
Developing a Log File Analysis Tool: A Machine 
Learning Approach for Anomaly Detection 

 

 

 

 

 

 

 

 

 

University of Oulu 

Faculty of Information Technology and 

Electrical Engineering / Information 

Processing Science 

Master’s Thesis 

Tapio Anttila 

3.6.2020

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344911108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Abstract 

Log files, which record information about all events during the execution of a software, 

are important in troubleshooting tasks. However, modern software systems produce 

large quantities of complex logs, and their manual inspection is laborious and time-

consuming. Therefore, technologies such as machine learning have been used to 

automate log file analysis. Anomaly detection is an especially popular approach, since 

anomalies in the log files are typically caused by erroneous behaviour of the software. 

In this study, open source data mining and machine learning solutions are utilized to 

process log files collected from devices running embedded Linux. Following the Design 

Science Research methodology, a Python program called sgologs is developed. The tool 

uses components from logparser and loglizer toolkits to pre-process the input log file, 

train an unsupervised machine learning model, and detect anomalies on the input file. 

The loglizer tools have not been used with Linux logs in previous research, possibly 

because they are rather difficult for automated processing. This finding is verified in this 

study as well, as the measured anomaly detection accuracy scores are quite modest. 

Nevertheless, sgologs is able to detect anomalies in the log files, with swift processing 

times, at least when certain things are taken into consideration. If the user is aware of 

these factors, sgologs can definitely point towards real anomalies in the Linux log files. 

Thus, the tool could be used in real-life settings to simplify debugging tasks, whenever 

logs are used as a source of information. 
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Log file analysis, Linux log files, anomaly detection, machine learning, unsupervised 

learning, log parsing, design science research 
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1. Introduction 

This Master’s Thesis is about the development of a log file analysis software tool, with 

the principal function of detecting anomalies. Taking advantage of existing solutions 

based on machine learning (e.g. S. He, Zhu, He & Lyu, 2016), the developed tool, 

dubbed sgologs, processes log files from an embedded Linux device, and finds unusual 

log entries which may indicate abnormal behaviour of the software. Thus, the burden of 

debugging erroneous behaviour based on log files is mitigated. 

A colleague of mine at a midsized ICT company was recently tasked with finding a rare 

bug in one of our products. Since log files record every single event that is carried out 

(Landauer, Wurzenberger, Skopik, Settani, & Filzmoser, 2018), with time and state 

data, they are a natural first stop in the debugging process. However, inspecting the log 

files is very cumbersome: the behaviour of modern software systems tends to be too 

complex for a single developer to comprehend, and the sheer volume of logs makes the 

task extremely time-consuming (S. He et al., 2016). The colleague figured his work 

would be much more efficient if a software tool would find the anomalies for him, 

automating the process, resulting in the idea behind this study. 

This study utilizes existing, open-source solutions for log-based data mining and 

anomaly detection. The existing solutions are toolkits, which include several 

implementations of different methods. The first toolkit is logparser, developed by P. 

He, Zhu, He, Li and Lyu (2016) and Zhu et al. (2019). The second toolkit is loglizer, 

developed by S. He et al. (2016). The existing tools are extensively tested in the context 

of Linux log files, a topic only briefly noted in Zhu et al. (2019). More specifically, the 

applicability and performance of unsupervised machine learning methods (discussed 

more in section 4) with Linux logs are thoroughly investigated in this study. 

Other methods than machine learning, e.g. a deterministic algorithm searching for 

certain keywords or sequences, could be used for the anomaly detection. However, one 

advantage of machine learning is that it is able to detect previously unknown anomalies 

(Geijer & Andreasson, 2015). In other words, creating a comprehensive set of keywords 

for an algorithm to look for would require that all possible anomalies are already 

known, and new types of anomalies not yet encountered by the creator of the keywords 

could not be detected. Some argue that focusing only on significant words is not 

sufficient for a thorough analysis of a system (Landauer et al., 2018). Moreover, 

systems and their behaviour change over time, changing also the definition of normal 

behaviour; machine learning can react to such changes, and retain its accuracy 

(Landauer et al., 2018; Geijer & Andreasson, 2015). 

A few of my colleagues and I have discussed the possibilities of the log file analysis 

software, and we believe that such a tool could be very useful to numerous people here 

at our company. In addition, this study contributes to research on log-based anomaly 

detection, but in the specific context of Linux log files.  

Log-based anomaly detection endeavours often benefit from unsupervised machine 

learning for practical reasons (Geijer & Andreasson, 2015). Machine learning 

algorithms need training material, which can be labelled, i.e. all instances are manually 
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marked as normal or anomalous (Pietikäinen & Silvén, 2019). However, labelling is 

usually not a practical possibility (Chandola, Banerjee & Kumar, 2009; S. He et al., 

2016). As unsupervised learning does not need labels in the training material, it is an 

applicable approach in practical settings (S. He et al., 2016). For this reason, 

unsupervised machine learning is used in this study. 

Landauer et al. (2018) state that unsupervised methods can successfully detect 

anomalies. However, S. He et al. (2016) measured that their anomaly detection tools 

which leveraged unsupervised learning achieved inferior performance in comparison to 

tools using supervised learning, i.e. learning based on labelled training material. Zhu et 

al. (2019) found that log parsing, which refers to the activity of pre-processing the 

unstructured logs into more structured data, is relatively difficult with Linux logs. This 

is due to their complex structure and large number of different constant parts in the log 

entry strings (Zhu et al., 2019). S. He et al. (2016) did not use Linux logs in their study, 

so the suitability of their toolkit in anomaly detection on Linux systems was left 

unexplored. 

This study aims to discover whether the practical approach of unsupervised learning can 

be successful in detecting anomalies in Linux logs. The performance of the loglizer 

tools (S. He et al., 2016) with Linux logs is put to the test in order to achieve this. In 

addition, the performance of the logparser tools (P. He et al., 2016; Zhu et al., 2019), 

and how it affects the anomaly detection, is investigated. Whether the developed tool 

actually helps in and simplifies the debugging processes of developers is another 

important consideration. 

Since this thesis is an output-based study, where a software solution to a practical 

problem was developed, it was natural to use Design Science Research (DSR) as the 

research methodology. The purpose of DSR is designing and creating an artefact, which 

addresses a real-life organizational problem (Hevner, March, Park & Ram, 2004; 

Peffers, Tuunanen, Rothenberger & Chatterjee, 2007). Conceptually, the artefact can be 

anything with a research contribution embedded in the design (Peffers et al., 2007). 

Here, the artefact is the log file analysis tool, sgologs. The tool was developed 

iteratively, with the evaluation of the artefact and its utility affecting the understanding 

of the problem, objectives for the artefact, design of the artefact, and so on. Artefact 

development typically occurs within a build-and-evaluate loop (Hevner et al., 2004). In 

DSR, the evaluation of the artefact, which can be done based on e.g. functionality, 

performance, or usability, is as important as its development (Hevner et al., 2004). The 

performance of the log file analysis tool was simple to measure, by checking how many 

real anomalies were detected. The final step in a DSR project is the communication of 

the problem and its relevance, and the designed artefact and its utility, to both 

management-oriented and technology-oriented audiences (Hevner et al., 2004). The 

present research process and results are communicated by this thesis. 

Overall, Linux log files are challenging for the logparser and loglizer tools. Still, a 

parser from the logparser toolkit, called AEL, seemed to parse the logs relatively 

accurately. In addition, unsupervised machine learning models were found to correctly 

classify anomalies in the Linux log files. However, only two of the four tested models 

were applicable, and the achieved accuracy scores are rather modest and highly 

dependent on numerous factors. Nevertheless, if the user is aware of these factors, 

sgologs can direct the user towards abnormal entries in the log file. For example, it is 

important to be conscious of the fact that the models are best at detecting additional log 

messages not normally present in the log files. At least to some extent, sgologs could 

operate as a functional troubleshooting tool in real-life settings as well. 
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The structure of this thesis is as follows. The research problem and questions are set in 

section 2. Section 3 presents the research method, Design Science Research, and how it 

is used in this study. Literature review is in section 4, followed by a presentation of the 

existing tools, logparser and loglizer, in section 5. Then, the log file dataset is described 

in section 6. The first iteration of the artefact development is discussed in sections 7 and 

8: choosing a log parser and parsing the data is described in section 7, and testing the 

machine learning models and detecting anomalies with them in section 8. Next, the 

second iteration is described in section 9. In section 10, the research questions and other 

considerations are discussed. Finally, section 11 concludes this study. 
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2. Research Problem 

This section describes the research problem in detail. First, the background of the 

research artefact is discussed in section 2.1, along with the objectives for the tool. Then, 

research questions are presented in section 2.2. 

2.1 Background and objectives for a solution 

The log file analysis is based on machine learning. S. He et al., (2016) have presented 

and evaluated several applicable machine learning approaches for log-based anomaly 

detection in their paper, and even made an open source release of the studied software 

tools in the form of the loglizer toolkit. It is obviously efficient to take advantage of 

existing solutions. Initially there were two options for utilizing the loglizer tools: they 

could be used as a kind of blueprint for the design of sgologs, or alternatively be used as 

they are. In the latter case, the developed artefact is a wrapper, which prepares the log 

file data, sends it to a loglizer tool, and presents the output. Ultimately it was decided 

that the log file analysis tool is a wrapper, because getting logparser and loglizer to 

work with these Linux log files was well enough work for a thesis project. Input for 

sgologs is a log file, and the tool presents as output the found anomalous sequences in a 

text file. 

The design artefact can be considered successful if it is in fact useful to developers. On 

a general level this means that the sgologs tool considerably streamlines the laborious 

task of inspecting log files, resulting in more effective analysis workflow for 

developers. Of course, it is important to remember that even the best tool in this context 

can only guide a developer towards anomalies in the log files, and the responsibility of 

how to use the information the tool provides is left for the developer. 

The minimum objective for the solution is that anomalies, e.g. erroneous behaviour due 

to a software bug, are detected with sufficient accuracy and reported. Here, accuracy 

chiefly refers to how many real anomalies are detected. Unsupervised machine learning 

typically produces a large number of false positives (Landauer et al., 2018). This 

indicates that the machine learning reacts to instances which are not anomalous, 

resulting in unnecessary data in the output, but also that most, if not all, real anomalies 

are detected. In this study it is assumed that false positives are better than undetected 

anomalies, also called false negatives; if the machine learning is too strict about false 

positives, and thus too careful with the classification, real anomalies may not be 

detected (Landauer et al., 2018). 

Before the logs can be fed into the anomaly detection, they require pre-processing, i.e. 

log parsing (S. He et al., 2016). As mentioned, tools in the logparser toolkit have some 

difficulties with Linux logs, the best accuracy being 0.701, whereas other logs could be 

parsed with accuracies higher than 0.9 (Zhu et al., 2019). The measurements are of 

course highly dependent on the used log files, and the Linux logs used in this study 

could produce different results. This topic is investigated in this study, but log parsing is 

not measured as in Zhu et al. (2019). The accuracy scores are based on comparison to 

the “ground truth”, i.e. a manually parsed log file (Zhu et al., 2019). However, 
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constructing such a log file to present the ground truth is not feasible in a one-person 

thesis project. Moreover, it is unclear whether a log parsing accuracy of e.g. 0.701 

considerably hinders the anomaly detection. The effect of different parsing accuracies 

on the anomaly detection is investigated in this study, as mentioned in section 7.4. 

It is also desirable for the tool to be easy to use, fast, and reliable. If sgologs processes 

for a long time, or presents false results, it will not be useful to developers. Found 

anomalies, or the absence of anomalies, are the main message of the tool’s output. 

Sgologs informs in the command prompt or terminal if anomalies are found, and 

mentions were the output files are stored. 

2.2 Research questions 

Machine learning algorithms need training material, i.e. log files, to learn the expected 

and anomalous patterns in the logs. The patterns can be already identified in the training 

data, but it is not an absolute requirement (S. He et al., 2016). This topic is discussed 

more in section 4. Labelling the training data is rarely a practical possibility (S. He et 

al., 2016). For example, for the embedded device acting as the source of the log files, 

each boot produces relatively unique logs, regardless whether anomalous behaviour 

occurs or not. Thus, the classification of expected and anomalous patterns would be 

very time-consuming and difficult, when a baseline for comparisons is lacking. 

Therefore, it is reasonable to rely on unlabelled training data. However, the 

functionality of the anomaly detection needs to be verified by manually checking if the 

found anomalies are correct and if all real anomalies are found in a limited selection of 

log files. 

The fact that the loglizer tools group log messages into log sequences creates a 

challenge. Developers typically inspect the log files as they are, without converting 

them into specific sequences of any kind. Consequently, it would be difficult for them to 

identify which sequence is normal or not. The compromise made in this situation is to 

check how many sequences that contain log messages with the word error is marked as 

anomalous. Focusing on errors greatly simplifies the validation of the anomaly detection 

results, as data and knowledge about possible labels is non-existent. This approach 

overlooks the fact that some anomalies may not be errors per se; however, errors are 

exactly what developers typically search for in the log files. Whether the amount of 

detected sequences that contain errors is a valid representation of the anomaly detection 

accuracy is unclear. The first research question is 

RQ1: Can the accuracy of the anomaly detection be effectively verified by the 

amount of detected errors? 

S. He et al. (2016) measured that unsupervised machine learning models achieve 

inferior performance compared to supervised models. It is relevant to consider whether 

unsupervised learning is good enough for this purpose, or would it be better to take the 

trouble of generating label files to enable the use of supervised learning. Fortunately, 

unsupervised learning supposedly has shown promise in anomaly detection problems 

(S. He et al., 2016; Landauer et al., 2018). Anomaly detection techniques tend to suffer 

from high amounts of false positives (Landauer et al., 2018), which are likely to obscure 

real anomalies from the output. As discussed above, false positives should not be a 

problem, as long as real anomalies are detected as well. Naturally, the desired accuracy 

for the anomaly detection is that all real anomalies are detected, and the smaller the 

amount of false positives is the better. The second research question is 
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RQ2: How accurate is the anomaly detection with unsupervised machine 

learning and Linux log files? 
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3. Research Methods 

This section introduces the Design Science Research (DSR) methodology and its usage 

in this study. A general picture of DSR is presented in subsection 3.1. Then, the DSR 

guidelines (Hevner et al., 2004), their application in this study, and how they relate to 

the DSR process activities (Peffers et al., 2007), are presented in 3.2. 

