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Physical and mechanical properties of rocks are important parameters for geological 

engineering and design of engineering structures, be it in the civil and/or mining sector. 

Rock physical properties include density, porosity, etc., and Young’s modulus, Poisson’s 

ratio and rock strength include some mechanical properties of rocks. These properties can 

be obtained by laboratory tests. This study aims at characterizing selected rock physical 

and mechanical properties to assist in predicting rock mass behavior when used in 

engineering structures, to discuss key rock petrographical features that affect strength and 

compare the prediction capacities of multiple linear regression and artificial neural 

network (ANN) models. 

The study investigates selected physical and mechanical properties from two igneous rock 

types, gabbro and granite, from the Otanmäki area, central Finland. The test results were 

used for the ANN and multiple regression models. 

In the analyses, a total of 25 cases from the two rocks were tested for uniaxial compression 

strength (UCS), Young’s modulus, Poisson’s ratio, Brazilian tensile strength (BTS), 

density, porosity and water content. Samples were also analyzed for petrographic and 

chemical compositions. Results from the analyses indicate the importance of adhering to 

testing standards because of inconsistencies and wide variations observed between non-

standardized as opposed to standardized specimens, and the need for large database for 

reliable predictive models. It presents ANN techniques as having a good generalization 

capacity for multi-variable nonlinear prediction.  

key words: Uniaxial compressive strength, Brazilian tensile strength, Young’s modulus, 

multiple regression, artificial neural network, Otanmäki, Finland 



FOREWORD 

Rock engineering and rock mechanics disciplines, relates to construction on and in rock 

masses of projects such as rock slopes, caverns, dams, hydroelectric schemes, mines and 

underground spaces for radioactive waste disposal. These subjects are evolving because 

of new capabilities provided by the utilization of computer programs which utilize 

knowledge of physico-mechanical properties of rocks in models to enhance quick 

inferences for critical decisions. Standard techniques for determining rock properties have 

been established over the years as guides for researchers. Estimates of these properties 

come in handy for engineers in determining the response of structures built in or on rocks 

for appropriate designs and remedies in mitigating failure scenarios. 

The purpose of this work is to characterize selected physical and mechanical rock 

properties and compare multiple regression and ANN techniques in predicting models of 

uniaxial compressive strength, Young’s modulus and Poisson’s ratio. Due to strict 

technicalities involved in preparing core samples of regular geometry and the expensive 

nature of  determining UCS  (an essential parameter in most mining and rock engineering 

design), alongside Young’s modulus and Poisson’s ratio in similar testing  procedure, 

simple models become attractive for inference purposes. Chapters 1 and 2 provides 

introduction and background to the topic. Chapter 3 details the methodology in carrying 

out the work from sampling, experimental tests, application of soft computing and the 

presentation of the test results. Discussions of the results are presented in chapter 4 and 

conclusions based on the discussions are outlined in Chapter 5. Finally, the summary of 

the work is illustrated in Chapter 6. 

I am grateful to Renlund foundation for the award of grant in this study, Dr. Adeyemi 

Aladejare for his supervision of the work, Kimmo Kärenlampi for his suggestions and 

advice and Mr. Jouko Jylänki for his kind reception and grant of access to sites for the 

sampling. This is dedicated to my family and friends for their support in my life. 
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1. INTRODUCTION 

Rock has been utilized in construction since the dawn of civilization. Different structures 

have been built on, in or of rock, including houses, bridges, dams, tunnels, and caverns 

(Hoek, 2000; Zhang, 2004). In civil engineering, rocks are removed to make room for and 

/or incorporated in structures. In mining engineering, rocks are the material of interest 

being removed. The rock mass is the in-situ medium comprised of intact rock blocks 

separated by discontinuities such as joints, bedding planes, folds, sheared zones, and 

faults. Rock masses are discontinuous and often have heterogeneous and anisotropic 

properties. It is very difficult, therefore, to approach a rock engineering problem with 

confidence, especially in a non-precedent practice situation, without a coherent structured 

methodology (Hudson, 1993). It is in this light, that there is need to characterize rock 

technical properties to assist in predicting rock mass behavior when used in engineering 

structures. 

 

Previous studies  by (Aladejare, 2019) in evaluation of empirical estimation of uniaxial 

compressive  strength of rock using measurements from index and physical tests indicates 

amongst others, the reliability of UCS  estimated from empirical equations  depends on 

the quality of the input data used in the equations. Also,  fuzzy logic and ANN have been 

utilized for establishing predictive models in both mining and civil tunneling applications 

(Alvarez Grima and Babuska, 1999; Gokceoglu, 2002; Gokceoglu and Zorlu, 2004; 

Nefeslioglu et al., 2003, 2006; Sonmez et al., 2006; Kahraman et al., 2006; Yoo and Kim, 

2007).  

This study aims at characterizing physical and mechanical rock properties of two igneous 

rock types, gabbro and granite, from the Otanmäki area, central Finland. It seeks to 

establish correlation between different rock properties by developing and comparing 

predictive models using multiple linear regression and artificial neural network (ANN). 

Rock mechanical properties including uniaxial compressive strength (UCS), Brazilian 

tensile strength (BTS), Young’s modulus, Poisson’s ratio and rock physical properties 

such as density, porosity and water content were analyzed from 25 samples of the two 

igneous rock types. 
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2. THEORETICAL BACKGROUND 

In recent times, radioactive waste disposal projects and the general use of underground 

space for hosting domestic refuse treatment, geothermal energy and large high-energy 

particle accelerators are being utilized in rock enclosed spaces. Table 2.1 lists different 

types of structures built on, in or of rock and the fields of their applications. Rock 

structures such as joints, bedding planes, folds, sheared zones, faults etc., render its form 

discontinuous and different from other engineering materials like concrete.  

 

The rock mass is the in-situ medium comprised of intact rock blocks separated by 

discontinuities such as joints, bedding planes, folds, sheared zones, and faults. Intact rock 

in engineering terms is a rock containing no significant fractures (Zhang, 2017). The 

properties of the intact rock are governed by the physical characteristics of the materials 

of which it is composed and the way they are bonded to each other (Zhang, 2017). The 

properties used in description of intact rock include petrological name, colour, grain size, 

density, porosity, strength and hardness (Zhang, 2017). Rock masses are discontinuous 

and often have heterogeneous and anisotropic properties. An anisotropic rock has 

different properties in different directions (Harrison and Hudson, 1997). 

 Table 2.1 Application of different structures on, in or of rock (Zhang, 2017) 

Field of 

Application 

Types of Structures on, in or of Rock 

Mining Surface mining: slope stability; rock mass diggability; drilling and 

blasting; fragmentation 

Underground mining: shaft, pillar, draft, and stope design; drilling and blasting; 

fragmentation; cavability of rock and ore; amelioration of rockbursts; mechanized 

excavation; in situ 

recovery 

Energy 

development 

Underground power stations (hydroelectric and nuclear); 

underground storage of oil and gas; energy storage (pumped 

storage or compressed air storage); dam foundations; pressure 

tunnels; underground repositories for nuclear waste disposal;geothermal energy 

exploitation; petroleum development including drilling, hydraulic fracturing, 

wellbore stability 
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Transportation Highway and railway slopes, tunnels, and bridge foundations;canals and waterways; 

urban rapid transport tunnels and stations;pipelines 

Utilities Dam foundations; stability of reservoir slopes; water supply tunnels; sanitation 

tunnels; industrial and municipal waste treatment plants; underground storages and 

sporting and cultural 

facilities; foundations of surface power stations 

Building 

construction 

Foundations; stability of deep open excavations; underground or earth-sheltered 

homes and offices 

Military Large underground chambers for civil defense and military installations; uses of 

nuclear explosives; deep basing of strategic missile 

 

The subject of rock characterization is far more complex and intractable than might appear 

at first sight. The subject does not merely concern the optimal length-to-diameter ratio for 

a compression test specimen and other, similar tactical aspects of testing procedures: it 

concerns the whole strategic concept of how to characterize naturally occurring rock 

masses, which have been in existence for millions of years, have been operating as natural 

process - response systems for all that time and are about to be perturbed by engineers in 

order to achieve particular objectives (Hudson, 1992).  

Rock mechanics is still based to a large extent on analytical techniques that were 

originally formulated for the mechanical design of structures made from man-made 

materials. The single most important distinction between man-made materials and the 

natural material rock is that rock contains fractures, of many kinds on many scales; and 

because the fractures – of whatever kind - represent breaks in the mechanical continuum; 

they are collectively termed "discontinuities". An understanding of the mechanical 

influence of these discontinuities is essential to all rock engineers. Most of the world is 

made of rock, and most of the rock near the surface is fractured. The fractures dominate 

the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, 

and even the local magnitudes and directions of the in-situ stress field (Priest, 1993). 

 In a project, the stated objectives will require which rock properties will be required, the 

testing methods and how the site should be characterized (Hudson, 1993). Also, the 

material properties and the level of knowledge required, must vary with the project 

objective. This is the essence of rock characterization (Hudson, 1993).  
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2.1 ROCK CHARACTERIZATION 

A consequence of the millions of years of mechanical, chemical and thermal processes to 

which the rock mass has been subjected is that it may well be anisotropic and 

inhomogeneous and associated with uncertainties (Aladejare and  Wang, 2015, 2016a, 

2017, 2019a, b; Harrison and Hudson, 1997; Phoon and Kulhawy, 1999  ). For this reason, 

rock mass characterizations of complex structures are crucial to recognizing their 

vulnerability as magnitude of knowledge-based uncertainties reduce as the level of 

knowledge increases (Baecher and Christian, 2003). 

From a rock exposure, it is relatively easy to measure any property of the intact rock. 

Similarly, the rock mass structure is evident, and a good estimate of most discontinuity 

properties can be obtained. However, when it comes to large structures such as tunnels, 

obtaining information about rock mass properties is not an easy task. Because the amount 

of exposed rock is limited, testing has solely been on cylindrical lengths of borehole core. 

There are always constraints on resources, and so it is necessary when optimizing the rock 

characterization procedures to consider the requirements and to choose the rock access 

method and testing techniques in accordance with the engineering objective (Harrison and 

Hudson, 1997).  

Two general categories for determining the engineering properties of rocks: direct and 

indirect method. The direct methods include laboratory and in situ tests whiles the indirect 

method includes empirical or theoretical correlation; a combination of intact rock and 

discontinuity properties; and back-analysis using field observation and prototype 

observation (Zhang, 2017).  Generally, two direct methods of testing, known as 

destructive and non-destructive are used considering different aspects of 

structures (Barton, 2002). The non-destructive methods include ground penetrating radar 

(GPR) system, x-ray radiography and impact echo (IE) (Delatte et al., 2002; Locatelli et 

al., 2001). Although non-destructive methods are cost-effective and faster compared to 

destructive ones, they not often yield meaningful results because of not measuring the 

rock mass properties directly. The destructive methods can accurately determine the 

mechanical properties of rocks using direct mechanical tests in the laboratory. These 

methods are, however, time consuming and expensive (Zobach, 2007). 
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Since the early 1970s, the use of servo-controlled testing machines has provided an almost 

limitless capability for testing rock, the variation of which is only limited by the 

imagination (Hudson, 1993). Figure 2.1 (a) and (b) illustrate closed loop actions of testing 

machines (Hudson et al., 1972). Because the feedback control system can be arranged to 

control any variable, almost any test is possible. In the simpler cases, the stress rate or the 

strain rate can be controlled. Using the stress and strain together, the input energy can be 

controlled. 

 

Figure 2.1 (a) The principle of closed-loop control and   (b) Schematic of fast response, closed-

loop, servo controlled testing machines (Hudson et al., 1972) 

Standardized procedures are advantageous for measuring rock properties and site 

conditions. These standards among other advantages, provide; guidance which are helpful 

in conducting tests, the means of results comparison by different organizations on rocks 

at different sites, thereby enhancing knowledge sharing, a source of recommended 

procedures for use in contracts. 

The International Society for Rock Mechanics Commission on Testing Methods (ISRM) 

has been producing Suggested Methods for rock testing and characterization since 1978, 

and these are widely used. There are also national bodies that produce standards for their 

own countries. In particular, the American Society for Testing and Materials (ASTM), via 

Committee D18.12, has produced an extensive series of methods for rock testing. There 

are many other countries which have their own wide range of standards (Harrison and 

Hudson, 1997). Table 2.2 lists some testing methods suggested by ISRM presented by 

(Ulusay,2014). 
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Table 2.2 List of all the ISRM Suggested Methods (SM) published between 1974 and 

2014 (In chronological order) (Ulusay, 2014) 

ISRM SUGGESTED METHODS 

SM for Determining Shear Strengtha, b—1974 

SM for Rockbolt Testinga, b—1974 

SM for Determining Water Content—Porosity—Density—Absorption and Related Properties and Swelling and Slake-

Durability Index Propertiesa, b—1977 

SM for Monitoring Rock Movements Using Inclinometers and Tiltmetersa, b—1977 

SM for Determining Sound Velocitya, b—1978 

SM for Determining Tensile Strength of Rock Materialsa, b—1978 

SM for Determining Hardness and Abrasiveness of Rocksa, b—1978 

SM for Determining the Strength of Rock Materials in Triaxial Compressiona, b—1978 

SM for Monitoring Rock Movements Using Borehole Extensometersa, b—1978 

SM for Petrographic Description of Rocksa, b—1978 

SM for Quantitative Description of Discontinuities in Rock Massesa, b—1978 

SM for Determining in Situ Deformability of Rocka, b—1979 

SM for Determining the Uniaxial Compressive Strength and Deformability of Rock Materialsa, b—1979 

SM for Pressure Monitoring Using Hydraulic Cellsa, b—1980 

SM for Geophysical Logging of Boreholesa, b—1981 

SM for Determining the Strength of Rock Materials in Triaxial Compression: Revised Versionb—1983 

SM for Surface Monitoring of Movements across Discontinuitiesb—1984 

SM for Determining Point Load Strengthb—1985 

SM for Rock Anchorage Testingb—1985 

SM for Deformability Determination Using a Large Flat Jack Techniqueb—1986 

SM for Deformability Determination Using a Flexible Dilatometerb—1987 

SM for Rock Stress Determinationb—1987 

SM for Determining the Fracture Toughness of Rockb—1988 

SM for Seismic Testing Within and Between Boreholesb—1988 

SM for Laboratory Testing of Argillaceous Swelling Rocksb—1989 

SM for Large Scale Sampling and Triaxial Testing of Jointed Rockb—1989 

SM for Blast Vibration Monitoringb—1992 

SM for Rapid Field Identification of Swelling and Slaking Rocksb—1994 

SM for Determining Mode I Fracture Toughness Using Cracked Chevron Notched Brazilian Discb—1995 

