-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by University of Oulu Repository - Jultika

\l/

R

UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Timo Mattila

INTEGRATION OF ARCTIC NODE
THREAT INTELLIGENCE SHARING
PLATFORM WITH SURICATA

Master’s Thesis
Degree Programme in Computer Science and Engineering
June 2020

https://core.ac.uk/display/344911373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mattila T. (2020) Integration of Arctic Node threat intelligence sharing
platform with Suricata. University of Oulu, Degree Programme in Computer
Science and Engineering, 59 p.

ABSTRACT

The Internet has connected the modern world. Nowadays anyone can
access anything straight from their home computer. Everything and
everyone has a presence in the cyber domain, including those who seek
to conduct criminal activities. In response to this, the field of cyber
security has been born.

Cyber threat intelligence refers to information about cyber threats
such as computers with open vulnerabilities and malicious Internet
sites. The amount of available information is vast and the only way to
handle such a large amount of data is automation. Threat intelligence
sharing platforms have been developed for this task. They are used
to fetch threat intelligence data from multiple sources, harmonize and
analyze the data, and share it further.

One part of the automation process is the integration of threat
intelligence sharing platforms with other cyber security applications.
The goal of this thesis was to integrate a new intrusion detection and
prevention system into the Arctic Node threat intelligence sharing
platform. Suricata was chosen as the integrated system. A new
integration submodule was created for Arctic Node to convert threat
intelligence collected by the platform into Suricata rules and send it
automatically to Suricata. One of the prominent features of this new
module was the capability to deduplicate the output data.

The new integration submodule was compared to a similar
functionality in another threat intelligence sharing platform, MISP.
Testing was conducted in a custom virtual environment using real
threat intelligence from seven different feeds. The results of these tests
indicated that the new submodule was able to notice a greater number
of possible threats, and it generated a more diverse set of different
types of Suricata rules from the same input data. Deduplication was
found to only have a small impact in reducing the size of the generated
rule set as the overlap between different threat intelligence feeds was
minimal.

Keywords: Cyber security, Cyber threat intelligence, threat
intelligence management, intelligence feeds

Mattila T. (2020) Arctic Node -alustan yhdistdminen Suricata-
ohjelmaan. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 59 s.

TIIVISTELMA

Internet on yhdistinyt nykyajan maailman. Kaikilla on paasy
kaikkialle suoraan kotikoneelta. Myo6s rikolliset ovat havainneet
tdman, ja hakkerointi on noussut modernin maailman suureksi
riesaksi. Internetissa tapahtuvan rikollisuuden estamiseksi on syntynyt
kyberturvallisuuden ala.

Tietoturvatieto kisittaa tietoa eri uhkatekijoistad internetissa.
Tieto voi koskea esimerkiksi vaarallisia sivustoja tai haavoittuvaisia
tietokoneita. Tietoturvatietoa on olemassa valtavasti, eikd kaikkea
tata tietoa voida hallita manuaalisesti, vaan sen hallinta taytyy
automatisoida. Tietoturvatiedon hallintaa varten on kehitetty erilaisia
tietoturvatiedon hallinta-alustoja, joilla tietoa voidaan kerata eri
lahteista, rikastaa, analysoida ja jakaa eteenpaiin.

Yksi tietoturvatiedon hallinta-alustojen toiminnallisuuden osa-
alueista on niiden integraatio toisten tietoturvaohjelmien kanssa.
Tamin diplomityon tavoitteena oli yhdistad uusi tietoturvaohjelma
Arctic Node -alustaan. Yhdistettaviaksi ohjelmaksi valittiin Suricata.
Diplomityossa tehtiin toiminnallisuus, joka muuttaa Arctic Node -
alustan kerddmaia tietoturvatietoa Suricata-sdannoiksi ja joka kykenee
jakamaan siddnnot automaattisesti Suricata-ohjelmalle. Yksi tadmaéan
toiminnallisuuden tavoitteista oli poistaa toisto luoduista Suricata-
sadnnoista, jotta jokainen sadnto olisi uniikki.

Arctic Node -alustan uutta toiminnallisuutta testattiin MISP-
alustan samanlaista toiminnallisuutta vastaan. Testin tuloksena oli,
ettd uusi toiminnallisuus tuotti jonkin verran enemméin Suricata-
saantoja kuin MISP-alusta samoilla tietoturvalidhteilld, ja saannot
olivat myo6s monipuolisempia kuin MISP-alustan luomat sdannot.
Testeissa Arctic Node -alustan tuottamat saannot havaitsivat
haitallista liikennettd paremmin kuin MISP-alustan tuottamat
sadnnot. Testeissd ei havaittu Suricata-sdidntdjen toiston poistamisen
olevan kovinkaan merkittivia, koska tietoturvaliahteiden valillA on
melko vahan paallekkaisyyksia.

Avainsanat: tietoturva, kyberturvallisuus, tietoturvatieto,
tietoturvatiedon jakaminen

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMA
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION
1.1. Cyber threat intelligenceco i
111, Categories . ..ot
1.1.2. Indicators of Compromise................ooiiiiiiiiiiiiiia..
1.2. Cyber threat intelligence feed.............
12,1, EVent ..o
1.2.2. Sharingoooii
1.3. Cyber threat intelligence sharing platform............................
1.3.1. Challenges.oouii e
1.4. Intrusion Detection and Prevention Systems
2. STATE OF THE ART
2.1. History of intrusion detection and prevention systems...............
2.2. Open source intrusion detection and prevention systems
2.3, SUTICATA . .ot
2.3.1. Suricata rule system
2.4. Threat Intelligence Sharing Platforms
2.0, MISP
2.6. Arctic Hub and Node......... ...
2.6.1. Structure and Features..................o
3. METHODOLOGY
3.1. Suricata rule generation
3.1.1. The structure of the generator.................................
3.1.20 TP rules ..o
3.1.3. URL rules ...
3.1.4. User interface of the generator............................. ...
4. CASE STUDIES
4.1. The test setup. .. oo
4.2. The metrics for comparing different rule sets.........................
4.3. MISP virtual machine i
A4, Feeds. .o
4.5, Input Data ...
4.6. Test CaseSu ittt
4.7, Test result . ..o
4.8. Future Work ... o
5. CONCLUSION
REFERENCES
7. APPENDICES
7.1 MISP feeds ..o

&

FOREWORD

The goal of this thesis was to integrate the Arctic Node threat intelligence sharing
platform with a new intrusion detection and prevention system. Suricata was
chosen as the integrated system. This thesis was done at the University of Oulu
between 2019 and 2020 for the Arctic Security company. I work at the Arctic
Security company, and have been part of the development of Arctic Hub and
Arctic Node for several years. Due to my prior experience in the field it was a
natural option to write my thesis on the subject of threat intelligence sharing
platforms.

I thank everybody who has helped me with my studies, thesis and work. There
have been moments when it felt like I was never going to get this done, but your
help has kept me on the right path. Special thanks also go to those who have
helped me proofread this paper.

Many thanks to my family and friends, who have always been there for me. I
want to also thank a young puppy named Vyo6ti who came into this world and
my life during the year and a half I've spent working on this thesis. Vyoti has
reminded me that there is more to life than graduation and has helped me to
take breaks from work.

Oulu, 16th June, 2020

Timo Mattila

LIST OF ABBREVIATIONS AND SYMBOLS

ASN Autonomous System Number

C2 Command and Control

CTI Cyber Threat Intelligence

CTIF Cyber Threat Intelligence Feed

DGA Domain Generation Algorithm

HIDS Host based Intrusion Detection System
HIPS Host based Intrusion Prevention System
IDS Intrusion Detection System

[oC Indicator of Compromise

IPS Intrusion Prevention System

NIDS Network based Intrusion Detection System
NIPS Host based Intrusion Prevention System
IDPS Intrusion Detection and Prevention System
SIEM Security Information and Event Management
TI Threat Intelligence

TTI Technical Threat Intelligence

TISP Threat Intelligence Sharing Platform

QA Quality Assurance

VM Virtual Machine

WIDS Wireless Intrusion Detection System

WIPS Wireless Intrusion Prevention System

1. INTRODUCTION

Over the years the world has grown dependent on the Internet. It is used
by both individuals and organizations for various purposes such as business,
sharing information, shopping, socializing, recreation, and controlling devices.
Everything and everyone has a presence in the cyber domain, including those who
seek to conduct criminal activities. The possible consequences of these criminal
activities range from the simple defacement of websites to the destabilization of
the power grid and espionage. With everything connected to the Internet, all
facets of modern society can be targeted and hit by malicious actors.

The field of cyber security has risen in response to the cyber criminals. Just like
in the security field in the physical word, there are various forms of cyber security.
Instead of locks, guards, and walls, the tools of cyber security include encryption,
antivirus, and firewalls. These forms of security are all centered around the
individual target and its protection. However, fighting off all the threats alone is
not the only option; there is also security in numbers. The malicious actors do
not hide in the shadows and strike without warning. Their assets can be identified
and information about their attacks can be shared with others so the targets can
prepare in advance for the possible strike.

Sharing of cyber threat intelligence, or threat information, has become an
important part of cyber security. In the past this was done via improvised
channels such as emails and phone calls, but nowadays information is spread
via specialized cyber threat intelligence sharing platforms and other advanced
channels. Various nations and organisations such as NATO are investing into
cyber threat intelligence sharing [1]. This intelligence can be used in multiple
different ways including both passive and active applications. Communicating
threat intelligence to other parties creates a net benefit for the whole community.
For example, if a network of infected computers conduct a cyber attack against a
company, the victim of the attack can inform other companies and organisations
in the cyber threat intelligence sharing community of this new threat. This
gives the potential next targets time to patch their systems so that the same
exploits cannot be used against them and to block the IP addresses used in the
previous attack. Information about the cyber attack could also be forwarded to
the Internet providers used by these bot computers in order to cut off their access
and inform the owner of the computers that their assets have been infected.

Large quantities of low-level threat intelligence are readily available online, and
various cyber threat intelligence feeds generate new information constantly. By
using this information, cyber attacks can be detected and stopped before they
have time to cause more harm. Forms of active protection against cyber threats
include intrusion detection and prevention systems. Some of these systems require
rules which describe to the system what types of items are malicious. These
rules can be automatically generated from the information of different threat
intelligence feeds.

Threat intelligence sharing platforms can be used as a bridge to combine threat
intelligence feeds with intrusion detection and prevention systems. These sharing
platforms collect information from multiple sources and store it in one central
location. They are thus a gathering point for threat intelligence similar to how

books are collected together to form libraries. Where libraries make it possible to
search for information from a great number of books at once, threat intelligence
sharing platforms make it possible to access information from multiple threat
intelligence sources and to act on the information from all of those sources at
the same time. Therefore, adding a way to manipulate the data collected by
these platforms makes it possible to act on information gained from hundreds of
different feeds at once instead of having to go through them one by one.

Using multiple feeds as sources for the automatic rule generation comes with
several problems. One of these is overlap between feeds. If two or more feeds
happen to report the same source, the generator might produce multiple copies
of the same rule. This can be prevented by including some form of deduplication,
which ensures that multiple copies of the same rule are not created. Another
problem is presented by the fact that the intrusion detection and prevention
systems only have limited storage space for rules. While deduplication can help
alleviate this problem, there is a need for some form of logic in generating the
rules that serves to drop old and inactive entries which are no longer relevant.

The goal of this project was to create a new integration for the Arctic Node
threat intelligence sharing platform providing a new intrusion detection and
prevention system. The aim of the integration is to resolve the problems
associated with using multiple sources of information with large quantities of
data.

1.1. Cyber threat intelligence

A threat is the potential for violation of security when there is an entity or event
which could cause harm [2]. Cyber threats refer to threats related to computer
systems and information technology. The realization of a threat is called a threat
action, and the entity that performs this action is called a threat agent or actor
[2]. Both intentional and accidental threats exist. Intentional threats require an
intelligent threat actor, e.g. a hacker, who can intentionally cause harm, or in
other words attack a system. Accidental threats refer to cases where harm can
be caused unintentionally by human error, equipment failure, or an act of God.

Threats can cause harm by exploiting vulnerabilities of the target system.
Vulnerabilities are flaws in the design, operation, implementation and
management of a system [2]. As seen in Figure 1, risk is the probability of
a threat exploiting a vulnerability to cause a particular harmful event[2]. As
threats require vulnerabilities to cause harm, there is little or no risk for a system
to be harmed if it has no vulnerabilities, or alternatively if it has no potential
threats.

A threat can be seen as an integral whole that consists of three elements: intent,
capability, and opportunity [3]. Integral whole means that all three elements are
required for a threat to be viable. A threat with less than three elements is called
a potential threat. Intent is the goal or motivation behind the threat. Capability
is access to the resources and knowledge required to exploit the vulnerability.
Opportunity refers to access to the system or target that makes it possible for
the threat to carry out an attack.

Threat
Intention -
Capability 4 | Vulnerability

Opportunity

Risk

Figure 1. Threat and vulnerability together form the risk to a particular system.
Threat consists of three integral parts, intention, capability and opportunity.

Cyber threat intelligence is data on cyber threats which has been processed
or refined through some logical and analytical process to be relevant, actionable,
and valuable to the end user [4]. The processing of the data can be done by either
human or automated software.

Being relevant means that the intelligence has to relate to the one consuming it;
for example, the attacks could potentially target them. For the intelligence to be
actionable, there has to be a way to react to the data. One possible action for the
end user is the informed decision to not act on the data. Finally, the intelligence
must be valuable and have the capability to protect the business interests of the
company in some way.

1.1.1. Categories

Threat intelligence can be divided into different categories. The UK Centre for
the Protection of National Infrastructure divides intelligence into four categories
based on the consumer of the data: strategic, operational, tactical, and technical
[5]. These four categories can be split along two different axis, time and
complexity level, as seen in Table 1.

