excluded. Therefore, PSGs of 862 

suspected OSA patients were included in the final dataset, of which 473 (54.9 %) were men. 

Information about comorbidities was collected from the medical records of the patients and the 

demographic data is presented in Table 5.1.  

The nocturnal ECGs were recorded as a part of PSG using lead II placement with a sampling 

frequency of 256 Hz [2]. ECG detrending was performed with the smoothness priors method with a 

smoothing parameter λ value of 500 [133] and subsequently, R peaks were detected from the ECGs 

with the Pan-Tompkins method (Chapter 3.2). The bandpass filtering required in the first phase of 

the Pan-Tompkins method was executed with high- and low-pass Kaiser-window finite impulse 

response (FIR) filters with the cut-off frequencies of 5 Hz and 15 Hz, respectively. ECG pre-processing 

and a time-domain HRV analysis were performed with the Signal Processing Toolbox of MATLAB 

R2018b (MathWorks Inc, MA, USA). 
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Table 5.1. Characteristics of suspected obstructive sleep apnea (OSA) patients. Continuous variables 
are presented as a median (interquartile range) and discrete variables as a count 
(percentage). 

 
All Men Women 

Number of patients 862 (100 %) 473 (54.9 %) 389 (45.1 %) 

No OSA (AHI < 5) 140 (16.2 %) 47 (9.9 %) 93 (23.9 %) † 

Mild OSA (5 ≤ AHI < 15) 271 (31.4 %) 126 (26.6 %) 145 (37.3 %) † 

Moderate OSA (15 ≤ AHI < 30) 205 (23.8 %) 127 (26.8 %) 78 (20.1 %) † 

Severe OSA (AHI ≥ 30) 246 (28.5 %) 173 (36.6 %) 73 (18.8 %) † 

Number of events    

All 44414 27581 16833 

Apneas 8848 6576 2272 

10 – 20 s 2956 (33.4 %) 1907 (29.0 %) 1049 (46.2 %) † 

20 – 30 s 3156 (35.7 %) 2443 (37.2 %) 713 (31.4 %) † 

> 30 s 2736 (30.9 %) 2226 (33.9 %) 510 (22.5 %) † 

Hypopneas 35566 21005 14561 

10 – 20 s 13898 (39.1 %) 7284 (34.7 %) 6614 (45.4 %) † 

20 – 30 s 11529 (32.4 %) 7065 (33.6 %) 4464 (30.7 %) † 

> 30 s 10139 (28.5 %) 6656 (31.7 %) 3483 (23.9 %) † 

Event duration [s]    

All 23.1 (17.0, 31.8) 24.4 (17.9, 33.1) 21.1 (15.7, 29.4) * 

Apneas 24.3 (17.8, 32.1) 25.5 (18.9, 33.1) 20.8 (15.8, 28.8) * 

Hypopneas 22.7 (16.8, 31.7) 24.0 (17.6, 33.2) 21.1 (15.7, 29.5) * 

AHI [events/h] 15.8 (7.0, 32.6) 22.1 (10.4, 40.5) 11.5 (5.1, 21.8) * 

ODI3% [desaturations/h] 16.4 (5.1, 39.3) 21.5 (7.6, 46.5) 10.5 (3.7, 29.1) * 

Total sleep time [min] 309.5 (254.5, 360.0) 294.0 (249.5, 352.9) 323.0 (267.4, 367.5) * 

Age [y] 55.9 (44.7, 65.8) 57.0 (45.4, 67.1) 54.1 (44.0, 64.1) * 

BMI [kg/m2] 34.5 (29.4, 40.4) 33.1 (28.7, 38.7) 36.2 (30.7, 43.0) * 

Comorbidities    

Atrial Arrhythmia 91 (10.6 %) 70 (14.8 %) 21 (5.4 %) † 

Cardiac Failure 19 (2.2 %) 10 (2.1 %) 9 (2.3 %) 

