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ABSTRACT 

Inkjet printing of single-wall carbon nanotubes (SWCNT) on flexible 

polydimethylsiloxane (PDMS) substrates and their electrical properties were 

studied in this thesis. Wetting of the surface of the substrate with custom-made 

dimethylformamide-based conductive SWCNT ink was optimized by using 

argon-plasma surface treatment. Conductive micropatterns of SWCNTs were 

obtained. Mechanical bending and stretching experiments showed deformation 

dependent transport behaviour with a large pressure sensitivity and a gauge 

factor of up to 1000. The printed micropatterns were found to be sufficiently 

sensitive to detect and resolve pressure fronts of heartbeats in a human radial 

artery. Due to the established manufacturing processes used: inkjet- and screen 

printing, the study can pave the way for the integration of piezoresistive sensors 

in flexible and stretchable devices to be used e.g. in medical garments, sportswear 

and their accessories. 

 

Keywords: Flexible, stretchable, polymer, inkjet printing, piezoresistive, 

transparent. 
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TIIVISTELMÄ 

Tässä työssä tutkittiin yksiseinämäisten hiilinanoputkien (SWCNT) 

mustesuihkutulostamista joustavalle polydimetyylisiloksaanista (PDMS) 

valmistetulle substraatille sekä niiden sähköisiä ominaisuuksia. 

Erikoisvalmisteisen dimetyyliformamidipohjaisen johtavan SWCNT-musteen 

substraatin pinnan kostutusta optimoitiin argon plasma pintakäsittelyllä. 

Tuloksena saatiin monipuolisia johtavia SWCNT-mikrokuvioita. Taivutettaessa 

ja venytettäessä kuviot osoittivat muodonmuutoksesta riippuvaa johtavuuden 

vaihtelua suurella paineherkkyydellä ja jopa yli tuhannen venymäkertoimella 

(Gauge Factor). Mikrokuviot olivat riittävän herkkiä myös havaitsemaan ja 

tulkitsemaan sydämen sykkeen aiheuttaman paineenvaihtelun ihmisen 

rannevaltimosta. Vakiintuneiden valmistusmenetelmien, 

mustesuihkutulostuksen ja silkkipainon käytön takia, tutkimus voi tasoittaa tietä 

kohti taipuvissa ja venyvissä laitteissa käytettävien pietsoresistiivisten antureiden 

integrointia esimerkiksi lääketieteellisiin ja urheilutekstiileihin ja –tarvikkeisiin. 

 

Avainsanat: Joustava, venynvä, polymeeri, mustesuihkutulostus, 

pietsoresistiivinen, läpinäkyvä. 
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ABBREVIATIONS 

 

TCF   transparent conductive film  

LCD   liquid crystal display  

PET   polyethylene terephthalate  

CNT   carbon nanotube  

SWCNT   single-wall carbon nanotube  

MWCNT   multi-walled carbon nanotube  

DMF   dimethylformamide 

SWCNT-COOH carboxylic acid functionalized single-wall carbon nanotube  

sccm   standard cubic centimeters per minute  

mTorr   milliTorr (unit of pressure)  

rpm   revolutions per minute  

Ω/sq   ohms per square, unit of sheet resistance  

FESEM   field-emission scanning electron microscopy  

AFM   atomic force microscopy  

I-V    current-voltage  

DC    direct current 

GF    gauge factor 

UV-Vis-NIR  ultraviolet-visible-near-infrared 

FFT   fast Fourier transform 

DMM   digital multimeter 

R2R  roll-to-roll 

DI water  deionized water 
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1 INTRODUCTION 

This work has been inspired by Ronja Valasma’s Bachelor’s thesis discussing on 

“Micropatterned transparent conductive films of single-wall carbon nanotubes on 

polyethylene terephthalate surfaces” which fostered new ideas on the utilization of 

carbon nanotube-based technologies and devices. In the current thesis, our goals are 

similar as in the previous study, however, we apply a few twists to explore CNT-based 

conductors deposited on flexible substrates: (i) inkjet printing is used to spread the 

SWCNTs on the substrate instead of dip coating, (ii) for substrate materials we apply 

revolutionary R2R printed flexible PDMS films [1] instead of PET, and (iii) we use 

highly concentrated dispersions of SWCNTs in DMF instead of water.  

The industry around conductive patterns on transparent surfaces is under constant 

transformation. Today’s standard for transparent conductive films, indium tin oxide 

(ITO), used for example to make transparent conducting films (TCFs) for liquid-

crystal displays (LCDs), photovoltaic sensors or solar panels is becoming rarer and 

more expensive. At the same time, demand for flexible and stretchable conductors and 

sensors for electrical devices (e.g. in phones, apparel, sport equipment) is increasing. 

Therefore, more research funding is directed towards discovering alternatives to ITO. 

One of the most promising materials are low-dimensional carbon allotropes such as 

graphene and carbon nanotubes. This work concentrates on single-wall carbon 

nanotubes (SWCNTs) as they have excellent properties (e.g. mechanical flexibility, 

large aspect ratio, and good electrical conductivity) that can be exploited not only in 

TCFs but also in flexible and stretchable environments – both conductor and sensor 

applications. Although SWCNTs are more expensive than multi-walled carbon 

nanotubes (MWCNTs), their films and composites enable superior electrical 

conductivity. In addition, their smaller size and good dispersibility in some solvents 

make them easier to print through small nozzles of inkjet-printers.  

This work shows, to our knowledge, the first fully printed flexible device that applies 

novel R2R printed PDMS substrates with screen-printed Ag electrodes (developed by 

Hiltunen’s team at VTT Technical Research Centre of Finland) and inkjet-printed 

micro-patterns of SWCNTs working as a piezoresistive strain sensor. The presented 

method is scalable and of low cost, thus after further optimization can be useful for 

manufacturing flexible electronics devices.  
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2 SWCNT PROPERTIES AND INKJET PRINTING 

The trade-off between optical transparency and electrical conductivity is unavoidable 

when engineering TCFs. Some applications, such as those in capacitive LCDs or in 

antistatic coatings do not require high conductivity of the films but as much optical 

transparency as possible. On the other hand, films that are carrying higher currents 

(e.g. collector electrodes in solar cells or resistive heaters in de-fogging coatings) 

benefit from both high conductivity and transparency. Furthermore, current trends in 

foldable, bendable and flexible electronics put forward also further demands on 

mechanical properties. For example, commonly used doped metal oxides in TCFs are 

brittle and do not handle bending near as well. [2]   

CNTs can be used in conjunction with other materials to change their properties (e.g. 

in composites) or by using them on their own (e.g. films on substrates) to create, for 

example, connectors or sensors like in this work. Versatile possible uses and 

impressive properties make CNTs appealing for future applications including 

conductive and high-strength composites, electrodes in energy storage [3] and 

conversion devices [4], physical [5] and chemical sensors [6], brushed motor contacts 

[7], displays and radiation sources [8], semiconductor devices [9], interconnects or 

connectors [2]. They have also been successfully used as integrated chip cooler fins 

[10],acoustic transducers in both speaker and microphone applications [11] and even 

as cell growth scaffolds [12]. Some applications have already made it all the way into 

commercial products. 

