
Developing a Log File Analysis Tool: A Machine
Learning Approach for Anomaly Detection

University of Oulu

Faculty of Information Technology and

Electrical Engineering / Information

Processing Science

Master’s Thesis

Tapio Anttila

3.6.2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344911108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

Log files, which record information about all events during the execution of a software,

are important in troubleshooting tasks. However, modern software systems produce

large quantities of complex logs, and their manual inspection is laborious and time-

consuming. Therefore, technologies such as machine learning have been used to

automate log file analysis. Anomaly detection is an especially popular approach, since

anomalies in the log files are typically caused by erroneous behaviour of the software.

In this study, open source data mining and machine learning solutions are utilized to

process log files collected from devices running embedded Linux. Following the Design

Science Research methodology, a Python program called sgologs is developed. The tool

uses components from logparser and loglizer toolkits to pre-process the input log file,

train an unsupervised machine learning model, and detect anomalies on the input file.

The loglizer tools have not been used with Linux logs in previous research, possibly

because they are rather difficult for automated processing. This finding is verified in this

study as well, as the measured anomaly detection accuracy scores are quite modest.

Nevertheless, sgologs is able to detect anomalies in the log files, with swift processing

times, at least when certain things are taken into consideration. If the user is aware of

these factors, sgologs can definitely point towards real anomalies in the Linux log files.

Thus, the tool could be used in real-life settings to simplify debugging tasks, whenever

logs are used as a source of information.

Keywords
Log file analysis, Linux log files, anomaly detection, machine learning, unsupervised

learning, log parsing, design science research

Supervisor
University lecturer Antti Siirtola

3

Foreword

This thesis has been a pervasive part of my life for the past eight months, and I am very

grateful to all who have helped me in laying it to rest. Thanks to my bosses at work,

Jyrki Kennilä, Timo Pyhäluoto, and Jesse Pasuri, for arranging my duties so that I can

focus on the thesis. Thanks to my colleagues Markku Ahvenjärvi and Veikko Rytivaara

for throwing ideas around and kicking off this project.

Thanks to all my peer reviewers for insightful comments, and to Ari Vesanen for the

scrutiny. Thank you Antti Siirtola, my thesis supervisor, for providing constant

feedback and keeping this study on track. I express my gratitude especially to Satu and

Eveliina Anttila for providing me with better working conditions than I could have

hoped for, and for keeping me up and running with all the joy they bring into my life.

Tapio Anttila

Oulu, June 3, 2020

4

Contents

Abstract ... 2
Foreword ... 3

Contents .. 4
1. Introduction .. 5
2. Research Problem ... 8

2.1 Background and objectives for a solution .. 8
2.2 Research questions ... 9

3. Research Methods .. 11

3.1 Design Science Research ... 11
3.2 The DSR guidelines and process ... 13

4. Literature Review ... 17
4.1 Machine learning ... 17
4.2 Log-based anomaly detection .. 18

4.2.1 Log parsing phase ... 19

4.2.2 Feature extraction phase ... 20
4.2.3 Anomaly detection phase.. 21

5. Existing tools for Log-based Anomaly Detection .. 23
5.1 logparser .. 23
5.2 loglizer ... 23

6. Description of the Dataset .. 26
6.1 Pre-processing the initial data .. 26

6.2 The final dataset ... 26
7. First Iteration: Using the logparser Toolkit ... 27

7.1 Testing LenMa ... 27
7.2 Testing SHISO ... 28

7.3 Testing AEL ... 28
7.4 Parsing the subset ... 28

8. First Iteration: Using the loglizer Toolkit ... 30
8.1 Sequence determination ... 31
8.2 Training and test data ... 32

8.3 A walkthrough of loglizer .. 34
8.4 Evaluation of sgologs_alpha ... 36

8.4.1 Using Time sequences and SHISO logs ... 36

8.4.2 Using Time sequences and AEL logs ... 39

8.4.3 Using PID sequences and SHISO logs ... 41
8.4.4 Using PID sequences and AEL logs ... 42

8.5 Summary of the first iteration .. 43
9. Second Iteration .. 45

9.1 Changes to sgologs_alpha ... 46

9.2 Evaluation of sgologs ... 46
10. Discussion ... 51

10.1 Answers to the research questions ... 51
10.2 Other considerations .. 54

11. Conclusion ... 56
11.1 Limitations ... 57

11.2 Future research ... 57

References ... 59

5

1. Introduction

This Master’s Thesis is about the development of a log file analysis software tool, with

the principal function of detecting anomalies. Taking advantage of existing solutions

based on machine learning (e.g. S. He, Zhu, He & Lyu, 2016), the developed tool,

dubbed sgologs, processes log files from an embedded Linux device, and finds unusual

log entries which may indicate abnormal behaviour of the software. Thus, the burden of

debugging erroneous behaviour based on log files is mitigated.

A colleague of mine at a midsized ICT company was recently tasked with finding a rare

bug in one of our products. Since log files record every single event that is carried out

(Landauer, Wurzenberger, Skopik, Settani, & Filzmoser, 2018), with time and state

data, they are a natural first stop in the debugging process. However, inspecting the log

files is very cumbersome: the behaviour of modern software systems tends to be too

complex for a single developer to comprehend, and the sheer volume of logs makes the

task extremely time-consuming (S. He et al., 2016). The colleague figured his work

would be much more efficient if a software tool would find the anomalies for him,

automating the process, resulting in the idea behind this study.

This study utilizes existing, open-source solutions for log-based data mining and

anomaly detection. The existing solutions are toolkits, which include several

implementations of different methods. The first toolkit is logparser, developed by P.

He, Zhu, He, Li and Lyu (2016) and Zhu et al. (2019). The second toolkit is loglizer,

developed by S. He et al. (2016). The existing tools are extensively tested in the context

of Linux log files, a topic only briefly noted in Zhu et al. (2019). More specifically, the

applicability and performance of unsupervised machine learning methods (discussed

more in section 4) with Linux logs are thoroughly investigated in this study.

Other methods than machine learning, e.g. a deterministic algorithm searching for

certain keywords or sequences, could be used for the anomaly detection. However, one

advantage of machine learning is that it is able to detect previously unknown anomalies

(Geijer & Andreasson, 2015). In other words, creating a comprehensive set of keywords

for an algorithm to look for would require that all possible anomalies are already

known, and new types of anomalies not yet encountered by the creator of the keywords

could not be detected. Some argue that focusing only on significant words is not

sufficient for a thorough analysis of a system (Landauer et al., 2018). Moreover,

systems and their behaviour change over time, changing also the definition of normal

behaviour; machine learning can react to such changes, and retain its accuracy

(Landauer et al., 2018; Geijer & Andreasson, 2015).

A few of my colleagues and I have discussed the possibilities of the log file analysis

software, and we believe that such a tool could be very useful to numerous people here

at our company. In addition, this study contributes to research on log-based anomaly

detection, but in the specific context of Linux log files.

Log-based anomaly detection endeavours often benefit from unsupervised machine

learning for practical reasons (Geijer & Andreasson, 2015). Machine learning

algorithms need training material, which can be labelled, i.e. all instances are manually

6

marked as normal or anomalous (Pietikäinen & Silvén, 2019). However, labelling is

usually not a practical possibility (Chandola, Banerjee & Kumar, 2009; S. He et al.,

2016). As unsupervised learning does not need labels in the training material, it is an

applicable approach in practical settings (S. He et al., 2016). For this reason,

unsupervised machine learning is used in this study.

Landauer et al. (2018) state that unsupervised methods can successfully detect

anomalies. However, S. He et al. (2016) measured that their anomaly detection tools

which leveraged unsupervised learning achieved inferior performance in comparison to

tools using supervised learning, i.e. learning based on labelled training material. Zhu et

al. (2019) found that log parsing, which refers to the activity of pre-processing the

unstructured logs into more structured data, is relatively difficult with Linux logs. This

is due to their complex structure and large number of different constant parts in the log

entry strings (Zhu et al., 2019). S. He et al. (2016) did not use Linux logs in their study,

so the suitability of their toolkit in anomaly detection on Linux systems was left

unexplored.

This study aims to discover whether the practical approach of unsupervised learning can

be successful in detecting anomalies in Linux logs. The performance of the loglizer

tools (S. He et al., 2016) with Linux logs is put to the test in order to achieve this. In

addition, the performance of the logparser tools (P. He et al., 2016; Zhu et al., 2019),

and how it affects the anomaly detection, is investigated. Whether the developed tool

actually helps in and simplifies the debugging processes of developers is another

important consideration.

Since this thesis is an output-based study, where a software solution to a practical

problem was developed, it was natural to use Design Science Research (DSR) as the

research methodology. The purpose of DSR is designing and creating an artefact, which

addresses a real-life organizational problem (Hevner, March, Park & Ram, 2004;

Peffers, Tuunanen, Rothenberger & Chatterjee, 2007). Conceptually, the artefact can be

anything with a research contribution embedded in the design (Peffers et al., 2007).

Here, the artefact is the log file analysis tool, sgologs. The tool was developed

iteratively, with the evaluation of the artefact and its utility affecting the understanding

of the problem, objectives for the artefact, design of the artefact, and so on. Artefact

development typically occurs within a build-and-evaluate loop (Hevner et al., 2004). In

DSR, the evaluation of the artefact, which can be done based on e.g. functionality,

performance, or usability, is as important as its development (Hevner et al., 2004). The

performance of the log file analysis tool was simple to measure, by checking how many

real anomalies were detected. The final step in a DSR project is the communication of

the problem and its relevance, and the designed artefact and its utility, to both

management-oriented and technology-oriented audiences (Hevner et al., 2004). The

present research process and results are communicated by this thesis.

Overall, Linux log files are challenging for the logparser and loglizer tools. Still, a

parser from the logparser toolkit, called AEL, seemed to parse the logs relatively

accurately. In addition, unsupervised machine learning models were found to correctly

classify anomalies in the Linux log files. However, only two of the four tested models

were applicable, and the achieved accuracy scores are rather modest and highly

dependent on numerous factors. Nevertheless, if the user is aware of these factors,

sgologs can direct the user towards abnormal entries in the log file. For example, it is

important to be conscious of the fact that the models are best at detecting additional log

messages not normally present in the log files. At least to some extent, sgologs could

operate as a functional troubleshooting tool in real-life settings as well.

7

The structure of this thesis is as follows. The research problem and questions are set in

section 2. Section 3 presents the research method, Design Science Research, and how it

is used in this study. Literature review is in section 4, followed by a presentation of the

existing tools, logparser and loglizer, in section 5. Then, the log file dataset is described

in section 6. The first iteration of the artefact development is discussed in sections 7 and

8: choosing a log parser and parsing the data is described in section 7, and testing the

machine learning models and detecting anomalies with them in section 8. Next, the

second iteration is described in section 9. In section 10, the research questions and other

considerations are discussed. Finally, section 11 concludes this study.

8

2. Research Problem

This section describes the research problem in detail. First, the background of the

research artefact is discussed in section 2.1, along with the objectives for the tool. Then,

research questions are presented in section 2.2.

2.1 Background and objectives for a solution

The log file analysis is based on machine learning. S. He et al., (2016) have presented

and evaluated several applicable machine learning approaches for log-based anomaly

detection in their paper, and even made an open source release of the studied software

tools in the form of the loglizer toolkit. It is obviously efficient to take advantage of

existing solutions. Initially there were two options for utilizing the loglizer tools: they

could be used as a kind of blueprint for the design of sgologs, or alternatively be used as

they are. In the latter case, the developed artefact is a wrapper, which prepares the log

file data, sends it to a loglizer tool, and presents the output. Ultimately it was decided

that the log file analysis tool is a wrapper, because getting logparser and loglizer to

work with these Linux log files was well enough work for a thesis project. Input for

sgologs is a log file, and the tool presents as output the found anomalous sequences in a

text file.

The design artefact can be considered successful if it is in fact useful to developers. On

a general level this means that the sgologs tool considerably streamlines the laborious

task of inspecting log files, resulting in more effective analysis workflow for

developers. Of course, it is important to remember that even the best tool in this context

can only guide a developer towards anomalies in the log files, and the responsibility of

how to use the information the tool provides is left for the developer.

The minimum objective for the solution is that anomalies, e.g. erroneous behaviour due

to a software bug, are detected with sufficient accuracy and reported. Here, accuracy

chiefly refers to how many real anomalies are detected. Unsupervised machine learning

typically produces a large number of false positives (Landauer et al., 2018). This

indicates that the machine learning reacts to instances which are not anomalous,

resulting in unnecessary data in the output, but also that most, if not all, real anomalies

are detected. In this study it is assumed that false positives are better than undetected

anomalies, also called false negatives; if the machine learning is too strict about false

positives, and thus too careful with the classification, real anomalies may not be

detected (Landauer et al., 2018).

Before the logs can be fed into the anomaly detection, they require pre-processing, i.e.

log parsing (S. He et al., 2016). As mentioned, tools in the logparser toolkit have some

difficulties with Linux logs, the best accuracy being 0.701, whereas other logs could be

parsed with accuracies higher than 0.9 (Zhu et al., 2019). The measurements are of

course highly dependent on the used log files, and the Linux logs used in this study

could produce different results. This topic is investigated in this study, but log parsing is

not measured as in Zhu et al. (2019). The accuracy scores are based on comparison to

the “ground truth”, i.e. a manually parsed log file (Zhu et al., 2019). However,

9

constructing such a log file to present the ground truth is not feasible in a one-person

thesis project. Moreover, it is unclear whether a log parsing accuracy of e.g. 0.701

considerably hinders the anomaly detection. The effect of different parsing accuracies

on the anomaly detection is investigated in this study, as mentioned in section 7.4.

It is also desirable for the tool to be easy to use, fast, and reliable. If sgologs processes

for a long time, or presents false results, it will not be useful to developers. Found

anomalies, or the absence of anomalies, are the main message of the tool’s output.

Sgologs informs in the command prompt or terminal if anomalies are found, and

mentions were the output files are stored.

2.2 Research questions

Machine learning algorithms need training material, i.e. log files, to learn the expected

and anomalous patterns in the logs. The patterns can be already identified in the training

data, but it is not an absolute requirement (S. He et al., 2016). This topic is discussed

more in section 4. Labelling the training data is rarely a practical possibility (S. He et

al., 2016). For example, for the embedded device acting as the source of the log files,

each boot produces relatively unique logs, regardless whether anomalous behaviour

occurs or not. Thus, the classification of expected and anomalous patterns would be

very time-consuming and difficult, when a baseline for comparisons is lacking.

Therefore, it is reasonable to rely on unlabelled training data. However, the

functionality of the anomaly detection needs to be verified by manually checking if the

found anomalies are correct and if all real anomalies are found in a limited selection of

log files.

