
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Miiro Kuosmanen
Samu Majabacka

Kalle-Oskari Suvanto

REAL-TIME HUMAN DETECTION FROM
DEPTH IMAGES WITH HEURISTIC APPROACH

Bachelor’s Thesis
Degree Programme in Computer Science and Engineering

June 2020

Kuosmanen M., Majabacka S., Suvanto K. (2020) Real-Time Human Detection
from Depth Images with Heuristic Approach. University of Oulu, Degree
Programme in Computer Science and Engineering, 35 p.

ABSTRACT

The first industrial robot was built in the mid-20th century. The idea of the
industrial robots was to replace humans in assembly lines, where the tasks were
repetitive and easy to do. The benefits of these robots are that they are able
to work around the clock and only need electricity as compensation. Over the
years, robots capable of only doing repetitive tasks have evolved to operate fully
autonomously in challenging environments. Some examples of these are self-
driving cars and service robots that can work as customer servants. This is mainly
accomplished through advancements in artificial intelligence, machine vision, and
depth camera technologies. With machine vision and depth perception, robots
are able to construct a fully structured environment around them and this allows
them to properly react to sudden changes in their surroundings.

In this project, a naive detection algorithm was implemented to separate
humans from depth images. The algorithm works by removing the ground plane,
after which the floating objects can be separated more easily. The floating objects
are further processed, and the human detection part is then achieved using a
heuristic approach. The proposed algorithm works in real time and reliably
detects people standing in a relatively open environment. However, because of
the naive approach, human-sized items are wrongly detected as humans in some
scenarios.

Keywords: robotics, service robot, stereo vision, point cloud, Intel RealSense

Kuosmanen M., Majabacka S., Suvanto K. (2020) Reaaliaikainen ihmisten
havainnointi syvyyskuvista heuristisella menetelmällä. Oulun yliopisto,
Tietotekniikan tutkinto-ohjelma, 35 s.

TIIVISTELMÄ

Ensimmäinen teollisuusrobotti rakennettiin 1900-luvun puolivälissä.
Teollisuusrobottien tarkoitus oli korvata ihmiset tehtaiden kokoonpanolinjoilla,
joissa työtehtävät olivat pääsääntöisesti yksinkertaisia ja itseään toistavia.
Näiden robottien etuna on, että ne kykenevät työskentelemään kellon ympäri
pelkän sähkön varassa. Vuosien mittaan robotit ovat kehittyneet yksinkertaisista
koneista roboteiksi, jotka kykenevät toimimaan täysin itsenäisesti haastavissakin
olosuhteissa. Itseajavat autot ja asiakaspalvelijana toimivat palvelurobotit ovat
näistä hyviä esimerkkejä. Tällaiset saavutukset ovat olleet mahdollisia tekoälyn,
konenäön ja syvyyskameroiden kehityksen myötä. Kone- ja syvyysnäön avulla
robotit pystyvät muodostamaan itselleen selkeän kuvan ympäristöstään, mikä
mahdollistaa nopean reagoinnin yllättäviinkin muutoksiin ympäristössä.

Tässä työssä toteutettiin naiivi havaitsemisalgoritmi erottelemaan ihmiset
syvyyskuvista. Algoritmi poistaa maatason, jonka jälkeen ilmassa leijuvat
esineet voidaan erotella toisistaan. Erotetut esineet jatkokäsitellään, jonka
jälkeen ihmisten havaitseminen toteutetaan heuristisella menetelmällä. Työssä
esitelty algoritmi toimii reaaliajassa ja pystyy luotettavasti havaitsemaan ihmiset
suhteellisen avoimessa ympäristössä, vaikkakin joissain tapauksissa ihmisen
kokoiset esineet luokitellaan väärin ihmisiksi naiivin lähestymistavan vuoksi.

Avainsanat: robotiikka, palvelurobotti, stereonäkö, pistepilvi, Intel RealSense

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 7
2. ROBOTICS .. 8

2.1. Service Robots ... 9
2.2. Robot Behaviour and Appearance .. 10

2.2.1. Humanoid Looks... 11
2.2.2. Speech.. 12
2.2.3. Movement... 12
2.2.4. Eye Movement .. 12

3. TECHNOLOGIES AND EQUIPMENT ... 13
3.1. Depth Measurement Technologies and Techniques................................ 13

3.1.1. Ultrasound .. 13
3.1.2. Infrared Triangulation.. 14
3.1.3. Distance Detection with Light .. 14
3.1.4. Stereo Vision .. 14
3.1.5. Time-Of-Flight.. 14
3.1.6. Structured Light .. 15

3.2. Depth Cameras ... 15
3.2.1. Azure Kinect DK .. 15
3.2.2. Intel RealSense D435 .. 15
3.2.3. Terabee... 16

3.3. Libraries... 16
3.3.1. Point Cloud Library... 17
3.3.2. OpenCV ... 17
3.3.3. Open3D.. 17
3.3.4. Cilantro .. 17

4. IMPLEMENTATION .. 18
4.1. Data Pipeline .. 18

4.1.1. Input Data... 19
4.1.2. Filtering.. 21
4.1.3. Floor Segmentation ... 23
4.1.4. Clustering ... 25
4.1.5. Sub-Clustering Groups of People ... 26

5. FUTURE WORK.. 28
6. TIME USAGE .. 29
7. SUMMARY ... 30
8. REFERENCES ... 31
9. APPENDIX .. 35

FOREWORD

We want to thank Teemu Tokola and Juha Röning for supervising and inspecting
this work. In addition, we want to thank the University of Oulu’s IT department for
providing the depth camera (Intel RealSense D435) used in this project.

Oulu, June 13th, 2020

Miiro Kuosmanen
Samu Majabacka
Kalle-Oskari Suvanto

LIST OF ABBREVIATIONS AND SYMBOLS

IFR International Federation of Robotics

ISO International Organization for Standardization

LED Light-Emitting Diode

LiDAR Light Detection and Ranging

Radar Radio Detection and Ranging

ToF Time of Flight

IR Infrared

DK Development Kit

IMU Inertial Measurement Unit

SDK Software Development Kit

PCL Point Cloud Library

OpenCV Open source Computer Vision Library

RANSAC Random sample consensus

RGB Red, Green and Blue

RGB-D Red, Green, Blue and Depth

FPS Frames Per Second

AI Artificial Intelligence

7

1. INTRODUCTION

When someone says the word "robot" the image that comes to people’s mind can differ
greatly. It can be anything between a very simple industrial robot and a futuristic
"Terminator" type android. 60 years ago, robots used to be more like the former
type assigned with a simple repetitive task, but with the help of computationally more
powerful computers, machine learning, and more advanced algorithms, the field of
robotics is aiming to move towards the latter.