SM for Deformability Determination Using a Stiff Dilatometerb—1996 

SM for Determining the Indentation Hardness Index of Rock Materialsb—1998 

SM for Complete Stress-Strain Curve for Intact Rock in Uniaxial Compressionb—1999 

SM for in Situ Stress Measurement Using the Compact Conical-Ended Borehole Overcoring Techniqueb—1999 
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SM for Laboratory Testing of Swelling Rocksb—1999 

SM for Determining Block Punch Strength Indexb—2001 

SM for Rock Stress Estimation—Part 1: Strategy for Rock Stress Estimationb—2003 

SM for Rock Stress Estimation—Part 2: Overcoring Methodsb—2003 

SM for Rock Stress Estimation—Part 3: Hydraulic Fracturing (HF) and/or hydraulic testing of pre-existing fractures 

(HTPF)b—2003 

SM for Rock Stress Estimation—Part 4: Quality Control of Rock Stress Estimationb—2003 

SM for Land Geophysics in Rock Engineeringb—2004 

SM for Determining the Shore Hardness Value for Rockb—2006 (updated version) 

SM for Determination of the Schmidt Hammer Rebound Hardness: Revised versionc—2009 

SMs for Determining the Dynamic Strength Parameters and Mode I Fracture Toughness of Rock Materialsc—2012 

SM for the Determination of Mode II Fracture Toughnessc—2012 

SM for Determining Shear Strengtha, b—1974 

SM for Rock Stress Estimation—Part 5: Establishing a Model for the In situ Stress at a Given Site c—2012 

SMs for Rock Failure Criteria (Six failure criteria)c—2012: 

a. SM for Mohr-Coulomb Failure Criterionc 

b. SM for the Hoek-Brown Failure Criterionc 

c. SM for 3D Hoek-Brown Failure Criterionc 

d. SM for Drucker-Prager Failure Criterionc 

e. SM for Lade and Modified Lade 3D Rock Strength Criteriac 

f. SM for a Failure Criterion for Rocks Based on True Triaxial Testingc 

SM for for Measuring Rock Mass Displacement Using a Sliding Micrometerc—2013 

SM for Rock Fractures Observations Using a Borehole Digital Optical Televiewerc—2013 

SM for Determining the Mode-I Static Fracture Toughness Using Semi-Circular Bend Specimenc—2014 

SM for Reporting Rock Laboratory Test Data in Electronic Formatc—2014 

SM for Determining Sound Velocity by Ultrasonic Pulse: Upgraded Versionc—2014 

SM for Determining the Creep Characteristics of Rock Materialsc—2014 

SM for Monitoring Rock Displacements Using Global Positioning Systemc—2014 

SM for Laboratory Determination of the Shear Strength of Rock Joints: Revised Versionc—2014 

SM for Determining the Abrasivity of Rock by the Cerchar Abrasivity Testc—2014 

SM for Step-Rate Injection Method for Fracture In-situ Properties (SIMFIP): Using a 3-Components Borehole 

Deformationc—2014 

SM for the Needle Penetration Testc—2014 

a Published in ISRM (1981, Yellow Book) 

b Published in ISRM (2007, Blue Book) 

c Published in ISRM (2014, Orange Book) 
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2.2 ROCK PROPERTIES 

The intact rock material is separated into blocks by preexisting discontinuities. It may 

well be inhomogeneous, anisotropic, weathered which has overtime been subjected by a 

wide variety of natural mechanical, thermal and chemical processes. There may well be 

sets of discontinuities, each with a different genesis, resulting in a complex three-

dimensional geometry with different discontinuities having different mechanical 

properties (Watkins et al., 2015; Zhang and Einstein; 2010, Najibi and Asef, 2014; Wyllie 

and Mah, 2004; Bery and Saad, 2012;). 

It is usually helpful to have some understanding of the genesis of discontinuities, this may 

indicate something about either the discontinuity geometry or the mechanical properties, 

or both. The basic rock mechanics problem is the material rock to which either the applied 

stresses are changed or in which some new geometry is created (Hudson, 1995). Together, 

the intact rock and the discontinuities determine the rock mass properties. There is also a 

preexisting stress state. Then construction alters the stresses and changes the geometry 

(Hudson, 1995).  

 

MECHANICAL PROPERTIES 

Rock mechanical properties, such as strength (compressive, tensile and shear), Young’s 

modulus, and Poisson’s ratio, play an important role in wellbore stability, fracture 

prediction, and other engineering techniques (Chang et al., 2006; Abdulraheem et al., 

2009).  

 

Mechanical properties of rocks are usually measured using static and dynamic methods 

(Baoping and Hongzhi, 2005; Ai-Shayea, 2004). Static methods are generally conducted 

in the laboratory with specific test equipment that contain core specimens (Yuming and 

Guowei, 2000). The specimens are continuously compressed until failure occurs. Stress-

strain curves are simultaneously recorded using a computer and mechanical parameters 

can be obtained from the curves.   

Dynamic methods are usually calculations of compressional wave velocities (VP) and 

shear wave velocities (VS), which can be obtained from logs or in the laboratory (Guo 
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and Liu, 2014; Wen, 1998; Baoping and Economides, 2002; Ranjbar-Karami et al., 1998). 

Abundant studies regarding the differences between static and dynamic methods have 

demonstrated that static methods are more direct and realistic, while dynamic methods 

are easier and more continuous (Chang et al., 2006; Fjaer et al., 2008; Mavko et al., 2009). 

This study utilized static tests because of its capacity to control the rate of loading on test 

specimens, thereby providing valuable information of specimen response on the stress-

strain curve.  

In most cases, the rock mechanics information is obtained from tests on borehole core, so 

it is essential that the drilling report and borehole core logs are correctly completed and 

available (Hudson, 1993).In natural materials such as rock, it is important to know and 

understand its properties and behavior at the loading processes (Hudson and Harrison, 

1997).  

Analysis of mechanical properties are done using the stress-strain curve (figure 2.2). 

Stress is defined as the applied force per unit of area. Usually all failures can be qualified 

as certain stress quantities. Materials can be stressed at the same time by different types 

of stress. Stress is a tensor quantity, which means that it has magnitude, direction and “the 

plane under consideration” (Hudson and Harrison, 1997). 

Under the influence of the forces, materials tend to deform. At compression, the axial 

length reduces while the diameter expands. When materials tend to elongate at tension, 

the diameter contracts. This phenomenon is called Poisson effect and termed, Poisson’s 

ratio (Hudson and Harrison, 1997). Mathematically expressed as: 

𝑣 =  
𝜀𝑙

𝜀𝑎
                                                                    (1) 

Where v is the poisson’s ratio,  𝜀𝑙 is 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛, 𝜀𝑎 is 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛  

The axial strain is a ratio of change in length to initial length and it is expressed as:  

𝜀𝑎 = 
∆𝑙

𝑙
                                                                  (2) 

Where 𝜀𝑎 is the axial strain, ∆l is 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑥𝑖𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ and l is the original 

measured length 
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The lateral strain is the ratio of the change in diameter to the original undeformed 

diameter. It can be expressed as:  

𝜀𝑙 =  
Δ𝑑

𝑑0
                                                                      (3) 

Where  𝜀𝑙 is the lateral strain, Δ𝑑 is change in diameter and d0 is the original diameter. 

 

 

Figure 2.2 The complete stress-strain curve illustrating various mechanical parameters 

(Harrison and Hudson, 1997). 

Researchers have investigated the effects of factors on the complete stress-strain curve 

and hence, mechanical properties of rocks (Funatsu et al., 2004; Rocchi et 

al.,2002;  Sheinin et al.,2012; Nasseri et al.,2009; Liu et al.,2015; Jackson et al., 2008;  

 Qi et al.,2009). 

The elastic modulus increased with the ratio of specimen height to diameter and strain 

rate, whereas the Poisson’s ratio was independent of these two factors (Liang et al., 2015). 

With regards loading conditions, (Jeong et al., 2007), stated that the compressive strength 

exhibited a positive correlation with strain rate, while the stress damage index hardly 

depended on strain rate. The physical and mechanical properties of limestone and granite 

under different temperatures by (Ozguven et al., 2014). They pointed out that the tensile 

strength of rocks decreased with increasing temperature, and the strength became much 

low for a temperature above 600oC. Understanding these variables, enhances the 
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prediction of mechanical behaviour of rock under conditions which may differ from those 

under which a specimen of the same rock was tested in the laboratory. 

The process of rock failure is extremely complex and not subject to convenient 

characterization through simplified models. It may be either in terms of the precise details 

of each microcrack initiation and propagation, or in terms of the total structural 

breakdown as many microcracks propagate and coalesce (Harrison and Hudson, 1997). It 

is established that stress has been traditionally regarded as the ‘cause’ and strain as the 

'effect' in materials testing. As consequence, early testing and standards utilized a constant 

stress rate application. Failure criteria have been developed to assist engineers in 

understanding failure properties and be able to predict when a rock is likely to fail. 

This study investigates compressive strength, Brazilian tensile strength, Young’s modulus 

and Poisson’s ratio of the granite and gabbro cylindrical and discs specimens. 

 

 

 

COMPRESSIVE STRENGTH 

Compressive strength is the capacity of a material to withstand axially directed 

compressive forces. Rocks are seldom naturally loaded in one direction only, and most 

design procedures require some knowledge of the strength with stress applied in three 

principal directions. The most usual test for this condition, the triaxial cell system, has 

two of the principal stresses equal, and so lends itself to a two-dimensional analysis 

(Harrison and Hudson, 1997). That said, the most common measure of compressive 

strength is the uniaxial compressive strength or unconfined compressive strength (UCS). 

Usually compressive strength of rock is defined by the ultimate stress. It is one of the most 

important mechanical properties of rock material used in design, analysis and modelling. 

In its simplest form, the uniaxial compression test is conducted by taking a right cylinder 

of intact rock, loading it along its axis and recording the displacement produced as the 

force is increased. In the curve shown in figure 2.4 as presented by (Harrison and Hudson, 
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1997), the various aspects of the mechanical behaviour of intact rock tested under these 

conditions can now be identified.  

At the very beginning of loading, the curve has an initial portion which is concave 

upwards (the opposite of typical soil behaviour) for two reasons: (i) the lack of perfect 

specimen preparation, (ii) manifested by the ends of the cylinder being non-parallel; and 

(iii) the closing of microcracks within the intact rock.  

After this initial zone, there is a portion of essentially linear behaviour, analogous to the 

ideal elastic rock. Another important parameter highlighted in Fig. 2.3 is the maximum 

stress that the specimen can sustain. Under the loading conditions shown in the diagram, 

the peak stress is the uniaxial compressive strength,𝜎𝑐. 

 

 

Figure 2.3. The complete stress –strain curve (Harrison and Hudson, 1997) 

The specimen diameter in a UCS test is usually 1 in, but 2 in, 3/4 or 1/2 in sizes can also 

be used provided that the smallest dimension of the specimen is at least 10 times the 

maximum grain size. The length of the specimen, l, should be twice the diameter, d, but 

other lengths down to a 1: 1 ratio of l/d can be used, according to (Ulusay and Hudson. 

2007). 

For a specimen of diameter d and peak load P, the compressive strength is given as: 
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𝐶0  =
𝑃

𝜋𝑑/4
                                                                   (4) 

Where C0 is the compressive strength in MPa, P in Nm-2 and d in m. 

The ISRM suggested method (Ulusay and Hudson, 2007) specifies the test conditions 

much more closely, in that the diameter of the specimen should be not less than NX core 

54 mm and the diameter(d), as the specimen specified as between d and d + 2 mm, with a 

thickness at least d/3 or 15 mm. The use of capping materials or end surface treatment 

other than machining to within 0.02 mm flatness is not permitted. Figure 2.4 illustrates 

the significant features, with the use of only one spherical seat being allowed (Hudson, 

1995). 

ISRM guidelines (Ulusay and Huudson, 2007) recommend that specimen ends be 

prepared to the following tolerances: ends perpendicular to the specimen axis within 0.001 

rad; and ends flat to 0.02 mm. 

 

Figure 2.4. ISRM uniaxial compressive test (Hudson, 1995) 

According to the ASTM D4543 (2008a) and ISRM suggested methods (Ulusay and 

Hudson, 2007), the lengths and diameter of the specimens are determined using an 

electronic caliper. The length is determined to the nearest 0.01 mm by taking an average 

of two lengths measured perpendicular to each other from the center of the end faces. The 

diameter is determined to the nearest 0.01 mm by taking the average of two diameters 

measured perpendicular to one another close to the top, middle, and bottom of the 

specimen.  
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TENSILE STRENGTH 

Tensile strength of rock material is normally defined by the ultimate strength in tension, 

i.e., maximum tensile stress the rock material can withstand. Rock material generally has a 

low tensile strength. The low tensile strength is due to the existence of microcracks in 

the rock. The existence of microcracks may also be the cause of rock failing suddenly in 

tension with a small strain. Tensile strength of rock materials can be obtained from several 

types of tensile tests: direct tensile test, indirect tensile strength and Brazilian test. The 

most common tensile strength determination is by the Brazilian test. 

The uniaxial tension test, as illustrated in Figure 2.5, is not as a rule used in engineering 

practice as direct test is not commonly performed due to the difficulty in 

sample preparation. Also, it is difficult to perform, and the rock does not fail in direct 

tension in situ (Harrison and Hudson, 1997).  

 

Figure 2.5 Uniaxial tension (Harrison and Hudson, 1997) 

The indirect tensile strength is the one measured when the tensile stress is generated by 

compressive loading. (The tensile strength of the rock is very much lower than the 

compressive strength, so that such indirect tests are possible, for the same reason, it is not 

possible to have indirect compression tests.). Through the testing configurations, the 

maximum tensile stress can be calculated from elasticity theory as a function of the 

compressive force and specimen dimensions. The tensile strength is, therefore, the 

maximum tensile stress calculated to be present in the specimen at failure (Harrison and 

Hudson, 1997). 

Since the main problems in tensile testing of rock and similar materials are concerned 

with the very low strains which occur before failure, procedures generally attempt to apply 
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an even, direct stress by a loading system which avoids twisting or bending the specimen. 

The ISRM method (Ulusay and Hudson, 2007) specifies cores at least of NX size (54 

mm), with the ends prepared smooth and flat as for the compressive strength test. Metal 

end caps of the same diameter are then cemented to the test specimen, and after hardening, 

the end caps are loaded by a chain linkage system. The number of tests possible depends 

on the specimens available, but at least five is preferred for calculating an average.  

With the ASTM D3967 (2008b), the BTS specimens are drilled, cut, and then inspected 

to meet dimension tolerances including; smoothness of the cylindrical surface of the 

specimen shall be within 0.50 mm over the full length of the specimen; the 

perpendicularity of the specimen ends to the axis of the specimen shall not depart from a 

right angle by more than 0.5°. The BTS specimens are prepared with the thickness to 

diameter (t/D) ratio of 0.5. 

