R

UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Charmin Asirimath

EXPANSIONS AND FACTORIZATIONS OF
MATRICES AND THEIR APPLICATIONS

Master’s Thesis

Degree Programme in Biomedical Engineering: Signal and Image Processing
June 2020

Asirimath C. (2020) Expansions and Factorizations of Matrices and Their
Applications. University of Oulu, Degree Programme in Biomedical Engineering:
Signal and Image Processing, 58 p.

ABSTRACT

Linear algebra is a foundation to decompositions and algorithms for extracting
simple structures from complex data. In this thesis, we investigate and apply
modern techniques from linear algebra to solve problems arising in signal
processing and computer science. In particular, we focus on data that takes the
shape of a matrix and we explore how to represent it as products of circulant and
diagonal matrices. To this end, we study matrix decompositions, approximations,
and structured matrix expansions whose elements are products of circulant and
diagonal matrices. Computationally, we develop a matrix expansion with DCD
matrices for approximating a given matrix. Remarkably, DCD matrices, i.e.,
a product of diagonal matrix, circulant matrix, and another diagonal matrix,
give an natural extension to rank-one matrices. Inspired from the singular
value decomposition, we introduce a notion of a matrix rank closely related
to the expansion and compute the rank of some specific structured matrices.
Specifically, Toeplitz matrix is a sum of two DCD matrices. Here, we present
a greedy algorithmic framework to devise the expansion numerically. Finally,
we show that the practical uses of the DCD expansion can be complemented
by the proposed framework and perform two experiments with a view towards
applications.

Keywords: Circulant matrix, Diagonal matrix, Generalized diagonal matrix,
Toeplitz matrix, Matrix factorizations, Matrix expansions, SVD, PCA, FFT, JL-
Transforms.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION.....eutiiiieee ettt 6

2. A TOUR OF MATRIX FACTORIZATIONS AND EXPANSIONS 10
2.0.1. Classical Matrix Factorizationsccccccuuuiieieeiiiiiiiiinnneeeennn. 10
2.0.2. Nonnegative Matrix Factorization for Real Matrices.................. 11
2.0.3. Some Non-Standard Matrix Decompositions................ceeeeeeeenn. 14
2.0.4. Some Random Expansions in StatiStiCS..........coeeeereiriuiunnereeeennn. 18
2.0.5. Factorizations of Polynomials and Their Relation to Matrices 18

3. SVD AND ITS APPLICATIONS IN COMPRESSIONccccooviiiiiiiiiiiinnnnnnn 20

4. PRODUCTS OF CIRCULANT AND DIAGONAL MATRICES IN

FACTORING AND EXPANSIONSooiiiiiiiiiiiiieiiiiiieeeeee e 24

4.0.1. Review of Circulant Matricescccccceeverrrrrriminmiiireeniienenenenee 24
4.0.2. DCD Factors in Matrix Factorizations and Expansions 28
4.0.3. Approximating with CD Matricesccccccevvviiiiiiiiiiiiinininnnnn. 38

5. ALGORITHMS FOR APPROXIMATING WITH DCD MATRICES............. 41
5.0.1. Gradient Descent Approachcccccciiiiiiiiiiiiiiiiiiiiiiees 43
5.0.2. Alternating Minimization Approachccoeeeeeiiiiiiiiinnnennnn. 44
5.0.3. Gauss-Newton Approacheeeeeeeiiiiiiiiiiineeiiiiiiiiieeeeeeeeene 46

6. EXPERIMENTS: PROOF OF CONCEPTccooiiiiiiiiiiiiiiiiiiiiiiiiiiiei 48
6.0.1. Initial Point Selection Methods.............ccoovviiiiiiiiiiiiiiiiiinnneeen, 52
6.0.2. Some Comments on Orthogonality of DCD Approximation....... 53

7. CONCLUSION AND FUTURE DIRECTIONS.........ccooiiiiiiiiiiiiiiiiiiiiiiieneienes 55

8. REFERENCESccoiiiiiiiiiiiii e 56

FOREWORD

About one year ago, I walked a few steps, but at a high scientific amplitude, with
Marko while discussing some research ideas. Apparently, he proceeded to show me
novel and generalized versions of the ideas that I had been thinking about. Since
then, I have benefited to work on very fascinating research topic under the guidance
of Marko. Therefore, I would like to first thank my supervisor Prof. Marko Huhtanen
for his endless support, understanding, and motivation throughout this research. His
constant encouragement and personal example have been instrumental in developing
my Master’s thesis.

I am also truly thankful to Prof. Tapio Seppinen for his advice and great flexibility.
He was always very enthusiastic during our research work and I am really greatful for
his understandings me at difficult times. Further, I would like to thank Tapio again for
giving me a great opportunity for being part of a leading research group CMVS.

I am also grateful for numerous helpful discussions with Kai and Nisansala. I learned
a huge amount from working with you. Last but not least, I would like to thank my
parents and my brother for the immense support and love they have provided me during
my studies.

Oulu, 26th May, 2020
Charmin Asirimath

University Supervisor & Technical Supervisor: Prof. Marko Huhtanen
Second Examiner: Prof. Tapio Seppédnen

LIST OF ABBREVIATIONS AND SYMBOLS

1 Vector with all components one.

| Identity matrix.

D Diagonal matrix.

C Circulant matrix.

T Toeplitz matrix.

F Fourier matrix.

X7 Transpose of matrix X.

X* Hermitian (complex conjugate) transpose of matrix X.
X! Inverse of matrix X.

Diag(X) Diagonal of matrix X.

Tr(X) Trace of matrix X.

T1 % To Element-wise multiplication of vectors x; and z-.
T Complex conjugate of x.

N Natural numbers.

R Real numbers.

R™ Real n-vectors.

R7>m Real n x m matrices.

C Complex numbers.

cr Complex n-vectors.

Crxm Complex n X m matrices.

C Set of all circulant matrices.

D Set of all diagonal matrices.

of it" singular value of a matrix.

|z, Euclidean norm of z.

1X|| Frobenius norm of matrix X.

<y Strict componentwise inequality between vectors z and y.
x <y Componentwise inequality between vectors = and y.
arg(+) argument.

fio fo Composition of functions f; and f5.

dom(f) Domain of function f.

Vf Gradient of function f.

J Jacobian matrix of a function.

1. INTRODUCTION

With the proliferation of advanced data acquisition techniques in recent years, data
sets have grown exponentially in size. It has been a motive for designing novel
algorithmic paradigms for approximating such data, particularly in the area of signal
processing, electrical circuit design, computer vision, and many others. One example is
compressed sensing (CS) which exploits sparsity patterns of the data with specialized
methods. At the heart of CS, one computes the probability of intersecting a convex
cone K with the apex at origin and a randomly sampled m-dimensional linear subsapce
in a n-dimensional Euclidean space with m < n [1]. For a low dimensional
configuration, see Figure 1. This geometric problem leads to designing new kind
of algorithms in data compression with mathematical promises on fast computations
under certain conditions [1].

However, entries of higher dimensional data structures (e.g., matrices and tensors)
may be equipped with a complexity reduction of some sort beyond sparsity
patterns (e.g., circulant and symmetric). To this end, one can consider factoring the
original matrix into structured factors (e.g., decomposing a super resolution image
into rank-one components) such that the original matrix can be parameterized by few
parameters. An advantage of such a factorization is that once computed, these factors
can be reused to solve new problems. Specifically, these factors often can be updated
with respect to small changes in the original data.

In contrast to factoring, another approach to deal with data is approximating a
large matrix with an expansion of structured elements. This becomes a cornerstone
problem in a huge variety of data driven applications and mathematics. A structure
of the elements is generally imposed as a constraint to each factor of the expansion
such as sparsity patterns, non-negativeness, rank constraint, and etc. One of the main
applications of structured expansion is that we can exploit structural properties of the
elements to reduce memory foot print of various algorithms. Another application is that
structured expansions enable us to efficiently represent real world data in a succinct and
parsimonious manner. For example, the SVD can be written as an expansion of rank-
one matrices, see Corollary 13, such that each factor or rank-one matrix can be stored
as a 2-dimensonal array.

Nevertheless, handling and analysing structured factorizations and expansions
of higher dimensional dense data may cost a lot of computational resources and
storage. For example, structured matrix approximation problems are in general

0(0,0)

Figure 1. Intersection of a convex cone and a linear subspace.

NP hard problems; for rank constraint problems see [2]. Thus devising efficient
methods to approximate data is of paramount importance and has opened challenging
mathematical problems.

In summary, state of the art large matrix factorizations and approximations are far
from being developed to meet modern data processing requirements. Hence, a line of
research is going on understanding and developing algorithmic matrix factorizations
and expansions with a view towards pushing the boundaries of state of the art. To this
end, this thesis is focused on exploring computational structured matrix expansions,
factorization, and their applications. A fundamental challenge is approximating a
given matrix A with a structured matrix which has inherently proper computational
properties. Among many, there has been a lot of attention on approximating a
matrix using products of circulant and diagonal matrices. Thus, we describe methods
studied in this thesis based on using diagonal and circulant matrices for factoring,
expanding, and approximating matrices. Moreover, we analyze such factorizations
and approximations towards developing novel algorithms for applications.

Objectives:

This thesis is concerned with the problem of exploring algorithms with sums of DCD
matrices to approximate A € C"*", i.e.,
min A-> D,C,Dy|| , (1)

Di,DjED,CkGC —
7‘7.]7k F

where D and C denote diagonal and circulant matrix subspaces respectively.

To this end, we construct Z: 51 DiCiDj iteratively by fitting an approximately
optimal DCD matrix for residue which is obtained from the previous approximations.
Therefore, our main objective is developing algorithms to solve following optimization
problem for a given A € C™*™,
min
D1,D2€D,C1EC

’A _ chlDQH .
F

Efficient computation is central on developing a new kind of algorithms. Greedy
algorithms and alternate iteration can be potential directions. In addition, we introduce
a notion of a matrix rank, denoted as DCD-rank, which is closely related to the
expansion and we compute the rank of some specific structured matrices.

Why Approximation with Diagonal and Circulant Matrices?

Approximating with diagonal and circulant matrices has lots of advantages:

e Sum of DCD matrices extends rank-%£ matrices in a natural, although different
way, see for Example 8. One of the main difference comes from the fact that
these matrices, already for small £, are typically nonsingular.

e The DCD-rank of Toeplitz matrix is already two. So both the DCD-rank one
and two are very interesting, since the DCD-rank one is an extension of rank-
one matrices, see Section 4.0.2.

e DCD matrices are fundamental blocks in multiplicative matrix approximation,
see Section 4.0.2.

e For small values of the DCD-rank, DCD approximation gives an important
dense structure for which matrix-vector products are cheap.

e DCD approximation enables to perform Fast Fourier Transform (FFT) based
fast computations in certain dimensions, see Section 4.0.1.

Some Applications:

e Linear dimension reduction is a core step in many machine learning and data
analysis applications. A classical example is principle component analysis, see
Section 3 for more details. Note that linear dimensional reduction techniques
can be modeled as a matrix A € R™*"™ with m < n, where matrix-vector
product costs O(mn) operations. An interesting question is that how well
can circulant like structured matrices approximate matrix A7 In particular,
approximating A with partially circulant matrices' becomes more interesting,
since these approximations allow us to enjoy low time and storage complexities.
For example, authors in [3] proposed an algorithm based on partially circulant
matrices for approximating a given fat matrix A, and demonstrated the usage of
the approximant in real world data.

e Random projection has recently emerged as a technique that projects very high
dimensional data onto a lower dimensional subspace using a random matrix.
To this end, CD matrices play a critical role in random circular projections
over unstructured randomized projections. For example, linear mapping f :
R"™ — R™ defined in Johnson-Lindenstrauss lemma can be reformulated as a
product of circulant and diagonal matrices, i.e., f(x) = MDuz, where M is a
partially circulant matrix and D is a diagonal matrix with independent Bernoulli
variables [4]. Computationally, this representation allows to accelerate Fast
Johnson-Lindenstrauss Transforms. For more information, see Section 4.0.3 and
references therein.

e Compression of deep learning frameworks has become very important, since
deep learning, a statistical model with millions of parameters, is a paradigm
shift in learning algorithms for complex data. For example, video classification
is a challenging task for many machine learning algorithms. However,
researchers have proposed different deep learning architectures by arranging
layers and operations among them intelligently (e.g., recurrent networks and
3D convolutional networks) to gain high classification accuracy. A bottleneck
is that these systems are computationally more intensive. To circumvent
aforementioned issue, authors in [5] proposed a compact neural network model
to replace the two fully connected layers of AlexNet by circulant and diagonal
matrices, where circulant is learned by optimization algorithms and diagonal
matrix is sampled at random {1, —1}. They reported that complexity of the

"We define a partial circulant matrix M € C™*" by M = SC, where S is a randomly selected m
rows of I € C"*™ and C € C™*" is a circulant matrix.

proposed model can be reduced by a factor of 10, while maintaining competitive
error rates.

Thesis Outline:

In Section 2, we will give an introduction to the rich area of factorings and expansions
of matrices. In Section 3, we will review the properties of the SVD and study
an algorithm that computes the SVD numerically. After all, the SVD is an ideal
prototype of simultaneous factoring and expansion. In Section 4, we will first present
some classical properties of the circulant and diagonal matrices and then focus on
matrix factorizations, approximations, and expansions consisting products of circulant
and diagonal matrices. Moreover, we will introduce a new notion of a matrix rank
associated with DCD expansion. In Section 5, we will propose a greedy framework
for computing sums of DCD matrices. In Section 6, we will evaluate and illustrate
the performance of the framework numerically. We will compare our simulation
results with the SVD. Section 7 concludes the thesis, presenting some future research
directions.

10

2. A TOUR OF MATRIX FACTORIZATIONS AND
EXPANSIONS

In this section, we give a rudimentary introduction to state of the art matrix
factorizations, expansions, and approximation techniques. In particular, we study how
the different kind of mathematics reveal the beauty of these techniques complemented
by modern applications. We start our discussion by outlining some classical matrix
decompositions in numerical linear algebra. The importance of these decompositions
for engineering and computer science can hardly be overestimated, since these
factorizations are extensively used in a wide range of mathematical subroutines.

However, often times in probability and statistics, the original matrix as well as its
factors turn out to have some specific positivity structures. Roughly speaking, such
a decomposition is called a nonnegative factorization and it decomposes a original
nonnegative matrix into nonnegative factors. One of the most appealing characteristics
of this decomposition is the geometrical interpretations based on nested polyhedra.
This is our second topic and it finds many applications (e.g., statistical mixture models,
matrix completion, and etc).