3.1 Design Science Research 

Instead of reality-describing research in the style of social and natural sciences, DSR is 

about creating an artefact for human purposes, addressing a real-life problem (Peffers et 

al., 2007). DSR is often compared to behavioural science, where an IT artefact is often 

the object of study, whereas design science creates and evaluates IT artefacts (Hevner et 

al., 2004). “Such artifacts are represented in a structured form that may vary from 

software, formal logic, and rigorous mathematics to informal natural language 

descriptions” (Hevner et al., 2004, 77). The design artefact, and the proof of its 

usefulness, is central in DSR (Peffers et al., 2007). In this study, the designed artefact is 

the log file analysis software tool. 

By the common DSR artefact classification, the log file analysis tool is an instantiation, 

instead of a construct, a model, or a method. Constructs essentially are the symbols used 

to define problems and solutions. For example, mathematics relies on the constructs of 

Arabic numbers and zero. Models, i.e. representations of the problem domain, can be 

created with the constructs. More than a model, but not quite an instantiation, a method 

could be e.g. an algorithm. Finally, an instantiation is a functional implementation, or a 

prototype, of the solution. (Hevner et al., 2004.) 

In an organization, the strategies for business and information technology, and the 

infrastructure for organizational processes and information systems, are largely aligned. 

Design is required for the effective transition from strategy to infrastructure in both 

organizational context and information systems context, as illustrated in Figure 1. 

(Hevner et al., 2004.) 
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Figure 1. Organizational Design and Information Systems Design Activities. Adapted from 
Hevner et al. (2004, Figure 1, p. 79). 

In addition to considering and leveraging existing research in DSR, and information 

systems research in general, it is important to remember the environment where the 

research is happening, also known as problem space. Business needs, i.e. goals and 

problems within an organization, are the factors which fuel the IS research endeavour. 

The research thus has relevance to the environment. Likewise, the base of existing 

knowledge provides the researcher with the scientific foundations and methods for 

conducting the study. In other words, the knowledge base helps in ensuring the research 

is performed rigorously. The new research then gives back to the environment, by 

applying the solution in the organization, and to the knowledge base, by presenting the 

results of the study to the research community. These relationships are illustrated in 

Figure 2. (Hevner et al., 2004.) 

 

Figure 2. Information Systems Research Framework. Adapted from Hevner et al. (2004, Figure 
2, p. 80). 
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In DSR, the evaluation of the design artefact is as important as building the artefact. 

Evaluation produces feedback information on the artefact, and a better understanding of 

the problem, thus making it possible to improve not only the quality of the artefact but 

also the quality of the design process. This loop of building and evaluating, also 

depicted at the centre of Figure 2, is typically iterated through several times. (Hevner et 

al., 2004.) 

What differentiates Design Science Research from routine design is the fact that DSR 

addresses unsolved problems in innovative ways, or solved problems in more effective 

or efficient ways. Routine design, on the other hand, is simply the application of 

existing knowledge to known problems, without any contribution to the knowledge base 

of existing research. (Hevner et al., 2004.) 

3.2 The DSR guidelines and process 

Hevner et al. (2004) presented seven guidelines for DSR, which describe the 

requirements for effective Design Science Research. The guidelines are summarized in 

Table 1. Following Peffers et al. (2007), the design science process has six steps: 

problem identification and motivation, definition of the objectives for a solution, design 

and development, demonstration, evaluation and communication. The order of these 

activities is not strict, and the process and the activities can be repeated in an iterative 

fashion (Peffers et al., 2007). The process activities are summarized in Table 2. This 

process model is naturally followed in this study. Next, the guidelines (and related 

process activities) are described in detail, followed by information about their 

application in this study. 

Table 1. Design Science Research Guidelines (Hevner et al., 2004, p. 88) 

Guideline Description 

Guideline 1: Design as an Artefact Design-science research must produce a 

viable artifact in the form of a construct, a 

model, a method, or an instantiation. 

Guideline 2: Problem Relevance The objective of design-science research is 

to develop technology-based solutions to 

important and relevant business problems. 

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design 

artifact must be rigorously demonstrated 

via well-executed evaluation methods. 

Guideline 4: Research Contributions Effective design-science research must 

provide clear and verifiable contributions in 

the areas of the design artifact, design 

foundations, and/or design methodologies. 

Guideline 5: Research Rigor Design-science research relies upon the 

application of rigorous methods in both the 

construction and evaluation of the design 

artifact. 

Guideline 6: Design as a Search 

Process 

The search for an effective artifact requires 

utilizing available means to reach desired 

ends while satisfying laws in the problem 

environment. 

Guideline 7: Communication of 

Research 

Design-science research must be presented 

effectively both to technology-oriented as 

well as management-oriented audiences. 
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Table 2. The Design Science Research Process (Peffers et al., 2007) 

Activity Description 

Activity 1: Problem identification 

and motivation  

Define the research problem and justify the 

value of the solution. 

Activity 2: Definition of objectives 

for a solution 

Define the objectives for a solution based 

on the problem definition, and knowledge 

of what is possible and feasible. 

Activity 3: Design and development Determine the functionalities of and create 

an artefact, where a research contribution is 

embedded in the design. 

Activity 4: Demonstration Use the artefact e.g. in experimentation or 

simulation to solve one or more instances 

of the problem. 

Activity 5: Evaluation Observe and measure how well the artefact 

solves the problem. 

Activity 6: Communication Present the problem and its importance, and 

the artefact and its design and utility. 

Guideline 1: Design as an artefact. The creation of an artefact which addresses an 

organizational problem is the purpose of DSR. Artefacts are rarely full-grown 

information systems (Hevner et al., 2004). If the artefact is an instantiation, it should 

prove the feasibility of both the design process and the designed product (Hevner et al., 

2004). Conceptually the artefact can be anything, as long as a research contribution is 

embedded in the design (Peffers et al., 2007). It is also relevant to consider the 

objectives of the artefact, aligning this guideline with Activity 2. The objectives can be 

quantitative or qualitative, e.g. a determination of how a new solution is better than 

current ones, or a description of how a new artefact is expected to support solutions to 

problems (Peffers et al., 2007). 

In this study, the design artefact is the log file analysis tool. As an instantiation, it 

proves the feasibility of the process and the product: the artefact mitigates the burden of 

log file analysis, thus showing that the burden of log file analysis can in fact be 

mitigated. The objectives for the artefact are described in section 2. 

Guideline 2: Problem relevance. DSR must address a known problem within an 

organization, namely a difference between a goal state and the current state (Hevner et 

al., 2004). The first activity in the DSR process model (Peffers et al., 2007) is to define 

the research problem and to justify the value of the solution. It may be necessary to 

conceptually atomize the problem, so that the solution may capture its complexity. 

Justifying the value of the solution motivates the researcher and the audience of the 

research and clarifies the researcher’s understanding of the problem (Peffers et al., 

2007). 

The log file analysis tool developed in this study addresses the problem of a 

considerably laborious task. The artefact streamlines this task, leaving more time for 

more important tasks, and making the work of developers who use the tool more 

efficient. The laborious task faces developers quite often, underlining the relevance of 

the problem. 

Guideline 3: Design evaluation. As mentioned above, the evaluation of the artefact is 

as important as the development of the artefact. Evaluation can be done based on e.g. 

functionality, performance, or usability. The artefact should also be integrated into the 

business environment. (Hevner et al., 2004.) 
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Observing and measuring how well the artefact solves the problem can be done during 

and after the demonstration phase. Generally evaluation (Activity 5) is about comparing 

the objectives to the actual observed results. As an example evaluation can take the 

form of quantitative performance measures or results of satisfaction surveys. After the 

evaluation it is possible to iterate back to Activity 3 (design and development) and 

attempt to improve the artefact. (Peffers et al., 2007). 

The log file analysis tool is evaluated by observing its performance with the log parsing 

and anomaly detection (both discussed in more detail in section 4). In addition, the 

usability of the tool, i.e. how much it helps developers in their log inspection, is 

discussed with several developer colleagues. I will personally advertise the tool within 

the company, hopefully raising interest at the management level as well. 

Guideline 4: Research contributions. Effective DSR must provide a contribution, be it 

the artefact itself, or e.g. the used design methodology (Hevner et al., 2004). The 

artefact itself is the major contribution of this study. In addition, this study provides 

information about how the S. He et al. (2016) tools perform with Linux logs. 

Guideline 5: Research rigor. The construction and evaluation of the artefact must be 

done with scientific rigor, meaning e.g. transparent and reproducible methods (Hevner 

et al., 2004). The design artefact of this study is based on the toolkit from S. He et al. 

(2016), a product of extensive research. Similarly, the construction and evaluation 

methods used by S. He et al. (2016) also aid the construction and especially the 

evaluation of the present artefact. 

Guideline 6: Design as a search process. The sixth guideline refers to the iterative 

process of DSR: evaluating the solution to the problem refines the problem itself, which 

again refines the requirements for the solution, and so on (Hevner et al., 2004). 

Adhering to the process activities, after the artefact has been demonstrated in Activity 4 

and evaluated in Activity 5, it is possible to iterate back to design and development 

(Activity 3) or even to problem identification (Activity 1) or objective definition 

(Activity 2) (Peffers et al., 2007). The development of the log file analysis tool was 

iterative. For example, the first version of the tool, sgologs_alpha, needed parsed, 

structured log files as input, and could only use session windows in determining log 

event sequences. The second iteration began by going back to Activity 3 and 

implementing new features. 

Guideline 7: Communication of research. The research and its results must be 

presented to both technology-oriented and management-oriented audiences. 

Technology-oriented audiences need this information in order to be able to use the 

artefact in the appropriate context and to enjoy its benefits. Management-oriented 

audiences wish to know whether the organization should be committed to constructing 

and using the artefact, so the importance of the problem and the novelty of the solution 

should be emphasised in the communication. (Hevner et al., 2004.)  

Communication (Activity 6) includes the presentation of the problem and its importance 

as well as the artefact and its design and utility. Communication typically takes the form 

of a research paper, or alternatively a thesis. (Peffers et al., 2007.) 

The present research and results are communicated with this thesis. The thesis provides 

the relevant information to both technology- and management-oriented audiences. 



16 

Figure 3 presents the DSR process model in visual form. At the bottom, the possible 

research entry points, i.e. possible factors which initiate the process, are also visible. 

The research entry point of this study is highlighted, and the relevant specific tasks of 

the activities are written out. The texts between the activities represent the required 

resources for the succeeding (and preceding) activity. 

 

Figure 3. Design Science Research Process Model. Adapted from Peffers et al. (2007, Figure 
1, p. 54). 
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4. Literature Review 

This section presents earlier studies on topics relevant to this research. A brief overview 

on machine learning is presented in 4.1, followed by more extensive discussion on the 

specific topic of log-based anomaly detection in section 4.2. 

4.1 Machine learning 

Machine learning (ML) refers to the ability for computer programs to analyse data, 

extract information, and learn from it. How machine learning algorithms “learn” is 

essentially about creating and recognizing patterns in training data. For example, in the 

context of this study, the training data is actual log files, which the algorithms process to 

generate models for anomaly detection. The intelligence of machine learning is based 

more on modelled data, instead of the learning algorithms themselves (Pietikäinen & 

Silvén, 2019). Machine learning is successful with problems which are difficult to solve 

with purely algorithmic approaches, such as speech and image recognition (Pietikäinen 

& Silvén, 2019). Different ML approaches have been leveraged in countless domains, 

for example in software fault prediction (Malhotra, 2015), solar radiation forecasting 

(Voyant, Notton, Kalogirou, Nivet, Paoli, Motte & Fouilloy, 2017), text-document 

classification (Khan, Baharudin, Lee & Khan, 2010), network intrusion detection (Tsai, 

Hsu, Lin & Lin, 2009) and financial market prediction (Henrique, Sobreiro & Kimura, 

2019). 

Machine learning methods are commonly divided into three categories: supervised 

learning, unsupervised learning, and reinforcement learning (Pietikäinen & Silvén, 

2019). Supervised learning is based on examples: the training material input is labelled, 

i.e. categories in the training data are already recognized and identified (Pietikäinen & 

Silvén, 2019). The requirement of labelled training material presents some problems. 

Labelling the data may not be feasible, since e.g. all the categories in the data should be 

known beforehand (S. He et al., 2016; Geijer & Andreasson, 2015), and accuracy of the 

algorithms suffers from incorrectly labeled training material (Pietikäinen & Silvén, 

2019). Labelling is usually done by a human expert, making accurate and representative 

labelling prohibitively expensive (Chandola et al., 2009). However, strong training 

material can result in very accurate results (S. He et al., 2016). Popular supervised 

methods include logistic regression and decision trees (S. He et al., 2016; Pietikäinen & 

Silvén, 2019). 

On the contrary, unsupervised learning does not require labels in the training data. The 

underlying principle is creating a depiction of the structures in the data, where similar 

inputs are located near each other (Pietikäinen & Silvén, 2019). Unsupervised methods 

are usually more feasible in practical settings, but unfortunately tend to achieve lower 

performance than supervised methods (S. He et al., 2016). Although, Landauer et al. 

(2018) ambiguously argue that unsupervised methods are able to detect anomalies on 

unlabelled data. It is important to note that verifying the accuracy of unsupervised 

methods is difficult if the categories of the data are completely unknown (Landauer et 

al., 2018). Popular unsupervised machine learning methods include autoencoders and 

Principal Component Analysis (PCA) (S. He et al., 2016; Pietikäinen & Silvén, 2019). 
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Semi-supervised learning is a combination of supervised and unsupervised learning. 

Training data typically has labels for normal behaviour (Chandola et al., 2009). Some 

anomalous categories are first determined with unsupervised learning, and vague 

categories are verified by human input (Pietikäinen & Silvén, 2019). As human input is 

required, semi-supervised learning may face similar challenges as supervised learning, 

albeit it reduces the amount of human labour (Pietikäinen & Silvén, 2019). 

