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Chapter 1

Introduction

NMR spectroscopy offers us tools to study the structure of different materials. For
its non-invasive quality, NMR is especially beneficial in the study of biological matter.
Since the electromagnetic waves utilized in spectrometers are in the radio wave fre-
quency range, samples can be examined for long periods without harm. However, the
achieved NMR signal is relatively weak. The strength of NMR signal is determined by
the net magnetization of a sample, which emerges from occupational differences in nu-
clear spin states. This difference is normally only a few spins per million. With certain
methods, we can increase this difference in nuclear spin states favorably, which we call
hyperpolarization. One of these hyperpolarization techniques is called spin-exchange
optical pumping (SEOP) [1]. SEOP is a method of spin polarizing noble-gas nuclei in
gas-phase collisions with optically polarized alkali-metal atoms, yielding a far greater
NMR signal.

The SEOP technique has not yet been completely exhausted. In terms of find-
ing optimal conditions for spin polarization transfer to occur, quantitative analysis is
the key. As a computational approach, a multi-scale simulation combining molecu-
lar dynamics, quantum chemistry and spin dynamics was created [2]. This method
allows microscopic investigation of individual gas-phase collision events between the
alkali-metal and noble-gas atoms. In the preceding iteration of this work, microscopic
molecular and spin dynamics occurring in Rb-Xe SEOP experiment were simulated.
The chosen simulation conditions allowed the study of the polarization transfer from
the unpaired electron of the 85Rb atom to the 129Xe nucleus in a Rb-Xe gas mixture at
a vanishing external magnetic field along with static temperature and pressure. The
experimental trends of polarization transfer were reproduced with reasonable accuracy,
while the rate of polarization transfer showed heavy overestimation possibly due to the
unrealistic Rb number density [3].

In this work, we have taken steps in order to address the questions left behind in
the previous study. A more refined python code for spin dynamics was created to allow
changes for more versatile analysis of the microscopic behavior of the Rb-Xe transfer.
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Further additions in the spin Hamiltonian, such as the Rb hyperfine coupling to its
own nucleus, were included to more realistically represent the interactions at play in
the polarization transfer. For a more encyclopedic study, we incorporated the ability
to change the isotopes of Rb and Xe in the gas composition. However, new molecular
dynamics trajectories were not calculated due to the small percentual mass difference
of 129/131Xe and 85/87Rb.

Beside these additions, the refined multi-scale simulation operated in accordance
to its predecessor. Molecular dynamics simulation of the atomic trajectories were cal-
culated as a function of time at set temperature and pressure, followed with quantum-
chemical calculations to obtain the instantaneous parameters of the spin Hamiltonian,
and finally extracting the relevant spin transfer via spin dynamics simulation driven
by the propagation of the spin system.

The simulation provided both expected and unforeseen results when changes were
introduced in noble-gas isotopes and interaction parameters. The difference in polar-
ization transfer of the Xe isotopes showed accordance with previous research of the
case, while the roles played by long-lived van der Waals complexes and short binary
collisions revealed important insight on the maximum optimal length of an interaction
event. The results showed an increase in the rate of polarization transfer as the lifetime
of the event grew longer until a certain point, where the transfer started to decline.
This implies that there seems to be a limit on the optimal duration of an interaction
event. Further research on the matter is required.
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Chapter 2

Theory

2.1 Nuclear magnetic resonance

All of the information in chapters 2.1, 2.1.1, 2.1.2 and 2.2 are from sources [4, 5].

Nuclear magnetic resonance (NMR) arises from the interaction between magnetic
atomic nuclei and external magnetic fields. This phenomenon yields us a method
with versatile applications in several fields of science, known as NMR spectroscopy,
offering valuable information on physical, chemical and biological properties of matter.
The best known practice of NMR spectroscopy is unquestionably magnetic resonance
imaging (MRI), used widely in medical science. While the well-known X-ray imaging
shows us harder substances, such as bones, MRI can reveal the soft tissue. The signifi-
cant benefit of this method is its non-invasive nature. Samples can be studied without
harming them as the radiation used for the irradiation of the sample is non-ionizing,
meaning the photons lack the energy needed to completely separate an electron from
an atom or a molecule.

In short, NMR spectroscopy is the study of external magnetic fields affecting the
orientation of the nuclear magnetic moments of atomic nuclei. However, a significant
shortcoming of NMR is the achievable NMR signal strength. The conventional signal
strength is proportional to thermal polarization, which is around the magnitude of 10−5.
We will delve in this with greater detail later. While some atomic nuclei experience
the NMR phenomenon well, others do not experience it at all. This originates from a
property we call spin.