Nowadays, synthesis of CNTs is mainly based on three major processes: (i) catalytic 

chemical vapour deposition (CVD-method), (ii) laser ablation and (iii) arc discharge 

growth. The CVD-method is the most practical for a scale-up with its fast processing 

speed, affordable consumables and ability to provide comparatively pure CNTs with 

only some catalyst impurities. As pure SWCNTs nowadays are intended mainly for 

research purposes, they are very expensive, however as the SWCNTs can be 

synthesized indefinitely from just simple carbon precursors (hydrocarbons, alcohols), 

getting their price down is just a matter of demands of industries that would use those 

in large quantities.  [13] 

 

 

2.1 Carbon nanotubes 

2.1.1 CNT physical and chemical properties 

SWCNTs have impressive physical properties surpassing many industry-leading 

materials. Effective and pure manufacturing of the nanotubes and retaining the 

properties when used in large-scale sheets, fibers and composites are still a difficulty. 

Also, in some cases possible health hazards shall be considered especially if there is a 

chance that they can be inhaled [14]. 

Some of the appealing features include: Young’s modulus of 0.64 TPa for individual 

nanotubes, accompanied with ~50-fold density-normalized strength and ~20-fold 

density-normalized modulus compared to steel. A significant challenge is to achieve 

similar values in a macroscopic scale – either with single nanotubes or CNT networks. 
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[15] Carbon nanotubes have high thermal stability, thermal conductivity and usually 

reasonable electrical conductivity. [15] [16] However, chirality and the diameter play 

a decisive role on whether the nanotube is semiconducting or metallic – the sort that 

statistically one third of nanotubes are like whereas the rest are semiconducting [17]. 

As of today, nanotubes cannot be grown with a specific chirality [18], which is one of 

the major challenges limiting their use in practical semiconductor-based electronics. It 

is worth noting though that a few strategies exist for separating semiconducting and 

metallic SWCNTs. In one, metallic forms can be destroyed selectively by burning 

them off by passing large current through networks of mixed semiconducting and 

metallic nanotubes leaving mostly semiconducting ones intact. Another method is 

based on density gradient ultracentrifugation (DGU), which relies on separating solid 

matters dispersed in a density gradient medium such as iodixanol based on their 

densities.  [19] [20] 

There is a certain level of metal impurities in the commercial SWCNT products [21]. 

The amount of impurities in the SWCNTs used in this research is 5-7% according to 

manufacturer, which may have some effect on conductivity and account for some 

anomalies found in the images shown. Although the CNT itself is very strong, the 

networks of individual and bundled SWCNTs are held together only by van der Waals 

forces [14]. The networks created from these one-dimensional tubes are very flexible, 

however are subject to breaking when stretched extensively or repeatedly. [22]  

MWCNTs are inferior compared to SWCNTs when it comes to electrical applications, 

since MWCNTs only conduct current in their outermost graphene layer, thus the 

presence of inner layers in the wall results in excessive cost of optical transparency or 

filler load in composites. [23] Pure CNTs are hydrophobic, thus disperse poorly in 

water and other usual solvents. This can be remedied for example by functionalizing 

them with polar surface groups (carboxylic, hydroxyl) that help their stabilization in 

polar solvents, or by applying surfactants [24].  

 

 

2.1.2 CNT as a sensing material  

Mechanical deformation changes the electrical conductivity of materials. 

Piezoresistive effect means that the resistance change of a material is not dependent 

only on the geometrical changes. Gauge factor is the ratio of relative change in 

resistance R0 to the mechanical strain ε and can be calculated as, 

GF =

∆𝑅
𝑅0

ε
=

∆𝜌
𝜌0

ε
+  1 +  2ν  

where, v = Poisson’s ratio, ρ = resistivity, ΔR = change in resistance. For many 

materials, GF ~2, but for materials with piezoresistive properties, this can be many 

magnitudes higher. Having a strong piezoresistive property, sensors using CNTs have 

a good potential for sensing tiny deformations [25]. It has been established that CNT-

based devices have good recoverability and reproducibility in cyclic loading tests. 

Though, when larger strains are applied, only part of the resistance will be recovered 

as the network will permanently deform and break. Stretching and contracting a CNT 
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network is also not a symmetrical process. It takes time for network to recover after 

being stressed. If the network strain direction is changed quickly enough to the other 

direction, network reformation and its resistance will be different between the two 

stages. [26] 

 

 

2.2 Inkjet printing 

Inkjet printing is an additive manufacturing process to achieve fast and relatively high-

resolution patterns on many kinds of substrates without the need of e.g. 

photolithography or any other expensive equipment or cleanroom. Its versatility and 

relative ease of use makes it perfect for prototyping stages but also has a potential for 

larger scale manufacturing if set properly. 

 

 

2.2.1 Inkjet printer 

Dimatix materials printer DMP-2850 (Figure 1) was selected for the SWCNT ink 

deposition mainly because of its high resolution and accurate and repeatable placement 

of droplets up to 20 µm accuracy. It also is relatively cost efficient and easy to use.  

Piezoelectric nozzles have an orifice of 21.5 µm and they deposit 10 pL of ink per 

droplet. For optimal operation, Dimatix recommends that the orifice should be at least 

100 times the particle size and the ink should be filtered through 0.2 µm filter if 

necessary. To help keep different inks separated the nozzles are not integrated part of 

the printer but a part of the cartridge. This property also makes the nozzles easily 

cleanable or replaceable when clogged. The reservoir is compatible with multiple 

solvents and substances associated with CNT and its capacity is only 1.5 mL to 

minimize the amount of expensive inks wasted.  

Too big particle size contributes to nozzle blockages and increases the amount of 

cleaning cycles needed. Dimatix’s software has three options for that. Blot that is used 

to wick excess ink from surface of the nozzle, spit that uses piezoelectric jetting to 

release ink from the nozzles as in printing, and purge that uses 5 psi (34 kPa) pressure 

difference to force the ink through the nozzles. Sometimes the nozzles of the cassettes 

were cleaned by soaking them in solvent and forcing pressurized air of up to 20 kPa 

through the cassette and nozzles. This however tends to break the silicon containing 

the nozzles, so it is only done as a last resort.  

Dimatix DMP-2850 has many useful features regarding experimental type of printing. 

Drop spacing setting allows inkjet droplets to be spaced with a certain fixed intervals, 

layer setting controls the amount of layers of ink deposited and temperature control for 

platen and nozzles help control the viscosity of the inks and the drying effects on the 

substrate [27]. It also has some imperfections. For example, sometimes it is not 

possible, probably due to a bug, to print one drop wide patterns with the printer. To fix 

this, two parallel lines must be printed, other aligned to an irrelevant area. 
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Figure 1: Dimatix Materials printer DMP-2850 

 

 

2.2.2 Inks and printing progress 

Printable ink must meet certain standards to be able to jet through the tiny nozzles of 

the piezoelectric injection transducer. Dimatix even has its own guidelines and 

recommendations for the jettable fluid formulation, but some of the qualities will be 

hard, or even impossible to fulfill with solution used in our work. For example, the 

SWCNT used has a particle size bigger than the recommended 0.2 µm.  