Diabetes Mellitus, type 1 6 (0.7 %) 4 (0.8 %) 2 (0.5 %) 

Diabetes Mellitus, type 2 184 (21.3 %) 102 (21.6 %) 82 (21.1 %) 

Hypertension 360 (41.8 %) 208 (44.0 %) 152 (39.1 %) 

Smokers 139 (16.1 %) 79 (16.7 %) 60 (15.4 %) 

Information about comorbidities was collected from the medical records of patients. Abbreviations: BMI = Body mass 
index, AHI = Apnea-hypopnea index, ODI3% = Oxygen desaturation index according to AASM 2012 scoring criteria 
(desaturation ≥ 3 %). 
* = Statistically significant difference (p < 0.05) compared to men according to the Mann-Whitney U test. 

† = Statistically significant difference (p < 0.05) compared to men according to χ2-test. 
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For each scored apnea and hypopnea, in- and post-event segments were extracted from the ECG 

signal. The in-event segment was defined based on the start- and endpoints of the respiratory event 

and the post-event segment was the 15-second period immediately after the end of the respiratory 

event. Post-event segment duration of 15 seconds was chosen to achieve a reliable representation 

of temporal changes in RR intervals: longer period would have limited the number of respiratory 

events excessively whereas shorter period would have not left enough time for RR intervals to be 

restored to level before the respiratory event. Respiratory events with overlapping post- and in-

event segments were excluded as well as the events that were closer than 15 seconds to the end of 

the ECG registration. These criteria excluded a total of 69 675 respiratory events. A total of 44 414 

respiratory events were included for a further analysis, of which 8 848 were apneas and 35 566 

hypopneas. Apneas and hypopneas were studied separately in three subgroups based on their 

duration (10 – 20 s, 20 – 30 s, and > 30 s). Moreover, the following HRV analysis was conducted 

separately for men and women. 

Typical time-domain HRV parameters were computed for each ECG segment. These parameters 

included RR intervals, RRAV, SD, RMSSD, and pRR50 [3]. The time-domain HRV parameters are more 

suitable for ultra-short-term HRV analysis, and thus they were chosen over frequency-domain 

parameters [3, 4]. The difference between in- and post-event RR intervals was calculated by 

subtracting the mean post-event RR interval from the mean in-event RR interval (5.1). 

∆𝑅𝑅𝐴𝑉 =  𝑅𝑅𝐴𝑉
𝐼𝑛 − 𝑅𝑅𝐴𝑉

𝑃𝑜𝑠𝑡 

where ∆𝑅𝑅𝐴𝑉 is the change in mean RR interval, 𝑅𝑅𝐴𝑉
𝐼𝑛  is the mean in-event RR interval and 𝑅𝑅𝐴𝑉

𝑃𝑜𝑠𝑡 

is the mean post-event RR interval. The relative changes in post-event HRV parameter values 

compared to in-event values were calculated by subtracting the median in-event parameter value 

from the median post-event value and dividing it by the median in-event value (5.2). 

∆𝐻𝑅𝑉𝑅𝑒𝑙 =  
𝐻𝑅𝑉𝑃𝑜𝑠𝑡 − 𝐻𝑅𝑉𝐼𝑛

𝐻𝑅𝑉𝐼𝑛
∗ 100% 

where ∆𝐻𝑅𝑉𝑅𝑒𝑙 is the relative change between in- and post-event HRV parameter values (SD, 

RMSSD, or pRR50), 𝐻𝑅𝑉𝑃𝑜𝑠𝑡 and 𝐻𝑅𝑉𝐼𝑛 are the in- and post-event HRV parameter values, 

respectively. 

(5.1) 

(5.2) 
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Chi-squared (χ2) test was used to test the statistical difference between the discrete demographic 

parameters of men and women (Table 5.1). The Wilcoxon signed-rank test was used to test the 

statistical significance of the difference between in- and post-event RR intervals and between other 

in- and post-event ultra-short-term HRV parameters. The statistical significance of the difference 

between the respiratory event duration-based subgroups was tested separately for apneas and 

hypopneas with the Mann-Whitney U test. All statistical tests were performed with Statistics and 

Machine Learning Toolbox of MATLAB R2018b. 