Next, we turn our attention to structured matrix decompositions that are allowed
to decompose a complex matrix into a product of structured factors. Therefore, it is
more crucial than nonnegative matrix factorization, not only because it provides more
hidden information about our underlying experiments, but also because it may allow us
to solve large systems more efficiently. To this end, we will first revisit a classical result
in linear algebra: any square matrix is a product of two complex symmetric matrices.
With these motivations, we will next study a modern factorization: decomposing
a generic square matrix into a product of Toeplitz matrices. However, one of
the obstacles, apparently an open research problem, in the field is that developing
algorithms to realize these factorizations efficiently.

The fairly recent growth of structured matrix expansions for approximating large
matrices probably masks the hardness of structured matrix factorizations. This is
fueled by recent advancement of theories and sophisticated algorithms. To this end,
we will briefly discuss two matrix expansions appearing in statistics: matrix Gaussian
series and matrix Rademacher series. Specifically, we will notice that Gaussian
Toeplitz matrix can be equivalently written as an expansion of structured Gaussian
matrices.

2.0.1. Classical Matrix Factorizations

Let’s start our journey on matrix factorization by recalling some classical matrix
decompositions in numerical linear algebra. These decompositions revolutionized
computer science, matrix analysis, and applications. Specifically, these matrix
decompositions are extremely useful, stable to compute, and one can perform
backward rounding error analysis.

e Cholesky decomposition: Given a positive definite matrix A, there is a unique
upper triangular matrix R whose diagonal has positive elements such that
A = R*R. Equivalently, one can decompose the A as following: A = LDL",

11

where D and L are diagonal and lower triangular matrices, respectively. State
of the art algorithms require approximately O(";) operations to compute this
factorization.

e QR decomposition: If A is a complex m x n matrix with n < m, then
there is a unitary matrix such that Q*A = [RT 07]7. There are two
classes of algorithms to compute this decomposition: Modified Gram—Schmidt
algorithm and orthogonal triangularization. Both of these algorithms require
approximately O(mn?) operations when m << n.

e Spectral decomposition: If A is a Hermitian matrix, then A = QAQ", where
Q is a unitary matrix and A is a diagonal matrix with eigenvalues of A.
There are some algorithms based on divide and conquer strategy or Jacobi’s
algorithm to compute the decomposition. Generally, these algorithms require
O(n®) operations.

e Schur decomposition: If A is a n x n square matrix, then there is a unitary matrix
Q such that A = QTQ". In this decomposition, T is an upper triangular matrix.

e Singular value decomposition (SVD): SVD has been considered as the most
important and useful matrix factorization for two reasons: (a). Sophisticated
algorithms have been developed to compute the decomposition numerically
stable and reliable ways. (b) The SVD has many appealing properties towards
numerous applications. For example, the SVD geometrically consists an elegant
rank-one matrix expansion and it turns out that those rank-one factors are
orthogonal. Hence, the SVD lies at the core of the modern algorithmic toolbox
and we will discuss about the SVD in more details in our next chapter.

2.0.2. Nonnegative Matrix Factorization for Real Matrices

It is a topic of major interest to factorize real matrices, since the prevalence of matrix
data coming from applications are real and nonnegative. It is arguably more crucial
to compute variations of nonnegative factorizations, since such factorizations may
capture seemly hidden information about underlying experiments. To this end, we are
going to revisit a fundamental notion in linear algebra: rank of a matrix A € R"™*".
Even though rank is defined as the dimension of the span of the rows or span of the
columns usually, one can also define it as minimal 7 that admits factoring A = XY
with X € R™*"and Y € R"*". Equivalently, rank of A can be defined as the minimal
r for which there exist vectors x1,...,2z,, € R" (corresponding to rows of X) and
Y1, .-, Yo € R" (corresponding to columns of Y) such that A(i,j) = zly;, for all
1 <17 <m,1 <7 < n. Interestingly, this factorization can be explained geometrically
using a pair of nested polytopes when A has nonnegative entries: outer polytope is
defined by inequalities Xz > 0 whereas inner polytope is defined by a convex hull
generated by columns of Y, see Figure 2.

To see more details, we adapt some definitions from convex geometry: By definition,
convex hull of a set {vi,...,v,} is conv(vy,...,vn) = {> 7 00 : 6 >
0,>",0; = 1} and a polytope is a convex hull of a finite set in R". In this

12

thesis, a polyhedron is a finite intersection of closed halfspaces, where a closed
halfspace is a set of the form {x € R" : vz < z,v € R",z € R}. Suppose
that P = conv(vy,...,v,) C R is a polytope with vertex description and
Q ={z e Rt : hl'z < 2z,i =1,...,n} C R"!is a polyhedron for some
hi,...,h, € R""!and some z;, ..., 2, € R. If Q is bounded, then it is also a polytope.
Slack matrix of the pair (P, (), denoted by Sp, is a m x n matrix whose (i, j)-th
entry defined by z; — h! v;. Finally, we denote 1 as a vector with all elements one.

Then the following lemma shows that one can compute bounded nested polytopes P
and () for a given nonnegative matrix, i.e., P C Q C R"~!. We will outline its proof
and refer to [6] for its ramifications.

Lemma 1. Let A € R™*" be a nonnegative matrix and assume that A1 = 1. Let rank
of A is r. Then, there exist the polytopes P, C R"! such that P C Q and A is a
slack matrix of the pair (P, Q).

Sketch of proof: Choose r linearly independent set of rows of A and define Y &
R"*? as a submatrix of A using these rows. Note that Y is a full rank matrix. Thus,
we can find a unique X such that A = XY. Further, we have 1 = A1 = XY1 = X1,
since the set of the rows of Y is a linearly independent maximal subset of A and
A1l =1, then Y1 = 1. Therefore, we conclude that we can compute the factorization
A = XY suchthat X1 =1and Y1 =1.

With these properties write X and Y as follows:

it yi
T T
Ty, t Y
X = _2 2 and Y = 2 ,
T tm y;

where each z; € R"',t, € R,and y; € R™. Note that X1 =1 <= t; =1 —17z,.
Define a polytope P and a polyhedron () as follows:
P = conv(xy, -+ ,apy) CR!

and
Q= {z cR: (2T 1-1T2)Y > 0}.

Consider, any = ;21 +- - -+, € P. Then (27,1—-172)Y > 0, since XY > 0
and each a; > 0. It implies that P C (). In addition, one can easily check that A is
a slack matrix of the pair (P, (). Next, we need to show that () is bounded. Let’s
prove it using a contradiction: suppose () is unbounded, then there exists a vector
2o+ az € Q forall « > 0 with 2y € Q. It follows that (27, —-172)Y > 0 and
(27, -1T2)Y)T1 =0 = (27, -172)Y = 0. This means that z = 0, since Y is a
full rank matrix. Therefore, () is bounded. One can thus compute the bounded nested
polytopes P and () for a given nonengative matrix.

Oftentimes in applications, we impose the constrains on X and Y such that both have
nonnegative coefficients, i.e., X(¢,j) > 0 and Y (i,5) > 0 for all 7 and j. We call
such a factorization as nonnegative matrix factorization. Properties of the factorization
can be characterised by nonnegative rank which is defined as minimum number of

13

nonnegative rank-one matrices needed additively to reconstruct the original exactly.
On the negative side, computing the nonnegative rank and the corresponding rank-one
factors are computationally hard problems [6]. Geometrically, determining the rank
is related to find a polytope with minimum number of vertices nested between given
two polytopes. For more information refer [6]. To see more details, we outline the
following lemma for completeness.

Lemma 2. Let A € R™*" be a nonnegative matrix with rank v and A1 = 1. Then
P C Q C R"! can be obtained from Lemma 1. Then A has a size q nonnegative
factorization if and only if there exists a polytope S with q-vertices such that P C S C

Q.
Proof: See [7].

Example 1. See Figure 2.

Figure 2. Left: Nested polytopes P and () of a nonnegative matrix A; whose
nonnegative factorization is greater than three, since we could not compute a triangle
between them. Right: Nested polytopes P and () of a nonnegative matrix A, whose
nonnegative factorization is three.

In addition to theoretically pleasing properties, nonnegative matrix factorization has
a lot of applications in computer science (e.g., computational geometry), statistics (e.g.,
Netflix prize problem), bioinformatics (e.g., super resolution imaging), and etc.
Moreover, approximately computing nonnegative factorization has direct applications
in numerous fields, including statistical machine learning and image processing.
For example, suppose that there is a nonnegative matrix A € R"*™ consisting m
vectorized face images, i.e., each column of A represents a face image. Computing
or learning nonnegative Y € R"™ ™ such that A ~ WY with W € R™" and
r < min(m, n) can be understood as learning the representations of the original faces
in a low dimensional space: A column vector of Y can be used as a low dimensional
representation of a original face in a space spanned by W. For more information,
see [8].

14

2.0.3. Some Non-Standard Matrix Decompositions

A natural question arising in the numerical solution of practical problems is that can
we factorize a given matrix A € C"*" into a product of structured matrices such that
each factor has a structure beyond the non-negativeness of its entries? In other words,
we are interested on factoring a complex valued matrix A such that A = Sy --- Sy,
where each factor S; has complex valued entries with some pattern in its structure. To
this end, one of the interesting simple structures is symmetricity. Therefore, we will
first study a classical result in linear algebra: the factorization of a square matrix into a
product of two complex symmetric matrices. To prove this, we heavily rely on Jordan
normal form of a matrix and its related theorems. For more information, see [9].

Definition 3. Jordan block J(\)y is a k X k upper triangular matrix of the form
Jfollowing:

A1 0

A
J()‘>k =]
0 A

Definition 4. Jordan matrix J is a n x n block diagonal matrix of the form following:

JN)ky 0 0
J = 0 I A2k, , where k1 + ko - - + k. = n.
: - 0
0 S e

Lemma 5. Every Jordan matrix is a product of a real symmetric matrix and a complex
symmetric matrix.

Sketch of Proof: First, note that one can have J(\), = S Hy, where

o 0 --- 0 1 O 0 --- 0 X

O --- 0 1 0 0 X 1
S, = 1| . | and Hy, =

1 0 - --- 0 A 1 - -0

It follows that J(\), can be factorized as a product of a real symmetric matrix Sy,
and a complex symmetric matrix H;. Next set S (a real symmetric matrix) and H (a
complex symmetric matrix) such that they are block diagonal matrices consisting Sy
and H;, matrices for each)\, respectively. Then one can compute product SH = J.

Lemma 6. Suppose that A is a complex square matrix. Then A = BIB™ for some
Jordan matrix J and some nonsingular matrix B.

Proof: See [10].

Theorem 7. Every square complex matrix A is a product of two complex symmetric
matrices.

15

Sketch of Proof: We can obtain following factorization for A using Lemma 5 and
Lemma 6: A = BJB™! with J = SH, where S is a real symmetric matrix and H is a
complex symmetric matrix. Thus, A = (BSB”)(B~THB™!). Note that these factors
are complex symmetric matrices.

Next, we will spend some time on studying a factorization of a generic square matrix
into a product of Toeplitz matrices, i.e., A = T, ---T,, where each T; is a Toeplitz
matrix. Main motivation behind this study is that these factors, Toeplitz matrices,
have pretty computational characteristics for developing numerically stable superfast
algorithms. We mean superfast here is that these algorithms require less than O(n?)
operations to solve Toeplitz like systems Tx = b. To this end, many superfast stable
Toeplitz solvers use trigonometric transformations (e.g., Fast Fourier Transforms and
Discrete Cosine Transforms) to covert original Toeplitz matrix into much simpler
factors which can be done in O(nlog(n)) operations [11]. Therefore, if A has a known
Toeplitz decomposition with r-Toeplitz factors, one can solve Az = T;---T,x = b
recursively using O(rnlog(n)) operations.

We begin our studies about the decomposition by recalling the definition of Toeplitz
matrices: a Toeplitz matrix T € C™*" is a square matrix whose entries along its
diagonals are constants, i.e.,

to ety
t by
T= |ty t_1 ¢t
. ‘. . tl
t_pn t_o t_1 1o |

Remarkably, set of all Toeplitz matrices form a linear subspace over C"*" with basis
B, = {5i,j+k}2j:1 for —n + 1 < k < n — 1. For instance,

[0 1 w0 [0 O 0
0 0 1 1 0 0
B,=|0 0 0 " , B,=]10 1 0 ,
R | |
| 0 0 0 0] | 0 0 1 0
and By =L Thus, T = Y"7"" . t,B,.

To explore the decomposition in more detail, we will utilize some basic algebraic
geometric tools: A monomial in x1,...,x, is a product of a form x]" ...z, where
all exponents 74, ..., 7, are nonnegative integers. A polynomial f, in z1, ..., z, with
coefficients in C, denoted as fy € C(x1,...,x,), is alinear combination of monomials.
Algebraic variety of a set of polynomials f,..., f, € C(xy,...,z,)isaset {a € C":
fila) =0,i=1,...,r}. Moreover, a subvariety is a subset of a variety which itself is

a variety. For instance, set of all n x n Toeplitz matrices forms a subvariety in C™"*"
which is defined by a set of linear equations. Specifically, we denote r-tuple of n x n
Toeplitz matrices over C as 7,"(C) and 7,"(C) is a variety in C"". Amap f : X — Y
defined on algebraic varieties X and Y is a dominant, if its image is dense. To prove the
basis of Toeplitz decompositions, the authors in [12] focused on following Lemmas.

16

Lemma 8. Let f : X — Y be a map between algebraic varieties. If f is dominant,
then f(X) contains an open dense subset of Y.

Proof: See [12].

Lemma 9. Suppose [: X — Y is a map between algebraic varieties X and Y with
dim(X) > dim(Y). If there is a point x € X such that the differential of f at x is full
rank, then the differential at generic point will also have the full rank.

Proof: See [12].

Moreover, we adapt the following definitions: x € X is a point of closure of X, if
every neighbourhood of x contains at least a point in X. A point x € X is called a
generic point whose closure is whole set X.

Example 2. Suppose L is a vector subspace in C". A generic point v € C" is not
contained in L.

Putting all factors together, authors in [12] prove following theorem. We will
sketch their proof by outlining basic steps explicitly and we will adapt the following
abbreviation "z’s" to denote a variable x with multiple entries.

Theorem 10. Let f : T (C) — C"*™ be the map defined by f(T,_,...,Ty_1) =
T, - Tn_1. Then, for a generic point x € with r > |n/2| + 1, the differential of
f at x is full rank. Thus, for a generic A € C"*", there exist r = |n/2| + 1 Toeplitz
matrices Ty ... T, such that A =T,...T,.

