
Modelling PRACH signals in base

station with neural network

Master's Thesis

Linnea Kivioja

2462646

Unit of Mathematical Sciences

University of Oulu

Spring 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344910627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Neural networks are a hot topic in the �eld of machine learning right now.

They are machine learning algorithms that are often used for image classi-

�cation and big data problems. Neural networks consist of layers which are

made of neurons, places where the computation happens. The activity in

these neurons is loosely based on the function of human brain. Like most

machine learning techniques, the goal of neural networks is to solve an op-

timisation problem. It is done by trying to minimise the loss function that

measures the di�erence between the target output and the predicted output.

Neural computing is based on a so-called back-propagation algorithm. It en-

ables updating the neural network model each training loop, to make the

predictions gradually better.

This master's thesis presents neural networks as a method for modelling

the PRACH signal in the base station receiver. PRACH is a physical chan-

nel where the signal comes �rst when a user tries to connect to the mobile

network. The situation is a supervised learning regression problem. A neural

network is trained to learn the correlation between the inputs, i.e. chosen pa-

rameters that describe the situation, and the output, i.e. the corresponding

signal in I/Q format. In the end, the neural network is used to predict the

PRACH data signal when the corresponding input features are provided.

Keywords: machine learning, supervised learning, regression, prediction, neu-

ral network, back-propagation algorithm, PRACH, I/Q data

1

Tiivistelmä

Neuroverkkoalgoritmit ovat juuri nyt pinnalla koneoppimisen piireissä. Neu-

roverkot ovat koneoppimisen algoritmeja, joita usein käytetään kuvien luokit-

teluun ja suuren datan ongelmiin. Neuroverkot koostuvat kerroksista, jotka

puolestaan koostuvat neuroneista, joissa laskenta tapahtuu. Neuronien toi-

minta perustuu löyhästi ihmisaivojen toimintaan. Kuten useimmissa koneop-

pimisen menetelmissä, myös neuroverkkojen tarkoituksena on ratkaista opti-

mointiongelma. Se tehdään yrittämällä minimoida tappiofunktiota, joka las-

kee oikean vasteen ja ennustetun vasteen välistä eroa. Neuraalilaskenta perus-

tuu niin kutsuttuun vastavirta-algoritmiin, joka mahdollistaa neuroverkko-

mallin päivittämisen joka opetuskierroksella, jotta ennusteita saisi parannet-

tua vähitellen.

Tämä pro gradu -tutkielma esittelee neuroverkon metodina, jolla voi-

daan mallintaa PRACH-signaalia tukiaseman vastaanottimessa. PRACH on

yksi tukiaseman fyysisistä kanavista, jonne signaali saapuu ensimmäiseksi,

kun käyttäjä yrittää ottaa yhteyden mobiiliverkkoon. Tutkimusongelma on

regressio-ongelma ohjatun oppimisen tilanteessa. Neuroverkolle opetetaan

korrelaatio syötteen (input) ja vasteen (output) välillä, eli valittujen syötepa-

rametrien ja vastaavan signaalin välinen korrelaatio. Lopuksi neuroverkkoa

voidaan käyttää tukiaseman vastaanottaman PRACH-datasignaalin ennus-

tamiseen, kun tiedetään vastaavat tilannetta kuvaavat syöteparametrit.

Avainsanat: koneoppiminen, valvottu oppiminen, regressio, ennuste, neuro-

verkko, vastavirta-algoritmi, PRACH, I/Q data

2

Foreword

This thesis work has been done for Nokia Solutions and Networks, in a 5G

modelling product development team. I want to thank Nokia Solutions and

Networks for giving me this great opportunity to gain valuable knowledge

and experience.

From Nokia Solutions and Networks, I would like to �rst thank my super-

visor, Pekka Tuuttila, for guiding me through my time at Nokia. I also want

to thank Olga Kayo for helping me to get forward with my thesis project.

From the University of Oulu, I would like to thank my principal supervi-

sor, Erkki Laitinen, for introducing me to this opportunity and guiding me

through the process of writing my thesis. I also want to thank Leena Ruha

for being the second examinor of my thesis. Last but not least, I would like

to thank the University of Oulu and the Unit of Mathematical Sciences for

o�ering excellent and �exible education during these �ve years.

This master thesis work has received funding from the Electronic Com-

ponent Systems for European Leadership Joint Undertaking (ECSEL JU)

under grant agreement No 737494. This Joint Undertaking receives support

from the European Union's Horizon 2020 research and innovation programme

in Finland, Sweden, France, Spain, Italy and Czech Republic.

3

Abbreviations

ANN Arti�cial Neural Network

AR Augmented Reality

BS Base Station

CNN Convolutional Neural Network

DL Downlink

gNB gNodeB, notation for the BS in 5G

GPU Graphics Processing Unit

IoT Internet of Things

I/Q In-phase/Quadrature

LTE Long Term Evolution

MLP Multilayer Perceptron

MSE Mean Squared Error

NaN Not a Number

NN Neural Network

NR New Radio

PRACH Physical Random Access Channel

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

ReLU Recti�ed Linear Unit

RF Radio Frequency

RGB Red, Green, Blue

SGD Stochastic Gradient Descent

UE User Equipment

UL Uplink

VR Virtual Reality

5G 5th Generation (of mobile network technologies)

4

Contents

Abstract 1

Tiivistelmä 2

Foreword 3

Abbreviations 4

1 Introduction 7

1.1 Technical background . 7

1.1.1 Mobile networks . 7

1.1.2 Base station . 7

1.1.3 5G Network . 8

1.1.4 PRACH . 10

1.1.5 Simulator . 10

1.2 Goal of thesis . 11

1.3 Scope of thesis . 11

2 Data 13

2.1 I/Q data . 14

2.2 How to choose the algorithm? 15

2.3 Data pre-processing . 18

2.3.1 Standardisation . 19

3 Neural networks 22

3.1 Arti�cial neural networks . 22

3.2 Single-Layer Perceptron . 27

3.3 Activation functions . 28

3.4 Multilayer perceptrons . 31

3.5 Weight optimisation . 33

3.5.1 Gradient descent . 33

3.5.2 Back-propagation algorithm 36

5

3.6 Loss functions . 42

3.7 Optimisers . 43

3.8 Convolutional layers . 44

3.9 Dropout . 47

3.10 Hyperparameter optimisation 48

4 Thesis project 50

4.1 Designing the network . 50

4.2 Pre-processing . 51

4.3 Network architecture . 52

4.4 Training the model . 54

5 Results 56

5.1 Analysis . 57

6 Future works 59

7 Summary 62

References 63

Appendix 67

6

1 Introduction

1.1 Technical background

The Finnish telecommunications company Nokia was known worldwide for

the famous Nokia mobile phones. Today, Nokia is a company that focuses on

wireless technology and provides mobile network hardware and software. [9]

Nokia is among the leaders in 5G development.