The fact that the loglizer tools group log messages into log sequences creates a

challenge. Developers typically inspect the log files as they are, without converting

them into specific sequences of any kind. Consequently, it would be difficult for them to

identify which sequence is normal or not. The compromise made in this situation is to

check how many sequences that contain log messages with the word error is marked as

anomalous. Focusing on errors greatly simplifies the validation of the anomaly detection

results, as data and knowledge about possible labels is non-existent. This approach

overlooks the fact that some anomalies may not be errors per se; however, errors are

exactly what developers typically search for in the log files. Whether the amount of

detected sequences that contain errors is a valid representation of the anomaly detection

accuracy is unclear. The first research question is

RQ1: Can the accuracy of the anomaly detection be effectively verified by the

amount of detected errors?

S. He et al. (2016) measured that unsupervised machine learning models achieve

inferior performance compared to supervised models. It is relevant to consider whether

unsupervised learning is good enough for this purpose, or would it be better to take the

trouble of generating label files to enable the use of supervised learning. Fortunately,

unsupervised learning supposedly has shown promise in anomaly detection problems

(S. He et al., 2016; Landauer et al., 2018). Anomaly detection techniques tend to suffer

from high amounts of false positives (Landauer et al., 2018), which are likely to obscure

real anomalies from the output. As discussed above, false positives should not be a

problem, as long as real anomalies are detected as well. Naturally, the desired accuracy

for the anomaly detection is that all real anomalies are detected, and the smaller the

amount of false positives is the better. The second research question is

10

RQ2: How accurate is the anomaly detection with unsupervised machine

learning and Linux log files?

11

3. Research Methods

This section introduces the Design Science Research (DSR) methodology and its usage

in this study. A general picture of DSR is presented in subsection 3.1. Then, the DSR

guidelines (Hevner et al., 2004), their application in this study, and how they relate to

the DSR process activities (Peffers et al., 2007), are presented in 3.2.

3.1 Design Science Research

Instead of reality-describing research in the style of social and natural sciences, DSR is

about creating an artefact for human purposes, addressing a real-life problem (Peffers et

al., 2007). DSR is often compared to behavioural science, where an IT artefact is often

the object of study, whereas design science creates and evaluates IT artefacts (Hevner et

al., 2004). “Such artifacts are represented in a structured form that may vary from

software, formal logic, and rigorous mathematics to informal natural language

descriptions” (Hevner et al., 2004, 77). The design artefact, and the proof of its

usefulness, is central in DSR (Peffers et al., 2007). In this study, the designed artefact is

the log file analysis software tool.

By the common DSR artefact classification, the log file analysis tool is an instantiation,

instead of a construct, a model, or a method. Constructs essentially are the symbols used

to define problems and solutions. For example, mathematics relies on the constructs of

Arabic numbers and zero. Models, i.e. representations of the problem domain, can be

created with the constructs. More than a model, but not quite an instantiation, a method

could be e.g. an algorithm. Finally, an instantiation is a functional implementation, or a

prototype, of the solution. (Hevner et al., 2004.)

In an organization, the strategies for business and information technology, and the

infrastructure for organizational processes and information systems, are largely aligned.

Design is required for the effective transition from strategy to infrastructure in both

organizational context and information systems context, as illustrated in Figure 1.

(Hevner et al., 2004.)

12

Figure 1. Organizational Design and Information Systems Design Activities. Adapted from
Hevner et al. (2004, Figure 1, p. 79).

In addition to considering and leveraging existing research in DSR, and information

systems research in general, it is important to remember the environment where the

research is happening, also known as problem space. Business needs, i.e. goals and

problems within an organization, are the factors which fuel the IS research endeavour.

The research thus has relevance to the environment. Likewise, the base of existing

knowledge provides the researcher with the scientific foundations and methods for

conducting the study. In other words, the knowledge base helps in ensuring the research

is performed rigorously. The new research then gives back to the environment, by

applying the solution in the organization, and to the knowledge base, by presenting the

results of the study to the research community. These relationships are illustrated in

Figure 2. (Hevner et al., 2004.)

Figure 2. Information Systems Research Framework. Adapted from Hevner et al. (2004, Figure
2, p. 80).

13

In DSR, the evaluation of the design artefact is as important as building the artefact.

Evaluation produces feedback information on the artefact, and a better understanding of

the problem, thus making it possible to improve not only the quality of the artefact but

also the quality of the design process. This loop of building and evaluating, also

depicted at the centre of Figure 2, is typically iterated through several times. (Hevner et

al., 2004.)

What differentiates Design Science Research from routine design is the fact that DSR

addresses unsolved problems in innovative ways, or solved problems in more effective

or efficient ways. Routine design, on the other hand, is simply the application of

existing knowledge to known problems, without any contribution to the knowledge base

of existing research. (Hevner et al., 2004.)

3.2 The DSR guidelines and process

Hevner et al. (2004) presented seven guidelines for DSR, which describe the

requirements for effective Design Science Research. The guidelines are summarized in

Table 1. Following Peffers et al. (2007), the design science process has six steps:

problem identification and motivation, definition of the objectives for a solution, design

and development, demonstration, evaluation and communication. The order of these

activities is not strict, and the process and the activities can be repeated in an iterative

fashion (Peffers et al., 2007). The process activities are summarized in Table 2. This

process model is naturally followed in this study. Next, the guidelines (and related

process activities) are described in detail, followed by information about their

application in this study.

Table 1. Design Science Research Guidelines (Hevner et al., 2004, p. 88)

Guideline Description

Guideline 1: Design as an Artefact Design-science research must produce a

viable artifact in the form of a construct, a

model, a method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science research is

to develop technology-based solutions to

important and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design

artifact must be rigorously demonstrated

via well-executed evaluation methods.

Guideline 4: Research Contributions Effective design-science research must

provide clear and verifiable contributions in

the areas of the design artifact, design

foundations, and/or design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the

application of rigorous methods in both the

construction and evaluation of the design

artifact.

Guideline 6: Design as a Search

Process

The search for an effective artifact requires

utilizing available means to reach desired

ends while satisfying laws in the problem

environment.

Guideline 7: Communication of

Research

Design-science research must be presented

effectively both to technology-oriented as

well as management-oriented audiences.

14

Table 2. The Design Science Research Process (Peffers et al., 2007)

Activity Description

Activity 1: Problem identification

and motivation

Define the research problem and justify the

value of the solution.

Activity 2: Definition of objectives

for a solution

Define the objectives for a solution based

on the problem definition, and knowledge

of what is possible and feasible.

Activity 3: Design and development Determine the functionalities of and create

an artefact, where a research contribution is

embedded in the design.

Activity 4: Demonstration Use the artefact e.g. in experimentation or

simulation to solve one or more instances

of the problem.

Activity 5: Evaluation Observe and measure how well the artefact

solves the problem.

Activity 6: Communication Present the problem and its importance, and

the artefact and its design and utility.

Guideline 1: Design as an artefact. The creation of an artefact which addresses an

organizational problem is the purpose of DSR. Artefacts are rarely full-grown

information systems (Hevner et al., 2004). If the artefact is an instantiation, it should

prove the feasibility of both the design process and the designed product (Hevner et al.,

2004). Conceptually the artefact can be anything, as long as a research contribution is

embedded in the design (Peffers et al., 2007). It is also relevant to consider the

objectives of the artefact, aligning this guideline with Activity 2. The objectives can be

quantitative or qualitative, e.g. a determination of how a new solution is better than

current ones, or a description of how a new artefact is expected to support solutions to

problems (Peffers et al., 2007).

In this study, the design artefact is the log file analysis tool. As an instantiation, it

proves the feasibility of the process and the product: the artefact mitigates the burden of

log file analysis, thus showing that the burden of log file analysis can in fact be

mitigated. The objectives for the artefact are described in section 2.

Guideline 2: Problem relevance. DSR must address a known problem within an

organization, namely a difference between a goal state and the current state (Hevner et

al., 2004). The first activity in the DSR process model (Peffers et al., 2007) is to define

the research problem and to justify the value of the solution. It may be necessary to

conceptually atomize the problem, so that the solution may capture its complexity.

Justifying the value of the solution motivates the researcher and the audience of the

research and clarifies the researcher’s understanding of the problem (Peffers et al.,

2007).

The log file analysis tool developed in this study addresses the problem of a

considerably laborious task. The artefact streamlines this task, leaving more time for

more important tasks, and making the work of developers who use the tool more

efficient. The laborious task faces developers quite often, underlining the relevance of

the problem.

Guideline 3: Design evaluation. As mentioned above, the evaluation of the artefact is

as important as the development of the artefact. Evaluation can be done based on e.g.

functionality, performance, or usability. The artefact should also be integrated into the

business environment. (Hevner et al., 2004.)

15

Observing and measuring how well the artefact solves the problem can be done during

and after the demonstration phase. Generally evaluation (Activity 5) is about comparing

the objectives to the actual observed results. As an example evaluation can take the

form of quantitative performance measures or results of satisfaction surveys. After the

evaluation it is possible to iterate back to Activity 3 (design and development) and

attempt to improve the artefact. (Peffers et al., 2007).

The log file analysis tool is evaluated by observing its performance with the log parsing

and anomaly detection (both discussed in more detail in section 4). In addition, the

usability of the tool, i.e. how much it helps developers in their log inspection, is

discussed with several developer colleagues. I will personally advertise the tool within

the company, hopefully raising interest at the management level as well.

Guideline 4: Research contributions. Effective DSR must provide a contribution, be it

the artefact itself, or e.g. the used design methodology (Hevner et al., 2004). The

artefact itself is the major contribution of this study. In addition, this study provides

information about how the S. He et al. (2016) tools perform with Linux logs.

Guideline 5: Research rigor. The construction and evaluation of the artefact must be

done with scientific rigor, meaning e.g. transparent and reproducible methods (Hevner

et al., 2004). The design artefact of this study is based on the toolkit from S. He et al.

(2016), a product of extensive research. Similarly, the construction and evaluation

methods used by S. He et al. (2016) also aid the construction and especially the

evaluation of the present artefact.

Guideline 6: Design as a search process. The sixth guideline refers to the iterative

process of DSR: evaluating the solution to the problem refines the problem itself, which

again refines the requirements for the solution, and so on (Hevner et al., 2004).

Adhering to the process activities, after the artefact has been demonstrated in Activity 4

and evaluated in Activity 5, it is possible to iterate back to design and development

(Activity 3) or even to problem identification (Activity 1) or objective definition

(Activity 2) (Peffers et al., 2007). The development of the log file analysis tool was

iterative. For example, the first version of the tool, sgologs_alpha, needed parsed,

structured log files as input, and could only use session windows in determining log

event sequences. The second iteration began by going back to Activity 3 and

implementing new features.

Guideline 7: Communication of research. The research and its results must be

presented to both technology-oriented and management-oriented audiences.

Technology-oriented audiences need this information in order to be able to use the

artefact in the appropriate context and to enjoy its benefits. Management-oriented

audiences wish to know whether the organization should be committed to constructing

and using the artefact, so the importance of the problem and the novelty of the solution

should be emphasised in the communication. (Hevner et al., 2004.)

Communication (Activity 6) includes the presentation of the problem and its importance

as well as the artefact and its design and utility. Communication typically takes the form

of a research paper, or alternatively a thesis. (Peffers et al., 2007.)

The present research and results are communicated with this thesis. The thesis provides

the relevant information to both technology- and management-oriented audiences.

16

Figure 3 presents the DSR process model in visual form. At the bottom, the possible

research entry points, i.e. possible factors which initiate the process, are also visible.

The research entry point of this study is highlighted, and the relevant specific tasks of

the activities are written out. The texts between the activities represent the required

resources for the succeeding (and preceding) activity.

Figure 3. Design Science Research Process Model. Adapted from Peffers et al. (2007, Figure
1, p. 54).

17

4. Literature Review

This section presents earlier studies on topics relevant to this research. A brief overview

on machine learning is presented in 4.1, followed by more extensive discussion on the

specific topic of log-based anomaly detection in section 4.2.

4.1 Machine learning

Machine learning (ML) refers to the ability for computer programs to analyse data,

extract information, and learn from it. How machine learning algorithms “learn” is

essentially about creating and recognizing patterns in training data. For example, in the

context of this study, the training data is actual log files, which the algorithms process to

generate models for anomaly detection. The intelligence of machine learning is based

more on modelled data, instead of the learning algorithms themselves (Pietikäinen &

Silvén, 2019). Machine learning is successful with problems which are difficult to solve

with purely algorithmic approaches, such as speech and image recognition (Pietikäinen

& Silvén, 2019). Different ML approaches have been leveraged in countless domains,

for example in software fault prediction (Malhotra, 2015), solar radiation forecasting

(Voyant, Notton, Kalogirou, Nivet, Paoli, Motte & Fouilloy, 2017), text-document

classification (Khan, Baharudin, Lee & Khan, 2010), network intrusion detection (Tsai,

Hsu, Lin & Lin, 2009) and financial market prediction (Henrique, Sobreiro & Kimura,

2019).

Machine learning methods are commonly divided into three categories: supervised

learning, unsupervised learning, and reinforcement learning (Pietikäinen & Silvén,

2019). Supervised learning is based on examples: the training material input is labelled,

i.e. categories in the training data are already recognized and identified (Pietikäinen &

Silvén, 2019). The requirement of labelled training material presents some problems.

Labelling the data may not be feasible, since e.g. all the categories in the data should be

known beforehand (S. He et al., 2016; Geijer & Andreasson, 2015), and accuracy of the

algorithms suffers from incorrectly labeled training material (Pietikäinen & Silvén,

2019). Labelling is usually done by a human expert, making accurate and representative

labelling prohibitively expensive (Chandola et al., 2009). However, strong training

material can result in very accurate results (S. He et al., 2016). Popular supervised

methods include logistic regression and decision trees (S. He et al., 2016; Pietikäinen &

Silvén, 2019).

On the contrary, unsupervised learning does not require labels in the training data. The

underlying principle is creating a depiction of the structures in the data, where similar

inputs are located near each other (Pietikäinen & Silvén, 2019). Unsupervised methods

are usually more feasible in practical settings, but unfortunately tend to achieve lower

performance than supervised methods (S. He et al., 2016). Although, Landauer et al.

(2018) ambiguously argue that unsupervised methods are able to detect anomalies on

unlabelled data. It is important to note that verifying the accuracy of unsupervised

methods is difficult if the categories of the data are completely unknown (Landauer et

al., 2018). Popular unsupervised machine learning methods include autoencoders and

Principal Component Analysis (PCA) (S. He et al., 2016; Pietikäinen & Silvén, 2019).

18

Semi-supervised learning is a combination of supervised and unsupervised learning.

Training data typically has labels for normal behaviour (Chandola et al., 2009). Some

anomalous categories are first determined with unsupervised learning, and vague

categories are verified by human input (Pietikäinen & Silvén, 2019). As human input is

required, semi-supervised learning may face similar challenges as supervised learning,

albeit it reduces the amount of human labour (Pietikäinen & Silvén, 2019).