In reinforcement learning, a software agent takes actions in an environment, and 

receives positive or negative feedback (Pietikäinen & Silvén, 2019). The goal of the 

machine learning is to determine the solution which receives the most positive feedback 

(Pietikäinen & Silvén, 2019). 

A popular subset of machine learning, deep learning, has been very successful in 

problems such as speech or image recognition. The method extracts features from the 

raw data with multiple layers; e.g. in image recognition, lower layers capture features 

such as edges, and higher layers identify more specific features, such as letters or faces. 

One major advantage of deep learning over traditional machine learning is that these 

layers of features need not be engineered by humans, as they are learned from the data. 

In other words, deep learning is able to process natural, unstructured data. (LeCun, 

Bengio & Hinton, 2015.) 

4.2 Log-based anomaly detection 

As Chandola et al. (2009) define it, anomaly detection is about finding patterns in data 

that do not correspond to expected behaviour. There is an abundance of possible 

applications, such as fraud detection for credit cards, insurance, or health care, intrusion 

detection for cyber-security, fault detection in safety critical systems, and military 

surveillance for enemy activities (Chandola et al., 2009). All anomaly detection 

approaches are essentially about defining a representation of normal behaviour, and 

declaring anything that does not belong into this representation as an anomaly. 

However, in practice, anomaly detection is not as straightforward (Chandola et al., 

2009). Even defining the normal behaviour can be challenging: often the boundary 

between normal and anomalous behaviour is not precise, and normal behaviour may 

evolve over time, requiring updates in the data models (Chandola et al., 2009). The 

latter consideration is also true for anomalous behaviour. Moreover, malicious actions 

often mask themselves as normal (Chandola et al., 2009), for example in cyber-attacks. 

The availability of labelled data for the training and the validation of the models is 

another challenge (Chandola et al., 2009; S. He et al., 2016). 

Anomalies appear in data for a wide variety of reasons. Suspicious activity in network 

traffic may indicate that a cyber-attacker has intruded the network (Dunaev & Zaytsev, 

2019). Malignant tumours result in anomalous MRI images (Chandola et al., 2009). 

Possible causes for software execution anomalies are hardware problems, network 

communication congestion or software bugs (Fu, Lou, Wang & Li, 2009). There are 

several possible approaches for anomaly detection, such as detection at the operating 

system level, without having to rely on e.g. event logs (Bovenzi, Brancati, Russo, & 

Bondavalli, 2015). Nevertheless, log-based anomaly detection has become a common 

approach and attracted a lot of academic interest. With software, the advantage of log 

files is that they record every event that is carried out (Landauer et al., 2018; Leal-

Aulenbacher & Andrews, 2013), being the only source of information about a 

program’s execution and behaviour with time and state data (Dunaev & Zaytsev, 2019). 
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Therefore, the logs are the information that can be processed to detect anomalous 

situations (Dunaev & Zaytsev, 2019; Cheng & Wang, 2014). 

However, the manual inspection of log files is often unfeasible due to numerous factors. 

Software systems and their behaviour tend to be too complex for a single developer to 

comprehend (Fu et al., 2009; S. He et al., 2016; Leal-Aulenbacher & Andrews, 2013). 

Thus, analyzing log events related to a component one is not familiar with are of little 

value. Moreover, the sheer volume of logs from contemporary software systems 

exceeds what a single developer can effectively handle (Fu et al., 2009; S. He et al., 

2016; Geijer & Andreasson, 2015). In some cases, the logs are produced at rates 

measured in terabytes or petabytes (Mavridis & Karatza, 2017). Finally, software 

components can have drastically different fault tolerance mechanisms; for example, 

failed tasks may be rerun, or speculative tasks may be killed to improve performance (S. 

He et al., 2016). In such cases, finding suspicious log messages can be very difficult. 

Log file analysis tools should work autonomously, investigating the contents of the log 

files instead of any labels they have received: tools that require human input also require 

that e.g. all possible anomalies are already known (Geijer & Andreasson, 2015). There 

is definitely demand for log analysis methods for anomaly detection (S. He et al., 2016). 

As a side note, log file analysis tools that operate in cloud computing settings also exist. 

The popular Apache Hadoop and Spark are good examples of such tools. However, they 

are not solely focused on anomaly detection. (Mavridis & Karatza, 2017.) 

S. He et al. (2016) present an overall framework for log-based anomaly detection. The 

process consists of four phases: log collection, log parsing, feature extraction, and 

anomaly detection. Most log-based anomaly detection studies, such as Lou, Fu, Yang, 

Xu and Li (2010), follow this process, possibly using different names for the phases. 

Log parsing, feature extraction, and anomaly detection are each discussed in detail in 

the following subsections. 

4.2.1 Log parsing phase 

Logs cannot be fed into machine learning or data mining models as they are. This is 

because logs are unstructured, so a crucial first step is to parse log messages into 

structured data (Zhu et al., 2019). As mentioned above, logs generated by modern 

software systems tend to be very large, making manual parsing unfeasible, even with 

the help of e.g. regular expressions. Regular expressions have to be created manually 

anyway, and also constantly updated as the system evolves (P. He et al., 2016). 

Fortunately, numerous open-source automated log parsing solutions, which learn from 

the system and evolve with it, exist. P. He et al. (2016) and Zhu et al. (2019) have 

released an open-source toolkit, including numerous techniques for log parsing, called 

logparser. Logparser will be presented in detail in section 5. 

Fu et al. (2009) refer to their log parsing step as log key extraction, which is essentially 

the same activity. They justify the usage of log keys with two aspects: typically each log 

key type corresponds to one log print statement in the source code, resulting in log key 

sequences representing the execution path, and the number of log keys is finite, whereas 

theoretically there is no limit to the number of unique log messages (Fu et al., 2009). P. 

He et al. (2016) and Zhu et al. (2019) included Fu et al.’s (2009) method in their 

logparser toolkit. 
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Log messages typically include fields such as timestamp, verbosity or severity level 

(e.g. INFO or ERROR), and raw message content, recording what has happened during 

system operation (P. He et al., 2016). The raw message content can be further divided 

into constant part and variable part. For example, in the log message “Received block 

blk_-56272528 of size 671064 from /10.251.91.84” the constant part is “Received block 

<*> of size <*> from /<*>” and the variable part is the parameters blk_-56272528, 

671064 and 10.251.91.84 (Zhu et al., 2019). The constant part could also be referred to 

as log key, as in Fu et al. (2009). Making extractions such as this is key in introducing 

structure into the logs. Occasionally, this activity is referred to as frequent pattern 

mining, a common data mining technique, as in Cheng and Wang (2014). Studies often 

focus solely on the log keys to detect anomalies, while some approaches also take 

timestamp and parameter values into consideration (Du, Li, Zheng & Srikumar, 2017). 

The extracted constant parts of log messages are clustered into a list of log event 

templates, e.g. “Event 3: Received block <*> of size <*> from /<*>”. The structured 

log will then contain a sequence of these events with their occurring times, e.g. “2020-

01-16 13:18:59 Event 3”. Now, when the log is structured, it can be easily processed, 

for example by machine learning-based anomaly detection methods. It is important to 

remember that log mining (e.g. log-based anomaly detection) is effective only when the 

log parsing accuracy is high enough. (P. He et al., 2016.) 

Unfortunately, as found in Zhu et al. (2019), Linux logs are difficult to parse accurately, 

due to their complex structure and the large amount of event templates. The LenMa 

tool, based on Shima (2015), provided the best accuracy of 0,701 (Zhu et al., 2019). 

4.2.2 Feature extraction phase 

Fu et al. (2009) use Finite State Automation (FSA) to model the execution path of the 

system, and construct models representing normal system behaviour. This way, the 

anomalies can be detected by comparing new log sequences to the FSA models (Fu et 

al., 2009). 

S. He et al. (2016) separated log data into various groups, each group representing a log 

sequence, using different grouping techniques. Then, feature vectors (or event count 

vectors) were created for each sequence, and the vectors were used to form a feature 

(event count) matrix. The matrix is required as input for the anomaly detection models. 

The grouping techniques used by S. He et al. (2016) were fixed windows, sliding 

windows, and session windows. Log events that occurred in the same window were 

regarded as a log sequence. Both fixed windows and sliding windows are based on the 

timestamp of each log event. Fixed windows only have one attribute, size (e.g. one 

hour), whereas sliding windows also have the step size attribute (e.g. five minutes). 

With these parameters, as an example, two hours has space (or rather time) for two 

fixed windows, and 13 sliding windows. Log events are likely to duplicate in multiple 

sliding windows due to overlap, as the step size is in general smaller than the window 

size (S. He et al., 2016). Instead of timestamps, session windows use identifiers to mark 

execution paths, with a unique identifier to each session window. S. He et al. (2016) 

found that sliding windows is the most accurate grouping technique. 

Kim, Minsik, Kim, Cho, and Kang (2019) used user behaviour modelling for insider 

threat detection. For example, they used user activity logs to extract candidate features, 

such as the number of USB connections per day (Kim et al., 2019). In addition to user 
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activity logs, Kim et al. (2019) also used email topic modeling to create an email 

content dataset, and information about how users send/receive information to create an 

email communication network dataset. 

4.2.3 Anomaly detection phase 

The bases of three supervised methods are presented in S. He et al. (2016): logistic 

regression, a statistical model, decision tree, a tree structure diagram, and Support 

Vector Machine (SVM), a supervised learning method for classification. Additionally, 

S. He et al. (2016) present three unsupervised anomaly detection methods: log 

clustering, Principal Component Analysis (PCA) and invariants mining. S. He et al. 

(2016) also evaluate the efficiency of all these methods. 

Supervised methods achieve high precision (the percentage of how many reported 

anomalies are correct), while recall (the percentage of how many real anomalies are 

detected) is influenced by the analysed datasets and window settings. It should be noted 

that accuracy is often used as an umbrella term, encompassing both precision and recall: 

100% accuracy requires and indicates that precision and recall are also 100%. Overall, 

SVM seems to be the most accurate supervised anomaly detection method. 

Unfortunately, even though unsupervised methods tend to be more applicable in 

practical settings, they generally achieve inferior performance compared to supervised 

methods. However, invariants mining appears as a promising method with stable 

performance, and window settings do not seem to affect the results as they did with 

supervised methods. (S. He et al., 2016.) 

Unsupervised anomaly detection methods, except for PCA, were measured to be much 

more time-consuming than supervised methods. Methods in both categories, except the 

unsupervised log clustering, scale linearly as log size increases. However, like log 

clustering, invariants mining requires optimizations to be able to handle large datasets. 

(S. He et al., 2016.) 

Cheng and Wang (2014) also used PCA in their study on communication network 

anomalies. They achieved impressive accuracies, the minimum being 66% and the 

average near 80%. Moreover, the rate of false positives was admirably low: the 

maximum value was only 0.49%. 

Kim et al. (2019) fed their candidate feature sets from their three datasets (user activity-, 

email content-, and email communication network dataset) into one-class classification 

algorithms. Since the amount of abnormal cases of user activity is typically very small, 

it is practical to use one-class classification, which only uses the normal class data to 

learn their common characteristics (Kim et al., 2019). Kim et al.’s (2019) trained model 

then predicts the likelihood of a newly given instance being a normal class instance. The 

algorithms used were Gaussian density estimation, Parzen window density estimation, 

PCA, and K-means clustering. Kim et al.’s (2019) framework performed reasonably 

well: for example, when considering 30% of the most suspicious instances, more than 

90% of abnormal behaviours in the user activity dataset, and 65.64% in the email 

content dataset, were detected. However, their anomaly detection models were trained 

independently based on each dataset, and Kim et al. (2019) argue that better integration 

of the results, and utilizing the knowledge of experts, would possibly achieve a better 

performance. 
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Landauer et al. (2018) used their own incremental clustering algorithm for intrusion 

detection. Incremental cluster methods dynamically allocate incoming data points to 

existing clusters, or, if the distance to the nearest cluster exceeds a certain threshold, 

declare them as outliers (Landauer et al., 2018). In addition to clustering, Landauer et al. 

(2018) detected anomalous behaviour with cluster evolution and time-series analysis. 

When applied on the evolutions of individual clusters, their anomaly detection showed 

promising performances. However, their method only detects dynamic changes, 

overlooking anomalies that occur within a single time window, and “the problem of 

rather high amounts of false positives that all anomaly detection techniques suffer from 

[emphasis added] remains unsolved” (Landauer et al., 2018, 115). 

Du et al. (2017) use deep learning, more specifically a type of recurrent neural networks 

(RNN) called long short-term memory (LSTM), for log-based anomaly detection. The 

DeepLog model is able to detect execution path anomalies, by inspecting the log key 

sequences, but also parameter value and performance anomalies. This is possible 

because the parameter and timestamp values extracted from the log entries are taken 

into account in the anomaly detection. DeepLog also models the execution path of the 

system, like Fu et al. (2009) did with FSA. This modelling is inspired by invariants 

mining (Lou et al., 2010), and is performed with density-based clustering as well. 

Overall, DeepLog achieves a better performance than previous methods, such as PCA, 

which are also unable to detect parameter value and performance anomalies. (Du et al., 

2017.) 
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5. Existing tools for Log-based Anomaly Detection 

This section presents an overview of the logparser and loglizer toolkits. Logparser, 

developed by P. He et al. (2016) and Zhu et al. (2019), is described in section 5.1, and 

loglizer, developed by S. He et al. (2016), is described in section 5.2. 

5.1 logparser 

Logparser1 is an open-source toolkit, used to convert raw log messages into a sequence 

of structured events (Zhu et al., 2019). The toolkit automates the process of extracting 

event templates, and provides a decent selection of different log parsing methods (P. He 

et al., 2016; Zhu et al., 2019). 

Logparser contains 13 log parsing methods proposed by researchers (such as Fu et al., 

2009) and practitioners, five of which are based on open-source tools. The input/output 

interface is unified for all the different methods, which are also wrapped into a single 

Python package. For all the tools, input is a raw log file, and the output is (1) a 

structured log file and (2) an event template file with aggregated event counts. (Zhu et 

al., 2019.) 