Sketch of proof: Letr = |n/2] + 1andsety = (Yor,..., Y1) € T7(C)
with Y, ; = Z;:inﬂ Yn—ijB; fori = 1,...,r. Note that differential of f at x =

(Tp—py..., Tyoy) € T.7(C), denoted as Df,, is a n x n matrix with the following
form:

Dfm(y) = Z T, - Tn—i—lYn—iTn—i-l—l Ty
i=1

Thus (p, q)™ entry of this matrix, denoted as I, ,, is a linear form of y’s. However,
D, can be also modeled as a n? x (2n — 1)r coefficient matrix M, since Df, is a
linear map from 7,"(C) with dimension (2n — 1)r to C"*" with dimension n?. In other
words, one can devise M as follows: arrange rows of M corresponding to [, ,’s and
columns of M corresponding to the y’s. Our purpose of following discussion is to find
a point z € 7,7(C) such that M is a full rank matrix, i.e., M has a nonzero n? x n?
minor. Recall that n? x n? minor of M is the determinant of a submatrix obtained from
selecting n? columns of M.

To this end, the authors in [12] have suggested to select a specific point z* =
(Ty—r,..., Tyo1) € T,7(C) such that

T, i=Bo+t,i(Byi—B_.)

fore =1,...,r.
For this setting, [, , is a linear form in y’s and its coefficients are polynomial in ¢’s.
In particular, we have following form for [, ,:

lpq = Z Yig—p + O(1).
i=1

17

Therefore, entries of M are polynomials in ¢’s and constant terms are 1’s. Thus, any
n? x n? minor of M is a polynomial in #’s. By carefully exploiting the structure of M,
one can observe that any n? x n? minor of M is a polynomial in ¢’s of degree at least
(n — 1)%. We demonstrate this fact using a toy example: consider n = 3 which yields

=2,pe{l,2,3},g € {1,2,3}, and a9 x 10 coefficient matrix M as follows:

[11] Tk ox ok ok 11 % % & %] | I02
li2 x % % x % * 1 1 * x* Y2.-2
li3 * % ok x % ok *x x 1 1 Y1,-1
loq x % 1 1 % * % % % x Y2,-1
loog [= % * x x 1 1 % % *x x Yro
las x x ox ox x x 1 1 x x Y20
l31 1 1 % % % % % % % x% Y1
l32 x o« 1 1 % % x % % % Y21
ls3 * % ox ox 1 1 % % x x Y12

-t -~ =L v2e |

M

Note that the notation * is used to denote the polynomialsin ¢’s of /,, ;. One can easily
observe that any 9 x 9 minor in M is a polynomial in ¢’s whose degree is at least 4.
Indeed, it is really interesting to see that there exists nonzero 9 x 9 minor that contains
a monomial of degree 4 in ¢’s whose coefficients are nonzero. Therefore, our main idea
in this example is to seek a specific minor in M which contains a monomial ¢31°. To
see this, we consider a linear transformation of y’s to simplify our computations:

Zj _ 1 1 yl,j
ZQJ' 0 1 ’yg’j ’

for —2 < j < 2. Thus, [, , has following form with new variables:
lp7q = Zq—p + (tq_lzl_pyq_l + ..) - (tg_q2,’3_p73_q + ..)+

ts—p(2g-3 — 23-pr1,4-3) + -] = [tp-1(2g-1 — 2pg-1) + ..].

With this arrangement, one can notice that ¢, only appears in /; ; and [; 3 fori = 1,2, 3.
To compute the required monomial, first one needs to select exactly one 1 from the
rows corresponding to [y 9,1 3,029, l31 and [3 5. Next, one can select four ¢5’s from the
rows corresponding to Iy 1, l2 1, l23 and [3 3. This yields a monomial t315 with nonzero
coefficents. It follows that the minor corresponding to the monomial is nonzero and
rank of M thus is 9.

The authors in [12] generalized the aforementioned computations and proved that
there exists a nonzero n* x n? minor of M that contains a monomial of degree (n —1)?
with nonzero coefficient for a any given n at the point z*. It implies that D f, has
full rank. Using Lemma 9, one can see that D f, has full rank at any generic point
xz € T.7(C). It follows that from a consequence of the constant rank theorem, image of
f has dimension n?, since D f, has full rank at every generic point z. Thus, f(7,7(C))
is dense and it implies that f is dominant. By Lemma 8, one can conclude that image
of f contains an open dense subset of C™"*".

Next, authors in [12] showed that any n X n matrix can be decomposed into at most
2n+-5 Toeplitz matrices. Nevertheless, to the best of our knowledge there is no efficient
algorithm to compute the required decomposition efficiently.

18

2.0.4. Some Random Expansions in Statistics

Developing computationally efficient structured matrix factorizations are extremely
challenging problems. In parallel with developing such factorizations, approximating
a large matrix using a matrix expansion with structured elements becomes a hot topic
among the communities in computer science and mathematics. In other words, our
main challenge is to develop an expansion for approximating a given A € C™*" such

that .
ArDs,
=1

where each S; € C™*™ has some kind of structure. Simultaneously, r should be small.

In this section, we will briefly discuss two matrix expansions appearing in statistics.
Matrix Gaussian series is a random matrix V, which can be expressed as an expansion
of fixed matrices, {Ax}, weighted by an independent standard normal random
variables oy, i.e., V. = >, oy Ax. Matrix Gaussian series can be used to represent
many kinds of structured Gaussian random matrices. For example, Gaussian Toeplitz
matrix T, a Toeplitz matrix whose first row and first column are generated from
independent standard normal variables, can be represented as a matrix Gaussian
expansion: Ty, = aol + 37 ' o C* + 3777 a1, (C*)*, where

0O 1 --- 0
C_ 0 0
: |
0 ««v - 0

Moreover, Gaussian Toeplitz matrices can be found in the context of image and
signal processing relation to Gaussian convolution, the study of heat kernels relation
to the diffusion equations, and etc [13]. Similarly, Gaussian Wigner matrix, a real
symmetric matrix with zero diagonal, can be written as a matrix Gaussian series.
Matrix Rademacher series is closely related to matrix Gaussian expansion, defined
by a sum of matrices weighted by Rademacher random variables. Applications of
this expansion can be found in signal processing, random matrix theory, and etc. We
refer [14] for more information.

2.0.5. Factorizations of Polynomials and Their Relation to Matrices

Algebraically, matrix factorizations are closely related to polynomials. Roughly
speaking, matrix factorization of a polynomial f in the polynomial ring Clz1, - - - , z,]
is a pair of square matrices A, B € C™*™ such that AB = fI, where I is the identity
matrix.

Example 3. Given f = xy + yz + za € Clz,y, 2], then one can compute matrix

factorization of f such that A = { N Y } and B = [Ty Y 1
r —Tr—y r =z

Generally, this research focuses on studying the singularities of hypersuraces using
algebraic tools. For example, matrix factorizations are closely related to homological

19

properties of the quotient ring: C/f. Interestingly, such a algebraic structure encode
the geometric information of a set Z = {x | f(z) = 0}. However, it is out of the scope
of this document and we refer seminal work [15] by D. Eisenbud for more details.

20

3. SVD AND ITS APPLICATIONS IN COMPRESSION

The singular value decomposition (SVD) of A € C™*™ is a central result from
linear algebra which can play two roles: factorization and expansion. The elements
of the expansion are rank-one matrices and geometrically those rank-one factors are
orthogonal. Therefore, the SVD is a key for many practical applications (e.g. principle
component analysis and compression algorithms) and for theoretical matrix analysis
problems (e.g. eigenvalue problem, multivariate analysis, matrix nearness problems).
Basically, the SVD is a factorization of A into the product of three matrices as describe
in following Theorem.

Theorem 11. If A € C™*", then there exists unitary matrices U € C™*™ and V &
C™ "™ such that
U*AV = X = diag(oy, 09, -+ ,0p),

where 01 < 09 < ... < 0, < 0and p =min{n, m}.

Proof: See [10, Theorem 7.3.5].

In this thesis, we refer that o; are singular values of A, u; are left singular vectors of
A, and v; are right singular vectors of A. Next we discuss some nice properties of the
SVD.

One of the important property of the SVD is that it gives us a characterization of
fundamental vector subspaces, i.e., null space N(A) and column space R(A) of A.

Corollary 12. If A has r singular values, then rank(A) = r, and
R(A) = span{u; - - - u, },

N(A) = span{v,41 - v, }

Proof: rank(A) = rank(X) = r, since rank is invariant under multiplication of
unitary matrices. In order to prove next assertions, suppose that m < n. Then compute
Av;, = o;u; and A*u;, = oyv; fori =1---n.

Above discussion leads to have following geometrical interpretation: the singular
values o; are length of semi axes of the ellipsoid £ = {Ax : ||z|| = 1}, whereas
semiaxes directions are given by each u;. For example, see Figure 3.

From linear algebra, if A has rank r, then A can be written as sums of r rank-1
matrices. One of the most important property of the SVD is that we can write A as a
expansion of rank-1 matrices using the SVD.

Corollary 13. If A € C™*" and rank (A) = r, then
A = Z U] (2)
i=1

Proof: Compute A = UX V™,

An important problem with diverse applications is that what is best rank-k
approximation to a given A. Such matrix approximation problems typically measure
the distances between matrices with a norm. The Frobenius norm is one of the
pervasive choice, since it is so analytically tractable.

21

Figure 3. Visualizing the SVD of A.

Definition 14. Frobenius norm of X € C"*" is a matrix norm defined by

IX[- = (30 X2,)2 = (Tr(XX"))?,

ij=1
where Tr denotes the trace of a matrix.

For example, Eckart and Young gave an elegant algorithmic proof to finding a best
rank-% problem in Frobenius norm.

Theorem 15. For any B € C™*™ with rank-k at most then
IA = Al < [|A =Bllg,
where Ay = Zle o;u;v} is the rank-k approximation from SVD of A.
Proof: See [16].

Inspired from these applications and theoretical substantiation, researchers have being
constantly engaging to develop fast and robust algorithms for computing the SVD.

SVD Computation

In this subsection, we will discuss how one can compute the SVD algorithmically. First
note that computing SVD is closely related to an eigenvalue problem. For example,
consider A € C"*" and form a larger matrix:

0 A
)

22

We can see that singular values of A are the absolute values of the eigenvalues of H
and singular vectors of A are the eigenvectors of H. Thus, one can reduce computing
SVD into an equivalent symmetric eigenvalue problem which gives the foundations
to develop stable SVD algorithms. However, these algorithms never explicitly form a
larger matrix like H.

For a general setting, we assume that A € R™*" and n < m. Key steps related to
SVD algorithms can be outlined as follows:

1. Reduction to upper bidiagonal form B using the sequence of Householder

reflectors H;, and Hp, i.e., H:LFAHR = []3 } where,
d1 S1 R 0
B_ 0 dy
o Sp—1
0 - - d,

2. Reduction of B into a diagonal form.

First step can be accomplished by using Golub-Kahan bidiagonalization process.
For more information, refer [17]. This process can be realized as alternatively applying
QR factorization to A and A*. In other words, we apply Householder reflectors
alternatively on the right and the left of A. Note that applying Householder reflectors
on the left produces a column of zeros below the diagonal while applying Householder
reflectors on the right produces a row of zeros at the right of the superdiagonal. This
process can continue for row and column such that we end up with a upper bidiaganal
matrix B, i.e., we apply m — 1 Householder reflectors at the left and n — 2 Householder
reflectors at the right of A.

The remaining problem is to compute SVD of B. To this end, we can compute
tridiaganal symmetric matrix T = B7”B, then apply symmetric QR algorithm
implicitly to T

e Compute first Givens row rotation G based on T — uI required by symmetric
QR algorithm, where p is Wilkinson shift.

e Sequentially, compute and apply Given raw and column rotations of B such
that each rotation set unwanted elements to zero, which are introduced by
previous rotations. Continue the process until modified B is restored as an upper
bidiagonal form.

This trick is called Golub-Kahan SVD step and can be replaced by faster algorithms
developed on divide and conquer paradigm.

Combining everything, we have an algorithm that overwrites A such that UTAV,, =
Y., + D, where U, ~ U, V, & V, and ¥, &~ X.. Computational complexity of first
step is O(4mn? — 47”3) and second step costs generally O(n?) operations [18]. Finally,
we remark that there are iterative methods to approximate partial SVD of very large
matrices.

23

Application: Principal Component Analysis

Principal Component Analysis (PCA), sometimes called as Karhunen-Loeve
transform, is closely related to the SVD, and finds many applications in statistical
data analysis: data visualization, dimensional reduction, lossy data compression, and
feature extraction. Roughly speaking, PCA can be defined as an orthogonal projection
onto a lower dimensional linear space such that variance of the projected data is
maximized, i.e.,

maximize 2" Cux

T

subjectto z'x =1,

where C = %XXT is the covariance matrix of a mean-centered data matrix X &
R,

Solving above problem using Lagrangian yields 27 Cx + A(1 — 27 x) and setting
derivatives to zero, we have following relationship: Cz = Az <= 27Cz = \.
In other words, maximum variance can be achieved once we have an eigenvector
corresponding to largest eigenvalue of C. If we seek r-dimensional linear space (r <
n), one can easily prove that other required directions are eigenvectors corresponding
to r largest eigenvalues of C. Therefore, computing the eigenvectors of C is central in
computing PCA.

One approach is to consider eigenvalue decomposition. From the eigenvalue
decomposition, we have C = QDQ?, where columns of Q are the eigenvectors of
C. Computing the eigen decomposition of covariance matrix C costs O(n?). This
computational cost is unaffordable in very high dimensional data sets. Therefore,
natural question is to ask that do we have alternatives, but cheaper framework to
compute PCA?

From the SVD of X = UXV7Y, we can compute C = VETXZVT = VSVT,
where S = XT3, Comparing above equations, we can conclude that we can extract
k-eigentvectors of C using the right singular vectors of X and eigenvalues of C are
squares of singular values of X. Putting them all together, the SVD can aid to compute
PCA faster with O(kn?) operations.

24

4. PRODUCTS OF CIRCULANT AND DIAGONAL MATRICES
IN FACTORING AND EXPANSIONS

In this section, we first give a synopsis of basic computational properties of circulant
and diagonal matrices. This will furnish the language to speak about matrix
expansions, approximations, and factorizations related with circulant and diagonal
matrices. Specifically, we will study following two classical questions: (a). How
does the Fourier matrix enable us to develop fast algorithms? (b). Is there any
relation between the Fourier matrix and circulant matrices such that one can procure
computational advantages from (a) for computations involved in circulant matrices?
In addition, we will illustrate the importance of circulant approximation to a given
matrix with an application: designing circulant preconditioners for large linear system
solvers.