1.1.1 Mobile networks

Mobile networks (wireless networks, cellular networks) are complex webs that

consist of cellphone tower zones connected to each other. They use various

radio frequencies for data transfer. Mobile networks are divided into areas of

land called cells. Cells have at least one base station (BS) cell tower within

their area. Cells are connected to each other and hand o� packets of signals

like data, voice or text messages. They send and receive signals from each

other and from the mobile devices (such as phones and laptops with wireless

internet connection) in their area. [10] These wireless data networks are used

today more than ever. They allow us to make a call to the other side of the

world in an instant and to be connected to the internet almost anywhere.

1.1.2 Base station

A base station (BS) is a �xed radio signal transceiver (transmitter/receiver)

in a mobile network. The BS connects mobile devices to the network. The

BS has a transmitter part which sends signals to the mobile device i.e. the

UE (User Equipment), and a receiver part that receives signals from the UE.

The data tra�c from the UE to the BS receiver is called uplink (UL), and

the data tra�c from the BS transmitter to the UE is called downlink (DL).

The notation for the BS in 5G is the gNB (gNodeB).

7

Figure 1: The connections between the BS and the UE in mobile network.

[11]

1.1.3 5G Network

5G is called the 5th generation of mobile network technologies. It is a signi�-

cant development from the 4G LTE (Long Term Evolution) network technolo-

gies that are used today. 5G is designed to deliver faster and more connections

in today's modern society. An important concept is the Internet of Things

(IoT), the idea of billions of smart devices connected to people and each

other. It is also designed to have greater capacity to meet the large growth in

data transfer today. One of the most important advantages of 5G is the fast

response time, latency. Latency is the time it takes for data to go from the

source to the destination in milliseconds. This means the time between the

moment when data is sent by the UE and the moment it is received by the

gNB (or similarly, sent by the gNB and received by the UE). [26] In 3G the

response time was 100 ms, in 4G it was around 30 ms and in 5G it is only

1 ms. This is basically instantaneous, which opens up a whole new world of

connected applications. It enables concepts like real-time tracking of tra�c

and automated vehicles.

There are three key use case categories in 5G. Massive machine-to-ma-

chine communications is a use case that means basically the IoT � billions

of devices connected without human intervention, in a whole new scale.

This might enable new revolutionary improvements in industrial processes,

8

1.1.4 PRACH

To be able to carry the data across the radio access network, the data is

organised into di�erent data channels. The physical channels are the channels

which are closest to the actual data transmission over the network. They are

used to transport the data over the actual radio interface. The transmission

is done over the air.

There are three physical channels in both uplink and downlink direction

in 5G. In this thesis work, we are interested in the receiver part of the gNB,

which means the uplink direction. The three uplink physical channels in 5G

NR (New Radio) are Physical Random Access Channel (PRACH), Physi-

cal Uplink Shared Channel (PUSCH) and Physical Uplink Control Channel

(PUCCH).

The channel to be studied in this thesis work is PRACH. PRACH is

used for accessing the network. The UE transmits an initial random access

preamble that consists of long or short sequences. PRACH channel carries

the preamble signal of the user, and the gNB is trying to detect the channel

carrying the signal. [16]

PRACH is the �rst channel that is used when the signal comes in uplink

direction (from the UE to the gNB). The goal of PRACH channel is to carry

the user signal that is trying to access the network.

1.1.5 Simulator

The used data is generated with a link level simulator that models the com-

plex 5G network and all its functions. There are multiple scripts for di�erent

test scenarios, for each physical channel separately. When a test script is

used to run a simulation, it creates multiple folders of measured results �

all the data that is obtained from running the simulation with the speci�c

test script settings. In the resulting folders we can �nd for example the input

parameter settings for the scenario, the data signal in I/Q format and the

measured output results.

10

1.2 Goal of thesis

The goal is to model the behaviour of PRACH channel in the gNB � or

more accurately, to model the PRACH data signal that the gNB receives in

a user-de�ned situation. For this, a model is needed. The parameter settings

of a hypothetical situation are fed in the model. Based on them, the model

should be able to predict the outcome � the resulting PRACH data signal in

the gNB. The goal is to create an estimator that predicts the PRACH data

signal as accurately as possible.

The training data for the model is obtained from the simulations. For

generating a data sample with the simulator, the input parameter settings

are de�ned. After running the simulation, the PRACH data signal in I/Q

format is acquired. Multiple di�erent simulations are run for di�erent cases,

and wanted data from them is saved and collected.

With the data ready, the behaviour can be taught to the machine learning

model. The main goal is to use the trained model to see comparable output

results when using some self-de�ned input parameter set. The advantage of

the model is not needing to run through time-consuming simulations with

the simulator.

A neural network is used as a model. The model learns the behaviour of

the data generated by the simulator.

1.3 Scope of thesis

After introducing the basic technical concepts and the goal of this thesis,

we continue with describing the data that was used, the machine learning

technique that was applied to the data and the results of the project.

Chapter 2 describes the nature of the data used in the simulations, tak-

ing a special look into the format of the output data, the I/Q signal. It is

explained why neural networks were chosen as the used machine learning

algorithm. The data pre-processing steps are also gone through.

In Chapter 3, the concept of neural networks is introduced. The structure

11

and the calculation methods in neural networks are presented in more detail.