In reinforcement learning, a software agent takes actions in an environment, and

receives positive or negative feedback (Pietikäinen & Silvén, 2019). The goal of the

machine learning is to determine the solution which receives the most positive feedback

(Pietikäinen & Silvén, 2019).

A popular subset of machine learning, deep learning, has been very successful in

problems such as speech or image recognition. The method extracts features from the

raw data with multiple layers; e.g. in image recognition, lower layers capture features

such as edges, and higher layers identify more specific features, such as letters or faces.

One major advantage of deep learning over traditional machine learning is that these

layers of features need not be engineered by humans, as they are learned from the data.

In other words, deep learning is able to process natural, unstructured data. (LeCun,

Bengio & Hinton, 2015.)

4.2 Log-based anomaly detection

As Chandola et al. (2009) define it, anomaly detection is about finding patterns in data

that do not correspond to expected behaviour. There is an abundance of possible

applications, such as fraud detection for credit cards, insurance, or health care, intrusion

detection for cyber-security, fault detection in safety critical systems, and military

surveillance for enemy activities (Chandola et al., 2009). All anomaly detection

approaches are essentially about defining a representation of normal behaviour, and

declaring anything that does not belong into this representation as an anomaly.

However, in practice, anomaly detection is not as straightforward (Chandola et al.,

2009). Even defining the normal behaviour can be challenging: often the boundary

between normal and anomalous behaviour is not precise, and normal behaviour may

evolve over time, requiring updates in the data models (Chandola et al., 2009). The

latter consideration is also true for anomalous behaviour. Moreover, malicious actions

often mask themselves as normal (Chandola et al., 2009), for example in cyber-attacks.

The availability of labelled data for the training and the validation of the models is

another challenge (Chandola et al., 2009; S. He et al., 2016).

Anomalies appear in data for a wide variety of reasons. Suspicious activity in network

traffic may indicate that a cyber-attacker has intruded the network (Dunaev & Zaytsev,

2019). Malignant tumours result in anomalous MRI images (Chandola et al., 2009).

Possible causes for software execution anomalies are hardware problems, network

communication congestion or software bugs (Fu, Lou, Wang & Li, 2009). There are

several possible approaches for anomaly detection, such as detection at the operating

system level, without having to rely on e.g. event logs (Bovenzi, Brancati, Russo, &

Bondavalli, 2015). Nevertheless, log-based anomaly detection has become a common

approach and attracted a lot of academic interest. With software, the advantage of log

files is that they record every event that is carried out (Landauer et al., 2018; Leal-

Aulenbacher & Andrews, 2013), being the only source of information about a

program’s execution and behaviour with time and state data (Dunaev & Zaytsev, 2019).

19

Therefore, the logs are the information that can be processed to detect anomalous

situations (Dunaev & Zaytsev, 2019; Cheng & Wang, 2014).

However, the manual inspection of log files is often unfeasible due to numerous factors.

Software systems and their behaviour tend to be too complex for a single developer to

comprehend (Fu et al., 2009; S. He et al., 2016; Leal-Aulenbacher & Andrews, 2013).

Thus, analyzing log events related to a component one is not familiar with are of little

value. Moreover, the sheer volume of logs from contemporary software systems

exceeds what a single developer can effectively handle (Fu et al., 2009; S. He et al.,

2016; Geijer & Andreasson, 2015). In some cases, the logs are produced at rates

measured in terabytes or petabytes (Mavridis & Karatza, 2017). Finally, software

components can have drastically different fault tolerance mechanisms; for example,

failed tasks may be rerun, or speculative tasks may be killed to improve performance (S.

He et al., 2016). In such cases, finding suspicious log messages can be very difficult.

Log file analysis tools should work autonomously, investigating the contents of the log

files instead of any labels they have received: tools that require human input also require

that e.g. all possible anomalies are already known (Geijer & Andreasson, 2015). There

is definitely demand for log analysis methods for anomaly detection (S. He et al., 2016).

As a side note, log file analysis tools that operate in cloud computing settings also exist.

The popular Apache Hadoop and Spark are good examples of such tools. However, they

are not solely focused on anomaly detection. (Mavridis & Karatza, 2017.)

S. He et al. (2016) present an overall framework for log-based anomaly detection. The

process consists of four phases: log collection, log parsing, feature extraction, and

anomaly detection. Most log-based anomaly detection studies, such as Lou, Fu, Yang,

Xu and Li (2010), follow this process, possibly using different names for the phases.

Log parsing, feature extraction, and anomaly detection are each discussed in detail in

the following subsections.

4.2.1 Log parsing phase

Logs cannot be fed into machine learning or data mining models as they are. This is

because logs are unstructured, so a crucial first step is to parse log messages into

structured data (Zhu et al., 2019). As mentioned above, logs generated by modern

software systems tend to be very large, making manual parsing unfeasible, even with

the help of e.g. regular expressions. Regular expressions have to be created manually

anyway, and also constantly updated as the system evolves (P. He et al., 2016).

Fortunately, numerous open-source automated log parsing solutions, which learn from

the system and evolve with it, exist. P. He et al. (2016) and Zhu et al. (2019) have

released an open-source toolkit, including numerous techniques for log parsing, called

logparser. Logparser will be presented in detail in section 5.

Fu et al. (2009) refer to their log parsing step as log key extraction, which is essentially

the same activity. They justify the usage of log keys with two aspects: typically each log

key type corresponds to one log print statement in the source code, resulting in log key

sequences representing the execution path, and the number of log keys is finite, whereas

theoretically there is no limit to the number of unique log messages (Fu et al., 2009). P.

He et al. (2016) and Zhu et al. (2019) included Fu et al.’s (2009) method in their

logparser toolkit.

20

Log messages typically include fields such as timestamp, verbosity or severity level

(e.g. INFO or ERROR), and raw message content, recording what has happened during

system operation (P. He et al., 2016). The raw message content can be further divided

into constant part and variable part. For example, in the log message “Received block

blk_-56272528 of size 671064 from /10.251.91.84” the constant part is “Received block

<*> of size <*> from /<*>” and the variable part is the parameters blk_-56272528,

671064 and 10.251.91.84 (Zhu et al., 2019). The constant part could also be referred to

as log key, as in Fu et al. (2009). Making extractions such as this is key in introducing

structure into the logs. Occasionally, this activity is referred to as frequent pattern

mining, a common data mining technique, as in Cheng and Wang (2014). Studies often

focus solely on the log keys to detect anomalies, while some approaches also take

timestamp and parameter values into consideration (Du, Li, Zheng & Srikumar, 2017).

The extracted constant parts of log messages are clustered into a list of log event

templates, e.g. “Event 3: Received block <*> of size <*> from /<*>”. The structured

log will then contain a sequence of these events with their occurring times, e.g. “2020-

01-16 13:18:59 Event 3”. Now, when the log is structured, it can be easily processed,

for example by machine learning-based anomaly detection methods. It is important to

remember that log mining (e.g. log-based anomaly detection) is effective only when the

log parsing accuracy is high enough. (P. He et al., 2016.)

Unfortunately, as found in Zhu et al. (2019), Linux logs are difficult to parse accurately,

due to their complex structure and the large amount of event templates. The LenMa

tool, based on Shima (2015), provided the best accuracy of 0,701 (Zhu et al., 2019).

4.2.2 Feature extraction phase

Fu et al. (2009) use Finite State Automation (FSA) to model the execution path of the

system, and construct models representing normal system behaviour. This way, the

anomalies can be detected by comparing new log sequences to the FSA models (Fu et

al., 2009).

S. He et al. (2016) separated log data into various groups, each group representing a log

sequence, using different grouping techniques. Then, feature vectors (or event count

vectors) were created for each sequence, and the vectors were used to form a feature

(event count) matrix. The matrix is required as input for the anomaly detection models.

The grouping techniques used by S. He et al. (2016) were fixed windows, sliding

windows, and session windows. Log events that occurred in the same window were

regarded as a log sequence. Both fixed windows and sliding windows are based on the

timestamp of each log event. Fixed windows only have one attribute, size (e.g. one

hour), whereas sliding windows also have the step size attribute (e.g. five minutes).

With these parameters, as an example, two hours has space (or rather time) for two

fixed windows, and 13 sliding windows. Log events are likely to duplicate in multiple

sliding windows due to overlap, as the step size is in general smaller than the window

size (S. He et al., 2016). Instead of timestamps, session windows use identifiers to mark

execution paths, with a unique identifier to each session window. S. He et al. (2016)

found that sliding windows is the most accurate grouping technique.

Kim, Minsik, Kim, Cho, and Kang (2019) used user behaviour modelling for insider

threat detection. For example, they used user activity logs to extract candidate features,

such as the number of USB connections per day (Kim et al., 2019). In addition to user

21

activity logs, Kim et al. (2019) also used email topic modeling to create an email

content dataset, and information about how users send/receive information to create an

email communication network dataset.

4.2.3 Anomaly detection phase

The bases of three supervised methods are presented in S. He et al. (2016): logistic

regression, a statistical model, decision tree, a tree structure diagram, and Support

Vector Machine (SVM), a supervised learning method for classification. Additionally,

S. He et al. (2016) present three unsupervised anomaly detection methods: log

clustering, Principal Component Analysis (PCA) and invariants mining. S. He et al.

(2016) also evaluate the efficiency of all these methods.

Supervised methods achieve high precision (the percentage of how many reported

anomalies are correct), while recall (the percentage of how many real anomalies are

detected) is influenced by the analysed datasets and window settings. It should be noted

that accuracy is often used as an umbrella term, encompassing both precision and recall:

100% accuracy requires and indicates that precision and recall are also 100%. Overall,

SVM seems to be the most accurate supervised anomaly detection method.

Unfortunately, even though unsupervised methods tend to be more applicable in

practical settings, they generally achieve inferior performance compared to supervised

methods. However, invariants mining appears as a promising method with stable

performance, and window settings do not seem to affect the results as they did with

supervised methods. (S. He et al., 2016.)

Unsupervised anomaly detection methods, except for PCA, were measured to be much

more time-consuming than supervised methods. Methods in both categories, except the

unsupervised log clustering, scale linearly as log size increases. However, like log

clustering, invariants mining requires optimizations to be able to handle large datasets.

(S. He et al., 2016.)

Cheng and Wang (2014) also used PCA in their study on communication network

anomalies. They achieved impressive accuracies, the minimum being 66% and the

average near 80%. Moreover, the rate of false positives was admirably low: the

maximum value was only 0.49%.

Kim et al. (2019) fed their candidate feature sets from their three datasets (user activity-,

email content-, and email communication network dataset) into one-class classification

algorithms. Since the amount of abnormal cases of user activity is typically very small,

it is practical to use one-class classification, which only uses the normal class data to

learn their common characteristics (Kim et al., 2019). Kim et al.’s (2019) trained model

then predicts the likelihood of a newly given instance being a normal class instance. The

algorithms used were Gaussian density estimation, Parzen window density estimation,

PCA, and K-means clustering. Kim et al.’s (2019) framework performed reasonably

well: for example, when considering 30% of the most suspicious instances, more than

90% of abnormal behaviours in the user activity dataset, and 65.64% in the email

content dataset, were detected. However, their anomaly detection models were trained

independently based on each dataset, and Kim et al. (2019) argue that better integration

of the results, and utilizing the knowledge of experts, would possibly achieve a better

performance.

22

Landauer et al. (2018) used their own incremental clustering algorithm for intrusion

detection. Incremental cluster methods dynamically allocate incoming data points to

existing clusters, or, if the distance to the nearest cluster exceeds a certain threshold,

declare them as outliers (Landauer et al., 2018). In addition to clustering, Landauer et al.

(2018) detected anomalous behaviour with cluster evolution and time-series analysis.

When applied on the evolutions of individual clusters, their anomaly detection showed

promising performances. However, their method only detects dynamic changes,

overlooking anomalies that occur within a single time window, and “the problem of

rather high amounts of false positives that all anomaly detection techniques suffer from

[emphasis added] remains unsolved” (Landauer et al., 2018, 115).

Du et al. (2017) use deep learning, more specifically a type of recurrent neural networks

(RNN) called long short-term memory (LSTM), for log-based anomaly detection. The

DeepLog model is able to detect execution path anomalies, by inspecting the log key

sequences, but also parameter value and performance anomalies. This is possible

because the parameter and timestamp values extracted from the log entries are taken

into account in the anomaly detection. DeepLog also models the execution path of the

system, like Fu et al. (2009) did with FSA. This modelling is inspired by invariants

mining (Lou et al., 2010), and is performed with density-based clustering as well.

Overall, DeepLog achieves a better performance than previous methods, such as PCA,

which are also unable to detect parameter value and performance anomalies. (Du et al.,

2017.)

23

5. Existing tools for Log-based Anomaly Detection

This section presents an overview of the logparser and loglizer toolkits. Logparser,

developed by P. He et al. (2016) and Zhu et al. (2019), is described in section 5.1, and

loglizer, developed by S. He et al. (2016), is described in section 5.2.

5.1 logparser

Logparser1 is an open-source toolkit, used to convert raw log messages into a sequence

of structured events (Zhu et al., 2019). The toolkit automates the process of extracting

event templates, and provides a decent selection of different log parsing methods (P. He

et al., 2016; Zhu et al., 2019).

Logparser contains 13 log parsing methods proposed by researchers (such as Fu et al.,

2009) and practitioners, five of which are based on open-source tools. The input/output

interface is unified for all the different methods, which are also wrapped into a single

Python package. For all the tools, input is a raw log file, and the output is (1) a

structured log file and (2) an event template file with aggregated event counts. (Zhu et

al., 2019.)

As mentioned above, Linux log files are challenging for automated log parsing (Zhu et

al., 2019). The highest parsing accuracy in Zhu et al.’s (2019) measurements was

achieved with the LenMa tool, which is based on Shima (2015). The rounded accuracy

of LenMa was measured to be 0.701 (Zhu et al., 2019). The second and third best tools

were SHISO (Mizutani, 2013) and AEL (Jiang, Hassan, Flora & Hamann, 2008), which

achieved rounded accuracies of 0.701 and 0.673, respectively (Zhu et al., 2019).

5.2 loglizer

Loglizer2 is a log analysis toolkit for automated anomaly detection, based on machine

learning. At the time of its release, the toolkit included six tools: three with supervised

machine learning methods, and three with unsupervised machine learning methods.

However, three additional tools using unsupervised models have been released recently:

LOF (Local Outlier Factor), One-class SVM, and Isolation Forest. Moreover, two more

tools, DeepLog (based on deep learning) and AutoEncoder, are currently in

development. (Logpai, 2020.)

It is relevant to highlight here that the anomaly detectors by S. He et al. (2016) work

with log sequences, instead of individual log messages. This means that the machine

learning algorithms classify collections of log entries, and thus never mark a single log

1 https://github.com/logpai/logparser

2 https://github.com/logpai/loglizer

https://github.com/logpai/logparser
https://github.com/logpai/loglizer

24

message as anomalous. As described in section 4.2.2, S. He et al. (2016) used different

windowing techniques for generating the log sequences. The specifics of the windowing

techniques used in this study are presented in section 8.1.