In the Brazilian tensile stress test, according to elasticity theory, is developed across the 

vertical diameter of short cylinders diametrically line loaded. The specimen size is again 

specified as at least NX core, so that if cross drilling of cores is to be considered these 

must be at least HX size (approx. 70 mm).Spot loading of the short cylinders used (length 

of half diameter) must be avoided, and a layer of adhesive paper strip (masking tape) is 

wrapped round the specimen before loading in a slightly curved jig, as shown in figure 

2.6. The tensile strength is calculated from the formula (Ulusay and Hudson, 2007): 

𝑇0 =  
2𝑃

𝜋𝐷𝑡
                                                                   (5) 

Where T0 is the tensile strength in MPa, P is the load at failure in kN, D is the diameter in 

mm and t, the thickness of the specimen also in units of mm. 
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Figure 2.6. Apparatus for ISRM Brazil test (ISRM, 2007) from (Hudson, 1993) 

 

YOUNG’S MODULUS 

Young’s modulus also known as the elastic modulus is an important parameter to describe 

stress and strain relationship. Young's modulus (E), is defined as the ratio of stress to 

strain, that is: 

E = 
𝜎

𝜀
                                                               (6) 

Where E is young’s modulus in GPa, 𝜎 is stress in N/m2, 𝜀 is strain 

Elastic modulus describes the capacity of rock deformation, or the stiffness of a rock. For 

a high elastic modulus rock, it is less deformable (i.e. stiff). The initial part of the complete 

stress-strain curve will be steep. For a low elastic modulus (soft) rock, it is more 

deformable, and the initial part of the complete stress-strain curve will be gentle (Hudson 

and Harrison 1997).  

It can be determined in two ways: either by taking the slope of the stress-strain curve at a 

given point; or by taking the slope of a line connecting two points on this linear portion 

of the curve (Fig. 2.7). The two slopes are the tangent modulus and the secant modulus. 

The tangent modulus is conventionally taken as the gradient of the 𝜎 − 𝜀 curve at a stress 

level corresponding to 50% of the peak stress; the secant modulus may be determined 
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anywhere over the entire linear portion. Naturally, both of these are approximations to the 

real behaviour, but are useful and adequate for simple elastic applications. 

 

Figure 2.7. Typical stress-strain curve showing tangent modulus computation (Hudson, 

1995). 

Young’s modulus (E50) is calculated for every Uniaxial Compressive Strength (UCS) test 

using the ASTM D7012 (2014) standard. Young’s modulus, E, is defined as the average 

slope of the straight-line portion of the stress-strain curve, calculated between 40 and 60 

percent of the maximum applied load as: 

𝐸 =  
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
  𝑜𝑣𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 30 − 50% 𝑜𝑓 𝑈𝐶𝑆                           (7) 

Where E50 represent the standard values normally reported, this range of behaviour 

overlaps with the onset of damage initiation and is therefore subject to inelastic influences.  

 

POISSON’S RATIO 

Poisson’s ratio is the ratio of transverse strain to corresponding axial strain on a material 

stressed along one axis, at linearly elastic region.  For a rock core subjected to axial load, 

Poisson’s ratio (v) can be expressed mathematically as indicated in equation (1). 

For design problems it is important to assess the in-situ deformation parameters of a 

rockmass (Hudson, 1995). A step in this process is measurement of the axial and lateral 
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strain response in uniaxial compression. Although the terms Young's modulus and 

Poisson's ratio are strictly only true for a linearly elastic material, they are used for the 

deformation characteristics of rock either as tangent or secant modulus values. 

Measurement of axial and lateral stress-strain curves is best done using resistance wire 

strain gauges cemented to the test specimen (Komurlu, 2018). These devices usually 

involve displacement transducers such as linear variable differential transformers 

(LVDTs).  

Poisson’s ratio (v50) is calculated for every Uniaxial Compressive Strength (UCS) test 

using the ASTM D7012 (2014) standard according to: 

𝑣 =  
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
  𝑜𝑣𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 30 − 50% 𝑜𝑓 𝑈𝐶𝑆                             (8) 

Where v50 represent the standard values normally reported, this range of behaviour 

overlaps with the onset of damage initiation and is therefore subject to inelastic influences. 

For most rocks, the Poisson’s ratio is between 0.15 and 0.40 (Figure 2.8). At a later stage 

of loading beyond linearly elastic region, lateral strain increases faster than the axial strain 

and hence lead to a higher ratio.  

 

 

Figure 2.8. Typical stress-strain curves in uniaxial compression tests (Hudson, 1995) 
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2.2.3 PHYSICAL PROPERTIES 

Physical properties of a rock relevant to geomechanics applications include its mass 

density, porosity, water content. The techniques that can be used to measure these 

properties range from weighing, drying and measuring the volume of the specimen as 

suggested by ISRM (Ulusay and Hudson, 2007) to more complicated experiments such 

as mercury intrusion porosimetry (Léon Y León, 1998) or x-ray diffraction and 

fluorescence. These tests are important for the proper characterization of the rock as well 

as for development and implementation of computational models that can be used in 

prediction exercises (Selvadurai and Nguyen, 1995; Alonso et al. 2005). This study deals 

with the density, water content and porosity of gabbro and granite samples. The chemical 

composition tests were performed using x-ray techniques. 

 

DENSITY 

Density is defined the mass per unit volume of a material. Since a rock contains both 

grains (solid matrix material) and voids, it is necessary to distinguish between different 

densities which are related to different parts or components of the rock, as defined in Table 

2.4 (Zhang, 2017). It is usually expressed in g/cm3. The density of rocks depends on the 

mineral composition, the porosity and the filling material in the voids (Zhang, 2017). 

Table 2.4 Definitions of various density terms (Zhang, 2017) 

Term and definition  Equation 

Density (or bulk density): Mass determined at natural water content 

 

 

 

Dry density: Mass refers to solids only. All moistures dried out of the voids 

 

 

 

Saturated density:  Mass refers to solids and water which fills the voids 
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Grain density (or solid density):  Both mass and volume refer to the grains (solids) only 

 

 

 

 

where m =  𝑚𝑠+ mw and V =  Vs + Vv in which m is the bulk sample mass, 𝑚𝑠 is the 

mass of the grains(solids), mw is the mass of water in the voids, V is the bulk sample 

volume, Vs is the volume of the grains (solids), and Vv is the volume of the voids. 

The density of rocks can be determined using the method suggested by ISRM (2007). The 

parameters for the calculation of density after following the suggested procedures are 

determined from the equations as follows: 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 − 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑑𝑟𝑦𝑚𝑎𝑠𝑠 (𝑀𝑠𝑎𝑡 ) = 𝐵 − 𝐴                          (9) 

𝐺𝑟𝑎𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑠) = 𝐶 − 𝐴     (kg)                                           (10)                          

𝐵𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒( 𝑉) =  
𝑀𝑠𝑎𝑡− 𝑀𝑠𝑎𝑏

𝜌𝑤
     ( 𝑚3)                                              (11) 

𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒( 𝑉𝑣 ) =  
𝑀𝑠𝑎𝑡− 𝑀𝑠

𝜌𝑤
         ( 𝑚3 )                                           (12) 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (𝑛) =  
100𝑉𝑣

𝑉
 %                                                                        (13) 

𝐷𝑟𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑐𝑘 (𝜌𝑑 ) =  
𝑀𝑠

𝑉
       ( 

𝑘𝑔

𝑚3 )                                            (14) 

Where A is mass of sample container in (kg), B is the mass of sample container and 

saturated dry mass of sample in (kg) and C is the mass of the container plus oven dry mass 

of sample, also in units of (kg). 

Density and porosity often related to the strength of rock material. A low density 

and high porosity rock usually has low strength.Rock density is controlled by densities 

and volumetric fractions of components which the rock is composed. Therefore, density 

differences between minerals, fluids, and gases cause a strong correlation between rock 

density and porosity. For underground rocks, as depth increases the rock compaction 

increases, causing porosity reduction (Peng and Zhang, 2007). 
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POROSITY 

The (total) porosity, n, is defined as the ratio of void or pore volume (Vv), to the total 

volume (V), of the rock:  

𝑛 =  
𝑉𝑣

𝑉
=  

𝑉− 𝑉𝑠

𝑉
                                                                (15) 

Where Vs is the volume of the grains or solid matrix substance. Porosity is usually given 

as a percentage. The porosity of rocks can be determined by using the method suggested 

by ISRM (2007) and utilizing equation (13). 

Porosity is the result of various geological, physical, and chemical processes and varies 

significantly for different rock types. Porosity changes significantly even for the same 

rock type due to different factors such as grain size distribution, grain shape, 

depth/pressure, and temperature. Figure. 2.9 shows the variation of porosity n with mean 

grain diameter d50 for Bentheim Sandstone (Schön, 1996) as reported by (Zhang, 2017). 

 

Figure 2.19. Porosity n versus mean grain diameter d50 (μm) for Bentheim Sandstone. 

(Zhang, 2017). 

Porosity is primarily controlled by the shape, size and arrangement of the rock grains 

(Peng and Meng 2002). It also depends on rock mechanical processes (such as 

compaction, deformation, fracture evaluation etc.) and geochemical processes (e.g. 

dissolution, precipitation, mineralogical changes).  
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WATER CONTENT 

Water content is a measure indicating the amount of water the rock material contains. It 

is simply the ratio of pore water volume to the bulk volume of the rock material. It can be 

expressed as: 

𝑤 =  
𝑉𝑤

𝑉𝑠
 𝑥 100                                                              (16) 

Where w is the water content in (%), 𝑣𝑤 is the pore water volume and 𝑉𝑠 is the volume of 

rock. 

The water content of rocks can be determined using the method suggested by ISRM 

(2007). The parameters for the calculation of water content after following the suggested 

procedures are determined from the equations as follows: 

𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑤 =  
𝑝𝑜𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 𝑚𝑎𝑠𝑠(𝑀𝑣)

𝑔𝑟𝑎𝑖𝑛 𝑚𝑎𝑠𝑠 (𝑀𝑠)
 𝑥 100%                                (17) 

=  
𝐵 − 𝐶

𝐶 − 𝐴
 𝑥 100% 

Where A is mass of sample container in (kg), B is the mass of sample container and 

saturated dry mass of sample in (kg) and C is the mass of the container plus oven dry mass 

of sample, also in units of (kg). 

According to ASTM D2216 (2010), the water content by mass of each specimen is 

calculated once the final dried mass has been measured and it is recorded to the nearest 

1% and is calculated using Equation: 

𝑤 = (
𝑀𝑐𝑚𝑠−𝑀𝑐𝑑𝑠

𝑀𝑐𝑑𝑠−𝑀𝑐
)  𝑥 100                                                  (18) 

Where w is water content (%), 𝑀𝑐𝑚𝑠 is the mass of the container and moist specimen (g), 

𝑀𝑐𝑑𝑠 is the mass of the container and oven-dried specimen (g), and 𝑀𝑐 is the mass of the 

container (g). 
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According to (Zhang, 2017), water content has a great effect on the deformability of intact 

rock. The elastic modulus of intact rock decreases as the water content increases. For 

example, the experimental data of the massive gypsum of the Hafik formation in the Sivas 

basin (Fig. 2.10) show that the elastic modulus decreases with the water content 

approximately following the relation below (Yilmaz, 2010): 

E = 13.23e-0.4701w + 9.3 (r2 = 0.92)                                            (19) 

Where E is the elastic modulus in GPa; w is the water content in %; and r2 is the 

determination coefficient. 

 

Figure 2.10. Influence of water content (w) on elastic modulus E for gypsum. (Yilmaz, 

2010) 

 

2.3 PETROGRAPHY AND THIN SECTION PREPARATION 

The petrographic observations under microscope display not only the textures of rocks 

but also reveal the order of formation of minerals and provide some important clues 

about the mechanism of petrogenesis as well. They also influence the mechanical 

behaviour of rocks to a certain degree (Hu et al., 2014). According to (Hu et al., 2014), 

strength tended to improve as the ratio between soft to hard minerals, ratio between 

secondary to primary phases and the degree of serpentinization decreased. The alteration 

features, including mineralogical reform, disruption of existing textures and initiation of 

new cracks caused a reduction of strength of granites (Basu et al., 2009).The effect of 
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weathering/ alteration on porosity and compressive strength of various rock types from 

Turkey was presented by (Tugrul, 2004). 

The modal mineralogical composition and microfabric characteristics of rocks are 

described in (Prikryl, 2006; Prikryl et al., 2007).The textural features cast much light on 

the conditions under which an igneous rock consolidates from its present magma, for it is 

controlled by the rate and order of crystallization, and these in turn depend on the initial 

temperature, composition, content of fugitive components, viscosity of the magma and 

the pressure under which it solidifies. Detailed petrographic work is a necessary step in 

classification, an aid to on-going field investigations, a prerequisite to geochemical and 

geochronological work, and an essential component in making petrogenetic inferences 

(ISRM 2007). 

The micro-petrographic description of rocks for engineering purposes includes the 

determination of all parameters which cannot be obtained from a macroscopic 

examination of a rock sample, such as mineral content, grain size and texture, and which 

have a bearing on the mechanical behaviour of the rock or rock mass. A common form of 

microscopic examination employed for transparent materials involves the use of thin 

sections and refracted light. Opaque materials can be sawed and polished and then 

examined using reflected light techniques (ISRM, 2007). 

The (ISRM, 2007) stipulates that, to ensure its correct classification, the first step should 

be to ascertain the mineral composition and texture of the rock. Further investigations 

should include a fabric and mineral analysis in the case of strongly anisotropic rocks, the 

determination of the degree of alteration or weathering, grain size, micro-fracturing and 

porosity. 

In thin section preparation, the ISRM 2007 suggested method requires that in order to 

obtain a representative sample of the rock, more than one specimen should be selected 

during field work. Wherever possible, oriented specimens should be collected and the 

original strike and dip of one face of the specimen should be recorded. 

2.4 REGRESSION ANALYSIS 
Regression analysis or curve fitting consists arriving at a relationship that may exist 

between two or more variables. In the context of experiments, the variables represent 
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cause(s) effect relationship, with a measured quantity depending on other measured 

quantities (Venkateshan, 2015). Regression analysis is a way of fitting a “best” line 

through a series of observations. With “best” line we mean that it is fitted in such a way 

that it minimizes the sum of squared differences between the observations and the line 

itself (Mooi, 2014).  