The chapter also goes through the mathematical details of the fundamental

algorithm for neural networks: the back-propagation algorithm.

Chapter 4 describes the thesis project of designing a neural network for

PRACH signal prediction. The used neural network and its hyperparameters

are presented along with explanations on why they were chosen.

The results of the project are discussed in Chapter 5, along with some

indicative measurements about how accurate the predictions of the network

are. It is also tested with the simulator whether the preamble can be detected

from the predicted signal. Example plots of predicted I/Q signals compared

to their targets are shown and explained at the end of thesis, in Appendix.

Chapter 6 collects together some ideas that came across during the process

of writing the thesis. They are saved for further studying and future works.

Finally, the thesis work and results are summarized in Chapter 5.

12

2 Data

The data that is used to train the model has an input part and an output part.

The input is the set of parameters that were used to de�ne the simulation

case, and the output is the resulting PRACH data signal in I/Q format. These

values were collected from multiple simulations to acquire 4800 data samples.

Each data sample is a row of data that has one set of input parameters (input

features) and one PRACH data signal.

First, the case for study was chosen. It was not possible to study all

PRACH behaviour: the situation needed to be limited. Therefore, some input

parameters were "frozen" in order to create the model. For example, the

number of UEs was chosen to be constant. If it changes between data samples,

it causes problems as there are more measured values for more users. For this

project, the number of UEs was chosen to be 1, so only single-user data was

collected.

One data sample has 9 input features which are measurements that were

used to de�ne the simulation case. All the inputs are numerical. The output of

one data sample is a PRACH data signal in the form of an I/Q vector, which

is a complex integer vector, of length 15408. The input features were chosen to

be parameters that have varying values in simulations. Therefore, they might

have an e�ect on the resulting output data signal. Two input features that

have an e�ect on the output signal are introduced as an example: let them

be called Input1 and Input2. Input1 is a parameter that de�nes at which

point in the signal the preamble might be seen. Input2 is another parameter

which tells how clearly the preamble part might be seen: when Input2 value

increases, the values in the preamble part of the signal increase.

As said before, the data was generated by running simulations with the

simulator. The simulation scripts randomised the values of some input pa-

rameters, in their respective ranges, so that the data would be as diverse

as possible. There are no duplicate rows in the data, which means all the

simulation cases had di�erent input parameter values.

13

2.1 I/Q data

The output part of data is the PRACH I/Q data signal received by the gNB.

The I/Q data is in complex vector format, where the I part (In-phase) of a

data point is the real part of that complex point, and the Q part (Quadrature)

is the imaginary part of the complex point.

Basically, I/Q data represents the message signal. It can be presented

with two di�erent forms. One form is two separate variables (I,Q), in which

case the data is a (n×2) matrix. The other form is a complex number I+Qi,

in which case the data is a complex vector of length n. We can plot the data

(either the two variables or the complex number components) to x and y axis

to see how it behaves.

I/Q data shows changes in the sine wave signal, speci�cally the changes

in amplitude A and phase φ. This changing in amplitude and phase that has

a speci�c order is called the modulation of the signal. Signal modulation, i.e.

changing of the sine wave, is a way to encode information into the signal.

I/Q data is a practical way to represent the signal.

Figure 3: I/Q data point representation. [4]

I/Q data has two parts: I part and Q part. I part is the in-phase data,

"the real signal". Here, the modulating carrier wave (the wave that carries the

signal) is in phase with the real signal. Q part is the quadrature data which

means that the carrier is o�set by 90 degrees. It is 90 degrees out of phase,

14

so it is orthogonal to the real signal. This is called quadrature upconversion.

The I/Q modulator mixes the I-waveform with the RF (Radio Frequency)

carrier sine wave, and the Q-waveform with the same RF carrier sine wave,

but with 90 degrees phase o�set.

I/Q data represents the signal on time domain. This means that I/Q data

has basically three dimensions: time, amplitude and phase. Every point of

the signal, i.e. point in time, is a row in the (n× 2) matrix, or a point in the

complex vector of length n, depending on which form we use. Every point

also provides a new value for I and Q, meaning a new amplitude and phase

for every point. This is exactly the modulation of the signal. [3] [4]

Figure 4 shows an example plot of what I/Q data signal might look like,

with I part plotted on x axis and Q part plotted on y axis. This is the output

part of one training data sample: PRACH I/Q data signal. It is the target

I/Q data created by the simulator that the model is trying to predict. Ideal

PRACH I/Q signal would resemble a circle like the outer circle seen in Figure

4. However, there is always noise in real life situations which is why the circle

is uneven.

The I and Q parts of a PRACH I/Q data signal are plotted separately in

Figure 5. Both I and Q parts are vectors of length 15408. Here, the preamble

part can be seen at the beginning of the signal, for both I and Q. The I/Q

values in the preamble part are large compared to the rest of the signal, so

the preamble part is distinct.

2.2 How to choose the algorithm?

While looking for the ideal machine learning algorithm for a speci�c case,

one needs to have a clear picture of the data that is going to be used. The

problem in hand and the potential constraints also need to be understood.

First, it is essential to know and understand the data. One needs to know

the amount of data available, and whether it is enough to achieve accurate

results. It is important to know for example if the inputs are categorical or

if there is missing data that needs �lling in. It is useful to look at summary

15

Figure 4: The PRACH I/Q data signal of one data sample.

Figure 5: The same PRACH I/Q data signal as above, separated into I and

Q parts.

16

statistics (percentiles, averages, standard deviation, correlations) and visuali-

sations to see the spread of data, relationships between variables and possible

outliers.

In most cases, data needs pre-processing in order to be used in a spe-

ci�c case. Data pre-processing is usually one of the most time-taking steps

in training a machine learning algorithm. The data needs to be cleaned: only

the needed information is taken, data is put in suitable format, and possible

missing data cases are handled with a suitable processing technique. If there

are radical outliers, they need to be dealt with as well. Data might also need

aggregation: summarising or combining. It might be useful to reduce dimen-

sionality in multidimensional cases or remove redundant data. Rescaling or

standardising variables is often helpful. The goal is to make data from raw

to ready for modelling.