As discussed in section 4, unsupervised machine learning is more applicable in this

context, and therefore the unsupervised tools were focused on. The usage of four

unsupervised tools is conveniently demonstrated within the loglizer toolkit, with

implementations which do not assume that label data is available. These four tools

(InvariantsMiner, IsolationForest, LogCluster, and PCA) were subject to testing in this

study, instead of using only the three from S. He et al. (2016). Next, the underlying

anomaly detection techniques of the tools are described in more detail.

LogCluster tool is based on work by Lin, Zhang, Lou, Zhang and Chen (2016),

originally developed to identify online system problems (S. He et al., 2016). Clustering

is a relatively common, primarily unsupervised technique, where similar data instances

are assigned into clusters (Chandola et al., 2009). This technique relies on the

assumption that normal instances belong to a definable cluster, and lie close to their

closest cluster centroid, whereas anomalous instances do not (Chandola et al., 2009).

However, clustering algorithms are usually optimized to find clusters, not anomalies,

and tend to have trouble with clusters of anomalies (Chandola et al., 2009). LogCluster

is trained in two phases: knowledge base initialization phase, where normal and

abnormal clusters are generated, and online learning phase, where the clusters are

further adjusted (S. He et al., 2016). In the anomaly detection, the distance of a new log

sequence to its nearest cluster is computed. If the smallest distance is larger than some

threshold, or if the nearest cluster is an abnormal cluster, the log sequence is reported as

an anomaly (S. He et al., 2016).

Principal Component Analysis (PCA) is a spectral anomaly detection technique, which

tries “to find an approximation of the data using a combination of attributes that capture

the bulk of the variability in the data” (Chandola et al., 2009, 37). In other words, PCA

is about projecting high-dimension data to a new coordinate system composed of k

principal components (k being less than the original dimension), preserving the major

characteristics of the original data (S. He et al., 2016). Log sequences are vectorised as

event count vectors, and PCA is used to find patterns between the dimensions of the

vectors (S. He et al., 2016). Then, a projection of an event count vector is calculated,

and if the length of the projection is larger than some threshold, the vector is classified

anomalous (S. He et al., 2016). The PCA tool in the loglizer toolkit is based on Xu,

Huang, Fox, Patterson and Jordan (2009), where PCA was used precisely in log-based

anomaly detection (S. He et al., 2016).

Invariants Mining focuses on program invariants, linear relationships that always hold

during the runtime of a system. For example, files need to be closed after they were

opened, so log entries with phrases “open file” and “close file” appear in pairs and

represent a lineal relationship. If the number of “open” and “close” log events in an

instance is not equal, the linear relationship is violated, and the instance is marked

anomalous. The loglizer tool is based on Lou et al. (2010), and as the name suggests, the

invariants (i.e. the linear relationships) are extracted from the log files. Each new log

sequence is reported as an anomaly if it disobeys at least one invariant. (S. He et al.,

2016.)

Typically, anomaly detection methods construct a profile of normal instances, and

instances which do not conform to this profile are identified as anomalies, but Isolation

Forest has a different approach. Taking advantage of the fact that anomalies are few and

25

different compared to normal instances, Isolation Forest isolates anomalies instead of

profiling normal instances. No distance or density calculations are required, reducing

computational cost. Moreover, Isolation Forest has a linear time complexity, and can be

scaled up to large and/or high-dimensional data sets. (Liu, Ting & Zhou, 2008.)

26

6. Description of the Dataset

This section describes the log dataset used in this study. The initial data was pre-

processed (or pre-pre-processed) to prepare it for the log parsing, as explained in section

6.1. The resulting final log file dataset is summarized in section 6.2.

6.1 Pre-processing the initial data

The aforementioned colleague had collected the logs from the Linux journal, which

records information e.g. about all kernel and userspace processes (see e.g. “systemd,”

2020). The logs were collected from 9 devices, running two different builds of custom

embedded Linux. Here, the two builds are dubbed “A” and “B”. Each device stored its

journal logs from numerous consecutive reboots into a single file, resulting in files up to

3.7 GB in size. The files were stored in two directories, A and B, depending on which

build of the software they were collected from. In the files, a few rows of free-form

debug prints, written by the colleague, preceded the actual log entries of each reboot

cycle.

First, the debug prints were removed, leaving only the entries that conformed to Linux

log format. Second, the massive files of consecutive logs were split into multiple files,

with each resulting file containing the log entries of a single reboot. Both of these tasks

were straightforward, and carried out by simple Python scripts.

6.2 The final dataset

After the initial processing, the complete dataset contained 275 605 log files, taking up

34.9 Gigabytes of storage space. The amount of rows, i.e. log entries, in each log file

varied from 1500 to 2500, occasionally being as high as 35 000. Typically, a single log

file contained about 1750 log entries.

Needless to say, the amount of data is definitely sufficient for the purposes of this study.

Processing all the log files was obviously not necessary or feasible, and therefore a

randomly selected subset of the log files was used. The subset contained 9040 log files

from both directories (A/B). The subset was used in further processing and analysis,

first in testing the logparser tools. The complete dataset and its subset are summarized

in Table 3.

Table 3. Summary of the dataset.

COMPLETE DATASET Amount of log files Size (GB)

A 121 733 15.4

B 153 874 19.5

TOTAL 275 605 34.9

SUBSET Amount of log files Size (GB)

A 5040 0.659

B 4000 0.514

TOTAL 9040 1.17

27

7. First Iteration: Using the logparser Toolkit

The first iteration included the usage and evaluation of the logparser (P. He et al., 2016;

Zhu et al., 2019) and loglizer (S. He et al., 2016) toolkits. The design of the artefact was

based on this investigation, and the existing tools were used in practice in order to see

how they could solve the problem. In addition, the performance and the utility of the

tools were evaluated. Thus, the first iteration encompassed steps 3 (design and

development), 4 (demonstration), and 5 (evaluation) of the Design Science Research

process model (Peffers et al., 2007).

This section describes the usage of the logparser toolkit, and is organised as follows.

Sections 7.1, 7.2 and 7.3 describe the tests performed with the tools LenMa, SHISO,

and AEL, respectively. Parsing the entire data subset into structured data is explained in

section 7.4.

The three tools from the logparser toolkit which achieved the highest accuracy with

Linux log files in Zhu et al. (2019) were tested by parsing the same single log file with

each tool. The test log file contained 1597 log messages, and used 111 KB of disk

space. The tools were LenMa (Shima, 2015), SHISO (Mizutani, 2013), and AEL (Jiang

et al., 2008). The tools can be optimized with regular expressions, and two expressions

which help the tools in handling IP addresses (e.g. “100.55.123.1”) and time

information (e.g. “08:15:00”) were used with all of them.

7.1 Testing LenMa

LenMa is short for “Length Matters”, and its event template extraction is based on the

token length properties of log messages, as the name suggests (Shima, 2015). When the

test file was parsed with LenMa, the tool was able to determine 1018 different event

templates, meaning the reduction in relation to the log entries in the file was only

36.26%.

Inspecting the resulting event templates revealed that the accuracy of LenMa was quite

disappointing. For example, the log file contained numerous entries about some settings

of the device, presented as key-value pairs in the style of “setting: VALUE”. LenMa

determined that each of these pairs is an individual event template, even though the

entries clearly have a constant part “setting:”.

In order to mitigate this issue, two additional, complex regular expressions were used.

One expression helped the tool in finding the variables in the “setting:” strings and the

other did the same for “Item #0 None” style strings, which were similarly challenging

for LenMa. With the regular expressions, LenMa performed better, extracting 813 event

templates. A large amount (677 templates, 83% of total) of these occurred only once,

which may indicate that quite a few events were incorrectly determined to be individual

instances, instead of belonging to a single template. In fact, the output contained ten

templates that started with the words “inserted module”, followed by a word varying

across the templates, i.e. a variable, for example.

28

7.2 Testing SHISO

SHISO generates nodes from log messages, creating a structured tree, and is capable of

refining the log format continuously in real time (Mizutani, 2013). The initial parsing

test immediately showed much promise, compared to LenMa, as SHISO extracted 611

event templates from the test log (a 61.74% reduction from the amount of log entries).

This result was achieved with only the two basic regular expressions for IP addresses

and time information.

Closer inspection showed that the situations which caused trouble for LenMa were

handled with ease by SHISO. For example, regarding the “setting: VALUE” entries,

SHISO correctly determined that such entries can be encompassed in a single event

template. However, SHISO extracted all-variable event templates, resulting in templates

such as “* *” or “* * * * *”, which could in theory match any two- or five-word log

entry. This is obviously undesirable, since for example log entries “Everything is fine”

and “Device will explode” both contain three words, and would fit the template “* * *”,

but clearly cannot be considered as two instances of the same event. SHISO determined

that all-variable events occurred 312 times in the log file.

7.3 Testing AEL

The log parsing process of AEL includes four steps: anonymize, tokenize, categorize,

and reconcile (Jiang et al., 2008). The original algorithm merges events in the reconcile

step, but cannot handle cases where a single template has multiple different parameter

tokens (Logpai, 2018). To address this issue, the algorithm is improved in the logparser

implementation (Logpai, 2018).

Like SHISO, AEL showed promise in its parsing accuracy. 591 event templates were

extracted, again with only the two basic regular expressions. Based on the smaller

amount of event templates, it can be considered that AEL performed even better than

SHISO. Moreover, AEL did not extract any all-variable templates, outperforming

SHISO in this regard as well.

7.4 Parsing the subset

The performance of the three tested tools was, surprisingly, completely contrary to what

the measurements in Zhu et al. (2019) would suggest. That is, even though LenMa was

measured to be the most accurate of the three, it seems to perform the worst here, for

example. Since SHISO and AEL were much more accurate than LenMa, even without

additional regular expressions, only they were used for the remaining log parsing tasks.

The data subset described in section 5 was thus parsed with both SHISO and AEL.

Having two different versions of the parsed logs made it possible to compare the

accuracy of the two tools from the viewpoint of the anomaly detection tools: if the

anomaly detection is considerably more accurate with logs parsed by one tool, that tool

is most likely more accurate in its log parsing. Likewise, the effect of the parsing

accuracy on the performance of the anomaly detection was investigated.

The subset included about a thousand log files from each device, so the log parsing was

done in cycles of 1000 log files. An interesting observation was immediately made:

AEL is much faster than SHISO. On average, AEL parsed 1000 log files in about 4

29

minutes 46 seconds, whereas SHISO processed for 2 hours, 6 minutes and 36 seconds.

In this context, when the objective is to generate large amounts of structured logs,

SHISO is thus far less useful. However, the typical use case of the anomaly detection

tool only includes the inspection of a single log file. In that context, the user has to wait

for SHISO to complete for only about seven or eight seconds. Of course, this is still

slow compared to AEL, which only needed as little as 0.2 seconds for a single log file,

but not unreasonably slow. Nevertheless, based on these tests, as AEL is better in both

parsing accuracy and processing time, I would strongly recommend it for parsing Linux

logs.

The resulting structured logs were stored as .csv (comma-separated values) files. The

values extracted from each log entry were LineId (line number of the log entry), Month,

Date, Time, Level (name of the device, always the same), Component (software

component which logged the entry), PID (process identification number), Content (free-

form textual log message), EventId (identification for the log event), and

EventTemplate (the constant part of the content).

30

8. First Iteration: Using the loglizer Toolkit

This section describes the background and usage of sgologs_alpha, the first version of

sgologs. The main purpose of sgologs_alpha was running loglizer with different

machine learning models and different kinds of log sequences as efficiently as possible.

Sgologs_alpha does not include logparser tools – instead, the input has to be a

previously parsed, structured log file. Other than that, the functionality is quite the same

as with the final sgologs. Sgologs_alpha is a straightforward command-line tool, with

arguments such as the input log file and optionally the machine learning model to use.

The user can also specify the basis of splitting the input log into sequences, i.e. Time or

PID. Training data, which can also be given as a command-line argument, is then

loaded. After the machine learning model is initialized and trained, anomalies are

detected from the input log file. The process sgologs_alpha goes through is illustrated

in Figure 4.

Figure 4. The anomaly detection process of sgologs_alpha with different parts of loglizer.

The remainder of this section is organized as follows. Arranging the log events into

sequences is discussed in section 8.1. Then, the used training and test data and its

preparation are presented in section 8.2. In section 8.3 a walkthrough of loglizer is

provided, in order to illustrate how the software works and how the anomaly detection

framework (S. He et al., 2016) is used in practice. Section 8.4 presents the anomaly

detection results achieved with sgologs_alpha. Finally, section 8.5 summarizes the first

iteration.

31

8.1 Sequence determination

Loglizer does not detect anomalies at the level on individual log messages. Instead,

messages are grouped into log event sequences, and the machine learning classifies each

sequence as normal or anomalous. S. He et al. (2016) determined their log sequences

with fixed windows, sliding windows, and session windows. Fixed and sliding windows

were based on timestamp data, but the timestamps in the Linux dataset are to a large

extent arbitrary – for example, the time may suddenly shift by several hours between

consecutive log entries. Using the timestamps as basis for fixed and sliding windows

was not convenient. Instead, timestamps were used as identifiers for session windows,

along with the process identification number (PID) assigned to each log entry. How log

sequences are created with different window types and settings used in this study is

illustrated in Figure 5. The log extract is an artificial Linux log, generated for figurative

purposes only.

Figure 5. Illustration of how different kinds of log sequences are formed.

As shown in the Figure, each window type produces rather unique log event sequences.

Fixed windows are the only sure method of generating sequences with equal length,

determined by the window size. For example, if the window size was set to four in the

example in Figure 5, the first sequence would naturally include log events one, two,

three, and four, whereas events five and six would belong to the second sequence. It is

also noteworthy that session windows based on PID values do not retain the order of

events in the original log, as event four is included in the first sequence but event three

in the second.

Implementing fixed or sliding windows based on the amount of log entries is a

possibility. Splitting the log entries into sequences that contain some predefined amount

of entries, e.g. as in Mäkinen (2019), is obviously a convenient approach. However, it is

32

possible that the selected amount is simply an arbitrary value, resulting in sequences

that may not accurately represent the actual process sequences of the system. One

advantage of this approach is that the sequences are enforced to be equal in length. This

approach was implemented during the second iteration of the development process, and

during the first iteration focus was restricted to session windows based on values in the

Time and PID fields. The implementation was delayed because the existing

implementations relied on label data, and creating a label file independent approach

required additional effort.

Common to all session windows generated with the two different identifiers is that

sequence length varies considerably. For example, considering timestamps, one log file

contained 373 log entries with the timestamp 07:44:35, whereas the amount of entries

with the timestamp 07:44:37 was only two. Sequences generated from the PID values

ranged from one to more than four hundred in length. Varying sequence lengths did not

prevent the machine learning from detecting real anomalies, but Time sequences were

much more suitable for the anomaly detection than PID sequences, as discussed in

section 8.4.