The time axis describes the timescale on which the information is useful and
should be consumed. Long-term threat intelligence yields benefit over time.
Short-term threat intelligence gives information on immediate threats, but it
also becomes outdated faster than long-term threat intelligence. For example,
if a company gets operational threat intelligence that they might get attacked
by hackers tomorrow, they must act today before the attack happens. After the
attack the next day the threat intelligence is no longer useful. On the other
hand, long-term tactical information on specific attack methodologies and tools
can prepare a cyber security team to be ready for attacks which might happen
within a year, and timing is no longer as crucial. However, the benefit of this
preparation is not as immediately apparent as with shorter term information.

The complexity level axis indicates how complex the intelligence is as well as on
what level and by whom it should be consumed. More complex intelligence should
be consumed by those higher in the organizational hierarchy, as the information
is more abstract and gives guidance on how how to act on a bigger scale. Less
complex intelligence is to be consumed by those lower in the hierarchy as it gives
them greater detail on how to act. For example, tactical intelligence on the type of
malware being used at the moment is not useful for the CEO of a company to help
make large scale decisions on how to adjust the cyber defence budget. However,

the incident response team can use the same intelligence to build defenses for
their systems against this particular malware.

Strategic threat intelligence is high-level information intended for the board
or other senior decision-makers. It can help them allocate resources for cyber
defence and make other high-level decisions which affect the company in long-
term. Strategic threat intelligence comes in the form of reports, briefings, and
conversations.

Operational threat intelligence is high-level information on near-future
cyber attacks against the organization. It is intended to be consumed by senior
cyber security staff. This can be information on what groups are planning to
attack the organization and details on their capabilities and infrastructure.

Tactical threat intelligence is low-level intelligence on attacker tactics,
techniques and procedures. It is intended for the defenders and incident
response teams. Tactical intelligence can be information on how new attacks
are conducted and how other organizations defend against those exploits. This
information is meant for long-term use and can be gathered from studying the
new vulnerabilities found by the cyber security community or by studying what
malicious actors are doing in the wild.

Technical threat intelligence (TTI) is low-level intelligence on threats such
as malicious IP addresses, URLs, and malware hashes, which are also called
indicators of compromise (I0C). Technical threat intelligence is intended to be
consumed by mechanical means, and the intelligence is only useful in the short
term. Technical threat intelligence is spread by various means such as cyber threat

intelligence feeds, and it is distributed in forms which are easy for machines to
read, such as JSON or CSV.

Table 1. Four threat intelligence categories defined by the UK Centre for the
Protection of National Infrastructure.

Name Description Level | Time

Strategic High-level Information on changing risk. High | Long-term

Operational | Details of a specific incoming attack. High | Short-term
Tactical Attacker methodologies, tools and tactics. | Low | Long-term
Technical | Indicators of specific malware. Low | Short-term

Technical threat intelligence is on the edge between intelligence and data.
While the UK Centre for the Protection of National Infrastructure does include
indicators of compromise as one category of threat intelligence, it can be argued
that they are not intelligence but rather just information on threats. It can
be argued that lists of indicators of compromise, malware hashes and such
lack the processing and analysis required to elevate them from information to
intelligence. This does not mean that the data is useless, merely that the
definition of intelligence in this context is somewhat strict. The ambiguity in
the categorization can be resolved by splitting technical threat intelligence into
the category of threat information, which is different from threat intelligence

6].

1.1.2. Indicators of Compromise

The two most common types of indicators of compromise are malware
indicators and network indicators [5]. Malware indicators are information
related to the malware used by attackers. Hashes of malware binaries are one
common type of shared indicators. These can be used to detect malicious files,
as all files with the matching hash are the same. Typical hash forms used by
the industry are MD5, SHA-1 and SHA-256. The names of malware files and
registry keys used by malware are another example of types of malware indicators.
Network indicators are information on different internet resources used to spread
and control malware. Common types of network indicators are IP addresses,
domain names, URLs, URIs, and network artifacts such as user agent.

Threat intelligence is used to combat the efforts of threat agents such as hackers.
In response to this, threat agents try to counter the efforts of the defenders by
changing the resources or procedures used. Attackers can make changes on their
end to render indicators of compromise obsolete [5]. Some indicators are harder
to change than others, as seen in Figure 2. Changing malware hash values is
trivial, as a change to any byte is enough to generate a new hash. Switching
IP addresses takes more effort, but an attacker with a botnet of thousands of
computers has a wide selection of addresses to use. On the other end of the
spectrum, it would be difficult for attackers to craft entirely new malware capable
of deceiving detailed intrusion detection system rules such as Yara. Similarly, if
tactical threat intelligence is used to thwart the attacker’s tactics, techniques,
and procedures, it would require more effort for the attacker to come up with
ways to attack the target system.

Easy Hard
| :>

Malware Domain Network
IP address)
hash name artifact

Figure 2. How difficult it is for attackers to change the indicator of compromise.

1.2. Cyber threat intelligence feed

A cyber threat intelligence feed (CTIF) is a source of threat intelligence or
information. These feeds are provided by various organizations and individuals,
and can be for profit or non-profit. Feeds can provide information of all different
threat intelligence categories. However, technical threat intelligence is the most
common, as it is relatively easy to collect compared to other categories. As
technical threat intelligence is best suited for automatic consumption, and it
has to be consumed within a short period of time, the steady stream of new
information from threat intelligence feeds is very suitable for this purpose. This
paper will mostly focus on feeds which provide technical threat intelligence.

Technical threat intelligence can be collected in various ways. Some feed
providers utilize honeypots to collect information on threat actors [7]. Honeypots
are systems which pose as a vulnerable service, e.g. a database which is accessible
via the Internet and vulnerable to an SQL injection. Another possible source
of information is malware analysis, where malware is analyzed in a sandbox
environment in order to find out how it works and what command-and-control
(C2) servers it tries to connect to [8]. A host of feeds work on a voluntary basis,
collecting reports submitted by individuals whenever they come across a malicious
site [9].

1.2.1. FEvent

The singular item of threat intelligence provided by a feed is called an event.
An event is a discrete time-bound activity in which an adversary uses their
capabilities and resources against a victim [10]. Several events are required for
adversities to achieve their goal.

Events can contain different kinds of information. Events provided by technical
threat intelligence feeds typically contain different indicators of compromise
such as IP addresses, domain names, and malware hashes. They may contain
additional information about these indicators, such as the owner of the domain
or what malware families the IP address is connected to. Events may also contain
information on the victim or the adversary behind the event. All events must
contain information on the time domain, when the event was observed, or, in
the case of persistent threats, when it was last observed online. This is because
technical threat intelligence is highly time sensitive.

1.2.2. Sharing

Threat intelligence feeds provide their events over the internet by various means.
These methods can range from simple text files uploaded to a server or spread
via email to elaborate web APIs. Open feeds which are free for anyone to use
tend to use relatively simple approaches, while commercial feeds might need to
use more complex approaches in order to make the information only accessible to
paying customers.

Multiple different standards, ontologies, and taxonomies exists for sharing
threat intelligence [11]. As feeds often report their findings using their own
notation instead of any of the established ones, they expand the set of different
notations used to describe threat intelligence. The variety of different forms of
notation pose a challenge in the field of cyber threat intelligence. They make the
automation of feed consumption more difficult, as the mapping between different
notations has to be done manually and there may be confusion about the exact
content of the events. Threat intelligence harmonization, normalization, and
consolidation are some of the challenges that cyber threat intelligence sharing
platforms aim to solve.

European Union Agency for Network and Information Security, ENISA,
conducted a study in 2014 to find out the different standards and tools used to
exchange and process threat intelligence [12]. In this study a total of 53 different
information sharing standards were found. These were broken down into seven
different categories as shown in Table 2. As the study was conducted in 2014, it
is reasonable to assume even more standards have been developed since then.

Table 2. The seven ENISA categories of information sharing and transportation
standards.

Name Found Description Example
in study

Formats for low- | 5 Unprocessed data collected by security | PCAP

level data monitoring systems.

Actionable 6 Indicators of compromise. Snort

observables rules

Enumerations 9 Standard which defines the meaning of | CVE

vocabulary used by security community.

Scoring and | 4 Frameworks for quantitative description of | CCSS

measurement threats.

frameworks

Reporting 10 Report structure for high-level details on | STIX

formats threats.

High level | 2 Process frameworks for exchanging security | CYBEX

frameworks information.

Transportation 17 Different methods to transport and serialize | email,

and serialization threat data. CSvV

1.3. Cyber threat intelligence sharing platform

A cyber threat intelligence sharing platform (TISP) is a service that organizations
can use to share and receive information on current cyber threats. These
platforms can gather threat intelligence from multiple different threat intelligence
feeds and unify the data into one common form. They may also process the data
further and add new information, such as automatically adding geolocation data
based on the IP address. In other words, threat intelligence sharing platforms help
organizations consume existing threat intelligence. Another term used for cyber
threat intelligence sharing platforms is threat intelligence management platforms,
which underlines the fact that the platforms are used not only to share, but also
control, direct, and organize threat intelligence.

NATO’s concept of Cyber Security Data Exchange and Collaboration
Infrastructure (CDXI) describes their view on cyber threat intelligence sharing
[1]. According to the concept, cyber threat intelligence sharing platforms have
three main objectives:

1. facilitation of information sharing

2. enabling automation

3. facilitation of the generation, refinement, and vetting of data

1.3.1. Challenges

Brown has identified eight main challenges cyber threat intelligence sharing
platforms need to overcome in order to support current cyber security practices
[6]. These high level requirements further break down the functionalities expected
from threat intelligence sharing platforms. This is not an exhaustive list of all
possible challenges which threat intelligence sharing platforms might need to
address. Conversely, a platform does not have to address all eight to be considered
a true threat intelligence platform. The challenges are:

1. diversity of intelligence sources
2. normalization and consolidation
3. enrichment

4. relevancy determination

5. complex analysis

6. production and delivery

7. integration

8. analytic management and collaboration

The diversity of intelligence sources is a problem when the various sources have
to be combined to serve as the input for a threat intelligence sharing platform.
Different sources use different standards and methods of sharing their information,
which means no single solution can work for every source. The information quality
differs from source to source, and metadata might get lost when information is
transported to different systems. One problem related to diversity is simply the
challenge of finding all the different sources available on the market.

The challenge of information normalization and consolidation arises from the
diversity between sources. Sources might use different names for the same values
(e.g. IP address, IP, target IP), which then have to be normalized into one format
for automatic consumption. If threat intelligence is written by hand, it might
contain spelling errors or different forms of spelling between authors. Sources
might lack a specific description of the sort of information they provide or change
the naming of the data, which can break automatic normalization. Consolidation
is the merging of data, which can then be deduplicated so that only a single copy
of each record is left. Consolidating data makes the information more concise,
which makes it easier to consume large quantities of information by making them
more dense.

Information gathered by threat intelligence sharing platforms can be further
enriched with external sources. This could mean fetching additional network
data related to different network indicators, adding geolocation data, or
providing external links for detailed information on various malware. Enrichment
can provide additional context to aid the consumption of the intelligence.
Integrating these additional enrichment sources is another challenge faced by
threat intelligence sharing platforms.

Users of threat intelligence sharing platforms may want to have a way to
determine the relevancy of the data. Determining relevancy can be based on
a multitude of different criteria such as the credibility of the information, the
severity of the potential risk, and the depth of collection.

Cyber threats are complex problems that require tools for complex analysis.
Threat intelligence management platforms are expected to provide tools for the
user to search through, filter, and visualize the collected information. These
complex tools can also help to facilitate a target-centric approach to threat
intelligence [13], where the intelligence collectors, analysts and customers work
together and communicate more freely across a network between all involved
parties. This approach is a step forward from the more traditional process,
where the intelligence life cycle starts from decision makers issuing a request
for intelligence to be collected, processed, and analyzed, after which they receive
the finished intelligence product. Traditionally, each phase of this cycle is isolated
from the others. In the modern day environment this sort of rigid analysis process
might not be enough to handle the complex cyber threats organizations face every
day.

Different threat intelligence categories have different consumers, from the
strategic intelligence consumed by high-level decision makers to the less complex
technical threat intelligence meant for incident response teams. Threat
intelligence sharing platforms need to be able to facilitate the production and
delivery of threat intelligence for all levels of consumers. Fulfilling this need
might require the ability for the platforms to automatically produce and deliver
time-sensitive intelligence to those who need it. This can be done via emails or
other communication channels.

Integration refers to the ability to integrate the threat intelligence sharing
platforms into other cyber security technologies, such as various intrusion
detection and prevention systems. This makes it possible to get the most benefit
out of the technical threat intelligence. The variety of interfaces between different
cyber security technologies requires flexibility from the platforms, which need to
be able to output various types of information in different formats.

Analytic management and collaboration refers to the threat intelligence process
of managing stakeholder needs, resources, tasks, work assignments and other
factors. Threat intelligence sharing platforms should facilitate the process
of governing threat intelligence analysis. Brown notes that these are often
overlooked parts of cyber intelligence technologies, and that they are key
components of a successful threat intelligence sharing platform.

1.4. Intrusion Detection and Prevention Systems

Intrusion is defined as deliberate attempts of causing harm to a system. The
goal of intrusion may be to gain access to data with no authorization, trying to
manipulate data with no authorization, or to disable the system [14]. The term
intrusion includes both attempted and successful cases of intrusions against the
target system.

Intrusion detection systems (IDS) are software designed to monitor computer
activity and detect possible cases of intrusion [14]. The monitored computer
activity can be anything, and there is a wide range of different intrusion detection
systems which attempt to find evidence of intrusions in various ways. Some
potential targets for monitoring are network traffic, files on the computer, and
system log files. Intrusion detection systems log their findings and raise an alert
if a positive case of intrusion is detected.