With these motivations, we next consider matrix factorizations and approximations
based on circulant and diagonal matrices. We will start our studies with classical results
and specific systems which arouse in optical signal processing. Next, we are interested
in studying modern matrix decompositions associated with circulant and diagonal
factors. Remarkably, these discussions suggest us to introduce a computational and
structured matrix expansion to approximate a given matrix A € C"*". The elements
of the expansion are DCD matrices, i.e., a product of diagonal matrix, circulant
matrix, and another diagonal matrix. Among many, DCD matrices give a natural
extension to rank-one matrices. Here, we will study a notion of a matrix rank which
is closely related to DCD expansion. For a given matrix A € C"*", we denote this
rank by DCD-rank (A) and we explore the DCD-rank of some specific matrices
that are omnipresent in many applications. Finally, we will study a random projection
technique that can result in dramatic speed ups once constructed approximately by
products of circulant and diagonal matrices.

4.0.1. Review of Circulant Matrices

Circulant matrices naturally arise in many fields of science and mathematics such as
linear estimation theory, image processing, numerical analysis, number theory, and etc.
In this section, we skim the properties of circulant matrices and for a more detailed
analysis refer to [19].

We define n'-order circulant matrix C = circ(cy, cs, . . ., ¢,) € C™*™ as follows:
b) b
C1 Ca C3 -+ Cp
Ch C1 Cg *++ Cp-1
C = Ch—1 Cp C1 *++ Cp—2 ,
Co C3 Cq4 --- C1

where each row of C are identical, but are moved one position to the right cyclically.
One can easily show that circulant matrices form a linear subspace C over all n X n

25

matrices, i.e., if C; = circ(cyy, ¢19, . .., c1p), Co = circ(car, Cag, .. ., C2n), and a € R,
then
Cy + Cy =cire(ciy + ¢o1, 12 + €22, ..., C1p + C2,,) € C and

aCy = circ(acyy, acy, . .., acy,) € C.

Moreover, a circulant matrix can be represented as a matrix polynomial: Suppose that
p(z) =ci+ ezt ez . A cp2™

is an — 1 degree polynomial with coefficient in C. Then one can compute a circulant
matrix C = circ(cq, . . ., ¢,) as follow:
C =p(n) =cl+com +csm® + ... + ¢, ', where m = circ(0, 1,0, ...,0).

A fundamental property of circulant matrices can be outlined using above property
as follows:

Theorem 16. A circulant matrix C can be diagonalized by the Fourier matrix F, i.e.,
C = F*AF, where A is a diagonal matrix,

1 1 1 1
1 w w? w1
. 2 4 .., on-2 i
F* = \/iﬁ I w w w , and w = exp(Z).

1 wn—l w2n—2 . w
Proof: First consider circulant matrix 7 = circ(0, 1,0, ...,0). So (j, k)" element of
FrF*is

Cfwkt itk =,
0, otherwise.

This implies that 7 = F*QF, where @ = diag(1,w,w?,...,w"). Thus we can
compute
C = p(r) = p(F*QF) = F*p(Q)F = F*diag(p(1),p(w), ..., p(w"))F = F*AF.

Corollary 17. Eigenvalues of C are \; = p(w'™) fori =1,...,n.
Proof: Compute CF* = F*A.

Corollary 18. Suppose that v = (cy, . ..,c,) € CY*" If C is a circulant matrix such
that C = circ(v) and its eigenvalues are {\y, . .., \, }, then \/nF*yT = (A, ..., \,)T
and C = F*(diag(y/nF*~1))F.

Proof: Note that /nF*(cy, ..., c,)" = (p(1),p(w), ..., p(w""))".

Discrete Fourier Transform of a vector x, or equivalently Fz, is a fundamental
operation in signal processing. This matrix-vector product can be computed using
a FFT algorithm in O(nlog(n)) operations, whereas matrix-vector product generally
costs O(n?) operations. However, these algorithms are developed to work on certain
dimensions, especially n = 2* for k € N. In these dimensions, one can design different
frameworks of FFT based on divide and conquer approach that factorize a Fourier

26

matrix F into a product of different log(n) sparse matrices. Of course, it is one of the
great computational framework development in last century which inherits intrinsic
beauty and simplicity of numerical Fourier analysis.

Example 4. Computing Fx in O(nlog(n)) operations.

Proof: In this example, a matrix A € C™*" is denoted by A,, to distinguish the
different dimensions of matrices. Set n = 2' for some [€ N. Let’s begin with a
factorization of the Fourier matrix F,, as below:

I» Qn Fnr 0 szl
P = [Ii —Q,] { 0 F. }P”x_B"{FixQ]
2 2 2 2
Bn
where Q% = diag(l,w,...,w27 "), 21,2, € C2, and P,, is a permutation matrix.

Note that we can recompute F%xl and F%fﬂg as follows:

1= Qn Fr 0 Fﬁl'g
By = {Ii —Q. } { 0 Fau }PS‘“:B’S { Fou, }
4 4 4 4
By
I» Qn Fr 0 Fﬁ.%g,
Py = [I -0y } { 0 Fy }P%_Bg [F41’6 }
—_—
Bz
where 3, 24, x5, 16 € C1.
It follows that
F%flﬁg
B% 0 F%ZE4
bo=e g]| Bl
776
In general, F,x = A;--- AP, x, where A; = diag(B,...,B.) with L = 2! and
—_———

L = n/r. By analysing sparsity patterns of factors, one can observe that each A, has
2n nonzero entries. Thus, total number of required matrix-vector multiplications for
Fzx is 2nlog(n), i.e., O(nlog(n)).

For more theoretical and implementation details about FFT, we refer reader to [20].
Remarkably, implications of Theorem 16 and FFT algorithms enable fast computations
based on circulant matrices in dimensions n = 2! for any [€ N.

Example 5. Multiplication of two circulant matrices: Cy = circ(cyy, €12, ..., C1p)
and Cz = CiI‘C(CQl, C99, . .. ,an).
Proof: Suppose C; = circ(cyy,...,c1,) = circ(ay), Cy = circ(co, ..., con) =

circ(ay), and eigenvalues of C; and Cs are {A11,...,A\1,} and {Aar,. .., Ao},
respectively. Then, consider the following computation: C; = F*AF and C, =

27

F*AF — CiCy, = Frdiag(A1)a1, ..., AipAo,)F. Therefore, the required
computation reduces to compute a diagonal matrix.
From Corollary 18, one can have

\/EF*CHT = (/\11, A12, -0,)\ln)Ta
\/EF*OZg = ()\217 AQQ, ey /\Qn)T.

Thus C;C, = circ(7) can be found using element-wise multiplication of vectors x.

In particular,
v = /nF[F*al « F*all.

If the dimension of the matrices lies at the order of magnitude n?, we can compute
circulant-by-circulant multiplication in O(nlog(n)) operations, whereas matrix-matrix
product generally costs O(n?) operations 2.

Example 6. Computing the singular values of a circulant matrix.

Proof: Suppose that one can have a circulant matrix C such that C = circ(7).
Recall that the singular values of a circulant matrix C are the square roots of the
eigenvalues of CC*. Therefore, let’s compute the eigenvalues of CC*:

CC* = F*(diag(vnF*y"))F(F(diag(vnF™y"))F)" = F*(diag(n[F*y"|))F.

Hence, required singular values are the diagonal elements of (diag(n|F*y7|?))z. It
follows that we can compute the singular values of circulant matrix in O(nlog(n))
operations, if n = 2.

Other properties of circulant matrices can be summarized as follows: If C; and C, are
circulant matrices, then CT, C*, C; + C, are circulant. Note that C; and C, commute.
In addition, if C; is a non-singular matrix, we can find its inverse by setting F*A'F.

An interesting question one can pose is that how can we compute a circulant
approximation to a given square matrix A? One motivation behind is that designing a
best circulant preconditioners for very large linear system solvers. Roughly speaking,
if Ax = b is a very large system, we might want to employ iterative methods, e.g.,
Krylov subspace methods, to approximate solutions. However, the rate of convergence
of these iterative methods highly depends on the condition number of A. In other
words, poor condition number of A typically means slow the convergence. To
speed up convergence, we need to compute a matrix M which is a optimal or crude
approximation to A such that M~ A =~ I. Thus, the eigenvalues of M~'A are close
to one. As a consequence, one can expect that an iterative method will converge faster
for a preconditioned system, M~'Axz = M~'b, compared to original system Ax = b.
Moreover, we can gain an extra advantage, if the preconditioner M is a circulant matrix
due to available efficient tool like FFT. For example, if A is a Toeplitz matrix, one
can devise an iterative method with a circulant preconditioner which can compute a
solution in O(nlog(n)) operations whereas direct factorization method requires O(n?)
operations. A classic reference in this direction is Strang’s paper [22]. Of course,
this proposal spawned a long line of research which gradually advanced into a more

2Until late 1960s, it was believed that computing matrix-matrix product requires essentially O(n?)
operations. However, Strassen changed the way we multiply matrices by introducing an algorithm which
can compute the product in O(n*%%) operations [21].

28

matured subject. Thus, approximating a given matrix A € C™*™ with circlant matrix
is vital and we have following optimization problem:

argmin |A — C|%. 3

gumin |A — C|[} 3)

This is a convex optimization problem, since the objective function and the feasible set
are convex. Rewriting (3) yields,

in[|A — F*AF|, = in | FAF* — A7 4

arg win | I = arg min | I)

since Frobenius norm is unitarily invariant. This implies that minimum is attained
by setting each FAF*(7,7) = A(i,7). Authors in [23] have proposed Algorithm I to
compute nearest circulant matrix for a given real matrix.

Algorithm 1: Computing approximate circulant matrix

Input:
o A cR™™,
e m=circ(0,1,0...,0).
Steps:
1. Compute the projections: ¢, = 1 Tr(A"7¥), k=0,...,n— L.

2. Compute C = circ(cg, €1, -+, Cp_1)-

4.0.2. DCD Factors in Matrix Factorizations and Expansions

In this subsection, we will study some theoretical aspects of factoring a matrix into
a product of circulant and diagonal matrices. This idea was originally appeared in
optical information processing community as described next:

The Fourier transform is a key to explain optical signal processing systems. Before
applying Fourier theory, we need to model optical lenses and their signal propagation
by using the Fresnel transform. Originally, the Fresnel transform is an infinite
dimensional operator. However, advancement of modern circuit technology (e.g.,
VLSI) throw new light on developing theories to formulate a finite dimensional
description of the Fresnel transforms, since diffractive elements (e.g., metalenses and
beam splitters) become more accurate, smaller in size, and thin. In addition, it is well
known that the sampling theorem guarantees that information about a periodic signal
can be extracted from sampling a vector of finite length. Thus, any modern optical
system can be completely described as a system that consisting finite dimensional
matrices and vectors. In particular, an optical system can be modeled using a product of
discrete Fresnel transforms Fr and diagonal matrices. It follows that modeling optical
system is equivalent to factoring a given matrix into a product of diagonal matrices
and discrete Fresnel transforms. Moreover, diffractive optical systems with properly

29

chosen lenses such that DFrD~! = F, are in general modeled as a consecutive product
of Fresnel transforms and diagonal matrices [24]. Thus, a diffractive optical system
can be thought of consisting a product of circulant and diagonal matrices. Therefore,
optical information computability problem is equivalent to factoring a given matrix into
a product of circulant and diagonal matrices. In other words, the products of circulant
and diagonal matrices can be used to realize the discrete diffractive optical systems
for information processing °. For more information, refer [24]. Next we will illustrate
some special systems which can be readily factorized as the product of circulant and
diagonal matrices.

Example 7. Denoted by 1,0,C € C¥'~'*2""" qre the identity matrix, the zero matrix,
and a circulant matrix respectively. Then following matrices can be factored into a
product of circulant and diagonal matrices.

[T 1] [T o I I I 0
V2T =T v2|0 —il il 1 0 —iI |
co|]_ ,[I I C+I C-1 I I
0 I| 4|1 —-I C—-1 C+I1I I -1

1 0] ,[I I][C+II-C][I I
0C| 1|1 -I|[I-CC+I||I -I|

These are special, concrete instances of following theorem.

Theorem 19. Every matrix M € C?"*2" can be factored into a product of circulant
and diagonal matrices.

Proof: See [24, Theorem 3].

Application: Circular Discrete Convolution

One important application of such system decompositions is that we can realize
circular discrete convolution operator as a matrix-vector product ”Cz”. To see more
details, we adapt the definition of circular discrete convolution of ¢ € C™ and z € C"

as follows:)

b=c®z = b(i):Zc(i)z(i—m)fori:0,...,(n—1).

m=0

Note that one can rearrange these set of equations as a circulant linear system Cz = b,
where c is the first column of C € C"*™. It follows that Cz = F*AFz, since C can
be diagonalized by Fourier basis. Hence, one can compute b as follows:

e Compute discrete transform y = F'z, possibly with FFT.

e Compute = by element-wise multiplication of y and diagonal vector of A, i.e.,
(1) = A, 1)y(0).

31t means that the optical system M with a resolution of 2" pixels can be factored into optical
primitives; circulant, diagonal, and the Fourier matrices.

30

e F*x, possibly with FFT, transforms back and result is ¢ ® z.

This approach can gain an improvement with %nlog(n) operations, since a direct
implementation requires n? operations [22]. This is important, since discrete
convolution is a fundamental block in filtering: a prominent application in digital signal
processing.
A similar approach can be utilized to solve linear system Cz = b. From basic
properties of discrete Fourier transform, one can have following identity:
c®z=b <= ¢xi=0

Thus, one can recover Z by element-wise division of ¢ and b. Note that elements of ¢
are proportional to the eigenvalues of C, and one can recover z by invoking the inverse
discrete Fourier transform of Z.

A Generalization of Theorem 19 can be found in [25, Theorem 2].

Theorem 20. Let F ¢ {F3,F5} be a field of characteristics # 2, and let n € N. Every
matrix A € F,, can be decomposed into circulant and diagonal factors with entries in
F, where F,, denotes the ring of all n x n matrices with entries in F.