8.2 Training and test data

Initially, training data was constructed from a thousand log files. Their contents were

grouped into 56 761 event sequences, using session windows based on Time values.

The thousand files were randomly selected, and the training data was assumed to be

large enough to represent the data as a whole. The typical use case of sgologs is running

anomaly detection on a single log file, which is why a test file was selected. The

structured test file is very long, over 600 KB, whereas a log file from the dataset parsed

with logparser is normally just over 200 KB in size. It is possible that the test file is

somehow corrupted. It is also notable that the test file includes 1 362 log entries only

from the kernel, although the log files commonly have about 1 750 entries in total. The

main purpose of using this test file was investigating the suitability of the training data.

Typically, especially in supervised machine learning, the data is split to training-,

validation and test datasets in some proportion, e.g. 50:25:25 (Pietikäinen & Silvén,

2019). However, such a division was not purposeful in this context. Machine learning

models are usually trained once, and they store their learned parameters for future use.

Loglizer, however, is not this sophisticated. As a peculiar feature, the models need to be

trained each time the software is run. Therefore the user has to wait for the training

phase to complete before the anomaly detection begins and results become available.

Consequently, a large training dataset which takes a long time to process limits the

utility of the tool, as running anomaly detection on a single log file becomes e.g. a 20-

minute task.

The first tests quickly revealed that a training dataset generated from one thousand log

files is already too large. The fit_transform function processed for more than ten

minutes, and the model training (with model.fit) was even more time-consuming.

Therefore, a training dataset of 4520 log files makes no sense. Moreover, as mentioned

above, sgologs is typically supposed to be run with a single log file, making a pool of

thousands of test files equally unsuitable.

Finding a suitable size for the training data took some time. The processing time for

training data of 500 log files was still well over ten minutes, which is unacceptably long

for a user-friendly tool. Reducing the amount of log files by half again improved the

33

situation, and the total processing time was a little over one minute. Such a processing

time is quite acceptable, but the amount was ultimately reduced to 200 to enable an even

more fluent user experience. The processing time for 200 log files was 43 seconds.

200 is of course a lot less than 1000, but 200 logs still contain more than 11 000 log

event sequences. Moreover, should the user worry whether this is enough, they have the

option of specifying which training data sgologs uses. If the user wants a second

opinion, so to speak, after inspecting the output, they can run sgologs again with another

training dataset.

The output of sgologs using the PCA model on the test file was the exact same with all

training data sizes. Five anomalous sequences were detected: the first two were

unconventionally long sequences, including the kernel sequence mentioned above, and

the remaining anomalies were three separate sequences with the same content. Log

sequences of the training data and the test file were generated with session windows,

using the process identification numbers (PID).

Final test files, which were not included in the training datasets, were taken from the A

directory. The files were selected based on the amount of the word error in them. Log

files with few errors, a normal amount of errors, and many errors, were all represented.

Log messages with “error” are of course easy to find even without anomaly detection.

However, as every boot of the Linux system in question produces at least some error

messages in the log, without anomaly detection the developer would have to be able to

recognize or recall which errors are “normal.” Moreover, focusing on errors simplifies

the validation of the results. As the generation of comprehensive label files, i.e.

classification data on all kinds of sequences in the test files, was beyond the scope of

this study, it was appropriate to focus on “obvious” anomalies, such as additional errors.

As mentioned earlier, the log files commonly have about 1750 log entries, and the word

error typically occurs 16 times. One such file, 174_3_11, which has 1762 rows and 16

occurrences of error, was included to see how the anomaly detection reacts to “normal”

log files. The file 174_3_7 included 22 occurrences of error and 2765 rows, and was

selected as an example of a log with many errors, which supposedly leads to many

detected anomalies. On the other end of the scale is the file 174_3_18, which contains

1563 rows and only 5 occurrences of error. It seems that the log ends too soon, i.e. a

few hundred log entries are missing from the end of the file. As small amount of errors

as possible is obviously desirable for any software, but in this context the machine

learning should determine such behaviour as anomalous, since the amount of errors is

typically almost four times larger. Therefore it was interesting to see what sgologs does

with 174_3_18. The three test files are summarized in Table 4.

Table 4. Test files, their size, and amount of error.

Test file Amount of log entries Occurrences of error

174_3_7 2 765 22

174_3_11 1 762 16

174_3_18 1 563 5

A typical log file, e.g. 174_3_11, includes two error messages from a sound server

component called PulseAudio. Both messages state that PulseAudio was “unable to

contact D-Bus,” and actions other than autolaunch should be executed. In 174_3_7, this

pair is repeated three additional times, resulting in the six additional occurrences of

error. This produces two or four anomalous sequences, depending on how the log event

sequences were generated. The eleven occurrences of error missing from 174_3_18 but

34

present in 174_3_11 are log messages from CherryPy, a Python web framework. The

messages are in fact not errors, and also feature the keyword “INFO”, but for some

reason the CherryPy message format seems to always be “cherrypy.error: <level>:

<message>”. It is assumed that the sequence that would precede the missing data, i.e.

the last sequence in 174_3_18, should be classified as an anomaly.

8.3 A walkthrough of loglizer

As mentioned in section 4, the anomaly detection process framework specified by S. He

et al. (2016) has four steps: log collection, log parsing, feature extraction, and anomaly

detection. Loglizer conducts steps three and four. Loglizer includes demo files, simple

Python scripts that demonstrate the usage of the API. The following code sample is

extracted from the file “InvariantsMiner_demo_without_labels.py” and slightly

simplified.

from loglizer.models import InvariantsMiner

from loglizer import dataloader, preprocessing

struct_log = '../data/HDFS/HDFS_100k.log_structured.csv'

The structured log file

epsilon = 0.5 # threshold for estimating invariant space

if __name__ == '__main__':

 # Load structured log without label info

 (x_train, _), (x_test, _), d_fr = dataloader.load_HDFS(struct_log,

 window='session',

 train_ratio=0.5)

 # Feature extraction

 feature_extractor = preprocessing.FeatureExtractor()

 x_train = feature_extractor.fit_transform(x_train)

 # Model initialization and training

 model = InvariantsMiner(epsilon=epsilon)

 model.fit(x_train)

 # Predict anomalies on the test set to simulate the online mode

 # x_test may be loaded from another log file

 x_test = feature_extractor.transform(x_test)

 y_test = model.predict(x_test)

Loglizer has a ready implementation for HDFS log files, and a partial implementation

for BGL logs, both of which assume that label data is available. These implementations

reside in the dataloader module, which takes care of reading the structured log

file(s) and arranging the log entries into sequences. By default, the log is also split in

half, and the first half is used as training data and the second as test data in the demo

files. The fit_transform function from the FeatureExtractor class turns the

training data sequences into an event count matrix, where each row represents a log

sequence and consists of aggregated event counts. As the class name suggests, this

activity belongs to the third step of the anomaly detection framework. S. He et al.

(2016) also include the sequence determination, performed by the dataloader

module, in the step of feature extraction.

The epsilon value is an example of a parameter which might require tuning

depending on the used data. The transform function transforms the test data into an

event count matrix, using parameters acquired in the fit_transform function. The

predict function of the machine learning model (Invariants miner in this case)

35

returns the classification of each log sequence; 0 stands for normal, and 1 indicates the

sequence is anomalous. Using the fit and predict functions composes the fourth

step of S. He et al.’s (2016) framework, anomaly detection.

In order for loglizer to work on Linux logs, a load_Linux function was implemented

in the dataloader module. The function differs from the existing load_HDFS in

three ways. First, the function extracts the log sequences based on values that appear in

Linux logs, instead of block ID values in HDFS logs. Sequence determination is

described in 8.1. Second, all if-branches that are triggered when label data is available

are removed. Third, the function returns an additional data frame. The original

load_HDFS returns the event sequences as arrays, split to training and test data, and

all the event sequences as a pandas3 data frame. Such a data frame can be seen in Figure

6.

Figure 6. An example of a pandas data frame of log event sequences.

In the data frame visible in Figure 6 the event sequences are generated with session

windows based on PID values. Each log entry that has the same PID value is grouped

into the same event sequence. For example, the log entries with the event IDs

‘9615c27f’ and ‘3523023f’ both have the value 227 in their PID field, and event

‘3523023f’ occurs twice. The additional data frame generated in load_Linux is

similar, but the event sequences consist of the actual log messages, instead of the event

IDs. Thus, it is easier to present a meaningful output of the anomalous sequences.

An output of sgologs_alpha on the command prompt can be seen in Figure 7. Most of

the text following the tool’s name, the test log file, and the used machine learning

model, are default prints from loglizer.

3 pandas is a popular Python data analysis library. https://pandas.pydata.org/

https://pandas.pydata.org/

36

Figure 7. An example output of sgologs_alpha using AEL-parsed logs and PCA

The “shape” of the training and test data refers to the dimensions of the event count

matrix. The “Model summary” shows specific information about the model and its

parameters. The value for SPE threshold was manually set to 1400.0, as discussed in

section 8.4.1. In this case, the model classified some sequences as anomalies, and they

are shown in the output as lists of event IDs. Sgologs_alpha also notifies that more

verbose output, including the actual message contents of the anomalous sequences, can

be found in the files anomalies_eID_seq.csv and anomalies_content_seq.txt.

8.4 Evaluation of sgologs_alpha

This section describes the results sgologs_alpha achieved with the training data and the

three test files. Log sequences were determined with session windows based on Time

and PID values in the log entries. Log files were parsed with both SHISO and AEL

from the logparser toolkit. The output of sgologs_alpha with Time sequences and

SHISO logs is discussed in section 8.4.1, with Time sequences and AEL logs in 8.4.2,

with PID sequences and SHISO logs in 8.4.3, and with PID sequences and AEL logs in

8.4.4.

8.4.1 Using Time sequences and SHISO logs

Generating session windows from the Time values resulted in 32 log event sequences in

174_3_11, 30 sequences in 174_3_7, and 26 sequences in 174_3_18. As mentioned

earlier, their lengths varied between 1 and over 400. The test logs parsed with SHISO

were processed first. Naturally, the training data was also parsed with SHISO.

37

The PCA model definitely suffered from a high amount of false positives. For example,

in 174_3_7, PCA determined that 18 sequences are anomalous. These sequences

contained 21 occurrences of error (out of 22), which is not surprising since a majority of

the total event sequences were classified as anomalous. The utility of such an output is

questionable, since the list of log entries included in the anomalous sequences is

essentially the original log file reduced by a few hundred rows.

Invariants Miner suffered from an exceedingly long processing time. Sgologs_alpha

was run with Invariants Miner numerous times, with different parameters, but each time

the processing time approached ten minutes. The situation was the same with all the test

files and using log files parsed with AEL had no effect. This finding was disappointing,

since Invariants Mining was measured to be the best unsupervised machine learning

model in S. He et al. (2016). Nevertheless, due to the unacceptable processing time,

using Invariants Miner had to be discontinued at this point.

LogCluster initially showed more promise than PCA. The model found one anomaly

from 174_3_11, the “normal” log file, when comparing to the training data from the A

directory, and two anomalies when compared to B training data. These anomalies did

not contain any occurrences of error, but on the other hand the typical amount of 16

errors should not even be considered anomalous. The file with more errors, 174_3_7,

was determined to have four (A training data) or three (B training data) anomalous

sequences. These sequences encompassed a half of the total amount of error. However,

these errors are the eleven CherryPy messages that should appear in every log. The

additional PulseAudio errors, i.e. the real anomalies, were not included in the

anomalous sequences.

LogCluster detected two or four anomalous sequences in 174_3_18, depending on the

training data. The second-to-last sequence was classified anomalous each time. One

could suppose that the machine learning expects that the sequences near the end would

be followed by the few hundred entries missing from 174_3_18, and thus classifies the

final sequences as anomalous. However, it is unclear why the last sequence was

considered normal. LogCluster’s processing time, 1 minute 5 seconds on average, was a

little longer than PCA’s (about 45 seconds).

The processing time of Isolation Forest was even shorter, about 42 seconds on average.

However, for all the log files and with both training datasets, Isolation Forest always

classified the first sequence as anomalous and everything else as normal. The results

were the exact same with logs parsed by AEL as well; the only thing that changed was

the processing time. It is difficult to believe that this would be just a coincidence,

especially since there is nothing particularly strange in the first sequences in any of the

test files. It is justified to conclude that the results provided by Isolation Forest are false.

At this point it was apparent that the machine learning models needed some fine-tuning.

Each model implementation included initialization parameters, for example a threshold

for anomaly detection, which can be set by the user. The above results were achieved

with default parameters, or parameters automatically calculated by the models. For

instance, PCA calculated a very low threshold value for the anomaly detection, and

increasing this value greatly reduced the number of false positives. Isolation Forest

needed an estimation of anomaly samples in the data, and tuning that parameter resulted

in much more sensible output. LogCluster had thresholds for clustering and anomaly

detection, but non-default values for these parameters only made the results less

accurate. Therefore the default parameters were used for LogCluster.

38

Some of the results achieved by the models are presented in the following Tables. Using

the new parameters, the results of PCA are presented in Table 5 and the results of

Isolation Forest in Table 6. In all the Tables in section 8 the ideal situation would be that

Real anomalous sequences, Detected anomalous sequences, and True positives have the

same value, and False positives (normal sequences classified as anomalies) and False

negatives (undetected real anomalies) are both zero. This would require that the

machine learning achieves perfect anomaly detection accuracy, which is unrealistic.

Table 5. Anomaly detection results of PCA with Time sequences and SHISO log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

2 4 1 3 1

174_3_7

(B_178)

2 4 1 3 1

174_3_11

(A_170)

- 4 - 4 -

174_3_11

(B_178)

- 4 - 4 -

174_3_18

(A_170)

1 2 0 2 1

174_3_18

(B_178)

1 2 0 2 1

Table 6. Anomaly detection results of Isolation Forest with Time sequences and SHISO log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

2 6 1 5 1

174_3_7

(B_178)

2 7 0 7 2

174_3_11

(A_170)

- 7 - 7 -

174_3_11

(B_178)

- 6 - 6 -

174_3_18

(A_170)

1 7 0 7 1

174_3_18

(B_178)

1 7 0 7 1

The processing times of the models were reduced with the new parameters. The average

processing times for PCA and Isolation Forest were 43.5 and 40.5 seconds, respectively.

PCA’s results were much better, as only two to four sequences were classified

anomalous. Moreover, a real anomalous sequence in 174_3_7 was detected. The real

anomaly in 174_3_18 was not detected. It seems that PCA is not greatly affected by the

training data, as the results are usually the exact same with A_170 training data as with

B_178 training data.