2.1.1 Spin

Spin is a fundamental property of an atom, such as are the electric charge and mass.
Spin is a quantum-mechanical property that, for our purposes, can be described much
like a spinning top. The direction of its axis of rotation determines the orientation of
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the particle in question.
Spin is quantized, meaning it appears in multiples of ±1/2. Individual unpaired

particles, such as protons, neutrons and electrons all carry a spin of 1/2. From this
quantization we can comprehend that atomic nuclei compose a system of multiple
nucleons, which can only possess a discrete spin quantum number I = n · 1/2, where
n = 0, 1, 2, 3 . . ., and the spin’s projection (−I,−I + 1, . . . , I − 1, I) changes the values
accordingly. A net zero nuclear spin can be achieved if two or more particles have
spins of opposite signs and pair up to eliminate the manifestation of spin. A non-zero
nuclear spin causes the nucleus to have a spin angular momentum I, a vector quantity
with direction as well as magnitude, of which the latter can be described as

|I| =
√
I(I + 1)~. (2.1)

Here, and henceforth in this thesis, I refers to the spin quantum number of the nucleus
and S to the spin quantum number of the electron, with the possible values of I =

0, 1
2
, 1, 3

2
, . . . and S = 1

2
. We are particularly interested in the component of I that is

oriented parallel with the external magnetic field B. This is usually chosen to be Iz

Iz = ~m ; m = I, I − 1, I − 2, . . . ,−I, (2.2)

where m can have (2I + 1) values. We can see that the magnitude of Iz is always less
than that of I, meaning that the spin of the particle is never perfectly oriented along
the z-axis.

If a nucleus possesses a non-zero spin angular momentum, it also has a magnetic
moment µ, which is parallel to I, in the same direction or the opposite

µ = γ~I. (2.3)

The z-component of the magnetic moment is

µz = γ~Iz = γ~m, (2.4)

where the coefficient γ is a variable that is unique to every nucleus, called the gyro-
magnetic ratio. It describes the degree of magnetic moment of the nucleus in question.

2.1.2 Energy levels

To understand how a particle with non-zero nuclear spin behaves in an external mag-
netic field, we need to consider its spin as a magnetic moment vector. In the external
field, the magnetic moment acts like a magnet with north and south poles, aligning
itself parallel to the field. However, 2I + 1 possible orientations for the particle exist
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within this parallelism, some being low- and some high-energy states. These energy
configurations depend on the sign of the gyromagnetic ratio. When γ > 0, the low-
energy orientation is I ↑↑ B, and I ↑↓ B when γ < 0.

According to classical physics, the interaction between a magnetic moment µ and
magnetic fieldB will apply a torque to the magnetic dipole while possessing a potential
energy

E = −µ ·B. (2.5)

This is known as the Zeeman interaction. If the magnetic field is oriented along the
z-axis, according to the equation (2.4), the Zeeman interaction simplifies into

E = −γ~Bm. (2.6)

We can see that the energy values of the states are also quantized.
The particle can shift between the energy states by absorbing or emitting a photon of

energy equal to the energy difference between the two spin states. Only the transitions
from an energy level to another with ∆m = ±1 are directly observable, so the energy
needed for a shift is

∆E = ±γ~B. (2.7)

Photon’s energy can be described as E = hν, where the variable ν is known as the
resonance frequency. The frequency of the photons used to produce these energy level
transitions is

ν =
∆E

h
=
γ~
h
B =

γ

2π
B. (2.8)

Figure 2.1: Energy level diagram of a particle in an external magnetic field in the
case of I = 1/2 and γ > 0, where m refers to the spin state of the particle. +1/2 and
-1/2 refer to the low- and high-energy states, respectively [4].
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2.2 Nuclear spin polarization

When a system of spins, such as a group of atomic nuclei, is placed in an external
magnetic field, each of the spins aligns itself in the field according to the 2I+1 possible
orientations. In the case of I = 1/2 and γ > 0, we will denote spin up (mI = +1/2)
as the low-energy state and spin down (mI = −1/2) as the high-energy state. It is
important to note that according to quantum mechanics, the measured orientation of
the spin states is never exactly aligned with the external magnetic field (Eq. 2.2). For
example the angle between vectors I and B for spin-up (I = 1/2) nucleus is 54.7°.

However, due to thermal energy, all nuclei are not in the lower energy spin-up state.
In room temperature the thermal energy kT is far greater than the energy difference
∆E between the states, which leads to a nearly equal spin configuration with only a
very small occupation difference between spin-up and spin-down states. These state
population numbers obey Boltzmann statistics, and the ratio of identical spin 1/2 nuclei
is

N−1/2

N+1/2

= e−∆E/kT . (2.9)

It is evident that changes in temperature or magnetic field affect the ratio of the
population of the spin states. The difference between the lower and higher energy
states is normally in the order of 10−5.

When we take a look into a system of multiple nuclei, we see that the net magnetic
moment of the system is the sum of its individual nuclear magnetic moments. The oc-
cupation difference between the spin states causes the system to possess a macroscopic
nuclear magnetization, which can be described in thermal equilibrium as

M0 =
Nγ2~2I(I + 1)

3kT
B0, (2.10)

where N refers to the number of identical nuclei in the system. The observable NMR
signal received from a sample is directly proportional to this nuclear magnetization,
which can be increased by raising the magnitude of the external magnetic field or by
decreasing temperature.

Now we can see that NMR spectroscopy is heavily reliant on the populus contrast
between the spin-up and spin-down states. Devising this difference in spin populations
is what we call nuclear spin polarization.

2.2.1 Hyperpolarization

There are techniques that allow us to produce non-equilibrium nuclear spin polarization
[6], which can be in order of unity in ambient conditions. This is known as hyperpo-
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larization. With these methods we can increase the degree of polarization far beyond
thermal equilibrium, thus greatly enhancing the signal in NMR studies. In this thesis
we will focus on one of these techniques with greater detail.