The RR interval signals during and after respiratory events were detrended using the smoothness 

priors method (λ = 500) [133] and further spline interpolated for illustrative reasons. Due to about 

200 ms refractory period of the myocardial cells, the interpolated values of RR intervals under        

200 ms were excluded [116]. Finally, median RR intervals were plotted as a function of time 

separately for apneas, hypopneas, men, and women.  
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6. Results 

6.1. HRV in men 

In apneas, the mean in-event RR interval increased, and the mean post-event RR interval shortened 

with increasing apnea duration (p < 0.05, Table 6.1). Furthermore, the in-event SD, RMSSD, and 

pRR50 were observed to increase as the apnea duration increased (p < 0.05, Table 6.1). The post-

event values of SD, RMSSD, and pRR50 of 20 – 30 s and > 30 s apneas were greater than those of   

10 – 20 s apneas (p < 0.05, Table 6.1). However, there were no significant differences between           

20 – 30 s and > 30 s apneas (Table 6.1).  

 

 

Table 6.1. In- and post-event time-domain heart rate variability (HRV) parameter values for 
men and women based on the apnea duration. 

 

In-event  Post-event  

Men Women p-value Men Women p-value 

10 – 20 s       

Mean RR 
Interval [s] 

0.961 0.927 0.025 0.889 0.889 0.221 

SD [ms] 34 31 0.009 47 40 < 0.001 

RMSSD [ms] 22 24 0.038 32 32 0.846 

pRR50 [%] 0.0 5.3 0.757 11.8 11.8 0.597 

20 – 30 s       

Mean RR 
Interval [s] 

0.960 1.005* < 0.001 0.881* 0.911* < 0.001 

SD [ms] 49* 41* < 0.001 60* 47* < 0.001 

RMSSD [ms] 31* 34* 0.837 37* 38* 0.757 

pRR50 [%] 10.0* 11.1* 0.665 15.8* 15.4* 0.300 

> 30 s       

Mean RR 
Interval [s] 

0.970*† 0.932*† 0.055 0.858*† 0.852*† 0.636 

SD [ms] 61*† 49*† < 0.001 58* 46* 0.001 

RMSSD [ms] 40*† 36* 0.001 39* 31† < 0.001 

pRR50 [%] 12.0*† 12.3* 0.544 15.8* 11.1† < 0.001 

Parameter medians were calculated from ECG recorded during apneas (in-event) and the 15 seconds 
immediately after the apneas (post-event). The p-values in the table represent the statistical significance of the 
differences between men and women based on the Mann-Whitney U test; bolded p-values indicate statistical 
significance (p < 0.05). Abbreviations: SD = standard deviation, RMSSD = root mean square of successive 
differences, pRR50 = the number of adjacent RR intervals differing more than 50 ms divided by the total number 
of RR intervals during the apnea. 
* = statistically significant difference (p < 0.05, the Mann-Whitney U test) compared to the 10-20 s apneas. 

† = statistically significant difference (p < 0.05, the Mann-Whitney U test) compared to the 20-30 s apneas. 
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Similarly, in hypopneas, the mean in-event RR interval increased, and the post-event RR interval 

shortened with increasing hypopnea duration (p < 0.05, Table 6.2). The in-event SD, RMSSD, and 

pRR50 were observed to increase significantly as the hypopnea duration increased (p < 0.05,       

Table 6.2). Furthermore, the post-event SD, RMSSD, and pRR50 were greater in 20 – 30 s and > 30 s 

hypopneas when compared to the 10 – 20 s hypopneas (p < 0.05, Table 6.2).  