As the nature of the project of printing nanotubes with materials printer is hugely 

experimental, any unnecessary factors were sensible to be ignored and only 

concentrate on the significant factors such as printing performance and the pattern 

quality. Health concerns were considered only for handling the ink when preparing it 

and filling in the cartridges. Although the SWCNTs were expensive, the amount 

needed was very small and the costs were overshadowed by the cost of cartridges that 

were prone to blockages and even breakages when attempting to manually unblock 

them.  

Pure CNTs are generally hard to disperse in water as they are highly hydrophobic, thus 

carboxylic acid functionalized single-wall carbon nanotubes (SWCNT-COOH) were 

used whose polar side groups can interact with polar solvents thus stabilizing the solid 

particles in the medium. Solid drying particles such as surfactants like SDS, although 

they could have been beneficial in terms of surface tension and possibly deter early 

CNT agglomeration, were avoided so that the finished product would have the least 

number of contaminants and particles to affect conductivity and other properties. 

 

 

2.2.3 Printing effects and principles.  

Coffee-ring effect is a well-documented phenomenon, in which a spherical droplet of 

liquid dispersion leaves a ring-like deposit after drying on a flat surface. At the edge 

of the droplet, evaporation happens faster resulting in a radial flow of the solution 

outwards from the center thus carrying more dispersed particles to the perimeter. Since 
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for many surface-solvent systems the edge of the droplet is pinned at the perimeter, 

after drying, most of the solid content of the dispersion deposits along the rim. [28]. In 

inkjet printing, this phenomenon is in effect especially with slowly drying inks and 

hydrophobic surfaces. Here, both conditions are fulfilled making the effect particularly 

existent. 

There are also many effects related to the working of the inkjet printer that may not 

have been documented before. Many of them, such as band wandering and splattering, 

are related to blockages or partial blockages of the nozzle which impair the printing 

performance. Band wandering is the phenomenon of vertically printed bands 

wandering in horizontal direction tens of micrometers from assumed printing location. 

This happens due to partial clogging of the nozzle making drops fire diagonally 

making prints less uniform, wider and less repeatable. This can be remedied by 

frequent monitoring of droplet forming through the drop watcher and using inks that 

are less likely to clog the nozzles. Splattering is an effect when a nozzle is about to get 

clogged and thus starts firing sub-optimally. Namely, a part of the droplet breaks off 

and shoots somewhere to the side thus decreasing print quality.  

Accuracy of the placement of the droplets is affected by changing jetting velocity of 

the droplets while the cartridge containing the nozzles maintains a constant velocity. 

When the carriage has a velocity of 0.07 m/s and average distance of 500 µm between 

the nozzle and the substrate, it can be calculated that with a 4 m/s drop velocity that 

equates to a drop drift of 9 µm, and with a 7 m/s drop velocity, to a drift of 5 µm. This 

creates up to 4 µm difference for the landing spots of the droplets. In this work 

however, the effect of this phenomenon is almost negligible and in all printing cases, 

it was enough that the droplet velocity was adjusted to this 4-7 m/s range with the help 

of the drop watcher and checked regularly.  

To take these effects into account and to avoid blockages and other inconsistencies 

during printing, before printing it was ensured that the drop jetting angle is as 

perpendicular to the nozzle surface as possible and that there are only singular droplets 

jetting – no droplets separating from the tail of the droplet and re-joining the main 

droplet even in the beginning. Also, the relative velocity to other nozzles were 

compared. Similar velocity not only minimizes the jetting lag but it also tells about the 

nozzles having similar composition – probably having no contaminants inside them. 

Droplet size was also visually inspected to be as big as possible as it is affiliated to an 

unclogged and clean nozzle.   

 

 

2.2.3.1 Dimatix reference parameters for the ink formulation 

Dimatix recommends the solvent of the fluid to be of a low evaporation rate to avoid 

drying of the ink in the nozzle. Viscosity is preferable to be between 10 and 12 cPs 

(10-12 mPa·s) at the operating temperature while the printing head can be heated up 

to 70 ºC to lower the working viscosity if necessary. Although fluids having lower 

viscosity can be jetted, the operating performance is typically limited. Viscosities up 

to 30 cPs (30 mPa·s) at jetting temperature are said to have been jetted while drop 

velocities may be too slow for some applications. Surface tension should be between 

28 and 33 dynes/cm (0.028-0.033 N/m) and surfactants can be used with water-based 

fluids to achieve this surface tension range. Again, high surface tension fluids up to 70 
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dynes/cm (0.07 N/m) may be jetted with limited performance. Particles dispersed in 

the ink must not settle or agglomerate rapidly, and removal of any dissolved gas is 

recommended especially for water-based fluids. It is said to improve jetting and 

priming characteristics of most fluids. pH for the ink is recommended to be between 4 

and 9 for it to not cause corrosion and damage to the cassette and the nozzles. [29] 

 

 

2.2.3.2 Ink formulation and printing progress 

Even though inkjet-printing is a straightforward process at the first glimpse, getting 

many critical characteristics, such as the ink parameters, printer settings such as 

temperatures and jetting velocities so that a pattern of good quality can be consistently 

produced, requires a quite amount of effort. This part explains the multiple iterations 

and experiments with different kind of substrates and ink options needed to be done to 

achieve the desired ultimate patterns in the end. 

First, the printer settings were dialed in with Dimatix’s own model ink to get familiar 

with the general use of the device. The first leftover SWCNT dispersion from Ronja 

Valasma’s Bachelor thesis containing dilute ammonia solution as the solvent for 0.02 

mg/ml of carbon nanotubes, named SWCNT 1.0, was examined to be used with the 

printer. It was discovered that the solution must be properly dispersed with at least not 

big visible particles floating to avoid blocking. Fortunately, the dispersion did not have 

to be filtered with a 0.2 µm filter, which would have removed most of the CNTs but 

needed to be centrifuged to get rid of the big agglomerates. In addition, sonication with 

an ultrasonic cleaner was used to break down clumped agglomerated particles for the 

best results. Here, the criterion of the particle size being under 1/100 of the orifice 

could not be fulfilled as the size of the SWCNTs used in all the inks used is as much 

as 4-5 nm × 0.5–1.5 µm (Sigma-Aldrich 652490-250MG). In practice though, the 

blockages happened mostly when the cartridges were let dry while exposed to air either 

in the machine or on the shelf. Good enough operation was achieved when the printer 

was kept in a continuous use. The pH criterion of 4-9 was achieved with all the inks 

formulated and used in this thesis. 

SWCNT 1.0 was printed on different types of substrates to examine surface effects: 

paper, alumina, PET and a self-made PDMS film (Sylgard 184). This ink, if properly 

dispersed and filtered was quite transparent and suitable for printing somewhat 

conductive but also heavily coffee-ringed pattern, with sheet resistance in range of tens 

of kΩ/square with 50 layers and 5 µm drop spacing. 