As mentioned above, Linux log files are challenging for automated log parsing (Zhu et 

al., 2019). The highest parsing accuracy in Zhu et al.’s (2019) measurements was 

achieved with the LenMa tool, which is based on Shima (2015). The rounded accuracy 

of LenMa was measured to be 0.701 (Zhu et al., 2019). The second and third best tools 

were SHISO (Mizutani, 2013) and AEL (Jiang, Hassan, Flora & Hamann, 2008), which 

achieved rounded accuracies of 0.701 and 0.673, respectively (Zhu et al., 2019). 

5.2 loglizer 

Loglizer2 is a log analysis toolkit for automated anomaly detection, based on machine 

learning. At the time of its release, the toolkit included six tools: three with supervised 

machine learning methods, and three with unsupervised machine learning methods. 

However, three additional tools using unsupervised models have been released recently: 

LOF (Local Outlier Factor), One-class SVM, and Isolation Forest. Moreover, two more 

tools, DeepLog (based on deep learning) and AutoEncoder, are currently in 

development. (Logpai, 2020.) 

It is relevant to highlight here that the anomaly detectors by S. He et al. (2016) work 

with log sequences, instead of individual log messages. This means that the machine 

learning algorithms classify collections of log entries, and thus never mark a single log 

                                                 

1 https://github.com/logpai/logparser 

2 https://github.com/logpai/loglizer  

https://github.com/logpai/logparser
https://github.com/logpai/loglizer
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message as anomalous. As described in section 4.2.2, S. He et al. (2016) used different 

windowing techniques for generating the log sequences. The specifics of the windowing 

techniques used in this study are presented in section 8.1. 

As discussed in section 4, unsupervised machine learning is more applicable in this 

context, and therefore the unsupervised tools were focused on. The usage of four 

unsupervised tools is conveniently demonstrated within the loglizer toolkit, with 

implementations which do not assume that label data is available. These four tools 

(InvariantsMiner, IsolationForest, LogCluster, and PCA) were subject to testing in this 

study, instead of using only the three from S. He et al. (2016). Next, the underlying 

anomaly detection techniques of the tools are described in more detail. 

LogCluster tool is based on work by Lin, Zhang, Lou, Zhang and Chen (2016), 

originally developed to identify online system problems (S. He et al., 2016). Clustering 

is a relatively common, primarily unsupervised technique, where similar data instances 

are assigned into clusters (Chandola et al., 2009). This technique relies on the 

assumption that normal instances belong to a definable cluster, and lie close to their 

closest cluster centroid, whereas anomalous instances do not (Chandola et al., 2009). 

However, clustering algorithms are usually optimized to find clusters, not anomalies, 

and tend to have trouble with clusters of anomalies (Chandola et al., 2009). LogCluster 

is trained in two phases: knowledge base initialization phase, where normal and 

abnormal clusters are generated, and online learning phase, where the clusters are 

further adjusted (S. He et al., 2016). In the anomaly detection, the distance of a new log 

sequence to its nearest cluster is computed. If the smallest distance is larger than some 

threshold, or if the nearest cluster is an abnormal cluster, the log sequence is reported as 

an anomaly (S. He et al., 2016). 

Principal Component Analysis (PCA) is a spectral anomaly detection technique, which 

tries “to find an approximation of the data using a combination of attributes that capture 

the bulk of the variability in the data” (Chandola et al., 2009, 37). In other words, PCA 

is about projecting high-dimension data to a new coordinate system composed of k 

principal components (k being less than the original dimension), preserving the major 

characteristics of the original data (S. He et al., 2016). Log sequences are vectorised as 

event count vectors, and PCA is used to find patterns between the dimensions of the 

vectors (S. He et al., 2016). Then, a projection of an event count vector is calculated, 

and if the length of the projection is larger than some threshold, the vector is classified 

anomalous (S. He et al., 2016). The PCA tool in the loglizer toolkit is based on Xu, 

Huang, Fox, Patterson and Jordan (2009), where PCA was used precisely in log-based 

anomaly detection (S. He et al., 2016). 

Invariants Mining focuses on program invariants, linear relationships that always hold 

during the runtime of a system. For example, files need to be closed after they were 

opened, so log entries with phrases “open file” and “close file” appear in pairs and 

represent a lineal relationship. If the number of “open” and “close” log events in an 

instance is not equal, the linear relationship is violated, and the instance is marked 

anomalous. The loglizer tool is based on Lou et al. (2010), and as the name suggests, the 

invariants (i.e. the linear relationships) are extracted from the log files. Each new log 

sequence is reported as an anomaly if it disobeys at least one invariant. (S. He et al., 

2016.) 

Typically, anomaly detection methods construct a profile of normal instances, and 

instances which do not conform to this profile are identified as anomalies, but Isolation 

Forest has a different approach. Taking advantage of the fact that anomalies are few and 
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different compared to normal instances, Isolation Forest isolates anomalies instead of 

profiling normal instances. No distance or density calculations are required, reducing 

computational cost. Moreover, Isolation Forest has a linear time complexity, and can be 

scaled up to large and/or high-dimensional data sets. (Liu, Ting & Zhou, 2008.) 
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6. Description of the Dataset 

This section describes the log dataset used in this study. The initial data was pre-

processed (or pre-pre-processed) to prepare it for the log parsing, as explained in section 

6.1. The resulting final log file dataset is summarized in section 6.2. 

6.1 Pre-processing the initial data 

The aforementioned colleague had collected the logs from the Linux journal, which 

records information e.g. about all kernel and userspace processes (see e.g. “systemd,” 

2020). The logs were collected from 9 devices, running two different builds of custom 

embedded Linux. Here, the two builds are dubbed “A” and “B”. Each device stored its 

journal logs from numerous consecutive reboots into a single file, resulting in files up to 

3.7 GB in size. The files were stored in two directories, A and B, depending on which 

build of the software they were collected from. In the files, a few rows of free-form 

debug prints, written by the colleague, preceded the actual log entries of each reboot 

cycle. 

First, the debug prints were removed, leaving only the entries that conformed to Linux 

log format. Second, the massive files of consecutive logs were split into multiple files, 

with each resulting file containing the log entries of a single reboot. Both of these tasks 

were straightforward, and carried out by simple Python scripts. 

6.2 The final dataset 

After the initial processing, the complete dataset contained 275 605 log files, taking up 

34.9 Gigabytes of storage space. The amount of rows, i.e. log entries, in each log file 

varied from 1500 to 2500, occasionally being as high as 35 000. Typically, a single log 

file contained about 1750 log entries. 

Needless to say, the amount of data is definitely sufficient for the purposes of this study. 

Processing all the log files was obviously not necessary or feasible, and therefore a 

randomly selected subset of the log files was used. The subset contained 9040 log files 

from both directories (A/B). The subset was used in further processing and analysis, 

first in testing the logparser tools. The complete dataset and its subset are summarized 

in Table 3. 

Table 3. Summary of the dataset. 

COMPLETE DATASET Amount of log files Size (GB) 

A 121 733 15.4 

B 153 874 19.5 

TOTAL 275 605 34.9 

SUBSET Amount of log files Size (GB) 

A 5040 0.659 

B 4000 0.514 

TOTAL 9040 1.17 
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7. First Iteration: Using the logparser Toolkit 

The first iteration included the usage and evaluation of the logparser (P. He et al., 2016; 

Zhu et al., 2019) and loglizer (S. He et al., 2016) toolkits. The design of the artefact was 

based on this investigation, and the existing tools were used in practice in order to see 

how they could solve the problem. In addition, the performance and the utility of the 

tools were evaluated. Thus, the first iteration encompassed steps 3 (design and 

development), 4 (demonstration), and 5 (evaluation) of the Design Science Research 

process model (Peffers et al., 2007). 

This section describes the usage of the logparser toolkit, and is organised as follows. 

Sections 7.1, 7.2 and 7.3 describe the tests performed with the tools LenMa, SHISO, 

and AEL, respectively. Parsing the entire data subset into structured data is explained in 

section 7.4. 

The three tools from the logparser toolkit which achieved the highest accuracy with 

Linux log files in Zhu et al. (2019) were tested by parsing the same single log file with 

each tool. The test log file contained 1597 log messages, and used 111 KB of disk 

space. The tools were LenMa (Shima, 2015), SHISO (Mizutani, 2013), and AEL (Jiang 

et al., 2008). The tools can be optimized with regular expressions, and two expressions 

which help the tools in handling IP addresses (e.g. “100.55.123.1”) and time 

information (e.g. “08:15:00”) were used with all of them. 

7.1 Testing LenMa 

LenMa is short for “Length Matters”, and its event template extraction is based on the 

token length properties of log messages, as the name suggests (Shima, 2015). When the 

test file was parsed with LenMa, the tool was able to determine 1018 different event 

templates, meaning the reduction in relation to the log entries in the file was only 

36.26%. 

Inspecting the resulting event templates revealed that the accuracy of LenMa was quite 

disappointing. For example, the log file contained numerous entries about some settings 

of the device, presented as key-value pairs in the style of “setting: VALUE”. LenMa 

determined that each of these pairs is an individual event template, even though the 

entries clearly have a constant part “setting:”. 

In order to mitigate this issue, two additional, complex regular expressions were used. 

One expression helped the tool in finding the variables in the “setting:” strings and the 

other did the same for “Item #0 None” style strings, which were similarly challenging 

for LenMa. With the regular expressions, LenMa performed better, extracting 813 event 

templates. A large amount (677 templates, 83% of total) of these occurred only once, 

which may indicate that quite a few events were incorrectly determined to be individual 

instances, instead of belonging to a single template. In fact, the output contained ten 

templates that started with the words “inserted module”, followed by a word varying 

across the templates, i.e. a variable, for example. 
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7.2 Testing SHISO 

SHISO generates nodes from log messages, creating a structured tree, and is capable of 

refining the log format continuously in real time (Mizutani, 2013). The initial parsing 

test immediately showed much promise, compared to LenMa, as SHISO extracted 611 

event templates from the test log (a 61.74% reduction from the amount of log entries). 

This result was achieved with only the two basic regular expressions for IP addresses 

and time information. 

Closer inspection showed that the situations which caused trouble for LenMa were 

handled with ease by SHISO. For example, regarding the “setting: VALUE” entries, 

SHISO correctly determined that such entries can be encompassed in a single event 

template. However, SHISO extracted all-variable event templates, resulting in templates 

such as “* *” or “* * * * *”, which could in theory match any two- or five-word log 

entry. This is obviously undesirable, since for example log entries “Everything is fine” 

and “Device will explode” both contain three words, and would fit the template “* * *”, 

but clearly cannot be considered as two instances of the same event. SHISO determined 

that all-variable events occurred 312 times in the log file. 

7.3 Testing AEL 

The log parsing process of AEL includes four steps: anonymize, tokenize, categorize, 

and reconcile (Jiang et al., 2008). The original algorithm merges events in the reconcile 

step, but cannot handle cases where a single template has multiple different parameter 

tokens (Logpai, 2018). To address this issue, the algorithm is improved in the logparser 

implementation (Logpai, 2018). 

Like SHISO, AEL showed promise in its parsing accuracy. 591 event templates were 

extracted, again with only the two basic regular expressions. Based on the smaller 

amount of event templates, it can be considered that AEL performed even better than 

SHISO. Moreover, AEL did not extract any all-variable templates, outperforming 

SHISO in this regard as well. 

7.4 Parsing the subset 

The performance of the three tested tools was, surprisingly, completely contrary to what 

the measurements in Zhu et al. (2019) would suggest. That is, even though LenMa was 

measured to be the most accurate of the three, it seems to perform the worst here, for 

example. Since SHISO and AEL were much more accurate than LenMa, even without 

additional regular expressions, only they were used for the remaining log parsing tasks.  

The data subset described in section 5 was thus parsed with both SHISO and AEL. 

Having two different versions of the parsed logs made it possible to compare the 

accuracy of the two tools from the viewpoint of the anomaly detection tools: if the 

anomaly detection is considerably more accurate with logs parsed by one tool, that tool 

is most likely more accurate in its log parsing. Likewise, the effect of the parsing 

accuracy on the performance of the anomaly detection was investigated. 

The subset included about a thousand log files from each device, so the log parsing was 

done in cycles of 1000 log files. An interesting observation was immediately made: 

AEL is much faster than SHISO. On average, AEL parsed 1000 log files in about 4 
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minutes 46 seconds, whereas SHISO processed for 2 hours, 6 minutes and 36 seconds. 

In this context, when the objective is to generate large amounts of structured logs, 

SHISO is thus far less useful. However, the typical use case of the anomaly detection 

tool only includes the inspection of a single log file. In that context, the user has to wait 

for SHISO to complete for only about seven or eight seconds. Of course, this is still 

slow compared to AEL, which only needed as little as 0.2 seconds for a single log file, 

but not unreasonably slow. Nevertheless, based on these tests, as AEL is better in both 

parsing accuracy and processing time, I would strongly recommend it for parsing Linux 

logs. 

The resulting structured logs were stored as .csv (comma-separated values) files. The 

values extracted from each log entry were LineId (line number of the log entry), Month, 

Date, Time, Level (name of the device, always the same), Component (software 

component which logged the entry), PID (process identification number), Content (free-

form textual log message), EventId (identification for the log event), and 

EventTemplate (the constant part of the content). 
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8. First Iteration: Using the loglizer Toolkit 

This section describes the background and usage of sgologs_alpha, the first version of 

sgologs. The main purpose of sgologs_alpha was running loglizer with different 

machine learning models and different kinds of log sequences as efficiently as possible. 

Sgologs_alpha does not include logparser tools – instead, the input has to be a 

previously parsed, structured log file. Other than that, the functionality is quite the same 

as with the final sgologs. Sgologs_alpha is a straightforward command-line tool, with 

arguments such as the input log file and optionally the machine learning model to use. 

The user can also specify the basis of splitting the input log into sequences, i.e. Time or 

PID. Training data, which can also be given as a command-line argument, is then 

loaded. After the machine learning model is initialized and trained, anomalies are 

detected from the input log file. The process sgologs_alpha goes through is illustrated 

in Figure 4. 

 

Figure 4. The anomaly detection process of sgologs_alpha with different parts of loglizer. 