 

Regardless of the apnea duration, the post-event RR intervals were significantly shorter compared 

to the in-event RR intervals (p < 0.001, Table 6.1). The same phenomenon was observed in 

hypopneas (p < 0.001, Table 6.2). In addition, the difference between in- and post-event RR intervals 

increased with increasing respiratory event duration in both apneas (p < 0.001, Table 6.3, Figure 6.1) 

and hypopneas (p < 0.001, Table 6.3, Figure 6.2). Moreover, the relative change between in- and 

Table 6.2.  In- and post-event time-domain heart rate variability (HRV) parameter values for 
men and women based on the hypopnea duration. 

 

In-event  Post-event  

Men Women p-value Men Women p-value 

10 – 20 s       

Mean RR 
Interval [s] 

0.913 0.866 < 0.001 0.865 0.833 < 0.001 

SD [ms] 31 26 < 0.001 41 33 < 0.001 

RMSSD [ms] 26 23 < 0.001 29 25 < 0.001 

pRR50 [%] 5.9 0.0 < 0.001 7.1 5.3 < 0.001 

20 – 30 s       

Mean RR 
Interval [s] 

0.960* 0.900* < 0.001 0.901* 0.855* < 0.001 

SD [ms] 39* 31* < 0.001 46* 38* < 0.001 

RMSSD [ms] 31* 26* < 0.001 33* 27* < 0.001 

pRR50 [%] 9.4* 5.0* < 0.001 11.8* 6.3* < 0.001 

> 30 s       

Mean RR 
Interval [s] 

0.987*† 0.892*† < 0.001 0.903* 0.834† < 0.001 

SD [ms] 47*† 34*† < 0.001 48*† 37* < 0.001 

RMSSD [ms] 37*† 26* < 0.001 34* 25† < 0.001 

pRR50 [%] 11.9*† 5.0* < 0.001 12.5* 5.6† < 0.001 

Parameter medians were calculated from ECG recorded during hypopneas (in-event) and the 15 seconds 
immediately after the hypopneas (post-event).  The p-values in the table represent the statistical significance 
of the differences between men and women based on the Mann-Whitney U test; bolded p-values indicate 
statistical significance (p < 0.05). Abbreviations: SD = standard deviation, RMSSD = root mean square of 
successive differences, pRR50 = the number of adjacent RR intervals differing more than 50 ms divided by the 
total number of RR intervals during the hypopnea. 
* = Statistically significant difference (p < 0.05, the Mann-Whitney U test) compared to the 10-20 s hypopneas. 

† = Statistically significant difference (p < 0.05, the Mann-Whitney U test) compared to the 20-30 s hypopneas. 
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post-event HRV parameters decreased as the duration of apneas increased (p < 0.001, Table 6.4). 

Also in hypopneas, the relative change between in- and post-event HRV parameters decreased with 

increasing hypopnea duration (p < 0.05), except the difference between relative pRR50 changes of 

10 – 20 s and 20 – 30 s hypopneas was not significant (Table 6.4).  

 

  

Table 6.4. The relative changes [%] between in- (i.e. during the event) and post-event (i.e. 15 
seconds after the event) HRV parameters in different respiratory event duration 
groups. 