Second, one needs to have a clear picture of the problem in hand. Some

problems are very open and need a trial-and-error approach. These are for ex-

ample supervised learning, classi�cation and regression problems. For them,

predictive models that are more general could be built.

It is good to categorise the problem. If the input data is labelled, meaning

that it is known which outputs correspond to which inputs, the situation

is called supervised learning. Otherwise, if the labels corresponding to the

inputs are not known, it is called unsupervised learning. If the output is

numerical, the problem is a regression problem. If the output is a class, it is

a classi�cation problem. If the output is a set of input groups, and the goal is

to separate inputs into di�erent groups, it is a clustering problem. The goal

can also be detecting anomalies, in which case it is an anomaly detection

problem.

Finally, the constraints and requirements of the problem need to be un-

derstood. What is the data storage capacity? Does the prediction have to be

fast? Does the learning have to be fast? These qualities also have an e�ect

on which algorithm to choose.

Now, the applicable and practical-to-implement algorithms for the case

17

can be identi�ed, and the model that suits the problem and meets the goals

can be chosen. It is bene�cial to make sure that the model is fast enough, is

explainable and scalable, and is complex enough to give accurate results. [7]

2.3 Data pre-processing

There needs to be enough data so that the model can be trained to be

accurate. The data also needs to be diverse, so that it covers as many cases

as possible and the model learns a wide area of cases. There is a large number

of data accessible, but it is still �nite, so it needs to be decided how much of

it is used for training and how much for validation. There are altogether 4800

samples of data. The data is divided into three sets: training set, validation

set and test set. In this project, 60 % (2880 samples) of the data is used

for training, 25 % (1200 samples) for validation and 15 % (720 samples) for

testing.

Before �tting a model to the data, the data needs to be pre-processed.

There are no categorical features or missing parts in the data, so there is no

need for encoding or �lling in. The data is collected from result folders. The

wanted 9 features are picked as input and the resulting PRACH I/Q data

as output. The data is gathered into one array of 4800 rows. There are no

duplicate rows in the data, so there is no redundancy.

The research problem is a situation of supervised learning because there

is a corresponding output for each input � the resulting PRACH data signal

for each set of input features. The output, the I/Q data vector or matrix, has

numerical values, so this is a regression problem. There is a good amount of

data and plenty of data storage. The memory capacity and computing power

are quite good as well. The learning of the model does not have to be very

fast, but the prediction that the trained model provides should be more or

less instant.

Why use a neural network as an algorithm to �t to this problem? Neural

networks are a hot topic at the moment. They are often very e�cient in

classi�cation and regression problems in machine learning. However, using

18

them requires a large amount of data and usually plenty of memory and

computing power. On the other hand, they can be used as a "black box"

method, which means the data does not need to be understood completely

beforehand � the network learns the non-linear correlations straight from the

data anyway. Neural networks seemed to be a good choice for this research

problem, so the model is created by building and training a neural network.

2.3.1 Standardisation

When working with neural networks, it is very common to standardise the

data. Standardising the data generally speeds up learning and leads to faster

convergence. It ensures that the magnitude of the values in one feature are

of similar extent. If the inputs have di�erent scales, the weights connected to

some inputs will be updated much faster than others. This generally hurts

the learning process, so when features have di�erent scales, standardisation

is usually needed. Standardisation also has a signi�cant e�ect on the loss

function values because they depend on the scale of data. [18]

Standardisation transforms the data to have a mean of 0 and a standard

deviation of 1. The data is standardised by standardising each feature in input

and output. The original data point x in a feature is scaled and represented

as a standardised point x̂ by subtracting the mean µ of that feature and

dividing by the standard deviation σ of that feature

x̂ =
x− µ
σ

.

Here, the mean µ and standard deviation σ are de�ned as

µ =
1

n

n∑
i=1

xi and σ =

√√√√ 1

n− 1

n∑
i=1

(xi − µ)2 ,

where {x1, . . . , xn} are the observed values in the feature and n is the number

of observations in the feature.

After standardising all data points in all features like this, the standard-

ised features have a new mean of 0 and a new standard deviation of 1. This

19

means that most of the data is in the range of [−1, 1], with only the "tails" of

the original data distribution exceeding this range. However, the original data

distribution is large and uneven, especially for the output part, the I/Q data.

With certain input parameter values, the preamble part of the output signal

gets very large values. In other cases, the values in preamble part are low, so

the preamble cannot be easily detected from the rest of the signal. Basically,

this means that even when the data is standardised to have a mean of 0 and

a standard deviation of 1, there are several values in the data, especially in

I/Q data, that easily exceed the range of [−1, 1].

After standardisation, the values in every feature are centered around 0.

The average deviation from 0 is 1. The distribution of the data is as before; the

data itself does not change, only the scale of the data. When the standardised

data is "unstandardised" back to original values, inverse standardisation is

performed: �rst, the standardised data point is multiplied with the standard

deviation, and then it is summed with the mean.

When the I/Q data is standardised feature by feature, some features

in standardised output data get NaN values (Not a Number). This results

from the fact that some features in output data have only one �xed value.

Therefore, the standard deviation for that feature is 0. When the feature is

standardised, each data point is divided with the standard deviation, which

in this case is 0. This results in an error, and the standardised point will be

a NaN value.

Before feeding the standardised data into the network, all NaN values in

output data are replaced with 0. NaN is not a numerical value, so replacing

them with zeros makes all the data numerical again. This way, the model is

able to handle it. Replacing NaN with 0 is allowed because the data points

get the correct original values again when they are unstandardised.

In the �nal stage, when the trained network is tested, a prediction of

the PRACH signal is produced based on given inputs. The prediction can

be compared to the real output signal, the target. At this point, both the

prediction and the target have the standardised scale. The real signal and its

20

prediction can be seen in the original scale if the signals are unstandardised.

This means converting the standardised values back to original scale with

the same mean and standard deviation that were used for standardisation.