This computation power correlates with the number of transistors in an integrated
circuit, and since the transistor count in these integrated circuits has doubled every
two years [1], computational power has also been steadily increasing for the past 50
years. For example, in 1996, IBM developed a chess-playing computer Deep Blue,
which managed to beat chess world champion Garri Kasparov with an average of 50-
100 million searched positions per second [2]. If we compare Deep Blue to a modern
off-the-shelf laptop, the laptop can achieve up to 60 times more calculations per second
than the Deep Blue was able to. In 2015, AlphaGo was the first computer program that
was able to beat Fan Hui, a professional Go player, and this required more than just
raw computational power. During a game of Go, there are more possible moves than
there are atoms in the universe. Therefore, AlphaGo used a combination of machine
learning and tree search techniques to achieve this task [3].

With the growth of computing power, better algorithms and machine learning,
human-like robots have started to develop from mechanical machines that are not
able to walk [4] to robots that are able to cross obstacles, run and even jump while
swinging their arms the same way human athletes do to propel themselves forward
[5]. Even though a lot has been achieved in regard to robot movement and behavior
those two still tend to be the topic of many research projects. These incredible feats
would not be possible for a robot without vision and some kind of understanding about
their surroundings. Nowadays, stereo cameras have become much more affordable
for everyday consumers and they are also included in many mobile phones. This
proliferation of stereo cameras has increased interest in them, and consequently,
more research on stereo vision is being done. In addition to what 2D cameras
already provide, stereo cameras offer depth information which has enabled industrial
robots to be able to grab and lift objects reliably and perform tasks that require high
precision. Depth information is also used in various other applications as well, for
example it allows face spoof detection, which results in more accurate and reliable
face recognition.

The purpose of this work was to implement an real-time algorithm capable of
detecting humans with depth information alone. This was done by experimenting and
comparing functionality, accuracy, and processing time of different depth information
processing methods.

8

2. ROBOTICS

The first idea of a robot comes from the Greek mythology more than 2500 years ago.
In this ancient story, Hephaestus, the god of invention, created the first android named
Talos to defend the island of Crete from unwanted visitors. Talos was eventually
defeated by a woman named Medea, who managed to trick Talos by promising
immortality to him, after which Medea quickly pulled out a vitally important bronze
nail behind Talos’s ankle, and Talos collapsed to his death. Even though the story of
Talos is just fiction, it still shows the idea of human-robot interaction and the concerns
of too human-like robots. [6]

The first designed and possibly constructed robot was by Leonardo da Vinci in
the year 1495, but it was not made public before the 1950’s when the design of the
robot was found from Leonardo da Vinci’s sketchbook [7]. There have been ideas and
designs of robots for a long time, but the term "robot", from the czech word "robota"
meaning forced labor [8], was first time used in a 1920 play of R.U.R. "Rossum’s
Universal Robots" by Karel Capek.

In the 1950’s, George Devol invented the first industrial robot Unimate, which was
installed to General Motors assembly line in New Jersey in 1961. After the installation
of Unimate, large car manufacturing companies noticed the importance of industrial
robots and so, one year later, the world’s first robotics company called Unimation
was founded by Joseph F. Engelberger and George Devol [9]. Before the 1990’s,
research and development focused mainly on industrial robots, because they reduced
manufacturing costs immensely, and investing in robotics cost so much that neither
households nor smaller companies could afford it. After the 1990’s, the price of the
components used in robotics started to drop and service robots started to find their way
into households. This meant that the amount of service robots started to compete with
industrial robots. After the change of millennium, the general interest in robots has
continued to steadily increase, but service robots are starting to take the upper hand
as seen in Figures 1 and 2. In 2018, the estimated amount of annual installations of
industrial robots was only around 414 000 units compared to 16.3 million installations
of service robots [10].

Figure 1. Forecast of the growth of industrial robots. 1

1Data was adapted from: https://ifr.org/downloads/press2018/IFR%20World%
20Robotics%20Presentation%20-%2018%20Sept%202019.pdf

https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf
https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf

9

2.1. Service Robots

Thanks to improvements in sensor technology and machine vision, robots are no longer
restricted to operate only in the industrial field. They are now able to operate among
humans and perform tasks that serve human needs [11]. Due to these accomplishments,
the industry has started to develop and produce more service robots instead of only
focusing on the industrial ones. According to a forecast made by the IFR (International
Federation of Robotics), the value of service robots in both professional and personal
fields will increase immensely in the upcoming years as seen in Figure 2.

Figure 2. Forecast of the growth of service robots.2

A service robot is defined as a "robot that performs useful tasks for humans or
equipment excluding industrial automation applications" [12]. These robots can be
subcategorized in different ways. One of them is presented in Table 1, where the
classification is done by their user type. This classification was presented by ISO
(International Organization for Standardization) [12]. Even though the classification
in Table 1 is just one of many, service robots’ main purpose always remains the same:
they are designed to help people in repetitive, time-consuming or dangerous tasks.

Since service robots have to operate in human-oriented environment, it is important
that they can react to sudden changes in their working environment in real time. This
requires either computationally efficient algorithms or a lot of computing power. The
former seems to be preferred because computing power usually costs a lot more and
also requires more space, which is often limited. For example, an autonomously
working robot vacuum has to be affordable, small enough to fit in tight spaces and
aware of its surroundings at all times, otherwise there is a chance that it could collide
with a human.

Both professional and personal service robots often have to be able to work
autonomously in a natural or unstructured environment because their working

2Data was adapted from: https://ifr.org/downloads/press2018/IFR%20World%
20Robotics%20Presentation%20-%2018%20Sept%202019.pdf

https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf
https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf

10

Table 1. Usage of service robots

environment is seldom predefined when manufacturing the robot. On the contrary,
when designing an industrial robot, its working environment and intended task is
usually known. For example, they might work in an assembly line and their only
purpose can be picking an object from the assembly line or screwing a screw into an
object. This task is then repeated around the clock. In contrast, service robots have
to be designed in such a way that they can work in vastly different environments. For
example, a robot vacuum cleaner has to be able to operate in different interiors. This
means that when designing a service robot, all of its components, sensors, and software
must be thoroughly considered.

2.2. Robot Behaviour and Appearance

When designing a service robot, one must of course think about the technology behind
the metal surface, but there is also importance in the looks and the actions of the robot
[13]. For us people, it seems that it is not enough to just have a service robot that does
its job, but we actually prefer to have the service robot behave differently and look
different depending on its task [14]. For example, having a robot whose behavior can
be interpreted as happy and excited (like in a study done by Martin Cooney and Stefan
M. Karlsson [15]) can be beneficial for a companion robot but useless for a customs
robot.