 Apneas Hypopneas 
 Men Women p-value Men Women p-value 

10 – 20 s       

ΔSDRel 39.7 31.3 < 0.001 33.0 29.5 < 0.001 

ΔRMSSDRel 43.6 32.5 < 0.001 11.9 6.1 < 0.001 

ΔpRR50Rel NaN 123.5 0.008 21.4 NaN 0.067 

20 – 30 s       

ΔSDRel 22.9* 13.1 < 0.001 19.7* 21.8* < 0.001 

ΔRMSSDRel 18.8* 13.4 < 0.001 5.5* 4.4* < 0.001 

ΔpRR50Rel 57.9* 38.5* < 0.001 25.5 25.0 0.316 

> 30 s       

ΔSDRel -6.1*† -6.4*† < 0.001 1.8*† 9.8*† < 0.001 

ΔRMSSDRel -3.1*† -11.9*† < 0.001 -8.3† -3.6*† < 0.001 

ΔpRR50Rel 31.6*† -9.3*† 0.306 5.0*† 11.1*† 0.945 

p-values presented in the table denote the statistically significant relative difference in HRV parameters between men 
and women (the Mann-Whitney U test). Statistically significant p-values (p < 0.05) are bolded.  Abbreviations: HRV = 
heart rate variability, SD = standard deviation, RMSSD = root mean square of successive differences, pRR50 = the 
number of adjacent RR intervals differing more than 50 ms divided by the total number of RR intervals during the 
hypopnea, NaN = not a number due to the divisor, the in-event HRV parameter, being zero in equation (5.2). 
* = Statistically significant difference compared to the 10-20 s events (apneas: p < 0.001, hypopneas: p < 0.05, the 
Mann-Whitney U test). 

† = Statistically significant difference compared to the 20-30 s events (apneas: p < 0.001, hypopneas: p < 0.05, the 

Mann-Whitney U test). 

Table 6.3.  The median differences [s] between in- (i.e. during the event) and post-event (i.e. 15 
seconds after the event) RR intervals in different respiratory event duration groups. 

 

Apneas  Hypopneas  

Men Women p-value Men Women p-value 

10 – 20 s 0.047 0.030 < 0.001 0.031 0.022 < 0.001 

20 – 30 s 0.068 0.070 0.391 0.044 0.031 < 0.001 

> 30 s 0.096 0.087 0.030 0.059 0.042 < 0.001 

p-values presented in the table denote the statistically significant difference in the median RR interval between men 
and women (the Mann-Whitney U test). Statistically significant p-values (p < 0.05) are bolded. All median differences 
between in- and post-event RR intervals were significant (p < 0.001) according to Wilcoxon signed-rank test and all 
the differences between event duration derived groups were significant (p < 0.001) according to the Mann-Whitney 
U test. 
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Figure 6.1. RR intervals related to apneas (n = 6 576) of men (N = 381). In-event RR intervals (during apnea) are presented 

in a subfigure a) and post-event RR intervals (immediately after apnea) are shown in subfigure b). In subfigures c) and 

d) are the absolute RR interval changes relative to the beginning of the apnea during and after the event, respectively. 

The duration of each apnea is normalized to 1 in subfigures a) and c). 
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Figure 6.2. RR intervals related to hypopneas (n = 21 005) of men (N = 472). In-event RR intervals (during hypopnea) are 

presented in a subfigure a) and post-event RR intervals (immediately after hypopnea) are shown in subfigure b). In 

subfigures c) and d) are the absolute RR interval changes relative to the beginning of the hypopnea during and after the 

event, respectively. The duration of each hypopnea is normalized to 1 in subfigures a) and c). 
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6.2. HRV in women 

The in-event SD, RMSSD, and pRR50 were significantly greater in apneas of 20 – 30 s and > 30 s 

apneas than in 10 – 20 s (p < 0.05, Table 6.1). However, the post-event HRV parameters were 

observed to be greatest in 20 – 30 s apneas: the post-event mean RR intervals, RMSSD, and pRR50 

were significantly higher in 20 – 30 s apneas compared to apneas of 10-20 s and >30 s (p < 0.05, 

Table 6.1).  

In hypopneas, the in-event SD values were observed to increase significantly as the hypopnea 

duration increased (p < 0.05, Table 6.2). The in-event RMSSD and pRR50 values of 20 – 30 s and          

> 30 s hypopneas were greater compared to 10 – 20 s hypopneas (p < 0.05, Table 6.2). Between 

hypopneas of 20 – 30 s and > 30 s, however, there were insignificant differences in these parameters 

(Table 6.2). When compared to 10 – 20 s and > 30 s hypopneas, 20 – 30 s hypopneas had the highest 

post-event RMSSD and pRR50 values (p < 0.05, Table 6.2).  