The remainder of this section is organized as follows. Arranging the log events into 

sequences is discussed in section 8.1. Then, the used training and test data and its 

preparation are presented in section 8.2. In section 8.3 a walkthrough of loglizer is 

provided, in order to illustrate how the software works and how the anomaly detection 

framework (S. He et al., 2016) is used in practice. Section 8.4 presents the anomaly 

detection results achieved with sgologs_alpha. Finally, section 8.5 summarizes the first 

iteration. 
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8.1 Sequence determination 

Loglizer does not detect anomalies at the level on individual log messages. Instead, 

messages are grouped into log event sequences, and the machine learning classifies each 

sequence as normal or anomalous. S. He et al. (2016) determined their log sequences 

with fixed windows, sliding windows, and session windows. Fixed and sliding windows 

were based on timestamp data, but the timestamps in the Linux dataset are to a large 

extent arbitrary – for example, the time may suddenly shift by several hours between 

consecutive log entries. Using the timestamps as basis for fixed and sliding windows 

was not convenient. Instead, timestamps were used as identifiers for session windows, 

along with the process identification number (PID) assigned to each log entry. How log 

sequences are created with different window types and settings used in this study is 

illustrated in Figure 5. The log extract is an artificial Linux log, generated for figurative 

purposes only. 

 

Figure 5. Illustration of how different kinds of log sequences are formed. 

As shown in the Figure, each window type produces rather unique log event sequences. 

Fixed windows are the only sure method of generating sequences with equal length, 

determined by the window size. For example, if the window size was set to four in the 

example in Figure 5, the first sequence would naturally include log events one, two, 

three, and four, whereas events five and six would belong to the second sequence. It is 

also noteworthy that session windows based on PID values do not retain the order of 

events in the original log, as event four is included in the first sequence but event three 

in the second. 

Implementing fixed or sliding windows based on the amount of log entries is a 

possibility. Splitting the log entries into sequences that contain some predefined amount 

of entries, e.g. as in Mäkinen (2019), is obviously a convenient approach. However, it is 
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possible that the selected amount is simply an arbitrary value, resulting in sequences 

that may not accurately represent the actual process sequences of the system. One 

advantage of this approach is that the sequences are enforced to be equal in length. This 

approach was implemented during the second iteration of the development process, and 

during the first iteration focus was restricted to session windows based on values in the 

Time and PID fields. The implementation was delayed because the existing 

implementations relied on label data, and creating a label file independent approach 

required additional effort. 

Common to all session windows generated with the two different identifiers is that 

sequence length varies considerably. For example, considering timestamps, one log file 

contained 373 log entries with the timestamp 07:44:35, whereas the amount of entries 

with the timestamp 07:44:37 was only two. Sequences generated from the PID values 

ranged from one to more than four hundred in length. Varying sequence lengths did not 

prevent the machine learning from detecting real anomalies, but Time sequences were 

much more suitable for the anomaly detection than PID sequences, as discussed in 

section 8.4. 

8.2 Training and test data 

Initially, training data was constructed from a thousand log files. Their contents were 

grouped into 56 761 event sequences, using session windows based on Time values. 

The thousand files were randomly selected, and the training data was assumed to be 

large enough to represent the data as a whole. The typical use case of sgologs is running 

anomaly detection on a single log file, which is why a test file was selected. The 

structured test file is very long, over 600 KB, whereas a log file from the dataset parsed 

with logparser is normally just over 200 KB in size. It is possible that the test file is 

somehow corrupted. It is also notable that the test file includes 1 362 log entries only 

from the kernel, although the log files commonly have about 1 750 entries in total. The 

main purpose of using this test file was investigating the suitability of the training data. 

Typically, especially in supervised machine learning, the data is split to training-, 

validation and test datasets in some proportion, e.g. 50:25:25 (Pietikäinen & Silvén, 

2019). However, such a division was not purposeful in this context. Machine learning 

models are usually trained once, and they store their learned parameters for future use. 

Loglizer, however, is not this sophisticated. As a peculiar feature, the models need to be 

trained each time the software is run. Therefore the user has to wait for the training 

phase to complete before the anomaly detection begins and results become available. 

Consequently, a large training dataset which takes a long time to process limits the 

utility of the tool, as running anomaly detection on a single log file becomes e.g. a 20-

minute task. 

The first tests quickly revealed that a training dataset generated from one thousand log 

files is already too large. The fit_transform function processed for more than ten 

minutes, and the model training (with model.fit) was even more time-consuming. 

Therefore, a training dataset of 4520 log files makes no sense. Moreover, as mentioned 

above, sgologs is typically supposed to be run with a single log file, making a pool of 

thousands of test files equally unsuitable. 

Finding a suitable size for the training data took some time. The processing time for 

training data of 500 log files was still well over ten minutes, which is unacceptably long 

for a user-friendly tool. Reducing the amount of log files by half again improved the 
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situation, and the total processing time was a little over one minute. Such a processing 

time is quite acceptable, but the amount was ultimately reduced to 200 to enable an even 

more fluent user experience. The processing time for 200 log files was 43 seconds. 

200 is of course a lot less than 1000, but 200 logs still contain more than 11 000 log 

event sequences. Moreover, should the user worry whether this is enough, they have the 

option of specifying which training data sgologs uses. If the user wants a second 

opinion, so to speak, after inspecting the output, they can run sgologs again with another 

training dataset. 

The output of sgologs using the PCA model on the test file was the exact same with all 

training data sizes. Five anomalous sequences were detected: the first two were 

unconventionally long sequences, including the kernel sequence mentioned above, and 

the remaining anomalies were three separate sequences with the same content. Log 

sequences of the training data and the test file were generated with session windows, 

using the process identification numbers (PID). 

Final test files, which were not included in the training datasets, were taken from the A 

directory. The files were selected based on the amount of the word error in them. Log 

files with few errors, a normal amount of errors, and many errors, were all represented. 

Log messages with “error” are of course easy to find even without anomaly detection. 

However, as every boot of the Linux system in question produces at least some error 

messages in the log, without anomaly detection the developer would have to be able to 

recognize or recall which errors are “normal.” Moreover, focusing on errors simplifies 

the validation of the results. As the generation of comprehensive label files, i.e. 

classification data on all kinds of sequences in the test files, was beyond the scope of 

this study, it was appropriate to focus on “obvious” anomalies, such as additional errors. 

As mentioned earlier, the log files commonly have about 1750 log entries, and the word 

error typically occurs 16 times. One such file, 174_3_11, which has 1762 rows and 16 

occurrences of error, was included to see how the anomaly detection reacts to “normal” 

log files. The file 174_3_7 included 22 occurrences of error and 2765 rows, and was 

selected as an example of a log with many errors, which supposedly leads to many 

detected anomalies. On the other end of the scale is the file 174_3_18, which contains 

1563 rows and only 5 occurrences of error. It seems that the log ends too soon, i.e. a 

few hundred log entries are missing from the end of the file. As small amount of errors 

as possible is obviously desirable for any software, but in this context the machine 

learning should determine such behaviour as anomalous, since the amount of errors is 

typically almost four times larger. Therefore it was interesting to see what sgologs does 

with 174_3_18. The three test files are summarized in Table 4. 

Table 4. Test files, their size, and amount of error. 

Test file Amount of log entries Occurrences of error 

174_3_7 2 765 22 

174_3_11 1 762 16 

174_3_18 1 563 5 

A typical log file, e.g. 174_3_11, includes two error messages from a sound server 

component called PulseAudio. Both messages state that PulseAudio was “unable to 

contact D-Bus,” and actions other than autolaunch should be executed. In 174_3_7, this 

pair is repeated three additional times, resulting in the six additional occurrences of 

error. This produces two or four anomalous sequences, depending on how the log event 

sequences were generated. The eleven occurrences of error missing from 174_3_18 but 
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present in 174_3_11 are log messages from CherryPy, a Python web framework. The 

messages are in fact not errors, and also feature the keyword “INFO”, but for some 

reason the CherryPy message format seems to always be “cherrypy.error: <level>: 

<message>”. It is assumed that the sequence that would precede the missing data, i.e. 

the last sequence in 174_3_18, should be classified as an anomaly. 

8.3 A walkthrough of loglizer 

As mentioned in section 4, the anomaly detection process framework specified by S. He 

et al. (2016) has four steps: log collection, log parsing, feature extraction, and anomaly 

detection. Loglizer conducts steps three and four. Loglizer includes demo files, simple 

Python scripts that demonstrate the usage of the API. The following code sample is 

extracted from the file “InvariantsMiner_demo_without_labels.py” and slightly 

simplified. 

from loglizer.models import InvariantsMiner 

from loglizer import dataloader, preprocessing 

 

struct_log = '../data/HDFS/HDFS_100k.log_structured.csv' 

# The structured log file 

epsilon = 0.5 # threshold for estimating invariant space 

 

if __name__ == '__main__': 

    # Load structured log without label info 

    (x_train, _), (x_test, _), d_fr = dataloader.load_HDFS(struct_log, 

                                                     window='session',  

                                                     train_ratio=0.5) 

    # Feature extraction 

    feature_extractor = preprocessing.FeatureExtractor() 

    x_train = feature_extractor.fit_transform(x_train) 

 

    # Model initialization and training 

    model = InvariantsMiner(epsilon=epsilon) 

    model.fit(x_train) 

 

    # Predict anomalies on the test set to simulate the online mode 

    # x_test may be loaded from another log file 

    x_test = feature_extractor.transform(x_test) 

    y_test = model.predict(x_test) 

 

Loglizer has a ready implementation for HDFS log files, and a partial implementation 

for BGL logs, both of which assume that label data is available. These implementations 

reside in the dataloader module, which takes care of reading the structured log 

file(s) and arranging the log entries into sequences. By default, the log is also split in 

half, and the first half is used as training data and the second as test data in the demo 

files. The fit_transform function from the FeatureExtractor class turns the 

training data sequences into an event count matrix, where each row represents a log 

sequence and consists of aggregated event counts. As the class name suggests, this 

activity belongs to the third step of the anomaly detection framework. S. He et al. 

(2016) also include the sequence determination, performed by the dataloader 

module, in the step of feature extraction. 

The epsilon value is an example of a parameter which might require tuning 

depending on the used data. The transform function transforms the test data into an 

event count matrix, using parameters acquired in the fit_transform function. The 

predict function of the machine learning model (Invariants miner in this case) 
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returns the classification of each log sequence; 0 stands for normal, and 1 indicates the 

sequence is anomalous. Using the fit and predict functions composes the fourth 

step of S. He et al.’s (2016) framework, anomaly detection. 

In order for loglizer to work on Linux logs, a load_Linux function was implemented 

in the dataloader module. The function differs from the existing load_HDFS in 

three ways. First, the function extracts the log sequences based on values that appear in 

Linux logs, instead of block ID values in HDFS logs. Sequence determination is 

described in 8.1. Second, all if-branches that are triggered when label data is available 

are removed. Third, the function returns an additional data frame. The original 

load_HDFS returns the event sequences as arrays, split to training and test data, and 

all the event sequences as a pandas3 data frame. Such a data frame can be seen in Figure 

6. 

 

Figure 6. An example of a pandas data frame of log event sequences. 

In the data frame visible in Figure 6 the event sequences are generated with session 

windows based on PID values. Each log entry that has the same PID value is grouped 

into the same event sequence. For example, the log entries with the event IDs 

‘9615c27f’ and ‘3523023f’ both have the value 227 in their PID field, and event 

‘3523023f’ occurs twice. The additional data frame generated in load_Linux is 

similar, but the event sequences consist of the actual log messages, instead of the event 

IDs. Thus, it is easier to present a meaningful output of the anomalous sequences. 

An output of sgologs_alpha on the command prompt can be seen in Figure 7. Most of 

the text following the tool’s name, the test log file, and the used machine learning 

model, are default prints from loglizer. 

                                                 

3 pandas is a popular Python data analysis library. https://pandas.pydata.org/  

https://pandas.pydata.org/
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Figure 7. An example output of sgologs_alpha using AEL-parsed logs and PCA 

The “shape” of the training and test data refers to the dimensions of the event count 

matrix. The “Model summary” shows specific information about the model and its 

parameters. The value for SPE threshold was manually set to 1400.0, as discussed in 

section 8.4.1. In this case, the model classified some sequences as anomalies, and they 

are shown in the output as lists of event IDs. Sgologs_alpha also notifies that more 

verbose output, including the actual message contents of the anomalous sequences, can 

be found in the files anomalies_eID_seq.csv and anomalies_content_seq.txt. 

8.4 Evaluation of sgologs_alpha 

This section describes the results sgologs_alpha achieved with the training data and the 

three test files. Log sequences were determined with session windows based on Time 

and PID values in the log entries. Log files were parsed with both SHISO and AEL 

from the logparser toolkit. The output of sgologs_alpha with Time sequences and 

SHISO logs is discussed in section 8.4.1, with Time sequences and AEL logs in 8.4.2, 

with PID sequences and SHISO logs in 8.4.3, and with PID sequences and AEL logs in 

8.4.4. 

8.4.1 Using Time sequences and SHISO logs 

Generating session windows from the Time values resulted in 32 log event sequences in 

174_3_11, 30 sequences in 174_3_7, and 26 sequences in 174_3_18. As mentioned 

earlier, their lengths varied between 1 and over 400. The test logs parsed with SHISO 

were processed first. Naturally, the training data was also parsed with SHISO. 
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The PCA model definitely suffered from a high amount of false positives. For example, 

in 174_3_7, PCA determined that 18 sequences are anomalous. These sequences 

contained 21 occurrences of error (out of 22), which is not surprising since a majority of 

the total event sequences were classified as anomalous. The utility of such an output is 

questionable, since the list of log entries included in the anomalous sequences is 

essentially the original log file reduced by a few hundred rows. 

Invariants Miner suffered from an exceedingly long processing time. Sgologs_alpha 

was run with Invariants Miner numerous times, with different parameters, but each time 

the processing time approached ten minutes. The situation was the same with all the test 

files and using log files parsed with AEL had no effect. This finding was disappointing, 

since Invariants Mining was measured to be the best unsupervised machine learning 

model in S. He et al. (2016). Nevertheless, due to the unacceptable processing time, 

using Invariants Miner had to be discontinued at this point. 