Isolation Forest produced a much more practical output with the new parameters. The

model classified varied sets of sequences as anomalies, and found a real anomaly in

174_3_7 with A_170 training data. Overall accuracy was not as good as with PCA,

since Isolation Forest did not detect real anomalies with B_178 training data, and the

rate of false positives was higher.

39

The commonly used metrics precision, recall and F-measure are used to represent the

accuracy of machine learning models. As mentioned in section 4.2.3, precision is the

percentage of how many detected anomalies are correct, recall is the percentage of how

many real anomalies are detected, and F-measure is the harmonic mean of the two (S.

He et al., 2016). Higher precision indicates fewer false positives, and higher recall

indicates fewer false negatives. Figure 8 shows the precision, recall, and F-measure

scores of the models, when detecting anomalies from the 174_3_7 test file.

Figure 8. ML model scores with Time sequences and SHISO logs on file 174_3_7

It should be noted again that only the anomalies of additional PulseAudio error

messages is taken into consideration. In Figure 8, the best results of the models are

shown; Isolation Forest achieved the best accuracy with the training dataset A_170.

Since PCA and Isolation Forest both found one of the two anomalies, the recall is

exactly
1

2
 = 0.5. The precision scores are quite low, since the models classified quite

many false positives. As LogCuster’s section in the Figure reveals, if the amount of true

positives is zero, so are the precision, recall and F-measure scores.

If the F-measure scores are compared to the scores measured in S. He et al. (2016), the

accuracy achieved here seems rather substandard. For instance, the worst F-measure

score for PCA in S. He et al. (2016) was 0.55. When the number of real anomalies is

low, such as two, even one false negative greatly reduces the recall score. Similarly,

false positives, common in unsupervised learning (Landauer et al., 2018), reduce the

precision score, and appear to be the main reason of a reduced F-measure score.

8.4.2 Using Time sequences and AEL logs

The results were quite different when log files parsed with AEL were used. The

accuracy of PCA remained, and the processing time was reduced to 25.5 seconds on

average. The amount of false positives with training data B_178 was unfortunately

increased.

0,25

0

0,17

0,5

0

0,5

0,33

0

0,25

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

PCA LogCluster Isolation Forest (A_170)

Precision

Recall

F-measure

40

LogCluster found fewer anomalies with AEL-parsed files than with SHISO log files.

Overall, the anomalous sequences were almost the same, except that only one sequence

was classified anomalous in 174_3_18. Real anomalous sequences were not detected.

LogCluster came closest with 174_3_7 and A_170 training data, as a sequence

immediately following the anomalous sequences was detected. Processing AEL files

was faster with LogCluster as well, as the average processing time was about 50

seconds. A major downside was that sequences classified as anomalies did not contain

any occurrences of error.

Isolation Forest improved its performance, as real anomalies in 174_3_7 were detected

with both training datasets. It is also notable that Isolation Forest correctly classified

both sequences in 174_3_7 which could be considered anomalous. Average processing

time was 28 seconds.

Tables 7 and 8 present the results using log files parsed with AEL. LogCluster results

are in Table 7, and Isolation Forest results are in Table 8.

Table 7. Anomaly detection results of LogCluster with Time sequences and AEL log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

2 3 0 3 2

174_3_7

(B_178)

2 2 0 2 2

174_3_11

(A_170)

- 2 - 2 -

174_3_11

(B_178)

- 1 - 1 -

174_3_18

(A_170)

1 1 0 1 1

174_3_18

(B_178)

1 1 0 1 1

Table 8. Anomaly detection results of Isolation Forest with Time sequences and AEL log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

2 5 2 3 0

174_3_7

(B_178)

2 5 2 3 0

174_3_11

(A_170)

- 5 - 5 -

174_3_11

(B_178)

- 5 - 5 -

174_3_18

(A_170)

1 5 0 5 1

174_3_18

(B_178)

1 4 0 4 1

Anomaly detection seems to perform better with AEL-parsed logs. PCA and Isolation

Forest both find real anomalies in the 174_3_7 file, independent of the used training

data. A reduced processing time, compared to log files parsed with SHISO, is also a

significant advantage. LogCluster appears quite useless, at least with sequences based

41

on Time values. Figure 9 shows the precision, recall, and F-measure scores with AEL-

parsed training data and 174_3_7 test file.

Figure 9. ML model scores with Time sequences and AEL logs on file 174_3_7

As can be seen in the Figure, the performance of PCA and LogCluster are at the same

level as with SHISO log files. However, Isolation Forest achieved much better scores,

regardless of the used training data. All real anomalies were detected, resulting in the

highest possible recall score, which also had a positive effect on the F-measure. In this

study, high recall is better than high precision, since many false negatives are

considered to be more severe than many false positives.

8.4.3 Using PID sequences and SHISO logs

The training data with PID sequences was generated from the same log files as the

training data used in the previous sections. Test file 174_3_7 has 63 PID sequences,

174_3_11 has 54, and 174_3_18 has 52.

One advantage of the Time sequences is that all sequences and all log events in the

sequences actually occurred in that specific order. However, processes, i.e. PID

sequences, occur concurrently. Thus, different processes overlap in the log files, and

different log entries with the same PID value are not necessarily successive. For this

reason it is impossible to determine if some sequence should follow another, or if some

sequence is missing. If the CherryPy functions were not run in a separate process, with

its own PID value, it would be possible to recognize their absence in 174_3_18 based on

the finding that some PID sequence is abnormally short. However, in the present

situation, detecting anomalies in 174_3_18 using PID sequences is not possible.

Anomaly detection with PID sequences was performed for 174_3_7 and 174_3_11 only.

Tables 9 and 10 present the results for PCA and Isolation Forest, respectively.

0,25

0

0,40

0,50

0

1

0,33

0

0,57

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PCA LogCluster Isolation Forest

Precision

Recall

F-measure

42

Table 9. Anomaly detection results of PCA with PID sequences and SHISO log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 5 0 5 4

174_3_7

(B_178)

4 5 0 5 4

174_3_11

(A_170)

- 4 - 4 -

174_3_11

(B_178)

- 4 - 4 -

Table 10. Anomaly detection results of Isolation Forest with PID sequences and SHISO log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 8 0 8 4

174_3_7

(B_178)

4 8 0 8 4

174_3_11

(A_170)

- 5 - 5 -

174_3_11

(B_178)

- 5 - 5 -

As can be seen from the Tables, the performance of the machine learning models was

significantly worse with PID sequences. Tuning the parameters again did not have any

positive effect on the results. As PID sequences were more numerous than Time

sequences, processing times were also much higher: on average 1:08 with PCA and

LogCluster and 1:21 with Isolation Forest.

With PID sequences and SHISO logs, PCA and Isolation Forest were unable to detect

real anomalies in 174_3_7. LogCluster performed similarly as with Time sequences,

without detecting the anomalies in 174_3_7. The only errors in the outputs were the

normal CherryPy messages, which LogCluster incorrectly detected in 174_3_7 and

174_3_11. The amount of false positives classified by PCA and Isolation Forest was

also high. As the amount of true positives in 174_3_7 was zero with all the models, the

precision, recall and F-measure scores were also zero. It is quite clear that anomaly

detection from log files parsed with SHISO should not be done with sequences based on

PID values.

8.4.4 Using PID sequences and AEL logs

Changing from SHISO logs to logs parsed with AEL did not improve the anomaly

detection accuracy when using PID sequences. The only difference was significantly

reduced processing times. The average processing times were as follows: PCA: 40

seconds, LogCluster: 37 seconds, Isolation Forest: 51 seconds. Precision, recall and F-

measure were still zero with all models, and the real anomalies in 174_3_7 were not

detected. A peculiar finding was that two sequences in 174_3_11 were consistently

classified as anomalies by PCA and Isolation Forest: sequence 1, a systemd process, and

sequence 18, a SOC4E process. These classifications were made with both SHISO and

AEL log files. However, there does not seem to be anything particularly anomalous in

the sequences. The results achieved with LogCluster are presented in Table 11. With

43

these parameters, LogCluster’s results could be considered the best, since the amount of

false positives was the lowest. Of course, true positives are still zero, as with the other

models.

Table 11. Anomaly detection results of LogCluster with PID sequences and AEL log files

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 2 0 2 4

174_3_7

(B_178)

4 2 0 2 4

174_3_11

(A_170)

- 2 - 2 -

174_3_11

(B_178)

- 3 - 3 -

Session windows based on PID values appear to be unsuitable for anomaly detection

with these Linux log files. The machine learning models apparently benefit from

sequences which retain the actual order of the log events, such as the session windows

based on values in the Time field of the log entries.

8.5 Summary of the first iteration

AEL is quite clearly the best tool for these log files in the logparser toolkit. Compared

to SHISO, AEL’s processing time is substantially shorter, and the parsing accuracy is

considerably better. Moreover, the processing times of loglizer tools are also shorter

with AEL-parsed logs, and the anomaly detection accuracy is increased if AEL logs are

used instead of SHISO logs.

How the log files are split and organized into sequences in the process is not a trivial

matter. The models were unable to detect the real anomalies in the test files when using

PID sequences, thus session windows based on PID values in the log entries are not

suitable in this context. Sequences which retain the occurrence order of the log entries

as well as the order of the sequences themselves enable the best anomaly detection

accuracy. Such sequences include session windows based on Time values, and fixed

windows, which were implemented during the second iteration and are discussed in

section 9. This finding is quite contrary to what S. He et al. (2016) discovered: session

windows used with HDFS logs resulted in higher correlation between events in each

sequence, which is why anomaly detection methods perform better than with other log

data. HDFS logs are “easy” for the machine learning models also because the amount of

different event types is only 29 (S. He et al., 2016). As described in section 7, the

amount of unique event templates in a single log file used in this study can more than

500.

As for the machine learning models in charge of the anomaly detection, Invariants

Miner and LogCluster are unsuitable for this task. The processing time of Invariants

Miner is close to a small eternity, which is unacceptable for a tool which is supposed to

be fast and convenient to use. In fact, S. He et al. (2016) mention that the invariants

mining process is time consuming. If loglizer did not need training on each run, a

prolonged training time would not be an issue.

44

LogCluster’s processing time is also longer than that of PCA or Isolation Forest, but in

addition the detection accuracy of LogCluster is virtually non-existent. S. He et al.

(2016) also found that LogCluster does not obtain a good accuracy on BGL data. The

characteristics of the generated event count matrix were sparse and high-dimensional,

resulting in many false positives (S. He et al., 2016). The event count matrices used in

this study are without a doubt high-dimensional, which supposedly explains

LogCluster’s difficulties. The developers of Invariants Miner and LogCluster (Lou et al.

(2010) and Lin et al. (2016), respectively) fail to address the limitations of their

methods, and do not point to any types of data which might be unsuitable for the

models, for example.

On the other hand, PCA and Isolation Forest achieve a solid accuracy in their anomaly

detection. Especially when using log files parsed with AEL, both models were able to

detect real anomalous sequences in the test file 174_3_7, regardless of the used training

data. Moreover, their processing times are very low, even less than 30 seconds with

AEL-parsed log files. The amount of false positives are quite high, but at an acceptable

level, being three falsely classified sequences with both models, when using Time

sequences. On the other hand, PCA detected only one of the real anomalous sequences,

whereas Isolation Forest detected both. For these reasons, the final version of sgologs

parses input logs with AEL, and uses PCA or Isolation Forest for the anomaly detection.

The nature of anomalies which are easy to detect was also clarified. Additional log

entries are much simpler for the machine learning models to classify than the absence of

normal log entries. For example, even though one or more normal sequences are

missing in 174_3_18, there is nothing abnormal in the remaining sequences that would

point to this anomaly. It would not be justified for the machine learning to classify a

normal sequence as an anomaly if it is not followed by another normal sequence. This is

why the real anomalous sequences in 174_3_7 were detected, and why the models did

not find anything relevant in 174_3_18.

Additional error messages that do not usually appear in these log files are a good

precedent of an anomaly. They are also the information developers most likely search

for in the log files, with or without anomaly detection. It is promising that the models in

loglizer are able to find these extra errors, resulting in sgologs being able to produce an

output where the anomalies are ready for a convenient inspection.

45

9. Second Iteration

This section presents the development of the final artefact, sgologs, as well as the

evaluation of the tool. Regarding the Design Science Research process model, the

second iteration encompasses the same activities as the first iteration: design and

development, demonstration, and evaluation. The process of a log file going through

sgologs is illustrated in Figure 10, along with how the logparser and loglizer toolkits are

used within the tool. Unlike sgologs_alpha, normal, unstructured log files are accepted

as input, since a tool from logparser is incorporated in sgologs.

Figure 10. The anomaly detection process of sgologs with different parts of logparser and
loglizer

Structured log files can also be fed to sgologs, in which case the log parsing phase is

simply skipped. The differences between sgologs_alpha and sgologs are discussed in

section 9.1. Then, section 9.2 presents the anomaly detection results with sequences

determined with fixed windows, which were not used during the first iteration.

46

9.1 Changes to sgologs_alpha

The logparser tools, by default, append “_structured” to end of the log file name, and

save the structured log file as a CSV file. Thus, structured log files are still accepted as

input to sgologs, but if the name of the input file does not end with “_structured.csv”,

the log parser is used. Since AEL was found to be the best parser for these log files in

section 7, and the best anomaly detection accuracies were achieved with AEL-parsed

logs in section 8, it is used for log parsing in sgologs. Conveniently, the processing time

of AEL for a single log file is only a fraction of a second, so the processing of sgologs is

not considerably slower than that of sgologs_alpha.

During the first iteration, session windows based on PID values were found to be

unsuitable. Likewise, the LogCluster model did not achieve an acceptable accuracy in

its anomaly detection. Therefore these two features were dropped from sgologs

altogether. The available machine learning models in sgologs thus are PCA and

Isolation Forest, both of which were able to detect anomalies, as discussed in section

8.4. For determining event sequences, there are two options in sgologs: session

windows based on Time values, and fixed windows.

Implementing the fixed windows was a fairly simple task. A new function,

slice_fixed, was written into loglizer’s dataloader module. In the function the

log events of the structured log are simply arranged to sequences based on their row

number, and the size of each sequence is controlled with the window_size variable.

Padding is added to the last sequence to ensure the length of each sequence is the exact

same, i.e. the value in window_size. This way, the anomaly detection should not

classify the last sequence as anomalous because it is shorter than all the other

sequences.

The parameters of the machine learning models needed to be adjusted, as the parameters

used with the Time sequences were unsuitable. For example, PCA’s threshold for

anomaly detection was originally set to 1400.0, but when fixed windows were used, it

had to be lowered to 350.0. With fixed sequences and a threshold of 1400, PCA did not

classify anything in the test files as anomalous, i.e. even the amount of false positives

was zero. Sgologs automatically sets the appropriate values for the parameters,

depending on the selected sequence determination style.