Intrusion prevention systems (IPS) are similar to intrusion detection systems,
but in addition to detecting intrusions, they try to actively prevent intrusions [14].
Intrusion detection system can be seen as the next step from intrusion detection
systems, but they are not a perfect replacement. Intrusion prevention can only
work in real time, so these systems are limited to a very immediate timescale,
while intrusion detection systems can be used to find evidence of past intrusions.
False positives of intrusion prevention systems can be more harmful than false
positives of intrusion detection systems, as they can disturb the normal usage of
the computer system.

Intrusion detection systems can be categorised in different ways. One way of
categorization is dividing them according to where they are deployed. Systems
that are deployed on the host computer to directly monitor activity are called
host based IDS (HIDS). Systems deployed on the network to monitor the traffic
between multiple computers are called network based IDS (NIDS). The wide
spread adoption of wireless internet connections has lead to the development
of wireless IDS (WIDS) [15], which specifically monitors intrusion attempts
over various wireless technologies and protocols, such as IEEE 802.11 b. These
categories are also applied to the intrusion prevention systems, i.e. host based
IPS (HIPS), network based IPS (NIPS), and wireless IPS (WIPS).

Examples of how network based systems and host based systems are deployed
are shown in Figure 3. Host based systems are installed on each host machine
and monitor the activity of that host. Network based systems, on the other hand,
monitor a network of multiple machines. Network based systems are relatively
easy to deploy and are independent of the platform of the host machine [14]. A
single network based system can monitor the traffic of multiple host machines
in a network. The effort to deploy network based intrusion detection systems
decreases as the number of host machines in the monitored network increases.

Host based systems are capable of securing the host machines and have access
to the clear text traffic as it is deciphered on the host machine [14]. This is
not possible with network based system, as traffic over the network is usually
encrypted. One of the drawbacks of host based systems is the additional strain
on the host machine’s resources.

IDS

-~

IDS

Figure 3. Example of the different deployment locations between HID and NID.
Host based detection systems monitor each host in the network separately, while
network based systems monitor the traffic between the network of connected
computers and the internet.

Wireless intrusion detection systems focus on protecting wireless networks
from intrusions. Wireless networks can be attacked in various ways, such as
masquerading as another wireless access point or jamming the radio frequency
[15]. To be able to detect these intrusion attempts, the detection system must be
deployed in such a way that it can monitor wireless network activity. One example
would be to deploy the system on a device with a wireless network sensor so that
it can monitor wireless network traffic [15].

Intrusion detection and prevention systems can also be divided into different
categories based on the method which they use to detect the intrusion. There are
three categories: anomaly recognition, misuse recognition, and stateful protocol
analysis [16]. Intrusion detection systems may also combine different detection
methods to form hybrid methods.

Misuse recognition systems try to detect intrusions by trying to match
traffic against signatures of known malicious activity [14]. Some examples of these
signatures are patterns of malicious software or addresses of known malicious
internet sites. Misuse recognition systems are also known as rule-based detection
systems, signature detection systems, or pattern matching systems.

Systems based on anomaly recognition create a profile based on the normal
traffic or system behaviour. These systems find out intrusions by first building a
baseline of what is normal activity, and then analysing ongoing activity in order to
find cases that differ from normal behaviour [16]. Aspects that may be monitored
include the number of connections or traffic to new sites, processor usage, and
whether a user has accessed files which they normally do not. The strength of
anomaly recognition systems is that they can react to new, previously unknown
threats. On the other hand, anomaly recognition systems have a higher rate of
false alarms than other detection methods.

Stateful protocol analysis, also known as specification-based detection,
tracks the state of protocols such as TCP. Intrusions are detected by monitoring
for cases where the state differs from the specification. This can be a useful way
to detect cases where a protocol is being exploited by using it in an unintended
way, but the method is incapable of detecting attacks which do not differ from
the normal use [16].

19

2. STATE OF THE ART

This section will look briefly into different intrusion detection and prevention
systems, as well as the two threat intelligence sharing platforms, MISP and
Arctic Node, which were used in the test. Five intrusion detection and prevention
systems were considered as candidates for the target system for the generator.
They were selected as candidates because all of them were open source and were
considered to be of interest at Arctic Security.

After evaluating all options Suricata was chosen as the system to be integrated
by the Arctic Security company. This is because Suricata is widely used, open
source, and easier to work with than the other candidates. It is described on
a more technical level than the rest of the intrusion detection and prevention
systems to clarify the capabilities and structure of Suricata rules.

Arctic Node is also described on a more technical level in order to understand
how Suricata can be integrated with the threat intelligence sharing platform. The
section describing Arctic Node and Hub has been vetted by Arctic Security in
order to make sure the level of detail in which the work is described is acceptable.

2.1. History of intrusion detection and prevention systems

First intrusion detection systems were developed in the 1980s by the U.S. Air
Force. The basis for the idea was a paper written in 1980 called Computer
Security Threat Monitoring and Surveillance [17], which described how audit
records could be used to identify computer misuse, and how statistical analysis
could be used to detect anomalies in user activity.

This theory was put into practice by a research team led by Dr. Dorothy
Denning, who developed a prototype intrusion detection system called the
intrusion detection expert system (IDES). Dr. Denning published a paper on
the real-time intrusion model [18] that described the system in more detail.

Intrusion detection systems continued to develop through the 1980s and 1990s.
U.S. Air Force continued to develop different systems, and commercial systems
such as the Net Stalker and Network Flight Recorder began to emerge in the
1990s [14]. The first few intrusion detection systems focused on analyzing audit
records for signs of intrusions. Subsequent systems soon shifted into monitoring
internet traffic as the internet grew more prominent. As the technology matured
towards the late 1990s, the first intrusion prevention systems were created.

2.2. Open source intrusion detection and prevention systems

Various commercial and open systems have been developed during the 30 year
history of intrusion detection systems and the 20 year history of intrusion
prevention systems. This section gives a brief review of the intrusion detection
and prevention systems which were considered to be used in this thesis.

Zeek is an open-source intrusion detection system designed to monitor network
traffic. Its development began in 1995 by Vern Paxson [19], and is nowadays

20

handled by a team of researchers at the International Computer Science Institute
in Berkeley [20]. Zeek was developed with seven goals: high speed, no packet
drops, real-time notification, mechanism separate from policy, extensibility,
avoiding simple mistakes, and the assumption that the monitor will be attacked
[19]. Zeek uses a versatile event-driven scripting language. Zeek is licensed under
a BSD licence. It was previously known as Bro, but the name was changed to
Zeek in 2018 [21].

Yara is a host based intrusion detection system which is designed to be used by
malware researchers to identify malware samples. Yara uses a misuse recognition
system as the detection method. It has its own rule language that can be used
to write patterns, which are then searched for in the scanned files [22]. The
rules consist of two logical parts, strings and conditions. Strings can be text,
binary, or regular expressions, and the condition part dictates how they should
be matched. For example, the string part could define three variables, $A, $B
and $C, and if matching one of them was enough to determine the file a match,
the condition part would read $A, $B or $C. The conditions can also refer to
other rules, enabling the creation of complex rules. A third, non-logical part of
the rule is called the meta, where it is possible to give additional information
about the the rule, such as the author of said rule.

Sigma is a host based intrusion detection system for log files and security
information and event management systems (SIEM). The first version of Sigma
was released in 2017, and the full version is not yet finished. Like Yara, Sigma
uses a misuse recognition system. The rule language used by Sigma has been
developed to be generic for all log events. For example, it can be used to create
rules for both Linux and Windows based system logs. The rule language is
supposed to be supplemented by a Sigma Converter, which could be used to
generate SIEM queries from the Sigma rules. As of 2019, this converter is still
under development. [23] Despite being a relatively new addition to the field,
Sigma has already caught some outside interest. For example, the MISP project
has support for sharing Sigma rules.

Snort is an intrusion detection system created by Martin Roesch in 1998 [24].
Snort was developed as a free, lightweight alternative to the commercial intrusion
detection systems of the day. Since then, Snort has grown in popularity, and is
now in wide use. Snort can be used to monitor, log, and drop traffic based on
rules. The language of these rules is complex, and offers a flexible tool to monitor
network traffic in various ways.

In 2001, Martin Roesch founded the Sourcefire company to develop Snort for
the commercial market [25]. Sourcefire was bought by Cisco Systems in 2013,
and is currently being developed by the Cisco Talos Intelligence group. Snort
is developed as a open-source project under the GLPv2 licence. Recently, the
developers of Snort have begun to develop a new version of Snort from the ground
up, called the Snort3 project [26]. It will boast new features such as multi-
threading, better cross platform support, and automatic generation of reference
documentation.

21

2.3. Suricata

Suricata is an intrusion detection and prevention system developed by Open
Information Security Foundation (OISF) as a open-source project licensed under
the GLPv2 license. Suricata has been in development since 2009 [27]. OISF is a
non-profit organization funded by the US department of Homeland Security and
various private companies in the OISF Consortium.

Suricata shares some similarities with Snort, as its rule system is an extended
version of the one used by Snort. However, unlike Snort, Suricata has been
developed from the beginning to support multiple threads. Over its development
Suricata has managed to surpass Snort in both single-threaded and multi-
threaded environments [28]. Suricata drops fewer packets than Snort in five out
of six different test cases, with Snort outperforming Suricata only when testing
the detection of fragmented package attacks. Suricata has higher utilization rates
of system memory and CPU power than Snort. Both Snort and Suricata work
better on Linux based machines than on Windows platforms.

Suricata splits the task of detecting alerts into four different thread-modules:

e Packet acquisition,
e Decode and stream application layer,
e Detection and

e Output.

The packet acquisition module reads packets from the network stream. The
decode and stream application layer module decodes the packets, constructs
them into a stream, and reads the application layer data from the packet. The
detection module is responsible for running the detection logic and matching the
packets to the rules given to Suricata. There are often multiple instances of
the detection module running to speed up the handling of packets. Finally, the
detection modules feed their results into the output module, which is responsible
for writing the results on disk. Figure 4 shows one possible way to configure a
Suricata instance. Three detection modules are running in parallel to speed up
the processing of the live network traffic. When monitoring faster networks it is
possible to add even more modules to keep up with the increased traffic.

Suricata comes with a rule download and management tool called Suricata-
update. This tool can be given new sources from which to download Suricata
rules. A new source can be added to Suricata-update by supplying the URL,
possible HT'TP headers, and user agent. Suricata-update has been written in
Python.

2.3.1. Suricata rule system

The structure of the rule system used by Snort and Suricata consists out of the
following parts:

22

Network
Traffic

Packet
acquisition

l

Decode &
stream app
layer

v v ¥

Detection Detection Detection
module module module

h

Output

Figure 4. Example of a possible Suricata thread-module configuration with three
detection thread-modules.

1. action

2. protocol

3. source

4. source port

5. direction

6. destination

7. destination port

8. options

Action dictates what to do when a match to the rule is found. Possible actions
include pass, drop, reject, and alert. Passing means no action is performed when a
match is found. Drop and reject actively block the package from getting through,
and in addition generate an alert message. Alert lets the package pass through,
but logs an alert for the system administrator to see.

Protocol dictates which types of packages are scanned by the rule. The
possible values include, for example, tcp, udp, ip, dns, http, ftp, and ssh. Protocols
may also have their protocol-specific options, which can help to create better rules.

Source and destination are used to configure the source and destination
of traffic. Their values can include either IP addresses or ranges, along
with wvariables. Some of the typical variables are $HOME NET and

23

$EXTERNAL NET. These variables can be configured in the Suricata
configuration file for better accuracy. Multiple IP addresses can be grouped
together, e.g. [1.2.3.4/16, 5.6.7.8].

Direction is used to configure the direction of traffic between the source and
destination. The possible symbols are -> and <>. The former (->) is used to
denote traffic from one end to the other, but not the other way around. The
latter (<>) is used to denote traffic passing in any direction between the two
ends.

Source port and destination port are used to set monitoring for traffic from
specific ports. More than one port can be monitored by using ranges ([80:90],
[80:]), grouping ([80, 85, 90]), or negation (!80).

Options are listed at the end of the rule, enclosed by parentheses and separated
by semicolons. Options can be either keywords, e.g. http header, or key-value
pairs ,e.g. content:"google’. Some of the keywords are protocol specific, for
example the http header keyword can be used in rules where the protocol is
http to guide the content search to the content of http header. The msg keyword
can be used to log additional information when the rule is triggered, e.g. msg: "this
connection originated from a known malicious host". Rules also typically contain
a signature ID, which can be used to identify each rule. This is usually added as
the last or second-to-last option in a rule. The keyword of a signature ID is sid,
which is the unique Suricata ID value of the rule.

For example, let us assume that the IP address 1.2.3.4 is known to be a C2
server, and we wish to block any access to it from our home network. The
following rule could be crafted to achieve this:

e drop ip SHOME_ NET any -> 1.2.3.4 any (msg:"'Block access to a known
C2 server"; sid: 1000000)

This rule would drop all packages originating from the home network to the
IP address 1.2.3.4, as well as raise an alarm with the message "Block access to a
known C2 server”, which would alert the system administrator. Note that traffic
flowing in the opposite direction, from 1.2.3.4 to the home network, is permitted
by this rule.

2.4. Threat Intelligence Sharing Platforms

Cyber security professionals agree that threat intelligence sharing is beneficial for
organizations [29]. It can help organizations to be more aware of their security
breaches and help them to increase their resilience against cyber threats. Setting
up the infrastructure required for threat intelligence sharing is expensive upfront
but is generally seen to bring down the security costs in the long term. On the
other hand, inconsistent terminology, varying quality of data, and redundancy
are seen as the main problems of threat intelligence sharing. The lack of training
on how to utilize threat intelligence is also seen as a problem in the field by cyber
security professionals.