In both apneas and hypopneas, the median in- and post-event RR intervals were the longest in          

20 – 30 s respiratory events (p < 0.001, Tables 6.2 and 6.3). Furthermore, the post-event RR intervals 

were significantly shorter compared to the in-event RR intervals (p < 0.001, Tables 6.2 and 6.3) and 

the median difference between the in- and post-event RR intervals increased as the respiratory 

event duration increased in both apneas and hypopneas (p < 0.001, Table 6.3, Figures 6.3 and 6.4). 

Furthermore, the relative change in post-event HRV parameter values compared to in-event values 

was generally more substantial in shorter apneas and hypopneas (apneas: p < 0.001, hypopneas:     

p < 0.05, Table 6.4). 
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Figure 6.3. RR intervals related to apneas (n = 2 272) of women (N = 254). In-event RR intervals (during apnea) are 

presented in a subfigure a) and post-event RR intervals (immediately after apnea) are shown in subfigure b). In 

subfigures c) and d) are the absolute RR interval changes relative to the beginning of the apnea during and after the 

event, respectively. The duration of each apnea is normalized to 1 in subfigures a) and c). 
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Figure 6.4. RR intervals related to hypopneas (n = 14 561) of women (N = 386). In-event RR intervals (during hypopnea) 

are presented in a subfigure a) and post-event RR intervals (immediately after hypopnea) are shown in subfigure b). In 

subfigures c) and d) are the absolute RR interval changes relative to the beginning of the hypopnea during and after the 

event, respectively. The duration of each hypopnea is normalized to 1 in subfigures a) and c).  
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6.3. Differences in HRV parameters 

54.9 % of the study population were men (Table 5.1). They were significantly (p < 0.05) older and 

had a lower BMI than women. They were also more frequently diagnosed with atrial arrhythmias 

compared to women (p < 0.05). Otherwise, no statistically significant differences were observed 

between sexes in the existence of comorbidities. Men were diagnosed to have moderate or severe 

OSA more often and they also had more severe OSA (AHI, ODI, respiratory event duration) compared 

to women (p < 0.05). 

All HRV parameters of hypopneas were observed to be significantly higher in men compared to 

women (p < 0.001, Table 6.2). In apneas, the in- and post-event SD were greater in men than in 

women (p < 0.05, Table 6.1). The RMSSD and pRR50 values of men were generally equal to or smaller 

than those of women, but these differences were statistically insignificant (p > 0.05, Table 6.1). 

Moreover, women had greater, but insignificant, difference between in- and post-event RR intervals 

in 20 – 30 s apneas  (p > 0.05), but otherwise, the differences were greater in men compared to 

women (p < 0.05, Table 6.3). Moreover, men had greater relative changes between in- and post-

event SD and RMSSD (p < 0.05), but the differences in relative changes of pRR50 between men and 

women were mainly insignificant (p > 0.05, Table 6.4). 
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7. Discussion 

The main purpose of this study was to investigate whether the respiratory event duration and type 

modulate the changes in ultra-short-term HRV and RR intervals and whether the sex affects these 

changes. This was done by comparing the median difference of in- and post-event RR interval values 

and the time-domain HRV parameter values of suspected OSA patients (n = 862) between 

respiratory events having a different duration and type. These analyses were performed separately 

for men and women. In ultra-short-term HRV analysis, it was observed that longer respiratory 

events are associated with increased HRV and a greater decrease between in- and post-event RR 

intervals. Furthermore, higher ultra-short-term HRV and greater differences between in- and post-

event RR intervals were more strongly related to apneas and men. 