9.2 Evaluation of sgologs

Here, the results sgologs achieved with fixed sequences are described. Initially the fixed

window size was set to 50, i.e. each event sequence contained 50 log events. Thus the

test files were organized into sequences as follows: the file 174_3_7 has 56 sequences,

174_3_11 has 36 sequences, and 174_3_18 has 32. All training and test log files were

parsed with AEL only. The results with PCA are presented in Table 12, and results with

Isolation Forest are presented in Table 13.

47

Table 12. Anomaly detection results of PCA with fixed sequences (window size 50)

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 7 0 7 4

174_3_7

(B_178)

4 7 0 7 4

174_3_11

(A_170)

- 3 - 3 -

174_3_11

(B_178)

- 2 - 2 -

174_3_18

(A_170)

1 9 1 8 0

174_3_18

(B_178)

1 10 1 9 0

Table 13. Anomaly detection results of Isolation Forest with fixed sequences (window size 50)

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 8 0 8 4

174_3_7

(B_178)

4 7 0 7 4

174_3_11

(A_170)

- 7 - 7 -

174_3_11

(B_178)

- 5 - 5 -

174_3_18

(A_170)

1 7 0 7 1

174_3_18

(B_178)

1 6 0 6 1

Contrary to the results achieved with Time session windows during the first iteration

(discussed in section 8), the anomaly detection accuracy with fixed windows was

unsatisfactory. PCA and Isolation Forest both classified many sequences as anomalies,

but failed to detect real anomalies. Therefore the amounts of false positives and false

negatives were high. Surprisingly, PCA classified the last sequence in 174_3_18 as an

anomaly, which could be considered a true positive. However, it is still unclear why

PCA determined that the last sequence is anomalous, and it is possible that the correct

classification occurred by chance. On average, PCA processed for 30 seconds and

Isolation Forest for 36.5 seconds.

Figure 11 depicts the best scores PCA achieved with fixed window size 50 and the test

files 174_3_7 and 174_3_18. Real anomalies in 174_3_7 were not detected, and thus all

the scores are zero. The one and only anomaly in 174_3_18 was detected, resulting in

maximum recall, but the detection was made at the expense of numerous false positives,

resulting in a poor precision score.

48

Figure 11. PCA’s scores with fixed sequences (size 50) on files 174_3_7 and 174_3_18

Different sizes for the fixed windows were also tested. When the window size was set to

30, PCA correctly classified one of the four real anomalies in 174_3_7, but did not

classify the last sequence in 174_3_18 as anomalous. The performance of Isolation

Forest was not improved, compared to using a window size of 50 log events. Moreover,

processing times of both models were increased to almost one minute, as the amount of

sequences was higher.

With 100 as the fixed window size, the test file 174_3_7 has 28 sequences, 174_3_11

has 18, and 174_3_18 has 16. Increasing the window size had a positive effect. First, as

the amount of event sequences was reduced, average processing times were much

lower: 19.5 seconds with PCA and 19.9 with Isolation Forest. Second, PCA achieved a

higher accuracy. The amount of detected real anomalies in 174_3_7 was doubled from

one to two, and the amount of false positives was lower, compared to window size 30.

Unfortunately, the true positives for Isolation Forest remained at zero. The results can

still be considered better than when using sequences of 50 events, because the amount

of false positives was lower. The results achieved with fixed windows of 100 log events

are presented in Tables 14 and 15.

0,00

0,11

0,00

1

0,00

0,20

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PCA: 174_3_7 PCA: 174_3_18 (A_170)

Precision

Recall

F-measure

49

Table 14. Anomaly detection results of PCA with fixed sequences (window size 100)

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 6 2 4 2

174_3_7

(B_178)

4 7 2 5 2

174_3_11

(A_170)

- 5 - 5 -

174_3_11

(B_178)

- 1 - 1 -

174_3_18

(A_170)

1 7 1 6 0

174_3_18

(B_178)

1 7 1 6 0

Table 15. Anomaly detection results of Isolation Forest with fixed sequences (window size 100)

Test file
(training
data)

Real
anomalous
sequences

Detected
anomalous
sequences

True
positives

False
positives

False
negatives

174_3_7

(A_170)

4 5 0 5 4

174_3_7

(B_178)

4 5 0 5 4

174_3_11

(A_170)

- 4 - 4 -

174_3_11

(B_178)

- 5 - 5 -

174_3_18

(A_170)

1 3 0 3 1

174_3_18

(B_178)

1 2 0 2 1

Figure 12 shows PCA’s scores with size 100 fixed windows. Isolation Forest was

excluded from the Figures because the amount of true positives was zero with all fixed

windows.

50

Figure 12. PCA’s scores with fixed sequences (size 100) on files 174_3_7 and 174_3_18

Overall, PCA performs the best with fixed windows (size 100), even when compared to

Time session windows, described in section 8. When analysing test file 174_3_7, the

precision score was better, even though recall unfortunately remained at 0.5. Precision

achieved with test file 174_3_18 is admittedly unimpressive.

PCA remains a valid anomaly detector with fixed windows, at least when the window

size is set to 100. One disadvantage of such a large window size is that the output files,

where the message contents of the anomalous sequences are written, can become quite

long. For example, seven detected anomalies result in 700 log messages in the output

file. Reducing the window size and simultaneously retaining the anomaly detection

accuracy could be possible if sliding windows were used. After all, S. He et al. (2016)

found that sliding windows are the best grouping technique. This investigation is left for

future research. Nevertheless, when processing the file 174_3_7, the ratio of true

positives, false positives, and false negatives is similar here as when using Time

sequences. Moreover, PCA also managed to classify the last sequence in 174_3_18 as

an anomaly, and the model’s performance was stable against both training data sets.

The fact that Isolation Forest was unable to find anomalies when using fixed windows is

disappointing. Different parameters for the model did not improve the situation.

Isolation Forest is still a credible choice for anomaly detection when session windows

based on Time values are used, as discussed in section 8. However, the model

apparently struggles with sequences which are uniform in length. The researchers

behind Isolation Forest state that the method performs well especially with large

databases, where the number of instances exceed 100 000 (Liu et al., 2008). It is

possible that a log file with only a few dozen event sequences is simply too small for

Isolation Forest to work properly. Luckily fixed windows can still be used with PCA,

but it would have been better for the artefact to always have two trustworthy machine

learning models to choose from, regardless of the window type used for the sequence

determination.

0,33

0,14

0,50

1

0,40

0,25

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PCA: 174_3_7 (A_170) PCA: 174_3_18

Precision

Recall

F-measure

51

10. Discussion

This section discusses several considerations regarding this study, as well as its

implications. The research questions specified in section 2 are revisited in 10.1. Other

considerations can be found from section 10.2.

10.1 Answers to the research questions

Unfortunately, there are no straightforward answers to the research questions. As in

most machine learning and anomaly detection studies (see e.g. Chandola et al., 2009),

several assumptions for example about the data and the nature of the anomalies had to

be made, and in another context the assumptions might be considerably different.

The first research question considers the validation of the anomaly detection results. As

a reminder, the question was formulated as follows:

RQ1: Can the accuracy of the anomaly detection be effectively verified by the

amount of detected errors?

Error messages in log files are a relevant aspect. Work flow errors, for example, which

manifest as error messages in system logs, are a typical anomaly and an interesting

feature in troubleshooting and problem diagnosis tasks (Fu et al., 2009; Lou et al.,

2010). Developers are interested in the error messages, and the machine learning should

be too. It is relatively safe to assume that potential users of sgologs expect to see many

error messages in the output. Therefore, the amount of detected error messages is a

relevant factor in measuring the accuracy of the anomaly detection. For example, the

additional error messages in the test file 174_3_7 clearly are an anomaly, and it is

relevant to verify whether the machine learning recognised the errors.

However, the test files might have other anomalous behaviour as well. For example,

some process may have completed unexpectedly late, or some “normal” log entries

might be completely missing. Thus, it is completely plausible that some of the

sequences classified as anomalies by the models, which were considered false positives,

are in fact true positives. This is the danger of focusing only on errors in the validation

of the results. Since it was unfeasible to manually classify all sequences in the test files,

instead of only the most obvious anomalies, the possible non-error anomalies are not

represented in the accuracy scores. In other words, the scores can be thought to only

measure the accuracy of error detection, instead of more comprehensive anomaly

detection.

In this context the focus on errors in validation of the results surely serves its purpose.

Depending on the viewpoint, this focus could be a valid representation of accuracy.

Nevertheless, an affirmative response to research question one should definitely be

followed by “but only to some degree.”

Research question two is about the accuracy the machine learning models are able to

achieve. The question was formulated in section 2.2 as follows:

52

RQ2: How accurate is the anomaly detection with unsupervised machine learning

and Linux log files?

A short answer is ‘not very accurate.’ The F-measure score only exceeded 0.5 when

session windows based on Time values were used for sequence determination, and

Isolation Forest was used as the machine learning model. Even the score in question,

0.57, is quite modest, as S. He et al. (2016), for example, measured scores as high as

0.98 with unsupervised methods. Moreover, their worst F-measure score, 0.5, is quite

close to the best score measured in this study.

A major factor in the low F-measure scores is low precision scores, which were the

result of several false positives. This finding is not surprising, as a high amount of false

positives is characteristic to unsupervised learning (Landauer et al., 2018). This claim is

confirmed in this study.

As discussed in previous sections, false negatives are considered more severe in this

study than false positives. F-measure, also called F1-measure, puts equal emphasis on

precision and recall, i.e. on false positives and false negatives. However, an alternative

calculation exists, where more weight is put on recall: the F2-measure. By emphasizing

recall, which is considered more critical in this study, the overall accuracy scores are

improved significantly. Figure 13 shows the accuracy scores with AEL as the log

parser, session windows based on Time values as log event sequences, and 174_3_7 as

the test file.

Figure 13. Accuracy scores of the models with Time sequences and file 174_3_7, using F2-
measure

Compared to Figure 9, where F-measure was used, the F2-score is considerably higher.

Especially with Isolation Forest, the 0.77 is a rather notable result. PCA did not get an

equally dramatic score increase, as recall is still only 0.5. The situation is similar as with

fixed sequences, as shown in Figure 14.

0,25

0

0,40

0,50

0

1

0,42

0

0,77

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PCA LogCluster Isolation Forest

Precision

Recall

F2-measure

53

Figure 14. Accuracy scores of PCA with fixed sequences (size 100) and files 174_3_7 and
174_3_18, using F2-measure

Even when emphasizing recall, PCA’s score does not unfortunately exceed 0.5. This is

understandable, since recall with test file 174_3_7 is only 0.5, but it is also notable that

the F2 score with 174_3_18 is 0.45, even though precision is only 0.14.

Again, the response to the research question is highly dependent on the view of the

researcher. If minimizing false positives is considered as crucial as minimizing false

negatives, i.e. emphasis on precision and recall is equal, the accuracy scores surely seem

insufficient. The best F1 score measured here is only 0.57, which is achieved only by

one model, when using specific sequences and a certain test file. Moreover, the best F1

score with the test file 174_3_18 is only 0.4.

However, if recall is emphasized more than precision, the accuracy scores seem much

better. The best F2 score of 0.77 is relatively acceptable, though it is still achieved by

one model only, in quite specific circumstances. Moreover, even though the model in

question, Isolation Forest, is clearly the best option for test file 174_3_7 when Time

sequences are used, it is unable to detect that test file 174_3_18 is abnormally short, and

is useless when fixed windows are used to determine the sequences.

Zhu et al. (2019) noted that Linux log files have complex structure and an abundance of

event templates, which makes their accurate, automated parsing difficult. The same

reasons most likely also affect the anomaly detection accuracy. In their study, S. He et

al. (2016) found that LogCluster struggles with the event count matrices generated from

BGL data, because the matrices are sparse and high-dimensional. As the amount of

event templates in the Linux log files used in this study is in the hundreds, so are the

lengths of the event count vectors. Thus, the event count matrices end up being very

high-dimensional. This is quite clearly the reason why LogCluster is unusable (S. He et

al., 2016), but it might negatively influence the other machine learning models as well.

An accuracy of e.g. 0.57 might be enough for the utility of sgologs, but the user should

be aware of a few things. Firstly, sequence determination is an important consideration.

For these log files, session windows with Time values seem to be the most serviceable

0,33

0,14

0,50

1

0,45 0,45

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PCA: 174_3_7 (A_170) PCA: 174_3_18

Precision

Recall

F2-measure

54

choice, as PCA and Isolation Forest were both able to detect anomalies in test file

174_3_7. Moreover, Isolation Forest is the best choice with Time sequences, as the

measured F1 score was 0.57 and F2 was 0.77. However, if the user wishes to use fixed

sequences, PCA is the only functional choice.

Secondly, the user should know what kinds of anomalies are simpler to detect.

Additional log entries, such as error messages, which do not commonly occur in the log

files, have a higher chance of being classifies as anomalous. With these things in mind,

sgologs could be considered to be accurate enough, since at least some anomalies are

detected and reported. The user is at least pointed in the right direction, although the

accuracy scores are evidently modest.

10.2 Other considerations

No supervised learning. Only unsupervised machine learning was used in this study,

since generating label files, which are required for supervised learning, requires

considerable effort (Chandola et al., 2009). Even though supervised learning is rarely a

practical possibility (S. He et al., 2016; Geijer & Andreasson, 2015), it most likely

would have achieved better anomaly detection accuracy. Fortunately, unsupervised

learning has been proven to be able to detect anomalies in previous work (Landauer et

al., 2018; S. He et al., 2016), as well as in this study.

Log parsing. As loglizer requires structured logs as input, it is very fortunate that the

open-sourced logparser toolkit is available. Manual log parsing would be, again, a very

labour-intensive task (P. He et al., 2016). Log-based anomaly detection typically

focuses on execution path anomalies via log keys, or log event templates, extracted

from the log messages (Du et al., 2017). This is possible because each log key type

typically corresponds to one log print statement in the source code, resulting in log key

sequences representing the execution path of the software (Fu et al., 2009). However, it

is also possible to consider other features in the log entries, such as timestamps and

parameter values, in order to detect different kinds of anomalies, like DeepLog does

(Du et al., 2017). In fact, an implementation of DeepLog, which relies on label data, is

included in loglizer.

The performance of the logparser tools in this study was surprising. Even though Zhu et

al. (2019) measured LenMa to achieve the best parsing accuracy with Linux log files,

the tool provided disappointing results here. The AEL tool clearly performed the best,

even though it only reached third place in Zhu et al.’s (2019) benchmarking. However,

it should be noted that log parsing accuracy was not accurately measured here, as

manually parsing a log file to represent the ground truth was beyond the scope of this

study. Nevertheless, AEL seemed to be accurate in its parsing, and also improved the

anomaly detection accuracy compared to log files parsed with SHISO. In addition, as

another positive feature, the processing time for a single log file was only a fraction of a

second.

Windowing techniques. It appears that log event sequences which retain the occurrence

order of the log events in relation to each other are the most suitable for the machine

learning models. Such sequences can be generated with fixed or sliding windows, and

possibly with session windows, if the timestamps of the log entries are used as the

session parameter. As most processes overlap in a typical Linux log, session windows

based on other parameters, such as PID, cannot carry information about event order.