A study was conducted in 2016 [30] where a workshop of cyber security experts
evaluated the at the time cutting edge of threat intelligence sharing platforms.

24

They identified and analyzed 22 different threat intelligence sharing platforms on
the current market. These platforms were split into four types:

e sharing of threat intelligence,

e sharing aggregated data,

e security information repository and
e other.

The study had eight key findings. First of all, no common definition was found for
threat intelligence sharing platforms. While some platforms focused on sharing
threat intelligence between different organizations, others focused on collecting
and sharing automated information from various threat intelligence feeds. The
majority of platforms seemed to focus on collecting and sharing indicators of
compromise, while analysis was given less importance. STIX was the de-facto
standard used to describe threat intelligence. From the results of this study it
appears only some of the challenges described by Brown [6] are answered by
current threat intelligence sharing platforms.

The different threat intelligence sharing platforms answer different needs in
the market. There is a need for sharing indicators of compromise and new
rules for intrusion detection and prevention systems in the market, and the
information is readily available in the Internet. This might explain why several
threat intelligence sharing platforms focus mostly on sharing this type of low-
level information rather than well analyzed threat intelligence. Such intelligence
is simply more difficult to generate. In the strict sense, these sort of platforms
are not sharing threat intelligence, yet they are identified as threat intelligence
sharing platforms. From this it is evident that the term threat intelligence sharing
platform is being used in a rather loose sense by the community.

2.5. MISP

MISP (Malware Information Sharing Project) is an open source threat intelligence
platform. It is used for storing, sharing, and working with indicators of
compromise. Christophe Vandeplas started MISP (first called CyDefSIG - Cyber
Defence Signatures, later changed to MISP) as his personal project back in 2011,
and it soon came to be used by his employer, the Belgian Defence. In 2012,
the project caught the attention of NATO, who hired more developers to help
Vandeplas with MISP [31]. As of 2019, the MISP project is being funded by
CIRCL, Computer Incident Response Center Luxembourg, and the EU [32].
MISP has support for 57 open feeds (full list in appendices) and provides
rudimentary tools for integrating additional feeds which can be fetched with a
simple HTTP request. MISP is capable of consuming feeds in either CSV or
MISP format. Feeds that consist of plain text can be consumed by utilizing
regular expressions. These custom feeds can be given headers, and they have
support for basic access authentication. Events can be exported from MISP

25

in various different formats. These formats include Snort, Suricata, Bro, CSV,
OpenlOC, JSON, MISP XML, STIX and plain text.

MISP has automatic correlation to detect overlapping data between different
events. These events can be visualized with an event graph, which shows the
relationships in graphical form. MISP also facilitates the collaborative sharing
and analysis of threat intelligence. Intelligence can be shared via different
channels such as emails or the MISP API, and different MISP instances can
communicate with each other.

2.6. Arctic Hub and Node

Arctic Hub is a commercial closed source threat intelligence sharing platform
developed by Arctic Security. It was launched in 2018, and is based on the
earlier AbuseSA product by the same company [33]. Hub is complemented by
another product by Arctic Security, Arctic Node [34]. The products share parts of
their code base and functionalities, and are intended to work together as a cyber
defence cell [35]. These cells consist of organizations from the same interest group,
including both threat intelligence providers and consumers. Each cell consists of
multiple consumers centered around one threat intelligence producer. Each cell
works together to share threat intelligence bidirectionally and strengthen their
cyber defence. Cells can also form a larger network of multiple cyber defence
cells.

Arctic Hub has been developed as a platform to be used by the cyber
defence cell’s threat intelligence provider. It has the capability to collect threat
intelligence from multiple sources, enrich it with new external data, analyze the
results, and share it onwards. Arctic Node has been developed to serve as the
main platform for the consumers in the cyber defence cell. With Node, they can
receive threat intelligence from the central Hub and integrate the information into
their attached cyber security solutions such as intrusion detection and prevention
systems. Both Arctic Hub and Node are threat intelligence sharing platforms,
but they do not share all the same responsibilities and capabilities. Using
both platforms together in a cyber defence cell brings together all the different
functionalities that are expected from threat intelligence sharing platforms. An
example of a cyber defence cell formed out of one Arctic Hub and two Arctic
Nodes is depicted in Figure 5.

2.6.1. Structure and Features

Arctic Hub and Node consist of two parts, backend and frontend. Both platforms
work as a typical web service. They can be deployed on an on-premise or cloud
server that meets the hardware requirements. A deployed system can be accessed
via a graphical user interface (GUI) on a web browser. The frontend provides
the GUI and has the capability of visually depicting the stored data in various
different ways. It is also used to configure the system. The backend manages

26

SIEM IDPS

Ticketing
System

Sensors

Figure 5. A cyber defence cell which consists out of a single Hub and two Nodes.
The Hub fetches new threat intelligence from various feeds, which it shares with
the two Nodes. The Nodes move the threat intelligence over to the various security
systems, as well as give feedback back to the Hub.

the rest of the systems running on the server. The main parts, i.e. modules, of
backend are:

e configurations,
e authentication,
o feeds,

e labeling,

e storage,

e sharing,

e analytics and

e integrations.

The frontend interacts mainly with the backend via configurations,
authentication and storage. Configurations stores the configurations of other
parts of the backend, such as feed and integrations configurations. Configurations
can be changed via the graphical user interface. The frontend also interacts with
the Authentication module, as it authenticates all connections which originate
from the outside.

Feeds handles the different feed integrations of Arctic Hub and Node. They
both have support for over a hundred different public, restricted, and commercial

27

feeds [33]. These feed integrations are actively maintained to keep up with
possible changes to the data or delivery methods. Data gathered from various
feeds is harmonized according to data harmonization ontology, which has been
developed in collaboration between CERT-EU, CERT-AT, CERT-FI, CERT.PT
and Arctic Security [36]. The goal of data harmonization is consistency across all
sources. The data harmonization ontology allows using keywords outside of the
core language. It does not define the limited set of keywords allowed to be used
in harmonization.

Information gathered from the various feeds is enriched with additional data
such as the geographical location of the IP address and DNS records of the
domain. Events are also given additional metadata such as information that
helps to track the source, when the event was created, and a human readable
description. Finally, the events can be enriched with user specified information.
Users of Arctic Hub and Node can use the labeling to add additional data to the
events if the event matches a filter written by the user. Once events have been
fetched, parsed, harmonized, augmented (the term for enrichment used by Arctic
Security), and labeled, they are saved to storage, which is a MongoDB database.
Other parts of the system can then retrieve the events from this database. Events
are fetched from storage using Arctic Node rule language. The rule language can
be used, for example, to fetch events from the same country.

The following public feeds and feeders are supported by Arctic Hub and Node:

e Abuse.ch,

Bambenek Consulting feeds,

Brute Force Blocker,

Malware Domain List,

VxVault,
e Zone-h and
e Phishtank.

The rest of the feeds supported by Arctic Hub and Node are either commercial
or restricted to certain customers. These feeds are not listed here.

As the central point of a cyber defence cell, Arctic Hub is intended to be
used by organizations which monitor the cyber security of their stakeholders.
One of the main features of Arctic Hub is improving the situational awareness
by automatically mapping indicators of compromise against the assets of the
stakeholders. The Hub user can add the different IP ranges and domains used
by their stakeholders to the Hub. When Arctic Hub receives new events with IP
addresses of domain names belonging to the stakeholder, it can automatically
notify them via email, API, or Arctic Node if they are using it. This way
stakeholders receive actionable threat intelligence which is relevant to their usage,
i.e. indicators of compromise which are directly related to their assets. The
mapping of assets is done by labeling, and sharing takes care of delivering the
information to the customers.

28

Analytics calculates various different metrics from the stored data, such as
how many events have been recorded per day. Users can define filters for what
events should be included in the analysis. For example, users may wish to show
events from certain countries or only C2 infrastructure. These metrics can be
visualized in various forms such as lists or bar charts. Metrics can be grouped
together on one page to form a dashboard. An example of the dashboard view
on Arctic Node can be seen in Figure 6.

¥ NODE A Frontpage 22 pashboard © Configuration 8 system 2 teemu

+ Sensorobservations } ervation Web proxy observatio 1S observation: T/Admin ticket: ncident response ticke + Add widget

@ sensor observations ©4days @ G # X © Observations by connection type © 24hours # X @ Known malware c&c locations © 24hours /X

Denmagk
United
‘wkingdom Belarus

LS ey "
e te 9yt

W ip address matches
m derived rule matches
 domain name matches -

e 30 titia,
N g Guata Ronfnia

- Spgin l’“{ b

muotet M Tt = e

Tunisia * Syia

nymaim
Irq

i Tran
r~ . J © Mapbox © OpenSeethap Improve this map

@ Ccommunication with blacklisted addresses and resolutions of blacklisted domain names. @ Sensor observations over time Qadays B B 4 X

300

[vawtrak | ' derived rule matches

unique ips

[awtrak cae Con m domain name matches
[Lavra] cac W ip address matches
[pizd cac

 banjori | simaa

Connection v
2019-10-15 1200 2019-10-16 1200 20191017 1200 2019-10-18 12:00

Connect; N
observation time

Connection with blacklistg,

Figure 6. Arctic Node dashboard. TP addresses have been blurred due to privacy

reasons.

4 ARCTIC NODE N

Send data Cyber

Storage Integration Security

Receive data Solution

- /

Figure 7. Arctic Node’s integration module works as the interface between Node
and different cyber security solutions. Information can flow both ways, with the
module working as the translator between different data forms.

Arctic Node can be integrated with various cyber security solutions. These
solutions include intrusion detection and prevention systems, SIEMs, ticketing
systems and network sensors. These integrations are handled by the integrations
module. Integrations are configured through the Arctic Node GUI. Arctic Node

29

can communicate with integrated systems over the internet in both directions,
either by automatically sending new information to the integrated system, or
fetching information from the integrated system. The exact details can differ
between integrations. Figure 7 depicts how the integration module acts as
the interface between Arctic Node and different cyber security solutions. The
integration module turns the events stored in the database into a form that
is suitable for the cyber security solutions and vice versa. Each Arctic Node
integration runs as a separate process. This means that one Arctic Node instance
can have multiple copies of the same integration running at the same time.

30

3. METHODOLOGY

A key functionality of threat intelligence sharing platforms is their integration
with other existing cyber threat security applications. This allows threat
intelligence to be automatically consumed by various means without the need
for human interaction.

In this project, a new integration between the Arctic Node threat intelligence
sharing platform and the Suricata intrusion detection and prevention system was
created. This integration is called the Suricata rule generator. The goals
of this integration were to turn threat intelligence stored in Arctic Node into
Suricata rules and to serve them in such a way that they can be downloaded
automatically by Suricata. It should also be possible to control which feeds are
turned into Suricata rules, and the size of the generated rule set should be kept
small enough for Suricata to handle.

As different feeds collect threat intelligence individually, their findings might
contain overlapping data. This overlap might be useful for a researcher to notice
relatively active pieces of criminal infrastructure, but with automatic generation
of intrusion detection or prevention rules, this might lead to multiple copies of
the same rule. These redundant rules take up space and computational power,
as the system has to check the same rule multiple times during runtime. The
Suricata rule generator was developed with this issue in mind, and will not
produce redundant copies of rules.

The performance of the submodule is measured by testing it against a similar
feature in MISP. Both MISP and the submodule are run through a similar test
setup, after which their results are compared. First, both a MISP instance and
a Hub instance are used to fetch same feeds. This threat intelligence is exported
from both of the instances as Suricata rules. These Suricata rule sets are tested
in a test setup with two virtual machines, one of which runs an instance of
Suricata. The other machine is used to create internet traffic between these two
machines that the Suricata instance monitors. This setup is used to measure the
performance of the different rule sets.

3.1. Suricata rule generation

Any traffic or contact attempt between the host machine and the C2 server can
be deemed as malicious, and should raise an alert. They might be a sign that
the host machine has been compromised, or that the user of that machine has
accessed a malicious site. The events collected by Arctic Security Node have three
network indicators which can be used to determine network traffic: IP address,
URL, and domain name. These indicators are used by the Suricata rule generator
to create the Suricata rules.

All Suricata rules have to be numbered with a sid, Suricata identity number.
The number range starts from 1, with the range from 1000000 to 1999999 reserved
for custom sids. Other sid ranges before the custom sid range have been reserved
for different vendors and threat intelligence feeds. The rule generator starts the
numbering of rules from sid 1000000. This means that two sets of rules created

31

by the module start from the same number. To avoid errors with identical sids,
new rulesets should be used to replace the old ruleset rather than using them
simultaneously.

The rule generator can be given a list of threat intelligence feeds it uses to
download events and turn them into Suricata rules. The Suricata rule generator
removes any duplicate indicators of compromise it sees in the input data. Only
unique URLs, domains, and IP addresses are used to generate rules. This saves
space and memory, as there are no redundant Suricata rules in the output.

The Suricata rule generator can be integrated with Suricata by supplying
the URL of the web API to the Suricata-update tool. This way Suricata will
automatically download the new rules from Arctic Node. The rules are served as
a simple text file, with one rule per line.

3.1.1. The structure of the generator

The Suricata rule generator is a new integration added to the integration module
of Arctic Node. The generator consists of two parts: a worker thread which
generates the Suricata rule list, and an API which serves the rule list. The
worker thread creates the rules periodically, and saves them into a text file. The
API reads and returns this file whenever it is called with a GET request.

The reason for creating rules periodically was improving the performance and
speed of the submodule. The alternative for the periodic generation of rules would
be to create the rules on demand. This would lower the constant computational
demand at the cost of increased time required to fetch the new rules, as the
process of creating rules can take a few minutes. In addition, generating the rules
on demand could open a possibility to abuse the submodule by requesting rule
creation multiple times.