To make printing easier and faster, a more concentrated SWCNT 2.0 was made using 

butanediol and water to disperse 0.08 mg/ml of CNTs so that conductivity could be 

achieved with fewer number of layers. This ink was noticeably more concentrated 

already and had a good consistency, viscosity and surface tension for jetting from the 

nozzles. However, unexpected jetting difficulties arose when trying to print with 

higher nozzle temperatures than about 35°C probably due to gas bubbles forming 

inside the nozzle when the ink warmed up. It also dried very slowly due to butanediol 

having a low vapour pressure at such temperature. It was still good for many, almost 

transparent prints in certain situations but was soon replaced with SWCNT 3.0 – a 

dispersion with a significantly higher CNT concentration of 0.316 mg/ml dispersed in 
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a 50 wt.% DMF and 50 wt.% water solution. The parameters of these three different 

SWCNT-inks used in the research are compared in Table 1 and the visual aspect in 

Figure 2. 

The self-made PDMS was attempted to treat with APTMS (diluted in hexane) to 

achieve higher hydrophilicity. The surface became very milky and tended to wrinkle 

because of the hexane content in the solvent. Although the surface changed 

considerably to the naked eye, the contact angle did not change and thus this method 

was abandoned. Later we decided to use argon-plasma treatment that had been proved 

to make visibly transparent hydrophilic surface in previous studies. 

SWCNT 3.0 was formulated to have a highly concentrated but still fully dispersed 

CNT ink. DMF as a polar solvent offers SWCNT concentrations of 1.0 mg/ml as 

opposed to waters 0.1 mg/ml. It was used to help disperse SWCNTs alongside water 

which has a higher vapor pressure aiding drying. DMFs and waters viscosities are both 

close to 1 mPa·s, so the final viscosity was known to become lower than 

recommended. Also while the surface tension of pure DMF in 20 °C is almost ideal at 

0.0371 N/m, the higher value of water at 0.0728 N/m￼ can be exploited to counter 

too low viscosity somewhat as it holds the meniscus better in the nozzle orifice [30]￼. 

These qualities did not become deciding factors however, as the printer was known to 

be able to print even pure water-based inks with very high surface tensions.  

Water already has so high vapour pressure that it is considered as a quickly drying 

solvent in inkjet printing. With a 50/50 wt.% DMF and water blend was achieved a 

lower boiling point and higher concentration while still maintaining good enough 

viscosity and surface tension. This allowed for faster printing because of faster drying 

solving some of the issues with ink droplet merging together and travelling on 

hydrophobic surfaces that are induced by slow drying. The enabled high concentration 

of dispersed SWCNTs also helped printing well-conductive films with significantly 

less numbers of repetitions than with the other inks. This solution may expire over 

time though, as DMF is known to hydrolyse into dimethylformamide and formic acid 

in a water solution. SWCNTs used also have a 5-8% metal content, which are likely 

catalyst transition metals, such as iron, that can also catalyse the reaction of DMF into 

other compounds [31].  This was considered by printing the ink as soon as possible 

after the blending and by visually inspecting it periodically. 

Two-dimensional printing patterns were examined and proved possible, but since the 

best quality prints had been achieved for one-dimensional lines, we settled for those 

although the process was slower. 

When we started printing on the PDMS-films provided by VTT, patterns were easier 

to see on it as the surface was very smooth. This both helped the process but also 

challenged it with more prevalent drying issues and ink traveling phenomena on the 

surface. Luckily, these effects were prepared for as PDMS has been long known to be 

very hydrophobic and an exploration to a surface treatment with argon plasma 

followed. This process allowed for various performance improvements when the 

treatment times and other factors were tuned in carefully - explained in a greater detail 

in chapter 2.3.1. Soon after this stage the SEM images were taken with various 

platinum metallization settings. This was followed by a new batch of SWCNT 3.0 

which was made with all other properties, such as concentration, viscosity and surface 

tension identical to the previous one with the only difference being 20 minutes of more 
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sonication. All prints in this thesis are done with the original SWCNT 3.0 or this 

practically identical re-batch. 

A Finnsonic M12 200w/800w ultrasonic device was used to help CNT dispersion and 

to separate dissolved gases from the dispersion. The centrifuge used was a Hettich 

Zentrifugen universal 320 at 3500 rpm for 10 minutes at a time. The SWCNT 3.0 

concentration was measured by evaporating the precipitate left over from ink 

formulation solvent in a good ventilation and weighing the amount of CNT left in the 

tray. This was also compared to a small sample of evaporated ink and the results were 

similar within a margin of error.  

 

Table 1: Comparison of the different SWCNT-inks used in the research. 

 SWCNT 1.0  SWCNT 2.0 SWCNT 3.0 

Composition 

 

300 ml H2O Distilled 

3 mL NH4OH 

10.8 mg SWCNT-

COOH 

(Sigma-Aldrich 

652490-250MG) 

21.44 g H2O 

6.95 g 2,3 -Butanediol 

2.27 mg SWCNT-COOH 

(Sigma-Aldrich 652490-

250MG) 

13.05 g H2O Distilled 

13.06 g DMF 

13.1 mg SWCNT-COOH 

(Sigma-Aldrich 652490-

250MG) 

Processing 

3h sonication 

30 min centrifugation 

Supernatant 

collected 

60 min sonication 

4 times 10min 

centrifugation and 

supernatant collection. Lot 

of the CNTs present in the 

precipitate. 

2 min magnetic mixing 

30 min sonication in 

50C 

4 times 10min 

centrifugation and 

supernatant collection. 

Color Light amber Dark amber Almost opaque black 

Water % 99 76 50 

Butanediol % 0 24 0 

DMF % 0 0 50 

CNT calculated 

(mg/ml) 
0.036 0.08 0.5 

CNT measured 

(mg/ml) 
0.02 ± 0.003 - 0.316 ± 0.017 

pH 9 6 6 

Note 
Ink from Ronja 

Valasma’s work. [32] 

First fully self-formulated 

ink. 

Final ink used in all the 

prints in this work. 

 

 

Figure 2: The three SWCNT inks used in the research in order from left to right. 
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2.2.3.3 Ink degassing 

Piezoelectric jetting relies on pressure change in the nozzles forcing the fluid to jet out 

of the orifice and pump new ink to the nozzle from the reservoir. Gas can appear in 

the print nozzles from two sources. Atmospheric air bubbles and dissolved gases 

forming bubbles through a process called rectified diffusion. Atmospheric air bubbles 

can be bled out by purging and using cleaning cycles, but dissolved gases require other 

methods. As Dimatix materials printer does not have a degassing or vacuuming 

system, degassing must be done before injecting the liquid into the reservoir if bubble 

forming ends up being a problem [33] [29]. The effect of rectified diffusion can also 

be of benefit when degassing the ink with an ultrasonic bath. Sonicating the fluid 

makes dissolved gases form bubbles and float out of the dispersion [34]. This was the 

main method of degassing inks discussed in this work. Degassing can also be achieved 

in a high vacuum or by heating the liquid close to its boiling temperature [33]. 

As a practical example in our work with an ink that contained mostly water and some 

butanediol, jetting problems were encountered only when nozzle was heated, which 

further incites bubbles formation. Heating and sonicating the ink provided only short 

remedy for this issue and problems returned shortly after the cartridge had cooled 

down. This was fixed by using SWCNT 3.0 solution only which was free of the 

phenomenon. 

 

 

2.2.4 Printing time with Dimatix printer for small patterns.  

Dimatix printer works by moving the printing head horizontally from left to right and 

jetting droplets in defined spots which is similar to most commercial inkjet printers. 