Human-like behavior, in particular, would be a surprisingly beneficial topic to
master. In a study [16] done by Chien-Ming Huang and Bilge Mutlu, a robot gives
instructions to a test subject to do certain tasks. The results stated that when robots use
human-like guiding gaze while teaching or giving instructions, humans tend to learn
faster and much more efficiently. From this, one can speculate that having a robot
behave with human-like gestures would be very beneficial in the field of robotics since
just a simple guiding gaze can be this effective.

Perfecting this gaze requires a deep understanding of how robots see the environment
around them. Robots need to be able to recognize objects, humans, and everything
related to their surroundings. Machine vision has made some remarkable achievements
in object recognition, and with the help of stereo cameras, it is possible to give robots
a much more descriptive image of the environment they are in.

11

2.2.1. Humanoid Looks

Interacting with robots that almost look like humans but not quite, tends to give us an
eerie and uncanny feeling. We can tell something is wrong, but we cannot exactly point
our finger at it. This is called the Uncanny Valley effect and it demonstrates how the
robot needs to either look exactly like a human or not even close [17]. Uncanny Valley
effect is an important factor to consider in human-robot interaction and is illustrated
in Figure 3. Another example of this can be seen in Figures 4 and 5. Even though the
robot in Figure 4 does not look human, it still looks pleasant unlike the robot in Figure
5 [18].

Figure 3. Uncanny Valley effect3

Figure 4. Robot from a
well-known animated movie4

Figure 5. Humanoid robot
for children with autism5

3Maya B. Mathur and David B. Reichling (2016) CC: https://creativecommons.org/licenses/by-nc-
nd/4.0/legalcode

4Lenin Estrada (2019) CC: https://creativecommons.org/publicdomain/zero/1.0/legalcode
5Luke J. Wood, Abolfazl Zaraki, Ben Robins and Kerstin Dautenhahn (2019) CC:

https://creativecommons.org/licenses/by/4.0/legalcode

12

2.2.2. Speech

Speech is one of the most important factors to consider when designing a human-like
robot. Without this ability, robots would not be able to make a leap from humanoid
to human-like. While communication with a robot can be achieved by attaching a
screen onto the robot’s chest, this kind of communication does not fulfil the criteria
of human-like conversation. Creating a robot with exceptional comprehension and
speaking capabilities is a challenging task because the meaning of a sentence can
completely change with just the tone of one’s voice [19]. On top of this, even if you
had a robot that could answer and talk to you with a perfectly human-like voice and
sentence structures, it would still be far from perfect if the whole spectrum of human
communication was considered.

2.2.3. Movement

We humans use the motion of our hands and head to support what we say and mean
[20, 21]. This means that a robot’s communication capabilities can be greatly enhanced
by the movement of its limbs [16]. Designing these movement patterns can be difficult.
Exaggerated or sluggish movements give an unnatural image of the robot and it can
even feel irritating. Also, the length of the robot’s motions has to be considered. In
a study with a playful robot, an inverted u-shaped correlation between motion length
and degree of perceived playfulness was observed [22]. This means that the robot’s
movements should be neither too long nor too short.

2.2.4. Eye Movement

If one wants to design a robot that feels natural and human-like as a conversational
partner, in addition to speech and the movement of the limbs, realistic eye-movement
is required. During conversations, we humans unconsciously use our eyes surprisingly
often. Eye movements are used to maintain and begin conversations, to express
emotions, and as guidance [23, 24, 25]. Implementing this into a robot requires a
deep understanding of machine vision and image processing. Thankfully, both of these
fields have advanced far, and nowadays it is even possible to use a regular laptop to
develop software that can recognize objects or people. However, recognition in real
time and with 100% accuracy has proven to be difficult [26, 27, 28].

13

3. TECHNOLOGIES AND EQUIPMENT

In order for robots to be able to operate safely among humans, they need to have the
ability to hear and see, as humans do. These abilities allow the robots to properly react
to sudden changes in their surroundings. For example, autonomous cars have to be
able to react properly when a child crosses the road in front of them.

The ability to detect the child can be obtained through a standard RGB (Red, Green
and Blue) camera, but in order to know how far the child is, robots need depth
perception. This can be achieved through different depth cameras, which use various
measurement technologies to gather depth information about the environment.

This chapter introduces the 3D techniques for acquiring depth information, as well
as the main depth technologies and the key differences between them. In addition,
some of the most used depth data processing libraries are also presented.

3.1. Depth Measurement Technologies and Techniques

For humans, depth perception was naturally evolved, but for machines it had to
be developed. Designing a machine that can perceive depth can be done using
depth measurement technologies or 3D imaging techniques. However, using multiple
technologies and techniques together to get the most accurate and precise result is
advised [29]. For example, most of the currently designed autonomous cars use
ultrasonic for close range, LiDAR (Light Detection and Ranging) for medium range
and Radar (Radio Detection and Ranging) for long range detection. This use of
different technologies in unison, instead of just using one, gives much more accuracy
at different distances.

3.1.1. Ultrasound

Ultrasonic range finding works by using short wavelength signals (also known as
pulses) with high frequency. If there is an object in the pulse’s path, it gets reflected
back to the transmitter, and the distance is calculated from the time difference between
the transmitted pulse and the received echo. The benefits of ultrasonic range finding
are that measurements are not affected by light, the color or the transparency of an
object. Sound travels nearly five times slower in air than it does in water. Because of
this, ultrasonic range finding is mostly used underwater. There it can measure distances
up to hundreds or even thousands of meters [30]. However, in air, it works relatively
poorly compared to other methods. In air its usability is weakened by limited range
and slow refresh rate, which affects its ability to detect fast-moving objects [31]. The
speed of sound also varies depending on humidity and temperature, and those two
attributes have to be factored in to get more accurate measurements. In air, ultrasonic
range finding is commonly used in parking navigation.

14

3.1.2. Infrared Triangulation

In infrared triangulation, the distance to an object is calculated by using an IR (infrared)
LED (light-emitting diodes) and a position-sensible photodetector. When an IR beam
from the LED is focused on a surface, it reflects the beam in all directions. Position-
sensible photodetector then captures this beam and calculates the distance from the
angle of the reflected IR beam. Infrared triangulation solutions are usually small
and lightweight, and they work in day and night environments. However, they are
expensive, short-range and cannot be compounded with additional sensors. Infrared
triangulation is commonly used in automatic doors. [32]

3.1.3. Distance Detection with Light

Light distance detection uses a light source with integrated optics to measure the time
taken for the light to hit an object and reflect back to the sensor. Light distance
detection is usually done with a powerful laser light source. Laser distance solutions
are precise and can be used in long range distance detection; therefore, they are well
suited for outdoor applications. Laser solutions have a high measurement frequency,
which allows accurate tracking of moving targets. The drawbacks of laser distance
sensors are their large size, costliness, possible harm to eyesight and the fact that they
cannot be reliably integrated with additional sensors [33]. Laser distance sensors are
commonly used in acquiring LiDAR data for broad areas.