LogCluster initially showed more promise than PCA. The model found one anomaly 

from 174_3_11, the “normal” log file, when comparing to the training data from the A 

directory, and two anomalies when compared to B training data. These anomalies did 

not contain any occurrences of error, but on the other hand the typical amount of 16 

errors should not even be considered anomalous. The file with more errors, 174_3_7, 

was determined to have four (A training data) or three (B training data) anomalous 

sequences. These sequences encompassed a half of the total amount of error. However, 

these errors are the eleven CherryPy messages that should appear in every log. The 

additional PulseAudio errors, i.e. the real anomalies, were not included in the 

anomalous sequences. 

LogCluster detected two or four anomalous sequences in 174_3_18, depending on the 

training data. The second-to-last sequence was classified anomalous each time. One 

could suppose that the machine learning expects that the sequences near the end would 

be followed by the few hundred entries missing from 174_3_18, and thus classifies the 

final sequences as anomalous. However, it is unclear why the last sequence was 

considered normal. LogCluster’s processing time, 1 minute 5 seconds on average, was a 

little longer than PCA’s (about 45 seconds). 

The processing time of Isolation Forest was even shorter, about 42 seconds on average. 

However, for all the log files and with both training datasets, Isolation Forest always 

classified the first sequence as anomalous and everything else as normal. The results 

were the exact same with logs parsed by AEL as well; the only thing that changed was 

the processing time. It is difficult to believe that this would be just a coincidence, 

especially since there is nothing particularly strange in the first sequences in any of the 

test files. It is justified to conclude that the results provided by Isolation Forest are false. 

At this point it was apparent that the machine learning models needed some fine-tuning. 

Each model implementation included initialization parameters, for example a threshold 

for anomaly detection, which can be set by the user. The above results were achieved 

with default parameters, or parameters automatically calculated by the models. For 

instance, PCA calculated a very low threshold value for the anomaly detection, and 

increasing this value greatly reduced the number of false positives. Isolation Forest 

needed an estimation of anomaly samples in the data, and tuning that parameter resulted 

in much more sensible output. LogCluster had thresholds for clustering and anomaly 

detection, but non-default values for these parameters only made the results less 

accurate. Therefore the default parameters were used for LogCluster. 
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Some of the results achieved by the models are presented in the following Tables. Using 

the new parameters, the results of PCA are presented in Table 5 and the results of 

Isolation Forest in Table 6. In all the Tables in section 8 the ideal situation would be that 

Real anomalous sequences, Detected anomalous sequences, and True positives have the 

same value, and False positives (normal sequences classified as anomalies) and False 

negatives (undetected real anomalies) are both zero. This would require that the 

machine learning achieves perfect anomaly detection accuracy, which is unrealistic. 

Table 5. Anomaly detection results of PCA with Time sequences and SHISO log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

2 4 1 3 1 

174_3_7 

(B_178) 

2 4 1 3 1 

174_3_11 

(A_170) 

- 4 - 4 - 

174_3_11 

(B_178) 

- 4 - 4 - 

174_3_18 

(A_170) 

1 2 0 2 1 

174_3_18 

(B_178) 

1 2 0 2 1 

Table 6. Anomaly detection results of Isolation Forest with Time sequences and SHISO log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

2 6 1 5 1 

174_3_7 

(B_178) 

2 7 0 7 2 

174_3_11 

(A_170) 

- 7 - 7 - 

174_3_11 

(B_178) 

- 6 - 6 - 

174_3_18 

(A_170) 

1 7 0 7 1 

174_3_18 

(B_178) 

1 7 0 7 1 

The processing times of the models were reduced with the new parameters. The average 

processing times for PCA and Isolation Forest were 43.5 and 40.5 seconds, respectively. 

PCA’s results were much better, as only two to four sequences were classified 

anomalous. Moreover, a real anomalous sequence in 174_3_7 was detected. The real 

anomaly in 174_3_18 was not detected. It seems that PCA is not greatly affected by the 

training data, as the results are usually the exact same with A_170 training data as with 

B_178 training data. 

Isolation Forest produced a much more practical output with the new parameters. The 

model classified varied sets of sequences as anomalies, and found a real anomaly in 

174_3_7 with A_170 training data. Overall accuracy was not as good as with PCA, 

since Isolation Forest did not detect real anomalies with B_178 training data, and the 

rate of false positives was higher. 
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The commonly used metrics precision, recall and F-measure are used to represent the 

accuracy of machine learning models. As mentioned in section 4.2.3, precision is the 

percentage of how many detected anomalies are correct, recall is the percentage of how 

many real anomalies are detected, and F-measure is the harmonic mean of the two (S. 

He et al., 2016). Higher precision indicates fewer false positives, and higher recall 

indicates fewer false negatives. Figure 8 shows the precision, recall, and F-measure 

scores of the models, when detecting anomalies from the 174_3_7 test file. 

 

Figure 8. ML model scores with Time sequences and SHISO logs on file 174_3_7 

It should be noted again that only the anomalies of additional PulseAudio error 

messages is taken into consideration. In Figure 8, the best results of the models are 

shown; Isolation Forest achieved the best accuracy with the training dataset A_170. 

Since PCA and Isolation Forest both found one of the two anomalies, the recall is 

exactly 
1

2
 = 0.5. The precision scores are quite low, since the models classified quite 

many false positives. As LogCuster’s section in the Figure reveals, if the amount of true 

positives is zero, so are the precision, recall and F-measure scores. 

If the F-measure scores are compared to the scores measured in S. He et al. (2016), the 

accuracy achieved here seems rather substandard. For instance, the worst F-measure 

score for PCA in S. He et al. (2016) was 0.55. When the number of real anomalies is 

low, such as two, even one false negative greatly reduces the recall score. Similarly, 

false positives, common in unsupervised learning (Landauer et al., 2018), reduce the 

precision score, and appear to be the main reason of a reduced F-measure score. 

8.4.2 Using Time sequences and AEL logs 

The results were quite different when log files parsed with AEL were used. The 

accuracy of PCA remained, and the processing time was reduced to 25.5 seconds on 

average. The amount of false positives with training data B_178 was unfortunately 

increased. 
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LogCluster found fewer anomalies with AEL-parsed files than with SHISO log files. 

Overall, the anomalous sequences were almost the same, except that only one sequence 

was classified anomalous in 174_3_18. Real anomalous sequences were not detected. 

LogCluster came closest with 174_3_7 and A_170 training data, as a sequence 

immediately following the anomalous sequences was detected. Processing AEL files 

was faster with LogCluster as well, as the average processing time was about 50 

seconds. A major downside was that sequences classified as anomalies did not contain 

any occurrences of error. 

Isolation Forest improved its performance, as real anomalies in 174_3_7 were detected 

with both training datasets. It is also notable that Isolation Forest correctly classified 

both sequences in 174_3_7 which could be considered anomalous. Average processing 

time was 28 seconds. 

Tables 7 and 8 present the results using log files parsed with AEL. LogCluster results 

are in Table 7, and Isolation Forest results are in Table 8. 

Table 7. Anomaly detection results of LogCluster with Time sequences and AEL log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

2 3 0 3 2 

174_3_7 

(B_178) 

2 2 0 2 2 

174_3_11 

(A_170) 

- 2 - 2 - 

174_3_11 

(B_178) 

- 1 - 1 - 

174_3_18 

(A_170) 

1 1 0 1 1 

174_3_18 

(B_178) 

1 1 0 1 1 

Table 8. Anomaly detection results of Isolation Forest with Time sequences and AEL log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

2 5 2 3 0 

174_3_7 

(B_178) 

2 5 2 3 0 

174_3_11 

(A_170) 

- 5 - 5 - 

174_3_11 

(B_178) 

- 5 - 5 - 

174_3_18 

(A_170) 

1 5 0 5 1 

174_3_18 

(B_178) 

1 4 0 4 1 

Anomaly detection seems to perform better with AEL-parsed logs. PCA and Isolation 

Forest both find real anomalies in the 174_3_7 file, independent of the used training 

data. A reduced processing time, compared to log files parsed with SHISO, is also a 

significant advantage. LogCluster appears quite useless, at least with sequences based 
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on Time values. Figure 9 shows the precision, recall, and F-measure scores with AEL-

parsed training data and 174_3_7 test file. 

 

Figure 9. ML model scores with Time sequences and AEL logs on file 174_3_7 

As can be seen in the Figure, the performance of PCA and LogCluster are at the same 

level as with SHISO log files. However, Isolation Forest achieved much better scores, 

regardless of the used training data. All real anomalies were detected, resulting in the 

highest possible recall score, which also had a positive effect on the F-measure. In this 

study, high recall is better than high precision, since many false negatives are 

considered to be more severe than many false positives. 

8.4.3 Using PID sequences and SHISO logs 

The training data with PID sequences was generated from the same log files as the 

training data used in the previous sections. Test file 174_3_7 has 63 PID sequences, 

174_3_11 has 54, and 174_3_18 has 52. 

One advantage of the Time sequences is that all sequences and all log events in the 

sequences actually occurred in that specific order. However, processes, i.e. PID 

sequences, occur concurrently. Thus, different processes overlap in the log files, and 

different log entries with the same PID value are not necessarily successive. For this 

reason it is impossible to determine if some sequence should follow another, or if some 

sequence is missing. If the CherryPy functions were not run in a separate process, with 

its own PID value, it would be possible to recognize their absence in 174_3_18 based on 

the finding that some PID sequence is abnormally short. However, in the present 

situation, detecting anomalies in 174_3_18 using PID sequences is not possible. 

Anomaly detection with PID sequences was performed for 174_3_7 and 174_3_11 only. 

Tables 9 and 10 present the results for PCA and Isolation Forest, respectively. 

 

 

0,25 

0 

0,40 

0,50 

0 

1 

0,33 

0 

0,57 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PCA LogCluster Isolation Forest

Precision

Recall

F-measure



42 

Table 9. Anomaly detection results of PCA with PID sequences and SHISO log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 5 0 5 4 

174_3_7 

(B_178) 

4 5 0 5 4 

174_3_11 

(A_170) 

- 4 - 4 - 

174_3_11 

(B_178) 

- 4 - 4 - 

Table 10. Anomaly detection results of Isolation Forest with PID sequences and SHISO log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 8 0 8 4 

174_3_7 

(B_178) 

4 8 0 8 4 

174_3_11 

(A_170) 

- 5 - 5 - 

174_3_11 

(B_178) 

- 5 - 5 - 

As can be seen from the Tables, the performance of the machine learning models was 

significantly worse with PID sequences. Tuning the parameters again did not have any 

positive effect on the results. As PID sequences were more numerous than Time 

sequences, processing times were also much higher: on average 1:08 with PCA and 

LogCluster and 1:21 with Isolation Forest. 

With PID sequences and SHISO logs, PCA and Isolation Forest were unable to detect 

real anomalies in 174_3_7. LogCluster performed similarly as with Time sequences, 

without detecting the anomalies in 174_3_7. The only errors in the outputs were the 

normal CherryPy messages, which LogCluster incorrectly detected in 174_3_7 and 

174_3_11. The amount of false positives classified by PCA and Isolation Forest was 

also high. As the amount of true positives in 174_3_7 was zero with all the models, the 

precision, recall and F-measure scores were also zero. It is quite clear that anomaly 

detection from log files parsed with SHISO should not be done with sequences based on 

PID values. 

8.4.4 Using PID sequences and AEL logs 

Changing from SHISO logs to logs parsed with AEL did not improve the anomaly 

detection accuracy when using PID sequences. The only difference was significantly 

reduced processing times. The average processing times were as follows: PCA: 40 

seconds, LogCluster: 37 seconds, Isolation Forest: 51 seconds. Precision, recall and F-

measure were still zero with all models, and the real anomalies in 174_3_7 were not 

detected. A peculiar finding was that two sequences in 174_3_11 were consistently 

classified as anomalies by PCA and Isolation Forest: sequence 1, a systemd process, and 

sequence 18, a SOC4E process. These classifications were made with both SHISO and 

AEL log files. However, there does not seem to be anything particularly anomalous in 

the sequences. The results achieved with LogCluster are presented in Table 11. With 
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these parameters, LogCluster’s results could be considered the best, since the amount of 

false positives was the lowest. Of course, true positives are still zero, as with the other 

models. 

Table 11. Anomaly detection results of LogCluster with PID sequences and AEL log files 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 2 0 2 4 

174_3_7 

(B_178) 

4 2 0 2 4 

174_3_11 

(A_170) 

- 2 - 2 - 

174_3_11 

(B_178) 

- 3 - 3 - 

Session windows based on PID values appear to be unsuitable for anomaly detection 

with these Linux log files. The machine learning models apparently benefit from 

sequences which retain the actual order of the log events, such as the session windows 

based on values in the Time field of the log entries. 

8.5 Summary of the first iteration 

AEL is quite clearly the best tool for these log files in the logparser toolkit. Compared 

to SHISO, AEL’s processing time is substantially shorter, and the parsing accuracy is 

considerably better. Moreover, the processing times of loglizer tools are also shorter 

with AEL-parsed logs, and the anomaly detection accuracy is increased if AEL logs are 

used instead of SHISO logs. 

How the log files are split and organized into sequences in the process is not a trivial 

matter. The models were unable to detect the real anomalies in the test files when using 

PID sequences, thus session windows based on PID values in the log entries are not 

suitable in this context. Sequences which retain the occurrence order of the log entries 

as well as the order of the sequences themselves enable the best anomaly detection 

accuracy. Such sequences include session windows based on Time values, and fixed 

windows, which were implemented during the second iteration and are discussed in 

section 9. This finding is quite contrary to what S. He et al. (2016) discovered: session 

windows used with HDFS logs resulted in higher correlation between events in each 

sequence, which is why anomaly detection methods perform better than with other log 

data. HDFS logs are “easy” for the machine learning models also because the amount of 

different event types is only 29 (S. He et al., 2016). As described in section 7, the 

amount of unique event templates in a single log file used in this study can more than 

500. 