Between vertical bands, platen is moved in y -dimension, i.e. vertically, to print the 

next horizontal lines. This cycle takes approximately 2.2 seconds. Thus, printing lines 

horizontally is noticeably faster than vertically. With vertical patterns, line length is 

equal to print height, and is directly proportional to the printing time. With horizontal 

patterns, it is possible to achieve fast printing as ceiling function component 

ceil(Ph/DS) becomes one, and the total time is consequently dependent mostly on the 

layer count. However, with hydrophobic surfaces and slowly drying inks, printing 

must be done vertically or horizontally through multiple prints as drops cannot be 

placed touching one another because of droplets joining together. For small patterns, 

the drying time between drops is the time that one horizontal pass takes, i.e. 2.2 s, and 

compulsory cleaning time between layers, 7 s in the minimum. Therefore, total 

printing time in seconds is 

 

Tprint =  LC(DT + 7 + 2.2⌈
𝑃ℎ

𝐷𝑆
⌉) 

 

where print height is Ph and drop spacing is DS in the same unit of distance, layer 

count is LC and extra drying time or waiting time between layers in seconds is DT. 

For example, for a vertically printed line with a usual layer count of 20, print height of 

1000 µm and drop spacing of 20 µm, total time is 2340 seconds = 39 minutes. 
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2.2.5 Printing methods for hydrophobic surfaces 

Printing CNT to a completely untreated PDMS surface is appealing due to its 

simplicity, speed and because it requires little expensive machinery. Extremely 

hydrophobic surfaces, however, present challenges to printing with the droplet not 

spreading evenly to the surface to dry or even absorbing into some less hydrophobic 

materials on the surface, such as ink that has dried previously. 

If a new droplet is placed too near or touching an existing non-dried droplet on a very 

hydrophobic surface, the droplets merge and travel to the direction of printing leaving 

uneven or no printed pattern at all. This creates confusing patterns that only have globs 

of ink throughout the expected printing area or only in the end and inconsistent gaps 

in between and as a result, printing resolution suffers greatly. It is also possible for the 

new droplets to become absorbed on the previously dried ink – CNT or silver, which 

are far more hydrophilic than the untreated substrate. 

Horizontal lines are considerably faster to print but drying time between the droplets 

is only microseconds, which makes drying of the ink, or lack of, challenging. In case 

of hydrophobic surfaces, change of method is required. Another possible method is to 

print with a large drop spacing to leave gaps in between droplets and to later print in 

these gaps. Dimatix Drop Manager does not internally have an official, repeatable way 

to change the droplet locations to print in between the droplets because they are tied 

to a grid, whose dimensions are determined by the drop spacing. It can only be done 

manually using a fiducial camera by moving the print origin instead that moves the 

grid as well. Repeatable, good quality patterns need more research to be done with this 

method as it is still subject to ink absorbing issues and not to forget the large amount 

of manual adjustment needed due to the limitation of the software. Good results should 

still be achievable with higher layer counts and the help of argon-plasma treatment 

though. This method gives the highest drying times between the droplets and it can 

even be adjusted by waiting between the prints just in case, and it has the potential to 

be much faster than printing droplets vertically one at a time. 

These vertically printed lines of droplets have a non-changeable ~2.2 s drying time 

between adjacent droplets giving repeatable and robust although slow printing 

throughput. Adjacent vertical patterns have been attempted too, but the quality suffers 

because of newly deposited droplets getting sucked into the existing dried or partially 

dried ones without very careful choice of settings. Printing only one vertical line at a 

time gave us the most robust and repeatable results for this work allowing for long 

enough drying times with reasonable amount of manual adjustment. 

 

 

2.3 Substrate material 

The substrate material is a silver screen-printed PDMS film made by VTT (Figure 3 

A). The PDMS used is Wacker ELASTOSIL Film 2030 and the ink is Creative 

Materials 125-19FS. It consists of 95 µm thick PET-backing film (non-stretchable 

support), 100 µm PDMS elastomer, and a patterned silver ink, whose thickness is 

about 7 µm for single layer and 15 µm for two overlapping layers. The sheet resistance 

of the silver pattern varies from 0.15 to 0.27 Ω/sq. [1]  
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To prepare the substrates for printing, they were cut into 10 mm by 25-50 mm pieces 

using scissors. There were two main types of samples used in this work. The first type, 

shown in Figure 3 B, was the original substrate split in two lengthwise so that the pads 

were separated electrically to achieve 1 mm wide gap to fill with the CNT line pattern. 

The PET backing was left in place to ease the handling and to protect the membrane 

from stretching.  

In stretch, pressure, gauge factor and heartbeat measurement tests, the PDMS film was 

used without splitting so that the silver could be used as a contact pad, shown in Figure 

3 C. Silver track was manually removed from one spot to separate the paths electrically 

and in the adjacent 1 mm gap, the SWCNT track was printed. PET support was first 

used with the same reasons as with the electrical measurements but later it was 

removed to enable the analysis of elastic properties.  

 

 
Figure 3: (A) The original screen-printed sample received from VTT. (B) The sample 

type used for general electrical measurements. (C) The type used for stretch- and 

sensor measurements. 

 

 

2.3.1 Treating PDMS with argon-plasma 

Argon-plasma treatment has been proven useful for treating polymer-based substrates 

to become hydrophilic [35]. It was chosen for this work too due to earlier successful 

experiences with treating polymers, such as PET, in making them more hydrophilic as 

well as that the process was already well known in the Microelectronic Research Unit. 

Also, oxygen-plasma was speculated to possibly etch or oxidize the silver ink present 

on the PDMS. The cut PDMS samples were taped on a silicon sample holder used in 

the Oxford PlasmaLab Plus (Figure 4) plasma etcher. 200 W plasma power was 

applied and the argon flow was set 20 sccm at a pressure of 20 mTorr. Treating times 

were checked from 2 to 30 min. Too short times made the PDMS to have a good 

enough hydrophilicity at first, however it faded faster than with longer treatment 
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periods leaving not enough time for printing. On the other hand, too long treatments 

resulted in excellent although non-uniform hydrophilicity. Especially around the 

printed silver conductive paths, problems arose during printing as ink repelled the 

PDMS in the interface area and started to wet the silver too well instead. This could 

have happened because plasma affected the silver more aggressively than the nearby 

PDMS thus creating a hydrophilicity gradient too steep at the interface. A treatment 

time of 13 minutes combined with a 5 to 10 hours of waiting after the treatment before 

printing gave the best overall result and was chosen to be used in all the samples in the 

electrical measurements.  

 

 

 

Figure 4: Oxford Plasmalab 80 Plus. 

 

Figure 5 shows AFM surface topology scans of treated and untreated PDMS surfaces 

at different magnifications. Treatment is 10 minutes long argon-Plasma at 200 W 

power. On the surface of the original PDMS, 100-200 nm deep cracks can be seen that 

deepen during the treatment. Zoomed between the large cracks, the untreated surface 

is smooth, having only 2-6 nm high bumps, whereas the argon plasma treatment makes 

the surface to have a fish scale-like appearance with up to 100 nm cracks and up to 

100 nm high bulging nodules.  
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Figure 5: AFM topology images of a 10×10 µm and 1×1 µm area to compare (A, C) 

untreated and (B, D) treated PDMS surfaces. 