The time period between generating new rules was chosen as 15 minutes. This
is because the feed module of Arctic Hub and Node fetches most feeds on an
hourly basis, and due to the short lived nature of technical threat intelligence it
should be utilized in a timely manner. The processing of new events can take
varying lengths of time depending on the exact size and nature of the feed. The
process may also be delayed due to network or other external errors. Therefore,
it is not possibly to pinpoint a set time each hour when the new events are ready.
As new events are coming in roughly on a hourly basis, it is sensible to utilize
them within the hour. Creating rules from the most recent data several times
an hour ensures that when the new events get processed, they are available for
use as soon as possible. As a result, 15 minutes was chosen as the most efficient
time period. This choice is not a final one, and the period can be adjusted to be
longer or shorter.

The rule generation consists of the following steps:

1. Fetch the events of a feed from Arctic Node.
2. Create a bucket for the events.

3. For each event, extract indicators from it, and add them to the bucket.

32

4. Repeat this process for each feed.

5. When all feeds are done, create a new master bucket.

6. Add all the indicators from the feed buckets to the master bucket.
7. Create Suricata rules from the indicators in the master bucket.

8. Write the Suricata rules into a file on the disk.

!

Events

|

Extract indicators
from each event
(IF, URL, domain)

Indicator is in

the bucket Yes—» Discard indicator

Mo
) Remove oldest
Buckst s ful Yes— indicator from bucket
Mo

v

Insert indicator to the
bucket

Figure 8. Steps 1-4 of rule generation. The submodule extracts indicators from
each feed, and places them into feed specific buckets.

33

Bucket Bucket Bucket

Indicator in

master bucket Yesw Discard indicator

Remove oldest
Y indicator from
master bucket

Master bucket
is full

Mo

¥

Insert indicator to
master bucket

Y

4

Create Suricata rules
from indicators

h 4

Save rules on disk

Figure 9. Steps 5-8 of rule generation. Buckets are combined into a master
bucket, and the indicators are deduplicated. Finally, Suricata rules are generated
and saved on disk.

A bucket is a set of unique values with a maximum size. They work on a first
in, first out principle. This means that when a new value is added to a full bucket,
the oldest value is discarded. The master bucket is set to have maximum size
equal to the number of feeds times the maximum size of buckets. Therefore, it
can hold all the values from the other buckets. The maximum size for buckets was
chosen to be 100000, but the size is not final. If and when the Suricata generator
is tested and used more extensively, the bucket size can be adjusted as needed.

The reason for using buckets with limited size is the fact that feeds constantly
produce new events, and Arctic Node stores vast amounts of threat intelligence.
There has be a limiting factor for how many events are being used to create the
rules. Otherwise, the rule generator would create more rules than Suricata can
handle. One possible solution would be to limit the events to a specific time
range, but even that would not be enough to ensure that the number of events

34

does not exceed Suricata’s limits. This could be the case if the number of events
in the given time range were to be larger than expected. The only way to ensure
that the size of the ruleset does not exceed the capabilities of Suricata is to put
a hard limit on the number of rules created.

Figure 8 depicts the first three steps of the process the submodule uses to turn
feed data into Suricata rules. These three steps are performed separately for
each feed. Once all events from each feed have been processed into their own
buckets, a master bucket is created. The indicators from all of the other buckets
are combined in it, as depicted in Figure 9.

3.1.2. IP rules

The creation of rules for detecting traffic to malicious IP addresses is quite
straightforward. Alert should be raised whenever there is any traffic between
the home network and any known malicious IP addresses. The rule works both
ways, and will raise an alert for connections which originate either from the home
network or from the IP address. Events often also include the ports used in
malicious activity. These are opted out from the IP rules, as traffic from any port
to the suspected IP address should be a reason for caution.

The rule generator submodule uses the following template to craft rules to
monitor traffic based on the IP address:

e alert ip SHOME_NET any <> IP any (‘msg: '"Malicious IP (IP)"’;
sid:1000000;)

Note that IP is a placeholder for the actual IP address.

3.1.3. URL rules

URLs can be used to create two types of rules: HTTP rules and DNS rules.
HTTP rules monitor HT'TP traffic, while DNS rules monitor DNS requests. Both
of them should be monitored separately, as DNS lookups can be done without
HTTP requests. The generator extracts domains from URLs to create the DNS
rules. If the URL contains a specific port, that port is left out from the rule
creation. Any connections from any port to that URL are considered to be
malicious, and the rules should catch them regardless of the port used.

The following templates are used by the rule generator submodule to craft the
suitable rules to monitor DNS and HTTP traffic. Note that example.net is used
as a placeholder for the real URL.

e alert http $HOME_NET any -> S$EXTERNAL_NET any (msg:
"Malicious URL"; content: www.example.net; http header; content:
' /evil /malware.exe"; http_ uri; sid:1000000;)

e ’alert dns SHOME_ NET any -> $SEXTERNAL_ NET any (msg: "Malicious
DNS query"; dns_query; content: www.example.net; sid:1000000;)’

35

The HTTP rule matches both the domain and the uri of the URL. This
is needed because malicious software might be uploaded and distributed from
legitimate domains.

Suricata-rules Integration active L JECHRS

Suricata Converter (api)

Configuration

Mame

Suricata-rules

=7 Regenerate API Key

Data Selection

Include from data source Exclude from data source
feed=vxvault (-] Mo items added
feed=phishtank (]

[| Delete Integration

Figure 10. The graphical user interface of Suricata rule generator. API URL and
API key can be used to retrieve the data. Used data sources can be added via
data selection.

3.1.4. User interface of the generator

Suricata generator is a new integration on the integration module of Arctic Node.
Like any Arctic Node integration, is has a user interface which can be accessed via
the frontend. The interface is shown in Figure 10. The frontend automatically

36

generates the graphical interface based on the code written for the interface in
the backend. This is an existing feature of the frontend, and was not developed
as part of this work. Multiple instances of the Suricata rule generator can be
active at once.

The interface consists out of four parts:

e name,
e API URL,

e API key and
e sources.

Name is used to give the interface an identifiable name on the frontend. All
interfaces are shown in a list, and the text written in the name field is displayed
in that list. This can be used to distinguish multiple Suricata rule converters
from each other.

API URL and API key are used to retrieve data from the integration.
The text contained in these fields can be copied to clipboard by pressing the
buttons next to the fields. The rules can be accessed via the API URL. API key
must be added to the URL as a URL variable. The regenerate API key button
underneath can be used to generate a new API key, which makes the old API
key obsolete. Arctic Node and Suricata can be integrated together by giving the
API URL to Suricata-update, which then downloads the rules from Node. Note
that authentication and web access were not developed as part of this project.

The left column under Data Selection is used to add new feeds as sources for
the integration. Feeds are selected by writing the correct name of the feed in the
text field. Arctic Node users will be able to find the feeds available to them from
other parts of the frontend. The text field accepts Arctic Security rule language
filters. Events are fetched from the storage based on the filter. Sources can be
removed from the selection by pressing the red button next to them.

Other parts of the interface include the slider in the upper left corner, which
can be used to quickly disable and activate the interface. The status next to the
slider indicates whether the integration is active or not. The cross next to the
slider can be used to close the interface window. The right column under Data
Selection, Exclude from data sources, is part of the default interface and is not
utilized by this integration. It could be used later when the interface is developed
further to add specialized rules to exclude parts of the input data used by the
generator. All changes to the integration must be confirmed with the button in
the lower right corner. The button next to it can be used to discard changes.
The interface can be deleted with the button in the lower left corner.

37

4. CASE STUDIES

Tests were conducted to see how well the new Arctic Node submodule works
compared with a similar functionality in another modern threat intelligence
sharing platform, in this case the MISP. The tests measured how well the
deduplication feature of Arctic Node works with real data, as well as how
successfully the two different threat intelligence sharing platforms turn indicators
of compromise from the same threat intelligence feeds into working Suricata rules.
For the test setup a virtual environment was created in order to simulate real
malicious traffic between two computers, and a Suricata instance was set up to
monitor the traffic between these machines.

Intrusion detection and prevention systems are only as useful as their capability
to detect and prevent intrusions. One goal of the test setup is to observe how
successfully the rule sets generated by MISP and Arctic Node detect possible
intrusion attempts. Testing the detection capabilities of intrusion detection
and prevention systems against real threats is complicated. These tests try to
approach reality from the base assumption that indicators from threat intelligence
feeds are dangerous, and traffic to and from those indicators should raise an alert.
The detection capability is measured by how much of the malicious traffic from the
original input data is stopped or detected, and how much of it goes by undetected.

One of the features of the Suricata rule generator is the capability to deduplicate
the indicators of compromise. In theory, it is easy to prove how the deduplication
function works by creating a set of repeated indicators, and using that set to create
the Suricata rules. However, while such a test would prove that the deduplication
works, it would not provide information on how useful its presence is. By testing
the deduplication function against real indicators of compromise produced by real
threat intelligence feeds it is possible to see how useful deduplication could be in
actual use.

4.1. The test setup

The test setup is as follows: Arctic Node and MISP are used to fetch the events
from same threat intelligence feeds, and the data is output as Suricata rules.
This generates two sets of rules: MISP Suricata rules and Arctic Node Suricata
rules. In addition, indicators of compromise from the same feeds are manually
downloaded and used to craft a test data set which can be used to simulate
malicious traffic. The manually downloaded data set is used to create fake traffic
in a virtual network between two machines. One of the machines is running an
instance of Suricata loaded with different Suricata rulesets generated with the
Arctic Node and MISP. The performance of these rulesets is then measured and
compared.

The test was conducted using real technical threat intelligence provided by
seven different threat intelligence feeds. Real sources were used because the goal
of the test was to see how well the new submodule works with real data. Accessing
real, possibly malicious sites is dangerous. The test machine could get infected
with malware, the malicious actors could be alerted to the fact someone has tried

38

to access the site, or someone monitoring access to that site could take a note of
the attempted connection. Extreme caution was exercised to make sure that no
such connection was ever made over the internet. For this reason, the test traffic
was contained in a virtual network between two virtual machines. The virtual
machines and network were set up in such a way that all test traffic would seem
real for the Suricata instance used in the tests. Therefore, Suricata behaved the
same way during these tests with the test traffic as it would behave in real life
with real traffic.

The test setup is presented in Figure 12. Two Ubuntu virtual machines were
used in the test, virtual machine 1 and virtual machine 2. These machines were
connected via a virtual network, and both of the machines had another separate
virtual connection to the host machine. The host machine was MacBook Pro
2015 with 3,1 GHz Intel core i7 with 16GB DDR3 memory. Both Ubuntu virtual
machines were given base memory of 8062MB and one processor core. The
test machines were first connected to the internet to download all the necessary
libraries and programs needed for the tests, after which they were separated from
the internet. The rest of the files were transferred to the virtual machines over
their connection to the host machine. For an additional layer of safety, the host
machine was also cut off from internet during the tests to make it impossible
for any connections to be established over the internet to any malicious sites by
accident.

Virtual machine 1 is the simulation of the victim’s machine, which tries to
establish a connection to a known malicious host. The machine also has a
Suricata instance running on it to monitor potentially malicious traffic. The
main configurations of the Suricata are listed in Table 3. During the tests the
instance is loaded with the two different sets of rules, the set of rules generated
with MISP and the set generated by the Node submodule. These two sets will
be referred to as the MISP rule set and Node rule set.

Table 3. Suricata configurations on machine 1. The IP addresses are the IPs of
machine 1

Configuration Value
$HOME NET [192.168.1.1, 2001:db8:bad:a55::1]
$EXTERNAL_NET | I$SHOME_NET

Virtual machine 1 was configured to send IP packages via virtual machine 2.
A sequence diagram of sending a GET request to IP address 192.0.2.10 can be
seen in Figure 11. NGINX on virtual machine 2 was configured to send all TP
packages to a dummy server running on the same machine, and a netfilter rule
on virtual machine 2 redirected all traffic back to the virtual network between
the machines. The end result of this was that it was possible to connect to any
IP address from virtual machine 1, but all connections went to the dummy server
on virtual machine 2. From the point of view of virtual machine 1 the packages
were sent to the original IP address, and responses were sent from the same IP
address. This way the Suricata instance running on virtual machine 1 could work
with real data and rules generated from that data.

39

Testtraffic

generator ‘NGINX :Gunicorn Server

+ GET http:/192.0.2.10

GET http://192.0.2.10

{"response": "dijny server"}

e St R i

Figure 11. A sequence diagram of sending a GET request from virtual machine
1 to a IP address during test. The IP package is rerouted to virtual machine 2.
NGINX reroutes the package to the dummy server.

Malicious traffic was simulated by trying to connect to known malicious URLSs
and IP addresses with machine 1. The connection was redirected to machine 2
with a dummy server running on it. Malicious connections were simulated by
sending a simple GET request to the URL or IP address. This simulates cases
where a malware on a host machine tries to connect back to the command and
control server or when a user opens a known phishing link. This test does not
simulate every possible way of creating malicious traffic, but the traffic generated
by these tests should be enough to test the different sets of rules and to see how
they perform in use.

The test connections were done by a test traffic generator program. The
program was written in Python 3 and could be given commands as command line
inputs. It could be instructed to run test connections, where it tried to connect
to the dummy server using all the different connection methods used during the
test. To generate the test traffic the program was given a file which listed all
the URLs and IP addresses. It then tried to connect to each of the indicators of
compromise one by one. The program expected to get the default response from
the dummy server on virtual machine 2. If the connection failed or the response
was different from the one expected, the connection was marked as a failure.
During the test the generator printed the current progress so the length of the
test could be estimated. If connection could not be established, the generator
wrote the error into output. The full output during the tests was saved on disk.