3.1.4. Stereo Vision

Stereo vision is a technique that mimics the binocular vision of humans. A stereo
camera usually has two lenses about 60 millimeters apart from each other, which
results in slight image location disparity when viewing the same object. From this
image disparity, a depth map can be calculated. Stereo cameras only require ambient
light to work, which makes them great for outdoor usage in good light conditions.
However, in poor light conditions or if the object has few distinctive features, acquiring
the depth map is difficult. For real time applications, stereo cameras require great
processing power to produce good resolution and instantaneous output. Stereo cameras
usually work within a 2-meter range, but this varies and is determined by the distance
between the camera’s lenses. [29]

3.1.5. Time-Of-Flight

ToF (Time-of-flight) cameras calculate the round trip of the light emitted by a laser
or an LED back to the sensor. Compared to stereo vision, ToF is an active technique,
because it actively projects light to measure distance. ToF cameras are great solutions
to use in robotics because these cameras can work in long range, they are lightweight,
easy to use, compact, precise and they have multi-sensor integration. ToF’s few
drawbacks are that reflective surfaces can inhibit the range, outdoor performance can

15

be affected by direct sunlight and accuracy is not as good as with structured light
technique. [34, 35]

3.1.6. Structured Light

In the structured light technique, the camera projects a modulated pattern to the surface
of a scene and calculates the disparity between the original pattern and the observed
pattern. Structured light is an active technique, which means that it works well in low
light conditions. Structured light depth resolution can reach submillimeter level and
it has higher accuracy in short range compared to the ToF method. Structured light
solutions are only used indoor, because of sunlight interference to the projected light
pattern [36]. The solutions can use both visible and invisible light. Invisible light
is generally a better option since the projected pattern could otherwise interfere with
other computer vision methods.

3.2. Depth Cameras

For accurate moving object recognition, ToF or structured light cameras are the best
options. They also have other notable merits such as their availability, price, accuracy
and eye safety.

3.2.1. Azure Kinect DK

In fall 2019, Microsoft released the Azure Kinect DK (development kit). Azure Kinect
DK has a 1 Megapixel depth camera and a 12 Megapixel RGB camera, and it also
provides a 360 degree sound pickup and an IMU (inertial measurement unit) for
building advanced computer vision and speech models. Azure Kinect DK is integrated
well with Azure cloud computing environment and offers an almost "plug and play"
experience. Azure cloud computing environment provides speech and vision services,
body tracking and sensor software development kit. Azure Kinect DK retail price is
$399 and it is currently available in the United States, China, Japan, United Kingdom
and Germany. [37]

3.2.2. Intel RealSense D435

The Intel RealSense D435 (Figure 6) is a depth camera solution from Intel RealSense
D400 camera family. It provides high-quality depth information that can be used in a
variety of applications. It also offers the widest field of view of all the Intel RealSense
cameras, and it is ideal for fast moving applications thanks to its global shutter. Intel
provides a RealSense SDK (software development kit) and cross-platform support,
which has made the RealSense D400 camera family an excellent option for developing
new products or prototypes. These cameras are used for example in robotics, drones,

16

3D scanning, people tracking, and in facial authentication. Intel RealSense D435 retail
price is $199 and is easily available everywhere around the world. [38]

Figure 6. Intel RealSense D435 depth camera

3.2.3. Terabee

Terabee offers multiple depth camera solutions from LiDAR range finders to ToF
cameras, which are commonly used by large companies in mobile robotics, IoT
(Internet of things) devices, and industrial automation. Their ToF cameras offer
multiple different features such as hand gesture recognition and object recognition.
When compared to RealSense product family and Azure Kinect DK, Terabee cameras
allow broader customization options by offering many different interchangeable
interface boards for the camera. Terabee also offers a variety of different SDK’s
to make prototyping, implementation and developing easier. Terabee cameras are
inexpensive compared to other depth cameras on the market. The cheapest Terabee
camera is Teraranger Evo 64x starting at only $99; however, it has a small field of
view and a low pixel count [39].

3.3. Libraries

Due to the contributions of the open-source community, many image processing
libraries are available. Each of these libraries has its advantages and disadvantages.
In this section, three commonly used libraries and one highly optimized library for 3D
image processing are introduced and compared.

17

3.3.1. Point Cloud Library

PCL (Point Cloud Library) is a massive open-source library used for 2D and 3D image
processing. The PCL framework offers multiple different features for point cloud data
processing, for example, filtering, stitching multiple point clouds together, segmenting,
object recognition based on the object’s geometric appearance, and visualization. Even
though it supports 2D image processing as well, it is mainly focused on 3D image
processing [40, 41, 42].

3.3.2. OpenCV

OpenCV (Open source computer vision) library is a large open source project
dedicated to 2D/3D real-time computer vision. OpenCV has currently the most
comprehensive selection of algorithms compared to other available image processing
libraries. The library contains more than 2500 algorithms, and these can be used,
for example, to detect and recognize faces, identify objects, extract 3D models and
produce 3D point cloud from stereo cameras, among other things. OpenCV’s 3D usage
is fairly limited and it is mainly used to transform 2D images into 3D point clouds[43].

3.3.3. Open3D

Open3D is one of the most modern open source 3D point cloud data processing
libraries. It currently has fewer algorithms and tools to use than PCL. However, it
is designed and developed to be highly optimized, take advantage of parallelization,
and support rapid development of software that processes 3D data[40, 44].

3.3.4. Cilantro

Cilantro is currently the most barebone and fastest open source library available,
that is designed to process point cloud data. However, Cilantro has rather limited
documentation and due to its lean design, it does not support visualization [40].

18

4. IMPLEMENTATION

This work introduces a real-time program to segment people from depth frames. This
program will then later be integrated as a part of a service robot, to provide information
to the robot about the people around it. The service robot is going to operate in an open
environment of which an example can be seen in Figure 7. Since the environment is
relatively open and the robot’s view is mostly going to be full of people instead of
random objects, an AI based detection verification step can be omitted and the main
focus of this work is on fast object separation and human detection.

PCL was selected as the depth data processing library, due to its large number of
already implemented algorithms, flexibility and support for point cloud processing.