However, original proof of Theorem 20 is somewhat outside the range of algebraic
and numerical algorithms and it opens new unsolved problems. Among many, a
fundamental problem in one’s mind is that how many circulant and diagonal factors
are suffice to realize the factorization? Moreover, computability of the factorization
also lies at the borderline in between mathematics and computer science. A recent
research paper [26] on linear algebra and Fourier analysis shows that factoring a matrix
A € C™™ into a product of diagonal and circulant matrices requires generically at
most 2n — 1 circulant and diagonal factors, i.e.,

A =D1CoD3 -+ - Dop3Cs,2Dop 1. (&)

This factorization is constructive: First suppose that S is a circulant matrix defined
as S = circ(0,...,1) € C™". Then, given any A € C"*" can be expressed as
a unique polynomial p over the diagonal matrices of degree at most n — 1 such that
p(S) = A, ie., p(S) = 37/ D;S" = A, where each D, is a diagonal matrix. In
addition, authors in [26] factor Dy + D4 S into a product]51(1 + aS)]jg, where D,
and]f)g are diagonal matrices. Of course,]f)l(I + ozS)]f)Q is a DCD matrix. Factoring
a matrix A constructively into a product of 2n — 1 diagonal and circulant matrices can

be outlined as follow:

1. Factor p into linear terms, i.e., p(S) = (S — Dg)(S — Dy)--- (S — D,,_4).
This can be achieved by consecutively solving structured systems of polynomial

equations.
2. Convert each factor (S — D;) = —(D; + D;S) into a DCD matrix as in
aforementioned discussion, where D; = —1.

3. With this setting, 2n — 2 diagonal factors and a circulant factor are indispensable
to compute the desired factorization (5).

31

Another interesting factorization can be found with applications in signal processing.
For more information, see [27]. In this factorization, authors first decomposed any

square matrix A into a following structured factorization using Jordan canonical form:
A=XIX"'! = al—(al—A) =aX(I—(I-J/a))X ' yields

I — Jl/Oé 0 . :
A=aX|I- 0 o - - lI=1... 0 0 X
: ’ 0 I-J/a
B, B
where J, ..., J; are Jordan blocks of A. See Subsection 2.0.3 for more information

about Jordan form and Jordan blocks. By analysing carefully sparsity structures of
each block B;, one can decompose each B; into the identity plus rank-one factors, i.e,
B, = (I+X;)I+Xy)---(I+X,), where each X; is a rank-one matrix. Thus, one
can substitute these identities with implications of Example 8 to yield a factorization:
A =o(I+D;CiDy)(I+ D3CsDy) - (I+ Dgy_1CDy). (6)

Thus, another view point of product of circulant and diagonal matrices is that we can
use DCD matrices as elements in a multiplicative approximation of A. Moreover, it
is interesting task to study and develop links between the factorizations (5) and (6).
For instance, if the product D, 'D, listhe identity matrix, then one can decompose
each factor in (6) into a product of circulant and diagonal factors, since I+ D,C;Dy =
D, (D;'D;!'+C)D,. At this point, we do not know how to devise such factorization in
general settings. Therefore, let’s formulate the following more general open problem.

Note: An Open Problem

Factoring I + D;C;, D, into a product of circulant and diagonal factors, where
Dl,DQ € D and C1 e C.

Inspired by these decompositions, it remains to be seen which way is
computationally, or, from the point of view of applications, the best approach to work
with product of circulants and diagonals. However, structured matrix factorizations
are in general computationally hard problems with appealing mathematical properties.
For example, as discussed in Section 2 nonnegative matrix factorization is NP hard.
Thus a natural and interesting question towards computation is developing a matrix
expansion that can approximate a given A rapidly. To this end, a fundamental
question is choosing elements or basis with proper computational properties. In our
context, we develop a matrix expansion based on DCD matrices. For instance, if
A € C* is a sum of r~-DCD matrices, then Az = Y . Do, 1F*A;FDyz
can be computed in O(rnlog(n)) operations by invoking the FFT. Remarkably,
A = Z:Zl D,; 1C;D,; also promises that one can develop peculiar parallel and
distributed algorithm hierarchies to perform elementary operations like matrix-vector
multiplication. Moreover, following example will demonstrate another motivation.

Example 8. Any rank-one matrix A = uv* with u,v € C" is a DCD matrix.

Proof: Set D; = diag(uy, us, ..., u,), Dy = diag(v;,7s,...,7,), and C as a
circulant matrix having all 1 in first row.

32

Example 8 seems very artificial to restrict C to be all ones. However, we recall
that one can write any rank-r square matrix A as an expansion of rank-one matrices
with r factors, i.e., A = Zle o;u;v;. See Corollary 13 for more details. From
Example 8, any square matrix A is thus a sum of at most k-DCD matrices. With
this in mind, DCD matrices can be regarded as playing an important role in additive

and multiplicative matrix approximations which leads to have following definition.
Definition 21. DCD-rank of a matrix A is the smallest r which gives zero in (1).

Next, we will illustrate the computations of the DCD-rank of some important
matrices. Of course, trivial examples include diagonal or circulant matrices, then the
DCD-rank of these matrices are 1.

Example 9. If A is a rank-k matrix, then the DCD-rank of A is at most k.

Example 10. If A is a skew circulant matrix, then the DCD-rank of A is 1, where a
skew circulant matrix is a circulant matrix with a change in sign to all elements below
its diagonal.

Proof: Refer [19, p. 85].

Example 11. If A has the DCD-rank k and B has the DCD-rank [, then aA + bB
has the DCD-rank at most | + k for some scalars a and b.

Proof: Suppose C = aA + bB. Notice that A can be decompose into at most
sum of £-DCD matrices and B is a sum of at most [-DCD matrices. Therefore, the
DCD-rank of C is at most & -+ {.

Example 12. If A is a CD matrix, where C is a {e*ia}—circulant matrix, then the
DCD-rank of A is 1.

Proof: Note that {e~%}-circulant matrix can be decomposed into C = 2*C,;2,
where C; is a circulant and €2 is a diagonal matrix. Therefore, A is a DCD matrix.

Example 13. If A is a monomial matrix, i.e., PD matrix, then the DCD-rank of A is
at most n, where P is a permutation matrix.

Proof: It follows from the Example 11.

Example 14. If A is a monomial matrix, i.e., PD matrix, and D is a diagonal matrix,
then the DCD-rank of AD, and D A is at most n.

Proof: Note that AD; = PDD;. Thus, AD; is a monomial matrix. To prove other,
set D;jA = D;PD = P(P*D,P)D and observe that it is also a monomial matrix.

Example 15. If A is a CDC matrix, then the DCD-rank of FAF* is 1.
Proof: Note that FAF* = FCDCF* is a DCD matrix.

Example 16. If A is a sum of DCD matrices, then AT is also a sum DCD matrices.
In particular, if A is a DCD matrix, then AT is a DCD matrix.

Example 17. If A = D, + D,S, then the DCD-rank of A is 1, where we define
S = circ(0, ..., 1) and Dy and D, are diagonal matrices.

33

Proof: Refer [26, Theorem 2.10].

It is seemingly useful to study the DCD expansions of structured matrices, since
their DCD-ranks give key information about optimal number of factors and related
compressions. Of course, this information is also crucial for designing algorithms
towards applications. Therefore, we will study the DCD-rank of some structured
matrices which are appeared in modern computational sciences and engineering.

First, we study the Toeplitz matrices that inherit some of the most attractive
computational properties. Hence, Toeplitz matrices have being used in a wide
range of stable and fast algorithms. For example, multiplication, inversion, and LU
decompositon of a n x n Toeplitz matrix can be computed in O(n?) operations
and remarkably, Toeplitz systems can be solved in O(nlog?(n)) operations. See
Subsection 2.0.3 and references therein for more details. Therefore, our next move
is to investigate the relation between Toeplitiz matrices and DCD expansion.

Example 18. If A is a Toeplitz matrix, then the DCD-rank of A is at most 2, where
Toeplitz matrix 'T is a constant matrix along its diagonals, i.e.,

[t t ty oo t, |

tn+1 i1 12} e tn—l

T=| tnr2 lnp1 [T)
| fon—1 ton—1 lon—2 - 1

Proof: One important property of Toeplitz matrix A is that we can decompose A
into a circulant matrix C, and a skew circulant matrix S, i.e., A = C 4+ S. Note that S
and C are DCD matrices. Therefore, the DCD-rank of A is at most 2.

In the light of research paper [12], almost any matrix A € C"*" can be decomposed
into a product of at most 2n + 5 Toeplitz matrices, i.e.,
A =TTy Tonys, (7)

where each T; is a Toeplitz matrix. See Subsection 2.0.3 and [12] for details. To the
best of our knowledge, there is no efficient numerical algorithm to compute such a
decomposition (7). On the other hand, given the decomposition (7) of a square matrix
A, we can solve linear system Ax recursively in O((2n + 5)nlog?(n)) operations
using standard Toeplitz solvers. Moreover, one can naturally combine aforementioned
results to decompose a generic square matrix A € C"*" into a sum of products of
DCD matrices:

A=Q +Qo+...+Q,,

where each Q; is a product of 2n 4+ 5 DCD matrices and r = 22775,

Example 19. If A = D, TD,, for some diagonal matrices D, and D5, then the DCD-
rank of A is 2, where 'T is a Toeplitz matrix.

Proof: Note that the DCD-rank is invariant under diagonal scaling from the left and
right of a Toeplitz matrix.

Example 20. If A is an upper bidiagonal matrix, then the DCD-rank is at most 2.

34

Proof: Consider a decomposition: A = D + Up, where D, is a diagonal
matrix whose diagonal elements are equal to the diagonal elements of A and U, is a
super diagonal matrix whose super diagonal elements are equal to the super diagonal
elements of A. Then U, is a DCD matrix. To see this, consider the following cirulant
and diagonal matrices:

e D), is a diagonal matrix whose first n — 1 diagonal elements are super diagonal
elements of U, and the last element is zero.

e C is a circulant matrix such that C = circ(0, 1,0, ...,0).

e D, is a diagonal matrix whose first diagonal element is zero and other diagonal
elements are ones.

Note that D;CD,; = U, and D4 is a DCD. It follows that the DCD-rank of A is 2.

The next example, a special case of Example 20, illustrates another way of computing
the DCD-rank of an upper bidiagonal matrix with a constant diagonal matrix.

Example 21. If A is a constant diagonal with a super diagonal matrix, then the DCD-
rank of A is 2.

Proof: We demonstrate the computation by taking A as a 3 x 3 matrix:

1 T 0
A = 0 1 T9
0 0 1
Consider A; = (D; + DyS)T, where D; = diag(l,1,1), Dy =

diag((zi22)~ !, z1,72), and S = circ(0,...,1). Example 17 and Example 16
guarantee that A; is a DCD matrix. Assume following DCD matrix:

0 0 0
A, = 0 0 0=
(r122)™1 0 0
000 0 (r129) 7" 0 1 00
000 0 0 (r129) 7" 0 00
0 0 1 (ZEll’g)fl 0 0 0 0 0

Note that A = A; + A, and A, is a DCD matrix. Thus, the DCD-rank of A is 2. In
addition, one can generalize above computations for an arbitrary n.

Example 22. Let fi = a,a? + ap,lxp_l <+ agand fo = byt + bq,lxq_l -4 by be
polynomials in C[z]. Then, Sylvester matrix S € CP+0xw+d) of £ and f, is defined
as follows:

ap -+ a 0 - 0
0

: 0

a4 -+ @

S = g?q bOO ()p 00
0 - S)

: 0
0 0 b, b |

35

If A is a Sylvester matrix, then the DCD-rank of A is 2.

Proof: Set two circulant matrices C; € C@t9x(®+9) and C, € CPta)xp+a)
such that C; = circ(ay,...,a0,0,...,0) and Cy = circ(bp,0,...,0,b,,...,01).
Next consider diagonal matrices D;; = diag(l,...,1,0...,0) and Dy; =

—— ——

q p

dlag(O, cee O, 1... s 1) Note that we have A = Dllch21 + DlgcQDQQ, where

———— N —
q p

D5, and Do are identity matrices. It follows that the DCD-rank of A is 2.

Example 23. If A € C**?" s a structured matrix with all nonzero ;’s as below, then
A is a DCD matrix.

0 T 0 N 0)
T3 0 m4 0 e 0
A 0 Ty 0 .1‘6 0 :
0 e 0 Tyn—3 0 Tyn—2
| Tan—1 o - 0 Tan 0]
Proof: Consider a circulant matrix C; = circ(0,1,0,---,0,1) and two diagonal

matrices: D; = diag(dy, - - ,dy,) and Dy = diag(a, - - - , as,). Note that D;C1 D,
yields following two system of linear equations:

/

(
dioy = T diog, = Ty
dQOég = Ty dQOél = I3

and d3042 = I35 .

d2n—1a2n = Tyn—2

. donQ1 = Typ_1 \dQnCYanl = T4n

With this information, we can compute unknown d values in terms of « values using
first system of equations and insert them into the second system of equations to solve
« values. This yields a structured sparse matrix which can be solved very fast to
determine « values. For instance, we have following matrix for n = 4,

0 0 0 0 0

O X OO X © oo
X ©O O X O OO

OO X oo o o X
O X ©O O O O X
X © O O o X O
OO OO X © o X
O oo X oo X
O O X © O X O

Once solve « values, we can substitute them into the first system of equations to
determine unknown d values.

Example 24. Any A € C?*? with nonzero entries is a DCD matrix.

36

Example 25. If A € C?*"**" js a structured matrix whose sparsity pattern agrees with
that of C = circ(0,..., 1 ,0,..., 1 |0,...,0), then A is a DCD matrix.
~ ~
l J

Proof: Suppose that we have diagonal matrices D; = diag(dy,...,ds,)
and D, = diag(ai,...,a9,) and a circulant matrix: C =
circ(0,...,0,1,0,...,0,1,0,...,0) € C?**?" which agrees with the sparsity
pattern of a given matrix A € C?"*?", Looking at nonzero subdiagonals of D;C;D,,
one can compute two systems of linear equations in a similar way as we discussed in
Example 23.

Theorem 22. If A is a square matrix such that A € C*"*2" with nonzero entries, then
the DCD-rank of A is at most n. In addition, we have DCD-rank(A) < rank(A) <
2n.

Proof: For n = 1, see Example 24. For n > 1, observe that

n—1
A=) A+A
i=1
where each A; has same sparsity pattern as C; =
circ(0,..., 1 ,0,..., 1 ,0,...,0) € C?*>" and if A;(m,n) is a nonzero
i+] 2n-(i-1)
element then, A;(m,n) = A(m,n). A, has same sparsity pattern as
C, = cire(_ 1 ,0,..., 1 ,0,...,0) € C*>* and if A;(m,n) is a nonzero
~~ ~~

1 n+1
element then, A;(m,n) = A(m,n). Example 25 implies that every A; and A; are
DCD matrices. Thus, the DCD-rank of A is at most n. Inequalities can be proved
by using the rank theorem in linear algebra.

Next, we would like to propose a natural generalization of DCD expansion
by adapting an extension of diagonal matrices. We follow the definition of the
generalized diagonal of a matrix proposed by Bhatia in [28] and define a generalized
diagonal matrix as follows:

Definition 23. A generalized diagonal matrix D is a matrix in which each row and
each column contain exactly one nonzero element.