As the input data from feeds used by the test traffic generator was somewhat
lacking, it tried several different fixes during testing if connection could not be
established. The program tried to add missing schemas and top-level domains to
URLs. The missing schema was fixed to HT'TP, and the missing top-level domain
was fixed to use .net. For example, example would become hitp://example.net.
For IP addresses, top level domain was not added as it is not needed. Some of
the indicators had port 443 as part of their URL, e.g. example.net:443. In these
cases, the the schema was changed to HTTPS, e.g. https://example.net:443.

40

The test traffic generator program had two modes: normal mode, which runs
the test and generates the traffic, and test mode, which was used to make sure
that the connection between the virtual machines worked before conducting the
actual tests. The test mode tested the connection with six different URLs, which
cover the range of possible indicators of compromise: connection to an IPv4
address over HI'TP and HTTPs, connection to an IPv6 address over HI'TP and
HTTPs, and connection to a domain over HT'TP and HTTPs. These tests were
required, as often one of these test cases did not work, which required restarting
and resetting different parts of the test setup.

Ubuntu Virtual Machine 1 Ubuntu Virtual Machine 2

Test traffic generator DNSChef

 virtual netw ork .
- - »
Suricata connection NGINX

Dummy Server

Figure 12. Test machine setup. Two virtual machines were used in the test.
Machine 1 generated the malicious traffic, which was to be detected by the
Suricata instance. Machine 2 worked as the DNS server and endpoint for the
malicious traffic.

Virtual machine 2 had two different tasks: to work as the DNS server and to
host the dummy server to respond to the requests of virtual machine 1. The
DNS server was set up with DNSChef v 0.4 [37]. The server was set up to
always respond with the IPv4 or IPv6 address of virtual machine 2. This way, all
requests to malicious URLs would be directed to the dummy server running on
virtual machine 2. A sequence diagram for connecting to a malicious file can be
seen in Figure 13. First, virtual machine 1 asks the DNS server for the IP address
of example.net. The DNSChef responds with the IP address of virtual machine
2. Virtual machine 1 then sends the GET request to the same IP address, which
is rerouted to the dummy server via the NGINX.

The dummy server was written in python 3 using the Falcon and Gunicorn
libraries. It was configured to respond to all GET requests to any URI located
on the domain with a static JSON message response’: ‘dummy server’. The test
traffic generator program checked the responses for this message to make sure the
connection worked properly. This is enough to fulfill the minimum requirements
for establishing a connection to a server, which will trigger the Suricata rules
monitoring for traffic between two machines. The server was able to respond to

41

‘Testtraffic

generator ‘DNS chef NGINX :Gunicorn Server

http://example.net/evi/malw are.exe

1
1
1
L 1

return 192.168.1.2

GET http://192.168.1.2/evillmalw are.exe _

|

GET http:{” 92.168.1 .2levilln'elw are.exe

{"reéponse": "dummy servér"}

P— o ey SI— .
Figure 13. A sequence diagram of sending a GET request to malicious URL
during test. First, the virtual machine 1 asks the DNS server on virtual machine
2 for the IP address of the domain. The DNS server responds with the IP address
of virtual machine 2. The virtual machine 1 then send a GET request to this
address.

both IPv4 and IPv6 traffic. NGINX was configured to listen to port 80 for HT'TP
traffic, and to port 443 for HT'TPS traffic. Some of the data in the test used other
ports than these two. There was an attempt to configure NGINX to also listen
to all the other ports, but this did not work. There was a possibility to listen
to a subset of these extra ports, but as the amount of indicators which tried to
connect to these extra ports was relatively low in the test data, it was decided to
leave their support out of the test.

Separate virtual machines for the DNS server and the dummy server were
considered, but limiting the number of virtual machines was seen as more
valuable. Configuring each machine took time, and the complexity of the test
setup increased with the number of machines involved. In addition, there was no
reason to expect problems in combining the DNS server machine with the dummy
server machine, as only IP packages needed to be rerouted, and DNS requests
could be sent alongside with the IP packages.

4.2. The metrics for comparing different rule sets

Two types of metrics were used to compare the rules. The first is the size of the
ruleset. Simply put, this measures the size of the ruleset generated from the same
input data. Size can be used to evaluate how well the deduplication functionality
of the Arctic Node rule generator works by comparing the difference in size with
the ruleset generated by MISP. The distribution of different Suricata rule types,
or protocols, is also measured and analyzed.

42

The second metric used is the amount of unique true positive Suricata alerts
generated during the test. A positive Suricata alert is an alert which was triggered
by a connection to a malicious site during the test. Due to the anatomy of a
connection, it is possible for a connection to trigger multiple alerts. The first
type of alert is querying a DNS server for the IP of a domain. This can trigger
rules which monitor DNS traffic. After that, it is possible to connect to the
server. If the indicator was an IP address, the DNS query is skipped, and the
server is connected to immediately. In the test setup, sending the single HTTP
GET request can trigger two IP alerts, one for sending the request and another
for receiving the answer. This GET request can also trigger the HTTP request.

The second metric counts each type of alert only once, which is why the metric
is called unique. The uniqueness of the rules is needed to prevent abuse of the
metric. For example, a ruleset of a thousand identical rules would be triggered a
thousand times by a single matching connection. These thousand identical alerts

would contain the same information as a single alert. Thus, only unique rules
should be used.

4.3. MISP virtual machine

The Arctic Node Suricata rule generator was tested against a similar functionality
in MISP. The official MISP virtual machine image v.2.4.108 was used in these
tests. It was used to fetch the feeds and to export the fetched data as Suricata
rules. The virtual machine was deployed on the same computer used in testing.

It was noted that fetching feeds with large quantities of data, e.g. Ransomware
tracker, was slow with the MISP virtual machine. Generating Suricata rules from
a large number of indicators was also slow. Both of these processes could take
approximately an hour to complete. The performance issues are likely explained
by the limited resources given to the MISP virtual machine.

4.4. Feeds

The seven feeds listed in Table 4 were chosen for the test. All of the feeds are
supported by both MISP and Arctic Node. All of the feeds are also free to use
and in open distribution. The feeds can be divided into three groups based on the
type of information they provide: C2 servers, phishing sites, and malware links.
All of the feeds provide network indicators, which can be used by both Arctic
Node and MISP to create Suricata rules.

Feodo Tracker is another project by abuse.ch. It was launched in 2010 to
track the C2 servers and hashes of a trojan called Feodo [38]. The project has
continued to track the new generations of the malware family such as Cridex,
Dridex, Geodo, Heodo and Emotet. Out of these iterations of Feodo malware
family, as of 2019, Heodo and Dridex are the only members of Feodo malware
family which are still in active use. Feodo Tracker also tracks a trojan called
TrickBot, which Emotet deploys on the target machine. The feed reports the
IP address of the C2 server, destination port, timestamp, ASN, malware, and

43

Table 4. Feeds chosen for the test and what indicators of compromise they
provide. Type indicates what the information is related to.

Feed name Type Network indicator | Malware indicator
Bambenek C2 master list C2 Domain name, | Malware
IP, nameserver description
Bambenek C2 Domain master list | C2 domain name Malware
description
Bambenek C2 IP master list C2 1P Malware
description
Feodo Tracker C2 IP Malware name
Phishtank Phishing | URL, -
description,
target
Ransomware tracker C2, URL, domain, IP | -
infra
VxVault Malware | URL, domain Not provided on
the text version.

the activity of the server. The feed can also be downloaded as Snort or Suricata
rules. Feodo tracker provides different types of lists. MISP has support for the
Feodo Tracker ip blocklist, which has been chosen as the Feodo Tracker feed for
this test.

Ransomware tracker is another project by abuse.ch, launched in 2016 to
track various ransomware families [39]. The project tracks the C2 servers,
distribution sites and payment sites of the following malware families: TeslaCrypt,
CryptoWall, TorrentLocker, PadCrypt, Locky, CTB-Locker, FAKBEN and
PayCrypt. Ransomware tracker provides network indicators like the TP address,
domain name, and URL of C2 servers as well as other infrastructure such as
distribution sites of the ransomware.

Bambenek Consulting is a company which deals with cybersecurity
investigations [8]. They provide various threat intelligence feeds for free, one for
each malware family they track, alongside collective lists of all malware families.
They also provide high-confidence lists, which are a subset of the collective lists.
These high-confidence lists contain only the indicators that they are confident
are not false positives. Bambenek Consulting generates most of their IPs and
domain names by using the known domain generation algorithms (DGA) of
various malware families. They provide both a full list of DGAs and a much
shorter list of IPs and URLs of active C2 servers. These malware families use
generators to create a list of domain names they try to access every day. When
a hacker wants to send commands to machines with this malware, they register
one of these domains for a day and use it to send commands to their botnet.

Arctic Node has support for the C2 all indicators feed. MISP has support
for the high-confidence C2 IP feed, the high-confidence domain feed and the
high-confidence DGA domain feed. Therefore, it was not possible to choose the
exact same feed from Bambenek Consulting for both MISP and Arctic Node.
However, the high-confidence C2 IP and domain feeds are subsets of the C2 all

44

indicators feed. These two feeds can be combined together to approximate the
C2 all indicator feed. Therefore, the high-confidence C2 IP feed and domain feed
were chosen from MISP as sources for Bambenek Consulting. A full list of the
Bambenek feeds and their support by MISP and Node can be seen in Table 5.
Note that the size refers to the size of a feed at one point in time. The exact
numbers fluctuate over time, but they can be used as an estimate of the scale.
Size refers to the lines of text in each feed, and not to the amount of indicators of
compromise. Feeds which have been separated by the indicator of compromise,
such as C2 IP and C2 domain, contain one indicator of compromise per line. The
C2 all indicator feed and High-Confidence C2 All Indicator feed list both the IP
address and URL or domain of the C2 server, but not for all lines. For better
comparison with other feeds, their estimated sizes should be doubled.

Table 5. Feeds provided by the Bambenek Consulting, their sizes and support by
MISP and Hub

Feed name size, lines of text | Node | MISP

C2 1P 585 - -

C2 Domain 718 - -

C2 All Indicator 719 Yes -

DGA Domain 835190 - -

High-Confidence C2 IP 185 - -
High-Confidence C2 Domain 709 - Yes
High-Confidence C2 All Indicator | 339 - Yes
High-Confidence DGA Domain | 356454 - Yes

VxVault is a public feed for malware URLs and hashes. The site has been up
from at least 2010, and the oldest samples have been uploaded in 2006. The site
is hosted by an active member of the computer security domain, but beyond this
not much information is available on the feed provider. Each event on the site
contains a malware URL, IP address of the host, and detailed information on the
malware. Each event contains the malware name, filename, MD5 hash, SHA-1
hash, SHA-256 hash, and size. The feed can be accessed by two different ways.
The first is a PHP based website where all events ever posted by VxVault are
listed. From this site, it is possible to access the full information on each event.
The second, more machine friendly feed is a plain text file of the one hundred
most recent URLs posted by VxVault. This list contains only the malware URLs
and no other information. Both MISP and Arctic Node use the URL list, likely
because it is easier to fetch than the more complex full information feed which
seems to be designed for humans rather than machines.

Phishtank is a project launched in 2006 by OpenDNS with the aim of tracking
of phishing sites and emails. The collection of phishing data is crowdsourced.
Users can submit phishing attempts to Phishtank and verify submissions by other
users [9]. Phishtank collects information about the phishing site and takes a
screenshot of the site if possible. Phishtank provides their data for free, but
without free registration downloading is limited to a few times per day. Events
can be downloaded in four different formats: XML, JSON, PHP and CSV. The

45

test data was downloaded as CSV as it is the format fetched by MISP. Each
event contains the phishing URL, link for additional details, timestamp, a value
which tells whether the site is still online, and the target which the phishing site
imitates.

Another abuse.ch feed called URLhaus was planned to be the eighth feed in
the test, as it is supported by both MISP and Arctic Node. However, the large
size of the feed turned out to be a problem. Fetching and processing the feed
with the MISP virtual machine was slow, and it consequently slowed down tests
and analysis considerably. The feed provided over 200,000 events, which is an
order of magnitude more than the rest of the feeds combined. Therefore, it was
removed from the list of feeds. All tests and analysis have been done without
URLhaus. The size of URLhaus was enough to exceed the size of a bucket in
the Arctic Node rule generator, which caused roughly half of the indicators from
URLhaus to be dropped.

4.5. Input Data

The test used real events from seven open source feeds which are supported
as input data by both the MISP and Arctic Hub. Feeds provide events as a
continuous stream. Data used in the test was a snapshot of the different feeds
collected at the same time. This snapshot of events was downloaded three times
by different methods: once by hand, once with the MISP virtual machine and
once with Arctic Node. To ensure that all of the different methods captured
the same snapshot of data, all of them were collected within a time period of a
couple of hours. The slight variance in the timing of data collection might have
caused some differences between these three sets. However, this variance should
be negligible. Any events in the MISP and Arctic Node data sets which are not
in the manually collected set do not increase the performance metrics of either,
as the traffic is only generated from the manually collected set. For example, if
one of the data sets were to contain events from two years ago, these extra events
would not be likely to increase performance in these tests, as the indicators of
compromise used to create the test traffic are more recent.

Feeds used in the test and the amount of indicators obtained from them with
the three different collection methods are listed in Table 6. The difference between
manual collection and downloading the events with MISP seems to be the smallest
across the different feeds. Event count collected by Arctic Node differed more
from the other two methods.