In statistics, regression analysis includes many techniques for modeling and analyzing 

several variables, when the focus is on the relationship between a dependent variable and 

one or more independent variables. More specifically, regression analysis helps one 

understand how the typical value of the dependent variable changes when any one of the 

independent variables is varied, while the other independent variables are held fixed 

(Manouchehrian et al., 2013). In all cases, the estimation target is a function of the 

independent variables called the regression function. A regression model relates Y to a 

function of X and b as below:  

Y ≈ f (X, β)                                                                  (20) 

Where Y represents the dependent variables, X the independent variables and β the 

unknown parameter, which may be a scalar or a vector. 

A regression model can be in linear or non-linear form. In linear form, the parameters of 

the model are assumed to be linear but in non-linear form, these parameters are non-linear. 

Due to simpler computations and statistical analyses of linear regression models, these 

kinds of models are more common to use for regression analysis. General form of a linear 

regression model for modeling n data points and p independent variables is: 

yi = β0 + β1(x1i) + β2f2(x2i) + β3(x3i) +… +βp(xpi) + Ɛi                          (21) 

where β0 is the intercept, β1… βp are the slope between Y and the appropriate xi, Ɛi is the 

error term that captures errors in measurement  of Y and the effect of Y on any variables 

missing from the equation that would contribute to explaining variations in Y. 

  

Nonlinear regression methods are in the form power, exponential, logarithmic (Yagi et 

al., 2009; Hoek et al., 2002; Langford and Diederichs, 2015), and only recently Bayesian 
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regression models have become available (Bozorgzadeh et al., 2018a, b; Contreras et al., 

2018). 

The simple regression analyses provide a means of summarizing the relationship between 

two variables (Yagiz et al., 2009). The limitations however are that, most relationships 

are not linear, and models developed therefrom, become statistically insignificant. 

Multiple regression generally, is to learn more about the relationship between several 

predictor variables and a dependent or criterion variable. The performance of the model 

depends on many factors that act and interact in a complex manner (Kumar et al., 2013). 

It is widely used for modelling and analyzing the experimental results. 

 

The least square error method is a very common method to evaluate the unknown 

parameters for a given data set. A large body of techniques for carrying out regression 

analysis has been developed. Familiar methods such as linear regression and linear least 

squares regression are techniques, in which the regression function is defined in terms of 

a finite number of unknown parameters that are estimated from the data. In linear least 

square method, the unknown parameters are evaluated somehow to minimize the sum of 

squared error in which the error is the difference between observed and evaluated values 

of the dependent variable. For a linear regression, the sum of squared error defines as: 

 

𝑆𝑆𝐸 =  ∑(𝑌𝑖 −  𝑌̂𝑖 )
2                                                          (22) 

𝑆𝑆𝑅 =  ∑(𝑌̂𝑖 −  𝑌̅)2                                                                (23) 

𝑆𝑆𝑇 = (𝑌𝑖 −  𝑌̅)2                                                               (24) 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸                                                              (25) 

𝑅2 = 1 −  
𝑆𝑆𝐸

𝑆𝑆𝑇
   =  

𝑆𝑆𝑅

𝑆𝑆𝑇
                                                           (26) 

Where SSE (error sum of squares) is the sum of squared deviations of observed values 

from predicted values, SSR (regression sum of squares) is the sum of squared deviations 

of predicted values from the mean, SST (total sum of squares) is the sum of total 
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deviations about the mean, 𝑌𝑖 is the observed value for i, 𝑌𝑖̂ is the predicted value for i, 𝑌̅ 

is the mean for the observed values. 

The performance of regression analysis methods in practice depends on the form of the 

data generating process, and how it relates to the regression approach being used 

Regression analysis within recent years has seen a steady increase and successful 

application in many areas of rock mechanics and engineering. For example, (Kahraman, 

1999) developed some regression models to predict penetration rates of rotary and 

percussive drills. (Bozorgzadeh et al., 2018a) discussed how to formulate frequentist and 

Bayesian regression models for analysis of intact rock strength data. This work pays 

attention to the form and location of variability in rock strength data. (Tugrul and Zarif, 

1999) described the relationships between mineralogical and textural characteristics with 

engineering properties of some selected granite rocks by simple regression analyses. (Katz 

et al., 2000) established empirical correlation between rebound readings of Schmidt 

Hammer and laboratory measured values of Young’s modulus, uniaxial strength and dry 

density.  

 

(Karakus et al., 2005) used multiple regression modelling technique to predict elastic 

properties of intact rocks from index tests. Research to investigate the effect that different 

combinations of compressive and tensile strength results have on the values of 

uncertainties in m, compressive strength and standard deviation of axial strength. Two 

secondary investigations have been performed, one examining the ratio between direct 

and indirect tensile strengths, and the other examining the evidence for a tensile cut-off in 

the H-B criterion. The subject of the analysis is an extensive strength dataset of medium-

grained metagranite granodiorite occurring at the Swedish Nuclear Fuel and Waste 

Management Company (SKB) Forsmark site, Sweden (Elorant, 2004a, b, c; Jacobsson, 

2004a, b, c, 2006, 2007; Gorski and Conlon, 2007). 

 

The key benefits of using regression analysis are that it can; indicate significant 

relationship or otherwise of it between dependent and independent variables, indicate the 
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relative strength of different independent variables’ effects on a dependent variable, and 

make predictions. 

 

 

 

 

2.5 ARTIFICIAL NEURAL NETWORK (ANN) 

Artificial Neural Networks (ANN) is one of soft computing techniques whose guiding 

principles is to exploit the tolerance for imprecision, uncertainty, and partial truth to 

achieve tractability, robustness, low solution cost, better rapport with reality (Ibrahim, 

2016). It is one the initial learning machines developed in the 1940s based on the 

biological neuron system of human brains. It found its application later in the 1980s and 

has been used for many engineering related applications ever since, due mainly to its 

capability in extracting complex and non-linear relationships between features of different 

systems (Artun et al., 2005; Gholami et al., 2014;Abbaszadeh et al., 2016). 

 

In neural computation, the artificial neurons are designed as variations on the abstractions 

of brain theory and implemented in software or other media and it is the biological neurons 

that inspired the various notions of formal neuron used in neural computation 

(Negnevitsky, 2002;Arbib, 1995).When a neuron receives excitatory input that is 

sufficiently large compared with its inhibitory input, it sends a spike of electrical activity 

down its axon (Park, 2011). Learning occurs by repeated adjustments of numerical 

weights assigned to the neurons (Park, 2011; Negnevitsky, 2002).  

 

The performance and computational complexity of NNs are mainly based on network 

architecture, which generally depends on the determination of input, output and hidden 

layers and number of neurons in each layer. The number of layers and neurons in each 

layer affect the complexity of NN architecture. NN architectures are discussed at length 

in several research works (Öztütk, 2003). A single hidden layer is sufficient for the ANN 

to approximate any function and to any arbitrary given accuracy. Use of more than a single 

layer can lead to many local minima and make the training difficult (Hornik et al., 1989). 
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In the literature, there are several networks such as Hopfield networks, adaptive resonance 

theory networks, Kohonen networks, backpropagation networks, recurrent networks, 

counter propagation networks, multi-layer perceptron networks, radial basis function 

networks, etc. Multi-layer perceptron (MLP) and radial basis function (RBF) are two of 

the most widely used neural network architecture. They are robust predictors with the 

ability to generalize for imprecise input data. General difference between MLP and RBF 

is that RBF is a localized type of learning which is responsive only to a limited section of 

input space. On the other hand, MLP is a more distributed approach (Kumar, 2013). In 

MLP for instance, the weighted sum of the inputs and bias term are passed to activation 

level through a transfer function to produce the output and the units are arranged in a 

layered feed-forward topology called Feed Forward Neural Net- work. 

 

Various activation functions perform a mathematical operation on inputs to a specified 

output. The function could be linear and be expressed mathematically as: 

Y = f (u) = α.u                                                               (27) 

Where 𝛼 is the slope of the linear function, Y, the output and u, input function.  

The activation function may be non-linear sigmoidal (S shape) and expressed as: 

𝑓(𝑥) =  
1

1 + 𝑒−𝛼𝑥   , 0 ≤ 𝑓(𝑥) ≤ 1                                                      (28) 

 

Where 𝛼 is the shape parameter of the sigmoid function. 

 

The tangent sigmoidal function is another non-linear activation function used and 

mathematically expressed as: 

𝑓(𝑥) =  
2

1+ 𝑒−𝛼𝑥 − 1, −1 ≤ 𝑓(𝑥) ≤ +1                                             (29) 

 

As each input is applied to the network the network output is compared with the actual 

target value and the error is calculated. The error between the network output and the 

actual output is minimized by modifying the network weights and biases (Park, 2011; 
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Negnevitsky, 2002). The goal is to minimize the average of the squares of the errors which 

is called Mean Square Error of the output. 

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =  
1

𝑄 ∑ (𝑡(𝑘)−𝑎(𝑘))2𝑄
𝑘=1

                                      (30) 

Where t(k) is the actual value, a(k) is the network value and Q is the number of epochs.  

When the MSE falls below a predetermined value or the maximum number of epochs 

have been reached, the training process stops. 

  

A trained neural network can be used for simulating the system outputs for the inputs 

which have not been introduced before. The coefficient of determination (R2) between the 

actual and predicted values is a good indicator to check the prediction performance of 

each model. Furthermore, in this study, variance account for (VAF) and root mean square 

error (RMSE) indices were calculated to control the prediction performance of the model. 

When R2 is 1, VAF is 100 and RMSE is 0, then the model is excellent. R2 is expressed 

mathematically as represented in equation (35). VAF and RMSE as expressed as below: 

𝑉𝐴𝐹 = [1 −  
𝑣𝑎𝑟(𝑦−𝑦′)

𝑣𝑎𝑟(𝑦)
] 𝑋 100                                                (31) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
 ∑ (𝑦 − 𝑦′)2𝑁

𝑖=1                                                    (32) 

Where y and y´ are the measured and predicted values respectively. 

According to (Haykin,1999), all data should be divided into two data sets such as: training 

(70% of all data) and test (30% of all data). 

 

During training in ANN technique, overfitting, which occurs when huge number of data 

and a very complicated function is selected to reduce the empirical risk. huge number of 

data and a very complicated function is selected to reduce the empirical risk. This leads 

to a very promising result often yielded at the training stage, but a poor estimation is 

achieved at the testing step by the machine (Martinez-Ramon and Cristodoulou, 2006; 

Duda et al., 2002). This is often resolved by reducing the complexity of the model used 

to explain the data (Abe, 2008). 
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ANN have been used to develop multiple prediction models for prediction of rock 

parameters in engineering geology (Sonmez et al., 2006; Singh et al., 2007; Haykin, 1999; 

Gokceoglu and Zorlu, 2004; Ceryan et al., 2012; Yesiloglu-Gultekin et al., 2013). These 

studies have indicated that ANNs are effective approaches when compared with analytical 

predictive models Methodologies for estimating various geotechnical properties of rocks 

including permeability, compression index, shear strength etc., have been successfully 

developed with the application of ANN (Ozer et al., 2008; Park et al., 2009; Park and 

Kim, 2010; Park and Lee, 2010; Najjar and Ali, 1999; Penumadu and Zhao, 1999). 

 

The behavior of pile foundations erected in soils is considerably uncertain, sophisticated 

with less understanding (Baik, 2002). For this reason, ANN has also been applied in the 

bearing capacity of pile (Bea et al., 1999; Goh et al., 2005; Abu-Kiefa, 1998; Das and 

Basudhar, 2006, Park and Cho, 2010) in areas such as the modeling the axial and lateral 

load capacities of deep foundations. It has also been utilized in the design and construction 

of tunnels and underground openings (Shi, 2000; Yoo and Kim, 2007) as well as in slope 

stability analysis ( Neaupane and Achet, 2004; Ferentinou and Sakellariou, 2007; Zhao, 

2007; Cho, 2009)  

 

ANNs have many advantages such as fast prediction responses, noise suppression 

capabilities, ability to handle large amount of data, and the ability to model complex 

relationships between the inputs and the outputs without the need for having knowledge 

about the underlying distributions in the data (Haykin, 1999).  
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3. METHODOLOGY 

The experimental tests in this study was to examine the influences of various test 

parameters on the geomechanical properties of two igneous rocks, gabbro and granite 

from Otanmäki area, central Finland. The conduct of UCS test in association with deriving 

Young’s modulus and Poisson’s ratio of a specimen is quite expensive and comes with 

strict specimen preparation standards. This study sought to compare the predictive 

capacities of regression and ANN models to estimate UCS, Young’s modulus and 

Poisson’s ratio using experimental data from their corresponding BTS, density, porosity 

and water content.  

In this section, the methodology used to collect, prepare and test Uniaxial Compressive 

Strength (UCS), Young’s modulus, Poisson’s ratio and Brazilian Tensile Strength (BTS) 

of the specimens will be discussed. This entails the retrieval of samples, the drilling, 

cutting and grinding of specimens, specimen testing condition preparation, the procedures 

and equipment used during testing and calculations used to estimate the properties. In 

addition, test methodology and modes used to calculate properties such as water content, 

porosity and bulk density will also be explained. Multiple linear regression and Artificial 

neural network (ANN) techniques used to construct models of the rock properties are 

mentioned. The results of testing will be presented and discussed with respect to specimen 

condition and ability to accurately characterize the geomechanical properties of the two 

rocks. 

 

 

3.1 SITE VISIT AND SAMPLE PREPARATION 

Sampling locations within the Otanmäki area, central Finland, close to the Otanmäki Fe-

Ti-V deposit was selected for this work. The Otanmäki area is located 150 km southeast 

of Oulu in Vuolijoki, within the bounds of the Kajaani municipality in Central Finland. 

To the southwest of Otanmäki is lake Saaresjärvi, and Oulujärvi lake to the north (Figure 

3.1 A).  
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Two sampling sites at Vuorokas for the gabbro and Pikkukallio for the granite were made 

available by Jouko Jylänki, the CEO of the Otanmäki Mine (Fig. 3.1B).Large boulders 

(0.5 x 0.3 x 0.3 m) of each rock type were taken for further processing at the Oulu Mining 

School (OMS). 

 

 

A 

N 

Oulujärvi 
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Figure 3.1. (A) Map of Finland showing Otanmäki area in central Finland with 

approximate locations of the sampling sites at Pikkukallio and Vuorokas 

(Maanmittauslaitos, 2020) (B) sampling site at Vuorokas (photograph by Kimmo 

Kärenlampi). 

The UCS specimens were prepared in accordance with the ISRM suggested method 

(Ulusay and Hudson, 2007). Cylindrical specimens were retrieved by coring from the 

boulders with a Hilti DD 110-W diamond handheld core drilling machine (Fig. 3.2). The 

specimens for the UCS and BTS tests were cut and preliminary grinding of the surfaces 

done at the Oulu mining school (OMS) with a diamond saw. These specimens are labelled 

(SA01-15) for the gabbro and (SB01-10) for the granite (Fig.3.3).  