Inspired with this definition, we further study a generalization of DCD expansion
consisting circulant matrices and generalized diagonal matrices. In other words,
we study a matrix expansion whose elements are DCD matrices, i.e., a product of
generalized diagonal matrix, circulant matrix, and another generalized diagonal matrix.
Nevertheless, our report below is extremely preliminary and it is a future research to
explore more properties of DCD expansion. Remarkably, if we fix DC, then a set of
all DCD forms a linear space under diagonal matrix addition and scalar multiplication.
Further, (DCD)7 and (DCD)* are also DCD matrices as well.

Definition 24. DCD-rank of a given matrix A € C™*" is the smallest r which gives
zero in the problem defined as follows:

37

__min
D;D;eD,CreC

; ®)

F

A - Z D,C.D;

i7j7k

where D and C denote a set of all generalized diagonal matrices and circulant matrix
subspace, respectively.

One can easily observe that the Examples that we described the computations of the
DCD-ranks can be extended for computing the DCD-rank of these matrices.

Example 26. If A is a monomial matrix, i.e., PD matrix, then the DCD-rank of A is
1, where P is a permutation matrix.

Proof: PD is a DCD matrix.

Example 27. If A is a Hankel matrix, then A is at most a sum of two DCD matrices,
where Hankel matrix H is a constant matrix along its anti-diagonals, i.e.,

[by he hy -+ hy |

hy hs hy =+ hpp

H=| s hs - hpgo
L hn hn+l hn+2 e h2n71 i

Proof: Consider the decomposition A = TJ, where T and J are Toeplitz and
reflection matrices, respectively. Together with Example 18, we can conclude that
A is sum of two DCD matrices, since A = D,C,D,J + D3C,D,J for some two
DCD matrices. Therefore, the DCD-rank is 2. Note that reflection matrix J is a
anti-diagonal matrix:

0 0 0 1
0 0 1 0
J=|0 10 0
10 0 0

Computing the DCD-rank of a Hankel matrix is a key to study complicated matrix
structures and we outline an application as follows: One of the ingredients in numerical
computing is studying the products of structured matrix classes. The products of
structured matrices do not generally inherit explicit structures of their constituent
elements. However, products of Toeplitz 7, Hankel #, and Vandermonde) retain
some specific structures. The tight connection for studying the products of the matrix
classes is that multiplications of these structured matrices transform the three structures
into each other. For example, TH = H, HH = T, and VIV = H. The paper [29]
proposed that such transformations enable us to extend any efficient algorithm, which
computes the inversion of the matrices in any of the classes, into inverting the
matrices of other classes. This approach is widely used and recognized to develop

38

numerically stable Toeplitz solvers. The underlying trick is so called displacement
rank (another approach is described in Subsection 2.0.3.). The idea is to transform
original structured matrices by their displacements. Of course, displacement operators
can be defined by small number of parameters and one can recover the original rapidly.
For example, one can improve Toeplitz computations by reducing them into a Cauchy
like computations [29]. Thus, studying the DCD-rank of products of the matrix
classes are also important.

Example 28. If A is a element of TH, HH or VTV, then the DCD-rank is at most 2.

Proof: Note that A = VIV € VTV is a Hankel matrix, where V is a Vandermonde
matrix, i.e.,

2 n—1
1 v vé Sy X
n—
1 vy vy - v, X
2 n—
V= |1 vs v3 -+ vy
1 v, v2 - !

It follows from Example 27 is that the DCD-rank of A is at most 2. Similarly,
the DCD-ranks of other products of matrix classes can be computed by recalling
Example 18.

Example 29. Computing the DCD ranks of the systems described in Example 7.

for oSt e s)

It follows that the DCD-rank is 4. In a similar fashion, we can decompose [

o 1]

o
O o
_

matrix into DCD factors as well.

4.0.3. Approximating with CD Matrices

There has been lots of attention on approximating a matrix using a product of a
circulant matrix and a diagonal matrix, i.e., approximating A using a product of CD
or DC matrices. We will illustrate an application arouse in signal processing and
one can find some other interesting applications in Section 1. A diffractive optical
system or equivalently A € C™*" can be decomposed into a product of circulant and
diagonal matrices. See Subsection 4.0.2 for more details. However, it is not physically
feasible to synthesize very large systems in practice, since such factorizations in
general require large number of terms as a product, i.e., A = D;CyDg3 - - - Dy with a
large k. Therefore, number of factors k should be compatible with modern technology.
Thus, researchers are seeking approximated factorizations which can meet modern data
processing requirements as well as technological limitations. Certainly, approximating

39

with one factor, probably with a circulant matrix, is the simplest one, i.e., A ~ C.
However, the paper [27] proposed to compute a matrix expansion with CD matrices
for approximating a given system or matrix A € C"*". In this subsection, we
will outline some computational methods as well as some applications involving CD
matrices and its approximations.

Approximating A with a sum of CD matrices was proposed in [27]:

A — z’": CiDy
k=1

min
D, eD,CreC

; ®)

F

where D and C denote diagonal and circulant matrix subspaces respectively.

One important application on approximating with CD matrices is that it opens a door
for designing fast preconditioners for dense Toeplitz related linear systems [30]. For a
given A € C™*", Algorithm 2 was introduced to find a nearly optimal product CyD,
where Cy is a {e~"}-circulant matrix.

Algorithm 2: Computing Optimal CD

Input:
o Ac(Cmm,
e Anti-diagonal matrix P.
o §c|—mm]
Steps:
1. Compute Py = P(L4 + e ?Uy,).

e U ,— Strictly upper triangular matrix whose ;" row is j** diagonal of A.

e L,— Lower triangular matrix whose ;" row is (j — n)™ diagonal of A.
2. Find the best rank-1 approximation oju 0] of Py.
3. Compute a diagonal matrix D by setting diagonal |/o7;.

4. Compute a {e~*}-circulant matrix Cy having first column /o7 u;.

Definition 25. C, matrix is a {e "}-circulant matrix if it has a spectral
decomposition:

Cy = QF*AFQ" = QCQ7, (10)

where A is a diagonal matrix containing eigenvalues of C and i* = —1. Further,
Q = diag(1,e/", ... e7=D0/") and C denotes a circulant matrix.

40

Application: Approximating Johnson-Lindenstrauss Transforms

Given a higher dimensional finite point set, it is an interesting task to study a
low dimensional representation of the set without suffering great distortions, i.e.,
pairwise distances between the points in a low dimensional space do not change
dramatically with respect to their original representation. This distance preserving
property often guarantees that a solution computed in the low dimensional space
is a good approximation to the problems arouse in the higher dimensional space.
Therefore, such a low dimensional representation of the points can be used to speed up
algorithms whose running time depend on the dimension of the working space.

To study this problem, the Johnson-Lindenstrauss lemma (JL lemma) is a key.
Roughly speaking, the Johnson-Lindenstrauss lemma describes that n-points in a
higher dimension can be projected onto a lower dimension size of & = O(e 2log(n)),
while incurring distortions at most (1 + ¢€) in their pairwise distances:

Lemma 26. Let x, 1, ,x, € R? be arbitarary points and k = O(e2log(n)) be a
natural number with € € (0, %) Then there exists a linear map f : R® — R* such that

(1 =€)l — 5l < [1f (23) = fy)ll; < (L4 €) i — 55 Vi, j.

Proof: See [4] and references therein.

A computationally challenging problem is developing fast algorithms to evaluate f(x),
since the JL lemma requires a dense k& x d random matrix A and each projection costs
O(dlog(n)) operations. An improvement in computational time was achieved by Fast
Johnson-Lindenstrauss Transforms (FJLT) proposed by [31]. The idea was based on
replacing the dense matrix A with a preconditioned sparse matrix which has same
distance preserving property. Roughly speaking, FILT is defined as f(x) = PHDuz,
where P is generated from independently at random, H is a Hadamard matrix, and
D is a random diagonal matrix. With this setting, FILT computes the projections in
O(dlog(d) + qde~2log(n)) operations with high probability [31].

A notable running time improvement with high probability O(dlog(d)) can be
achieved by setting f(z) = CDzx, where C is a partial circulant matrix with
independent Bernoulli random variables and D is a randomly generated diagonal
matrix [4].

41

S. ALGORITHMS FOR APPROXIMATING WITH DCD
MATRICES

In this section, we will introduce a greedy algorithmic framework for approximating
a given matrix A € R™" with sums of DCD matrices. The greedy method is
quite powerful and it may serve as an invitation to develop more numerically reliable
algebraic algorithms. To this end, we recall that greedy algorithms in general make the
choice that looks optimal at each iteration. In other words, greedy algorithms make
a sequence of locally optimal choices in an effort to determine a globally optimal
solution. Moreover, these algorithms efficiently find local optimal (or suboptimal)
solutions which can be coarser approximations to the global optimal solutions.

With this in mind, suppose that we are equipped with an oracle P. An oracle
is a computational unit which can answer the successive questions of the iterative
algorithm. Specifically, the oracle P we suggest, can compute an optimal DCD matrix
which minimizes objective function g : R3® — R defined on parameterized circulant
and diagonal matrix subspaces:

gla, e, \) = HA — D1CD2H? = Z Z(am — aick)\j)Q, (11)

ij=1 k

where D; = diag(«) and Dy = diag(\) € D, and C = circ(c) € C with a, A\, ¢ €
R!*" We denote an optimal DCD matrix which minimizes problem (11) as DCD*.
Equivalently, oracle P will return matrix DCD* for input A, i.e., P(A) = DCD™.
As written in equation (11), we use following notations to represent the elements of
parameterized A — D;CD, matrix as below:

aj1 — Q1CIA1 Q2 — Q1CeAe Q13 — QC3A3 - Q1 — QU Cr A\,
A1 — QaCp Al Q22 — QC1 Ay A3 — Qa3 -« -+ Qgp — 0Cph_1 A,
Apl — pCaA1 Gp2 — QpC3A2 (p3 — QpCaA3 =+ Upp — QpCL A,

Together with the oracle P, we propose Algorithm 4 which iteratively increases the
DCD-rank by one, while improving the approximation quality. Such an incremental
DCD-rank one update algorithm is inspired from the optimal approximation property
of the SVD for computing rank-r approximation.

One can observe that numerically computing the oracle P in Algorithm 4 is a
challenging problem. Therefore, our main purpose in this section is developing
efficient algorithms for approximating the oracle P. To this end, we seek optimization
techniques in the following subsections. Before deriving algorithms, we will explore
some properties of the function g.

Let us try to compute an estimate of function g, when diagonal matrices of DCD
are orthogonal matrices.

Proposition 27. Suppose that D, and D+ are orthogonal diagonal matrices, then
|A —DiCDsl| > [[A p — [[All -

Proof: ||[A —=DyCDs|p > [[Allp — [DiCDslp = [|Allp = [ICllp = [Allr -
|F*AF|| . It follows the proposition, since F is a unitary matrix and Frobenius norm
is unitarily invariant.

42

Algorithm 4: Computing DC' D expansion

Input:
o A cR™™,
e rc R
Steps:
1. Set&, = A.
2. Fori=1:r
e Compute DCD* = P(&;_).
e Compute ¢; = ;1 — D;CDj, and store DCD".
end

Next we will analyze the convexity of the function g, since the set of convex function
is an important class of functions in optimization. For instance, the global optimal
condition of a convex function is guaranteed by Theorem 29. Before proceeding, we
first recall the definition of the convex function as below:

Definition 28. A function f : R™ — R is called convex if dom(f) is convex and for
all z,y € dom(f) and 0 € [0, 1), the following inequality holds:

f(0z+ (1= 0)y) <0f(x)+ (1-0)f(y),
where dom(f) = {z € R" : |f(z)| < oo}

Theorem 29. If f is a convex function defined on a convex set S and V f(z*) = 0,
then x* € S is a global minimal.

Proof: See [32].

Example 30. A function g, : R*" — R,(D;,C,Ds) — [|[A —D;CDsl is a
non-convex function, where D1, D, € D and C € C.

Proof: Note that dom(gs) is not a convex set, since dom(g,) is a composite of
circulant and diagonal matrix subspaces. From Definition 28, we can conclude that g,
is not a convex function.

Last example illustrates that minimizing the function g over parameterized circulant
and diagonal subspaces is a non-convex optimization problem. Thus, we could not take
the advantages of rich theories in convex analysis and computing a global minimum
of g over all variables is now computationally challenging. For more information
about convex optimization, see [32]. To circumvent the problem, we seek another
very powerful but simple algorithmic technique so-called greedy for approximating
oracle P. We remark that greedy algorithms provide a natural way of computing better
solutions in practice, sometimes with mathematical guarantees. For example, author

43

in [33] showed that greedy algorithms can yield the better performance in sparse signal
processing than other frameworks.

Inspired from them, we explore some information of the function g. Since g is a
differentiable function, we can compute partial derivatives of the function g as follows:

0 - / /
a—o‘i = Z2(atk — i Ap) (=), (12)
8g 7
N Z Ut — QA (—Cpup), (13)
ag n—t+1 t—1
B = Z —2(Diag(X1) e Neri—1) +Z—2(Diag(X2)lat+n_l_1Az), (14)
t k=1 =1

where ¢ is (¢ — 1) cyclic shift of first row of C , ¢" is (¢ — 1) cyclic shift of first column
of C, X; is submatrix (A —D;CDy)(1 : n+ 1 —¢t,t : n), and X, is submatrix
(A—D;CDy)(n—t+2:n,1:¢t—1).*

Moreover, the formulae (12)-(14) can be easily implemented in a matrix
computation environment like Matlab. With this information, we will next study
gradient based greedy algorithms for approximating oracle P in the following
subsections.

5.0.1. Gradient Descent Approach

Let us start with a simplest first order optimization scheme: gradient descent method.
It is well known that negative gradient is a direction of the locally steepest descent
of a differentiable function. This is the idea behind gradient descent method whose
search direction is negative gradient at a position z. Gradient decent has been
extensively used in matrix approximation problems. For example, gradient descent
has been used for computing approximative SVD in large scaled systems (e.g.,
collaborative filtering [34]). Moreover, paper [35] provides a proof of global
convergence of gradient search for low-rank matrix approximation: To prove the
convergence, authors considered an equivalent optimization problem to low rank
approximation problem, defined on the Grassmann manifold equipped with the so-
called Fubini-Study distance. In this setting, all suboptimal points are antipodal to
global optimal [35]. Thus, gradient descent paths for most of the starting points on
the manifold are monotonically decreasing. For sparse matrix approximation using
gradient descent like algorithms, see [36].

In our context, we propose Algorithm 5 which returns a suboptimal solution
(e, ¢, A)*. For stopping criteria, we check a condition ||Vg(x)||, < e in each iteration.

“We denote Diag(A) as the diagonal of matrix A.