Arctic Node downloads new events from feeds every hour. The events for Node
were collected by setting the Node instance to download the feed chosen for the
test. A filter was applied to select events at the same time as MISP and manual
collection. This filter had to be written temporarily into the code of the Suricata
rule generator, as the version of the generator which was used for the test did
not have support for such filters. This filter was used to ensure the Arctic Node’s
event set matched the other two sets as closely as possible.

The events downloaded by hand were used to create the test traffic data set.
This data set was used as the input for the test traffic generator to create the

46

simulated traffic used in testing. The test traffic data set was further cleaned
by extracting two different indicators from each event: IP addresses and URLs.
Duplicate IPs and URLs were cleared from the data set. This cleaning and
indicator extraction was done by writing a short parse script in Python for each
of the feeds, as the data format was different for each feed. The final size of
this cleaned data set turned out to be 31353. Table 6 lists the breakdown on
how many unique indicators were produced from each of the feeds. Some of the
indicators did not work as expected during the tests. The test traffic generator
program had a limited capability to fix these cases, as described in an earlier
chapter.

Table 6. Feeds chosen for the data set and the amount of events in each of them,
separated by different collection methods.

Feed name Fetched manually | MISP | Node
Bambenek C2 master list 1269 - 4592
Bambenek C2 Domain master list | 757 755 -
Feodo Tracker 333 329 692
Bambenek C2 IP master list 182 181 -
Phishtank 11193 11364 | 12257
Ransomware tracker 18517 27935 | 14822
VxVault 94 94 492

The test traffic data set was analyzed to determine how much overlap there was
between the feeds. This overlap analysis was done on the discarded duplicate IP
addresses and URLs. Results of this analysis are shown in Table 7. Feeds with no
overlap have been left out of the results. Most overlap was between the different
Bambenek lists. This was to be expected, as the Bambenek C2 Domain master list
and the C2 IP master list are subsets of the Bambenek C2 master list. Otherwise,
the overlap seems quite small between the feeds. MISP reports similar overlap
between their default feeds [40], with most feeds having no overlap between them.

Table 7. The number of overlapping indicators between the different feeds.

Feed name Feed name Overlap
Bambenek C2 master list Bambenek C2 Domain master list | 755
Bambenek C2 master list Bambenek C2 IP master list 181
Bambenek C2 master list Ransomware Tracker 56

Bambenek C2 IP master list | Ransomware Tracker 13

4.6. Test Cases

A total of four tests were conducted to evaluate the performance of MISP and
Arctic Node. Both of them were tested twice. On the first round of tests (i.e. cases
1 and 2), each of them were used to generate a rule set for each feed separately.
These rule sets were then tested one by one against the test data set. For the

47

second round of tests (i.e. cases 3 and 4), all of the feeds were given together as
the input to create one set of rules. These rules were then tested against the test
traffic data set.

Each rule set was tested under the same conditions. Test traffic data set was
used to create the traffic, and the rule set was given to the Suricata instance as
input. The results of these tests were also analysed under the same conditions,
by measuring what indicators the rule set detected from the test traffic set. The
tests are numbered as follows:

1. Rules from a single feed by Arctic Node.
2. Rules from a single feed by MISP.
3. Rules from multiple feeds by Node.

4. Rules from multiple feeds by MISP.

In each test case, the test traffic data set was given as input to the test traffic
generator on virtual machine 1. The traffic over the virtual network was the same
in each test case. As the test traffic data set contained the indicators used to
generate the tested Suricata rules, each of the Suricata rules in the tests should
be triggered at least once.

4.7. Test result

In each test, Suricata generated a log file of the alerts raised by the tested rules.
These logs were analysed to find out how well the rules detected the test traffic.
Any alert caused by an indicator was considered a positive hit. The total number
of hits was calculated by going through all the test indicators and checking for
matching log lines. If a match was found, the indicator was marked as a hit, as
this indicated some part of the connection was detected by Suricata and caused
an alert. Each log line which detected a hit was then discarded, as each line
could only refer to one indicator. The logic for matching log lines to indicators
was written separately for both MISP and Node, as both of them had different
forms of Suricata logs.

The test results for case 1 are listed in Table 8. In this case, Arctic Node was
used to create Suricata rules for each of the feeds used in testing, after which the
rulesets were tested against the test traffic data set. The hits column has been
calculated as the fraction of indicators detected from the total set of possible
indicators of the test traffic set. Summing up these values in cases 1 and 2 might
result in total value of over 100%. This is due to overlap between feeds, which
means that in some cases rules from one feed might match indicators from another
feed.

The results for test case 2 are listed in Table 9. In this case, MISP was used
to create rules from the events of each feed, after which the rules were tested
against the test traffic data set. MISP created rules on a 1:1 ratio from events of
Bambenek C2 IPs, VXvault and Feodo C&C feeds. This comes as no surprise, as

48

Table 8. The results of test case 1, rules from single feeds by Arctic Node.

Rule set Events | Rule count | Hit count | Hits
Bambenek C2 master list | 4592 1292 1268 4.15%
Feodo C&C 692 341 333 1.09%
Phishtank 12257 | 18217 11037 36.10%
Ransomware Tracker 14822 | 28499 18507 60.54%
VXVault 492 239 97 0.32%

each of these feeds list only IP addresses in their events. Bambenek C2 domains
created rules on a 1:2 ratio. Each of the events for this feed list a domain name of a
C2 server. These are turned into two rules by MISP, one to monitor DNS requests
for said domains, and one to monitor HI'TP traffic to that domain. Unlike other
feeds, MISP generated fewer rules per event for Phishtank. Phishtank events
contain phishing links, which MISP turns into HTTP rules. It does not create
DNS rules from these links, and does not create any rules from phishing links
which use HTTPS instead of HT'TP. This explains why MISP created less rules
from Phishtank events. Ransomware Tracker events contained both URLs and
IP addresses as the indicators, and thus MISP created DNS, HTTP and IP alerts
from these events. As not all of the events contain all these indicators, this
ultimately created rules on a 1:1.35 ratio.

Table 9. The results of test case 2, rules from single feeds by MISP.

Rule set Events | Rule count | Hit count | Hits
Bambenek C2 IPs 181 181 177 0.59%
Bambenek C2 Domains | 755 1510 751 2.46%
Bambenek, combined | 936 1691 928 3.05%
Feodo C&C 329 329 341 1.08%
Phishtank 11364 | 7397 6648 21.75%
Ransomware Tracker | 27935 | 37618 18136 59.32%
VXVault 94 94 85 0.28%

When comparing the results of cases 1 and 2, it can be seen that in each case
the Arctic Node Suricata rule generator either reached the same performance
level as the Suricata rule generation of MISP or outperformed it.

Table 10. Distribution of different Suricata rule types in test case 1.

Rule set IP rules | DNS rules | HT'TP rules
Bambenek C2 master list | 524 768 0
Feodo C&C 341 0 0
Phishtank 4573 6278 7366
Ransomware Tracker 4946 9735 13818
VXVault 79 56 104
Total 21.5% 34.7% 43.8%

49

Table 11. Distribution of different Suricata rules in test case 2.

Rule set IP rules | DNS rules | HTTP rules | TCP rules
Bambenek C2 IPs 181 0 0 0
Bambenek C2 Domains | 0 755 755 0
Bambenek, combined | 181 755 755 0
Feodo C&C 329 0 0 0
Phishtank 0 0 7395 2
Ransomware Tracker | 4344 9728 23546 0
VXVault 0 0 94 0

Total 10.3% 22.2% 67.5% <0.1%

The distribution of different protocols per feed for case 1 is shown in Table 10,
and the distribution for case 2 is shown in Table 11. Three main types of protocols
were present in the rule sets, IP, HT'TP, and DNS. MISP also generated two rules
with TCP protocol from the Phishtank feed. The rules generated by Arctic Node
have a more even distribution of different protocols than rules generated by MISP.
For both rulesets, HT'TP protocol is used the most.

In case 1, Arctic Node had collected 390% more Bambenek events than MISP
in case 2. This size difference was switched the other way around in the number
of rules generated. Arctic Node compressed the events down to 1292 rules, 399
rules fewer than the combined MISP Bambenek feeds. The protocol distribution
reveals the difference between these two rule sets. Arctic Node had created 190%
more IP rules than MISP, but did not create HT'TP rules from the domains listed
in Bambenek C2 master list. MISP, however, created both DNS and HTTP
rules from the C2 domains, which likely explains the difference in the size of the
rulesets. The events collected by Arctic Node likely contained a large quantity
of duplicate indicators, which were then compressed away by the deduplication
process of the Suricata rule generator. The Arctic Node ruleset performed better
than the MISP ruleset. The Bambenek feed in case 1 had 340 more hits, or 37.0%,
than the combined Bambenek feeds of case 2.

MISP and Arctic Node created approximately the same number of rules for
the Feodo C&C feed, and had similar performance. While Arctic node created
12 rules more than MISP, it had 8 hits fewer than MISP. Arctic Node did have
more than twice the number of events, but it appears that around half of them
were duplicates that were dropped by the deduplication process. In both cases,
the protocol for all rules was IP. This is the expected result from this particular
feed, as it only reports IP addresses.

Comparing the results of for Phishtank feed, Arctic Node had 7.9% more events
than MISP, but created 146.3% more Suricata rules. The Arctic Node Phishtank
ruleset had 66.0% more hits in the test than the MISP Phishtank ruleset. It
appears that an increase in the size of the ruleset does not reflect a similar increase
in the relative test performance. This difference might relate to the fact that
MISP could not handle phishing links which used HT'TPS, while Arctic Node does
handle these links and has the ability to create rules from them. Furthermore,

50

MISP only created rules with the HT'TP protocol, while Arctic Node created an
even distribution of different kinds of rules.

The results for Ransomware Tracker did not differ dramatically between cases
1 and 2. The difference in hit count was minimal, with case 2 having only 371
fewer hits than case 1. However, a large difference can be seen in the number of
events and rules. Case 2 had 88% more events and 32% more rules than case 1.

Arctic Node collected more than five times the number of events for VXVault
than MISP. This difference was due to the fact that Arctic Node had been
collecting VXVault events constantly, and the events used for this study were
taken from Node by querying a slice of them on the date of test data collection.
Only half as many rules were created from the events collected by Arctic Node.
The ruleset in case 1 was 154% larger than in case 2, or 145 rules. This size
difference can be attributed to the lack of IP and DNS rules in case 2. Case
1 had only 10 more HTTP rules than case 2, or 10.6%. The performance of
VXVault was similar in both cases. Case 1 had 12 more hits than case 2, or
14.1%.

In test case 3, Arctic Node was used to create Suricata rules from the
combination of all test feeds. Results of this are shown in Table 12 on the Node
combined line. The total amount of events in this case was 32792, which is
63 events more than the combined total of all of the events in case 1. These
events were turned into 48359 rules, which is 229 rules fewer than all the rules
combined in case 1. This means that the compression rate was minimal, around
0.47%, without taking into account the difference in total number of events. This
shows how little overlap there is between the tested feeds, resulting in the low
compression rate.

In test case 4, MISP was used to create Suricata rules from all the test feeds
together. Results of this are shown in Table 12 on the second line. There is no
difference between the total number of rules and events of test case 2 and the
number of rules and events of test case 4. From this result it is evident that MISP
does not conduct any sort of deduplication between feeds, as was expected.

Table 12. Results of test cases 3 and 4, rules from multiple feeds by Node and
MISP.

Rule set Events | Rule count | Hit count | Hits
Node combined | 32792 | 48359 30515 99.8%
MISP combined | 40658 | 47129 26111 85.4%

Table 13. Rule distribution for cases 3 and 4.

Rule set IP rules | DNS rules | HI'TP rules | TCP Rules
Node combined | 10240 16831 21288 0
MISP combined | 4854 10483 31790 2
Node Total 21.2% 34.8% 44.0% 0%
MISP Total 10.3% 22.2% 67.5% <0.1%

51

When comparing the results of cases 3 and 4, it can be seen that Node had 7866
events less than MISP, or 19.3% fewer events. Despite this, Node created a total
of 1230 rules more than MISP. This is 2.4% more rules with 80.3% of the events,
or 1:1.47 ratio for Node and 1:1.59 ratio for MISP. When tested, the Node ruleset
had 4404, or 16.9% more hits than MISP ruleset. This would indicate that the
ruleset created by Arctic Node performed better than the one created by MISP.

Table 13 shows the distribution of different protocols in cases 3 and 4. The
total distribution of different protocols stayed the same between cases 2 and 4.
This is to be expected, as the rule set of case 4 is just the sum of rule sets of case
2. There is a slight difference in the distribution of different protocols between
cases 1 and 3, but the difference is not great. All the changes are less that one
percentage unit.

From these tests it appears the Arctic Node Suricata rule generator generates
more rules per event than MISP does. Rules created by Arctic Node seemed
to work on the same level or better than the rules created by Node. The
deduplication feature of Arctic Node did not seem to offer much benefit between
the different feeds, but it did work well in regards of compressing the large number
of events into a smaller number of rules. The deduplication process appears to be
especially good for Arctic Node, as the way Arctic Node generates events seems
to result in a large number of events having duplicate indicators between them.

In test case 4, the ruleset raised 8 errors when loaded into Suricata. These
errors were narrowed down to originate from the Phishtank rules. These same
errors were present in test case 1 when testing the Phishtank rules. No errors
were raised in any other test case.

The test traffic data set contained 3262 indicators with set ports which were
different from those listened to by the NGINX. There was an attempt to configure
the NGINX to listen to these ports, but the large number of different ports
turned out to be difficult to handle and the configuration did not work. As these
connections could not be resolved, they were dropped from the final results.

One challenge faced during this analysis was the fact that the order of the
logged alerts did not always match the order in which the indicators were tested.
This is due to the multithreaded nature of Suricata. However, it can be assumed
that all of the alerts have been produced by the test, and the connections used to
run it. Therefore, if an indicator does match one of the lines, it can be counted
to have been detected by Suricata.