2.2.2 Spin-exchange optical pumping

Spin-exchange optical pumping is one of several hyperpolarization methods. It allows
effective polarization of magnetic noble-gas nuclei via the process of gas-phase collisions
with spin-polarized alkali-metal atoms. This polarization is typically five orders of
magnitude greater than the achievable thermal polarization [1]. Although any alkali-
metal is eligible for this method, rubidium is the most convenient because its high vapor
pressure allows operation under modest temperatures [1]. Moreover, noble gases are
preferred for hyperpolarization, since their sufficiently long T1 relaxation times enable
transportation from the hyperpolarizer to the detection zone [7]. While 3He has had
a prominent role in hyperpolarization experiments, there is a simple reason why the
noble-gas of choice nowadays is xenon; it is a renewable resource with relatively high
natural abundance and low cost [7]. More specifically, it has more benefits found in its
high solubility, especially in biomedical science. In this thesis we use rubidium for our
alkali metal and xenon for our noble gas.
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1.

2.

3.

Figure 2.2: Picture of experimental SEOP arrangement. Alkali-metal atoms, noble-
gas atoms and nitrogen used as a quenching gas flow into a glass cell in different
phases of the experiment. (1) The cell is placed in an oven which allows the alkali-
metal to enter vapor phase. (2) It is surrounded by coils which allow the generation
of z-axis oriented magnetic field. (3) A laser light is used to illuminate the cell to
allow alkali-metal spin polarization through optical pumping. The credit of creating
this arrangement goes to Anne Selent.

Continuous illumination with circularly polarized light is used to optically pump
the rubidium atoms in order to induce an energy level shift. The light is of resonant
frequency with the transition from the ground electronic state 2S1/2 to the first excited
state 2P1/2. This is called a D1 transition. The light excites the alkali-metal atoms
from 2S1/2 spin down (mS = −1/2) state to the 2P1/2 spin up (mJ = +1/2) state. The
spin population of the excited states of the alkali-metal quickly equalizes by colliding
with the noble-gas atoms. Re-population of ground states ensues through quenching
collisions with the nitrogen (N2) molecules1 with nearly equal probability of relaxing
to mS = ±1/2 [1].

Through this process the average density of spin angular momentum of rubidium
electrons changed from -1/2 units before the photon absorption to 0 units after being
quenched back to ground state, so on average 1/2 units of spin angular momentum is

1Nitrogen exists in the arrangement as a quenching gas, suppressing the re-radiation of light as a
source of relaxation.
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Figure 2.3: Diagram of the alkali-metal atoms interacting with circularly polarized
light. Source: [1].

deposited in the vapor for each absorbed photon [1].
The crucial step is the collisional spin-exchange between the rubidium atoms and

xenon nuclei. There are two main types of collisions where this exchange occurs, fast
binary collisions and the formation of long-lived van der Waals molecules. The ratio
of these two collision types is determined by gas pressure, where greater pressures
reduce the formation probability of the longer van der Waals complexes. The spin
polarization transfer is dominated by binary collisions for lighter atoms, such as 3He,
while in the case of heavier noble gases like 129Xe with substantially lesser gas pressures,
the contribution of van der Waals molecules can vastly exceed the transfer granted by
binary collisions [1].
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2.3 Spin Hamiltonian

Spin Hamiltonian is essentially a model composed of all the interactions affecting
the system, whether internal or external. It is a model in the sense that it enables
parametrization of experimental data into a sum of terms. The spin Hamiltonian con-
tains operators of the electron and nuclear spins, external magnetic field and other
interacting entities, along with interaction parameters that tie the entities together.
These parameters exist in the form of 2-index tensors [8].

Eigenfunctions of the spin Hamiltonian determine the possible energy levels of the
system. Thus it is effectively an expression of energy, where the degrees of freedom for
the system are composed in the equation explicitly and implicitly. For example, the
electron and nuclear spin operators are chosen in the equation as visibly separate, ex-
plicit entities, while other degrees of freedom, such as the nuclear and electron positions
are held within the tensors implicitly [8].

The interacting explicit components relevant to our spin Hamiltonian are the ef-
fective electron spin Ŝ, nuclear spin Î, external magnetic field B and the rotational
angular momentum of the Rb-Xe pair, M :

Ĥ(t) = µBŜ · g(t) ·B + Ŝ · ε(t) ·M + Ŝ ·AXe(t) · ÎXe + Ŝ ·ARb(t) · ÎRb. (2.11)

The interaction parameters, or tensors, of the spin Hamiltonian are typically gathered
from quantum-chemical calculations and/or interpretation of experimental results [2],
which we will go through in the order of appearance. The first term containing the
g-tensor, g(t), is the electron Zeeman term. It describes the interaction between the
electron spin and the external magnetic field. The second term with the epsilon tensor,
ε(t), is the interaction between electron spin and rotational angular momentum of the
Rb-Xe pair. In this work, it is approximated from the g-tensor [9]. The final two terms
are hyperfine interactions, AXe(t) and ARb(t), describing the coupling between the Rb
electron and Xe/Rb nucleus. The last term is only included in certain parts of the
upcoming results [2].