However, the predicted values are only estimates that seldom reach the

exact target value. When the predictions are unstandardised, the resulting

prediction signal is not necessarily integer-valued. The real PRACH signal

(the target) consists of integer values, so the predicted signal is rounded to be

in integer format, to be able to do comparison. In some cases, rounding the

values might make the di�erence between the target value and the predicted

value bigger. For example, after unstandardisation, if some target I/Q point

is (1, 1) and the predicted point is (0.4, 1.6), the rounded prediction will be

(0, 2) which is further from the real point than the unrounded one.

21

3 Neural networks

3.1 Arti�cial neural networks

An arti�cial neural network (ANN), or neural network (NN), is a set of

algorithms that is loosely based on the functioning of human brain. Basically,

neural networks combine the working �ow of human brain and mathematical

logic. They were originally designed for pattern recognition, a part of machine

learning. Nowadays, the neural network technique development focuses also

on the �elds of statistics and signal processing.

Neural networks interpret data; they help us label, cluster and classify

data. They group unlabelled data by �nding similarities among the input

samples. They can also classify data if they have a labelled training data � a

data set with the input data and their corresponding labels. Neural networks

can be trained based on the training data, meaning that the network learns

which kind of inputs produce which kind of outputs.

Basically, neural networks map the inputs to the outputs. Besides classi�-

cation problems, they are also widely used for predictive analysis, regression.

When a neural network is trained with some training data, the network gives

a prediction of outputs if the inputs are fed in. If the inputs are changed, the

network produces new predictions based on them. This provides information

on when there might be errors, what are they caused by and how to possi-

bly avoid them. Knowing this is useful for example in predicting hardware

behaviour and hardware breakdowns. "The better we can predict, the better

we can prevent." Neural networks are introducing us to a world with fewer

surprises � not zero surprises, just fewer of them. [5]

Neural networks are composed of two or more layers. These layers are

made of nodes, which are the places where the computation happens. Nodes

are loosely based on neurons in human brain. A node in neural network

combines the input data with weights, coe�cients that assign a signi�cance

to each input, depending on the task that the algorithm is trying to learn.

Weights give more signi�cance to those inputs that are more helpful for pre-

22

dicting without error. All the inputs and their weights are summed together,

and the sum is passed through an activation function. The activation func-

tion determines whether and to what extent the signal should progress further

through the network, to a�ect the outcome.

Figure 6: A diagram of what one node might look like. [5]

A layer is a row of nodes through which the input data is fed. The output

of each layer is the input for the next layer. The network starts from an initial

input layer that receives the input data. The number of nodes in input layer

is equal to the number of features in the input data. There is no computation

happening in the input layer; it just passes the inputs through to the next

layer. The network ends in an output layer which makes a prediction of the

outcome. The number of output nodes (nodes in output layer) depends on

whether the output to be predicted consists of a single value or multiple

values.

There can be multiple hidden layers between the input and output layers,

to make the network more complex and the predictions better. If the neu-

ral network is composed of several hidden layers, the situation is called deep

learning. Each layer of nodes trains on a distinct set of features, from the out-

puts of the previous layer. The further in the network, the more complex the

features that the nodes recognise are. This is known as feature hierarchy, the

increase of complexity and abstraction. This is why deep learning networks

can handle large, high-dimensional data sets with billions of parameters.

23

They can also discover latent structures (hidden structures) in unlabelled,

unstructured data � which is most of the data in the world. They perform

automatic feature extraction without human intervention, unlike most tradi-

tional machine learning algorithms.

Deep neural networks are distinguished from the single-hidden-layer net-

works by their depth, the number of layers through which the data must

pass. First versions of neural networks, such as the �rst perceptrons, were

composed of only one input and one output layer, and at most one hidden

layer between them. If a network has more than one hidden layer, it quali�es

as deep learning.

Figure 7: An example of what a simple network might look like. [5]

A neural network that has been trained on labelled data can then be

applied to unlabelled data. However, it is very important to have enough

data to train on. The more data a network can train on, the more accurate

it is likely to be. Bad algorithms trained on lots of data can actually perform

better than good algorithms trained on very little data.

Neural network is "born in ignorance". This means that at �rst, it does

not know which weights will provide the best translation of the input to make

a correct guess. It has to start with just a guess and then try to make better

guesses after each time, learning from its mistakes.

What exactly happens during learning in the neural network? First, the

input enters the network, and the weights map the input to a set of guesses.

The network compares the guess to the correct result. It calculates the loss,

24

the error due to the di�erence between the guess and the correct result.

Finally, the network updates the model based on the error, adjusting the

weights to the extent they contributed to the error. These are the three key

functions of neural networks: mapping the input, calculating the loss and

updating the model. The network repeats this three-step process over and

over again. Neural network is a corrective feedback loop, rewarding weights

that support its correct guesses and punishing weights that lead to errors.

What happens at every node of a neural network is essentially a form of

multiple linear regression. In multiple linear regression, we have many input

variables producing an output variable. It can be expressed for example as

an equation

Ỹ = b1 · x1 + b2 · x2 + b3 · x3 + a ,

where the estimated output variable Ỹ is produced by summing the input

variables xi, each multiplied with a corresponding coe�cient bi (i = 1, 2, 3),

and adding a constant a.

The inputs that enter a node are all combined with each other: they are

mixed in di�erent proportions according to their weights. The weights are

di�erent for each node of a layer. The network tests which combinations of

inputs are signi�cant as it tries to reduce the error. [5]

Like the brain, neural network "learns" by changing the strengths of the

connections between nodes, or by adding or removing such connections. These

connections are the weights. Learning itself is accomplished sequentially from

increasing amounts of experience. [1]

Deep neural networks can be used if the wanted outcomes are labelled,

i.e. if the link between inputs and outputs is known � in other words, if the

problem is a supervised learning problem. This correlation between inputs

and outcomes can be taught to the neural network algorithm.

Deep learning is an extremely popular and widely used method nowa-

days. Unlike many other machine learning algorithms, neural networks get

better with more data, and the amount of data available today is massive.

Traditional machine learning algorithms will eventually reach a level where

25

adding more data does not improve their performance any more, but that

does not happen with deep learning. The computational power available to-

day is also increasing, and it enables us to process more data, which is needed

when using neural networks. The development of neural network algorithms

has made them run much faster than before which makes them even more

e�ective.