 

 

2.3.2 Substrate transparency 

UV-vis-NIR Varian Cary 500 spectrophotometer was used to determine the 

transparency of the substrates. PDMS and PET films are both clear to the naked eye, 

but the plasma-treated PDMS is a little bit opaquer due to light scattering on the 

surface. This is expected to make the difference in transparency between treated and 

untreated PDMS substrates, also apparent in Figure 6.  

CNT tracks used in this work practically block incident light thus affecting the overall 

transparency. (The substrate transparency is decreased by the ratio of CNT coated 

footprint area and the total area.)  
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Figure 6: Comparison of transparencies of the substrates. 

 

 

2.3.3 Contact angles 

The contact angles are collected to the Table 2 below and the corresponding images 

from which the angles are measured, in Figure 7. The contact angle measurement 

shows great difference between treated and untreated surfaces, indicating a more 

hydrophilic surface and success in the treatment. Also, there are differences between 

DI water and SWCNT contact angles on both surfaces, SWCNT angles being 

systematically lower. 

The angles are measured from their advancing stage, when the droplet and its angle is 

at its highest. Droplet diameter is about 7 mm. Pictures are taken with a Canon 

Powershot SX10 IS from 5-6 cm away. Contact angles are measured with ImageJ 

software angle measuring functionality. 

 

Table 2: The contact angles of water and CNT on untreated and treated surfaces. 

Contact angles (°) DI Water CNT 

Untreated 94.6 84.9 

Treated after 10h 30.0 15.0 
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Figure 7:  Surface wetting of plasma-treated and original PDMS. DI water on (A) 

untreated and (B) treated PDMS surface. SWCNT ink on (B) untreated and (D) treated 

PDMS. 

 

 

2.4 Imaging equipment 

FESEM, AFM and optical microscopy were used to visualize the microstructure of 

printed nanotube networks and silver contact pads as well as surface of PDMS 

substrates. First, high-resolution images were taken with Zeiss FESEM ultra plus 

(Figure 8 A). Surface charging is a serious problem with nonconductive materials, 

even with careful conductive carbon taping. Therefore, platinum coating was used to 

enable good grounding of the probing electron beam thus getting better image quality. 

Images were taken from three kinds of samples: with no platinum coating, with 

approximately 1.4 nm Pt coated layer, and with a 5 nm platinum coating on top of 1.4 

nm coating for a total of 6.4 nm. The thicker the conductive layer, the less charging 

but also less details can be seen from the original material at the bottom due to the 

thick layer on top. The best image quality was achieved with 1.4 nm layer sputtered 

on the samples and that was used for the analysis here. Because SEM had limited 

resolution due to surface charging, AFM analysis was also performed using a Bruker 

Multimode AFM with µmasch NSC18 probes (Figure 8 B). Optical microscope 

pictures were taken with a camera through Wentworth probe station microscope 

(Figure 8 C). 

 

 

Figure 8: (A) Zeiss FESEM, (B) Bruker AFM and (C) optical microscope on a 

Wentworth probe station. 
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3 RESULTS AND DISCUSSION 

To examine the printed micropatterns more closely, they were imaged, their 

conduction was measured and the use in strain and sensor applications was 

demonstrated with mechanical bending and stretching. On top of optical imaging, 

SEM was used to see the individual nanotubes and the interface of the CNT-pattern 

and silver, and AFM to figure out the exact height characteristics of the finished 

patterns.  

Drop spacing was noticed to be a critical variable for achieving patterns with the best 

possible quality and layering the main factor to modify the conductivity. Both 

experiments were carried out by also comparing the effect of the surface treatment at 

the same time. Also, as the first droplets of a horizontal line are always more 

concentrated, this phenomenon was investigated as well. Multiple prints were 

executed for each set of settings and the results were averaged to rule out possible 

printing errors and other variations.  

In the end, the tensile properties of micropatterns were studied by stretching them to 

find their pressure sensitivity and gauge factor. And they were also demonstrated as 

sensors for measuring bending and a human heartbeat. 

  

 

3.1 SWCNT on PDMS 

For electrical measurements, SWCNT ink was printed between the screen-printed 

silver pads so that the lines would have fixed length and that they could easily be 

measured without touching and damaging the CNT itself (Figure 9). SWCNT print 

was ensured to overlap the silver-coated surface for at least 100 µm for good adhesion 

and electrical conductivity. 

 

 

Figure 1: Inkjet-printed SWCNT line between silver pads with 15 printing layers and 

20 µm drop spacing. Pad-to-pad spacing is 1 mm. 
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The thickness of the patterns depends on the amount of CNT deposited, which again 

is dependent on the number of the layers and drop spacing. Figure 10 shows the height 

profiles for a 12 layer, 10 µm drop spacing pattern, whose thickness is 1.5-1.6 µm, and 

for a single print pattern with 20 µm drop spacing having thickness of about 130 nm. 

In comparison, the single layer silver thickness is about 7 µm. Coffee-ring effect is the 

reason of thicker deposition in the edge. 

 

 
 

Figure 10: AFM topology scans for inkjet-printed SWCNTs on PDMS shows (A) 1.5-

1.6 µm thickness for 12-layer patterns and the rim and centre of the structures, and (B) 

130 nm thickness for single layer.  

 

 

3.2 CNT on silver 

SEM pictures from the interface of silver and SWCNT show how the ink has been 

absorbed between the silver flakes with a large surface area to achieve a very good 

adhesion. Figure 11 shows the silver flakes being about 2-15 µm in size, having 

micrometre-sized cracks and holes for the CNTs and networks to adhere. 
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Figure 11: SEM images of a 15-layer SWCNT pattern on top of the PDMS and the 

silver pad interface. 

 

 

3.3 Electrical probing 

For the electrical measurements, samples were placed under the microscope on the 

Wentworth probe station and the probe tips were securely brought in contact with the 

Ag pads using enough force to minimize the contact resistance (without puncturing the 

pads). Done this way, the silver pattern, contact resistance and other series resistances 

combined were negligible combined to the resistance of the CNT pattern. All the 

following sheet resistances are calculated from measured resistances considering a 

mean track width of 46.3 µm and a length of 1000 µm. This track width was obtained 

from the drop spacing test samples, where also the standard deviation was 5.8 µm. 

For the real-time resistance measurements while deforming the samples, a Keithley 

2636A with an automated LabVIEW script was used to sweep voltages from -2 V to 

+2 V with a current limit of 1 mA to preserve samples, hysteresis enabled, 0.1 V 

voltage step and 100 ms delay in between the samples. The measurement device was 

attached via a BNC plug to crocodile clip leads into needles on the substrate.  

 

 

3.3.1 First drop phenomenon 

The first droplet of one horizontal line of droplets produces darker and more 

conducting patterns than the latter ones, making the leftmost vertical lines, the ones 

that were used in the electrical measurements in this work, more conductive than the 
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others. This happens most probably due to a more concentrated first droplet as there is 

no designed mechanism to change the droplet size other than partial blockages, which 

only make the droplets smaller. A more concentrated first droplet can happen when 

the surface of the droplet continuously dries in the nozzle and mixes into the nozzle 

due to idle meniscus vibration feature that keeps the nozzle unblocked. This behaviour 

was observed by printing 4 vertical lines with 10 mm intervals. The test was repeated 

3 times. The electrical sheet resistances together with the mean values and their 

corresponding I-V curves are plotted in Figure 12.  
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Figure 12: Nozzles idling effect on (A) sheet resistance and (B) their corresponding I-

V curves. 