Intel RealSense Depth Camera D435 was chosen for this project, due to its
affordable price, availability and compatibility with the chosen data processing library
(PCL). The D435 camera provides both RGB and depth frames, which could both be
used for human detection. In this work, only the depth frames were researched because
the amount of research done on human detection from just the depth data does not
compare to the amount of research done on human detection from RGB and RGB-D
(red, green, blue and depth) images.

Figure 7. Example environment

4.1. Data Pipeline

The data was processed with various different techniques to find the optimal people
segmentation method for this project. This resulted in the data processing pipeline
shown in Figure 8. Other methods were also evaluated, but their disadvantages were
too great compared to their benefits. For example, taking a reference frame of a people-
free environment and then comparing other frames to the reference frame provided
very fast and accurate results. However, this method was not suitable for this project,

19

since it would have meant taking a new reference frame of the people-free environment
every time the camera moved.

Figure 8. Data pipeline for chosen method

4.1.1. Input Data

The D435 camera allows depth streams in various resolutions and frame rates as seen
in Table 2. In this work, depth frames were processed at 30 FPS (frames per second)
and with a 640x480 resolution. Choosing this resolution over the highest possible one,
already cuts down the amount of points in the point cloud to a one third. The raw depth
values obtained from the D435 depth camera need to be scaled by a constant to obtain
the distance in meters. In addition, to apply the upcoming processing steps, the metric
horizontal and vertical distances need to be calculated.

20

Table 2. Vision Processor D4 Depth Data Stream6

Depth-Frame
USB 3.1 Gen1 USB 2.0

Resolution Frame Rate (FPS) Resolution Frame Rate (FPS)
1280x720 6, 15, 30 1280x720 6
848x480 6, 15, 30, 60, 90 ———- ———-
640x480 6, 15, 30, 60, 90 640x480 6, 15, 30
640x360 6, 15, 30, 60, 90 ———- ———-
480x270 6, 15, 30, 60, 90 480x270 6, 15, 30, 60
424x240 6, 15, 30, 60, 90 ———- ———-

Although the Intel RealSense SDK provides a function to convert X and Y pixel
values into real world coordinates, in this work a custom conversion function was
implemented, where the metric distances Pz, Px and Py of a particular point P are
computed with:

Pz = Dx, y · Scale (1)

Px = Pz ·
x− 1

2
w

fx
(2)

Py = Pz ·
y − 1

2
h

fy
(3)

Where Dx, y is a raw distance at specific pixel location in the image, Scale is a depth
scale that converts the raw distance to meters, x and y denote the pixel location in the
image, w and h are the image width and height in pixels, and fx and fy are intrinsic
parameters of the camera. The resulting input point cloud can be seen in Figure 9 and
the corresponding RGB frame on Figure 10.

Figure 9. Point cloud after conversion Figure 10. Input RGB image

6Data adabted from Intel RealSense D400 Series Product Family Datasheet: https://www.
intelrealsense.com/wp-content/uploads/2019/10/Intel-RealSense-D400-
Series-Datasheet-Oct-2019.pdf?_ga=2.2100848.1508440573.1585647177-
331894120.1584636039

 https://www.intelrealsense.com/wp-content/uploads/2019/10/Intel-RealSense-D400-Series-Datasheet-Oct-2019.pdf?_ga=2.2100848.1508440573.1585647177-331894120.1584636039
 https://www.intelrealsense.com/wp-content/uploads/2019/10/Intel-RealSense-D400-Series-Datasheet-Oct-2019.pdf?_ga=2.2100848.1508440573.1585647177-331894120.1584636039
 https://www.intelrealsense.com/wp-content/uploads/2019/10/Intel-RealSense-D400-Series-Datasheet-Oct-2019.pdf?_ga=2.2100848.1508440573.1585647177-331894120.1584636039
 https://www.intelrealsense.com/wp-content/uploads/2019/10/Intel-RealSense-D400-Series-Datasheet-Oct-2019.pdf?_ga=2.2100848.1508440573.1585647177-331894120.1584636039

21

The custom function reduced the conversion time to around one third (from 16.66ms
to 5.45ms as seen in Appendix 2) and provides more flexibility for this work. For
example, the upcoming cut-off step can be already performed in the conversion phase
and thus, even more processing time can be saved. The difference in speed might not be
related to the math itself. The real reason might be that in the custom function, the data
is read and processed straight from the raw data frame, instead of using pre-built data
structures for the frames and their get-methods, which are somewhat time-consuming
methods with large amounts of data points.

4.1.2. Filtering

With huge amounts of data, the processing time quickly becomes the bottleneck in the
program. In this project especially, having the program run in real time is essential
because the robot’s movements have to be responsive. This problem can be alleviated
with data filtering. In short, data filtering is the process of reducing the number of data
points. The goal of data filtering is to have a data set as small as possible, that still
represents the original input. This is an important step in any data processing pipeline
that deals with large amounts of data.

Choosing the correct filtering method or methods is crucial and should be done case
by case. In this project, data was filtered with voxel grid filtering, due to its ability to
maintain the shape of the original point cloud. Voxel grid filtering creates a 3D voxel
grid over the input data. Within each voxel, all the points are combined into one point
by calculating the average of the points. This process drastically reduces the number
of points in the point cloud, but still represents the underlying surface accurately. This
accurate representation of the surface is important for future steps and it also helps to
reduce the processing time because the planar component (the floor) can be separated
with less effort.

With the voxel grid filter, the number of data points was decreased by around 95%.
This reduction of points made the algorithm run slightly faster; however, it was still
taking a considerable amount of time. After some investigation, it was noticed that
the data from the D435 camera was very noisy and distorted around objects that were
far away. More research on this issue was done, and it was noticed that the further
the object is, the more distorted it will be. Objects, people and even the roof were
stretched out. This caused problems with the upcoming floor segmentation because
fitting a planar model into a noisy point cloud turned out to be difficult and slow. In
Figures 11, 12, 13 and 14 the distortion is illustrated. Especially on Figure 14, where
two people are standing at 2m and 6m distance away from the camera, the distortion
can clearly be seen.

22

Figure 11. Person at 2m distance Figure 12. Person at 3m distance

Figure 13. People at 4m distance Figure 14. People at 2m and 6m distance

To counter this problem, a cut-off distance (meaning a distance after which the points
of the cloud were discarded) of 6.0m was implemented. The distortion at this distance
remained manageable and would allow the robot to see far enough. It has to be kept in
mind that the cut-off distance was chosen specifically for this environment and can be
adjusted accordingly. The resulting point cloud after each filtering step is applied can
be seen in Figures 15 and 16.