2.4 Time-dependent Schrödinger equation

According to quantum mechanics, position and momentum cannot be used to describe
the movement of particles in the atomic scale, since these properties can only be known
with certain probability instead of well-known trajectory. That is why we use the wave
function Ψ(r, t) to describe the state of the particle instead of Newton’s laws. To
describe the time evolution of these states, we use the Schrödinger equation
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i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V (r, t)

)
Ψ(r, t), (2.12)

where ∇2 is the Laplacian. The Schrödinger equation is analogous to Newton’s second
law (F = ma) in the sense that the initial value Ψ(r, 0) together with the equation
determines the position- and time-evolution of the wave function Ψ(r, t) [10].

Another popular form of the time-dependent Schrödinger equation is

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.13)

where Ĥ is the Hamiltonian operator [11]. In short, it is the representation of a time-
evolving system.

2.4.1 Liouville-von Neumann equation

In quantum mechanics, the state of a specific quantum system is depicted by a state
vector |ψ(t)〉 [10]. If a system cannot be written as a combination of multiple states
but has a state vector, it is called a pure state. More specifically, pure quantum states
correspond to vectors in Hilbert space. Now instead of a single state vector describing
the system, it can be in different states |ψi(t)〉 with different probabilities qi. In other
words, we have a pure state ensemble {qi, |ψi(t)〉}Ni , which can be written as

ρ̂(t) =
∑
i

qi |ψi(t)〉 〈ψi(t)| . (2.14)

This is called the density operator, and is equivalent to the pure state ensemble. It is
essentially a statistical state of the system, which can used to calculate the probabilities
for outcomes of well-defined measurements [11].

While the Schrödinger equation characterizes the time evolution of pure states, the
Liouville-von Neumann equation is used to describe the time evolution of a density
operator. They are in fact equivalent, as either of the equations can be derived from
another.

The dynamics of a projection operator ρ̂(t) = |ψ(t)〉 〈ψ(t)| satisfies the Liouville-von
Neumann equation

dρ̂(t)

dt
=

d

dt
(|ψ(t)〉〈ψ(t)|) =

d|ψ(t)〉
dt

〈ψ(t)|+ |ψ(t)〉d〈ψ(t)|
dt

= − i
~Ĥ(t)|ψ(t)〉〈ψ(t)|+ |ψ(t)〉〈ψ(t)| i~Ĥ(t)†

= − i
~Ĥ(t)ρ̂(t) + i

~ ρ̂(t)Ĥ(t) = − i
~ [Ĥ(t), ρ̂(t)] = L̂(t)ρ̂(t)

(2.15)

where the projection operator ρ̂(t) is that of an arbitrary spin system. The final density
operator is achieved by averaging these projection operators.

Physical observables, such as momentum or position are represented in quantum
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mechanics by operators. For example, the previously mentioned Hamiltonian operator
is an expression of energy. We define the Liouvillian superoperator acting on operator
ĉ as

ˆ̂
L(t)ĉ = − i

~
[Ĥ(t), ĉ], (2.16)

where the von Neumann equation dictates a condition [11]

dρ̂(t)

dt
=

ˆ̂
L(t)ρ̂(t), (2.17)

which can be derived from the Schrödinger equation for the local spin system state
|ψ(t)〉 [2].
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Chapter 3

Research

3.1 Objectives and questions

The main objective of this thesis is to approach the spin polarization transfer from
alkali-metal electrons to noble-gas nuclei (Rb→Xe) from a computational standpoint.
The ability to analyze the polarization transfer quantitatively is key in the optimization
of the SEOP technique. Our method of approach is a multi-scale simulation with the
capability of adding or removing interaction parameters of the spin Hamiltonian. We
can also examine the effect that different isotopes of the noble gas or alkali metal have on
the rate of polarization transfer. The closer inspection of how collision duration affects
the rate of polarization transfer will ultimately lead to the possibility of optimization
of gas pressure, temperature and composition for SEOP experiments.

3.1.1 Different isotopes

While the more abundant 129Xe is well-studied, the quadrupolar isotope 131Xe has
received far less attention in NMR spectroscopy. It is the only other stable and NMR-
active isotope of this noble gas, with a spin quantum number of I = 3/2 and natural
abundance of 21.2%, compared to 129Xe spin quantum number and natural abundance
of I = 1/2 and 26.4%, respectively [12].

If the spin quantum number of a nucleus is greater than 1/2 (meaning I ≥ 1), the
nucleus is quadrupolar. Its electric charge distribution is not spherically symmetric
and in addition to magnetic fields, electric field gradients can also cause a torque to
the nucleus, changing its orientation [4].

How does this quadrupolar 131Xe isotope behave in terms of spin-exchange?
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3.1.2 Hyperfine coupling

The coupling of electron and nuclear spins is known as hyperfine interaction. The
two main contributions to this interaction are the isotropic Fermi contact and the
anisotropic spin-dipolar hyperfine interactions [2, 8].

The two final spin Hamiltonian terms (Eq. 2.11) represent this interaction, where
A(t) is the hyperfine tensor. The former hyperfine term describes the interaction of
rubidium electron spin and xenon nuclear spin, while the latter the hyperfine coupling
of rubidium electron spin to its own nuclear spin, which has not been included in
former iterations of this research. What is the impact on polarization transfer when
the coupling Ŝ ·ARb(t) · ÎRb is added to the spin Hamiltonian?

