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Abstract

This thesis presents a new static analysis tool for C and C++, that can detect some buffer
overflow errors, which are dynamic memory use related errors that happen when a pro-
gram tries to read or write past the end of a memory area. The tool is implemented as a
plugin for the Clang compiler in order to leverage the excellent C and C++ parsing Clang
has. The new tool is ran on Clang’s abstract syntax tree (AST) representation, from which
it is able to detect unsafe memory related operations that are in the analysed source code.
A previous study by the author was done on static analysis theory and existing implemen-
tations in journal articles and scientific conference papers. One of the main findings was
that there are no easily usable existing tools. For this reason This followup thesis set out
to implement a new static analysis tool in order to start filling that found deficiency. The
developed tool is available on Github at https://github.com/hhyyrylainen/smacpp.

Such a tool is important in software development as static analysis can reduce the number
of bugs that slip through to released versions of software. If only manual testing and
automated unit testing is used on software, it leaves many problems hidden that a static
analysis tool could find. This is why static analysis tools are important as not using them
increases the number of problems that software developers do not find. This thesis focuses
especially on dynamic memory related errors as the type of problem that static analysis
is used to find. This is because many memory related issues can be remotely exploited
making it a very important aspect to get right. Memory unsafe languages are ones that
do not guard the programmers against incorrect dynamic memory usage, C and C++ are
widely used examples of these kind of programming languages. As these languages do not
guard against memory errors, static analysis is a good addition to a development workflow
to catch issues before they can be exploited.

The developed tool was tested with an existing test case set in order to verify that the tool
can detect problems correctly in concrete programs. Because this test set contained only
C programs, the developed tool focuses on them, instead of also handling C++ specific
issues. In addition to the first test set another set was used for evaluating the performance
of the new tool once it was completed. The new tool, when combined with Clang’s analysis
as the new tool was designed to compliment Clang’s own analysis capabilities, is able to
detect 4 more issues in the first test set, without adding any false positives. This means
that the combination is useful. Unfortunately none of the tested tools were able to pass any
test cases contained in the second test suite. The new tool also increased the number of
false positives when combined with Clang, but this is likely due to many of the test cases
missing the expected entry point, “main”. In addition to the new tool, this thesis presents
the way it was designed and how it uses Clang’s libraries to aid in the development of a
static analysis tool.
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Abbreviations

Static analysis is an approach to finding defects in software by analysing the static struc-
ture of the program, for example source code. Usually done with a static analysis tool that
goes through the source code and reports problems.

Dynamic analysis looks for problems in a program while it is running by adding checks
that ensure that dangerous operations do not happen.

Buffer overflow is an error where a program writes past the end of a memory area. It is
caused by incorrect programming leading the program to not restrict itself to within the
bounds of a memory area.

Abstract syntax tree (AST) is an internal representation of source code that a compiler
builds in order to facilitate various operations, like optimization and code generation, to
be ran on it. The AST can also be provided to external tools from the compiler to facilitate
the tools understanding source code better than if they had to reimplement source code
parsing.

Recall / sensitivity is the fraction of true positive reports of the total number of positive
reports: % (Moerman, 2018, p. 7). 100% is the perfect score.

Precision is the fraction of the true positives of the total detected errors (true positives and
false positives): % (Moerman, 2018, p. 7). The higher the percentage, the better.

SMACPP is the new static analysis tool developed in this thesis. Available on Github:
https://github.com/hhyyrylainen/smacpp.
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1. Introduction

The modern world runs on software. As such is it important that software is reliable
(Hiser, Coleman, Co, & Davidson, 2009). Reliable software is able to perform its intended
function under certain conditions with a high enough success rate (Zhogolev, as cited in
Frolov, 2004.). With such a definition, software does not have to be completely error
free, just good enough to meet the required reliability. Also a very important aspect of
software is security (Frolov, 2004). Software security is about preventing compromises to
the integrity of software (Hyyryldinen, 2019). For these, and other, reasons it is important
that attention is paid to how software is developed. Hiser et al. (2009) says that current
software development practices are lacking and many kinds of memory related errors are
made. These errors reduce software reliability and security. Better tooling can help with
these problems.

Static analysis tools are a category of tools that help in software development by detect-
ing errors from a program’s source code or some other representation. Compared with
static analysis, dynamic analysis is performed by running the software and seeing if it
does something incorrect. Static analysis is done without running the program. As such
it can explore the entire possible space of possible program execution paths and detect
errors that maybe very hard to find by tweaking the program inputs to get it to execute
many different paths through the code. When these tools are incorporated into a develop-
ment workflow, they reduce the amount of errors in the finished software, making it more
reliable (Dhurjati, Kowshik, Adve, & Lattner, 2005). Black (2012) even argues that any
ethical software development must use static analysis tools, otherwise the developers are
being irresponsible by not ensuring software quality.

Static analysis is especially helpful in memory unsafe languages where a simple program-
mer mistake can have catastrophic consequences, for example compromising the security
of an entire server running many different services. Memory unsafe languages are used
for their speed, for that reason hybrid or dynamic analysis tools are not optimal as they
incur runtime performance costs, sometimes even very heavy. This is why incorporating
static analysis tools to C and C++ software development workflows is important part of
making good quality software. The found journal articles and conference papers did not
provide their developed tools in a usable form. That is why this thesis presents a new open
source tool that, while quite basic, could serve as a basis for a more advanced tool. The
new tool could even be used as-is to detect some issues.

This thesis is based on my bachelor’s thesis (Hyyryldinen, 2019) and builds on top of it
by creating a new static analysis tool that is open source and is available online in order
to make it as easy to access as possible for future researchers and also any interested
software developers. This new tool was developed keeping in mind the findings of the
previous study. In order to keep the amount of unnecessary work down the tool uses the
clang compiler to parse source code. The relevant portions of the literature review done
in it are included in the prior research chapter of this thesis.

The research method used in this thesis is design science. The research method is described



in detail in Chapter 4. The main research question is:

How can we create a static analysis tool that complements Clang’s static an-
alyzer in detecting buffer overflows?

All of the used test suites are pre-existing ones. The first of these test suites, Moerman’s
(2018) test suite, was used to direct the development of the new tool in a test driven de-
velopment fashion.

In the next chapter a detailed description of static analysis is presented, as well as a com-
parison against dynamic analysis, which is a related technique, is made. Then in the next
chapter the literature review continues, first the existing literature from journals and sci-
entific conferences is discussed. And after that, in the second part of that chapter, other
found material such as Moerman’s (2018) thesis, which is not peer reviewed material, is
discussed. In the methods chapter it is explained how design science research is followed
in this thesis. Then the rest of the chapters are dedicated to introducing the new tool, the
design decisions, functionality, and features. After introducing the tool, the next chapter
compares how well the new tool performs against other open source tools in the area of
detecting buffer overflows, the results of this analysis are also discussed. Finally, the im-
plications of this thesis are discussed, as well as the limitations, and a direction for future
research is presented. The major findings are also recapped in the last chapter.



2.  Static Analysis

This chapter introduces the concept of static analysis as well as its properties based on the
found literature. Then static analysis is compared with dynamic analysis in terms of their
strengths and weaknesses, it is also discussed how these approaches have been combined
in the earlier literature. This chapter contains large parts of text originally published in
Hyyryldinen (2019).

2.1 Description of static analysis

Bugs happen when developing software and in order to prepare for this inevitability, it is a
good idea to employ static analysers (Black, 2012). It has long been believed that detecting
errors in software before it is ran is beneficial (Das, 2006; Sokolov, 2007). Especially in
safety-critical systems where detecting problems before runtime is absolutely vital (Dhur-
jati et al., 2005; Kowshik, Dhurjati, & Adve, 2002). Traditionally testing was the method
for detecting errors in software but new tools such as static analysers and dynamic protec-
tion have been developed (Frolov, 2004). Static analysis tools work by attempting to build
a flow graph of all possible executions of a program (Grech, Fourtounis, Francalanza, &
Smaragdakis, 2018; Sokolov, 2007). And from this the analysis tool attempts to detect
problems. Dynamic analysis tools, in contrast, insert runtime checks into a program to
catch problems.

Static analysis tools are programming error detection tools that are ran on the static struc-
ture of a program, hence the name. They can detect many kinds of bugs like memory
leaks and out of bounds memory access (Ciriello, Carrozza, & Rosati, 2013). This thesis
focuses especially on memory bounds checking. This kind of analysis is performed be-
fore program execution (Frolov, 2004). It can be done on different representations of the
program, either on the source code or a compiled form. Analysing the source code is the
most often used form as it is the most informative representation of a program. (Frolov,
2004.). However many of the papers referred to in this thesis have gone the route of run-
ning on machine code or byte code. One of the reasons for this is that there are situations
when memory errors need to be detected in software without access to the source code
(Hiser et al., 2009). For these cases, the memory error detection system introduced by
Hiser et al. (2009) works on binary executables. Running the analysis on compiled pro-
grams also has the advantage that the tools can work on many compiled languages much
easier than tools that work on source code, as the source code of different programming
languages can differ greatly, whereas the generated machine code uses is built from the
same instructions.

Static analysers are used for scanning through large amounts of code for problems that
would be nearly impossible to find manually (Ciriello et al., 2013). Memory leaks are one
such example, which does not always affect program functionality but makes the software
use much more memory than it actually needs (Ciriello et al., 2013; Sun et al., 2018; Xu
& Zhang, 2008). Of course it is still possible for memory leaks to cause software to fail



that is long running and memory-intensive (Heine & Lam, 2003; Xie & Aiken, 2005;
Xu & Zhang, 2008). This might also lead to the performance degradation of an entire
system, and for example failure to launch new processes as well as excessive swapping
slowing down everything running on that system (Sun et al., 2018). Though, once you
know that there is a memory leak, it is possible to use analysis tools like Valgrind to point
the programmer to the spot where the non freed memory was allocated.

Static analysis is a valuable tool, as through automating many manual inspections, it allows
a small team to cope with large programs without excessive costs (Wendel & Kleir, 1977).
With traditional code review the accuracy and number of problems detected is good but the
desire to reserve humans for more difficult tasks lead to the creation of static analysis tools.
Good tools can quickly identity weak spots and possible bugs in code, this is something
that is not possible with humans checking the code. Basic tools can detect some issues like
floating point comparisons, more advanced tools are needed to detect issues with memory.
(Sokolov, 2007.)

Static analysis is also important in keeping bugs away when software is being modified.
Especially with legacy software, because even if it has tests, it still might contain many
undetected defects (Ciriello et al., 2013). That can then surface when the software is
modified (Ciriello et al., 2013). Another reason is that programmers can make mistakes
when doing maintenance or upgrades to existing software (Landwehr, Bull, McDermott,
& Choi, 1994, p. 223; Sokolov, 2007). When software is being modified it should be
reviewed as carefully as when it was originally written (Landwehr et al., 1994, p. 223),
but often this is skimped on. The situation gets even worse if the system that is being
modified has no regression tests (Sokolov, 2007). This is another good spot to use static
analysis to fill gaps in tests. Tools are a major help here as they can be used to automatically
and repeatedly check millions of lines of code (Black, 2012). Though, the recommended
solution to working with legacy software is to first write tests for the legacy system, in
order to be able to verify that the changed system works the same (Sokolov, 2007).

Static analysis is especially beneficial when the used programming language has a type
system with which the compiler can ensure program correctness. A limitation in static
analysis tools is the limited information their defect reports give, as they do not describe
the scenario needed to trigger the problem. This leads to programmers not fixing some
number of the problem reports. (Das, 2006.). Also to be practical static analysis must fit
seamlessly in the software development workflow (Ciriello et al., 2013).

2.2 Comparison between dynamic analysis and static analysis

Both dynamic and static analysis, approaches have upsides and downsides (Frolov, 2004;
Weber, Shah, & Ren, 2001). Static analysers can detect many problems in software like
performance bottlenecks, safety violations and security vulnerabilities (Bodden, 2018).
As discussed before this detection is made on the static structure of the program before
running it. Whereas dynamic analysis, also called dynamic protection, inserts guards into
the program, that check, for example, the validity of pointers during runtime. So the
detection of problems in it happens when the program is ran. This is the main difference
between them, but many approaches combine both into the same tool, more on that in
Section 3.3.

The main advantage of static analysis over dynamic analysis is that it is complete. The
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completeness here means that the generated flow graph contains all possible executions
of the target program. This is very effective but suffers from two major downsides: it
is expensive to compute for substantial software, and it lacks precision. Precision is the
ratio of incorrectly detected issues to the number of correctly detected issues. The lack of
precision in static analysis is caused by the predicted flows not entirely matching actual
flows when running the program. (Grech et al., 2018.) Whereas in dynamic analysis the
observed program behaviour depends on the user input it is given (Sokolov, 2007) and
thus is limited by how comprehensively the software is tested with different inputs.