Therefore the execution path is not reflected in the sequences as explicitly – a possible

55

reason why the models were unable to detect the correct anomalies in the PID

sequences. On the contrary, S. He et al. (2016) argue that such session windows result

in higher correlation between the log messages, which has a positive effect on the

anomaly detection accuracy. However, this result was produced with HDFS logs, i.e.

the used data was drastically different from the Linux log files used in this study.

Anomaly detection. It is unfortunate that InvariantsMiner, the tool measured to be the

most accurate anomaly detector in S. He et al. (2016), had an unacceptably long

processing time, as discussed in section 8. It is possible that the model could have

reached a desirable performance with some optimizations, i.e. using different kinds of

windowing techniques and log sequences, or making some changes in the

implementation, for example. Unfortunately, this was not feasible within the time frame

of this study. The same goes for LogCluster; however, it is possible that the Linux log

files are simply too high-dimensional and effectively unsuitable for the model.

56

11. Conclusion

Log files are a relevant source of information, especially in troubleshooting and

debugging tasks (Dunaev & Zaytsev, 2019). Due to the fact that log files tend to be

complex and large, there is much demand for automated log file analysis (S. He et al.,

2016). One common approach is to leverage machine learning to detect anomalies,

which typically indicate faulty behaviour of the software (Fu et al., 2009). Many

existing studies about log-based anomaly detection exist, and they have even resulted in

the open-source toolkit loglizer (S. He et al., 2016). However, Linux log files have not

been extensively used in existing research. This study attempts to fill this gap.

The design artefact of this study, sgologs, was developed around the open-source

toolkits logparser and loglizer. Tools based on unsupervised learning were focused on,

because the approach is much more convenient and applicable in practical settings

(Geijer & Andreasson, 2015). Taking a Linux log file as input, sgologs parses the input

file into structured data, and is able to relatively successfully detect anomalies in the

log. Unfortunately, the accuracy of the anomaly detection depends considerably on a

few factors. The method of arranging the log messages into sequences is an important

consideration. In this study, session windows based on Time values in the log entries

were found to enable the best accuracies. In addition, the best overall accuracy score

was achieved with the Isolation Forest model. PCA achieved lower accuracy, but was

able to correctly detect at least some of the real anomalies in the test files. Moreover,

PCA was the only suitable machine learning model when fixed windows were used in

sequence determination.

Linux log files seem to be challenging for automated processing. Logparser tools have

been measured to achieve much better parsing accuracies with log files from other

systems (Zhu et al., 2019). Nevertheless, the AEL parser seems to work sufficiently for

these logs, and therefore it was included in sgologs. Moreover, the anomaly detection

accuracy of the models from the loglizer toolkit was quite modest in this study. Two of

the tested machine learning models, Invariants Miner and LogCluster, were completely

incompatible with this data.

However, if the user of sgologs is aware of these factors, the tool can help in finding

non-conventional entries in Linux logs. Especially if the anomaly is some additional

material in the log file, sgologs has a high chance of detecting it, even though only

unsupervised learning models, practical but not so accurate, are (currently) available.

The user should also be prepared for noticeable amounts of false positives.

Sgologs was developed at a midsized ICT company, and it could be used as a part of the

developers’ everyday debugging tasks. The tool certainly has room for improvement,

but integrating new features should be very straightforward, as it was during the

development of the artefact. At the same time, there is room for numerous possibilities

for future research in log-based anomaly detection with Linux logs.

57

11.1 Limitations

At numerous points in this study alternative methods could have been used, if they did

not require work-intensive preparations. For instance, there is no sure way of verifying

the accuracy of log parsing. This is because exact verification would have required

comparison to a manually parsed log file, and creating such a file is too arduous to fit in

the scope of this thesis. Likewise, creating label files for the test log files would have

required excessive effort.

Label files would have enabled the usage of supervised learning in the anomaly

detection, and aided in the validation of the anomaly detection results. S. He et al.

(2016) measured supervised learning to be more accurate in log-based anomaly

detection than unsupervised learning. Supervised learning would probably have been

the more reliable method in this context as well. Comparing the achieved anomaly

detection results to a label file would have enabled an exact and robust measurement of

the accuracy, as in S. He et al. (2016). Generating a label file for each used test file

would result in scrutinizing hundreds of different kinds of log sequences, classifying

each as normal or anomalous.

Instead of the laborious and thorough labelling process, only the most obvious

anomalies in the test log files were identified. The identification was based on the fact

that the amount of error messages in some of the test files was unusual. The validation

of the results was then based on these identifications, as discussed in section 2.1. It is

possible that the machine learning correctly detected anomalies which were not

manually identified as anomalies, i.e. sequences which do not contain unexpected

errors. Thus the accuracy could, in theory, be better than what is presented here.

Moreover, the selection of the test data was unconventional for a machine learning

study. Typically, the test files are selected at random, after which possible anomalies in

them are identified. In this study, the log files were included in the test data if they

contained an abnormal amount of error messages, i.e. anomalies. Thus, test file

selection can be considered biased. However, as the amount of test files is only three,

statistically significant conclusions are not possible anyway. Nevertheless, even with the

unconventional test file selection, investigating the potential of the loglizer tools in this

context was possible.

11.2 Future research

If at least some developers started using sgologs as a part of their routine log inspection

tasks, an opportunity for a clear follow-up study would emerge. The developers could

be surveyed and interviewed about the benefits and shortcomings of the anomaly

detection tool. This way, the actual real-life utility of sgologs could be investigated. At

this stage, however, only educated guesses about the adequacy of the tool can be made.

For example, a survey and interview-based study would probably reveal whether a F1

score of 0.57 is at all sufficient in practice.

However, based on this study, it is already apparent that some parts of the artefact could

use some polishing. For instance, the fact that the machine learning models need to be

trained each time the tool is run is a considerable issue. Changing the implementation so

that the models somehow store the parameters they learned from the training data is

plausible and possibly simple. With such an implementation, much larger training

datasets could be used, since the processing time of the training phase is no longer a

58

relevant consideration. Increased training data size would supposedly enable better

learning, which could in turn increase the anomaly detection accuracies.

Another implementation currently lacking in sgologs is the option to use sliding

windows to determine the log sequences. The technical implementation would be a

fairly simple task, but the positive effects to the detection results could be remarkable.

After all, the window sequence type is not a trivial matter, as discussed in earlier

sections. Another interesting possibility is detecting anomalies at the level of individual

log messages, i.e. not using sequences at all. This would simplify the output greatly, as

only single log rows would be classified as anomalous. If the loglizer tools could be

reshaped to work like this, the utility of the output would most likely increase.

Going through the trouble of generating label files for the Linux logs, thus allowing the

usage of supervised learning models, could be beneficial. The loglizer toolkit already

contains three supervised models (LR, Decision Tree, and SVM), so model

implementation does not require great effort. Label files, although laborious to make,

would most likely be worth the effort, if supervised learning really achieves higher

accuracies than unsupervised learning, as measured in previous work.

Moreover, there are also unsupervised options which have not been investigated in this

study. At least partial implementations, which rely on label files, of DeepLog, Local

Outlier Factor (LOF), one-class SVM, and AutoEncoder, are already included in

loglizer. Especially DeepLog, based on deep learning, seems promising. If label files are

off the table, changing the implementation of the models to not require labelled training

data should not be a demanding endeavour. It would be fruitful to investigate the other

unsupervised models. It is well possible that the performance of the models would be

comparable to the models tested in this study, or even exceed the accuracy scores

measured here.

59

References

Bovenzi, A., Brancati, F., Russo, S., & Bondavalli, A. (2015). An OS-level framework

for anomaly detection in complex software systems. IEEE Transactions on

Dependable and Secure Computing, 12(3), 366-372.

doi:10.1109/TDSC.2014.2334305

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM

Computing Surveys, 41(3), 1-58. doi:10.1145/1541880.1541882

Cheng, X., & Wang, R. (2014). Communication network anomaly detection based on

log file analysis. Paper presented at the 9th International Conference on

Rough Sets and Knowledge Technology, Shanghai, China. doi:10.1007/978-

3-319-11740-9_23

Du, M., Li, F., Zheng, G. & Srikumar, V. (2017). DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning. Proceedings from CCS

‘17: The 2017 ACM SIGSAC Conference on Computer and Communications

Security. Dallas, TX, USA.

Dunaev, M. & Zaytsev, K. (2019). Logs analysis to search for anomalies in the

functioning of large technology platforms. Journal of Theoretical and Applied

Information Technology, 97(11), 3123-3135.

Fu, Q., Lou, J.-G., Wang, Y. & Li, J. (2009). Execution Anomaly Detection in

Distributed Systems through Unstructured Log Analysis. Paper presented at

the 2009 Ninth IEEE International Conference on Data Mining, Miami, FL,

USA. doi:10.1109/ICDM.2009.60

Geijer, C. & Andreasson, J. (2015). Log-Based Anomaly Detection for System

Surveillance (Master's thesis). Retrieved from Chalmers Publication Library.

(219089)

He, P., Zhu, J., He, S., Li, J. & Lyu, M.R. (2016). An Evaluation Study on Log Parsing

and Its Use in Log Mining. Paper presented at the 2016 46th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks,

Toulouse, France. doi:10.1109/DSN.2016.66

He, S., Zhu, J., He, P. & Lyu, M.R. (2016). Experience Report: System Log Analysis

for Anomaly Detection. Paper presented at the 2016 IEEE 27th International

Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON,

Canada. doi:10.1109/ISSRE.2016.21

Henrique, B. M., Sobreiro, V. A. & Kimura, H. (2019). Literature review: Machine

learning techniques applied to financial market prediction. Expert Systems

with Applications, 124, 226-251.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly, 28(1), 75-105. doi:10.2307/25148625.

60

Jiang, Z., Hassan, A.E., Flora, P. & Hamann, G. (2008). Abstracting Execution Logs to

Execution Events for Enterprise Applications (Short Paper). Proceedings from

QSIC ‘08: The 8th International Conference on Quality Software. Oxford,

UK. doi:10.1109/QSIC.2008.50

Khan, A., Baharudin, B., Lee, L.H. & Khan, K. (2010). A Review of Machine Learning

Algorithms for Text-Documents Classification. Journal of Advances in

Information Technology, 1(1), 4-65.

Kim, J., Minsik, P., Kim, H., Cho, S. & Kang, P. (2019). Insider Threat Detection Based

on User Behavior Modeling and Anomaly Detection Algorithms. Applied

Sciences, 9(19), 1-21. doi:10.3390/app9194018.

Landauer, M., Wurzenberger, M., Skopik, F., Settani, G. & Filzmoser, P. (2018).

Dynamic log file analysis: An unsupervised cluster evolution approach for

anomaly detection. Computers & Security, 79, 94-116.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444.

doi:10.1038/nature14539

Leal-Aulenbacher, I. & Andrews, J.H. (2013). Generating C++ log file analyzers.

WSEAS Transactions on Information Science and Applications, 10(10), 313-

324.

Lin, Q., Zhang, H., Lou, J., Zhang, Y. & Chen, X. (2016). Log clustering based problem

identification for online service systems. Proceedings from ICSE '16: The

38th International Conference on Software Engineering Companion. Austin,

TX, USA. doi:10.1145/2889160.2889232

Liu, F., Ting, K. M. & Zhou, Z. (2008). Isolation Forest. Paper presented at the 2008 8
th

IEEE International Conference on Data Mining, Pisa, Italy.

doi:10.1109/ICDM.2008.17

Logpai. (2018, June 6). AEL – Abstracting Execution Logs [README file]. Retrieved

March 2, 2020, from

https://github.com/logpai/logparser/tree/master/logparser/AEL

Logpai. (2020, January 6). Loglizer [README file]. Retrieved March 5, 2020, from

https://github.com/logpai/loglizer/blob/master/README.md

Lou, J.-G., Fu, Q., Yang, S., Xu, Y. & Li, J. (2010). Mining Invariants from Console

Logs for System Problem Detection. Proceedings from USENIX ATC ’10:

The 2010 USENIX Annual Technical Conference. Boston, MA, USA.

Malhotra, R. (2015). A systematic review of machine learning techniques for software

fault prediction. Applied Soft Computing Journal, 27, 504-518.

doi:10.1016/j.asoc.2014.11.023

Mavridis, I. & Karatza, H. (2017). Performance evaluation of cloud-based log file

analysis with Apache Hadoop and Apache Spark. Journal of Systems and

Software, 125, 133-151. doi:10.1016/j.jss.2016.11.037

https://github.com/logpai/logparser/tree/master/logparser/AEL
https://github.com/logpai/loglizer/blob/master/README.md

61

Mizutani, M. (2013). Incremental Mining of System Log Format. Paper presented at the

2013 IEEE International Conference on Services Computing, Santa Clara,

CA, USA.

Mäkinen, M. (2017). Deep Learning for Anomaly Detection in Linux System Log

[Master’s thesis, Aalto University]. Aaltodoc. Retrieved from

http://urn.fi/URN:NBN:fi:aalto-201906234158

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. (2007). A Design

Science Research Methodology for Information Systems Research. Journal of

Management Information Systems, 24(3), 45-77.

Pietikäinen, M. & Silvén, O. (2019). Tekoälyn haasteet: koneoppimisesta ja konenäöstä

tunnetekoälyyn. Retrieved January 8, 2020, from

http://jultika.oulu.fi/Record/isbn978-952-62-2482-4

Shima, K. (2015). Length Matters: Clustering System Log Messages using Length of

Words. Proceedings from CNSM ‘15: The 11th International Conference on

Network and Service Management. Barcelona, Spain.

Systemd. (2020, January 11). Retrieved February 20, 2020, from

https://wiki.archlinux.org/index.php/Systemd

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y. & Lin, W.-Y. (2009). Intrusion detection by machine

learning: A review. Expert Systems with Applications, 36(10), 11994-12000.

Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F. & Fouilloy, A.

(2017). Machine learning methods for solar radiation forecasting: A review.

Renewable Energy, 105, 569-582.

Xu, W., Huang, L., Fox, A., Patterson, D. & Jordan, M. (2009). Detecting large-scale

system problems by mining console logs. Proceedings from SOSP ’09: The

ACM SIGOPS 22
nd

 symposium on Operating Systems principles. Big Sky,

MT, USA. doi:10.1145/1629575.1629587

Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z. & Lyu, M.R. (2019). Tools and

Benchmarks for Automated Log Parsing. Proceedings from ICSE-SEIP ‘19:

The 41st International Conference on Software Engineering: Software

Engineering in Practice. Montreal, QC, Canada.

http://urn.fi/URN:NBN:fi:aalto-201906234158
http://jultika.oulu.fi/Record/isbn978-952-62-2482-4
https://wiki.archlinux.org/index.php/Systemd