As for the machine learning models in charge of the anomaly detection, Invariants 

Miner and LogCluster are unsuitable for this task. The processing time of Invariants 

Miner is close to a small eternity, which is unacceptable for a tool which is supposed to 

be fast and convenient to use. In fact, S. He et al. (2016) mention that the invariants 

mining process is time consuming. If loglizer did not need training on each run, a 

prolonged training time would not be an issue. 



44 

LogCluster’s processing time is also longer than that of PCA or Isolation Forest, but in 

addition the detection accuracy of LogCluster is virtually non-existent. S. He et al. 

(2016) also found that LogCluster does not obtain a good accuracy on BGL data. The 

characteristics of the generated event count matrix were sparse and high-dimensional, 

resulting in many false positives (S. He et al., 2016). The event count matrices used in 

this study are without a doubt high-dimensional, which supposedly explains 

LogCluster’s difficulties. The developers of Invariants Miner and LogCluster (Lou et al. 

(2010) and Lin et al. (2016), respectively) fail to address the limitations of their 

methods, and do not point to any types of data which might be unsuitable for the 

models, for example. 

On the other hand, PCA and Isolation Forest achieve a solid accuracy in their anomaly 

detection. Especially when using log files parsed with AEL, both models were able to 

detect real anomalous sequences in the test file 174_3_7, regardless of the used training 

data. Moreover, their processing times are very low, even less than 30 seconds with 

AEL-parsed log files. The amount of false positives are quite high, but at an acceptable 

level, being three falsely classified sequences with both models, when using Time 

sequences. On the other hand, PCA detected only one of the real anomalous sequences, 

whereas Isolation Forest detected both. For these reasons, the final version of sgologs 

parses input logs with AEL, and uses PCA or Isolation Forest for the anomaly detection. 

The nature of anomalies which are easy to detect was also clarified. Additional log 

entries are much simpler for the machine learning models to classify than the absence of 

normal log entries. For example, even though one or more normal sequences are 

missing in 174_3_18, there is nothing abnormal in the remaining sequences that would 

point to this anomaly. It would not be justified for the machine learning to classify a 

normal sequence as an anomaly if it is not followed by another normal sequence. This is 

why the real anomalous sequences in 174_3_7 were detected, and why the models did 

not find anything relevant in 174_3_18. 

Additional error messages that do not usually appear in these log files are a good 

precedent of an anomaly. They are also the information developers most likely search 

for in the log files, with or without anomaly detection. It is promising that the models in 

loglizer are able to find these extra errors, resulting in sgologs being able to produce an 

output where the anomalies are ready for a convenient inspection. 
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9. Second Iteration 

This section presents the development of the final artefact, sgologs, as well as the 

evaluation of the tool. Regarding the Design Science Research process model, the 

second iteration encompasses the same activities as the first iteration: design and 

development, demonstration, and evaluation. The process of a log file going through 

sgologs is illustrated in Figure 10, along with how the logparser and loglizer toolkits are 

used within the tool. Unlike sgologs_alpha, normal, unstructured log files are accepted 

as input, since a tool from logparser is incorporated in sgologs. 

 

Figure 10. The anomaly detection process of sgologs with different parts of logparser and 
loglizer 

Structured log files can also be fed to sgologs, in which case the log parsing phase is 

simply skipped. The differences between sgologs_alpha and sgologs are discussed in 

section 9.1. Then, section 9.2 presents the anomaly detection results with sequences 

determined with fixed windows, which were not used during the first iteration.  
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9.1 Changes to sgologs_alpha 

The logparser tools, by default, append “_structured” to end of the log file name, and 

save the structured log file as a CSV file. Thus, structured log files are still accepted as 

input to sgologs, but if the name of the input file does not end with “_structured.csv”, 

the log parser is used. Since AEL was found to be the best parser for these log files in 

section 7, and the best anomaly detection accuracies were achieved with AEL-parsed 

logs in section 8, it is used for log parsing in sgologs. Conveniently, the processing time 

of AEL for a single log file is only a fraction of a second, so the processing of sgologs is 

not considerably slower than that of sgologs_alpha. 

During the first iteration, session windows based on PID values were found to be 

unsuitable. Likewise, the LogCluster model did not achieve an acceptable accuracy in 

its anomaly detection. Therefore these two features were dropped from sgologs 

altogether. The available machine learning models in sgologs thus are PCA and 

Isolation Forest, both of which were able to detect anomalies, as discussed in section 

8.4. For determining event sequences, there are two options in sgologs: session 

windows based on Time values, and fixed windows. 

Implementing the fixed windows was a fairly simple task. A new function, 

slice_fixed, was written into loglizer’s dataloader module. In the function the 

log events of the structured log are simply arranged to sequences based on their row 

number, and the size of each sequence is controlled with the window_size variable. 

Padding is added to the last sequence to ensure the length of each sequence is the exact 

same, i.e. the value in window_size. This way, the anomaly detection should not 

classify the last sequence as anomalous because it is shorter than all the other 

sequences. 

The parameters of the machine learning models needed to be adjusted, as the parameters 

used with the Time sequences were unsuitable. For example, PCA’s threshold for 

anomaly detection was originally set to 1400.0, but when fixed windows were used, it 

had to be lowered to 350.0. With fixed sequences and a threshold of 1400, PCA did not 

classify anything in the test files as anomalous, i.e. even the amount of false positives 

was zero. Sgologs automatically sets the appropriate values for the parameters, 

depending on the selected sequence determination style. 

9.2 Evaluation of sgologs 

Here, the results sgologs achieved with fixed sequences are described. Initially the fixed 

window size was set to 50, i.e. each event sequence contained 50 log events. Thus the 

test files were organized into sequences as follows: the file 174_3_7 has 56 sequences, 

174_3_11 has 36 sequences, and 174_3_18 has 32. All training and test log files were 

parsed with AEL only. The results with PCA are presented in Table 12, and results with 

Isolation Forest are presented in Table 13. 
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Table 12. Anomaly detection results of PCA with fixed sequences (window size 50) 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 7 0 7 4 

174_3_7 

(B_178) 

4 7 0 7 4 

174_3_11 

(A_170) 

- 3 - 3 - 

174_3_11 

(B_178) 

- 2 - 2 - 

174_3_18 

(A_170) 

1 9 1 8 0 

174_3_18 

(B_178) 

1 10 1 9 0 

Table 13. Anomaly detection results of Isolation Forest with fixed sequences (window size 50) 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 8 0 8 4 

174_3_7 

(B_178) 

4 7 0 7 4 

174_3_11 

(A_170) 

- 7 - 7 - 

174_3_11 

(B_178) 

- 5 - 5 - 

174_3_18 

(A_170) 

1 7 0 7 1 

174_3_18 

(B_178) 

1 6 0 6 1 

Contrary to the results achieved with Time session windows during the first iteration 

(discussed in section 8), the anomaly detection accuracy with fixed windows was 

unsatisfactory. PCA and Isolation Forest both classified many sequences as anomalies, 

but failed to detect real anomalies. Therefore the amounts of false positives and false 

negatives were high. Surprisingly, PCA classified the last sequence in 174_3_18 as an 

anomaly, which could be considered a true positive. However, it is still unclear why 

PCA determined that the last sequence is anomalous, and it is possible that the correct 

classification occurred by chance. On average, PCA processed for 30 seconds and 

Isolation Forest for 36.5 seconds. 

Figure 11 depicts the best scores PCA achieved with fixed window size 50 and the test 

files 174_3_7 and 174_3_18. Real anomalies in 174_3_7 were not detected, and thus all 

the scores are zero. The one and only anomaly in 174_3_18 was detected, resulting in 

maximum recall, but the detection was made at the expense of numerous false positives, 

resulting in a poor precision score. 
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Figure 11. PCA’s scores with fixed sequences (size 50) on files 174_3_7 and 174_3_18 

Different sizes for the fixed windows were also tested. When the window size was set to 

30, PCA correctly classified one of the four real anomalies in 174_3_7, but did not 

classify the last sequence in 174_3_18 as anomalous. The performance of Isolation 

Forest was not improved, compared to using a window size of 50 log events. Moreover, 

processing times of both models were increased to almost one minute, as the amount of 

sequences was higher. 

With 100 as the fixed window size, the test file 174_3_7 has 28 sequences, 174_3_11 

has 18, and 174_3_18 has 16. Increasing the window size had a positive effect. First, as 

the amount of event sequences was reduced, average processing times were much 

lower: 19.5 seconds with PCA and 19.9 with Isolation Forest. Second, PCA achieved a 

higher accuracy. The amount of detected real anomalies in 174_3_7 was doubled from 

one to two, and the amount of false positives was lower, compared to window size 30. 

Unfortunately, the true positives for Isolation Forest remained at zero. The results can 

still be considered better than when using sequences of 50 events, because the amount 

of false positives was lower. The results achieved with fixed windows of 100 log events 

are presented in Tables 14 and 15. 
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Table 14. Anomaly detection results of PCA with fixed sequences (window size 100) 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 6 2 4 2 

174_3_7 

(B_178) 

4 7 2 5 2 

174_3_11 

(A_170) 

- 5 - 5 - 

174_3_11 

(B_178) 

- 1 - 1 - 

174_3_18 

(A_170) 

1 7 1 6 0 

174_3_18 

(B_178) 

1 7 1 6 0 

Table 15. Anomaly detection results of Isolation Forest with fixed sequences (window size 100) 

Test file 
(training 
data) 

Real 
anomalous 
sequences 

Detected 
anomalous 
sequences 

True 
positives 

False 
positives 

False 
negatives 

174_3_7 

(A_170) 

4 5 0 5 4 

174_3_7 

(B_178) 

4 5 0 5 4 

174_3_11 

(A_170) 

- 4 - 4 - 

174_3_11 

(B_178) 

- 5 - 5 - 

174_3_18 

(A_170) 

1 3 0 3 1 

174_3_18 

(B_178) 

1 2 0 2 1 

Figure 12 shows PCA’s scores with size 100 fixed windows. Isolation Forest was 

excluded from the Figures because the amount of true positives was zero with all fixed 

windows. 
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Figure 12. PCA’s scores with fixed sequences (size 100) on files 174_3_7 and 174_3_18 

Overall, PCA performs the best with fixed windows (size 100), even when compared to 

Time session windows, described in section 8. When analysing test file 174_3_7, the 

precision score was better, even though recall unfortunately remained at 0.5. Precision 

achieved with test file 174_3_18 is admittedly unimpressive. 

PCA remains a valid anomaly detector with fixed windows, at least when the window 

size is set to 100. One disadvantage of such a large window size is that the output files, 

where the message contents of the anomalous sequences are written, can become quite 

long. For example, seven detected anomalies result in 700 log messages in the output 

file. Reducing the window size and simultaneously retaining the anomaly detection 

accuracy could be possible if sliding windows were used. After all, S. He et al. (2016) 

found that sliding windows are the best grouping technique. This investigation is left for 

future research. Nevertheless, when processing the file 174_3_7, the ratio of true 

positives, false positives, and false negatives is similar here as when using Time 

sequences. Moreover, PCA also managed to classify the last sequence in 174_3_18 as 

an anomaly, and the model’s performance was stable against both training data sets. 

The fact that Isolation Forest was unable to find anomalies when using fixed windows is 

disappointing. Different parameters for the model did not improve the situation. 

Isolation Forest is still a credible choice for anomaly detection when session windows 

based on Time values are used, as discussed in section 8. However, the model 

apparently struggles with sequences which are uniform in length. The researchers 

behind Isolation Forest state that the method performs well especially with large 

databases, where the number of instances exceed 100 000 (Liu et al., 2008). It is 

possible that a log file with only a few dozen event sequences is simply too small for 

Isolation Forest to work properly. Luckily fixed windows can still be used with PCA, 

but it would have been better for the artefact to always have two trustworthy machine 

learning models to choose from, regardless of the window type used for the sequence 

determination. 
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10. Discussion 

This section discusses several considerations regarding this study, as well as its 

implications. The research questions specified in section 2 are revisited in 10.1. Other 

considerations can be found from section 10.2. 

10.1 Answers to the research questions 

Unfortunately, there are no straightforward answers to the research questions. As in 

most machine learning and anomaly detection studies (see e.g. Chandola et al., 2009), 

several assumptions for example about the data and the nature of the anomalies had to 

be made, and in another context the assumptions might be considerably different. 

The first research question considers the validation of the anomaly detection results. As 

a reminder, the question was formulated as follows: 

RQ1: Can the accuracy of the anomaly detection be effectively verified by the 

amount of detected errors? 

Error messages in log files are a relevant aspect. Work flow errors, for example, which 

manifest as error messages in system logs, are a typical anomaly and an interesting 

feature in troubleshooting and problem diagnosis tasks (Fu et al., 2009; Lou et al., 

2010). Developers are interested in the error messages, and the machine learning should 

be too. It is relatively safe to assume that potential users of sgologs expect to see many 

error messages in the output. Therefore, the amount of detected error messages is a 

relevant factor in measuring the accuracy of the anomaly detection. For example, the 

additional error messages in the test file 174_3_7 clearly are an anomaly, and it is 

relevant to verify whether the machine learning recognised the errors. 

However, the test files might have other anomalous behaviour as well. For example, 

some process may have completed unexpectedly late, or some “normal” log entries 

might be completely missing. Thus, it is completely plausible that some of the 

sequences classified as anomalies by the models, which were considered false positives, 

are in fact true positives. This is the danger of focusing only on errors in the validation 

of the results. Since it was unfeasible to manually classify all sequences in the test files, 

instead of only the most obvious anomalies, the possible non-error anomalies are not 

represented in the accuracy scores. In other words, the scores can be thought to only 

measure the accuracy of error detection, instead of more comprehensive anomaly 

detection. 

In this context the focus on errors in validation of the results surely serves its purpose. 

Depending on the viewpoint, this focus could be a valid representation of accuracy. 

Nevertheless, an affirmative response to research question one should definitely be 

followed by “but only to some degree.” 

Research question two is about the accuracy the machine learning models are able to 

achieve. The question was formulated in section 2.2 as follows: 
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RQ2: How accurate is the anomaly detection with unsupervised machine learning 

and Linux log files? 