The major downside of static analysis is the false positives, among valid reports, it usually
generates. This causes wasted time spent investigating these false positives. Often when
increasing the amount of actual problems static analysis tool finds, it also finds more false
positives, which means that its usefulness does not necessarily increase. (Ciriello et al.,
2013.) With many false positives developers might not feel like using static analysis is
worth their time (Hovemeyer, Spacco, & Pugh, 2005). However many existing static
analysis systems are lacking in branch awareness and thus their detection accuracy suffers
and they might, for example, not be able to find memory leaks (Sun et al., 2018). Not
filtering out infeasible paths through the program is a common source of this inaccuracy
(Hovemeyer et al., 2005). This is a place for a lot of potential improvement. But Ciriello
et al. (2013) goes as far as to claim that a perfect static analysis tool can never exist and
all problems can not be found due to the nature of computing.

Dynamic analysis, in the form of automated or manual testing done by running the pro-
gram, can detect some aspects of the program much easier than static analysis, as with
static analysis there are scalability problems when trying to infer all possible execution
flows (Grech et al., 2018). Grech et al. (2018) propose a hybrid approach to static analysis
where the static information is augmented with dynamic runtime information in order to
reduce false positives and increase the performance of the analysis. They thus conclude
that in program analysis there are three competing quality properties: completeness, pre-
cision, and scalability. Their approach is designed to focus on precision and scalability at
the cost of completeness as the dynamic information they add to the static analysis process
cannot capture all possible program execution paths. Compared with earlier tools that they
mention, their approach replaces parts of the static analysis with dynamic facts in order
to improve the scalability. This dynamic information is derived from heap snapshots. A
huge limitation in their work, in applicability to the topic of this thesis, is that their tools
only work with the Java Virtual Machine (JVM). However their approach to not model-
ing the heap fully in static analysis and instead only relying on information from actual
heap snapshots, without modeling writing operations, may be applicable to C and C++ as
a generalized concept.

The major disadvantage of a dynamic analysis system is the degraded performance during
runtime. Another disadvantage is that most systems cannot correct the program behaviour
and for example can only terminate the program to prevent more harm from being done.
The advantage is the simplicity of application. Combining this approach with static anal-
ysis allows reducing the number of places that need protection. In this approach, static
analysis systems classify parts of a program in three categories. The first is unsafe frag-
ments which are guaranteed to contain errors. The second is safe fragments which the
static analysis could prove to be safe. The final category is the potentially unsafe frag-
ments which could not be unambiguously classified into the other categories. This class
needs runtime protection to alleviate the potential errors in them. A better static analysis
might be able to reduce the number of these program fragments. Usually there is such
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a large amount of the potentially unsafe fragments that manually checking them is not
feasible and this is where dynamic protection is a good tool for filling the gap. This way
the dynamic checking is much cheaper and there is a reduced number of false positives,
compared with plain static analysis. (Frolov, 2004.) However, the dynamic checks do still
reduce the runtime performance of the software, even if the cost is partly mitigated.
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3. Prior Research

In this chapter, the found prior research is explored in terms of their results and findings,
as well as used as the basis for motivating the need for the artifact developed in this thesis.
This chapter also contains large parts of text originally published in Hyyryldinen (2019).
In the next section, the impact of memory issues on software security is discussed and how
static analysis can help. Then the results of the previous studies are discussed as well as
any existing static analysis tools that the studies presented. Finally other prior work, that
was not published as scientific articles or conference papers, is discussed.

3.1 Impact of memory issues on security

The aim of software security is that software continues to function correctly even while
under attack (McGraw, 2004). Memory errors do not always expose a way for an attacker
to exploit them but even in these cases an attacker could potentially exploit these problems
in order to perform a very effective denial of service attack (Sun et al., 2018; Yong &
Horwitz, 2003). However, when memory errors in programs exposed to the internet are
exploitable, they can lead to the attackers gaining control over an entire system (Oiwa,
2009). So from a safety viewpoint it is also very important to make sure these types of
errors are found and fixed. Or mitigated some other way, for example with dynamic checks
around memory access. This means that not using static analysis may make software much
more vulnerable to attacks, than if a static analysis tool was used that can detect various
issues.

C and languages similar to it employ manual memory management (Xu & Zhang, 2008).
These types of languages are not memory safe languages as they require the program-
mer to explicitly request and free memory when needed instead of the language taking
care of it automatically. C and C++ are examples of these kind of, memory unsafe lan-
guages (Kroes, Koning, van der Kouwe, Bos, & Giuffrida, 2018). Most common flaws
in programs are memory related (Hiser et al., 2009). This does not apply to languages
designed to be memory safe as their language design is made to counteract these issues.
The most common issues, in not memory safe languages, are array bounds checking prob-
lems (buffer overflow and underflow) (Chess, 2002; Hiser et al., 2009; Kroes et al., 2018;
Oiwa, 2009), not releasing memory (memory leak) (Heine & Lam, 2003; Sun et al., 2018;
Xie & Aiken, 2005; Xu & Zhang, 2008), releasing memory too soon (also called dangling
pointers) (Heine & Lam, 2003; Hiser et al., 2009; Oiwa, 2009), and problems with us-
ing uninitialized data (Hiser et al., 2009). This thesis focuses on buffer overflows as the
type of issue that the new tool is made to detect, in order to keep the scope of this thesis
manageable.

Even though a lot of research has gone into fixing these types of issues they are still preva-
lent. Buffer overflows are particularly troublesome as they are quite often easy to exploit
and use as a point of entry for a worm. (Kroes et al., 2018.) Memory leaks are another
kind of issue that is still widely problematic in many widely-used programs (Xie & Aiken,
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2005). A common attack is to exploit a buffer overflow and replace the return address to
be in data provided by an attacker. This then causes the program to continue executing
the attacker’s code. There are ways to protect programs against this type of attack, some
of them have high runtime costs. (Yong and Horwitz, 2003.) In fact most attacks are not
done by finding novel ways to compromise systems rather most attacks are repeated ex-
ploits of already known problems (Evans & Larochelle, 2002). Out of the 190 security
attacks referred to by Evans and Larochelle (2002) only 4 are problems in cryptography,
most of the rest are problems like buffer overflows and string format errors. In another
study referenced by Ganapathy, Jha, Chandler, Melski, and Vitek (2003) buffer overruns
where the top vulnerability in UNIX systems.

Static analysis and dynamic protection tools help in creating software that is resistant to
attacks (Weber et al., 2001), as a single mistake by a careless programmer, is able to
undermine the security of the entire system (Ganapathy et al., 2003). These mistakes
can be hard to catch without any help from tools. In addition to tools, secure software
development can also be helped by an execution environment, for example the Java virtual
machine. This is not without problems either as the Java virtual machine can also contain
security vulnerabilities. (Pomorova and Ivanchyshyn, 2013.)

3.2 Results from the literature

This section goes over the major findings about static analysis from the literature review in
Hyyryldinen (2019) in light of the problems identified in the previous section and chapter.
The next section focuses on the existing, concrete tools from the previous work.

The need for reliable software has resulted in a lot of research being done to identify ways
to detect the violation of memory safety properties in programs. This property can be
generalized as requiring that each value created by event A must reach exactly one event
B, in every program execution flow. This type of property is called source-sink property.
With memory errors, the event A is the allocation of memory and event B is the respective
deallocation of memory. In a program that fulfils this property, each memory allocation is
freed exactly once. (Cherem, Princehouse, and Rugina, 2007.) This does not encompass
every type of memory error, this is only for memory leaks and double frees, but extending
this definition with additional access events that must happen between events A and B
this model is also valid for other types of memory errors like use after free and the use
of unallocated memory. Programs that fulfil this property can be considered less likely to
contain a memory related problem.

Weber et al. (2001) say that static analysis techniques, that existed at the time they wrote
their paper, often worked on a really abstract level. For example by only just saying that a
buffer overflow is possible, instead of being able to derive the program inputs that would
result in that behaviour. Their technique also suffers from this limitation. But they claim
that this is still useful information in the space of program security because, if it is possible
to theoretically for the program to do a buffer overflow, it is good to fix it. Creating an
accurate static analysis is not easy and in fact it is very easy for static analysis tools to
miss problems when the analysed program contains complex branches (Sun et al., 2018).

Frolov (2004) uses a hybrid approach of combining static and dynamic analysis. In their
approach, they use static analysis to prove some operations safe and use dynamic checks
to protect other operations similar to Oiwa (2009). In addition they compare the advan-
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tages and drawbacks of static and dynamic analysis. With static analysis, the developers
must address the issues, unlike with dynamic analysis that can insert automatic checks for
preventing the errors, and this may be difficult as many issues found by static analysis can-
not be automatically decided. The program execution can depend on many environmental
factors that the static analysis simply cannot predict. Thus it is necessary for the static
analysis to cut corners here and not be entirely accurate in terms of all possible program
executions. This can be mitigated with three approaches: asking the developer questions,
finding a superset that also contains many false positives, and referencing a database with
information regarding the runtime environment. All of these are labour intensive. Even the
superset finding, as that results in a lot of false positives, that must be manually checked.
The most promising of these is creating and maintaining the knowledge base about the
program environment. In the knowledge base everything that the static analysis cannot
infer, needs to be provided. For example, the results of system calls or network requests
are the kind of information that needs to be added to the knowledge base. (Frolov, 2004.)

The final important finding of Frolov (2004) was that the hybrid approach they described
can be iterated on. Once the approach has been used once the performance and reliability
of the system can be further improved. This can be done by manually marking parts of
the program safe in order to reduce dynamic checks. This helps the process get started
as it can be very difficult to create a static analysis algorithm that can decide enough
code fragments to be safe in order to not catastrophically affect the performance. Then
it is possible to iteratively design the static analysis algorithm to classify more and more
fragments unambiguously. In their example, they present the case of protecting against
output format string vulnerabilities. First the analysis can be made to just check static
variables in the current translation unit for the used format string. This will miss some
safe uses, but will already limit the number of potentially unsafe fragments. To further
improve this the analysis can be extended to include information from other translation
units in order to be able to determine the format strings of more output function calls.
(Frolov, 2004.)

Frolov (2004) also includes an experimental study that shows that even with just 4 steps
and a code base of 500 000 lines of code the number of false warnings were reduced from
2618 to 35. In this experiment they only focused on format strings. Out of all the warn-
ings only 0,15% were actual problems. At first they just counted all code fragments with
output functions as unsafe, this resulted in 2618 potentially unsafe fragments. Then they
implemented a basic analysis for detecting the use of constant format string in a single
translation unit. This reduced the potentially unsafe fragments to 1150. Then they added
detection of constant strings from other translation units and detection of print wrappers
bringing the number of potentially unsafe fragments down to 35 that could then be man-
ually examined in a day. They used a dynamic part to the analysis that protected the
program from the start. It started at having a 7% impact on performance and 0% at the
end when all of the calls through the protection layer were removed.

Static analysis can be used, in addition to catching memory errors, to verify that best prac-
tices and guidelines are followed in C++ (Sokolov, 2007). Sokolov (2007) also brings up
the company culture aspects of static analysis tools. Mainly that they must be incorporated
into the workflow in order to get used properly. It is no use having good tools if people only
sporadically use them. Ciriello et al. (2013) presents similar models to Sokolov (2007).
In their work, they explore the effects of applying the principle of continuous integration
to static analysis. They call their approach continuous code static analysis. They describe
it as running the static analysis, which can take multiple hours, in a similar fashion as
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continuous integration on a build server after code has been committed. In order for this
to be a viable approach there needs to be high quality static analysis tools available for
developers to use.

In the case studied by Ciriello et al. (2013) they made the C++test tool run during the
weekends and provided reports for the developers to fix for the next week’s release, the
company used a weekly release schedule. They also identified the need to keep false
positives as low as possible. They also present that it is possible to track the direction the
software is headed quality wise with continuous static analysis. This is done by tracking
the number of issues detected from each software version. Then the direction can be
determined from the last few points. If the trend is towards more issues then corrective
measures can be implemented.

Bodden (2018) proposes that future static analysis tools could be developed to be self
adaptive in order to improve their scalability. Scalability of current static analysis tools
is a problem as the size of software grows. Current tools are written in general purpose
programming languages with a limited set of customizability they can select based on
the analysed program. To solve this problem Bodden (2018) proposes that static analy-
ses should be created in a dedicated intermediate representation, for example as a graph
problem. This provides much better chances for optimization than general programming
languages. Additionally the analysis process should continuously adjust itself similarly to
how just-in-time compilers work. The result would be that for each static analysis problem
the static analysis tool would generate a highly optimized analysis. (Bodden, 2018.)