3.1.3 Collision duration and rate of exchange

As mentioned before, spin polarization transfer results from interaction events between
the two entities. Two extremes of these interaction events are the fast binary collisions
and the formation of long-lived van der Waals complexes. For heavier noble gases,
such as 129Xe, the contribution of van der Waals molecules seem to dominate the
polarization transfer. However, the ratio of binary versus van der Waals collisions can
be manipulated with gas pressure [1]. A closer look into the rate of polarization transfer
can give us insight into optimizing the ratio of these two species of collisions to develop
hyperpolarization in the SEOP technique.

3.2 Methods

While a considerable amount of experimental work has been done, quantitative micro-
scopical analysis of spin polarization transfer still remains largely undone. Moreover,
finding and rationalizing the optimal conditions of gas pressure and temperature are
intriguing for experimental physicists. We have approached this matter via a computa-
tional basis. The novelty of this method lies in the ability of microscopic investigation
of individual collision events, which is yet to be studied.

3.2.1 Computational

As our approach we have established a multi-scale simulation method combining molec-
ular dynamics (MD), quantum chemistry (QC) and spin dynamics (SD) to simulate the
spin polarization transfer from the unpaired electrons of the alkali-metal (Rb) atoms
to the noble-gas (Xe) nuclei, as well as relaxation processes, from first principles.

A new stand-alone implementation of the SD simulation in Python language was
created to demonstrate this approach by simulating the spin polarization transfer from
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Rb electrons to Xe nuclei in gas-phase collision events between the two species [13].
The method is based on the sampling of a MD trajectory by QC calculations to

first-principles compute the parameters of the spin Hamiltonian. Using the spin Hamil-
tonian, time propagation of the spin density matrix can be achieved numerically by
solving the Liouville-von Neumann equation [3, 13, 14].

Molecular
dynamics
(MD)

R(t),V (t)

Quantum
chemistry
(QC)

A(t), g(t), ε(t)

Spin
dynamics
(SD)

ρ̂(t)

Spin po-
larization
transfer

Figure 3.1: Diagram of the multi-scale simulation structure.

The instantaneous positions R(t) and velocities V (t) of the atoms are retrieved
from a MD simulation trajectory, which in turn is obtained by the integration of the
classical equations of motion [2]. They are then used in QC calculations to form the
interaction parameters handled in the spin Hamiltonian.

The size of the spin system is determined by the base electron spin and nuclear spin
operators (Ŝ, Î). For example, the electron spin operator Ŝ = (Ŝx, Ŝy, Ŝz), where the
relevant z-oriented component and its unity operator are

Ŝz =

(
1
2

0

0 −1
2

)
, ÊS =

(
1 0

0 1

)
. (3.1)

In a spin system that consists of electron spin as well as nuclear spin, the operators
transform to correspond the new size as

Ŝz → ÊI ⊗ Ŝz
Îz → Îz ⊗ ÊS,

(3.2)
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where the Îz and ÊI refer to the nuclear spin operator z-component and its unity
operator, as was for the electron spin. In the case of 129Xe nucleus (I = 1/2) and Rb
electron (S = 1/2), the components are

ÊI =

(
1 0

0 1

)
; Ŝz =

(
1
2

0

0 −1
2

)
, (3.3)

and the outer product opens up as

ÊI ⊗ Ŝz =

(
Ŝz 0

0 Ŝz

)
=


1
2

0 0 0

0 −1
2

0 0

0 0 1
2

0

0 0 0 −1
2

 . (3.4)

In the case of 131Xe (I = 3/2) and Rb electron spin (S = 1/2), we have the components

ÊI =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ; Ŝz =

(
1
2

0

0 −1
2

)
, (3.5)

and the outer product establishes a form of

ÊI ⊗ Ŝz =


Ŝz 0 0 0

0 Ŝz 0 0

0 0 Ŝz 0

0 0 0 Ŝz

 =



1
2

0 0 0 0

0 −1
2

0 0 0

0 0 Ŝz 0 0

0 0 0 Ŝz 0

0 0 0 0 Ŝz

 . (3.6)

Generally, a representation of a spin system containing n spins

Ĵ1z → Ĵ1z ⊗ Ê2 ⊗ Ê3 ⊗ · · · ⊗ Ên
Ĵ2z → Ê1 ⊗ Ĵ2z ⊗ Ê3 ⊗ · · · ⊗ Ên

...
Ĵiz → Ê1 ⊗ · · · ⊗ Êi−1 ⊗ Ĵiz ⊗ Êi+1 ⊗ · · · ⊗ Ên

...
Ĵnz → Ê1 ⊗ Ê2 ⊗ · · · ⊗ Ên−1 ⊗ · · · ⊗ Ĵnz

(3.7)

The addition of the aforementioned Rb hyperfine coupling requires the insertion of Rb
nuclear spin to the spin system. We can determine the dimensions of the composed
spin density matrix just from these spins. For example, a spin system consisting of
129Xe nuclear spin (IXe = 1/2), 85Rb nuclear spin (IRb = 5/2) and 85Rb electron spin
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(S = 1/2) produce a density matrix with a size of