It was hypothesized that the longer respiratory events are associated with a greater decrease in the 

post-event RR interval after the respiratory event. The results of this study are in line with this 

hypothesis: the median difference in RR interval was the greater the longer the related apnea or 

hypopnea was in both men and women (Table 6.3). Similar results have been obtained from 

previous studies. The respiratory events are associated with cyclical heart rate variation, i.e. slowing 

down of HR (bradycardia) during and quickening of HR (tachycardia) after the respiratory event 

[130]. Moreover, longer apneas have been shown to cause greater bradycardia [134] and a greater 

decrease in RR intervals after the respiratory event [18]. These differences may be explained by the 

degree of oxygen desaturation (desaturation severity). Kulkas et al. [19] observed in their study that 

longer apneas and hypopneas are associated with more severe desaturations. The deeper 

desaturations lead to more severe hypoxia, hypercapnia, and SNS activation, all being risk factors 

for arrhythmias [11, 12]. While apneas and hypopneas are rarely considered separately [18, 130, 

134], Chouchou et al. [135] showed that the respiratory event duration and type do not significantly 

decrease the RR interval duration after the respiratory event. This is, however, in disagreement with 

several other studies that have shown the respiratory event duration and type affecting the 

physiological consequences, e.g. blood pressure, the depth of the oxygen desaturations and arousal 

from sleep, [19, 136–138], that are known to be linked with the increase in HR, i.e. RR interval 

shortening. Their finding may be a consequence of their small size of the studied population                 

(n = 16). Thus, more detailed clarification on the link between HRV and desaturations requires 

further research. 
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It was also hypothesized that ultra-short-term HRV increases with increasing respiratory event 

duration. Supporting this hypothesis, the ultra-short-term HRV generally increased as the apnea and 

hypopnea duration increased. The relative change between in- and post-event HRV parameters, 

however, was more substantial in shorter respiratory events. The chemosensitivity of the carotid 

body is increased by long-term intermittent hypoxia causing elevated SNS activity, HR, and reduced 

long-term HRV [131]. Moreover, the arousal threshold of shorter respiratory events is decreased 

compared to longer events, i.e. shorter events end with arousal more often, causing sleep 

fragmentation and they are linked to elevated mortality in both sexes [47, 139]. In addition, OSA 

increases significantly the risk for arrhythmias [12, 92]. It could, therefore, be useful to consider the 

characteristics of respiratory events and ultra-short-term HRV in OSA diagnostics when estimating 

the OSA-related cardiac consequences. However, the results of this thesis did not consider the 

severity markers of OSA, e.g. the AHI of the patients or inter-individual variation. SNS and PNS 

regulation is individual and thus, further research on the combined effect of OSA severity and the 

duration of respiratory events on HRV is warranted. 

Supporting the hypotheses, differences between in- and post-event RR intervals were greater in 

apneas compared to hypopneas regardless of the sex (Table 6.3). Moreover, apneas caused also a 

significantly greater ultra-short-term HRV (Tables 6.1 and 6.2). The minimum RR interval value was 

reached approximately 4 s after the hypopnea termination (Figures 6.2 and 6.4), whereas in apneas 

the minimum was reached later, approximately 7 s after the apnea termination (Figures 6.1 and 

6.3). It has been shown that apneas are responsible for more severe oxygen desaturations [19] that 

increase the risk for cardiovascular diseases [20, 21]. OSA patients have been shown to have 

increased probability of cardiogenic sudden deaths between midnight and 6 a.m. [140] and similarly, 

the frequency and severity of respiratory events are known to increase towards morning [60]. It has 

also been observed that the risk of arrhythmia is nearly 18-fold within 90 s after respiratory event 

termination [92]. The increased tendency for arrhythmias in OSA patients has been explained with 

elevated SNS activity, negative intrathoracic pressure, and hypertension [91]. Albeit bad health 

outcomes are commonly associated with low long-term HRV [132, 141], high ultra-short-term HRV 

may be more damaging due to increased RR interval variation within a relatively short time. For 

example, it could be that arrhythmias induced by respiratory events affect the ultra-short-term HRV 

by increasing it. With earlier findings [19–21, 60, 91, 92, 140] the results of this thesis indicate that 

the cardiac regulation is modulated by the type of respiratory events, possibly due to different 
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proportions of SNS and PNS activations. Besides AHI, detailed ECG and HRV analysis could be 

beneficial when estimating the risk for cardiovascular events in OSA severity evaluation, especially 

in the case of patients with cardiovascular comorbidities. 