Bodden (2018) does not present a working implementation of their ideas. They only
present the core idea in the hopes that the research community can help in the implemen-
tation of their ideas. They present the core concepts and the challenges they anticipate
potential implementors will run into. At the core of the suggested algorithm is a new
declarative definition language crafted specifically for creating static analysis tools. The
design of this language needs to be balanced with regards to be able to express a variety
of static analysis techniques but at the same time being restricted enough to offer potential
for optimization. Then in their design this representation is compiled into a high level
intermediate implementation that can be optimized. Then there would be also a low level
representation that would be optimized in a way that takes the target program into account.
Then this representation is ran on the target program and profiling information is collected
that can then be used to tweak the analysis to be more efficient, with help from a human.
Then the final part of their design is the low level just-in-time compiler part that would
constantly monitor the running analysis for bottlenecks and change to algorithms that are
more efficient in the current situation. (Bodden, 2018.)

Lee, Hong, and Oh (2018) present a static analysis technique for detecting memory deal-
location errors in C programs. In addition to detecting the issues their approach can au-
tomatically generate fixed code. This is based on solving an exact cover problem derived
from their static analysis. The solution is a set of free statements that deallocate each piece
of allocated memory exactly once. This makes it possible to make a fix that does not in-
troduce new errors. This makes fixing these issues much easier as when manually fixing
the programmer must consider all possible paths in order to not introduce a new problem,
for example a double free, while trying to fix another problem.

Weber et al. (2001) is another paper where the authors developed a new tool that seems
to have no source code available. They focused on developing a static analysis tool for
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detecting buffer overflows. They based their work on earlier analysis techniques that had
serious limitations in terms of them not taking program flow or scoping into account.
Weber et al. (2001) say that by taking program flow into account it reduces the number
of false positives significantly. Their algorithm is based on determining the maximum
lengths of data written to buffers and then determining if the buffer is big enough in all
possible cases. A major limitation in their tool is that it must be given a list of potentially
dangerous program statements to analyse, so it cannot be used on its own.

In general regarding static analysis, Weber et al. (2001) present that as program complexity
increases the number of possible control flow paths increases dramatically. This is the
reason why large programs cannot be accurately analysed with static analysis tools using
a graph presentation, like used by Weber et al. (2001). In their experimental results, they
show that their developed tool can reduce the number of hits from a tool that scans for
potentially unsafe function calls by 25% to 60%. They only tested on three programs,
resulting in the large variance of the results.

In contrast to the other papers discussed Hovemeyer et al. (2005) present a simpler analysis
that tries to just find null pointer problems. They show that their tool is effective at finding
actual problems without a huge number of false positives, despite the analysis being sim-
ple. Their tool is for analysing Java bytecode and it is still available. Their analysis focuses
on reducing the amount of false positives by conservatively assuming that unknown values
are not errors. They also greatly limit the size of their program flow graph by leaving out
complex interaction between functions and determining actually executed polymorphic
functions. Instead their tool assumes that many variables are unknown and any concrete
method in the case of polymorphic methods could be executed, but once again they limit
the amount of warnings they give as their tool does not have enough information to give
good warnings. They do mention that their tool will generate warnings from polymorphic
code where all the possible implementation methods can cause a problem.

3.3 Existing tools for error detection

This section explores the static analysis tools that were developed in the existing literature.
Other tools that were referenced in the previous works are also briefly mentioned.

Many of the articles referenced in this thesis present static analysis or hybrid static and
dynamic analysis tools that the authors developed. Sadly, it seems that none of these tools,
that work on C++ code or x86 machine code, are available and open source. This is the
most major limitation in the existing literature. Still, a few tools were found, but they are
unmaintained and bordering on obsoleteness, or they were for a memory safe language.
See the section about Moerman’s (2018) thesis for a review of a few open source static
analysis tools.

It seems that many of the papers set out to only create a proof of concept implementation
of their algorithms and not to create a useful tool ensuring that others could benefit easily
from their work. As such if anyone wants to use the findings of these papers to improve
their software, they would have to reimplement the tools from scratch. For this reason the
tool developed in this thesis is made open source so that it can be built on top of.

However, Lee et al. (2018) reference an earlier tool that has source code available, but
the improved tool they themselves created is not available in source code form. Though,
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there are existing tools, they are proprietary. An example of this is that Ciriello et al.
(2013) present an approach where a static analysis tool is automatically ran on committed
code on a server. Then the generated reports from the long tool runs, over the weekend,
are delivered to the developers. This is an example of how the tool can be incorporated
into a workflow. Unfortunately, the tool, C++test by Parasoft, they used is proprietary.
Ciriello et al. (2013) describe the tool as aiding developers prevent software defects by
utilising rules that are tuned to find code patterns that lead to problems. As a proprietary
tool, it’s impossible to say what approaches are used by it and thus it is not possible to use
their results in building a base for future research. In their tests, 14% of reported issues
were false positives.

The tool presented by Lee et al. (2018) is available, but only in binary form with no source
code easily findable. Lee et al. (2018) mentions LeakFix tool that has a similar goal as
their tool and that has source code available. It is even quite recent with the source code
dating only back to 2015. However, the setup process requiring building their modified
source version of an outdated compiler makes this less useful.

The compiler for memory safe C developed by Oiwa (2009) is available but the last update
to the project has been in 2010 and it thus depends on outdated outside libraries. I was
unable to build this program due to the Bohm garbage collector not being detected by
the configure script, likely due to the version I downloaded being too new. It is probably
possible to update the code to work again, but it may take some considerate amount of
work. Alternative outdated versions of the required libraries might allow building the
software. Though even then the compiler is outdated as multiple new C standards have
been published since its last update.

Sun et al. (2018) say that in their experience existing static analysis tools, that collect
information from scanning source code, are lacking in accuracy and efficiency. Kroes et
al. (2018) agree that overheads caused by existing tools are unacceptable. They also say
that the existing tools suffer from poor compatibility. This is a huge problem, as mentioned
earlier, that low accuracy results in a lot of false positives and wastes time of developers.

Grech et al. (2018) mention HeapDL and Tamiflex tools, in addition to the tool developed
in their paper, that implement some static checking for Java programs. These tools were
not researched further as the focus of this thesis is to explore the feasibility of static analysis
mainly for memory unsafe languages.

3.4 Other prior work

In the previous sections only journal articles and scientific conference papers were dis-
cussed. In this section, other prior material that is not as high quality in terms of peer
reviews is discussed. This material was not included in Hyyryldinen (2019) as the litera-
ture search done for that work was limited to articles in Scopus’ database.

Moerman (2018) studied how well various open source static analysis tools performed on
some test programs consisting of quite little source code. The tools they compared where
Clang static analyzer, Infer, Cppcheck, Split, and Frama-C. They found that the best tools
were Clang and Infer, with Frama-C also having quite good issue detection but worse
usability overall than Infer. Many of the problem categories could be correctly detect by
only a couple of the tools, or just one (Moerman, 2018, p. 21). This means that the tools
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have areas that they are good in and others where they are bad at. In addition if better
coverage is wanted, many of the tools would need to be used at the same time. It was also
found that the precision and sensitivity of a tool varies in different test cases, meaning
that the tools are not equally good at finding issues in different circumstances (Moerman,
2018, p. 25). Especially difficult areas for the tools to detect are places where loops contain
writes, there are recursive functions, or global variables are used (Moerman, 2018, p. 25).

The test suite by Moerman (2018) can be used to test how well a static analysis tool can
find problems in a program where all the function arguments can be determined from the
provided code (Moerman, 2018, p. 16) That test suite is also used in this thesis in order
to develop a new static analysis tool and prove that it can find issues in source code. The
test suite contains multiple versions of the same code with very small changes between a
version that has a problem and a correctly behaving version. The test is considered passed
if a tool gives an error for the incorrect version but not for the correct version. The test
suite can also be used without entry points to test if a tool is able to detect that there exists
a set of dangerous inputs for a function. (Moerman, 2018, pp. 11-14, 16.) This makes
it very easy to make a script for running the test suite with different tools, only some
logic is needed to detect that the tool does not issue errors or warnings for the correct
version but does issue warnings for the incorrect version. The existing test suite used by
Moerman (2018) is no longer available as the URL provided to download it is no longer
valid. Thus it cannot be used for further testing any tools. The test cases including loops
in the Moerman’s (2018) test suite are more difficult for static analysis tools to correctly
handle (Moerman, 2018, p. 25). So if a tool is able to cope with the harder cases it should
also be able to handle the easier cases.

A point that was mostly overlooked in the other references is that the time it takes for
a tool to run is an important characteristic. If it is very slow to run a tool locally on a
developer’s machine, the feedback cycle will be much slower, which may hinder the usage
of static analysis (Moerman, 2018, p. 4). This also means that the static analysis tools can
make a trade-off between running time and analysis precision (Moerman, 2018, p. 4). For
analysing Gimp 2.8.22 source code, it took Clang only 22 minutes to analyse, for Infer it
took 51 minutes and for Cppcheck it took 106 minutes (Moerman, 2018, p. 31). The latter
of these times start to be very developer flow breaking, and cannot be well incorporated
as part of normal work on the software, instead the tool will need to be run, for example,
by a continuous integration server.

Moerman (2018) tested how well the tools performed by tracking the precision and recall
of the tools in addition to checking how many issues each tool reported. Additionally they
measured the performance of the tools and also the user experience of the tools, properties
like how good the error messages are and what information needs to be passed to the tool.
As part of the user experience, how well the tool can be integrated into a development
workflow was also analysed.

Out of the tools tested by Moerman (2018) 4 have had a recent release. Splint has had not
had a new release since 2007 (Moerman, 2018, p. 9). So similarly to the many other tools
discussed in the previous section is not usable any more. Splint also failed to parse many
included system headers making it impossible to analyse some programs (Moerman, 2018,
p. 19). Because of that and low performance Moerman (2018) skipped running many tests
with Splint. This basically concludes that Splint is unusable for any real world analysis
needs. In the test by Moerman (2018) Clang had issues with detecting problems inside
loops, in addition to not being able to detect buffer overflows at all. These are the most



19

promising places where an addition to Clang could be done to improve its usefulness.
Clang analyzer and Frama-C were selected as the tools for comparing the new tool against
because they had the best issue detection rate in Moerman’s (2018) tests. Both were also
quite easy to get running however I did encounter some usability issues with Frama-C.
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4, Methods

Design science is the research method used in this thesis. How that method was used
in this thesis is covered in this chapter, but first the research question is explained, then a
description of how design science research works is given and then how it was customized
for this thesis is explained.

The main research question is: how can a static analysis tool be created that complements
Clang’s static analyzer in detecting buffer overflows? In order to answer this question
a new tool was created and evaluated. Design science research was selected because the
goal of design science research is to produce new, innovative artifacts as its research output
(Tivari, 2015), that that extend the boundaries of human and organizational capabilities
(Hevner, March, Park, & Ram, 2004). This means that design science lines up nicely with
the goal of making a new static analysis tool as an artifact. Hevner et al. (2004) focuses on
talking about research related to information systems, but their description is extendable
to other types of software as well that design science is applicable to, such as the software
developed in this thesis.

Design science is related to behavioral-science and together they are important in further-
ing what is possible with information systems in terms of increasing the effectiveness and
efficiency of an organization. This is due to information systems being used in organi-
zational contexts, where many human factors need to be taken into account. Behavioral-
science tries to explain these human behaviors, which affect how well an information
system can be implemented. Behavioral-science has its roots in natural science research
methods, whereas the design science paradigm has its roots in engineering. Design sci-
ence research seeks to create innovations that, among other things, define ideas, practices,
and products that aid in the effective use of information systems. While these artifacts
are artificial they are not exempt from natural laws or behavioral theories, meaning the
artifacts’ creation relies on existing theories. (Hevner et al., 2004.)

In design science research, what is meant by artifacts contains many subcategories. These
are constructs, models, methods, and instantiations. Constructs consist of vocabulary and
symbols. Models are abstractions and representations. Methods are algorithms and prac-
tices. Finally, instantiations are implemented systems as well as prototypes. These terms
are used to enable IT researchers and practitioners to understand the problems in develop-
ing information systems as well as to address problems with them. (Hevner et al., 2004.)
The artifact created in this thesis is an instantiation as it is a concrete piece of software.

Design science is followed in this research by following the seven guidelines provided by
Hevner et al. (2004). The guidelines are listed in Table 1. They are explained in the next
paragraphs. After descriptions of the guidelines how the guidelines are followed in this
research is explained.
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Table 1. Design science research guidelines by Hevner et al. (2004)
Guideline 1 | Design as an artifact

Guideline 2 | Problem relevance

Guideline 3 | Design evaluation

Guideline 4 | Research contributions

Guideline 5 | Research rigour

Guideline 6 | Design as a search process

Guideline 7 | Communication of research

Guideline 1, design as an artifact, says that the result of design science research is a pur-
poseful IT artifact, that is created to address an organizational problem. In order for it to
be useful, it must be described effectively so that it can be implemented in an appropriate
way. Here artifact must be one of: a construct, a model, a method, or an instantiation.
Most of the time artifacts are not full-grown information systems used in practice. Instead
they are usually innovations that enable the creation of concrete systems to be used in
practice. (Hevner et al., 2004.)