23

Figure 15. Result after cut-off filter Figure 16. Result after voxel grid filter

4.1.3. Floor Segmentation

At this phase, separating people from the point cloud using the euclidean clustering
algorithm would be impossible. Currently, everything that is connected to the floor
would be considered to be in the same cluster. For example, the results of the clustering
algorithm on the frame shown in Figure 16, would result in two clusters circled in red
and green in Figure 17. From this, one can see that if the people in the frame were also
flying like the noise cluster, they could also be separated. Unfortunately, every person
in the view of the camera is probably not going to be flying around with a jet pack,
ergo another processing step is required.

Figure 17. Clustering result before floor segmentation

24

The required processing step needs to remove the connection between different
people and objects. This means that the floor needs to be removed. Because the
floor is a flat horizontal 3D plane, it can be removed using RANSAC (random sample
consensus). The RANSAC algorithm tries to fit a model into the data and group the
data into inliers and outliers. Inliers are points within the model and outliers are points
outside the model. In this case, the problem is solved by fitting a horizontal plane
model into the point cloud and then removing the inliers, that is the points inside the
horizontal plane. When fitting the horizontal plane, a ±30 degree rotation is allowed
to account for slight changes in the camera angle.

After running the main part of the floor segmentation algorithm, there is still a lot
of noise left around the floor plane and way above it, as can be seen in Figure 18.
However, now that the floor’s coordinates are known, they can be used as a reference
to know at what level people are supposed to be. This means that points near the floor
plane and high above the floor plane can be removed. The better filtered result of the
floor removal can be seen in Figure 19.

Figure 18. Result after segmenting the floor plane

The floor segmentation algorithm is the slowest part of the program (39.01ms as seen
in Appendix 2) but counteracting this speed problem is fairly simple. The program
only needs to run this algorithm if the camera is moved in the Y direction, because
only then do the floor’s coordinates change in relation to the camera. After running
the algorithm once, the floor plane’s coordinates are saved. When the next frame
arrives, the floor plane can be removed without using the algorithm. This saves a lot of
computation time because the floor plane can be removed at the same time the cut-off is
applied. Furthermore, both of these and the additional filtering after the floor removal
are implemented into the data conversion function, which means the data needs to be
looped through only once to achieve the results seen in Figure 19.

25

Figure 19. Result after floor segmentation and additional height-based filtering

4.1.4. Clustering

Now, as can be seen from Figure 19, the point cloud clearly consists of separate objects
not connected by anything, but they are still all contained within the same point cloud.
To be able to detect people and further parse the data, the clusters need to be extracted
from the point cloud.

To solve this problem, a simple clustering algorithm based on euclidean distances
between points is applied to the point cloud. Euclidean distance clustering simply
groups points together within a certain distance threshold. This approach works well
for the input point cloud because the floor plane has been removed and none of the
objects are connected by anything. By setting certain requirements shown in Appendix
1 for these clusters, a lot of the noise can also be removed. These requirements include
the minimum and maximum height of the cluster and the minimum number of points
within the cluster.

26

Figure 20. Result after euclidean distance clustering

As seen in Figure 20, the noise is now gone and all that is left is two clusters. One
containing one person and one containing two people. Further processing steps can
now be easily applied to each cluster.

4.1.5. Sub-Clustering Groups of People

Two or more people can be merged into the same cluster because they are too close to
each other as seen on Figure 20. People can also be clustered in with objects next to
them. This merging is further enhanced because of the camera noise, and needs to be
dealt with in the data processing phase.

Separating multiple people from one cluster can be achieved by detecting the heads
of the people in the cluster, since there is a one-to-one person-head correspondence.
The head is usually the highest part of the human body, and a certain "uphill/downhill"
pattern can be distinguished from the point cloud. By detecting these mountain tops,
so to speak, a sub-clustering algorithm can be implemented.

Using the algorithm presented in [45], a sub-clustering method that detects people
from a 3D point cloud and segments people into sub-clusters based on the head
positions was implemented. The algorithm goes as follows:

1. Divide each cluster into bins, each containing 100 points.

2. Find the highest point in each bin that is higher than the height threshold (1.3m)
from the plane floor.

3. From those points, calculate the local maxima.

4. Create a sub-cluster for each maximum by taking all the points within 15cm to
its left and 15cm to its right. This creates a 30cm wide sub-cluster.

27

The above-mentioned algorithm reduces the possibility of a chair or a table being
clustered in with a person. The 30cm width of a person is an arbitrary number based
on the idea that people’s heads are usually not closer than that to each other. In the
paper [45], 30cm was also used, but for discarding the local maxima within 30cm
euclidean distance of each other. This discarding of other maxima is not implemented
in this project, because after testing, separating the data into bins and then calculating
the local maxima was concluded sufficient enough to remove any false head detections.
The resulting sub-clustered cloud can be seen in Figure 21, and clusters can now be
used to make decisions on where to turn the robot’s head.

Figure 21. Result after sub-clustering

28

5. FUTURE WORK

Even though the proposed algorithm works well in an open environment, there is still
much that can be improved to get more reliable results and a more responsive robot,
once the program is integrated into one. This can be achieved by either working on
improving the program to further decrease the processing time or taking advantage of
AI to verify that the detections from the algorithm are indeed human.

The processing time could be improved by using a more powerful library like
Cilantro or by implementing all the algorithms used from scratch. The latter method is
probably better in the long term, since it allows designing the algorithms to perfectly
fit the program. Although improvements in processing time can be beneficial, the
achieved processing time with the current implementation is adequate; therefore, the
main focus of future work should be in improving the accuracy of the detections.

Because the processed data is available in real time, taking advantage of AI to verify
the detections should be the clear next step to take for future improvements. There
are two possible ways to start implementing the AI: either doing human detection on
the separated point cloud or doing it on the corresponding area of the RGB image. If
the working environment of the service robot is considered, projecting the separated
3D point cloud clusters into a 2D plane, and then detecting if the shape corresponds
to the shape of a human, could be a fast and effective solution. This projection
would decrease the distortion of the human body illustrated in Figures 11, 12, 13 and
14. However, in good lighting conditions, using the area of the RGB images that
corresponds to the area of the separated point cloud for correct detection verification
will probably yield more accurate results.

29

6. TIME USAGE

The work for this project was mostly done as a group and partly individually. Usually,
the group scheduled 3 workdays per week for this project. Most of the group work was
done remotely. Table 3 represents the time used by each group member in this project.

Table 3. Time usage by each group member
Name Hours
Miiro Kuosmanen 210
Samu Majabacka 215
Kalle-Oskari Suvanto 210

30

7. SUMMARY

Thanks to the continuous development of technology and robotics, service robots are
becoming more commonplace and can already be found in many households. This
means that the number of robots working among humans is constantly increasing,
and therefore, their safety for people is becoming a critical factor. The safety of the
robots can be improved by giving them a better understanding about their environment,
which can be achieved with the help of different camera technologies and artificial
intelligence.