In hypopneas, men had significantly greater values of all ultra-short-term HRV parameters than 

women (Table 6.2). However, the differences between HRV parameters of men and women related 

to apneas had more variation (Table 6.1). In apneas, men had greater in- and post-event SD values 

than women. Moreover, men had generally lower or equal RMSSD and pRR50 values compared to 

those of women, but these differences were statistically insignificant. Furthermore, men had 

generally greater differences between in- and post-event RR intervals (Table 6.3) and greater 

relative changes between in- and post-event HRV parameters (Table 6.4). Long-term HRV has shown 

to be significantly higher in men and it is characterized by a relative dominance of SNS activity 

despite longer RR intervals compared to women [22]. In contrast, it has been shown, that respiratory 

events of men are longer, more frequent, and are accompanied by deeper oxygen desaturations 

compared to respiratory events of women [142, 143]. The results of this study could partially be 

explained by more severe intermittent oxygen desaturations of men: they may be at higher risk for 

more severe cyclical heart rate variation leading to increased variation of RR intervals. It is implied 

by the results of this thesis and previous literature that men and women should be studied 

separately when investigating HRV in OSA. 

The use of only time-domain HRV parameters can be considered as the main limitation of this thesis. 

It is acknowledged that without frequency-domain HRV parameters it is impossible to precisely 

evaluate the spectral HRV variations or activities of SNS and PNS. However, an overview of the HRV 

can be obtained. The use of frequency-domain parameters would have been problematic as they 

often require a longer analysis period [3]. Furthermore, normative results for ultra-short-term HRV 

does not exist yet since short- and long-term measurements are considered to be the most 

appropriate options for assessing HRV [3, 5]. Nevertheless, promising results have been obtained 

showing that e.g. RMSSD could potentially be used for clinical ultra-short-term HRV analysis [3, 4].  

More importantly, the ultra-short-term HRV analysis enables HRV analysis during and immediately 

after individual respiratory events, which would not be possible with HRV analyses based on a longer 

time window. 

The use of automated R peak detection instead of manual analysis can be considered as another 

limitation of this study. Although the Pan-Tompkins method uses dual thresholding when detecting 
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the R peaks, it does not recognize e.g. irregular heart rhythms such as bi- or trigeminy [116]. 

However, with automated R peak detection, a large amount of data can be analyzed effectively, and 

the analysis is more easily reproducible. It is also acknowledged that disregarding arousals related 

to respiratory events or the sleep stage effects on HRV is a limitation. However, the focus of this 

study was to investigate the differences between respiratory event types, durations, and differences 

between sexes. Therefore, the effect of sleep stages or arousals were not considered as it would 

have made the focus too broad. RR intervals are shown to shorten in the adjacency of arousal in 

both OSA patients [144] and healthy subjects [128]: this thesis shows similar results (Figures 1-4). 

Moreover, previous studies have shown that in NREM, the PNS activity and short-term HRV increase, 

whereas in REM, SNS activity increases and HRV decreases [128, 129]. It has been also reported that 

HRV is modulated by sleep stages, perhaps even more strongly than OSA [59]: HRV is observed to 

gradually increase from N1 to N3 in NREM [127]. Therefore, further research studying inter-patient 

variation and the effects of arousals, sleep stages, and desaturations on ultra-short-term HRV are 

required. 

In conclusion, this Master thesis provides valuable information about cardiovascular stress related 

to respiratory events in OSA since the changes in ultra-short-term HRV and RR interval variation 

reflect the immediate physiological consequences of apneas and hypopneas. A greater decrease in 

RR interval after the respiratory events and elevated ultra-short-term HRV are more strongly 

associated with longer duration of respiratory events, apneas, and male sex. The HR and HRV are 

modulated by the respiratory event duration and type. Therefore, a more detailed analysis of the 

respiratory event and cardiac characteristics could be a valuable complement to OSA diagnostics 

besides AHI.  
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