The second guideline, problem relevance, means that design science research must work
towards the goal of acquiring knowledge that enables the implementation of software so-
lutions to unsolved and important business problems (Hevner et al., 2004.). The results
include a combination of technical, organizational, and people-based artifacts (Hevner et
al., 2004), not just directly the goal-fulfilling results, but also intermediate results.

The third guideline, design evaluation, says that the designed artifact needs to be rigor-
ously demonstrated with well-executed evaluation methods. This is to show the utility,
quality, and efficacy of the artifact. The artifacts should be evaluated in a real business
environment where the environment places constraints on the artifact and integrating it in
the business environment is one evaluation criterion. In the evaluation of IT artifacts, the
following criteria can be used: functionality, completeness, consistency, accuracy, perfor-
mance, reliability, usability, fit with the organization, and other relevant quality attributes.
When appropriate the artifacts can be evaluated mathematically. In an iterative process
the evaluation step provides information back to the construction phase. Once the pro-
duced artifact is evaluated as good enough the development process ends. (Hevner et al.,
2004.)

Guideline 4, research contributions, is about making sure that the performed research
work contributes back to the knowledge base. There are three ways that a design science
research contributes back. The first is through the designed artifact, which is the most
common way. The artifact itself, when it enables new solutions, contributes knowledge.
The second way is by creating foundations in the form of constructs, models, methods,
or instantiations, that extend the existing foundations. The third way is through the de-
velopment and evaluation of methodologies, by for example developing new evaluation
metrics for design science to use. (Hevner et al., 2004.)

The fifth guideline, research rigour, is about applying rigorous methods both in the con-
struction as well as evaluation of the designed artifact. This can for example be in the form
of mathematical formalism when describing the created artifact. In the construction step
the rigour is about assessing the artifact in respect to the applicability and generalizability
of the artifact. Though, rigour should not be emphasised too much as it can reduce the rel-
evance of the research, but it is necessary for IS research to be both rigorous and relevant.
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Rigour is derived from the effective use of the knowledge base, by using the theoretical
foundations and research methodologies. In evaluating the artifact rigour is about making
sure the evaluated performance metrics is appropriate. (Hevner et al., 2004.)

The sixth guideline, design as a research process, says that design science research is
inherently iterative. It is not possible to make the perfect design in one go. Instead the
design should be iteratively improved, it’s a search process to find an effective solution.
Simplifications of the problem can be used to first create a solution that is then improved.
The problem can also be split into smaller problems that are solved one at a time. In design
science, due to the complex nature of the problems, it is not possible to envision all the
possible solutions, rather finding a solution needs to be approached as a process building
towards a solution. (Hevner et al., 2004.)

The seventh and final guideline, the communication of research, is a guideline for how to
report the done research. Results in design science need to be presented both to technology-
oriented and management-oriented people. The technical people need enough details to
implement the presented artifact in their organizational context, if the research is valid for
their context. This allows practitioners to benefit from the research and other researchers
to build on top of the existing research. Management people need enough details to deter-
mine whether their organization should use resources to construct or purchase the artifact.
For this audience design science research should focus on reporting on the required knowl-
edge to effectively apply the artifact, more than describing the details of the artifact. One
way to achieve this communication to managerial audiences is to present these details in
a well-organized appendix. (Hevner et al., 2004.)

Besides the guidelines, the other important part of design science research is the research
framework, that provides context for the research. An overview of this framework is
shown in Figure 1. Hevner et al. (2004) say that the framework they present is important,
because it represents a feedback loop that allows new ideas to flow back into design sci-
ence research. This is, according to them, very important in enabling further innovations
in the design science field, because information system research is at the intersection of
people, organizations, and technology. Behavioral-science research produces theories that
seek to predict or explain what happens when artifacts are used. These predictions have
mainly been done on instantiation artifacts, concrete systems, but the methods could also
be applied to other artifacts as well, for example model artifacts. (Hevner et al., 2004.)

The first feedback loop in Figure 1 goes from the environment to the research and back.
The environment defines the problem space, and in information system research it consists
of people, organizations, and their existing and planned technologies (Hevner et al., 2004).
The information coming in from the environment to the research are the business needs,
what is needed in the industry. They are used to explain the relevance of the research
(Hevner et al., 2004.), so that the research is not exploring some totally random topic that
has no real world relevance. This is included in the framework in order to ensure that
the research has utility (Hevner et al., 2004). The design science research contributes
back to the environment when the results of the research are applied in the environment.
Once implemented, the experiences from that feed back into the knowledge base as well
as practice (Hevner et al., 2004).

The second feedback loop goes from the knowledge base, the existing literature, to the re-
search and then back. The previous work is used to take advantage of in future research, for
example by using existing methodologies or building on top of existing artifacts (Hevner
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Figure 1. Design science research framework as presented by Hevner, March, Park, and
Ram (2004), with slight formatting changes to fit.

et al.,, 2004). When the existing theories and methodologies are taken into account, it
brings rigour into the new research. The completed design science research then con-
tributes back to the knowledge base when the results are communicated back, for example
in the form of an article. In design science research the quality of artifacts is most often
verified with computational or mathematical methods, but empirical techniques are also
sometimes employed. (Hevner et al., 2004.)

Inside the research process there is also a loop, where successive versions of the artifacts
or theories are created, and then they are evaluated. This is so that weaknesses in the
artifacts can be identified and improved on (Hevner et al., 2004). Then based on the
evaluation a new version of the artifact is created. So this is very similar to iteratively
building software.

In the early stages of a discipline or with significant differences in the environment, cre-
ating new artifacts relies much more on creativity as well as trial-and-error than existing
knowledge. Once design science research has resulted in best practices being contributed
to the knowledge base, the system building becomes a routine application of the knowl-
edge, to known problems. This is why straight up implementing a new system is not
considered research. Whereas design science research addresses important unsolved prob-
lems, with new solutions, or improves existing solutions in some significant way. (Hevner
et al., 2004.).

The framework presented by Hevner et al. (2004), as shown in Figure 1, was modified to
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Figure 2. Modified design science research framework adapted from Hevner, March,
Park, and Ram (2004)

fit this research better. The modified framework overview is shown in Figure 2. The main
difference is that the environment part is changed. In the model by Hevner et al. (2004) the
environment contains the context and provides the problems for study, that are related to
people, organizations, and technology, forming a feedback loop with the research. In the
modified model, this research did not directly interact with the environment. Instead this
research only previous research was taken into account. No businesses were cooperated
with to gather data from the field. Instead problems identified in the literature review are
used as the justification for the artifact created in this thesis. This thesis contributes to the
knowledge base of research by communicating how the new tool was designed, what it
can do, and findings from the process of developing the tool. So the other feedback loop
with research is followed and just the feedback loop with the environment is altered to be
through the knowledge base.

The fist guideline, designing as an artifact, is followed by this thesis presenting an in-
stantiation, the tool, and also a description of the tool in the form of a model. Including
these parts will satisfy the requirement of designing as an artifact. The second guideline
about relevance is fulfilled by the referenced earlier work used as the basis for this thesis.
The third guideline about evaluation is followed in Chapter 6 where the created tool is
evaluated using existing static analysis test cases against other static analysis tools.

The fourth guideline is followed in the last two chapters where the research contributions
of this thesis are discussed. The fifth guideline was taken into account while developing
the tool by keeping applicability and generalizability in mind. Also related to this the per-
formance of the new tool was evaluated with benchmarks in Chapter 6 as well as with the
test cases used to develop the tool. The new tool was developed iteratively by expanding
the number of successful test cases one by one, while making sure the existing ones did
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not break, in order to gradually improve the effectiveness of the tool. This fulfils the sixth
guideline. The seventh and final guideline is fulfilled by the existence of this thesis which
serves as the method this performed research is communicated.

Additional literature for this thesis, on top of the literature found for Hyyryldinen (2019),
were mainly found when searching for information about existing static analysis tools and
especially when searching for information related to Clang analyzer. Moerman (2018)
was found by searching “c static analysis performance test suite” on Google.
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5. New Static Analyser

In this chapter, the design of the new tool is discussed as well as how it was tested. In the
next chapter, the performance of the tool is evaluated. The tool developed in this thesis
has been named Static Memory Analyser for C++ (SMACPP) and will be referred to by
that name in this chapter. Despite the name, the tool is only used on C code because that
is what the used test cases consist of.

5.1 Goals

This section outlines the goals that were set for the new tool to achieve.

The primary goal of the new tool is that, it needs to detect memory related issues in a
certain context. The context is that it needs to use static analysis on C code and detect
problems that Clang’s static analyzer cannot detect. The tool also needs to be open source
in order to be available for further development by others, unlike many of the previous
literature that do not give their source code away. Specifically, buffer overflows are the
types of issues to be found, as Clang’s analyzer cannot detect even very simple cases,
which turned out to be easy to handle when developing the new tool.

Currently, Clang’s own analyser cannot detect even simple buffer overflow problems, but
this should be improved by making the new tool be able to detect issues that Clang cannot.
So the requirement is to make a complementary tool to Clang so that the combined use
of both tools can detect additional issues, but should not increase false positives as that
decreases the utility. One more requirement for the new tool is that it should be easy to
incorporate in existing workflows so that it is useful in practice.

What was not considered a requirement, was making sure the tool is forwards and back-
wards compatible with different Clang versions. Optimally a production ready tool would
be made so that it can work with multiple different Clang versions, but currently the new
tool was made to work with just the one Clang version it was developed against. In fact
it turned out that when updating Clang to a newer major version some code changes were
needed to make the tool compile again. Clang documentation says that the Clang tool API
is made to be more stable, however that does not allow the same kind of integration and
features as the plugin approach, so it was not used.

5.2 Background

This section provides background information on the concepts and technologies that are
useful in understanding the next section, the design of the new tool.

Clang is a compiler for C and C++. It is open source and it even provides some facilities
for developing software that uses Clang functionality like a library. It can for example help



27

with parsing source code correctly in order to make it easier to implement tools that need
to understand a language that Clang can compile. Clang is based on the LLVM project,
which provides the actual machine code generation and low level optimization. So in
terms of compiler terminology this makes Clang a frontend for LLVM adding support for
additional input languages to it. In this thesis Clang is used to help in parsing the source
code as there would be much more work to make a static analysis tool if you also need to
write the source code parser as well, instead of using an existing parser.

The parsed form available from Clang is called an abstract syntax tree (AST), it is an
abstraction of the source code. See Appendix B for an example of the kind of AST that
Clang creates. In a compiler, the parsing phase converts a stream of tokens, derived from
the source code, into a parse tree (Safonov, 2010, Chapter 4). The AST is a tree structure
where parse tree constructs are replaced with higher level constructs omitting unnecessary
lower level details, and capturing semantics to make later operations in the compiler easier
(Safonov, 2010, Chapter 4). While Clang’s AST is a higher level abstraction compared
with source code, it is still missing most of the language semantic analysis, meaning that
the AST does not fully provide information like which variables are referenced where,
this is left up to the new tool for deciphering the semantics of the code represented by the
AST. However, the AST does contain some semantic information. It would have been
nice to be able to get this semantic analysis from Clang, but that did not seem possible,
thus SMACPP uses the AST from Clang, and implements the semantic analysis itself. The
Clang AST, for example, does not include variable scope information.

Test driven development (TDD) is a development approach where test cases are written
before the code. A cycle in TDD starts by selecting and understanding a requirement and
writing a test for it that can fail (Madeyski & Kawalerowicz, 2013). After writing just the
test cases, it is checked that the test cases do not pass. Then the actual code to make the
test pass is written. Only enough code should be written so that the tests turn from failing
to passing. After that new tests need to be written and the cycle repeated. This means that
no code should be written before there is a failing test. The effect is that the tests drive
the development process (Madeyski & Kawalerowicz, 2013). When developing this new
tool, the development was driven forward by implementing code to pass one new test case
at a time. It could be argued that the test cases were too big, because a lot of code needed to
be written to pass each additional test, and so it can be argued that TDD methodology was
not followed properly. However, the tests did still drive the features that were developed
for the tool, thus it can be argued that the spirit of TDD was followed.

5.3 Design

SMACPP is not designed to be a standalone tool for all static analysis needs, instead it is
designed to be complementary to Clang’s static analyzer. A full integration is not provided
in the implementation so any build scripts will need to run the two tools separately in order
to get coverage for the different issues that they detect. It would be quite simple to make a
wrapper that runs both Clang analyzer and SMACPP with a single command. A slightly
more involved solution would be to make SMACPP run Clang static analyzer functionality
by directly calling the code implementing that functionality.