In this project, an algorithm capable of distinguishing people from depth data
obtained from a depth camera was implemented. The algorithm works by processing
the depth data in multiple steps, where the first steps are focused on noise and
data reduction. This speeds up the algorithm considerably and allows real-time
data processing. After this, through various other stages and algorithms, people are
separated from the environment by mainly using naive and heuristics methods.

The developed algorithm worked admirably well in real time, which was one of the
purposes of the algorithm. The proposed algorithm could be used in various situations,
for example giving a service robot information about the people around it and as a pre-
processing phase for AI solutions. However, there is a lot of room for improvement in
the algorithm as it only works in a relatively open environment. Also, the algorithm
uses heuristics for human detection, so this aspect could also be significantly improved
with the help of artificial intelligence.

31

8. REFERENCES

[1] Moore G.E. (2006) Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE
Solid-State Circuits Society Newsletter 11, pp. 33–35.

[2] Murray Campbell A.Joseph Hoane Jr F.h.H. (2002) Deep Blue. Artificial
Intelligence 134, pp. 57–83. URL: https://www.sciencedirect.com/
science/article/pii/S0004370201001291?via%3Dihub.

[3] Granter S.R., Beck A.H. & Papke D.J. (2017) Alphago, deep learning, and
the future of the human microscopist. Archives of Pathology & Laboratory
Medicine 141, pp. 619–621. URL: https://doi.org/10.5858/arpa.
2016-0471-ED, pMID: 28447900.

[4] Illustrated London News - Saturday 15 September 1928. URL:
https://www.britishnewspaperarchive.co.uk/viewer/
BL/0001578/19280915/035/0011.

[5] Guizzo E. (2019) By leaps and bounds: An exclusive look at how boston
dynamics is redefining robot agility. IEEE Spectrum 56, pp. 34–39.

[6] (2020), Greek mythology. URL: https://www.greekmythology.com/
Myths/Creatures/Talos/talos.html.

[7] Rosheim M. (2006) Leonardo’s Lost Robots. Springer, 69 p.

[8] (2012) robot, n.1. Oxford English Dictionary. URL: https://www.oed.
com/view/Entry/275486?rskey=vPXfO0&result=1.

[9] O’Regan G. (2015) Unimation, Springer International Publishing, Cham. pp.
219–223. URL: https://doi.org/10.1007/978-3-319-21464-1_
34.

[10] Müller D.C. (2018) Ifr press conference. IFR International federation of
robotics 28. URL: https://ifr.org/downloads/press2018/IFR%
20World%20Robotics%20Presentation%20-%2018%20Sept%
202019.pdf.

[11] Sprenger M. & Mettler T. (2015) Service robots. Business & Information Systems
Engineering 57.

[12] (2012) Robots and robotic devices – Vocabulary. Standard, International
Organization for Standardization, Geneva, CH.

[13] Park E., Kong H., Lim H., Lee J., You S. & del Pobil A.P. (2011) The effect
of robot’s behavior vs. appearance on communication with humans. In: 2011
6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp.
219–220.

https://www.sciencedirect.com/science/article/pii/S0004370201001291?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0004370201001291?via%3Dihub
https://doi.org/10.5858/arpa.2016-0471-ED
https://doi.org/10.5858/arpa.2016-0471-ED
https://www.britishnewspaperarchive.co.uk/viewer/BL/0001578/19280915/035/0011
https://www.britishnewspaperarchive.co.uk/viewer/BL/0001578/19280915/035/0011
https://www.greekmythology.com/Myths/Creatures/Talos/talos.html
https://www.greekmythology.com/Myths/Creatures/Talos/talos.html
https://www.oed.com/view/Entry/275486?rskey=vPXfO0&result=1
https://www.oed.com/view/Entry/275486?rskey=vPXfO0&result=1
https://doi.org/10.1007/978-3-319-21464-1_34
https://doi.org/10.1007/978-3-319-21464-1_34
https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf
https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf
https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf

32

[14] Goetz J., Kiesler S. & Powers A. (2003) Matching robot appearance and behavior
to tasks to improve human-robot cooperation. In: The 12th IEEE International
Workshop on Robot and Human Interactive Communication, 2003. Proceedings.
ROMAN 2003., pp. 55–60.

[15] Cooney M. & M. Karlsson S. (2015) Impressions of size-changing in a
companion robot. In: Proceedings of the 2nd International Conference on
Physiological Computing Systems, PhyCS 2015, SCITEPRESS - Science and
Technology Publications, Lda, Setubal, PRT, p. 118–123. URL: https://
doi.org/10.5220/0005328801180123.

[16] Huang C. & Mutlu B. (2012) Robot behavior toolkit: Generating effective
social behaviors for robots. In: 2012 7th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pp. 25–32.

[17] Mathur M.B. & Reichling D.B. (2016) Navigating a social world with robot
partners: A quantitative cartography of the uncanny valley. Cognition 146, pp. 22
– 32. URL: http://www.sciencedirect.com/science/article/
pii/S0010027715300640.

[18] Wood L.J., Zaraki A., Robins B. & Dautenhahn K. (2019) Developing kaspar: A
humanoid robot for children with autism. International Journal of Social Robotics
URL: https://doi.org/10.1007/s12369-019-00563-6.

[19] Cheang H.S. & Pell M.D. (2008) The sound of sarcasm. Speech Communication
50, pp. 366 – 381. URL: http://www.sciencedirect.com/science/
article/pii/S0167639307001884.

[20] Wu Y.C. & Coulson S. (2007) How iconic gestures enhance communication:
An erp study. Brain and Language 101, pp. 234 – 245. URL:
http://www.sciencedirect.com/science/article/pii/
S0093934X0600438X, gesture, Brain, and Language.

[21] Obermeier C., Dolk T. & Gunter T.C. (2012) The benefit of gestures during
communication: Evidence from hearing and hearing-impaired individuals.
Cortex 48, pp. 857 – 870. URL: http://www.sciencedirect.com/
science/article/pii/S0010945211000323, language and the Motor
System.

[22] Cooney M. & Sant’Anna A. (2017) Avoiding playfulness gone wrong: Exploring
multi-objective reaching motion generation in a social robot. International
Journal of Social Robotics 9, pp. 545–562. URL: https://doi.org/10.
1007/s12369-017-0411-1.

[23] Cary M.S. (1978) The role of gaze in the initiation of conversation. Social
Psychology 41, pp. 269–271. URL: http://www.jstor.org/stable/
3033565.