The main advantage of neural networks is their ability to outperform

nearly every other machine learning algorithm, but there are also some dis-

advantages. One of them is the "black box" nature of neural networks, which

means it is unknown how and why the network came up with a certain out-

put. Due to that, neural networks are not easily interpretable or explainable,

and those traits are important in some cases where it is essential to justify

the decisions in a human-understandable way. There is not always a large

amount of data available, which neural networks usually require in order to

work well. In these cases, other machine learning algorithms that deal much

better with little data would be a better choice. Neural networks also tend to

be more computationally expensive than traditional algorithms. It depends

on the size of the data and the depth and complexity of the network, but usu-

ally neural networks are very resource and memory intensive. The research

of neural networks is relatively new because the hardware to support neural

computation did not become available until the 1980s.

Figure 8: One disadvantage of neural networks is their "black box" nature.

[6]

Of course, neural networks are not the best solution for every problem.

26

Sometimes other algorithms provide better results. The resources used for

the training also need to be considered. Some algorithms might give better

results with less resources, like less time spent for training or less memory

or computing power needed. Choosing the method or the algorithm depends

strongly on the problem and the situation. There is no "perfect" algorithm

that will perform well with any problem. [6]

3.2 Single-Layer Perceptron

One of the �rst neural network developments was done in 1958 by Frank

Rosenblatt who constructed a minimally constrained system called a per-

ceptron. [1] A perceptron is essentially a single node. It consists of multiple

inputs Xm (m = 1, . . . , r) and a single output Y . Each input can be either

binary, meaning it has a value of either 0 or 1 ("o�" or "on"), or real-valued.

For each input, there is a real-valued connection weight βm (m = 1, . . . , r).

Weights can be positive or negative. The magnitude of the weight shows the

importance of the connection.

A weighted sum U of all input values is calculated as

U =
r∑

m=1

βmXm .

The output is then

Y =

{
1 if U ≥ θ

0 otherwise,

where θ is the threshold value (see Figure 9).

Note that the threshold θ can be converted to 0 by introducing an inter-

cept β0 = −θ, so that U + β0 = U − θ. Then 0 can be used as the threshold

and compared to

U =
r∑

m=0

βmXm .

Note that here X0 = 1. Now the output can be written as

Y =

{
1 if U ≥ 0

0 otherwise.

27

Figure 9: Single-layer perceptron with inputs Xm, weights βm, weighted sum

U , threshold θ and binary output Y . [1]

Figure 10: The same perceptron with inputs Xm, weights βm, weighted sum

U and output Y , but now we have the intercept β0 = −θ and X0 = 1, so the

threshold is θ = 0. [1]

3.3 Activation functions

Let X = (X1, . . . Xr)
T represent a random r-vector of inputs. If there are

multiple, say s output nodes instead of one binary output, each output node

computes an activation value using a linear combination of the inputs. For

the `th output node, the `th linear activation function can be computed as

U` = β0` +
r∑

m=1

βm`Xm = β0` +XTβ` ,

where β0` is a constant or an intercept related to the threshold for the node,

and β` = (β1`, . . . , βr`)
T is an r-vector of connection weights, ` = 1, . . . , s.

28

The collection of s linear activation functions can be rewritten as

U = β0 +BX ,

where U = (U1, . . . , Us)
T , β0 = (β01, . . . , β0s)

T is an s-vector of intercepts,

and B = (β1, . . . , βs)
T is an (s× r)-matrix of connection weights.

The activation values are then �ltered through a non-linear threshold

activation function f(U`), to form the value for the `th output node. This

can be expressed in matrix notation as

F (U) = F (β0 +BX) ,

where F = (f, . . . , f)T is an s-vector function where each element is the

function f , and F (U) = (f(U1), . . . , f(Us))
T .

Figure 11: The perceptron with r inputs Xm, intercept β0, connection weights

βm, weighted sum U , activation function f and one binary output Y . [1]

The most commonly used non-linear activation functions are the sig-

moidal functions, the "S-shaped" functions, because of their limited range

and di�erentiability. A sigmoidal function is a function σ(·) that has the

following properties:{
σ(x)→ 0 as x→ −∞ , and

σ(x)→ 1 as x→ +∞ .

A sigmoidal function σ(·) is symmetric if σ(x) +σ(−x) = 1, and asymmetric

if σ(x)+σ(−x) = 0. Examples of sigmoidal functions are the logistic and the

hyperbolic tangent. The logistic function is symmetric, while the hyperbolic

29

tangent (tanh) is asymmetric. The logistic function is a traditional sigmoidal

function which has a range of [0, 1]. The hyperbolic tangent has a range of

[−1, 1]. [13]

ReLU (Recti�ed Linear Unit) is a widely used non-linear activation func-

tion. The formula of ReLU is simple:

ReLU(x) = max{0, x} .

ReLU is usually the default choice for activation function because it generally

works the best and is computationally e�cient. Plots of these activation

functions are shown in Figure 12.

Figure 12: Three examples of activation functions: logistic, hyperbolic tangent

(tanh) and ReLU.

A neural network without an activation function is just a linear regres-

sion model. If there is no activation function, the weights simply do a linear

transformation. A linear equation is easy to solve, but it is not able to solve

complex problems and learn complex functional mappings from data. Us-

ing non-linear activation functions help the network learn complex data and

30

provide accurate predictions.

In regression problems, no activation function is used for the output layer.

This means that no transformation is done to get the output values (the

prediction). Instead, the numerical values without any transformation are

needed. If for example a logistic sigmoid function is used, the output values

are always between 0 and 1. That is not wanted, unless the data that the

predictions are done for is distributed within that range. [28]

3.4 Multilayer perceptrons

The perceptron is still relatively simple and has some limitations. There

were suggestions by Minsky and Papert (1969) that the limitations of the

perceptron could be overcome with layering the perceptrons and applying

non-linear transformations before combining the weighted inputs. At that

time these suggestions were not adopted because of computational limits, but

when high-speed computers became available and the "back-propagation"

algorithm was discovered, Minsky and Papert's suggestions became more

meaningful.