The UCS specimens were cut to the final length of the specimen with an additional length 

of 2 to 3 mm for grinding. If the length of the cores permits, BTS specimens were also cut 

from the top and bottom of the UCS specimens. While cutting the BTS specimens, special 

care was taken to ensure that the ends remain parallel to one another in accordance with 

ISRM testing standards. Fifteen (15) cylindrical and disc shaped samples were 

investigated for the UCS and BTS respectively, of the gabbro and ten (10) cylindrical and 

disc shaped specimens were investigated for the UCS and BTS of granite. The UCS 

specimens used in this testing had a mean diameter of 54.6 mm and a consistent length to 

B 
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diameter ratio (L/D) of 2.0. The BTS specimens had an average diameter of 54.6 mm and 

a consistent thickness to diameter ratio (t/D) of 0.5. 

 The final grinding to within testing standards was done at the Aalto university school of 

engineering with a Form+Test PSM 3/230 specimen grinder meeting the ISRM, 2007 

standards. Figure 3.4 shows some of the specimens after regrinding. Fourteen of the 

twenty-five cylindrical specimens, however, were not in the best of shapes for testing 

standards, these specimens were either having ends not perpendicular to the axis or were 

not having uniform circumference (Fig. 3.5). UCS tests were conducted, regardless, to 

observe variations in the results. 

The accuracy of the length and diameter measurements meets the requirements of ASMT 

D4543 (2008a) and ISRM suggested methods (Ulusay and Hudson, 2007).The nominal 

diameter of the specimens were 54mm and their length to diameter (L/D) ratio was 2:1 

with regards the UCS test specimens as recommended by ISRM, (Ulusay and Hudson, 

2007). The BTS test specimens had also, a nominal diameters of 54.6 mm and thickness 

ranging from (2.6-2.9mm) with a thickness to diameter ratio (t/D) of approximately 0.5, 

satisfying the testing standards for the ISRM (International Society for Rock Mechanics) 

(Ulusay and Hudson 2007) and ASTM D3967 (2008b). 

Samples of the same rock type for both gabbro and granite were crushed to about 10-

12mm size for the conduct of the density, porosity and water content determination. Also, 

thin section blocks were cut for preparation of polished thin sections. 
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Figure 3.2. Drilling core samples from the boulders drilling at the Oulu Mining School 

(OMS) (photographs by Kimmo Kärenlampi) 

     

Figure 3.3.  Cylindrical and disc shaped test specimens of (A)  gabbro   (B)  granite  

A B 
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Figure 3.4. Cylindrical uniaxial compression test specimens after re-grinding 

(photographed by P. Eloranta, Aalto ENG) 

 

                

Figure 3.5. (A) specimen SA01 gabbro having ends not perpendicular to the axis (photographed 

by P. Eloranta, Aalto ENG) (B) specimen SB08 granite having uneven circumference 

A B 
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3.2 TEST PROCEDURES AND CONFIGURATIONS 

3.2.1 EQUIPMENT  

The UCS and Brazilian tests were conducted at Aalto University School of engineering. 

The MTS 815 Rock Mechanics Test System, a computer servo-controlled hydraulic 

compression machine was used (figure 3.6). The system consists of a load cell, 

extensometers for strain measurements, load frame, hydraulic power supply, test 

controller, test processor and PC micro-computer.  

 

Figure 3.6. MTS 815 Rock mechanics test system 
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3.2.2 UCS, YOUNG’S MODULUS AND POISSON’S RATIO TESTS 

In all UCS tests on the gabbro and granite specimens, axial deformation is measured with 

the three averaging direct contact extensometers which are 50.0 mm gauge length (figure 

3.7). The extensometers are held in place by the contact force provided from six mounting 

springs. Circumferential deformation is measured by means of an extensometer connected 

to a roller chain wrapped around the circumference of the specimen at its mid-height.  The 

axial load is applied to the top end through a spherical seat in order to assure uniform load 

distribution. Load is derived from the hydraulic pressure on the loading piston. Non-

lubricated steel plates, fixed at the bottom and with spherical seat on top, are used for the 

UCS tests. 

A detailed testing routine that conforms to ASTM D7012 (2014) and ISRM suggested 

methods (Ulusay and Hudson, 2007). The UCS tests are started under the axial 

deformation control and then switched to the circumferential deformation control at 0.75 

MPa/s to ensure a controlled test in the post-peak region All measured data were recorded 

at a frequency of 1 Hz. The test procedure is listed below: 

i) The specimen was driven manually near to contact (no axial force is allowed) 

ii) The readings of the axial and radial extensometers, actuator displacement and 

axial force are reset. 

iii) Programmed test control is initiated. 

iv) The specimen is driven to force contact by moving actuator up to 0.2mm/min until 

axial force is 5.0KN 

v) Axial load is increased so that loading rate is about 0.75MPa/s until radial strain 

is -0.01% or axial stress is 50Mpa. This is to ensure axial load ramp to failure. 

vi) The system is unloaded by removing remaining force through programmed control 

To ensure that all the test phases are made to each specimen in planned order, and to make 

possible and reanalyze possible errors and deviations in the test results, the test phases 

were reported on a test information form stored in the laboratory. 

The UCS of the specimens is calculated according to ISRM, 2007 using equation (4). 

Eleven specimens were tested for Young’s modulus and Poisson’s ratio comprising five 

gabbro specimens and six granite specimens. Young’s modulus (E) and Poisson’s ratio 
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are calculated as tangent modulus at the half of the peak strength. The slopes of the stress-

strain curves are determined between 40-60% of the peak strength using linear fit 

(Microsoft Excel SLOPE function) which corresponds with equations (7) and (8). 

Young’s modulus is additionally calculated as secant modulus at half of the peak strength. 

Table 3.1 shows the results of the UCS, Young’s modulus and Poisson’s ratio tests. 

 

                                              

Figure 3.7 (A and B) Cylindrical specimen held by extensometers for UCS, Young’s 

modulus and Poisson’s ratio testing 

 

 

 

 

A B 



48 
 

3.2.3 BTS TESTING PROCEDURE 

The BTS was conducted in accordance with the ISRM  2007 suggested method with 15 

specimens for the gabbro and 10 for the granite. All 25 specimens were wrapped with a 

masking tape before the conduct of tests (Fig. 3.8).  

The BTS tests are conducted under monotonically increasing load until the specimen 

failed. A testing routine that conforms to ASTM D3967 (2008b) is used and is detailed 

below:  

i) The specimens were placed in the center of the curved bearing blocks or platens 

to contact the top platen. 

ii) The readings of axial force were reset. 

iii)  The programmed test control routine is started. 

iv) With the specimen in contact with the top platen,  

a. the actuator is moved up with the rate of 0.1 mm/min 

b. this is stopped when the applied force reaches 5.0 kN 

c.  the applied force to the specimen is reduced to 1.0 kN with the unloading 

rate of 10 kN/min. 

v) The applied force and lateral deformations are recorded. 

vi) The test in load control mode with the rate ranging between 0.1 to 0.25 kN/s 

depending on the diameter of the specimen is started. 

vii) When the applied force to the specimen in the unloading region reaches 60% of 

the maximum applied force to the specimen, the test is stopped. 

The BTS of the specimens are calculated based on ISRM, 2007 equation (5). Table 3.1 

shows results of the test. 
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Figure 3.8. A specimen wrapped with a masking tape for BTS test. 

 

3.2.4 DENSITY, POROSITY AND WATER CONTENT MEASUREMENTS 

The density of the specimens is calculated after preparation but before testing with the 

moisture content corresponding to the relative humidity of the room, according to the 

equations in ISRM (2007).  

Density and Porosity: A VWR international’s (American company involved in the 

distribution of research laboratory products) forced air oven capable of heating up to 

105⁰C, a vacuum saturation equipment, a dessicator to hold specimens during cooling, an 

immersion bath and a wire basket  and a mass balance capable of weighing up to a sample 

weight accuracy of 0.01% were utilized in the testing. The procedure for the testing is 

listed as follows: 
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i) Representative crushed samples of the gabbro and granite having either a mass of 

at least 50 g or a minimum dimension of ten times the maximum grain size is 

selected. The samples are washed in water to remove dust.  

ii) The granite samples are saturated by water immersion in a vacuum of less than 

800 Pa for a period of at least one hour, with periodic agitation to remove trapped 

air.  

iii) The sample were then transferred under water to the basket in the immersion bath. 

Its saturated-sub- merged mass 𝑀𝑠𝑢𝑏 was determined to an accuracy of 0.1 g from 

the difference between the saturated-submerged mass of the basket plus sample 

and that of the basket alone. 

iv)  The sample container with its lid is cleaned, dried and its mass (A) is determined. 

v)  The sample is removed from the immersion bath and surface-dried with a moist 

cloth, care being taken to remove only surface water and to ensure that no rock 

fragments are lost. The sample is transferred to the sample container, the lid 

replaced, and the mass (B) of saturated-surface-dry sample plus container is 

determined. 

vi)  The lid is removed, and the sample dried to constant mass at a temperature of 

105°C, the lid replaced. The sample was allowed to cool for 30 min in a dessicator. 

The mass (C) of oven-dry sample plus container is measured. 

vii)  Steps (ii –vi) is repeated with the gabbro. 

The parameters for the calculation of porosity and density are determined utilizing the 

equations (9-14). Table 3.1 shows results of the test conducted. 

Water content: An VWR forced air oven capable of heating up to 105⁰C, an air tight 

container with lid, a dessicator for holding samples during cooling and a mass balance 

capable of weighing up to a sample weight accuracy of 0.01% were utilized in the testing. 

The procedure for the testing is listed as follows: 

i) The container with its lid is cleaned, dried and its mass (A) is determined.  

ii)  Representative crushed samples of the isotropic gabbro and gneissic granite 

having either a mass of at least 50 g or a minimum dimension of ten times the 
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maximum grain size is selected. Storage and handling precautions were adhered 

in order that, the water content remains within 1% of the in-situ value. 

iii) The gabbro samples were placed in the container, the lid replaced and the mass 

(B) of sample plus container determined. 

iv)   The lid was removed, and the sample dried to constant mass at a temperature of 

105°C. 

v) The lid is replaced, and the sample allowed to cool in the dessicator for 30 min. 

the mass (C) of the sample together with the container is determined. 

vi) Steps (iii – v) was applied with regards the water content determination for the 

granite  

The water content is calculated from equation (17). Table 3.1 shows results of the test 

conducted. 

 

3.2.5 THIN SECTION PREPARATIONS AND XRF ANALYSIS 

Polished thin sections were prepared to study the mineralogy and textural characteristics 

of the rocks. The thin sections were examined using a petrographic microscope with 

transmitted and reflected light capabilities at the University of Oulu. The gabbro shows 

an isotropic and coarse-grained texture and is composed of euhedral laths of calcic 

plagioclase with interstitial spaces filled by clinopyroxene, which is replaced by 

amphibole. The granite shows fine to medium grained texture and consists of equigranular 

framework of quartz and alkali feldspar and dark coloured bands of amphibole, which 

define gneissic banding. Figure 3.9 shows microphotographs of the specimen slides in 

plain and crossed polarized transmitted light. Summary of the mineralogical and textural 

characteristics of the samples are shown in Table 3.2. In addition, chemical compositions 

of the rock types (Table 3.3) were determined by x-ray fluorescence analysis using 

pressed powder pellets and the Bruker AXS S4 spectrometer at the Center for Material 

Analysis (University of Oulu).   

 

 



52 
 

3.2.6 REGRESSION ANALYSIS 

Multiple linear regression analysis was carried out using IBM SPSS Amos 25 statistics 

software suite. In the conduct of the linear regression test, the experimental results in 

Table (3.1) was grouped into two for the gabbro specimens and the granite specimens. 

The mean and mode of the Young’s modulus and Poisson’s ratio data respectively were 

used to complement for the unavailable data to carry out the regression tests. The 

statistical data of the rock properties representing the two rock types are shown in Table 

3.4. Analysis of variance (ANOVA) technique was used to find out which relationship 

was statistically significant according to t-test, p ≤ 0.05 and a 95% confidence level.  

The general purpose of multiple regression was to learn more about the relationship 

between several predictor variables and a dependent or criterion variable. The 

performance of the model depends on a large number of factors that act and interact in a 

complex manner.  The mathematical models of Poisson’s ratio and Young’s modulus 

(properties that had unavailable data in the experimental test) as well as UCS were 

primarily the target in order to facilitate future predictions with respect of the other rock 

properties. This turned out to be influenced by many factors, therefore, a detailed process 

representation anticipated a second order model.  

Analysis of variance (ANOVA) technique was used to find out which input parameter 

significantly affects the desired response. Tables (3.5-3.9) shows the results for multiple 

regression tests run for the gabbro. Table 3.9 shows the regression statistics of the models 

generated. Model 1 represents prediction model for UCS, model 2 for Young’s modulus 

and model 3 for Poisson’s ratio. Some obtained relationships were found not to be 

statistically significant according to the t-test at 95% level of confidence. Multiple 

regression model to predict the relationship of various rock properties are presented in 

equations (33-38). Multiple regression models for the granite was statistically 

insignificant (Table 3.10).  
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3.2.7 ARTIFICIAL NEURAL NETWORK (ANN) 

Multi-layer perceptron (MLP) containing a (4 x (14 x 3) x 3) architecture was used in this 

study. This structure means that the ANN has three layers, 4 neurons in the input 

representing (BTS, density, porosity, water content), two hidden layesr containing 14 

neurons in layer 1 and 3 neurons in layer 2, and 3 output neurons, representing (UCS, 

Young’s modulus and Poisson’s ratio). Two hidden layers were utilized, with Logsigmoid 

function chosen as the activation function in layer 1 and a linear function in layer 2. Figure 

3.10 shows a Simulink model of the network architecture.  

This architecture was chosen to facilitate prediction of the output parameters of the 

specimens that had unavailable data for Young’s modulus and Poisson’s ratio and UCS 

due to specimens not meeting standardized sample preparation criteria. Eighteen datasets 

representing eleven for the gabbro and seven for the granite were run through this analysis. 

Matlab R2019a was the software suite used for this analysis. 

In this study, the nnstart command in matlab was utilized in the development of the model. 

The inputs (BTS, density, porosity, water content) and targets (UCS, Young’s modulus, 

Poisson’s ratio) were sampled from 70% of the datasets to train the network as 

recommended by (Haykin, 1999). The testing was done with 15% and another 15% for 

validation using the Levenberg– Marquardt algorithm (trainlm) for training the network. 

A few trials were conducted initially to fix the number of neurons in the hidden layer. The 

number of neurons for which (mean squared error) MSE is minimum was selected as the 

optimum number of neurons in the hidden layer. The output of the network was compared 

with the target output at each presentation and the error was computed. The initial weights 

and biases of the network were fixed randomly.  