SMACPP is implemented as a plugin for Clang. This makes parsing the source code really
simple as Clang handles parsing the source code, handling C and C++ code, and building
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an abstract syntax tree (AST). The AST is used as the starting point of the new analysis
tool. The first part of the analysis is implemented as Clang AST visitors'. The visitors
build a higher level abstraction of the program only keeping operations important for the
analysis phase such as variable assignments, array access, function calls, and conditionals.
Then finally this higher level representation is executed in a symbolic fashion checking
for unsafe operations.

The overall architecture of SMACPP is shown in Figure 3 in the form of a UML class di-
agram. Many less significant details have been left out to make the diagram fit on a single
page. The main points of the figure are that the program is split into two major parts: the
parsing of the abstract syntax tree from Clang, and the actual analysis part that uses an
abstraction created by the parsing part. The main class in the analysis part is the Analyzer
class which handles the analysis run and uses the other classes on the analysis side. Many
of the “uses”-type relationships between the classes have been omitted to make the fig-
ure clearer. In the parsing part the most important class is the CodeBlockBuildingVisitor
that handles creating the CodeBlock objects by using a lot of recursive visitors that find
the needed information from the abstract syntax tree. These visitors handle building the
program representation that the analysis part uses.

How all the architecture parts interact with each other is described with the help of an
example analysis run in Section 5.5. That section also has a sequence diagram using
the parts shown in Figure 3. There is also a textual walkthrough of how an analysis run
with SMACPP happens, which will hopefully further make it easier to grasp how the tool
works.

At the start of this project making a Clang analyzer plugin was investigated. After a lot of
investigation and being stuck on getting started on implementing the analysis tool, it was
determined that Clang static analyzer plugin API does not provide the required callbacks
in order to allow capturing variable states in order to detect buffer overflows. Granted,
it may be possible that something was overlooked and that it is in fact possible to create
the current SMACPP functionality as a Clang analyzer plugin. This would have many
benefits like likely better Clang AST processing and ready-made conditional expression
handling. This is because the Clang analyzer API does not work on the AST, instead it
has a further level of abstraction on top of it that the analyzer plugins work with. In the
long run, this might be the optimal choice, if it turns out that AST parsing and conditional
expression handling takes a lot of work, which did take quite a big portion of the total
development time.

The development of SMACPP was done iteratively roughly following the principles of
test driven development (TDD). The first few iterations were done with tests to get Clang
to load SMACPP as a plugin and running it. After that was working, focus shifted on
getting the test cases by (Moerman, 2018) working. The first test case to be selected was
“overflow/01_simple_if.c”, because it was found that Clang’s analyzer could not handle
any of the cases in the strings overflow category. It also made sense to start from the
most basic test and go from there. After the first test was passed by SMACPP the next.
These were the next test cases used from the overflow category: “02_simple_if_int1.c”,
“02_simple_if_int2.c”, and “04_simple_switch.c”. A lot of code or changes were needed
to pass each subsequent, selected test case, so it can be argued that TDD was not fully
followed. However the test cases still did direct the development of SMACPP, which is the

1See for example Kanjilal (2017) for a briew introduction to the visitor pattern.
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Figure 3. UML class diagram of SMACPP

most important part of TDD. Development was halted after the fourth test due to the next
test cases needing large changes to SMACPP and support for new language constructs.
One of the big missing features is the ability for functions to return allocated memory,
currently SMACPP does not track this.

The analysis phase of SMACPP is composed of running concrete analysis operations,
which are functions, that are called with certain parameters. The analysis performs dedu-
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plication in order to run each function with the same parameter values only once. This
protects against recursive functions taking forever to analyse. The analysis begins by
adding “main” function to the list of function calls that need to be analysed. This means
that this tool has the same limitation as Frama-C of only working on full programs (Mo-
erman, 2018). It would not take much work to expand the analysis to address this by, for
example, starting analysis from all functions that take no parameters, or perhaps even from
all functions. But in the latter case the analysis would be much more inaccurate, as the
function parameters would all be unknown, and the current analysis is not made to cope
with that well. This kind of change would make the analysis work better when analysing
code libraries.

The AST visiting phase’s job is to turn the AST into a higher level representation that is
used by the actual analysis phase. This representation consists of a few different kinds
of actions like variable state changes, array accesses, and function calls. This translation
decouples the analysis code from Clang’s AST code. This split was made to make the
analyser more resistant to changes in Clang’s source code. It would also be possible to
make different front ends for the analyser that would generate the high level abstraction a
different way. These high level actions are associated with the function they are contained
in. The result of the AST visitor running is an abstract representation of a function from
the source code.

Then these functions represented as a list of actions are collected in a simple database. The
conditional execution information is embedded in these actions. The action’s condition
must be true when the analyser reaches it, in order for the action to be executed. Currently,
the database assumes function names to be unique, which does not apply to C++. This is
one more aspect where further work is needed to fully support analysing C++, but as said
before the test cases only contained C code so this was not a limitation yet. The database
could also be expanded to allow saving the functions in it on disk and loading previously
saved definitions. This would allow the tool to be extended to support analysing programs
consisting of multiple files where function definitions are not visible in all translation units.

The analyser’s symbolic execution works by creating an empty program state for each
function to be analysed. The state is first initialized with the function call parameters, then
the execution starts. The execution goes through all the actions in the function at each step
evaluating the action’s condition and if the condition is true, executing the action. There is
potential for performance improvement here by making sure each action is only checked
once®. Any future static analysis tool writers should take note that this was not a good
design decision and instead the abstract actions should have been formed into a directed
graph structure. In which, the conditionals would control which edges the analysis follows
and which ones it skips. This design would avoid all the known problems with the current
design.

The program state in the analysis phase currently consist of just local variable states. This
variable state representation is able to represent primitive values, like numbers, memory
buffers, and also unknown values. It can also represent variable states that need to be
resolved before being used, the first one of these is a state representing variables being
assigned to each other, in order to allow the analysis to have better branch handling. The
second form is allowing arithmetic operations on two variable states in order to handle

2There is quite likely a bug in the code here if some code inside a conditional statement modifies a variable
part of the condition, the rest of the conditional actions that should have been executed are skipped. The
looked at test cases did not contain this kind of code so this got ignored.
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some basic current variable state dependent calculations. The representation does not
represent the values stored in memory buffers, neither does it represent more complex
values like structs or classes. This leaves potential for conditional expressions that the
analyser cannot understand. There are test cases where modeling the contents of memory
buffers would be needed to pass them.

Also missing from the variable state analysis is aliasing. This means that SMACPP does
not do alias-sensitive analysis. The result of this is that if there are two pointers that refer
to the same memory location, and the value is modified through one, but a conditional
branch reads the value through the other one (Moerman, 2018, pp. 6-7), SMACPP cannot
correctly infer which conditional branch is taken when the program is run. This will lead
to worse analysis when a program is analysed which contains this kind of code. None of
the in-depth looked at test cases contained this type of code.

Much of the design was directed by the test cases that were chosen to be the ones that
SMACPP should be able to handle. Other considerations were largely ignored in the cur-
rent implementation due to limited resources, so that effort could be focused on getting
results in the form of concrete test cases where SMACPP performs better than Clang’s
analyser, by finding problems in code that Clang cannot correctly handle. Most of these
cases were ones where a buffer overflow happened. While the cases were quite simple
Clang could not handle them, meaning that Clang analyzer likely has no representation of
how big buffers variables reference. This was the main point to implement in SMACPP
and add checks for seeing if buffers are accessed with too large indices.

5.4 Implementation and testing

The new tool (SMACPP) was implemented in C++ and Clang APIs were leveraged where
possible. This was done to reduce the amount of programming needed. However the
usage of the Clang C++ API may need changes to SMACPP when new versions of Clang
are released. So far SMACPP has been compiled against Clang 7.0.0 and 8.0.0 with only
a couple minor changes needed, so while the API is not guaranteed to be stable, in practice
it seems quite stable. This is good news for the longevity of the tool that it can be updated
quite easily for new Clang versions. The actual tool part is contained in a shared library
that Clang can be instructed to load as a plugin when compiling source code. There is a
helper wrapper that automatically adds the plugin loading flags and forwards are the rest
of the parameters to Clang. This wrapper can be used, for example, by using environment
variables to instruct build tools to use the wrapper as the compiler.

SMACPP was developed iteratively, almost in a Test Driven Development way, imple-
menting the needed functionality to pass one of Moerman’s (2018) tests at a time. These
tests are available on Github3. Focus was given to the tests that Clang’s static analyzer
could not pass. Looking at Clang’s generated AST for each of the tests was very helpful
in designing how the AST visiting should work and for determining what kind of infor-
mation is available to it. These tests guided the development towards making as many of
the tests pass as possible, while avoiding writing too overspecific detections that would
not be useful in a slightly different version of the test case that might appear in real world
code.

3https:/github.com/JMoerman/JM2018TS
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The implementation of SMACPP along with test scripts and a script for downloading
the test data is on Github*. The repository contains instructions for compiling. After
compiling, the test cases can be run with the “Benchmark.rb” script. The code is licensed
under the MIT license in order to give maximum freedom to anyone who wants to build
on top of the current code.

5.5 Example analysis run

This section uses an example analysis run with SMACPP to explain how the analysis
works. The code used for the example run is from the test case set used to develop
SMACPP.

The following source code was used in the example run:

#include <stdio.h>

#include <stdbool.h>
#include <string.h>
#include ”string_overflow.h”

void string_overflow_if_else(bool a, bool b) {
char long_string[] = ”this is a long string?”;
char short_string[] = ”short string”;
char* to_print;

if (a) {

to_print = long_string;
} else {

to_print = short_string;
}
if (b) {

to_print[11] = ’7?7;
} else {

to_print[13] = ’?7;
}

printf (”%s\n”, to_print);
}

int main() {
string_overflow_if_else (true, true); /= OK =/
string_overflow_if_else(false, false); /« DANGER =/
string_overflow_if_else(false, true); /% OK %/

return 1;

“https://github.com/hhyyrylainen/smacpp
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The source code is copyright (c) 2018 Jonathan Moerman®. The AST generated by Clang
from that code is included in Appendix B.

The analysis was run with the following command:

smacpp —Xclang —plugin—arg—smacpp —Xclang —smacpp—debug —o /dev/
null —I test/data/JM2018TS/strings/overflow test/data/
JM2018TS/strings /overflow/test_incorrect/01 _simple_if.c

This is not much different from a normal SMACPP run, other than the fact that the debug
flag is passed to SMACPP and the compiler output is not written to a file, instead it is dis-
carded. This means that SMACPP can be run on a program while it is also built normally
at the same time, if the compiler output was not discarded. The SMACPP executable here
manages running Clang with the additional parameters needed to load the SMACPP Clang
plugin file.
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Figure 4. UML sequence diagram showing the main flow of a SMACPP analysis run

The overall flow of execution is shown in Figure 4 in the form of a sequence diagram.
Some details have been omitted to keep the diagram easier to read. The run begins by
Clang doing its thing and then at some point calling ASTAction in SMACPP to parse the
extra arguments for the plugin. After that Clang calls the method CreateASTConsumer,
which creates MainASTConsumer and passes that back to Clang. Now when Clang fin-
ishes parsing a translation unit, the SMACPP AST consumer is given the AST of the
translation unit, then the parsing phase of SMACPP starts.

What happens in the parsing phase is that MainASTConsumer uses quite a few recursive
AST visitors, the details of which is omitted from the diagram to keep it readable, to build
CodeBlocks out of all the functions in the translation unit. The finished CodeBlocks are
stored in a BlockRegistry class instance. After all the CodeBlocks are created the parsing
phase is complete. Now the CodeBlocks contain an abstraction of what the program does,
in the form of derived classes of ProcessedAction. At this point in debug mode SMACPP
prints out the contents of the CodeBlocks as follows:

>The code is licensed under the MIT license, see https://github.com/JMoerman/JM2018TS/blob/master/
LICENSE for the license details, they are omitted here to conserve space
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completed block: CodeBlock(string_overflow_if_else):
params: a b

actions:

tautology VarDeclared long_string value: buffer of size 21
tautology VarDeclared short_string value: buffer of size 12
tautology VarDeclared to_print value: unknown

a != 0 VarAssigned to_print = assign from long_string

a == 0 VarAssigned to_print = assign from short_string

b != 0 ArraylndexAccess to_print[11]

b == 0 ArraylndexAccess to_print[13]

tautology FunctionCall printf (unknown, unknown)

block end

completed block: CodeBlock(main):

params :

actions:

tautology FunctionCall string_overflow_if_else (1, 1)
tautology FunctionCall string_overflow_if_else (0, 0)
tautology FunctionCall string_overflow_if_else (0, 1)
block end

As can be seen there is one CodeBlock for each of the functions defined in the C code. The
actions within the blocks first have a condition that must pass for them to be evaluated. In
the end this turned out to be a design mistake, which should be avoided in the future when
making static analysis tools. Trees of actions, with conditions determining which branches
are executed, seem a much more viable way to implement this kind of analysis. To the
right of the condition is the type of the action as well as the parameters of the action. From
the CodeBlock for the function “string_overflow_if_else” it can be seen that depending
on the values of a and b different variables are assigned as well as different array indices
are accessed.