[n× n] = (2× IXe + 1)× (2× IRb + 1)× (2× S + 1)

= (2× 1/2 + 1)× (2× 5/2 + 1)× (2× 1/2 + 1)

= [24× 24]

(3.8)

We can see that the spin matrix grows with every additional spin introduced in the sys-
tem. These base spin operators ultimately determine the size of the spin Hamiltonian.
However, since the density operator is implicitly tied to the spin Hamiltonian, we can
simplify the computation by creating an identity matrix [1̂]n×n of matching dimensions
to [Ĥ(t)]n×n and cast it into the Liouvillian as

[
ˆ̂
L(t)] = − i

~

(
[1̂]⊗ [Ĥ(t)]− [Ĥ(t)]T ⊗ [1̂]

)
. (3.9)

The exact formal solution of Liouville-von Neumann equation is expressed as

ρ̂(t) = e
∫ t
0

ˆ̂
L(t′)dt′

o ρ̂(0), (3.10)

where the index o refers to chronological time-ordering and the term e
∫ tn
0

ˆ̂
L(t′)dt′

o stands
for time-explicit superpropagator, which we will from now on denote as ˆ̂

P . The su-
perpropagator can be expressed as a limited form series expansion with a non-zero
timestep δ

ˆ̂
P (t) = e

∫ tn
0

ˆ̂
L(t′)dt′

o = lim
δ→0

e
ˆ̂
L(tn)δ . . . e

ˆ̂
L(tk+1)δe

ˆ̂
L(tk)δe

ˆ̂
L(tk−1)δ . . . e

ˆ̂
L(t2)δe

ˆ̂
L(t1)δ, (3.11)

where tk = kδ. However, in practice it is approximated as

ˆ̂
P (t) = e

∫ tn
0

ˆ̂
L(t′)dt′

o ≈ e
ˆ̂
L(tn)δ . . . e

ˆ̂
L(tk+1)δe

ˆ̂
L(tk)δe

ˆ̂
L(tk−1)δ . . . e

ˆ̂
L(t2)δe

ˆ̂
L(t1)δ, (3.12)

where the time-ordering is chronological, meaning that if tj > ti,
ˆ̂
L(tj) appears to the

left relative to ˆ̂
L(ti). In other words ˆ̂

L(ti) operates first on the states in the right side
[2].

Subject relevant to this thesis is the actual spin polarization transfer from the un-
paired spin-polarized Rb electrons to the Xe nuclei. The spin dynamics of an observable
Ô can be obtained as a trace

O(t) =
Tr[Ô

ˆ̂
P (t)Ô]√

Tr(Ô2)Tr(Ô2)
(3.13)
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where the Ô refers to a specific spin operator and the denominator is a normalization
factor. More specifically the z-component polarization transfer from Rb electron to Xe
nucleus (Sz → Iz) gets the form of

Pε
Ŝz ,Îz

(t) = Iz(t) =
Tr[Îz

ˆ̂
P (t)Ŝz]√

Tr(Î2
z )Tr(Ŝ2

z )
(3.14)

where ε refers to a specific collision event. The spin polarization transfer of an ensemble
of collision events is described as

P total
Ŝz ,Îz

(t) =
∑
ε

Pε
Ŝz ,Îz

(t), (3.15)

where ε under the Σ refers to the each individual collision event in the ensemble [2].
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Chapter 4

Results and discussion

The presented computations were carried out at static conditions of temperature T ,
pressure P and external magnetic field. The timestep δ (Eq. 3.12) used in the SD
simulations is set to be 50 × 10−15 seconds, or 50 fs. Collision events are divided in
discrete categories based on their lifetimes. The term binary collision is used to describe
an event where the two collision participants shortly visit each other’s proximity, while
van der Waals (VDW) complex represents an event where the participants oscillate
around each other for at least two times. In the upcoming histograms this is seen as
binary collisions being in the bars on the left while the VDW complexes are in the bars
on the right. The histograms are represented on a logarithmic scale.

As a function of time, the MD trajectory of a Rb atom in Xe gas was simulated
conforming to T = 300 K and p = 2.4 bar. The interaction events of the Rb-Xe pairs
were extracted from constant δ = 50 fs SD snapshots. Produced binary data is fed into
the python code via the MDanalysis package to perform the SD simulations. Based on
QC calculations, using relativistic density-functional theory, instantaneous parameters
(A(t), g(t)) of the spin Hamiltonian were constructed. With the parameters at hand
for SD, a time series of spin Hamiltonians for every Rb-Xe interaction is forged in order
to propagate the spin density matrix forward and ultimately simulate the polarization
transfer from the unpaired Rb electron to the Xe nuclei.

4.1 Polarization transfer to 129Xe and 131Xe

With our method we have simulated the total spin polarization transfer of an ensemble
of 14603 collision events, divided into categories based on their lifetimes. In these
results, the terms of our spin Hamiltonian are Ĥ(t) = µBŜ · g(t) ·B + Ŝ · ε(t) ·M +

Ŝ ·AXe(t) · ÎXe.
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Figure 4.1: Histograms of the spin polarization transfer from 85Rb electrons to
129/131Xe nuclei (Sz → Iz) divided into categories determined by collision event du-
ration. On the left histogram, Dr above the bars refers to a specific category of events.
The ordering of these categories stays the same on all of the upcoming histograms.
Numbers on top of the right histogram represent the number of events in that category.
On the left we have the total polarization transfers and on the right the polarization
transfers averaged with the number of collision events per section, with white and blue
representing the polarization transfer to 129Xe and 131Xe, respectively. The propagator
used is (3.12).