Multilayer perceptron (MLP), also called a feed-forward neural network

or a deep feed-forward network, is a multivariate statistical technique that

non-linearly maps an input vector X = (X1, . . . , Xr)
T to an output vector

Y = (Y1, . . . , Ys)
T . Between the inputs and outputs, there are "hidden" vari-

ables or hidden nodes arranged in layers. A typical neural network has two

computational layers: the hidden layer and the output layer. The input layer

does not require any computing. It consists of the input nodes which are just

the input variables.

Neural networks can be used to model regression or classi�cation prob-

lems. In a univariate regression situation, there is only one output variable

or output node Y (s = 1), while in a multivariate regression situation, such

as in this project, there are s output nodes Y1, . . . , Ys.

Multilayer perceptrons have r input nodes X1, . . . , Xr, one or more layers

of hidden nodes, and s output nodes Y1, . . . , Ys. Each layer of hidden nodes is

31

called a hidden layer. If there is only one hidden layer, the network is called a

two-layer network, where the output layer is the second computational layer.

Generally, if there are L hidden layers, the network is called an (L+ 1)-layer

network. An illustrative example of a multilayer perceptron can be seen in

Figure 13.

Figure 13: Multilayer perceptron (or neural network) with a single hidden

layer. The network has r = 3 input nodes, s = 2 output nodes, and t =

2 nodes in the hidden layer. The α's and β's are weights attached to the

connections between nodes, and f and g are activation functions for each

computational layer. [1]

A fully connected network is a network where for each layer, all nodes of

that layer are connected to all nodes in the next layer (if there is one). If some

of the connections are missing, the network is a partially connected network.

However, a partially connected network can always be represented as a fully

connected network, by setting the weights of the missing connections to zero.

32

3.5 Weight optimisation

Neural network tries to make a correct prediction of the output by �rst taking

a guess, then calculating the loss, and then updating the weights in all layers

based on the calculated loss, in order to make a better guess next time. It does

this repeatedly, trying to make better guesses each time. But how exactly is

the updating and optimising of weights done in neural networks?

The most popular numerical method for optimising the network weights

is the back-propagation algorithm (Werbos, 1974). The back-propagation al-

gorithm computes the �rst derivatives of a loss function with respect to the

weights. These derivatives are used to update the weights by minimising the

loss function with an iterative gradient descent method. [1]

3.5.1 Gradient descent

In neural networks, the goal is to minimise the loss function J(θ) with respect

to the parameters θ which are the weights of the network. The purpose is to

�nd a value for θ that minimises the loss function. This value is denoted with

θ∗ = min J(θ) .

The derivative J ′(θ) is used for minimising the function J(θ). The derivative

J ′(θ) provides the slope of the function J(θ) at the point θ. It speci�es how

to scale a small change γ in the input to obtain the corresponding change in

the output:

J(θ + γ) ≈ J(θ) + γ · J ′(θ) .

In other words, it explains how to change parameters θ in order to make a

small improvement in the loss function J(θ). For example, it is known that

J(θ)− γ · sign(J ′(θ)) < J(θ) for small enough γ. Therefore, the loss function

J(θ) can be reduced by moving the parameters θ in small steps of γ, with

the opposite sign of the derivative. This technique for minimising a function

is called gradient descent (see Figure 14). [8]

When J ′(θ) = 0, the derivative provides no information on which direction

to move. These points where J ′(θ) = 0 are called critical points or stationary

33

J(θ)

J(θ)

J(θ)

J(θ)

A point that obtains the absolute lowest value of J(θ) is a global mini-

mum. A function can have one or multiple global minima. In deep learning,

optimisation is often done for functions that may have local minima that are

not globally optimal, and for functions that may have many saddle points

surrounded by �at regions. This makes optimisation di�cult, especially when

the function input is multidimensional. Therefore, it is usually su�cient to

settle for �nding a value of the function that is very low but not necessarily

minimal.

For minimising functions with multiple inputs, J : Rn → R, partial
derivatives must be used. The partial derivative ∂

∂θi
J(θ) measures how J

changes as only the variable θi increases at point θ. The gradient of J is

the vector containing all the partial derivatives and is denoted as ∇θJ(θ). In

other words,

∇θJ(θ) =

(
∂

∂θ1
J(θ), . . . ,

∂

∂θn
J(θ)

)
for θ = (θ1, . . . , θn) .

In multiple dimensions, critical points are points where every element of the

gradient is equal to zero, i.e. ∂
∂θi
J(θ) = 0 for all θi. [8]

The directional derivative in direction of unit vector u is the slope of the

function J in direction u. In other words, the directional derivative is the

derivative of function J(θ+αu) with respect to α, evaluated at α = 0. Using

the common chain rule of di�erentiation, it can be seen that

∂

∂α
J(θ + αu) = u>∇θJ(θ) when α = 0 .

To minimise loss function J , the direction in which J decreases the fastest

needs to be found. This can be done using the directional derivative as

min
u

{
u>∇θJ(θ)

}
= min

u
{‖u‖2 ‖∇θJ(θ)‖2 cosϕ} ,

where ϕ is the angle between u and the gradient. Because ‖u‖2 = 1 and

‖∇θJ(θ)‖2 does not depend on u, this can be simpli�ed to minu {cosϕ}.
This is minimised when u points in the opposite direction as the gradient.

In other words, the gradient points directly uphill, and the negative gradient

35

points directly downhill. The loss function J can be decreased by moving

it in the direction of the negative gradient. This is known as the method of

gradient descent, or steepest descent.