After the parsing phase, the analysis phase starts by the MainASTConsumer calling the
PerformAnalysis method on an instance of the Analyzer. Now the analyser builds an
AnalysisOperation from the entrypoint CodeBlock and puts it in a queue. Then the anal-
yser calls PerformAnalysisOperation on itself with the first queue item until the queue is
empty. The AnalysisOperations can queue more operations if there is a function call in
them that has not been checked before. This is done with the call to DoneAnalysisRegistry
that checks if the function with the given parameters have been analysed yet or not. The
following is the output of the analyser printing each step that it executed:

1 analysis at step: tautology FunctionCall
string_overflow_if_else (1, 1)

2 analysis at step: tautology FunctionCall
string_overflow_if_else (0, 0)

3 analysis at step: tautology FunctionCall
string_overflow_if_else (0, 1)

4 analysis at step: tautology VarDeclared long_string value:
buffer of size 21

5 analysis at step: tautology VarDeclared short_string value:
buffer of size 12

6 analysis at step: tautology VarDeclared to_print value:
unknown

7 analysis at step: a != 0 VarAssigned to_print = assign from
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long_string

8 analysis at step: b !'= 0 ArraylndexAccess to_print[11]
9 analysis at step: tautology FunctionCall printf (unknown,
unknown)

10 analysis at step: tautology VarDeclared long_string value:
buffer of size 21

11 analysis at step: tautology VarDeclared short_string value:
buffer of size 12

12 analysis at step: tautology VarDeclared to_print value:
unknown

13 analysis at step: a == 0 VarAssigned to_print = assign from
short_string

14 analysis at step: b == 0 ArrayIndexAccess to_print[13]

15 analysis at step: tautology FunctionCall printf (unknown,
unknown)

16 analysis at step: tautology VarDeclared long_string value:
buffer of size 21

17 analysis at step: tautology VarDeclared short_string value:
buffer of size 12

18 analysis at step: tautology VarDeclared to_print value:
unknown

19 analysis at step: a == 0 VarAssigned to_print = assign from
short_string

20 analysis at step: b != 0 ArraylndexAccess to_print[11]

21 analysis at step: tautology FunctionCall printf (unknown,
unknown)

The analysis steps have been numbered here to make it easier to reference them. The
analysis starts from the main function. Here analysis steps 1-3 are the actions contained
in the CodeBlock for main. These operations queue 3 additional analysis operations that
are ran starting from step 4. Each of the three function calls begins with 2 steps, 4 and
5, for declaring the short and long string variables, as well as the variable that will point
to either one of the strings, which is first declared in step 4. Then there are two steps, 7
and 8, which first copy a pointer, either to the short or long string to a variable, and then
an index is accessed through that variable. Under certain conditions, this leads to a buffer
overflow. Finally there is step 9, which is a function call to “printf”, which is not very
interesting regarding the analysis in this case.

This sequence of steps repeats mostly the same two more times, with the steps that have
conditions on them changing between the function calls. The second call begins at step
10 and the third call begins at step 16. In this example step 14 discovers the buffer over-
flow error present in the analysed code. This is because in step 13 the short variable was
assigned to the pointer that step 14 uses.

After the analysis is done, the found problems are printed:

test/data/JM2018TS/strings /overflow/test_incorrect/01 _simple_if.
c:21:9: error: Buffer overflow: buffer size: 12 used index:
13
to_print[13] = ’?7;
A
1 error generated.
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The output takes advantage of the error reporting framework built into Clang in order
to also point at the rough location the error occurred. Here the location is pointing to
the start of the variable name where the buffer overflow happens, but with a little more
work the location could be made more accurately to point to the incorrect index number
in the source code. In the case that the SMACPP Clang plugin reports errors, Clang will
terminate the compilation process, and will not produce an executable as the output. This
is similar to errors found by Clang itself. Because of this, it is very useful to hook into the
Clang error reporting framework when creating a static analysis tool like this.
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0. Evaluation

In this chapter, the performance of SMACPP against Clang’s static analyzer and Frama-C
is evaluated. The evaluation is done with two test sets Moerman’s (2018) and Juliet test
suite v1.3 for C/C++1.

Moerman’s (2018) test suite was selected as it was used in their article to compare other
open source static analysis tools. It was also very simple to use. Definitely a lot of effort
was put into making it as easy as possible to automate running it. The Juliet test suite
was selected because it came up in searches as one of the biggest test suites around. It
was additionally relatively easy to setup automated tests with. Some corners were cut,
though, with the automated runner ignoring the provided list of errors that came with the
test suite that also lists the line numbers the problems occur at. Only the buffer overflow
related tests, that were not Windows only, were selected from the Juliet test suite as run-
ning the whole suite would have taken a lot of computing time time and it would not have
given any extra insight to how well SMACPP performs, as it is meant as a buffer over-
flow detector. The selected Juliet test case sets are: CWE126_Buffer Overread/s01 and
CWE126_Buffer Overread/s02 In total these include 1836 test cases.

Table 2 contains a summary of the ran test cases with the number of passed tests for each
tool, as well as the total time in seconds it took to run the tool on that test case’s files. The
table contains the results of a single run, based on a few runs the times do not vary a lot
between runs so the results of a single run are given here, instead of an average over many
runs. More detailed test results for Moerman’s (2018) test cases is available in Appendix A
it shows the results for the individual tests for all the tested tools.

From Table 2, it can be seen that Clang was the fastest tool to run in all of the cases as
well as the one passing most test cases. Second in speed was SMACPP taking about 50%
more time than Clang. And the slowest was Frama-C taking 50-100% more time than
SMACPP. Frama-C was the tool with the second most passed test cases, with SMACPP
only passing the test cases that were explicitly used in its development. It would have
been good if SMACPP had passed some tests it was not explicitly designed for, but that
did not happen. From a quick look at the SMACPP’s failed tests in Moerman’s (2018) test
cases, it would seem that the tests use different C language features, or features in a more
advanced way. This means that it is not surprising that SMACPP did not pass those tests.
The tool would need more work done on it to take into account the new features in order
to pass more tests.

False positives were detected by the tool emitting an error both for the correct code and
incorrect variant. Due to this way of detecting false positives a few false positives from
Frama-C are not included in these results. This is because in some tests Frama-C detected
an error only in the correct code, meaning that it was counted as a false negative. A
few of the false positives of Clang and SMACPP in the Juliet test cases were manually
investigated and all of the Clang warnings were unused values and all of the checked

Uhttps://samate.nist.gov/SRD/testsuite.php
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SMACPP errors were reports of a missing “main” function. It seems that the Juliet test
cases are not as uniform as they should be for running automated tests the way these results
were obtained. The tests are also unsuitable for static analysis tools that require checking
complete programs, ones that start from a “main” function. Frama-C was still the tool
with most false positives generated, and all of the manually checked ones were true false
positives were Frama-C incorrectly flagged some operation unsafe. Though, not many
analysis results were manually checked, as such these conclusions may not hold for all, or
even most, of the failed test cases.

Table 2. Summary of test results

| Clang | SMACPP | SMACPP & Clang | Frama-C
Moerman’s (2018) test cases
Passed tests 55 4 59 24
False positives 0 0 0 10
False negatives 87 138 83 108
Run time (s) 32.1 42.1 77.9 99.2
Juliet test cases

Passed tests 0 0 0 0
False positives 339 695 695 768
False negatives 1497 1141 1141 1068
Run time (s) 434.2 605.1 927.2 907.1

In Table 2 the column “SMACPP & Clang” has the results for what would happen if
Clang’s analyzer and SMACPP were run on the same test case and their reports combined.
As can be seen from the first test case results, this works well in increasing the correctly
detected issues without reporting any false positives. Also the combined run time is still
a little bit lower than Frama-C in the first test cases. In the Juliet test cases, the combined
results were not as good due to the previously talked about “false positives” from SMACPP
when ran on many of the test cases’ files. In this test case, the combined result was also
a tiny bit slower in total run time than Frama-C. However, the run times are very close to
each other so there is not a significant difference in the time it takes to run the analysis.

Regarding the combined results, it should be noted that both SMACPP and Clang’s ana-
lyzer use Clang to parse the source code. I have not looked through the analyzer source
code, but presumably it uses the Clang generated AST, similarly to SMACPP. If this is
the case, then this combined approach can be sped up, perhaps even very significantly,
to make it more useful, and faster than Frama-C. Further research is needed to determine
if this is the case or not. It is possible to run the SMACPP analysis as part of a normal
Clang compile, because it is a Clang plugin, which means that if only SMACPP is used
for analysis, it can take advantage of the AST tree generated during normal compilation
of software saving some time.

When comparing the tools based on which tests they passed, SMACPP performs as planned:
it handles cases that Clang fails, and does not pass cases that Clang passes. See Ap-
pendix A for these results. From that data it can also be seen that Frama-C passes all of
the tests that SMACPP passes. But many, many test cases that Clang passes Frama-C does
not pass. However, Frama-C also passes many test cases that neither Clang nor SMACPP
pass. Frama-C has a high rate of false positives, as discussed previously, which makes it
less suitable for being combined with Clang than the combination of SMACPP and Clang.
This is because false positives clutter the output of static analysis tools and make it harder
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to find real problems.

SMACPP did not pass any of the tests containing loops in the test cases. Only Frama-C
were able to pass some of these test cases. As a positive note, none of the tested tools got
stuck when trying to analyse a test case with a loop in it. None of the tools got stuck in
recursion either. So all tools were able to be run on all of the test files without the tools
breaking, but as already covered many test cases were not passed by the tools.

After investigating why none of the tools were able to pass any Juliet tests, it was discov-
ered that the likely reason was that they heavily used “malloc” and related functions. At
least that was the most obvious difference. So it seems that none of the tools? implement
handling of the standard memory allocation functions and track how big memory areas
they allocate. SMACPP could be further developed to handle these test cases with two
changes: support for keeping track of function return values, and a database of standard
functions. That way it could detect that “malloc” creates a new buffer of size that is given
as the parameter. Then it would be possible to do bounds checking for it.

2This is a known limitation of SMACPP



40

7. Discussion

In this chapter the findings of this thesis are compared with the prior research and the
research question is answered. Theoretical implications are also presented.

7.1 Findings

The goal of this research was to find out how it is possible to create a complementary
static analysis tool for Clang’s static analyzer that can detect buffer overflows. This was
accomplished, as was discussed in Chapter 6. The new developed tool can only detect
memory leaks in a few cases as it is still quite simple and does not handle many Clang’s
AST nodes. This means that on its own it is not very useful, but as an addition to Clang’s
static analyzer it increases the number of faults that they can detect, without introducing
any false positives in the test set. This is good as with many false positives developers
may not feel like fixing the problems reported by a tool (Hovemeyer et al., 2005). So
the only downside to running it along Clang’s analyzer is that it takes extra time to run
in that case as both SMACPP and Clang’s analyzer will parse the source code, in effect
increasing the running time of the combined approach unnecessarily. SMACPP detected
some false positives in the Juliet test suite, however the manually checked ones of these
were related to missing “main” function, meaning that the actual static analysis logic, once
an entrypoint is found, may not have resulted in any false positives. But to confirm that
all of the false positives would need to be manually checked, which would require wading
through a lot of program output.

While developing the new tool some false starts and design mistakes were made. They
are presented here in the hope that they are useful for future static analysis tool develop-
ers. The first of these findings is that Clang’s static analyzer framework is missing some
callbacks for variable operations, meaning that it is not possible to currently write a static
analyser plugin that can accurately track what sized buffers variables are pointing to. This
is the reason SMACPP could not be implemented as a Clang analyzer plugin, which would
have made the implementation easier. The made design mistake, in the design of the new
tool, was that each abstracted high level operation was associated with a condition that the
program state needed to match for the action to be executed when analysing. This was a
mistake as code inside conditionals modifying the conditions now result in incorrect anal-
ysis. Additionally the performance impact of constantly evaluating the same conditions
might be significant. One positive finding is that Clang’s APIs were mostly easy to work
with, even with the limited number of tutorials and examples available. One thing that
was left unclear is that if it would have been possible to implement the variable evaluation
and computation using code from Clang, currently SMACPP implements its own variable
value evaluation code as well as condition checking code.