 

 

3.3.2 Drop spacing effect on resistance  

Drop spacing tests were carried out as similarly as possible on both plasma-treated and 

original surfaces. Through the adjustment of the number of layers printed, the amount 

of CNT deposited was standardized in the 1000 µm long gap between the conducting 

silver pads. Excluding the parts of the CNT track that overlapped the silver pad, the 

line consisted of 803-827 of 10 pL droplets (SWCNT 3.0 ink). Printing for treated 

surfaces was started from the 40 µm spacing specimen after 4 hours the treatment and 

ended with 5 µm spacing one after 10 hours. 

The results, graphed in Figure 13, show that the largest drop spacing to achieve a 

conductive, uniform pattern is less than 40 µm. This was expected as the individual 

droplet size on substrate is usually between 35 and 50 µm. The best results were 

achieved with a 20-25 µm drop spacing. A 20 µm drop spacing was selected to be used 

in further resistance tests because of low resistance, consistency when printing and 

visually convincing pattern and quality among the best prints. Also, the amount of 

CNT deposited is easier to manage with layering when drop spacing is not very low. 

On Ar plasma-treated surfaces the resistance of the printouts was significantly lowered 

(Fig. 14). Only low drop spacings of 5 µm had problem with drying with the used ink 

and settings making the track nonconducting in the treated case. 5 µm drop spacing 

gave surprisingly low resistance on untreated surface even though visually print 

quality was not excellent. Print quality varied a lot on the lowest drop spacings due to 

drying issues of droplets, which might affect the result. 
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Figure 13: The effect of drop spacing on sheet resistance of printed SWCNTs on the 

surface of PDMS. 

 

Overall, I-V curves of the drop spacing test patterns, in Figure 14, show linear (Ohmic) 

transport behaviour. With the drop spacing of 10-35 µm, the resistances were quite 

consistent. Only when the extreme spacing values applied, i.e. 5 µm and 40 µm, the 

results scattered from the trends of the data set. 
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Figure 14: The effect of drop spacing and surface treatment on the I-V characteristics 

of printed SWCNTs on (A) untreated and (B) treated PDMS. 

 

 

3.3.3 CNT Layering effect on resistance 

Because the effect of plasma treatment reverts relatively quickly, prints were done in 

a successive manner while keeping the amount of time deviation as low as possible. 
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All prints were done in order starting from the least layers proceeding towards higher 

layer prints that also take more time. This was done to decrease unnecessary deviation 

between prints with the same number of layers, especially when it was avoidable with 

faster, lower layer count prints. 

In a research on SWCNT printing on cloth fabrics and flexible substrates, the lowest 

resistance achieved was 78 Ω/sq with 200 layers [36] and in similar prints done to 

paper, best results were 760 Ω/sq with 12 layers [37]. Our average resistances achieved 

with 20 layers were 65 Ω/sq on treated surfaces and 243 Ω/sq on original, untreated 

surfaces which is already a better conductance per layer of material and lower overall 

resistance. Only with the treated surface, a conducting 1-layer line was possible to 

create. It had an average resistance of 7100 Ω/sq. Also, with higher layer count, 

substantially lower resistances were possible to achieve compared to the untreated 

substrates. The resistances of the same layer count are also lower in all treated samples 

(Figure 15). The same behaviour can also be seen in the I-V graphs (Figure 16). 

Deviation of the resistance in prints increase greatly when the number of layers 

decreases because the drop spacing naturally makes the lines have a slightly uneven 

shape in the beginning. Successive layering decreases this effect or even fixes previous 

printing artefacts. With over 15 layers, both treated and untreated surfaces start to 

provide under 20% variation in the resistance - treated surface having the edge in this 

aspect too. Overall, the treated surface provides higher range of printable resistances 

making the process, although a bit more complicated, also a more versatile option.  
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Figure 15: Sheet resistance vs. layer count and surface treatment. 
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Figure 16: I-V characteristics vs. layer count on (A) untreated and (B) treated surfaces. 

 

In Figure 17, a Belehradek power function 𝑦 = 𝑎(𝑥 − 𝑏)𝑐 fit is presented to analyse 

the relationship of sheet resistance and layer count along with logarithmic scales. The 

treated surface is seen to conform to the fit of for percolating networks, and help 

obtaining the the percolation threshold (b) and the character of percolation with the 

power exponent (c) being -1.27±0.07. Accordingly, the results for the patterns printed 

on the plasma-treated surfaces are in good agreement with the percolation theory that 

expect power exponent of -1.33 for the resistance-thickness plots. 
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Figure 17: Belehradek-type power-function fit. 
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Because of the nature of CNT bundling and forming random connections, more layers 

give a higher chance of loose connections being connected resulting in lower resistance 

per layer or better conductivity for CNT deposited. In figure 18, the resistances are 

normalized to the amount of CNT deposited by multiplying the resistance with the 

number of layers printed, the effect of resistance lowering with increasing number of 

layers can be seen more easily. That is especially noticeable with treated substrate 

indicating it allows more efficient use of CNTs. 
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Figure 18: Mean sheet resistance per layer, the amount of CNT deposited normalized. 

 

 

3.4 Tensile properties 

For the stretching tests, we used a Linkam TST 350E stretch stage with a Linkam T95-

PE controller. It has a positional resolution of 10 µm, which is feasible for our sample 

size and outputs data into a convenient format. For the real-time resistance 

measurement, Keithley 2636A with an automated Labview script was used. The setup 

was confirmed to give accurate resistance and current/voltage measurements up to 43 

samples/s as 23 ms is the minimum step delay in the resistance range of 20-300 kΩ. 

The two measurement devices were scripted to be started and ended at the same time 

and the results were afterwards scaled to the same time domain. Gauge factor was later 

derived from the strain curves in Origin Pro 2019b. 

Tentative tests showed that 3-4% of deformation was possible before permanently 

changing the resistance of the samples. Maximum strain and durability of the device 

was found to be comparable to other CNT based devices [26]. Multiple tests were 

conducted to achieve a noise-free, repeatable and reliable measurement setup for 

stretch testing. These first iterations included the use of the original PET-backing as a 

support for the PDMS so that the CNT on the very flexible membrane would not 

change its properties. For the measurements however, the PET backing and PDMS 

film was separated carefully from each other by sliding an oiled thread between them 

when the PDMS film was already securely attached to the stretching device from the 

PDMS film. 
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Many attachment options to the stretch stage were attempted including making the 

contacts from carbon tape, silver ink and or copper tape with its tape side down 

touching the silver path. All of them proved to be not conductive or reliable enough. 

The best method is shown in Figure 19. With the help of copper tape, Kapton tape and 

Linkam stretching device, a PDMS film containing screen-printed silver ink and CNT 

was stretched and analysed. 

 

 

Figure 19: Attachment of the stretchable membrane to the Linkam stretch stage.  