4.8. Future Work

The current version of the Suricata rule generator is still in need of improvement.
After the tests had been run, an error was found in the logic that creates Suricata
rules from the events. Some events that only had domain names did not list them
under the url key but rather under the domain name key. The old logic used
values under the URL key, but not under the domain name key. As a result, a
couple hundred events were not used to create either domain or URL rules even
though they contained the necessary information. This error does not invalidate
the test, as it only effected the rule set produced by the generator and not the

52

test setup. Tests were not repeated after the discovery and fixing of this error, as
the results would have only changed slightly and there was no time for running
additional tests. If the tests had been repeated, the Suricata rule generator would
have created a couple hundred more rules, which could have resulted in slightly
more hits. In other words, the rule generator was slightly improved after the
tests, and the results of the tests are applicable to the previous iteration of the
generator. Repeating the tests with the more recent version would produce results
which differ slightly from the results presented in this work.

It was observed that the feed data set used in the tests contains holes,
inaccuracies, and mistakes. This is often true for any data set. Intelligence from
feeds will always require cleaning before it can be used. Some of the errors in
the test were produced by unusual protocols and ports used by malicious actors.
They appear to utilize the whole spectrum of possible URLs, likely to deceive
unsuspecting victims and security solutions. Testing could be improved to make
sure it covers all the possible ways intruders try to mask their presence and
surpass defenses. Creating such tests requires deep technical knowledge on the
way URLs work. The developers of security solutions need to be as smart as the
opposition, because the intruders are ready to research deep into the technology
they are abusing in order to get in.

One possible path for creating better Suricata rules is creating custom tailored
generators for each feed. Currently, in both the Node and MISP versions, the
same type of generator is used for all feeds. For the more information rich
feeds, customized generators could yield more accurate rules. However, custom
integration for each feed and the upkeep required to keep the integrations up to
date requires a large amount of manual work.

Currently, the alerts only mark the indicator as malicious, but not the reason
for this. Metadata could be added to these alerts. Using the data in the events it
could be possible to add more detailed meta data such as what type of malware
the rule is connected to, what possible vulnerabilities it is exploiting, or what
sort of malicious activity the link is connected to. Metadata could also describe
how often the indicator has been detected. When conducting the deduplication,
it could be possible to note down the timeframe when the events happened, and
add this information to the event. This would make it possible to communicate
how active the rule is, which might help with understanding the alert at the
receiving end. MISP has taken some steps forward on this front by adding a link
to the event the rule was generated from. The types of metadata that should be
included is going to vary from case to case, depending on who is going to use the
rules and who is going to react to the alerts. The metadata could perhaps be
configurable from the user interface of the integration.

53

5. CONCLUSION

The goal of this work was to integrate the Arctic Node threat intelligence sharing
platform with a new intrusion detection and prevention system. Suricata was
chosen as the integrated system. The new integration was tested against a similar
functionality in the MISP threat intelligence sharing platform, which was also
capable of exporting the collected threat intelligence as Suricata rules. One major
distinction between these two was the fact that the new Suricata integration of
Arctic Node featured deduplication for the rules so that no two logically identical
rules were created. These two platforms also differ in the ways they gather data
from threat intelligence feeds and create the Suricata rules.

From the tests it can be seen that the Arctic Node Suricata generation
submodule outperformed the similar functionality in MISP. Node had 19.3% less
events than MISP, but created 2.4% more rules than MISP. Arctic Node also had
16.9% more hits during the evaluation. The difference in volume can be explained
by the difference in the way Arctic Node collects and creates events, as well as
the way the generator works.

Suricata rules created by Arctic Node contained more diversity between
different types than rules created by MISP. Finally, it can be observed from
the results that there is relatively little overlap between the different open feeds.

1]

[7]

8]

[9]

[10]

[11]

[12]

[13]

o4

6. REFERENCES

Dandurand L. & Serrano O.S. (2013) Towards improved cyber security
information sharing. In: 2013 5th International Conference on Cyber Conflict

(CYCON 2013), IEEE, pp. 1-16.

Shirey R. (2007) Internet security glossary, version 2. RFC 4949, RFC Editor.
URL: https://tools.ietf.org/html/rfc4949.

Little E.G. & Rogova G.L. (2006) An ontological analysis of threat and
vulnerability. In: 2006 9th International Conference on Information Fusion,

pp- 1-8.

Dalziel H., Olson E. & Carnall J. (2014) How to Define and Build an Effective
Cyber Threat Intelligence Capability. Elsevier Science.

Chismon D. & Ruks M. (2015) Threat intelligence: Collecting, analysing,
evaluating. MWR InfoSecurity Ltd .

Brown S., Gommers J. & Serrano O. (2015) From cyber security information
sharing to threat management. In: Proceedings of the 2nd ACM Workshop
on Information Sharing and Collaborative Security, WISCS ’15, Association
for Computing Machinery, New York, NY, USA, p. 43-49.

(accessed: 27.5.2020), About project honey pot. URL: https://www.
projecthoneypot.org/about_us.php.

(Accessed 27.6.2019), Bambenek consulting homepage. URL: http://www.
bambenekconsulting.com.

(Accessed 27.6.2019), Phishtank homepage. URL: https://www.
phishtank.com.

Caltagirone S., Pendergast A. & Betz C. (2013) The diamond model of
intrusion analysis. DTIC Document URL: http://www.threatconnect.
com/files/uploaded _files/The Diamond Model of Intrusion_
Analysis.pdf.

Mavroeidis V. & Bromander S. (2017) Cyber threat intelligence model: An
evaluation of taxonomies, sharing standards, and ontologies within cyber

threat intelligence. In: 2017 European Intelligence and Security Informatics
Conference (EISIC), pp. 91-98.

Pawlinski P., Jaroszewski P., Urbanowicz J., Jacewicz P., Zielony P.,
Kijewski P. & Gorzelak K. (2014) Standards and tools for exchange and
processing of actionable information. European Union Agency for Network
and Information Security, Heraklion, Greece .

Clark R. (2019) Intelligence Analysis: A Target-Centric Approach. SAGE
Publications. URL: https://books.google.fi/books?id=6ER_DwAAQBAJ.

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

95

Endorf C. (2004) Intrusion Detection & Prevention. McGraw-Hill/Osborne.

Lim Y.., Yer T.S., Levine J. & Owen H.L. (2003) Wireless intrusion detection
and response. In: IEEE Systems, Man and Cybernetics Societylnformation
Assurance Workshop, 2003., pp. 68-75.

Liao H.J., Lin] C.H.R., Lin Y.C. & Tung K.Y. (2013) Intrusion detection
system: A comprehensive review. Journal of Network and Computer
Applications 36, pp. 16 — 24. URL: http://www.sciencedirect.com/
science/article/pii/S1084804512001944.

Anderson J.P. (1980) Computer security threat monitoring and surveillance.
Fort Washington .

Denning D.E. (1987) An intrusion-detection model. IEEE Transactions on
Software Engineering SE-13, pp. 222-232.

Paxson V. (1999) Bro: a system for detecting network intruders in
real-time. Computer Networks 31, pp. 2435 — 2463. URL: http://www.
sciencedirect.com/science/article/pii/S1389128699001127.

(Accessed 4.7.2019), Zeek homepage. URL: https://www.zeek.org.

(accessed: 22.1.2020), Renaming bro project. URL: https://blog.zeek.
org//2018/10/renaming-bro-project_11.html.

(Accessed 5.7.2019), Yara documentation. URIL: https://yara.
readthedocs.io/en/v3.5.0/index.html.

(Accessed 10.7.2019), Sigma project. URL: https://github.com/Neo23x0/
sigma.
Roesch M. (1999) Snort - lightweight intrusion detection for networks. In:

Proceedings of LISA 1999: 13th Systems Administration Conference, Seattle,
Washington, USA, vol. 99, vol. 99, pp. 229-238.

(accessed: 25.10.2019), Snort homepage. URL: https://snort.org.

(accessed: 27.10.2019), Snort3 homepage. URL: https://www.snort.org/
snort3.

(accessed: 25.10.2019), Suricata homepage. URL: https://suricata-ids.
org.

Brumen B. & Legvart J. (2016) Performance analysis of two open
source intrusion detection systems. In: 2016 39th International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), IEEE, pp. 1387-1392.

Zibak A. & Simpson A. (2019) Cyber threat information sharing: Perceived
benefits and barriers. In: Proceedings of the 14th International Conference
on Availability, Reliability and Security, ARES ’19, Association for
Computing Machinery, New York, NY, USA.

[30]

[31]

[32]

[33]

[35]

[36]

[37]

[3]

[39]

56

Sauerwein C., Sillaber C., Mussmann A. & Breu R. (2017) Threat intelligence
sharing platforms: An exploratory study of software vendors and research
perspectives. In: Proceedings of the 2017 Wirtschaftsinformatik, St. Gallen,
Switzerland.

(Accessed 23.5.2019), Who is behind the misp project? URL: https://www.
misp-project.org/who/.

(Accessed 5.8.2019), Misp model of governance. URL: https://www.misp-
project.org/governance/.

(Accessed: 20.8.2019), Arctic security hub launch announcement. URL:
https://arcticsecurity.com/news/2018/06/20/arctic-security-
set-to-launch-a-next-generation-cyber-intelligence-product-
arctic-hub-this-summer/.

(Accessed: 20.8.2019), Arctic security node launch announcement. URL:
https://arcticsecurity.com/news/2018/12/13/arctic-security-
launches-arctic-node-to-help-enterprises-increase-their-cyber-
security/.

(Accessed: 4.6.2020), Benefits of an organized cyber defense. URL:
https://arcticsecurity.com/guides/2018/12/13/benefits-of-an-
organized-cyber-defense/.

(accessed: 4.6.2020), Data harmonization ontology (tlp white). URL:
https://github.com/arcticsecurity/public/blob/master/docs/
Harmonization.md.

(Accessed: 16.8.2019), Dnschef v 0.4. URL: https://github.com/iphelix/
dnschef.

(Accessed 27.6.2019), Feodo tracker homepage. URL: https:
//feodotracker.abuse.ch.

(Accessed 28.6.2019), Ransomware tracker homepage. URL: https://
ransomwaretracker.abuse.ch.

(Accessed 22.5.2020), Feed overlap analysis matrix. URL: https://www.
misp-project.org/feeds/#feed-overlap-analysis-matrix.

o7

7. APPENDICES

7.1. MISP feeds

MISP supports the following feeds.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.

. CIRCL OSINT Feed - CIRCL

The Botvrij.eu Data - Botvrij.eu

ZeuS TP blocklist (Standard) abuse.ch

ZeuS compromised URL blocklist - abuse.ch

blockrules of rules.emergingthreats.net - emergingthreats
malwaredomainlist - malwaredomainlist

Tor exit nodes - TOR Node List dan.me.uk

Tor ALL nodes - TOR Node List dan.me.uk
cybercrime-tracker.net - all - cybercrime-tracker.net
Phishtank online valid phishing - Phishtank

listdynamic dns providers - http://dns-bh.sagadc.org
ip-filter.blf - labs.snort.org - http://labs.snort.org
longtail.it.marist.edu - longtail.it.marist.edu
longtail.it.marist.edu 7 days - longtail.it.marist.edu
diamondfox_ panels - pan-unit42

booterblacklist.com Latest - booterblacklist.com
pop3gropers - home.nuug.no

Ransomware Tracker CSV Feed - Ransomware Tracker abuse.ch
Feodo IP Blocklist - abuse.ch

hosts-file.net - hphost - malwarebytes - hosts-file.net

hosts-file.net - hphost - malwarebytes - EMD classification ONLY - hosts-
file.net

OpenPhish url list - openphish.com
firehol levell - iplists.firehol.org

IPs from High-Confidence DGA-Based C&Cs Actively Resolving -
osint.bambenekconsulting.com

25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.

46.

47.
48.
49.

58

Domains from High-Confidence DGA-based C&C Domains Actively
Resolving - osint.bambenekconsulting.com

ci-badguys.txt - cinsscore.com

alienvault reputation generic - alienvault.com
blocklist.de/lists/all.txt - blocklist.de

VNC RFB - dataplane.org

sshpwauth.txt - dataplane.org

sipregistration - dataplane.org

sipquery - dataplane.org

sipinvitation - dataplane.org

All current domains belonging to known malicious DGAs -
osint.bambenekconsulting.com

VXvault - URL List - VXvault

abuse.ch SSL IPBL - abuse.ch

abuse.ch Dyre SSL IPBL - abuse.ch

http://cybercrime-tracker.net - http://cybercrime-tracker.net hashlist
http://cybercrime-tracker.net - http://cybercrime-tracker.net gatelist
hpHosts - GRM only - hpHosts

blocklist.greensnow.co - greensnow.co

conficker all domains generated - cert.at

CoinBlockerLists domains - A list for administrators to prevent mining in
networks - CoinBlockerLists

CoinBlockerLists optional domains - An additional list for administrators -
CoinBlockerLists

CoinBlockerLists browser mining domains - A list to prevent browser mining
only - CoinBlockerLists

CoinBlockerLists IPs - A additional list for administrators to prevent mining
in networks - CoinBlockerLists

URLHaus Malware URLs - Abuse.ch
CyberCure - IP Feed - www.cybercure.ai

CyberCure - Blocked URL Feed - www.cybercure.ai

20.
ol.
92.
23.
o4.
25.
56.
7.

CyberCure - Hash Feed - www.cybercure.ai
ipspamlist - ipspamlist

mirai.security.gives - security.gives
malsilo.url - MalSilo

malsilo.ipv4 - MalSilo

malshare.com - current all - malshare.com
Benkow.cc RAT - benkow.cc

Panels Tracker - Benkow.cc

59