[24] Lee D.H. & Anderson A.K. (2017) Reading what the mind thinks from how the
eye sees. Psychological Science 28, pp. 494–503. URL: https://doi.org/
10.1177/0956797616687364, pMID: 28406382.

https://doi.org/10.5220/0005328801180123
https://doi.org/10.5220/0005328801180123
http://www.sciencedirect.com/science/article/pii/S0010027715300640
http://www.sciencedirect.com/science/article/pii/S0010027715300640
https://doi.org/10.1007/s12369-019-00563-6
http://www.sciencedirect.com/science/article/pii/S0167639307001884
http://www.sciencedirect.com/science/article/pii/S0167639307001884
http://www.sciencedirect.com/science/article/pii/S0093934X0600438X
http://www.sciencedirect.com/science/article/pii/S0093934X0600438X
http://www.sciencedirect.com/science/article/pii/S0010945211000323
http://www.sciencedirect.com/science/article/pii/S0010945211000323
https://doi.org/10.1007/s12369-017-0411-1
https://doi.org/10.1007/s12369-017-0411-1
http://www.jstor.org/stable/3033565
http://www.jstor.org/stable/3033565
https://doi.org/10.1177/0956797616687364
https://doi.org/10.1177/0956797616687364

33

[25] Hanna J.E. & Brennan S.E. (2007) Speakers’ eye gaze disambiguates referring
expressions early during face-to-face conversation. Journal of Memory and
Language 57, pp. 596 – 615. URL: http://www.sciencedirect.
com/science/article/pii/S0749596X07000174, language-Vision
Interaction.

[26] Taigman Y., Yang M., Ranzato M. & Wolf L. (2014) Deepface: Closing the gap
to human-level performance in face verification. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[27] Song S., Zhang L. & Xiao J. (2015) Robot in a room: Toward perfect object
recognition in closed environments. CoRR, abs/1507.02703 .

[28] Munaro M. & Menegatti E. (2014) Fast rgb-d people tracking for service robots.
Autonomous Robots 37.

[29] Jiejie Zhu, Liang Wang, Ruigang Yang & Davis J. (2008) Fusion of time-of-
flight depth and stereo for high accuracy depth maps. In: 2008 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–8.

[30] (1946) The Radar of the Deep. Popular Science, 84-87 p. URL:
https://books.google.fi/books?id=bCEDAAAAMBAJ&lpg=
PA84&dq=popular%20science%20July%201946&pg=PP1#v=
onepage&q&f=true.

[31] Moravec H. & Elfes A. (1985) High resolution maps from wide angle sonar. In:
Proceedings. 1985 IEEE International Conference on Robotics and Automation,
vol. 2, vol. 2, pp. 116–121.

[32] Pastorius W. (2013) Triangulation sensors.

[33] NOOA (2013), Lidar—light detection and ranging—is a remote sensing method
used to examine the surface of the earth. URL: https://oceanservice.
noaa.gov/facts/lidar.html, accessed 20.1.2013.

[34] Cui Y., Schuon S., Chan D., Thrun S. & Theobalt C. (2010) 3d shape scanning
with a time-of-flight camera. In: 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 1173–1180.

[35] Ringbeck D.I.T. (2007) A 3 d time of flight camera for object detection.

[36] Scharstein D. & Szeliski R. (2003) High-accuracy stereo depth maps using
structured light. In: 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings., vol. 1, vol. 1, pp. I–I.

[37] About azure kinect dk. https://docs.microsoft.com/en-
us/azure/kinect-dk/about-azure-kinect-dk. Accessed: 2020-
18-2.

[38] Intel realsense d435. https://www.intelrealsense.com/depth-
camera-d435/. Accessed: 2020-18-2.

http://www.sciencedirect.com/science/article/pii/S0749596X07000174
http://www.sciencedirect.com/science/article/pii/S0749596X07000174
https://books.google.fi/books?id=bCEDAAAAMBAJ&lpg=PA84&dq=popular%20science%20July%201946&pg=PP1#v=onepage&q&f=true
https://books.google.fi/books?id=bCEDAAAAMBAJ&lpg=PA84&dq=popular%20science%20July%201946&pg=PP1#v=onepage&q&f=true
https://books.google.fi/books?id=bCEDAAAAMBAJ&lpg=PA84&dq=popular%20science%20July%201946&pg=PP1#v=onepage&q&f=true
https://oceanservice.noaa.gov/facts/lidar.html
https://oceanservice.noaa.gov/facts/lidar.html
https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk
https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/

34

[39] Terabee. https://www.terabee.com/sensors-modules/. Accessed:
2020-18-2.

[40] Zampogiannis K., Fermüller C. & Aloimonos Y. (2018) cilantro: A lean,
versatile, and efficient library for point cloud data processing. pp. 1364–1367.

[41] Rusu R.B. & Cousins S. (2011) 3D is here: Point Cloud Library (PCL). In: IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China.

[42] Rusu R.B. & Cousins S. (2011) 3d is here: Point cloud library (pcl). In: 2011
IEEE International Conference on Robotics and Automation, pp. 1–4.

[43] Bradski G. (2000) The OpenCV Library. Dr. Dobb’s Journal of Software Tools .

[44] Zhou Q.Y., Park J. & Koltun V. (2018) Open3D: A modern library for 3D data
processing. arXiv:1801.09847 .

[45] Munaro M., Basso F. & Menegatti E. (2012) Tracking people within groups with
rgb-d data. pp. 2101–2107.

https://www.terabee.com/sensors-modules/

35

9. APPENDIX

Appendix 1. Variables
Local maximum max height 2.3m
Local maximum min height 1.3m
Bin size 100 points
Voxel leaf size 0.05m
RANSAC distance threshold 0.10m
RANSAC maximum allowed
plane rotation7

±30 degrees

Euclidean cluster tolerance 0.05m
minimum cluster size 100 points
cluster max height 2.3m
cluster min height 1.3m
cut-off distance 6.0m

Appendix 2. Processing times
Intel RealSense SDK
conversion function

16.66 ms

Custom conversion 5.45 ms
Floor removal 39.01 ms
Voxel grid filter 4.77 ms
Clustering 17.91 ms
Sub-clustering 0.54 ms
Total time per frame8 28.67 ms

Times are averages of 100 processed frames with
off-the-self laptop. Its CPU and RAM can be seen
in Appendix 3.

Appendix 3. Computer specifications
CPU Intel i5-7200U @ 2.50GHz
RAM DDR4 2133MHz 16.0GB

7The fitted model was a horizontal plane
8After running floor removal once, only the New conversion, Voxel grid filtering, clustering and

sub-clustering steps need to be run

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	REFERENCES
	