 Four models were generated with this network architecture, stopping the model when the 

MSE was small. These models are evaluated with performance prediction indices of root 

mean square (RMSE), variance accounted for (VAF) and the coefficient of correlation 

(R2) to select the best model for prediction. The basic philosophy of the ranking procedure 

proposed by (Zorlu et al., 2008) was considered and the ranking values of each dataset 

were calculated for each model separately. Table 3.11 shows the input data for the training 

of the network. In Table 3.12, the output data for the models, indicating the training and 
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testing data for the respective models are presented. Table 3.13 shows the performance 

prediction indices of the models and their rankings, respectively.  Figures (3.11- 3.14) 

show the regression chart for the models and figures (3.15-3.18), the error histogram of 

the models.  

 

3.3 TEST RESULTS AND DATA 

In this work, petrographic and XRF analysis are presented and explanations sought to link 

their influence on other rock strength. Also, regression and ANN models are formulated, 

and their prediction capacities are analyzed. The obtained VAF and RMSE values are also 

presented. 

 

3.3.1 MECHANICAL AND PHYSICAL PROPERTIES 

Table 3.1 Test results for mechanical and physical properties of the rock specimens 

SAMPLE 

ID 

UCS 

(Mpa) 

BRAZILIAN 

TEST (Mpa) 

YOUNG'S 

MODULUS 

(Gpa) 

POISSON'S 

RATIO 

DENSITY 

(Kg/m³) 

POROSITY 

(%) 

WATER 

CONTENT 

(%) 

SA01 226 12.3   2852 0.3 0.03 

SA02* 294 11.4 104 0.28 2856 0.2 0.02 

SA03* 303 8.9 103 0.29 2890 0.28 0.02 

SA04 133 9   2887 0.48 0.04 

SA05 76 8.6   2922 0.26 0.02 

SA06* 299 8.3 108 0.28 2960 0.4 0.04 

SA07 97 12.3   2875 0.22 0.01 

SA08* 295 10.6 106 0.25 2768 0.22 0.01 
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SA09 125 9.2   2964 0.38 0.02 

SA10 106 11.8   2953 0.19 0.01 

SA11 116 10.5   2972 0.24 0.01 

SA12* 303 9.7 105 0.29 2954 0.13 0.01 

SA13 78 6.8   2876 0.26 0.01 

SA14 100 11.2   2880 0.43 0.02 

SA15 91 7.3   2871 0.39 0.01 

        

SB01 97 12.7   2688 1.64 0.12 

SB02* 275 12.5 70 0.29 2688 1.18 0.11 

SB03* 284 10 71 0.29 2689 0.77 0.04 

SB04 141 9.4   2699 0.37 0.02 

SB05* 228 7.3 65 0.28 2696 0.29 0.02 

SB06* 242 7.1 65 0.27 2690 0.42 0.03 

SB07* 231 11.2 65 0.27 2676 0.55 0.04 

SB08 184 11.1   2673 0.79 0.06 

SB09 68 11.1   2688 0.96 0.05 

SB10* 258 11.7 64 0.28 2683 0.37 0.03 

SA (01-15) = gabbro, SB (01-10) = granite    (_*) Standardized sample 
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3.3.2 PETROGRAPHY AND XRF ANALYIS 

Table 3.2. Mineralogical characteristics of gabbro and granite 

ROCK  MINERALS MINERAL (%) GRAIN SIZE (mm) 

GABBRO Clino-pyroxene 47 2-5 

 
Plagioclase 43 2-4 

 
Hornblende 5 0.5-1 

 
Opaque minerals 2 0.5-1 

Other minerals                         3 0.5-1 

    

GRANITE Alkali/ K-feldspars 50 0.5-2 

 
Quartz 32 0.1-1 

Amphibole                                      10 0.1-0.5 

 
Opaque minerals 5 1-1.5 

Other minerals 3 0.5-1 
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   Quartz        K-feldspar exhibiting (cross-hatched twinning)   Amphiboles 

    

             Plagioclase     Clino pyroxene (altered to fine-grained hornblende)                                       

400𝜇𝑚 

 

400𝜇𝑚 

 

400𝜇𝑚 

 

400𝜇𝑚 

 

A 
B 

C D 



58 
 

Figure 3.9. Microphotomicrographs of granite and gabbro samples from polished thin 

sections A-D  (A) gneissic granite (crossed polarized light) with  alkali feldspars 

exhibiting crosshatched twinning interspersed with subhedral quartz grains; (B) gneissic 

granite (plane polarized light); (C) isotropic gabbro (crossed polarized light) composed of 

plagioclase with characteristics carlsbard twinning and twin lamellae, clino pyroxene 

altered to fine-grained hornblende; (D) isotropic gabbro (plane polarized light). 

The matrix of the granite is characterized by subhedral to anhedral alkali-feldspars 

(potassium feldspar and albite), subhedral to anhedral quartz grains and anhedral 

amphibole grains (Fig 3.9 A and B). The alkali-feldspars are brownish-grey, have 

fractures, exhibit cross-hatched twinning occasionally with straight to sinuous grain 

boundaries with quartz. Quartz is deformed and exhibits large variations in grain size. The 

amphibole mineral grains were conspicuous as dark silicates in both plane and cross polars 

exhibiting sinuous contacts with the alkali-feldspars and the quartz. (fig. 3.9B). 

The alkali-feldspars (⁓ 50 vol.%) and quartz (⁓ 30 vol.%) dominate the mode. These 

minerals, however, vary in terms of grain sizes with alkali-feldspars ranging from 0.5-2 

mm and quartz with 0.1-1 mm value (Table 3.2). 

The gabbro samples show isotropic texture (Fig. 3.9 C and D) and is composed of 

equidimensional euhedral plagioclase laths and subhedral clino-pyroxene, anhedral 

amphibole mineral grains. The plagioclase exhibited carlsbard twinning with twin 

lamellae, have coarse grains ranging between 2-4 mm in size with few visible fractures in 

the grains. The clino-pyroxene grains vary from 2 to 5 mm in size and exhibit cleavages 

with alteration along cracks in the crystal grains. These alterations were observed to be 

secondary hornblende, which has replaced primary clino pyroxenes probably after the 

magmatic crystallization. The grain boundary features between the clino-pyroxene and 

plagioclase are straight, but somewhat irregular due to growth of secondary hornblende. 

Minor opaque minerals occur as small anhedral to subhedral in clinopyroxene and 

amphibole. 

The modal composition of the gabbro is dominated by clino-pyroxene (47 vol.%) and 

plagioclase (43 vol.%) as observed in Table 3.2. Modal grain size for these two minerals 

show coarse texture of about 3-3.5 mm. 
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Table 3.3. Major and Trace element compositions of the rock types in weight percent 

      Gabbro   Granite   
 

            n      AC        SD       n      AC            SD                              

Na2O 15 2.86 0.26 10 5 0.34 

MgO 15 6.88 1.14 10 0.12 0.02 

Al2O3 15 17.48 1.24 10 11.87 0.68 

SiO2 15 47.4 0.5 10 67.87 1.8 

K2O 15 0.26 0.04 10 4.31 0.22 

CaO 15 12.42 0.44 10 0.46 0.12 

FeOtot 15 6.04 0.75 10 4.41 0.41 

TiO2 15 0.66 0.15 10 0.39 0.082 

MnO 15 0.12 0.014 10 0.11 0.008 

P2O5 15 0.04 0.01 10 0.04 0.01 

       

Cl 15 0.03 0.011 10 0.02 0.014 

S 15 0.09 0.031 6 0.031 0.03 

F 
   

7 0.109 0.042 

Ni 15 0.016 0.002 9 0.007 0.007 

Cu 15 0.013 0.009 9 0.012 0.022 

Zn 15 0.006 0.001 10 0.012 0.004 

Ga 15 0.001 0.001 10 0.002 0.005 

Sr 15 0.069 0.005 10 0.019 0.026 

Ba 15 0.011 0.001 9 0.01 0.003 

Y 1 0.001 0 7 0.011 0.004 

Zr 
   

7 0.107 0.052 

Nb 
   

7 0.017 0.011 

Ce 
   

9 0.02 0.013 

Nd 
   

6 0.015 0.01 

Pb 
   

2 0.005 0.002 

Th 
   

5 0.034 0.002 

Cr 15 0.026 0.004 3 0.031 0.001 

Hf 
   

1 0.004 0 

Rb 
   

7 0.017 0.001 

Ta 1 0.003 0       

SD = standard deviation, AC = average composition, n = number of samples 
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3.3.3 REGRESSION ANALYSIS 

Table 3.4 Statistical values of rock properties for the regression analysis 

Rock 

type 

Statistical 

parameter 

UCS 

(Mpa) 

BTS 

(Mpa) 

Younng's 

modulus 

(GPa) 

Poisson's 

ratio 

Density 

(kg/m³) 

Porosity 

(%) 

Water 

content  

(%) 

Gabbro Number of 

data 

15 15      15 15 15 15 15 

 
Minimum 

value 

76 6.8 103     0.25 2768 0.13 0.01 

 
Maximum 

value 

303 12.3 108       0.29 2972 0.48 0.04 

 
Range 227 5.5 5 0.04 204 0.35 0.03 

 
Mean 176.13 9.68 105.07 0.2799 2898.67 0.292 0.0187 

 
Standard 

deviation 

96.27 1.75 10.3 0.00884 55.7 0.10136 0.0106 

         

Granite Number of 

data 

10 10 10 10 10 10 10 

 
Minimum 

value 

68 7.1 64 0.27 2673 0.29 0.02 

 
Maximum 

value 

284 12.7 71 0.28 2699 1.64 0.12 

 
Range 216 5.6 7 0.01 26 1.35 0.1 

 
Mean 200.8 10.41 66.8 0.28 2687 0.734 0.052 

 
Standard 

deviation 

75.511 1.96 2.25 0.00667 7.986 0.431 0.03553 
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GABBRO 

Model 1 (UCS) = 1770.51 – 7.82BTS – 0.49density – 822.52porosity + 75773.86water content  (33) 

Model 2 (Young’s modulus) = 99.75 – 0.05BTS + 0.002density + 0.14porosity + 30.07waer content 

(34) 

Model 3 (Poisson’s ratio) = 0.001 – 0.0004BTS + 0.0001density – 0.0086porosiity + 0.12water 

content  (35) 

Table 3.5. Analysis of variance for model 1 

ANOVAa 

Model 1 Sum of 

Squares 

df Mean 

Square 

F Sig. 

 
Regression 62319.095 4 15579.77 2.309872 0.129b 

Residual 67448.638 10 6744.864 
  

Total 129767.73 14 
   

a. Dependent Variable: UCS (Mpa) 

b. Predictors: (Constant), WATER CONTENT (%), DENSITY (Kg/m³), BRAZILIAN TEST (Mpa), 

POROSITY (%) 

 
 
Table 3.6. Analysis of variance for model 3 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 0.000458 4 0.000114516 1.802628 0.205b 

Residual 0.000635 10 6.35271E-05 
  

Total 0.001093 14 
   

a. Dependent Variable: POISSON'S RATIO 

b. Predictors: (Constant), WATER CONTENT (%), DENSITY (Kg/m³), BRAZILIAN TEST (Mpa), 

POROSITY (%) 
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Table 3.7. Correlation coefficients of the relation amongst the independent variables for 

model 1 

  
UCS 

(Mpa) 

BRAZILIAN 

TEST (Mpa) 

DENSITY 

(Kg/m³) 

POROSI

TY (%) 

WATER 

CONTENT 

(%) 

Pearson 

Correlation 

UCS (Mpa) 1 0.1285 -0.1992 -0.2704 0.2493 

BRAZILIAN 

TEST (Mpa) 
0.1285 1 -0.1651 -0.3467 -0.0917 

DENSITY 

(Kg/m³) 

-

0.1992 
-0.1651 1 0.0167 0.0899 

POROSITY 

(%) 

-

0.2704 
-0.3467 0.0167 1 0.6607 

WATER 

CONTENT (%) 
0.2493 -0.0917 0.0899 0.6607 1 

 

 

Table 3.8. Correlation coefficients of the relation amongst the independent variables for 

model 3 

  
POISSON'

S RATIO 

BRAZILIAN 

TEST (Mpa) 

DENSITY 

(Kg/m³) 

POROSI

TY (%) 

WATER 

CONTENT 

(%) 

Pearson 

Correlatio

n 

POISSON'S 

RATIO 
1 -0.1543 0.6365 0.0335 0.1423 

BRAZILIAN 

TEST (Mpa) 
-0.1543 1 -0.1651 -0.3467 -0.0197 

DENSITY 

(Kg/m³) 
0.6365 -0.1651 1 0.0167 0.0899 

POROSITY 

(%) 
0.0335 -0.3467 0.0167 1 0.6607 

WATER 

CONTENT 

(%) 

0.1423 -0.0197 0.0899 0.6607 1 

 



63 
 

 

Table 3.9. Statistics results of the regression models 

  INDEPENDENT 

VARIABLES 

LINEAR 

COEFFICIENTS 

STANDARD 

ERROR 

t-

VALUE 

p-

VALUE 

MODEL 1 CONSTANT 1770.515 1214.62 1.458 0.176 

 

BTS -7.817 13.905 -0.562 0.586 

 

DENSITY -0.489 0.404 -1.211 0.254 

 

POROSITY -822.517 314.912 -2.612 0.026 

 
WATER 

CONTENT 
7573.861 2841.763 -2.665 0.024 

      

MODEL 2 CONSTANT 99.75 16.824 5.929 0.00014 

 

BTS -0.054 0.1925 -0.281 0.7848 

 

DENSITY 0.0018 0.0056 0.323   0.753 

 

POROSITY 0.1408 4.362 0.0323 0.9749 

 
WATER 

CONTENT 
30.065 39.3622 0.7638 0.4626 

      

MODEL 3 CONSTANT 0.00104 0.1179 0.0119 0.9907 

 

BTS -0.00037 0.00135 -0.2769 0.7875 

 

DENSITY 0.0001 3.90E-05 2.4796 0.0326 

 

POROSITY -0.00859 0.0305 -0.2812 0.7843 

  WATER 

CONTENT 
0.1214 0.2758   0.44 0.6693 
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GRANITE 

Model 1 (UCS) = 4440.1 -5.86BTS -1.53density – 315.75porosity + 3325.74water content   (36) 

Model 2 (Young’s modulus) = -117.72 + 0.10BTS + 0.07density + 3.61porosity – 13.81water content   

(37) 

Model 3 (Poisson’s ratio) = -0,91 + 0.002BTS + 0.001density – 0.001poroosity + 0.027water content   

(38) 

 