 

 

3.4.1 Gauge factor and pressure sensitivity  

Figure 21 A shows the relative resistance change of the device under small strain of 0-

3%. The dual state behaviour possibly happens due to CNT bundles forming nano-

sized gaps between each other before starting to stretch geometrically or elastically. 

Stretching the device much further than 3-4% would permanently increase the 

resistance of the device and ultimately end up breaking it completely. Impurities 

present in the middle of the nanotube network from CNT manufacturing process or 

used solvents may decrease the maximum stretching capabilities and durability of the 

device [15]. It is unlikely that any breakages would occur in individual nanotubes as 

they have very high tensile strength compared to the adhesion to other nanotubes [38].  

 

In stretching experiments, an interesting, negative hysteresis is observed. This 

repeatable behaviour makes the resistance reach the stretched and unstretched states 

with less strain change than expected. This was also seen in earlier paper concerning 

piezoresistive carbon foams [39]. The reason could be cracks or gaps forming in the 

SWCNT network when stretching before stretching turning into geometric/elastic. On 

the other hand, in the releasing phase, some of the gaps close before the elastic region 

starts. [22] It takes time for the CNT network to reset after being stretched. Another 
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explanation is that the PDMS substrate contracts immediately forcing SWCNT 

network to contract in a different way that would be natural. [26] 

 

The quick and linear increase of the resistance at strains of 1.0-2.5% leads to a 

relatively steady gauge factor of 500-1000 (Figure 21 B). A very similar result was 

achieved with carbon foam-based sensors [39]. In pressure sensitivity tests, the device 

was first pinched from the ends and set vertically in a Linkam stretch stage. Pressure 

over the whole device area was simulated by loading weights of 0.15 g on the top of 

the membrane and the resistance was measured with a DMM that uses 0.5 V voltage. 

The most consistent results with the least deviation were achieved by applying the 

pressure-simulating force as visualised in Figure 20, offset from the area where the 

SWCNT track is located to ensure that localized transformation of the membrane 

would not affect the result. As a result, the whole membrane stretched as if the pressure 

was applied to the whole area. This method however, does not take into account the 

bending of the membrane which causes the printed pattern to stretch more or less, 

depending on the pattern being printed on the same or the opposite side the pressure is 

applied to leads naturally to a higher or lower pressure sensitivity respectively. 

 

 

 

Figure 20: The pressure measurement setup with the membrane (A) unstressed and 

(B) stressed by an external force. 

 

In Figures 21 C and D, The device shows very high pressure sensitivity of 100-400 

kPa-1 being higher than that measured for the state-of-the-art CNT/rGO-CNF carbon 

devices. [40] The very high pressure sensitivity is explained by the membrane being 

very thin, floating in the air and supported only from the ends and the area affected 

being relatively big, about 4 cm2. 

Possible practical uses for the sensor would include pressure sensing, force 

measurement, buttons and human motion measurement. Apart from the silver 

conducting path, the device can be made almost completely transparent to the human 
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eye, which enables it to be used in applications where transparency is an important 

factor. 

As the PDMS substrate is the largest counteracting force to reduce the elongation of 

the device, pressure sensitivity is easy to change by making the substrate different 

thickness from the current ~100 µm. This device would be suitable for pressure sensing 

applications in the range of 0-30 Pa, if the whole device was exposed to the pressure 

difference with only supporting it on the edges. On the other hand, by providing a 

better support, higher pressures are expected to be able to measure. 

These results were compared with a reference sample containing no CNTs to confirm 

that the CNT track is the source of the effects described and that the effect of silver 

pattern stretching has negligible effect on the total resistance.  
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Figure 21: Fully printed SWCNT and Ag -ink based sensor on PDMS behaviour when 

stretched: (A) Resistance related to the strain, (B) high maximum gain factor (GF), (C) 

Resistance change related to the pressure and (D) Relative current change with the 

derivative values. 

 

 

3.4.2 Sensor applications 

The electrical response of the device to bending shows high sensitivity in Figure 22 A. 

The structure maintains its functionality even when bent under radius of 2 mm. This 

property could be utilized in applications that need conductors that are bendable or 

otherwise pliable. Other use for the resistance change would be sensors that respond 
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to bending, force or pressure. The CNT pattern was facing out which increases the 

change of the resistance. Resistance was measured with a DMM. R0 = 80 kOhm.  

Figure 22 B shows the printed CNT patterns used as sensors for heartbeat (pulse) 

measurements without any modifications. With fine sensor placement, even different 

stages of the pulse could be recognized. First, the sensor was put over the radial artery 

and pressed manually with a finger to find the correct spot and pressure. It was then 

connected in series with a 22.5 kΩ wire wound resistor and a voltage of 8.74 V was 

sourced from Agilent E3614A voltage source. The measurement was done with an 

Agilent DSO-X 3024A oscilloscope. Lastly, the signal was post processed with 

Origin's low pass 25Hz FFT filter functionality to remove the 50 Hz mains hum from 

Agilent E3614A DC power supply (Figure 23). 
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Figure 22: (A) Resistance variation of a printed SWCNT device as a function bending 

radius and (B) Radial pulse measurement with SWCNT patterns printed on PDMS to 

reveal various pressure fronts in pulses. 

 

 

 

 

 

 

 

Figure 23: 50 Hz mains hum from Agilent E3614A voltage source removed with 

Origin 2019b low pass 25Hz FFT filter. 
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4 CONCLUSIONS 

In this thesis, a novel SWCNT device was inkjet-printed on PDMS, measured and 

imaged as well as compared to other devices with similar properties.  

Various SWCNT inks were prepared and used to create conductive patterns on PDMS 

and other substrate materials. Several phenomena affecting the printing were 

documented, and possible solutions for problems were discussed. The most 

concentrated ink containing SWCNTs in 50:50 DMF-water solution was chosen to be 

printed for the best conductivity in least printing time. Substrate material sourced from 

VTT was prepared for printing and some of them were also treated with argon plasma 

to optimize for subsequent inkjet-printing. With some cost in transparency and 

simplicity of manufacturing, the plasma treatment was found to be a successful way to 

increase the hydrophilicity of PDMS and thus printability on it to produce SWCNT 

micropatterns with controlled electrical properties. For example, decreasing number 

of layers needed to only one layer for a conducting pattern, or to achieve low sheet 

resistances of only tens of ohms when printing multiple layers. 

While printing the SWCNT patterns for electrical measurements, multiple settings 

were varied and optimized, such as drop spacing, print repetition and surface 

treatment. In sensor applications, the patterns were found to have a strong 

piezoresistive effect with a gauge factor of up to 1000 and associated high pressure 

sensitivity. The printed SWCNT patterns were also demonstrated as sensors for 

analysing strain, bending, and pressure.  

As for further development, printing of the SWCNT lines could be developed further 

to improve e.g. to make not only lines but also two-dimensional patterns on surfaces. 

It would also be beneficial to create a better protection for the SWCNT-based device 

to be more robust and easier to use. 

There is a possibility for the device to be mass manufactured with already established 

screen printing and inkjet printing technologies with a relatively little investment. The 

SWCNT cost would be minimal due to additive style of manufacturing.  
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