44

Computational Cost

When computing gradient of g, we require totally 9n? multiplications at a single

iteration, since each computation of ﬂ, ﬁ, and 22 needs 3n multiplications for
Oat Ot Jcy

t =1,...,n. Similarly, we require 3(2n — 1)n total additions, since each computation

99 8 P ..
of 3—5, 8—/\gt, and a—g needs (2n — 1) additions fort = 1,... n.

Algorithm 5: Gradient Descent Method

Input:
o A cR™™,
e Given initial point = (o, ¢, \) € R3".
e Parameters ¢ and e.
Steps:
1. Compute Vg(x).
2. =1z —tVyg(z).

3. Goto Step 1if ||Vg(x)||, > €, otherwise exit.

5.0.2. Alternating Minimization Approach

A main drawback of the gradient descent approach is that it could be slow in
convergence and it equivalently costs lots of iterations. To find a suboptimal point
efficiently, we study an alternating minimization algorithm (AM) to approximate
oracle P. Simplicity and iterative nature of such algorithms allow to its applications in
bioinformatics, information theory, and finance.

Roughly speaking, the alternating minimization framework can be explained as
follows: Given the sets A, B, C and the function g : A x B x C — R, our problem is
minimizing g over A x B x C, i.e.,

a,c,)\IenfllEBXC g(Oé, “)\>

Often, it is computationally hard to solve such a problem simultaneously over all
variables; see Example 30. However, one can sometimes alternate the minimization
over the variables for computing a suboptimal solution fast. That is, one can minimize
g over one variables, say A, while freezing other variables and etc. Of course, one can
follow this procedure until, the algorithm converges to a some suboptimal point. Thus,
alternating algorithms solve a sequence of probably simple optimization problems over
one variable. Some elementary results for alternating algoritms were discussed in
seminal work [37]. Another advantage of such a computational framework is that
individual variable update is computationally much cheaper than batch updates.

Remarkably, the alternate minimization algorithm provides that each subproblem is
a convex problem as follows:

45

Proposition 30. Consider a function g, : R3>*" — R defined as follows:
g2(D1,C,D2) = ||[A — DCDy|| .. Then, alternatively minimizing g, over diagonal
and circulant matrix subspaces, is a convex optimization problem.

Proof: Suppose D, and D, are freezed variables. From Definition 28, g5 is a convex
function over C:
|A —D;(aCi + (1 —a)Ce)Dy|p = ||0A —aD;CiDy + (1 — a)A — (1 — a)D1CyDy|| -
<al|A-D;CiDyf|+ (1 —a)||A —D;CyDyf| .

Note that C is a subspace. Thus, minimizing g, over C is a convex problem. Similar
steps can be followed for other variables D, and D5 over D to prove the result.

We remark that g; : R3 — R3*" (q, ¢, \) — (Dy, C, D) is a convex function over
alternating the variables «, ¢, and A. In this setting, it follows that minimizing g =
g3 0 g2 0 g alternatively is a convex optimization problem, where g5 : R — R, z +— 22,
In this framework, a sequence of convex optimization subproblems needs to be solved
and thus may yield the convergence to a suboptimal solution. Remarkably, one can
solve a convex problem efficiently and reliably with modern mathematical subroutines.

Using Theorem 29, we can derive following alternating minimization algorithm as
depicted in Algorithm 6. For convergence of alternating algorithms for non-convex
optimization problems, see [38].

Algorithm 6: Alternating Minimization

Input:
o A € R™".

e Given initial point 7 = (a, ¢, \) € R3".

Steps:
Repeat
1. Fort=1:n
Qy = 22:1 a/tkc;ﬂ)\k/ Zzzl(c}m)z
end
2. Fort=1:n

Ai=A(l:n+1—-tt:n)and Ay =A(n—t+2:n,1:t—-1)
Ny = 3 ok de—1)? + 30 (1m0
= (Z:H Diag(Al)kak)\kahLZf;i Diag(As)itin-i-1\) /Ny

end
3. Fort=1:n
A = Dy amcpon/ Yoy (crar)?
end

Until converge

46

Computational Cost

When computing optimal parameters o, ¢ and \, we require totally 9n? multiplications
at a single iteration, since each computation of oy, ¢; and \; requires 3n multiplications
for t = 1,...,n. Similarly, we require 6(n — 1)n total additions, since for each
computation of o, ¢; and \; needs 2(n — 1) additions fort = 1,... n.

5.0.3. Gauss-Newton Approach

We begin our studies in this subsection by rearranging equation (11) into the following
form:

n

gla,c,\) = Z Z(ai,j - aick)\j)Q = Zfl(aaca >\>2 = Hf(@”;
=1

ij=1 k

where fi(a,c,\) = a;; — asep); and f = (fi(x), fo(x),. .., fa2(x))? with x =
(a,c,\) € R3. Now the challenge is developing an efficient algorithm to minimize
| f(2)||3 or equivalently minimize the sum of squares of f;’s. To this end, this is a
variable translation of our problem (11), minimizing g over «, c and A, into a least
square like problem. We can outline the procedure as follows:

First note that f is a nonlinear function and thus developing an algorithm to compute
a suboptimal point is computationally hard. To circumvent this problem, we can use
Taylor’s first order approximation to linearize the function f : R* — R" around a
small neighbourhood of z;, € R3" as follows:

h(z,zy) =~ f(xg) + I(zp) (2 — xp),

where J(z},) is the Jacobian of f at z.
For n = 3, structure of J(z)7 of f : R¥*3 — R* can be depicted as follows:

_Cl)\l —CQ)\Q —Cg)\g 0 0 0 0 0 0

0 0 0 —03)\1 —Cl)\g —CQ)\g 0 0 0

0 0 0 0 0 0 —02/\1 —03/\2 —Cl/\g
—061)\1 0 0 0 —042)\2 0 0 0 —043)\3

0 —(1/1)\2 0 0 0 —042)\3 —Ozg/\l 0 0

0 0 —041)\3 —052>\1 0 0 0 —043>\2 0
—C1(q 0 0 —C309 0 0 —Co(d3 0 0

0 —Co0vg 0 0 —C1Q9 0 0 —C30r3 0

0 0 —C3((1 0 0 —C20/2 0 0 —C103

The idea behind Gauss-Newton approach is basically minimizing ||h(z, x;.)|| over z.
Of course, new problem is much easier to solve, since h(x, zy) =~ f(xg)+JI(xg)(x—2xk)
is a approximative system of linear equations. If J(zy) is full rank, one can compute
following iteration by setting Vh(z) = 0, i.e., computing the least squares solution at
Tl

Trir = ap — (J(w) T (2x)) 71T (1) f ().

47

Typically, the Gauss-Newton method converges much faster than gradient descent
method [32]. A main drawback of the Gauss-Newton approach is that computing the
iteration when J(zy,) is not full rank. In other words, we could not update the iteration
when columns of J(z) are linearly dependent, since J(z)?J(z) is a singular matrix.
However, a robust solution can be proposed as a minimization to the following system:

1h(z, 2i) 15 + | — will3 (15)

where 1, is a positive scalar.
Solving equation (15) yields the following update:

Thy1 = T — (J(l’k)*.]({tk) + ,LLka)_lJ(ZL‘k)*f(ZL’k) (16)

This update (16) is referred as Levenberg— Marquardt (LM) update. For more
information about this algorithm, see [32] and references therein. We adapt this idea
for computing oracle P approximately and we highlight its basic steps in Algorithm 7.

Algorithm 7: Levenberg—Marquardt Method

Input:
o A cR™".
e Given initial point 2y € R3",
e Given scalars 0 < 31 < 1 < [3; and a positive scalar 1.

Steps:
Repeat

1. Compute J(x;)
2. Compute: & = x; — (J(z;)* I (z;) + D) 1T ()" f(;)
3. Update z;;1 and ;41 as follows:

o IF[IF(@)]l5 < [1f(2:)

e Otherwise ;1 = x; and ;1 = Bopt;

2 .
sthenz; ., = % and ;1 = By

Until converge

Computational Cost

Computing J(z) costs 3n? multiplications. Note that least squares solution can
be numerically computed by QR factorization: Suppose that J(z;) = QR. Then,
(J(2p)T T (22) 1T ()T = ((QR)TQR)HQR)T = R'Q?. QR factorization
requires O(9n?) operations.

48

6. EXPERIMENTS: PROOF OF CONCEPT

In this section, we present an experimental proof of concept on approximating a given
matrix with DCD expansions. In other words, the goal is essentially to present
some practical examples that can demonstrate the potentials of DCD expansions
on matrix approximation problems. We perform two experiments: We will first
empirically analyze the proposed algorithms in previous section using a synthetic
data set. Our main objective in this experiment is comparing errors |A — DCD*|| .
with different DCD* suboptimal matrices returned by proposed algorithms. Next,
we will numerically evaluate the DCD expansion obtained from our main algorithm,
Algorithm 4, with an application to image reconstruction. As a benchmark, we
will compare our simulation results with vanilla SVD. Finally, we will comment on
initial point selection for algorithms and orthogonality of numerically computed DCD
elements in the expansion. Let us keep in mind, though, that these experiments are very
preliminary and finally we remark that the SVD approximations are optimal whereas
the greedy methods in general give an upper bound. So we do not actually know how
good the idea proposed is. It might be very good, since it works well already in the
greedy settings. In other words, the SVD has had around 50 years head start!

Experiment: DCD rank-one Approximations for Synthetic Data

In this experiment, we are investigating the DCD-rank one approximations to a given
square matrix A. One important question we need to answer is that what is, to our
mind, the best proposed algorithm to compute the DCD-rank one approximation for
a given matrix A? Or what is best proposed algorithm to approximate oracle P? To
answer this question, we design following simple experiment: We prepare a synthetic
data set consisting square matrices and compare DCD-rank one approximation errors
associated to the proposed algorithms.

Preparing Data set: In Matlab environment, we randomly generate set S
consisting 20 matrices with dimensions of 100 x 100 using the command randi([1
10],100,100). With this input, randi returns a 100 x 100 matrix whose entries
are pseudorandom integers between 1 and 10 drawn from the discrete uniform
distribution on [1,10]. Thus, S; = {A; € R0 = 1 20}, We set
v € {Gradient Descent, AM, LM}.

Discussion: For each A; € S; and for each algorithm -, we compute the
approximation error ¢ = |A; — DCD"||,, where DCD" is the approximant
returned by v for a given A;. Next we compute average error ¢’ = % 2?21 e;
for each algorithm and we report them in Figure 4. Moreover, Figure 4 shows
average error information of algorithms with respect to their number of iterations,
since the performance of the algorithms also depend on their complexities. For
example, on average gradient descent method requires more than 30 iterations to
compute DCD approximants which yield better approximations than the SVD rank-
one approximations. However, gradient descent method does not converge to a point.
Remarkably, AM algorithm converges to a suboptimal point much faster (around 5
iterations) than other proposed algorithms and its DCD approximation is better than
SVD rank-one approximation. In other words, we can employ AM algorithm for

49

faster matrix approximations with O(n?) operations. For more information about the
SVD and its computational cost, see Section 3. Next, we turn our attention to LM
algorithm. It is the best proposed algorithm with better approximation errors. However,
on average more iterations (around 10 iterations) are required than AM algorithm and
we can observe that it always converges to a some optimal point. Roughly speaking,
all proposed algorithms are able to compute better approximants than the SVD rank-
one matrix and these approximants could not be able to perform better than the SVD
rank-two approximations. Finally, we remark that initial points for these algorithms
were generated randomly by Matlab randi command.

Number of | Average Error of | Average Error of | Average Error of
Iterations Gradient Descent | AM Method LM Method
Method

1 619.59 389.30 619.15

5 618.41 283.15 312.86

10 614.45 283.65 282.85

15 602.15 283.35 282.65

20 557.04 283.28 282.45

30 284.10 283.15 282.55

40 283.56 283.05 282.47

Figure 4. Average error information. SVD rank-one and rank-two average
approximation errors are 284.24 and 278.85, respectively.

Experiment: Approximating Images using DCD Expansion

In this experiment, we are interested in approximating grayscale natural images using
sums of DCD matrices. To this end, we create a small database S, which consists of
natural images arbitrarily chosen from freely available standard database [39]. We
mean by natural image is that a grayscale value of a pixel does not predominate
grayscale values of its neighbours, i.e., grayscale values do not change significantly
in its neighborhood. This image database [39] has images taken around Groningen,
Holland, in town as well as in the surrounding countryside.

Preparing Data set: We arbitrary choose 100 images from the database and we then
resize each image into 1000 pixel x 1000 pixel grayscale images, where original images
are size of 1536 pixel x 1024 pixel. The resultant database S, has roughly 43 images
of town and 57 images of countryside. Of course, resized grayscale image X; can
be considered as 1000 x 1000 matrix whose entries can take 256 possible values and
So ={X;:0<X;(j, k) <255,i=1,...,100}.

Discussion: Our purpose is numerically reconstructing a given image X; using a DCD
expansion. To this end, we utilize the proposed computational framework Algorithm
4 in last section. An elementary computational unit in Algorithm 4, oracle P, can be
approximated by AM algorithm as discussed in last experiment. Putting everything
together, we can have numerical framework to compute finite DCD expansions. For
our simulation purposes, we set the length of the DCD expansion to 50. In summary,
we are going to fit a DCD expansion of length 50 which approximates a given image

50

iﬁ

(a) DCD-rank 2 (b) DCD-rank 5 (¢c) DCD-rank 10

(d) DCD-rank 20 (e) DCD-rank 50 (f) Original image
Figure 5. Approximating original images at different DCD-ranks.

ii

(a) rank 2 (b) rank 5 (c) rank 10

(d) rank 20 (e) rank 50 (f) Original image
Figure 6. Approximating original images at different ranks.

51

70

-e-SVD Apprximation
——DCD Approximation

60

(6]
o
T

Approximation Error

20

10 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Rank

Figure 7. Average approximation errors: DCD expansion and the SVD.

X;. With this setting, we have X; ~ Z?il(DCD)j, where (DCD); matrices
are computed by AM algorithm. We then compute the approximation error e;, =

X; — 32}, (DCD),|

er = 1o5 S e for k= 1,...,50.

As a benchmark, we consider the SVD, a rank-one expansion, and its
approximations to evaluate our DCD simulation results. From SVD, we compute the
best rank-k approximations for each image and £ = 1, ..., 50. We then compute their
average approximation errors. We remark that average rank of X; 1s 998.24, where we
use Matlab rank(X;) command to determine the rank of X; € S, numerically.