Table 3.10. Statistics results of the regression models for granite 
 

INDEPENDENT 

VARIABLES 

LINEAR 

COEFFICIENTS 

STANDARD 

ERROR 

t-

VALUE 

p-

VALUE 

MODEL 1 CONSTANT 4440.078 10251.712 0.433 0.683 

 
BTS -5.859 21.698 -0.270 0.798 

 
DENSITY -1.534 3.778 -0.406 0.702 

 
POROSITY -315.749 180.325 -1.751 0.140 

 
WATER 

CONTENT 

3325.739 2203.936 1.509 0.192 

      

MODEL 2 CONSTANT -117.721 341.588 -0.345 0.744 

 
BTS 0.1034 0.723 0.143 0.892 

 
DENSITY 0.068 0.126 0.537 0.615 

 
POROSITY 3.611 6.008 0.601 0.574 

 
WATER 

CONTENT 

-13.806 73.435 -0.188 0.858 

      

MODEL 3 CONSTANT -0.909 0.987 -0.921 0.399 

 
BTS 0.002 0.002 0.900 0.410 

 
DENSITY 0.001 0.001 1.196 0.285 

 
POROSITY -0.001 0.017 -0.054 0.959 

 
WATER 

CONTENT 

0.0265 0.212 0.125 0.905 
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3.3.4 ARTIFICIAL NEURAL NETWORK (ANN) 

 

 

Figure 3.10. Simulink model of the network architecture 
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Table 3.11 Matlab ANN training data 
 

          INPUT 

DATA 

  
OUTPUT DATA 

 

      BTS Density Porosity           Water ctnt                 UCS        Young's mdls  Poisson's ratio 

12.3 2852 0.3 0.03 226 105                 0.28 

11.4 2856 0.2 0.02 294 104 0.28 

9 2887 0.48 0.04 133 105 0.28 

10.6 2768 0.22 0.01 295 106 0.25 

9.2 2964 0.38 0.02 125 105 0.28 

10.5 2972 0.24 0.01 116 105 0.28 

12.5 2688 1.18 0.12 275 70 0.29 

10 2689 0.77 0.04 284 71 0.29 

7.1 2690 0.42 0.03 242 65 0.27 

11.2 2676 0.55 0.04 231 65 0.27 

11.7 2683 0.37 0.03 258 64 0.28 

8.9 2890 0.28 0.02 303 103 0.29 

11.8 2953 0.19 0.01 106 105 0.28 

9.7 2954 0.13 0.01 303 105 0.29 

7.3 2696 0.29 0.02 228 65 0.28 

8.3 2960 0.4 0.04 299 108 0.28 

11.1 2673 0.79 0.06 184 105 0.28 

Water ctnt = water content, Young’s mdls  = Young’s modulus 
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Table 3.12 ANN output data for the models 

                    Ttrain                                        Ytrain   

MODEL 

1 

       UCS      Young's modulus  Porosity 
 

UCS  Young's 

modulus 

Porosity 

 
226               105 0.28 

 
177.5848 99.43089 0.285413 

 
294               104 0.28 

 
248.2675 105.005 0.284703 

 
133               105 0.28 

 
166.6354 102.9148 0.26379 

 
106               105 0.28 

 
116.8805 108.7742 0.274398 

 
116                105 0.28 

 
97.26253 111.4294 0.257539 

 
303                105 0.29 

 
236.4533 104.2939 0.252087 

 
275                70 0.29 

 
289.6375 75.10485 0.314534 

 
284                71 0.29 

 
309.3419 62.55101 0.298555 

 
242                65 0.27 

 
355.6054 46.95317 0.278071 

 
231                 65 0.27 

 
242.137 60.05656 0.285202 

 
258                 64 0.28 

 
260.7225 58.8735 0.280506 

        

  
                 Ttest 

  
   Ytest 

 

 
299                 108 0.28 

 
44.56497 104.7977 0.259831 

 
125                 105 0.28 

 
73.91798 110.5915 0.250885 

 
228                 65 0.28   428.1996 53.69923 0.267691 

MODEL 

2 

 
          Ttrain 

  
  Ytrain 

 

 
226                 105 0.28 

 
225.7998 104.9944 0.279048 

 
294 104 0.28 

 
293.985 103.9853 0.281884 

 
303 103 0.29 

 
302.8979 102.9344 0.282315 

 
295 106 0.25 

 
295.2023 105.9974 0.282384 

 
125 105 0.28 

 
124.4595 104.6841 0.278465 

 
106 105 0.28 

 
105.7925 104.9124 0.277144 

 
116 105 0.28 

 
114.9928      104.858 0.277855 

 
228 65 0.28 

 
227.553 64.97697 0.269585 

 
242 65 0.27 

 
242.014 65.06133 0.269149 

 
184 67 0.28 

 
183.3393     67.1551 0.25796 

 
258 64 0.28 

 
258.1549 63.99556 0.279047 

  
             Ttest 

  
Ytest 

 

 
133 105 0.28 

 
  133 105 0.28 

 
303 105 0.29 

 
  303 105 0.29 

 
284 71 0.29 

 
  284 71 0.29 

        

MODEL 

3 

 
               Ttrain 

  
Ytrain 

 

 
226 105 0.28 

 
226.0001 105.0001 0.279999 

 
294 104 0.28 

 
293.9999 104.0001 0.279999 

 
133 105 0.28 

 
132.9999 104.9999 0.28 

 
299 108 0.28 

 
298.9998 107.9998 0.28 
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295 106 0.25 

 
294.9998 106 0.25 

 
106 105 0.28 

 
106.0007 105.0001 0.279999 

 
116 105 0.28 

 
115.9996 105 0.279999 

 
275 70 0.29 

 
274.9998 70 0.29 

 
228 65 0.28 

 
228.0003 65 0.28 

 
184 67 0.28 

 
184.0003 67.00006 0.28 

 
258 64 0.28 

 
258.0002 64.0001 0.28 

  
           Ttest 

  
Ytest 

 

 
303 105 0.29 

 
278.762 112.2877 0.277763 

 
284 71 0.29 

 
107.964 81.73808 0.262532 

 
231 65 0.27 

 
194.1953 63.71488 0.279276 

        

MODEL 

4 

 
            Ttrain 

  
Ytrain 

 

 
226 105 0.28 

 
148.5075 124.9799 0.283864 

 
294 104 0.28 

 
173.4009 124.1604 0.281507 

 
133 105 0.28 

 
160.4861 99.60045 0.274508 

 
299 108 0.28 

 
229.9574 102.8672 0.272666 

 
295 106 0.25 

 
228.7918 103.9818 0.273913 

 
116 105 0.28 

 
115.0165 125.9362 0.283775 

 
303 105 0.29 

 
192.2377 112.1041 0.280818 

 
275 70 0.29 

 
265.2277 67.97289 0.271168 

 
284 71 0.29 

 
221.6157 67.81167 0.270239 

 
184 67 0.28 

 
180.0016 65.83988 0.277802 

 
258 64 0.28 

 
264.1009 67.50909 0.268895 

  
              Ttest 

  
 Ytest 

 

 
106 105 0.28 

 
119.9543 129.7582 0.284866 

 
228 65 0.28 

 
359.6648 157.5121 0.264462 

 
231 65 0.27 

 
227.364 65.95972 0.269681 

 

Ttrain= target output for training data, Ttest= target output for testing data, Ytrain= model output 

for training, Ytest=model output for testing 

 

 

Table 3.13. Performance prediction indices of the ANN models and their rankings 

MODELS ROCK 

PROPERTIES 

RMSE VAF R2   RATINGS   RANK 

VALUE      
RMSE VAF R2 

 

Model 1 UCS  Tr                             47.05 53.99 0.53 2 2 3  7 
 

          Tst                            189.23 -577.57 -6.01 1 0 0 1 
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Young's 

modulus Tr   

7.17 87.54 0.85 3 3 3  9 

 
          Tst                     7.51 87.6 0.85 3 3 4 10 

         

 
Poisson's ratio   

Tr 

0.017 -558.29 -0.098 1 0 0 1 

 
          Tst                           0.0224    0 0 5 0 0 5 

                33 
         

Model 2 UCS   Tr                       0.44 99.99 0.99 4 4 4 12 
 

          Tst                        0 100 1 5 5 5 15 
         

 
Young'smodulus 

Tr  

0.122 99.99 0.99 4 5 4 13 

                          
 

        Tst                              0 100 1 5 5 5 15 
         

 
Poisson's ratio   

Tr 

0.012 -69.67 0.63 4 0 3 7 

 
          Tst                          0 100 1 5 5 5 15 

        
77 

         

Model 3 UCS   Tr                            0.007 100 1 5 5 5 15 
 

          Tst                          104.77 -409.77 -10.82 2 0 0 2 
         

 
Young's 

modulus Tr   

0.006 99.99 1 5 5 5 15 

 
          Tst                       7.523 91.76 0.81 4 4 3 11 

         

 
Poisson's ratio    

Tr 

0.0007 99.73 0.997 5 5 5 15 

 
          Tst                          0.0129 -75 -0.875 2 0 0 2 

        
60 

         

Model 4 UCS  Tr                            65.2 46.45 0.004 1 1 1 3 
 

          Tst                            79.46 -6.39 -0.72 4 0 0 4 
         

 
Young's 

modulus Tr     

11.205 68.69 0.61 1 1 1 3 

 
          Tst                         55.29 -323.15 -7.59 1 0 0 1 

         

 
Poisson's ratio  
Tr          

0.0122 -21.045 0.538 3 0 2 5 

 
          Tst                            0.0095 -225 -3.095 3 0 0 3 

        
19 

Tr = training values, Tst = testing values 
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Figure 3.11. Regression chart for model 1 

 

Figure 3.12. Regression chart for model 2 
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Figure 3.13. Regression chart for model 3 

 

Figure 3.14. Regression chart for model 4 
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Figure 3.15. Error histogram for model 1 

 

 

Figure 3.16. Error histogram for model 2 
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Figure 3.17. Error histogram for model 3 

 

Figure 3.18. Error histogram for model 4 
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4 DISCUSSION 

4.1 MECHANICAL AND PHYSICAL PROPERTIES TEST RESULTS 

The UCS data from Table 3.1 shows great variation between specimens that met test 

standards and those that did not. Standardized gabbro specimens have an average 299 

MPa as against 115 MPa for the non-standardized specimens.  With the granite, the 

average UCS data for standardized specimens is 253 MPa as against 123 MPa for the non-

standardized specimens. These variations show the effect of non-uniform stress 

distribution in the specimens during the testing process. Non flat ends will result in a 

concentration of stress in a plane not parallel to the axial force direction, inducing tensile 

stress at the ends of the specimens, hence resulting in a lower UCS value. Test result for 

Young’s modulus and Poisson’s ratio show quite consistent results with little variation. 

The BTS test results from Table 3.1 range from 7.3-12.3 MPa for gabbro and 7.1-12.7 

MPa for the granite. The variations could be explained as the effect of non-uniformity in 

the circumference of some specimens after the wrapping of the masking tapes for the 

conduct of the tests. As observed in figure 3.9(B), there were instances where specimens’ 

circumference was not in uniform contact with the top plates of the test setup.  

The average density from Table 3.1 for gabbro is 2899 kg/m3. The porosities and 

corresponding water contents of the test specimens are relatively low. Specimens SA04 

and SA06 however, have relatively high values of 0.48 and 0.40 wt% respectively with 

regards porosity which reflects in the high 0.04% water content values for both specimens. 

The granite had an average density value of 2687 kg/m3 and high porosity values relative 

to the gabbro. Specimens SB01 and SB02 have high values of 1.64 and 1.18 wt%. These 

high values had effects on the corresponding relatively high-water contents for these 

specimens as voids and/or cracks can leave openings to be filled by air and water. 
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4.2 PETROGRAPHY AND XRF ANALYSIS 

4.2.1 PETROGRAPHY 

Physico-mechanical properties depend on the petrographic characteristics (mineralogical 

composition, texture, size, shape and arrangement of mineral grains, nature of grains 

contact and degree of grain interlocking), alteration and deformation degree of the source 

rock (Smith and Collis, 2001; Miskovsky et al., 2004). 

The mineral texture exhibited in by the granite is crystalline, thereby interlocking the 

grains to increase the response of the rock to applied stress, which will lead to a high UCS 

value. The average 253 MPa UCS value for granite affirms this. The opaque minerals are 

commonly included in the alkali-feldspar crystals. According to (Schneider, 1974), these 

inclusions are regions of resorption at the grain boundaries and are characterized by the 

replacement and intergrowths of alkali-feldspar with Fe-Ti oxides and quartz. 

When grain size increases, there is more pore presence between the grains (Jin et al., 

2018). This has the tendency to influence the strength of rock. However, the relatively 

high UCS values observed for the standardized gabbro specimens are a complete 

departure from this phenomenon with their relatively large grain size (Table 3.2). This 

could be due to the interlocking nature of its crystals. This means that, other factors such 

as mineral composition, degree of grain interlocking and low degree of alterations 

override the influence of larger grain size. 

 

4.2.2 XRF ANALYSIS 

XRF chemical analysis from Table 3.3 presents the average compositions by weight %, 

standard deviations of the major, minor and trace elements of the analyzed samples. Major 

elements were determined as oxides of (Na2O, MgO, Al2O3, SiO2, K2O, CaO, FeOtot,TiO2, 

MnO, P2O5) and trace elements ( Cl. S, F, Ni, Cu, Zn, Ga, Sr, Ba, Y, Zr, Nb, Ce, N, Pb, 

Th, Cr, Hf, Rb, Ta).  

The gabbro shows average high values for MgO, FeOtot, Al2O3, CaO relative to those for 

the granite because of its mafic compositions. Granite shows high SiO2, Na2O and K2O 

values relative to gabbro, reflecting its felsic magma compositions.  
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4.3 REGRESSION ANALYSIS 

Mechanical properties (UCS, Young’s modulus, Poisson’s ratio) were each plotted as 

dependent variables against BTS, density, porosity and water content. Statistics results in 

Table 3.9 for models 1, 2 and 3 represents regression models for UCS, Young’s modulus 

and Poisson’s ratio in that order.  

The statistical values of rock properties as presented in Table 3.4 show UCS having a 

large standard deviation relative to the mean. This value could be reflective of the 

variations in UCS values obtained from the experimental results of standardized and non-

standardized specimens and errors in testing protocols. Maximum adherence to standards 

in specimen preparation and guidelines prior testing is therefore important. The density 

data for gabbro also exhibits a large standard deviation value. This could be the result of 

variation in grain sizes of minerals in the respective test specimens. These variations give 

rise to different porosities and subsequently reflect in the density values. All other 

properties exhibit small standard deviation values relative to their respective averages. 

This shows how clustered these datasets are and the level of confidence assigned to them 

are high in any analysis. 