The new developed static analysis tool is pretty basic currently, but it can detect some
issues. This is a somewhat similar finding to one of the findings of Hovemeyer et al.
(2005), who found that even a simple static analysis tool can be very useful in software
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development. This means that it is not necessary to make a very complex tool before it
can be useful. Much of the previous literature focused on the importance of using static
analysis, for example Sokolov (2007) and Black (2012). Even in this basic form, the new
tool could be considered a useful addition to Clang’s analyzer, as it did not add any false
positives in the first test case set. It could be a useful addition to a code analysis pipeline.
Useful static analysis tools need to be able to be incorporated into software development
workflows (Ciriello et al., 2013; Dhurjati et al., 2005; Sokolov, 2007). Because of this,
a component was included in the new tool, that can be used to run the analysis while
compiling a software project, by pointing the project generation tool to use the compiler
wrapper component of the new tool. This makes it possible to even fail the compilation
of the software due to the analysis finding errors. This is beneficial, as some errors can be
caught before even running the software (Das, 2006).

The research question of how can a static analysis tool be created that finds memory us-
age related issues that Clang’s analyzer cannot detect, is answered by this thesis. This text
itself serves as the explanation of how such a new tool was designed, built, and tested.
Additional insights that will perhaps be useful people building a similar tool are also in-
cluded. This thesis focuses on a new tool that was built using existing libraries from Clang,
so a more general form of the question of how in general to build a static analysis tool,
was not covered.

7.2 Implications

The most major implications of this research are that even a simple extra static analysis
checks increase the detected true positives of Clang’s static analysis without introducing
a lot of false positives. The possibility of incorporating the checks from SMACPP into
Clang analyzer should be investigated. It likely will not be completely straightforward to
include the checks as it was found out that the current SMACPP functionality could not
be implemented using the existing Clang static analysis plugin framework. But if these
checks could be incorporated, even in an experimental form, it would increase the useful-
ness of Clang’s analyzer. While not exactly a mature tool, the developed tool could have
some industry implications. It could perhaps be evaluated or used in an industry setting
to find out how effective it is on real world code. People interested in the development
of their own static analysis tool, might also find the tool interesting to study or use it as a
basis for tools tailored to their needs.

For academia, the implications of this research are that there is a lot of existing work re-
garding static analysers, but existing open source tools are lacking. That is a big drawback
as software practitioners need practical tools they can incorporate in their workflows in
order to gain benefits from static analysis, which as explored in existing literature are nu-
merous. Presumably researchers would also benefit from open source implementations
that they could use as bases for new work, so that they would not have to rewrite the
common static analysis tool parts repeatedly wasting effort. The new tool, SMACPP, de-
veloped in this thesis is made open source in the hopes that it can help in future static
analysis research efforts.
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8. Conclusion

In this chapter, the results and contributions of this thesis are summarised, limitations are
discussed and a possible direction for future research is presented.

8.1 What was learned

From the literature review it was learned that, while quite a bit of research has been done
on the theoretical basis for static analysis, there is lack of usable tools (Hyyryldinen, 2019).
With much of the existing literature not publishing their developed tools, for example (Lee
etal., 2018), or the published tools becoming outdated due to lack of updates (Oiwa, 2009).
However, the existing open source tools can be useful in detecting some problems, but they
have still room for improvement (Moerman, 2018). In this thesis one such improvement
was developed showing that it is possible to make such an improvement and it is not
extremely difficult to do so. This thesis also responded to the research question how it is
possible to make such a tool, by sharing the design of the tool as well as some experiences
in building it. The source code of the developed tool is available and can be used as a
reference on how it works.

8.2 Limitations

A huge limitation of this work is that the developed static analysis tool is still basic and
likely not very useful in real world development. More work is needed to be done on the
tool before it can be declared as a useful, mature tool for software engineers to use help
alleviate all of the problems that were identified by the previous literature, that are caused
by not using static analysis. In its current form, the tool has only a little bit of potential in
helping in real world software development. Another big limitation is that one of the test
case sets used for evaluating the developed tool was also used in the development process
of the tool, in a test driven development fashion. This makes the evaluation of the created
tool less comprehensive.

One more limitation is the lack of industry partners. This is related to the modified de-
sign science methodology framework used in this thesis. The original framework was
by Hevner et al. (2004), which included a feedback loop with the industry to better suit
their needs. In this thesis, instead of doing a feedback loop with industry partners, the
previous found literature was used as the basis for the need that the industry has. Already
created static analysis benchmarks were used to evaluate the created artifact in order to
further validate that it was not developed in a vacuum, which is a potential issue without
the feedback loop.
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8.3 Future research

In the future, the tool presented in this thesis, could be further developed in order to make
it a fully fledged, industry ready static analysis tool. The experiences presented in this
thesis could alternatively be used to help making a new static analysis tool from scratch. In
general more design science research should be done on static analysis. Industry partners
should also be incorporated in order to create tools that are proven to be useful in software
development workflows used in the industry. This work can serve as a basis for such
research.
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Table 3. Per test case results for Moerman’s (2018) test cases. The true and false values
are whether the tool passed the test, the failure column contains the reason why

SMACPP failed.
Test case Clang | Frama-C | SMACPP failure
strings overflow 02_simple_if_intl.c | false true true
strings overflow 01_simple_if.c false true true
strings overflow 04_simple_switch.c | false true true
strings overflow 02_simple_if_int2.c | false true true
strings unbounded_copy 02_sim- | false false false false negative
ple_if_intl.c
strings unbounded_copy | false false false false negative
13_loop_for_pointer_arithmetic.c
strings unbounded_copy | false false false false negative
08_loop_for.c
strings unbounded_copy | false false false false negative
14_loop_recursion.c
strings unbounded_copy 01_sim- | false false false false negative
ple_if.c
strings unbounded_copy 04_sim- | false false false false negative
ple_switch.c
strings unbounded_copy 18 _com- | false false false false negative
plex_struct_multiple_methods.c
strings unbounded_copy | false false false false negative
16_misc_pseudo_recursion.c
strings unbounded_copy | false false false false negative
11_loop_while_do_continue.c
strings unbounded_copy | false false false false negative
09_loop_for_complex.c
strings unbounded_copy 06_sim- | false false false false negative
ple_pass_by_reference.c
strings unbounded_copy | false false false false negative
15_loop_recursion_multi.c
strings unbounded_copy 05_sim- | false false false false negative
ple_goto.c
strings unbounded_copy 02_sim- | false false false false negative
ple_if_int2.c
strings unbounded_copy | false false false false negative
12_loop_for_array_branching.c
strings unbounded_copy 19_com- | false false false false negative
plex_refcount.c
strings unbounded_copy | false false false false negative
10_loop_while_continue.c
strings unbounded_copy 03_sim- | false false false false negative

ple_if multi_func.c
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strings unbounded_copy 17_com- | false false false false negative
plex_function_pointers.c

strings unbounded_copy 07_sim- | false false false false negative
ple_cross_file.c

strings overflow | false false false false negative
13_loop_for_pointer_arithmetic.c

strings overflow 08_loop_for.c false true false false negative
strings overflow 14_loop_recursion.c | false false false false negative
strings overflow 18_com- | false true false false negative
plex_struct_multiple_methods.c

strings overflow | false true false false negative
16_misc_pseudo_recursion.c

strings overflow | false true false false negative
11_loop_while_do_continue.c

strings overflow | false true false false negative
09_loop_for_complex.c

strings overflow 06_sim- | false true false false negative
ple_pass_by_reference.c

strings overflow | false false false false negative
15_loop_recursion_multi.c

strings overflow 05_simple_goto.c false false false false negative
strings overflow | false false false false negative
12_loop_for_array_branching.c

strings overflow 19_com- | false true false false negative
plex_refcount.c

strings overflow | false true false false negative
10_loop_while_continue.c

strings overflow 03_sim- | false true false false negative
ple_if_multi_func.c

strings overflow 17_com- | false true false false negative
plex_function_pointers.c

strings overflow 07_sim- | false false false false negative
ple_cross_file.c

memory double free 02 _sim- | true false false false negative
ple_if_intl.c

memory double_free 07_cross_file.c | false false false false negative
memory double_free | false false false false negative
13_loop_for_pointer_arithmetic.c

memory double_free 08_loop_for.c false false false false negative
memory double_free | false false false false negative
14_loop_recursion.c

memory double_free 01_simple_if.c true false false false negative
memory double_free 04_sim- | true false false false negative
ple_switch.c

memory double_free | false false false false negative
15_loop_recursion_multi_alt.c

memory  double_free 18 _com- | true false false false negative
plex_struct_multiple_methods.c

memory double_free | true false false false negative

16_misc_pseudo_recursion.c
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memory double_free | false false false false negative
11_loop_while_do_continue.c

memory double_free | false false false false negative
09_loop_for_complex.c

memory double_free 06_sim- | true false false false negative
ple_pass_by_reference.c

memory double_free | false false false false negative
15_loop_recursion_multi.c

memory double_free | false false false false negative
14_loop_recursion_alt.c

memory double_free 05_sim- | true false false false negative
ple_goto.c

memory  double_free  02_sim- | true false false false negative
ple_if_int2.c

memory double_free | false false false false negative
12_loop_for_array_branching.c

memory  double_free 19 _com- | true false false false negative
plex_refcount.c

memory double_free | false false false false negative
10_loop_while_continue.c

memory double_free 03_sim- | true false false false negative
ple_if_multi_func.c

memory  double_free 17 _com- | true false false false negative
plex_function_pointers.c

memory  access_uninit  02_sim- | true false false false negative
ple_if_intl.c

memory access_uninit | false false false false negative
13_loop_for_pointer_arithmetic.c

memory access_uninit 08_loop_for.c | false false false false negative
memory access_uninit | false false false false negative
14_loop_recursion.c

memory  access_uninit  01_sim- | true false false false negative
ple_if.c

memory  access_uninit  04_sim- | true false false false negative
ple_switch.c

memory access_uninit 18_com- | true false false false negative
plex_struct_multiple_methods.c

memory access_uninit | true false false false negative
16_misc_pseudo_recursion.c

memory access_uninit | false false false false negative
11_loop_while_do_continue.c

memory access_uninit | false false false false negative
09_loop_for_complex.c

memory  access_uninit  06_sim- | true false false false negative
ple_pass_by_reference.c

memory access_uninit | false false false false negative
15_loop_recursion_multi.c

memory  access_uninit  05_sim- | true false false false negative
ple_goto.c

memory  access_uninit  02_sim- | true false false false negative

ple_if_int2.c
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memory access_uninit | false false false false negative
12_loop_for_array_branching.c

memory access_uninit 19_com- | true false false false negative
plex_refcount.c

memory access_uninit | false false false false negative
10_loop_while_continue.c

memory  access_uninit  03_sim- | true false false false negative
ple_if_multi_func.c

memory access_uninit 17_com- | true false false false negative
plex_function_pointers.c

memory  access_uninit 07_sim- | false false false false negative
ple_cross_file.c

memory leak 02_simple_if_intl.c true false false false negative
memory leak 07_cross_file.c false false false false negative
memory leak | false false false false negative
13_loop_for_pointer_arithmetic.c

memory leak 08_loop_for.c false false false false negative
memory leak 14_loop_recursion.c false false false false negative
memory leak 01_simple_if.c true false false false negative
memory leak 04_simple_switch.c true false false false negative
memory leak 18_com- | true false false false negative
plex_struct_multiple_methods.c

memory leak | true false false false negative
16_misc_pseudo_recursion.c

memory leak | false false false false negative
11_loop_while_do_continue.c

memory leak 09_loop_for_complex.c | false false false false negative
memory leak 06_sim- | true false false false negative
ple_pass_by_reference.c

memory leak | false false false false negative
15_loop_recursion_multi.c

memory leak 05_simple_goto.c true false false false negative
memory leak 02_simple_if_int2.c true false false false negative
memory leak | false false false false negative
12_loop_for_array_branching.c

memory leak 19_complex_refcount.c | true false false false negative
memory leak | false false false false negative
10_loop_while_continue.c

memory leak 03_sim- | true false false false negative
ple_if_multi_func.c

memory leak 17_com- | true false false false negative
plex_function_pointers.c

memory refer_free 02_sim- | true false false false negative
ple_if_intl.c

memory refer_free 07_cross_file.c false false false false negative
memory refer_free | false false false false negative
13_loop_for_pointer_arithmetic.c

memory refer_free 08_loop_for.c false false false false negative
memory refer_free | false false false false negative
14_loop_recursion.c

memory refer_free 01_simple_if.c true false false false negative
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memory refer_free 04 _sim- | true false false false negative
ple_switch.c

memory refer free 18 com- | true false false false negative
plex_struct_multiple_methods.c