We illustrate an example of reconstructing a original image at different DCD-ranks
in Figure 5 and the SVD approximations of the original image are shown in Figure 6.
Comparing these Figures, we can notice that low DCD-rank images (see Figure 5(a)-
(c)) contain more information than the SVD low rank approximations (see Figure 6(a)-
(c)). However, we could not find considerable differences among the approximations
with higher ranks (see Figure 5(d)-(e) and Figure 6(d)-(e)). Moreover, we depict
average approximation errors of two frameworks in Figure 7. We can observe that
DCD approximations on average yield better approximations comparing with the
SVD low rank approximations.

We close this experiment by examining the interplay between initial point selection
methods: In this experiment, we set initial points for AM algorithm by computing
the SVD rank-one approximation for each residue that we obtain from Algorithm
4. We remark that the initial points play a critical role for computing better DCD
approximations. For example, if we run the experiment with random initializations, it

for each £ = 1,...,50 and average approximation error
F

52

70

-e-SVD Approximation
——DCD Approximation

60

(6]
o
T

Approximation Error

10 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Rank

Figure 8. Average approximation errors: DCD expansion with random initialization
and the SVD.

produces average approximation errors with DCD expansions as shown in Figure 8.
Let us discuss this topic in some detail next.

6.0.1. Initial Point Selection Methods

We recall that function g : R*" — R defined in equation (11) is non-convex and our
iterative algorithms are based on the gradient information of g. Thus, our algorithms
are in general limited to converge to suboptimal points due to non-convexity of the
function g and they are therefore highly dependent on their initialization. It follows
that selecting initial points for these algorithms are very important in convergence of
these algorithm to a better suboptimal points. With this in mind, we next outline some
mechanisms to generate an initial D;CD5, matrix parameterized by «, c and A:

1. Selecting Random point: A simplest approach is generating required
parametrization, «g,cp, and Ay, randomly. For example, one can use randi
command in Matlab environment to generate random vectors and then one can
arrange those random vectors to have appropriate matrix structures.

2. SVD based approach: Recall that rank-one matrix is a DCD matrix, see
Example 8. Thus, we have xy* = D;CD,, where D, C, and D, matrices
are parametrized by x, 1, and y vectors, respectively. We can adapt this idea for
generating the initial parameters as follows: It is well known that for a given
square matrix A, we can compute best rank-one approximation by invoking
the SVD, ie., A ~ ojuyv], where u;, vy, and o, are singular vectors and

53

largest singular value of A, respectively. This representation yields a way of
computing required initial parameters via singular values and singular vectors of
A as described earlier.

3. CD approximation based approach: Note that in the absence of D1, the problem
in equation (11) becomes minimizing ||A — CD||7, over circulant and diagonal
matrix subspaces. This problem can be solved by the shuffling trick, through
finding the rank-one approximation to a shuffled A; for more information,
see Algorithm 2 and [27]. We can use this approach to generate an initial point
for our algorithms.

Suppose that we have
DlA ~ CDQ,

for some nonsingular D;. Of course, we can compute such a approximation
from SVD based approach. By utilizing alternating minimization, one can solve
D, while freezing CD- and then one can solve CD, while freezing D,. After
some iterations, we may use D;'CD; as our initial point for our algorithms.

We report preliminary simulation results based on selecting initial DCD matrices
or equivalently parameters as described above:

e We noticed that gradient descent algorithm, most of the times, did not converge
in the case of selecting initial points randomly. SVD based approach and
CD approximation based approach almost all the times produced the same
approximation errors for gradient descent approach. But final approximant of
circulant and diagonal matrices differed in those two approaches.

e We noticed that selecting initial points with SVD based approach and CD
approximation based approach produced approximatively the same errors for
AM method. Further, we noticed that the approximants of circulant and diagonal
matrices differed in those approaches. AM algorithm with random initialization
converged to a point, but with higher error values. Similar observations were
hold for LM algorithm as well.

6.0.2. Some Comments on Orthogonality of DCD Approximation

In this subsection, we are going to empirically study the orthogonality of the elements
in a DCD expansion. For instance, orthogonal DCD bases which span whole
C™*™, may provide a natural way of representing any matrix A € C"*". Another
application is that a k-closer approximation to a given A may be computed by finding
k-largest DCD matrices, where £ < n. Expansions with similar characteristics
give the foundations to many applications; see Fourier expansion, the SVD, and their
applications.

We recall that the SVD approximation of A with fixed k, i.e., best rank-k
approximation, we consider following:

k
A= o;u;v; ,
i=1

54

where u; and v; for ¢ = 1,... k can be freely chosen singular vectors of A. For
more information about the SVD, see Section 3. Specifically, it is turnout that
approximation with rank-one matrices u;v; are orthogonal, i.e., Tr(u;v}(wv])*) = 0,
where Tr(AB™) is an inner product in C"*". Inspired from these factors, it is
interesting to consider following DCD approximation problem and check numerically
the orthogonality of the DCD elements:

A A 2
min HA _D,C,D, — chlDQH , 17)
F

D1,D2,D1,D2€D,C1,C1€C

where D and C are diagonal and circulant matrix subspaces, respectively.

By setting initial points from the SVD, i.e., set initial D;C;Ds = wu v} and
]51631]52 = wuyv; as DCD matrices like Example 8, we can devise following
alternating iteration to minimize (17):

R N R 2
min HA _D,C,D, - D,C,D,

Y

D,D>eD,CieC F

12 (18)
. min HA—chlDQ—chng(.
D;,D2eD,CieC F

To minimize (18), we utilize gradient descent method as discussed in our
first experiment. For our simulation purposes, we randomly generate a set
{A; € RI00x100; — 1 .. 10} in Matlab environment using command randi([0
10],100,100) and compute inner products between optimal DCD* matrices returned
by the gradient descent. On average, it is 0.0074 whereas inner product between
the SVD rank-one matrices on average is 2.14 x e~ 4. Hence based on numerical
experiments, it appears that the terms in the DCD expansions are not orthogonal. We
will leave a rigorous analysis of the orthogonality of DCD approximants as a future
research.

55

7. CONCLUSION AND FUTURE DIRECTIONS

The last seven decades, dating back to the World War II, have witnessed a number
of astonishing developments at the intersection of linear algebra and applications in
computer science. Specifically, new developments including matrix factorizations,
approximations, and expansions evolve with influx of ideas coming from diverse areas
in mathematics. We covered some of these results in Section 2 and we conclude that
it is very challenging to develop algorithms for matrix decompositions which yield the
factors with proper computational properties.

Inspired from optical signal processing, there has been a lot of attention towards
approximating a given matrix using products of circulant and diagonal matrices.
With these motivations, our exposition mainly concerned on studying products of
circulant and diagonal matrices in matrix factorings, approximatings, and expandings.
Computationally, we developed a structured matrix expansion whose elements are
DCD matrices, i.e., a product of diagonal matrix, circulant matrix, and another
diagonal matrix. A mathematical notion related to the expansion, denoted as DCD-
rank, was introduced and we computed the DCD-rank of some structured matrices.
For instance, Toeplitz matrix is a sum of two DCD matrices. Moreover, we outlined
an random projection method called "Johnson-Lindenstrauss Transforms" which can
gain speed ups once constructed approximately using a CD matrix, i.e., a product of a
partially circulant matrix and a diagonal matrix.

Next, our challenge was to devise efficient algorithms for approximating given
A with sums of DCD matrices. Inspired from the optimality of the singular
value decomposition (SVD) and the rank-r approximation, we proposed a greedy
framework, Algorithm 4, which iteratively increases the DCD-rank by one, while
increasing the approximation quality. We performed two preliminary experiments to
evaluate the framework numerically. As a benchmark, we compared our simulation
results with the SVD. Objective of the first experiment was to compare the DCD-
rank one approximation errors for a given matrix A € R™*", ie., ||[A — DCD|;.
Our simulation results suggest that the DCD-rank one approximants yield better
performance than the SVD rank-one approximants. Our objective of the second
experiment was reconstructing a given grayscale image X € R000x1000 yging sums
of DCD matrices, i.e., || X — E?gl(DCD)iHF. Comparing with the SVD, numerical
simulations suggest that sums of DCD matrices yield better approximation quality
for every ¢ = 1,...,50. We remarked that the initial point of the algorithm plays a
critical role in convergence of the algorithm to a better suboptimal point. To circumvent
this problem, we proposed three mechanisms to generate good initial guesses for the
algorithm. However, extensive analysis on convergence and numerical simulations of
these methods are left as future research directions.

In the spirit, the study of DCD matrices shows that DCD matrices possess a
rich structure like tensors and therefore a study in tensor analysis can give essential
knowledge to develop our understandings and efficient algorithms.

(1]

(2]

(3]

(4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

56

8. REFERENCES

Donoho D. (2018) Blackboard to bedside: High-dimensional geometry is

transforming the mri industry. Notices of the American Mathematical Society
65, pp. 40-44.

Gillis N. & Glineur F. (2011) Low-rank matrix approximation with weights or
missing data is np-hard. SIAM Journal on Matrix Analysis and Applications
32(4).

Swayambhoo S. & Haupt J. (2017) Convolution approximations to linear
dimensionality reduction operators. ICASP , p. 5885-5889.

Vybira J. (2011) A variant of the johnson lindenstrauss lemma for circulant
matrices. Journal of Functional Analysis , pp. 1096-1105.

Cheng Y., Yu EX., Feris R.S., Kumar S., Choudhary A. & Chang S. (2015) An
exploration of parameter redundancy in deep networks with circulant projections.
IEEE International Conference on Computer Vision 4, pp. 2857-2865.

Gillis N. & Glineur F. (2012) On the geometric interpretation of the nonnegative
rank. Linear Algebra and its Applications , pp. 2685-2712.

Mond D., Smith J. & Straten D.V. (2003) Stochastic factorizations, sandwiched
simplices and the topology of the space of explanations. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 459, p. 2821-2845.

Gillis N. (2014) The why and how of nonnegative matrix factorization.
Regularization, Optimization, Kernels, and Support Vector Machines , pp. 257-
291.

Bosch A.J. (1986) The factorization of a square matrix into two symmetric
matrices. The American Mathematical Monthly 93, pp. 462-464.

Horn R.A. & Johnson C.R. (1985) Matrix Analysis. Cambridge University Press,
first ed.

Chandrasekeran S., Gu M., Sun X., Xia J. & Zhu J. (2007) A superfast algorithm
for toeplitz systems of linear equations. SIAM Journal of Matrix Analysis and
Applications 29, pp. 1247-1266.

Ye K. & Lim L. (2016) Every matrix is a product of toeplitz matrices. Foundation
of Computational Mathematics , pp. 577-598.

Pasupathy J. & Damodar R.A. (1992) The gaussian toeplitz matrices. Linear
Algebra and its Applications 171, pp. 133-147.

Tropp J.A. (2015) An introduction to matrix concentration inequalities.
Foundations and Trends in Machine Learning .

57

[15] Eisenbud D. (1980) Homological algebra on a complete intersection, with an
application to group representations. Transactions of the American Mathematical
Society 260, pp. 35-64.

[16] Eckart C. & Young G. (1936) The approximation of one matrix by another of
lower rank. Psychometrika 1.

[17] Golub G.. & Kahan W. (1965) Calculating the singular values and pseudo-inverse
of a matrix. STAM Journal of Numerical Analysis 2, pp. 205-224.

[18] Golub G.H. & Loan C.E.V. (2013) Matrix Computations. The Johns Hopkins
University, forth ed.

[19] Davis P. (1994) Circulant Matrices. A Wiley-Interscience Pub., John Wiley and
Sons, second ed.

[20] Loan C.V. (1992) Computational Frameworks for the Fast Fourier Transform.
SIAM.

[21] Strassen V. (1969) Gaussian elimination is not optimal. Numerische Mathematik
13, pp. 354-356.

[22] Strang G. (1986) A proposal for toeplitz matrix calculation. Studies in Applied
Mathematics 74, pp. 171-176.

[23] Chan T.F. (1988) An optimal circulant preconditioner for toeplitz systems. SIAM
J. Sci. Statist. Comput. 9, pp. 766-771.

[24] Quade J.M., Aagedel H., Beth T. & Schmid M. (1998) Algorithmic design of
diffractive optical systems for information processing. Physica D: Nonlinear
Phenomena 120, pp. 196-205.

[25] Schmid M., Steinwandt R., Quade J.M., Roétteler M. & Beth T. (2000)
Decomposing a matrix into circulant and diagonal factors. Linear Algebra and
its Applications 306, pp. 131-143.

[26] Huhtanen M. (2015) Factoring matrices into the product of circulant and diagonal
matrices. Journal of Fourier Analysis and Applications 21, pp. 1018-1033.

[27] Huhtanen M. (2008) Approximating ideal diffractive optical systems. Journal of
Mathematical Analysis and Applications 345, pp. 53-62.

[28] Bhatia R. (2000) Pinching, trimming, truncating, and averaging of matrices. The
American Mathematical Monthly 107, pp. 602-608.

[29] Pan V.Y. (1989) On computations with dense structured matrices. Proc. Intern.
Symposium on Symbolic and Algebraic Computation , p. 34—42.

[30] Huhtanen M. (2007) How real is your matrix? Linear Algebra and its
Applications 424, pp. 304-319.

[31] Ailon N. & Chazelle B. (2009) The fast johnson-lindenstrauss transform and
approximate nearest neighbors. SIAM Journal of Computing 39, pp. 302-322.

58

[32] Bertsekas D.P. (1999) Nonlinear Programming. Athena Scientific, second ed.

[33] Tropp J.A. (2004) Greed is good: Algorithmic results for sparse approximation.
IEEE Transactions on Information Theory 50, pp. 2232-2242.

[34] Paterek A. (2007) Improving regularized singular value decomposition for
collaborative filtering. Proc. KDD Cup and Workshop , pp. 5-8.

[35] Pitava R.A., Dai W. & Tirkkonen O. (2015) Convergence of gradient descent for
low-rank matrix approximation. IEEE Transactions on Information Theory , pp.
4451-4457.

[36] Journée M., Nesterov Y., Richtarik P. & Sepulchre R. (2010) Generalized power
method for sparse principal component analysis. J. Mach. Learn. Res 11, pp.
517-553.

[37] Csiszar I. & Tusnady G. (1984) Information geometry and alternating
minimization procedures. Statistics and Decisions: Supplement Issue , pp. 205—
237.

[38] Xu Y. & Yin W. (2017) A globally convergent algorithm for nonconvex
optimization based on block coordinate update. Journal of Scientific Computing
72, pp. 700-734.

[39] Hateren J.H.V. & Schaaf A.V.D. (1998) Independent component filters of natural
images compared with simple cells in primary visual cortex. Proceedings:
Biological Sciences 265, pp. 359-366.

	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	

	
	
	

	
	REFERENCES