Figure 4.1 shows that achieved polarization transfers are far less for 131Xe than for
129Xe, just as expected [12]. The unique gyromagnetic ratio of 131Xe being weaker
than 129Xe (2.209076 × 107 rad

Ts
and −7.452103 × 107 rad

Ts
) also gave a strong clue in

the expectancy of these results. It is important to note that for the simulated 131Xe
polarization transfers, new MD trajectories were not calculated because of the expected
near-zero impact on the results due to the small percentual mass difference of 129Xe
and 131Xe. The polarization transfer results of 129Xe are in accordance with previous
model of this simulation [13].

Table 4.1: Table of 129Xe and 131Xe averaged polarisation transfer values from the
histogram above (Fig. 4.1) categorized by the respective Dr. Percentual differences
(131Xe/129Xe) of these values are calculated in the rightmost column.

Averaged polarization transfers (pol. transfer per event)
Category Number of

events
129Xe (white) 131Xe (blue) P(131Xe)

P(129Xe)
× 100%

D8 50 2.831×10−4 5.563×10−5 19.650%
D7 101 1.047×10−5 2.058×10−6 19.656%
D6 205 4.717×10−7 9.274×10−8 19.660%
D5 400 3.779×10−7 7.429×10−8 19.659%
D4 801 3.482×10−7 6.844×10−8 19.655%
D3 1684 3.216×10−7 6.319×10−8 19.649%
D2 3295 2.885×10−7 5.667×10−8 19.643%
D1 8067 1.558×10−7 3.059×10−8 19.634%

It is interesting to note that the polarization transfer efficiency in the case of 131Xe
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versus 129Xe decreases by a nearly uniform percentage in all categories of event lengths.

4.2 Effect of hyperfine coupling to Rb nucleus

Including the hyperfine coupling of rubidium electron and nuclear spins requires the
addition of spin Hamiltonian term Ŝ ·ARb(t) · ÎRb. With this term included, we can
see the results illustrated in Fig. 4.2.

Figure 4.2: Averaged histogram of spin polarization transfer from 85Rb to 129Xe
(Sz → Iz) with hyperfine coupling of rubidium electron spin to its own nuclear spin
included represented in the blue bars. On the white bars we have comparison results
without the hyperfine interaction. The propagator used is (3.12).

Table 4.2: Table of 129Xe averaged polarisation transfer with and without the Rb
hyperfine coupling (HFC) from the histogram above (Fig. 4.2) categorized by the
respective Dr in the same way as presented in Fig. (4.1). Percentual differences of
these values are calculated in the rightmost column.

Averaged polarization transfers (pol. transfer per event)
Category Number of

events
Without HFC
(white)

HFC included
(blue)

P(With HFC)
P(No HFC)

×
100%

D8 50 2.831×10−4 1.046×10−4 36.948%
D7 101 1.047×10−5 9.802×10−6 93.620%
D6 205 4.717×10−7 4.702×10−7 99.682%
D5 400 3.779×10−7 3.774×10−7 99.868%
D4 801 3.482×10−7 3.479×10−7 99.914%
D3 1684 3.216×10−7 3.214×10−7 99.938%
D2 3295 2.885×10−7 2.883×10−7 99.931%
D1 8067 1.558×10−7 1.557×10−7 99.936%
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We can see that the addition of Rb hyperfine coupling has most effect in the longest
VDW collisions, where it disrupts the flow of spin transfer. However, the negative im-
pact drops off quickly as event durations decrease, and is effectively zero in the binary
collisions. A closer look into traces of individual collision events gives us insight on the
matter.

Figure 4.3: Singular VDW interaction events picked from the ensemble. On the y-
axis we have two different values, blue and green. Blue refers to the spin transfer from
85Rb to 129Xe (Sz → Iz), green expresses the distance between the two atoms during
the collision. Time is on the x-axis. We have two rows of figures with three different
traces of events with varying collision duration. On the top row are the traces without
hyperfine coupling to 85Rb nucleus, while on the bottom row the same collision events
with hyperfine coupling included.

Figure 4.3 shows examples of individual VDW interaction events, with and without
the rubidium hyperfine coupling. We can see that with the addition of hyperfine
coupling, the spin transfer doesn’t necessarily increase with collision duration anymore.
After a certain lifetime, the polarization transfer starts to decline. In the longest of
the selected events it can even achieve negative transfer, meaning spin polarization
was lost. Additionally, fluctuations in the Rb-Xe distance of during the oscillation of
the VDW complex seem to change the shape of the spin transfer steps illustrated in
the blue graphs. When the Rb-Xe pair is far apart, the achieved transfer bleeds back
through the hyperfine coupling of the Rb nucleus. This also happens in the shorter
distances but it is not noticeable, since the spin transfer towards Xe is greater.
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Figure 4.4: Singular binary interaction events picked from the ensemble. The axes
have the same variables as in Fig (4.3). There are two rows of figures with three
different traces of events with varying collision duration. On the top row are the traces
without hyperfine coupling to 85Rb nucleus, while on the bottom row the same collision
events with hyperfine coupling included.