A short answer is ‘not very accurate.’ The F-measure score only exceeded 0.5 when 

session windows based on Time values were used for sequence determination, and 

Isolation Forest was used as the machine learning model. Even the score in question, 

0.57, is quite modest, as S. He et al. (2016), for example, measured scores as high as 

0.98 with unsupervised methods. Moreover, their worst F-measure score, 0.5, is quite 

close to the best score measured in this study. 

A major factor in the low F-measure scores is low precision scores, which were the 

result of several false positives. This finding is not surprising, as a high amount of false 

positives is characteristic to unsupervised learning (Landauer et al., 2018). This claim is 

confirmed in this study. 

As discussed in previous sections, false negatives are considered more severe in this 

study than false positives. F-measure, also called F1-measure, puts equal emphasis on 

precision and recall, i.e. on false positives and false negatives. However, an alternative 

calculation exists, where more weight is put on recall: the F2-measure. By emphasizing 

recall, which is considered more critical in this study, the overall accuracy scores are 

improved significantly. Figure 13 shows the accuracy scores with AEL as the log 

parser, session windows based on Time values as log event sequences, and 174_3_7 as 

the test file. 

 

Figure 13. Accuracy scores of the models with Time sequences and file 174_3_7, using F2-
measure 

Compared to Figure 9, where F-measure was used, the F2-score is considerably higher. 

Especially with Isolation Forest, the 0.77 is a rather notable result. PCA did not get an 

equally dramatic score increase, as recall is still only 0.5. The situation is similar as with 

fixed sequences, as shown in Figure 14. 
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Figure 14. Accuracy scores of PCA with fixed sequences (size 100) and files 174_3_7 and 
174_3_18, using F2-measure 

Even when emphasizing recall, PCA’s score does not unfortunately exceed 0.5. This is 

understandable, since recall with test file 174_3_7 is only 0.5, but it is also notable that 

the F2 score with 174_3_18 is 0.45, even though precision is only 0.14. 

Again, the response to the research question is highly dependent on the view of the 

researcher. If minimizing false positives is considered as crucial as minimizing false 

negatives, i.e. emphasis on precision and recall is equal, the accuracy scores surely seem 

insufficient. The best F1 score measured here is only 0.57, which is achieved only by 

one model, when using specific sequences and a certain test file. Moreover, the best F1 

score with the test file 174_3_18 is only 0.4. 

However, if recall is emphasized more than precision, the accuracy scores seem much 

better. The best F2 score of 0.77 is relatively acceptable, though it is still achieved by 

one model only, in quite specific circumstances. Moreover, even though the model in 

question, Isolation Forest, is clearly the best option for test file 174_3_7 when Time 

sequences are used, it is unable to detect that test file 174_3_18 is abnormally short, and 

is useless when fixed windows are used to determine the sequences. 

Zhu et al. (2019) noted that Linux log files have complex structure and an abundance of 

event templates, which makes their accurate, automated parsing difficult. The same 

reasons most likely also affect the anomaly detection accuracy. In their study, S. He et 

al. (2016) found that LogCluster struggles with the event count matrices generated from 

BGL data, because the matrices are sparse and high-dimensional. As the amount of 

event templates in the Linux log files used in this study is in the hundreds, so are the 

lengths of the event count vectors. Thus, the event count matrices end up being very 

high-dimensional. This is quite clearly the reason why LogCluster is unusable (S. He et 

al., 2016), but it might negatively influence the other machine learning models as well. 

An accuracy of e.g. 0.57 might be enough for the utility of sgologs, but the user should 

be aware of a few things. Firstly, sequence determination is an important consideration. 

For these log files, session windows with Time values seem to be the most serviceable 
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choice, as PCA and Isolation Forest were both able to detect anomalies in test file 

174_3_7. Moreover, Isolation Forest is the best choice with Time sequences, as the 

measured F1 score was 0.57 and F2 was 0.77. However, if the user wishes to use fixed 

sequences, PCA is the only functional choice. 

Secondly, the user should know what kinds of anomalies are simpler to detect. 

Additional log entries, such as error messages, which do not commonly occur in the log 

files, have a higher chance of being classifies as anomalous. With these things in mind, 

sgologs could be considered to be accurate enough, since at least some anomalies are 

detected and reported. The user is at least pointed in the right direction, although the 

accuracy scores are evidently modest. 

10.2 Other considerations 

No supervised learning. Only unsupervised machine learning was used in this study, 

since generating label files, which are required for supervised learning, requires 

considerable effort (Chandola et al., 2009). Even though supervised learning is rarely a 

practical possibility (S. He et al., 2016; Geijer & Andreasson, 2015), it most likely 

would have achieved better anomaly detection accuracy. Fortunately, unsupervised 

learning has been proven to be able to detect anomalies in previous work (Landauer et 

al., 2018; S. He et al., 2016), as well as in this study. 

Log parsing. As loglizer requires structured logs as input, it is very fortunate that the 

open-sourced logparser toolkit is available. Manual log parsing would be, again, a very 

labour-intensive task (P. He et al., 2016). Log-based anomaly detection typically 

focuses on execution path anomalies via log keys, or log event templates, extracted 

from the log messages (Du et al., 2017). This is possible because each log key type 

typically corresponds to one log print statement in the source code, resulting in log key 

sequences representing the execution path of the software (Fu et al., 2009). However, it 

is also possible to consider other features in the log entries, such as timestamps and 

parameter values, in order to detect different kinds of anomalies, like DeepLog does 

(Du et al., 2017). In fact, an implementation of DeepLog, which relies on label data, is 

included in loglizer. 

The performance of the logparser tools in this study was surprising. Even though Zhu et 

al. (2019) measured LenMa to achieve the best parsing accuracy with Linux log files, 

the tool provided disappointing results here. The AEL tool clearly performed the best, 

even though it only reached third place in Zhu et al.’s (2019) benchmarking. However, 

it should be noted that log parsing accuracy was not accurately measured here, as 

manually parsing a log file to represent the ground truth was beyond the scope of this 

study. Nevertheless, AEL seemed to be accurate in its parsing, and also improved the 

anomaly detection accuracy compared to log files parsed with SHISO. In addition, as 

another positive feature, the processing time for a single log file was only a fraction of a 

second. 

Windowing techniques. It appears that log event sequences which retain the occurrence 

order of the log events in relation to each other are the most suitable for the machine 

learning models. Such sequences can be generated with fixed or sliding windows, and 

possibly with session windows, if the timestamps of the log entries are used as the 

session parameter. As most processes overlap in a typical Linux log, session windows 

based on other parameters, such as PID, cannot carry information about event order. 

Therefore the execution path is not reflected in the sequences as explicitly – a possible 
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reason why the models were unable to detect the correct anomalies in the PID 

sequences. On the contrary, S. He et al. (2016) argue that such session windows result 

in higher correlation between the log messages, which has a positive effect on the 

anomaly detection accuracy. However, this result was produced with HDFS logs, i.e. 

the used data was drastically different from the Linux log files used in this study. 

Anomaly detection. It is unfortunate that InvariantsMiner, the tool measured to be the 

most accurate anomaly detector in S. He et al. (2016), had an unacceptably long 

processing time, as discussed in section 8. It is possible that the model could have 

reached a desirable performance with some optimizations, i.e. using different kinds of 

windowing techniques and log sequences, or making some changes in the 

implementation, for example. Unfortunately, this was not feasible within the time frame 

of this study. The same goes for LogCluster; however, it is possible that the Linux log 

files are simply too high-dimensional and effectively unsuitable for the model. 
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11. Conclusion 

Log files are a relevant source of information, especially in troubleshooting and 

debugging tasks (Dunaev & Zaytsev, 2019). Due to the fact that log files tend to be 

complex and large, there is much demand for automated log file analysis (S. He et al., 

2016). One common approach is to leverage machine learning to detect anomalies, 

which typically indicate faulty behaviour of the software (Fu et al., 2009). Many 

existing studies about log-based anomaly detection exist, and they have even resulted in 

the open-source toolkit loglizer (S. He et al., 2016). However, Linux log files have not 

been extensively used in existing research. This study attempts to fill this gap. 

The design artefact of this study, sgologs, was developed around the open-source 

toolkits logparser and loglizer. Tools based on unsupervised learning were focused on, 

because the approach is much more convenient and applicable in practical settings 

(Geijer & Andreasson, 2015). Taking a Linux log file as input, sgologs parses the input 

file into structured data, and is able to relatively successfully detect anomalies in the 

log. Unfortunately, the accuracy of the anomaly detection depends considerably on a 

few factors. The method of arranging the log messages into sequences is an important 

consideration. In this study, session windows based on Time values in the log entries 

were found to enable the best accuracies. In addition, the best overall accuracy score 

was achieved with the Isolation Forest model. PCA achieved lower accuracy, but was 

able to correctly detect at least some of the real anomalies in the test files. Moreover, 

PCA was the only suitable machine learning model when fixed windows were used in 

sequence determination. 

Linux log files seem to be challenging for automated processing. Logparser tools have 

been measured to achieve much better parsing accuracies with log files from other 

systems (Zhu et al., 2019). Nevertheless, the AEL parser seems to work sufficiently for 

these logs, and therefore it was included in sgologs. Moreover, the anomaly detection 

accuracy of the models from the loglizer toolkit was quite modest in this study. Two of 

the tested machine learning models, Invariants Miner and LogCluster, were completely 

incompatible with this data. 

However, if the user of sgologs is aware of these factors, the tool can help in finding 

non-conventional entries in Linux logs. Especially if the anomaly is some additional 

material in the log file, sgologs has a high chance of detecting it, even though only 

unsupervised learning models, practical but not so accurate, are (currently) available. 

The user should also be prepared for noticeable amounts of false positives. 

Sgologs was developed at a midsized ICT company, and it could be used as a part of the 

developers’ everyday debugging tasks. The tool certainly has room for improvement, 

but integrating new features should be very straightforward, as it was during the 

development of the artefact. At the same time, there is room for numerous possibilities 

for future research in log-based anomaly detection with Linux logs. 
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11.1 Limitations 

At numerous points in this study alternative methods could have been used, if they did 

not require work-intensive preparations. For instance, there is no sure way of verifying 

the accuracy of log parsing. This is because exact verification would have required 

comparison to a manually parsed log file, and creating such a file is too arduous to fit in 

the scope of this thesis. Likewise, creating label files for the test log files would have 

required excessive effort. 

Label files would have enabled the usage of supervised learning in the anomaly 

detection, and aided in the validation of the anomaly detection results. S. He et al. 

(2016) measured supervised learning to be more accurate in log-based anomaly 

detection than unsupervised learning. Supervised learning would probably have been 

the more reliable method in this context as well. Comparing the achieved anomaly 

detection results to a label file would have enabled an exact and robust measurement of 

the accuracy, as in S. He et al. (2016). Generating a label file for each used test file 

would result in scrutinizing hundreds of different kinds of log sequences, classifying 

each as normal or anomalous. 

Instead of the laborious and thorough labelling process, only the most obvious 

anomalies in the test log files were identified. The identification was based on the fact 

that the amount of error messages in some of the test files was unusual. The validation 

of the results was then based on these identifications, as discussed in section 2.1. It is 

possible that the machine learning correctly detected anomalies which were not 

manually identified as anomalies, i.e. sequences which do not contain unexpected 

errors. Thus the accuracy could, in theory, be better than what is presented here. 

Moreover, the selection of the test data was unconventional for a machine learning 

study. Typically, the test files are selected at random, after which possible anomalies in 

them are identified. In this study, the log files were included in the test data if they 

contained an abnormal amount of error messages, i.e. anomalies. Thus, test file 

selection can be considered biased. However, as the amount of test files is only three, 

statistically significant conclusions are not possible anyway. Nevertheless, even with the 

unconventional test file selection, investigating the potential of the loglizer tools in this 

context was possible. 

11.2 Future research 

If at least some developers started using sgologs as a part of their routine log inspection 

tasks, an opportunity for a clear follow-up study would emerge. The developers could 

be surveyed and interviewed about the benefits and shortcomings of the anomaly 

detection tool. This way, the actual real-life utility of sgologs could be investigated. At 

this stage, however, only educated guesses about the adequacy of the tool can be made. 

For example, a survey and interview-based study would probably reveal whether a F1 

score of 0.57 is at all sufficient in practice. 

However, based on this study, it is already apparent that some parts of the artefact could 

use some polishing. For instance, the fact that the machine learning models need to be 

trained each time the tool is run is a considerable issue. Changing the implementation so 

that the models somehow store the parameters they learned from the training data is 

plausible and possibly simple. With such an implementation, much larger training 

datasets could be used, since the processing time of the training phase is no longer a 
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relevant consideration. Increased training data size would supposedly enable better 

learning, which could in turn increase the anomaly detection accuracies. 

Another implementation currently lacking in sgologs is the option to use sliding 

windows to determine the log sequences. The technical implementation would be a 

fairly simple task, but the positive effects to the detection results could be remarkable. 

After all, the window sequence type is not a trivial matter, as discussed in earlier 

sections. Another interesting possibility is detecting anomalies at the level of individual 

log messages, i.e. not using sequences at all. This would simplify the output greatly, as 

only single log rows would be classified as anomalous. If the loglizer tools could be 

reshaped to work like this, the utility of the output would most likely increase. 

Going through the trouble of generating label files for the Linux logs, thus allowing the 

usage of supervised learning models, could be beneficial. The loglizer toolkit already 

contains three supervised models (LR, Decision Tree, and SVM), so model 

implementation does not require great effort. Label files, although laborious to make, 

would most likely be worth the effort, if supervised learning really achieves higher 

accuracies than unsupervised learning, as measured in previous work. 

Moreover, there are also unsupervised options which have not been investigated in this 

study. At least partial implementations, which rely on label files, of DeepLog, Local 

Outlier Factor (LOF), one-class SVM, and AutoEncoder, are already included in 

loglizer. Especially DeepLog, based on deep learning, seems promising. If label files are 

off the table, changing the implementation of the models to not require labelled training 

data should not be a demanding endeavour. It would be fruitful to investigate the other 

unsupervised models. It is well possible that the performance of the models would be 

comparable to the models tested in this study, or even exceed the accuracy scores 

measured here. 
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