Analysis of variance (ANOVA) as seen in Table 3.5 for model 1 presents the sum of 

squared errors (SSE), degree of freedom (df), mean square error (MSE), F-test and its 

significance. 

 From literature, the R2 is calculated utilizing equation (26) as:  

62319.095

129767.733
 = 0.48 

An excellent model has R2 value of 1 which is a measure of the strength of the correlation 

between the dependent and independent variables. This model is average from its 0.48 R2 

value.  

The degree of freedom (df) gives room for a model to assess the strength of the relation 

between the dependent and independent variables. This influences the R2, in that as df 

decreases, R2 increases. The df for regression is the number of independent variables, in 

this case 4. The df for residuals is given by the expression: 



77 
 

𝑑𝑓𝑟 = 𝑛 − 𝑘 − 1                                                           (39) 

where n is the number of observations, k is the number of variables.  

Therefore, 15-4-1 = 10 as seen from Table 3.5 is derived from this expression. This value 

is quite big and has influenced an average 0.48 R2 of the model. The value 14 for total df 

of Table 3.7 derived from the expression: 

𝑑𝑓𝑇 = 𝑛 − 1                                                                    (40) 

The mean square (MS) is defined by the expression: 

𝑀𝑆 =
𝑆𝑆

𝑑𝑓
                                                                     (41) 

Where MS is the mean square, SS is the sum of square and df is the degree of freedom. 

This explains the 15579.774 MS value of the model as derived by dividing 62319.095 / 

4. Similarly, the MS of residuals which is 6744.864 is derived from this expression. The 

MS tells us whether the null hypothesis will be rejected or not through its application in 

the F-test. The F-test allows the rejection of the null hypothesis at the 0.05 level of 

significance and is derived by dividing the MS of the model by MS of the residual in the 

expression: 

𝐹 − 𝑡𝑒𝑠𝑡 =
𝑀𝑆𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
                                                            (42) 

The F-test for model 1 is derived from 
15579.774

6744.864
 = 2.310. Its corresponding significance 

value is indicative of whether the null hypothesis will be rejected or not. This F-test’s 

significance value is 0.129 which must be rejected at the 0.05 significance level. However, 

in this study, we further analyzed the significance of each independent variable through 

the t-test at 0.05 significance level.  

Similarly, the SSE and SST values from the ANOVA of model 3 from Table 3.6 yields 

an R2 value of 0.419. This value is also average and explains the correlation fairly well. 

The F-test returns 1.803 at 0.205 significance level.  This model is further accessed by the 

significance of the independent variables through the t-test at 0.05 significance level. 
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Summary correlation coefficients from Table 3.7 indicates UCS has positive correlations 

with BTS and water content, exhibits inverse correlations with density and porosity. The 

inverse relation with porosity is comprehensible, considering, a porous rock is susceptible 

to fractures as the degree of interlocking in its mineral grains are not well sophisticated to 

respond to applied stress. However, the positive relations shown with BTS and water 

content, inverse relation with density is problematic especially when analyzing in terms 

of simple linear relations. This could be the effect of the plurality of the independent 

variables and the combined effect they wield in predicting the model. The coefficients for 

BTS and density were not significant at 0.05 p-value, those for porosity and water content 

were significant. The level of significance will be explained with values from Table 3.9. 

Correlation coefficients from Table 3.8 gives a summary of the relations amongst the 

independent variables for model 3. In this, Poisson’s ratio has a positive correlation with 

density, porosity and water content. It also displays an inverse relation with BTS. All the 

correlation coefficients for the variables were statistically insignificant, except for density, 

which was significant at p-value of 0.05. 

To investigate the validity of the proposed empirical equations in this study, the t-test was 

conducted amongst the independent variables using SPSS statistical software package at 

p ≤ 0.05. From Table 3.9, the linear regression coefficients derived from model 1 presents 

-7.817 for BTS, -0.489 for density, -822.517 for porosity and 7573.861 for water content.  

The t-value which is a measure of how extreme the calculated coefficients are from the 

zero mark and how they not likely to be zero as proposed by the null hypothesis is 

expressed mathematically as: 

𝑡𝑖 =  
𝑏𝑖

𝑆𝐸𝑖
                                                                     (43) 

Where ti is the t value for variable i, bi is the calculated coefficient of variable i from the 

model, SEi is the standard error of variable i. 

It implies therefore that, the t-value from Table 3.9 for BTS for model 1, will be given as: 

−7.817

13.905
  = -0.562 
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The higher the magnitude of the t-value, the more significant the variable is. In the case 

of BTS, the t-value is small which affects its significance in the proposed model.  

This is explained by the p value obtained for BTS. The p-value is indicative of finding the 

probability of a sample in the t- distribution curve of BTS which is governed by the values 

± 0.562 on the x axis, where the null hypothesis is true. This value returns 0.586 or 58.6% 

which is very high, hence, BTS is insignificant in the proposed model. 

It is observed that, the t-value for density is also low, hence not significant at 0.05 p-value. 

Porosity and water content, however, show quite high t-values of -2.612 and -2.665 

respectively. These values are reflective in their corresponding 0.026 and 0.024 p-values 

which are statistically significant at the 5% level. The empirical equation for model 1 

(UCS), modified from equation (33) will therefore be presented as: 

𝑈𝐶𝑆 = 1770.5 + 7573. 8𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 − 822.5𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦                              (44) 

In model 2, from Table 3.9, the p-value for the independent variables return values above 

the 0.05 significant level. This implies that, the linear coefficients of the variables are 

more likely to be zero as proposed by the null hypothesis. In this case, we reject the model 

all together. 

It is observed that, all the independent variables from model 3 have p-values higher than 

the statistically significant 0.05 value apart from density which has a value of 0.032. The 

empirical equation for this model will therefore involve only one variable as presented 

below: 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠𝑟𝑎𝑡𝑖𝑜 = 0.00104 + 0.0001𝑑𝑒𝑛𝑠𝑖𝑡𝑦                                            (45) 

In Table 3.10, the statistical results of regression for the granite is presented. It was 

observed that the p-values of all the independent variables in the 3 models were 

statistically insignificant at the 0.05 value. The smaller number of samples in this analysis 

could have influenced this. This meant that empirical equations could not be developed, 

and the models were rejected. 
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4.4 ARTIFICIAL NEURAL NETWORK 

The network architecture as presented in figure 3.10 shows the input layer, the 2 hidden 

layers and the output layer. This was generated after saving a desired network script using 

the simulink interface in matlab. 

Table 3.13 shows the performance prediction indices of root mean square error (RMSE), 

variance accounted for (VAF) and R2 of the outputs generated by the ANN models. 

RMSE, VAF and R2 values were derived from computations from data in Table 3.12 

utilizing equations (32), (31) and (26) respectively. Four models were generated and the 

summation of the ratings of the performance indices for training and testing data for the 

outputs of a model was computed. The high performance for the training data sets shows 

good learning of the prediction model while that for the testing data sets indicates good 

generalization ability of the models. Sometimes, coefficient of correlation of the training 

data set of a model may be higher while that of the testing data set of the same model may 

be lower, this necessitated the ratings and rankings concept to determine the best 

prediction model. The training and testing data are derived from the target output of each 

model. 

The ratings were done such that, a scale from 1 to 5 was formulated with 1 representing 

the least performer, increasing in that order for the performance prediction indices of the 

training and testing outputs of the models. A zero rating was however, assigned to 

performance indices where the values were considered unacceptable. From literature, an 

RMSE of 0, VAF of 100 and R2 of 1 represent an excellent model. A VAF or R2 value 

returning a negative value was considered outrageous and assigned a zero rating. These 

benchmarks provided guidelines in the ratings of the outputs.  

From Table 3.13 Poisson’s ratio training output shows 0.017, 0.0120, 0.0007, 0.0122 

RMSE values for models 1,2,3 and 4 in that order. The ratings assigned these RMSE 

values are 1, 3, 4, 2 in that order considering a value closer to zero represents an excellent 

model. Similarly, the Poisson’s ratio training output shows -58.29, -69.67, 99.73, -21.045 

VAF values for models 1,2,3 and 4 in that order. The ratings assigned these values taking 

into consideration 100 represents an excellent model and a negative value unacceptable 

are 0, 0, 4, 0, 0 in that order. Also, the R2 for Poisson’s ratio training outputs show -0.098, 
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0.63, 0.99, 0.54 for models 1, 2, 3 and 4 in that order. Considering a value 1, as an 

excellent model and a negative value unaccepted, the ratings assigned these R2 values are 

0, 3, 4, 2, in that order. 

The rank values are derived from the summation of ratings of the performance indices for 

each model’s training and testing output and a total computed for the overall performance 

of the model. As seen from the Table 3.13, the value 33 for model 1, is the summation for 

performance indices of training and test data for UCS, Young’s modulus and Poisson’s 

ratio. This value represents the overall performance index for the model. It is clear from 

these values that, model 2 presents the best performance prediction index with a total rank 

value of 77, followed by model 3 with 60, model 1 with 33 and model 4 with 19 in that 

order. Applying this neural network architecture for UCS, Young’s modulus and 

Poisson’s ratio prediction, model 2 is the best predictor.  

Figures (3.11-3.14) show the regression charts for the models. These present the training, 

validation, test and overall regression line of best fit. In figure 3.12, the value 0.97702 for 

the overall coefficient of regression (R) of the model indicates how well it explains the 

outputs. The error histogram in figures (3.15-3.18) show the distribution of the errors in 

the models. In figure 3.16, the error histogram for model 2 shows how in nearly 40 

instances, the errors generated are near the zero line, making it the best model. 
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5. CONCLUSION AND RECOMMENDATION 

In this work, samples of common igneous rock types, gabbro and granite were studied for 

petrographic and chemical composition. The essential petrographic parameters 

influencing strength was the varying grain sizes and the degree of interlocking between 

the constituent mineral grains. Investigations also, of mechanical and physical properties 

of 25 specimens of the two rocks was carried out. This revealed very wide variations in 

UCS of standardized and non-standardized specimens which meant that Young’s modulus 

and Poisson’s ratio of some specimens were not measured. 

Multiple linear regression analysis of four independent variables (BTS, density, porosity 

and water content) were employed to predict separately UCS, Young’s modulus and 

Poisson’s ratio. Problems arose in the formulation of the models with respect of the 

independent variables. For example, the empirical relation between UCS and the 

independent variables was limited to porosity and water content, that for Young’s 

modulus was insignificant and the relation was limited to density with regards Poisson’s 

ratio. One of the important causes of the problem stems from the input parameters 

especially for UCS data where wide variations were observed. Also, number of datasets 

employed in the analysis (15 for gabbro and 10 for granite) were not sufficiently large to 

predict strong and meaningful relations involving all the independent variables. Due to 

this, the development of non-linear multivariable prediction models with ANN had to be 

utilized. 

In the development of the ANN models, 4 randomly selected datasets for training, testing 

and validation were used. A model selection procedure based on ranking proposed by 

(Zorlu et al., 2008) was utilized in selecting the most appropriate dataset providing the 

best prediction capacity. It was evident that the ANN model has a higher prediction 

capacity than the multiple regression due to its ability to adapt multiple nonlinearities for 

interactions between dependent and independent variables, a good generalization capacity 

and the ability to cope with missing data. However, both models are significant 

statistically and can be used for practical purposes. 
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It is concluded that the developed ANN prediction model 2 is best, and can be used for 

inferring the UCS, Young’s modulus and Poisson’s ratio of the two igneous rock types 

for rock mechanics and or engineering purposes. The regression models are, however, 

open for more development with large datasets. 

 

The findings from this study recommend adherence to standard procedure from sample 

preparation (in rock mechanical tests) through to the conduct of tests. This was evident in 

the wide variation in UCS test data between standardized and non-standardized samples. 

It is also recommended that for reliability in model prediction, datasets should be large to 

give meaningful generalization between independent and dependent variables. 
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6. SUMMARY 

This thesis work is about the characterization of some selected rock properties and 

comparing predictive models of ANN and regression techniques. In the utilization of 

rocks in engineering, rock strength is an essential parameter with regards stability of the 

structures and uniaxial compressive strength (UCS) is one index property relied on, by 

engineers. Predictive models of UCS, Young’s modulus and Poisson’s ratio were 

developed from datasets comprising BTS, density, porosity and water content of gabbro 

and granite from Otamänki area, central Finland.  

Sampling was done at two rock quarry sites at Vuorokas and Pikkukallio in the Otamänki 

area of central Finland where boulders of the two rock types were obtained for further 

processing at the Oulu Mining School. Obtaining core samples was very challenging, as 

we relied on handheld drilling machines for the purpose. This translated in the limited 

core samples for the tests and an even greater problem of some cores not having parallel 

and smooth edges.  Sample preparations and tests procedures for the selected rock 

properties in this work were carried out following standard methods. Some cylindrical 

cores for UCS test, however, did not meet test standards but tests were carried out 

regardless to observe variations. 

Test results representing mechanical and physical properties, petrological and chemical 

compositions of the two rock types were obtained. Regression and ANN analysis were 

run with dataset from the mechanical and physical properties from 15 gabbro and 10 

granite specimens. The mean and mode for the dataset representing Young’s modulus and 

Poisson’s ratio respectively, were used to complement for the unavailable of data for non-

standardized specimens.  

Multiple regression using SPSS software with UCS, Young’s modulus and Poisson’s ratio 

separately as dependent and BTS, density, porosity and water content as independent 

variables was conducted. The analysis showed strong correlations amongst the various 

variables, but correlation coefficients were deemed statistically significant with the t-test 

at p-value ≤  0.05. With this, the empirical equation representing the correlations between 

the dependent and independent variables was limited to porosity and water content for 
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UCS, was insignificant with regards Young’s modulus and limited to density for 

Poisson’s ratio. These are outlined in equations (44) and (45). 

Prediction with ANN was done using Matlab 2019a software. Multivariable prediction 

consisting of BTS, density, porosity and water content as inputs, two hidden layers with 

14 neurons in the first layer and 3 neurons in the second layer and UCS, Young’s modulus 

and Poisson’s ratio as outputs. The data for this analysis was sampled from 70% of the 

datasets using Levenberg-Marquardt algorithm (trainlm). The training was stopped when 

the mean squared error (MSE) was observed to be relatively small. Four models were 

generated, the root mean square error (RMSE), variance accounted for (VAF) and R2, 

representing performance prediction indices were used in rating and ranking the models 

for selection of the best model. 

The essential petrographic parameters affecting strength in this work was the varying 

grain sizes which reflected in the degree of interlocking of the grains. Models generated 

from both regression and ANN were statistically good, but that for ANN was more reliable 

because of its non-linearity and good generalization capability. Fallouts from this work 

recommend adherence to testing standards and protocols, and the use of large dataset to 

enhance reliable prediction of complex. ‘property’ behaviour of systems. 
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