Figure 4.4 shows three selected individual binary collision events from the ensemble.
We can clearly see that the addition of the Rb hyperfine coupling has effectively no
impact on the shorter-duration interaction events. There is no time to bleed out the
spin transfer without the oscillation of the Rb-Xe pair, contrary to the longer VDW
complexes. The spin transfer of the binary collisions remain nearly unchanged, just as
was to be expected from the results seen in Fig. (4.2).

4.3 Rate of polarization transfer

Spin transfers of individual events are divided by their lifetimes to reveal how quickly
spin is transferred, or rather what the rate of spin transfer is. Doing this for the whole
ensemble gives us a vision how collision duration relates with the rate of polarization
transfer. In practice this is done by first calculating the spin transfer of each individual
event in the ensemble and dividing it by its lifetime, then separating them into their
respective categories and finally dividing, or rather averaging, said category by the
number of its events Nr: 〈dPr

Ŝz ,Îz

dt

〉
=

1

Nr

∑
ε

Pε
Ŝz ,Îz

τ ε
. (4.1)
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Figure 4.5: Rate of polarization transfer from 129Xe to 85Rb (Sz → Iz) averaged by
the number of events per category, calculated according to Eq. (4.1), using the spin
Hamiltonian Ĥ(t) = µBŜ · g(t) ·B + Ŝ · ε(t) ·M + Ŝ ·AXe(t) · ÎXe.

Figure 4.5 shows the averaged rate of polarization transfer per category of collisions
for the ensemble. Without the addition of the aforementioned 85Rb hyperfine coupling,
a correlation between the rate of transfer and event duration is visible. A slight dip in
the medium duration events is noticeable, yet the results indicate that the longer-lived
collisions seem to transfer spin more rapidly. The rate of polarization transfer appears
to increase exponentially as a function of the event lifetime.

However, with the addition of the Rb hyperfine coupling we can see how the longest
duration events take a dive in the sense of transfer rate as shown in Fig (4.6).

Figure 4.6: Rate of polarization transfer from 129Xe to 85Rb (Sz → Iz) averaged by
the number of events per category, calculated according to Eq. (4.1). With the Rb
hyperfine coupling included, the spin Hamiltonian terms used are Ĥ(t) = µBŜ · g(t) ·
B + Ŝ · ε(t) ·M + Ŝ ·AXe(t) · ÎXe + Ŝ ·ARb(t) · ÎRb.

Figure 4.6 reveals the effect of the Rb hyperfine coupling in the polarization transfer
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of the ensemble. Although a similar correlation between event duration and the rate of
transfer seems to hold, the polarization transfer in the longest collision event categories
has decreased substantially, as was to be expected from the individual investigation of
the VDW events seen in Fig. (4.3). This decrease is negligible in the shorter duration
categories. The rubidium hyperfine coupling seems to determine a definite limit to
how long a collision event can optimally be before it starts to lose efficiency. However,
the probability of events of this length can be manipulated with conditions. Further
research into the subject is needed.
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Chapter 5

Conclusions

Nuclear spins are intrinsically linked to NMR spectroscopy. The strength of NMR signal
is determined by the net magnetization of a sample, which is regulated by the differences
in nuclear spin state occupations. These occupations can be devised beyond thermal
equilibrium with specific procedures known generally as hyperpolarization techniques.
One of the currently relevant techniques is spin-exchange optical pumping, which can
provide great benefits in NMR spectroscopy. However, the technique has not yet been
completely exhausted and pressing questions still remain concerning its optimization.

As an approach to this optimization, a multi-scale simulation was created, combin-
ing efforts of molecular dynamics, quantum chemistry and spin dynamics. It is used
to model spin polarization exchange between alkali-metal electrons and noble-gas nu-
clei in gas-phase collisions. With this method, microscopic examination of individual
collision events can be achieved. Quantitative analysis can be carried out with an ease
of changing the environmental conditions as well as the interaction parameters.

Through the propagation of spin density matrix, more and less expected results
were seen. The polarization transfer to the 131Xe isotope was found to be less than its
counterpart, 129Xe. This was anticipated based on former research done in the field.
However, the nearly uniform percentual difference over the distinct event duration
categories was surprising. With the addition of the hyperfine coupling to the Rb
nucleus, the polarization transfer to 129Xe decreased. It appears the long-lived van der
Waals complexes face the most negative impacts in the polarization transfer, while the
short binary collisions remain effectively unchanged. In the individual VDW complexes,
spin transfer steps start to deform and the transfer bleeds away to Rb. The most
extreme cases show that even a negative spin transfer is possible, meaning spin transfer
to Xe nuclei was lost. This implies that there is a limit to how long the collisions can get
before losing effectiveness. Nontheless, the probability of event duration distribution
can be manipulated with conditions such as gas pressure and temperature.

The simulation method offers benefits over the experimental approach, but still
needs refinement. Development potential can be found immediately with the addition
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of more terms to the spin Hamiltonian, such as the 131Xe quadrupolar coupling and
Rb-Xe dipolar coupling. However, these are yet to be implemented and their effects
studied. Further research is to be expected in near future.
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