memory refer_free | true false false false negative
16_misc_pseudo_recursion.c

memory refer_free | false false false false negative
11_loop_while_do_continue.c

memory refer_free | false false false false negative
09_loop_for_complex.c

memory refer_free 06_sim- | true false false false negative
ple_pass_by_reference.c

memory refer_free | false false false false negative
15_loop_recursion_multi.c

memory refer_free 05_simple_goto.c | true false false false negative
memory refer_free 02_sim- | true false false false negative
ple_if_int2.c

memory refer_free | false false false false negative
12_loop_for_array_branching.c

memory refer_free 19 com- | true false false false negative
plex_refcount.c

memory refer_free | false false false false negative
10_loop_while_continue.c

memory refer free 03 sim- | true false false false negative
ple_if _multi_func.c

memory refer_free 17 _com- | true false false false negative
plex_function_pointers.c

memory zero_alloc 02_sim- | true true false false negative
ple_if_intl.c

memory zero_alloc 07_cross_file.c false false false false negative
memory zero_alloc | false false false false negative
13_loop_for_pointer_arithmetic.c

memory zero_alloc 08_loop_for.c false false false false negative
memory zero_alloc | false false false false negative
14_loop_recursion.c

memory zero_alloc 01_simple_if.c true true false false negative
memory zero_alloc 04_sim- | true true false false negative
ple_switch.c

memory zero_alloc 18 com- | true true false false negative
plex_struct_multiple_methods.c

memory zero_alloc | true true false false negative
16_misc_pseudo_recursion.c

memory zero_alloc | false false false false negative
11_loop_while_do_continue.c

memory zero_alloc | false false false false negative
09_loop_for_complex.c

memory zero_alloc 06_sim- | true true false false negative
ple_pass_by_reference.c

memory zero_alloc | false false false false negative

15_loop_recursion_multi.c
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memory zero_alloc 05_sim- | true false false false negative
ple_goto.c

memory zero_alloc 02 sim- | true true false false negative
ple_if_int2.c

memory zero_alloc | false false false false negative
12_loop_for_array_branching.c

memory zero_alloc 19 com- | true true false false negative
plex_refcount.c

memory zero_alloc | false false false false negative
10_loop_while_continue.c

memory zero_alloc 03 _sim- | true true false false negative
ple_if multi_func.c

memory zero_alloc 17_com- | true true false false negative

plex_function_pointers.c
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Appendix B. Example Abstract Syntax Tree

The following is an example abstract syntax tree from Clang when ran on the file
“JM2018TS/strings/overflow/test_incorrect/01_simple_if.c” from Moerman (2018). The
parts generated from the inclusion of headers have been cut as they are very long. The
output has also been manually modified to fit the page by adding line changes and some
pointer values were cut to make some of the lines fit.

|-FunctionDecl 0x559cd7fff83 prev 0x559cd7ffda2 <test/data/JM2018TS/strings/overflow/test_incorrect/01 _simple_if.c:6:1,

|-ParmVarDecl 0x559cd7fff7a0 </usr/lib64/clang/8.0.0/include/stdbool.h:31:14,

‘—CompoundStmt 0x559cd8000058 <col:46,
|—DeclStmt 0x559cd7fff9f8 <line:7:5,

|—DeclStmt 0x559cd7fffaf0 <line:8:5,

|—DeclStmt 0x559cd7fffb80 <line:9:5,

|—1fStmt 0x559cd7fffcf0 <line:12:5,

i

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |—IfStmt 0x559cd7ffff10 <line:18:5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

line:25:1>
col:49>
‘—VarDecl 0x559cd7fff928 <col:5, col:26> col:10
‘—StringLiteral 0x559cd7fff9c8 <col:26> ’char
col:41>
‘—VarDecl 0x559cd7fffa30 <col:5, col:27> col:10
‘—StringLiteral 0x559cd7fffac8 <col:27> ’char
col:19>
‘—VarDecl 0x559cd7fffb20 <col:5, col:11> col:11

|-ImplicitCastExpr 0x559cd7fffbb8 <line:12:8>

line:25:1>
|-ParmVarDecl 0x559cd7fff730 </usr/lib64/clang/8.0.0/include/stdbool.h:31:14,

line:6:6 used string_overflow_if_else ’void (bool, bool)’
test/data/JM2018TS/strings /overflow/
test_incorrect/01 _simple_if.c:6:35> col:35 used a ’bool”’
test/data/JM2018TS/strings /overflow/

test_incorrect/01 _simple_if.c:6:43> col:43 used b ’bool”’

[22]°
is a long

cinit
string”

used long_string ’char
[22]’ 1lvalue ”this
used short_string ’char [13]’ cinit
[13]’ lvalue ”short string”

’char =’

used to_print

line:16:5> has_else

bool’ <LValueToRValue>

| ‘“—DeclRefExpr 0x559cd7fffb98 <col:8> ’bool’ lvalue ParmVar 0x559cd7fff730 ’a’ ’bool”’
|—CompoundStmt 0x559cd7fffc48 <col:11, line:14:5>
‘—BinaryOperator 0x559cd7fffc28 <line:13:9, col:20> ’char =’ ’=’
|-DeclRefExpr 0x559cd7fffbd0 <col:9> ’char %’ lvalue Var 0x559cd7fffb20 ’to_print’ ’char =’

|

|
| ‘—ImplicitCastExpr 0x559cd7fffc10 <col:20>
| ‘—DeclRefExpr 0x559cd7fffbf0 <col:20>
‘—CompoundStmt 0x559cd7fffcd8 <line:14:12, line
‘—BinaryOperator 0x559cd7fffcb8 <line:15:9,
|—DeclRefExpr 0x559cd7fffc60 <col:9> ’char
‘—ImplicitCastExpr 0x559cd7fffca0 <col:20>
‘—DeclRefExpr 0x559cd7fffc80 <col:20>

|-ImplicitCastExpr 0x559cd7fffd38 <line:18:8>
| ‘—DeclRefExpr 0x559cd7fffd18 <col:8> ’bool’
|—CompoundStmt 0x559cd7fffel8 <col:11,
| ‘“—BinaryOperator 0x559cd7fffdf8 <line:19:9, c
| |—ArraySubscriptExpr 0x559cd7fffda8 <col:9,
| | |=ImplicitCastExpr 0x559cd7fffd90 <col:9>
| | | ‘—DeclRefExpr 0x559cd7fffd50 <col:9>

| | ‘—IntegerLiteral 0x559cd7fffd70 <col:18>
| ‘—ImplicitCastExpr 0x559cd7fffde0 <col:24>
\

‘—CompoundStmt 0x559cd7fffef8 <line:20:12, line
‘—BinaryOperator 0x559cd7fffed8 <line:21:9, c
|—ArraySubscriptExpr 0x559cd7fffe88 <col:9,

| |—=ImplicitCastExpr 0x559cd7fffe70 <col:9>

| | ‘—DeclRefExpr 0x559cd7fffe30 <col:9>

| “—IntegerLiteral 0x559cd7fffe50 <col:18>
‘—ImplicitCastExpr 0x559cd7fffec0 <col:24>

’char

col:20>

’char
line:22:5> has_else

’bool > <LValueToRValue>
lvalue ParmVar 0x559cd7fff7a0
line:20:5>

’char =’

‘—CharacterLiteral 0x559cd7fffdc8 <col:24>

’char =’

’char =’ <ArrayToPointerDecay >
[22]’ lvalue Var 0x559cd7fff928
:16:5>

’long_string > ’char [22]"

>char x> ’=’

*’ lvalue Var 0x559cd7fffb20 ’to_print’
’char =’ <ArrayToPointerDecay >
[13]’ lvalue Var 0x559cd7fffa30

*char =’

*short_string > ’char [13]’

’b’ ’bool”’

ol:24> ’char’ ’=’

col:20> ’char’ lvalue

’char %’ <LValueToRValue>
Ivalue Var 0x559cd7fffb20
int’ 11

’char’ <IntegralCast >

Jint 63
122:5>
ol:24> ’char’
col:20> ’char’ lvalue

’char =’ <LValueToRValue>
Ivalue Var 0x559cd7fffb20
‘int’ 13

’char’ <IntegralCast>

“to_print ’ ’char %’

‘to_print’ ’char *’

‘—CharacterLiteral 0x559cd7fffea8 <col:24> ’int’ 63
CallExpr 0x559cd7ffffe0 <line:24:5, col:28> ’int’
|—ImplicitCastExpr 0x559cd7ffffc8 <col:5> ’int (*)(const char *, ...)’ <FunctionToPointerDecay >
| ‘“—DeclRefExpr 0x559cd7ffff38 <col:5> ’int (const char *, ...)’ Function 0x559cd7fd3de0 ’printf’

|
|-ImplicitCastExpr 0x559c¢d8000028 <col:12>
| ‘“—ImplicitCastExpr 0x559cd8000010 <col:12>

’int (const char =,

)

’const char *’ <NoOp>
’char *’ <ArrayToPointerDecay >

| ‘—StringLiteral 0x559cd7ffff58 <col:12> ’char [4]’ lvalue "%s\n”
‘—ImplicitCastExpr 0x559cd8000040 <col:20> ’char %’ <LValueToRValue>
‘—DeclRefExpr 0x559cd7ffff78 <col:20> ’char =%’ lvalue Var 0x559cd7fffb20 ’to_print’ ’char =’

That was the AST for the “string_overflow_if_else” function. On the next page the AST
for the “main” function is shown.



‘—FunctionDecl 0x559cd80000f0 <line:27:1, line:33:1> line:27:5 main ’int ()’
‘—CompoundStmt 0x559cd8000490 <col:12, line:33:1>
|—-CallExpr 0x559cd8000230 <line:28:5, col:39> ’void’
|-ImplicitCastExpr 0x559c¢d8000218 <col:5> ’void (x)(bool, bool)’ <FunctionToPointerDecay >

| ‘—DeclRefExpr 0x559cd8000188 <col:5> ’void (bool, bool)’ Function 0x559cd7fff830 ’string_overflow_if_else
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| ’void (bool, bool)’
|-ImplicitCastExpr 0x559cd8000260 </usr/lib64/clang/8.0.0/include/stdbool.h:32:14> ’bool’ <IntegralToBoolean >

‘—ImplicitCastExpr 0x559cd8000278 <col:14> ’bool’ <IntegralToBoolean>

|
|
|
|
| | “—IntegerLiteral 0x559cd80001a8 <col:14> ’int’ 1
|
| ‘—IntegerLiteral 0x559cd80001c8 <col:14> ’int’ 1

|—CallExpr 0x559cd8000308 <test/data/JM2018TS/strings/overflow//test_incorrect/01 _simple_if.c:29:5, col:41> ’void’

|—ImplicitCastExpr 0x559cd80002f0 <col:5> ’void (*)(bool, bool)’ <FunctionToPointerDecay >

| ‘“—DeclRefExpr 0x559cd8000290 <col:5> ’void (bool, bool)’ Function 0x559cd7fff830 ’string_overflow_if_else

| >void (bool, bool)’

| ‘—IntegerLiteral 0x559cd80002b0 <col:15> ’int’ 0O
‘—ImplicitCastExpr 0x559c¢d8000370 <col:15> ’bool’ <IntegralToBoolean>
‘—IntegerLiteral 0x559c¢d80002d0 <col:15> ’int’ 0

|
|
|
| |[-ImplicitCastExpr 0x559cd8000338 </usr/lib64/clang/8.0.0/include/stdbool.h:33:15> ’bool’ <IntegralToBoolean>
|
|
|

|—CallExpr 0x559cd8000400 <test/data/JM2018TS/strings/overflow//test_incorrect/01_simple_if.c:30:5, col:40> ’void’

|-ImplicitCastExpr 0x559cd80003e8 <col:5> ’void (*)(bool, bool)’ <FunctionToPointerDecay >

| ‘“—DeclRefExpr 0x559cd8000388 <col:5> ’void (bool, bool)’ Function 0x559cd7fff830 ’string_overflow_if_else

| ’void (bool, bool)’

| “—IntegerLiteral 0x559cd80003a8 <col:15> ’int’ 0
‘—ImplicitCastExpr 0x559cd8000448 <line:32:14> ’bool’ <IntegralToBoolean>
‘—IntegerLiteral 0x559cd80003c8 <col:14> ’int’ 1
‘—ReturnStmt 0x559cd8000480 <test/data/JM2018TS/strings/overflow//test_incorrect/01_simple_if.c:32:5,
‘—IntegerLiteral 0x559cd8000460 <col:12> ’int’ 1

|
|
|
| |-ImplicitCastExpr 0x559cd8000430 </usr/lib64/clang/8.0.0/include/stdbool.h:33:15> ’bool’ <IntegralToBoolean>
|
|
|

col:12>
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