Gradient descent proposes a new point

θ′ = θ − ε · ∇θJ(θ) ,

where ε is the learning rate, a positive scalar that determines the size of the

step in the iterative process. If ε is too large, the iterations move rapidly

towards a local minimum, but may possibly overshoot it. In the other hand,

if ε is too small, the iterations may take a long time to get anywhere near a

local minimum. [1] Choosing and optimising ε can be done in several di�erent

ways. A popular approach is to set ε to a small constant. [8]

3.5.2 Back-propagation algorithm

When a feed-forward neural network is used to accept a set of inputs X and

predict a set of outputs Ỹ , the data �ows forward through the network. The

set of inputs X have the initial information which "propagates" up to the

neurons in hidden layers and �nally produces the outputs Ỹ . That is called

forward propagation. During training, the forward propagation continues on-

ward until it produces a scalar cost J(θ). The back-propagation algorithm

allows the information from the cost function or the loss function J(θ) to

�ow backward through the network in order to compute the gradient. [8]

The back-propagation algorithm is an iterative gradient-descent-based al-

gorithm. Using randomly chosen initial values for the weights, the direction

that makes the loss function smaller is searched. The back-propagation algo-

rithm evaluates the gradient using a simple and inexpensive procedure.

It is to be noted that back-propagation refers only to the method of com-

puting the gradient. Other algorithms called optimisers, for example Stochas-

tic Gradient Descent (SGD) or Adam (Adaptive Moments), are used to per-

form the actual learning using this gradient. Learning algorithms usually

require the gradient of the loss function J with respect to the parameters θ:

36

∇θJ(θ).

To simplify the description of back-propagation algorithm, we introduce

an example of a single-hidden-layer network. All the presented details can be

generalised to deeper networks.

Denote the set of r input nodes by M, the set of t hidden nodes by J
and the set of s output nodes by K. Hence, m ∈ M indexes an input node,

j ∈ J indexes a hidden node and k ∈ K indexes an output node. There are

n input vectors of length r to feed in the network, and the ith input r-vector

is denoted by Xi = (xi1, xi2, . . . , xir), i = 1, . . . , n.

Figure 16: Schematic diagram of single-hidden-layer network. The top dia-

gram relates the input nodes Xm to the jth hidden node, and the bottom

diagram relates the hidden nodes Zj to the kth output node. For simplicity,

all reference to the ith input vector has been dropped. [1]

To perform back-propagation, we start at the kth output node. Denote

the error at that node by the di�erence between the predicted output and

the target output

ei,k = Yi,k − Ỹi,k , k ∈ K .

37

Denote the loss function for the input vector i by the mean squared error

(MSE) of the errors of all s output nodes

Ei =
1

s

s∑
k=1

e2i,k , i = 1, . . . , n .

The optimisation criterion is the loss function averaged over all data in the

learning set

E =
1

n

n∑
i=1

Ei =
1

n · s

n∑
i=1

s∑
k=1

e2i,k .

The learning problem is to minimise E with respect to the weights βi,jm and

αi,kj, where βi,jm are the weights between the input layer and the hidden

layer, and αi,kj are the weights between the hidden layer and the output

layer, as seen in Figure 16. Because each derivative of E with respect to

these weights is a sum over the learning data set of the derivatives of Ei,

i = 1, . . . , n, it is enough to minimise each Ei separately.

Now, for the ith input vector, let

Vi,k =
∑
j∈J

αkjZi,j = αk0 + Z>i αk , k ∈ K ,

be a weighted sum from the set of hidden units to the kth output node, where

Zi = (Zi,1, . . . , Zi,t)
> , αk = (αk1, . . . , αkt)

> ,

and Zi,0 = 1. Then, the corresponding output is

Ỹi,k = gk(Vi,k) , k ∈ K ,

where gk is the output activation function which is assumed to be di�eren-

tiable.

Next, we search for the direction that makes the loss function Ei smaller.

Consider the weights αi,kj from the jth hidden node to the kth output node.

Let αi =
(
α>i,1, . . . , α

>
i,s

)>
= (αi,kj), k = 1, . . . , s and j = 1, . . . , t, to be the

ts-vector of all the hidden-layer-to-output-layer weights at the ith iteration.

The update rule is then

αi+1 = αi + ∆αi ,

38

where

∆αi = −ε∂Ei
∂αi

=

(
−ε ∂Ei

∂αi,kj

)
= (∆αi,kj) .

The learning parameter ε speci�es how large each step should be in the

iterative process.

Using the chain rule for di�erentiation, we get

∂Ei
∂αi,kj

=
∂Ei
∂ei,k

· ∂ei,k
∂Ỹi,k

· ∂Ỹi,k
∂Vi,k

· ∂Vi,k
∂αi,kj

= ei,k · (−1) · g′k(Vi,k) · Zi,j
= −ei,k · g′k(αi,k0 + Z>i αi,k) · Zi,j .

This can be expressed as

∂Ei
∂αi,kj

= −δi,k · Zi,j ,

where

δi,k = − ∂Ei

∂Ỹi,k
· ∂Ỹi,k
∂Vi,k

= ei,k · g′k(Vi,k) (1)

is the sensitivity (or local gradient) of the ith observation at the kth output

node. This expression for δi,k is the product of two terms associated with the

kth node: the error signal ei,k and the derivative of the activation function,

g′k(Vi,k).

Thus, the gradient descent update to weights αi,kj is given by

αi+1,kj = αi,kj − ε ·
∂Ei
∂αi,kj

= αi,kj + ε · δi,k · Zi,j , (2)

where ε is the learning rate parameter of the back-propagation algorithm.

The next part of the back-propagation algorithm is to derive an update

rule for the weights from the mth input node to the jth hidden node. At the

ith iteration, let

Ui,j =
∑
m∈M

βi,jmXi,m = βi,j0 +X>i βi,j , j ∈ J ,

be the weighted sum from the set of input nodes to the jth hidden node,

where

Xi = (Xi,1, . . . , Xi,r)
> , βi,j = (βi,j1, . . . , βi,jr)

> ,

39

and Xi,0 = 1. The corresponding output is

Zi,j = fj(Ui,j) ,

where fj is the activation function at the jth hidden node and is assumed to

be di�erentiable.

Let βi = (β>i,1, . . . , β
>
i,t)
> = (βi,jm) be the ith iteration of the (r + 1)t-

vector of all the input-layer-to-hidden-layer weights. Then, the update rule

is

βi+1 = βi + ∆βi ,

where

∆βi = −ε∂Ei
∂βi

=

(
−ε ∂Ei

∂βi,jm

)
= (∆βi,jm) .

Using the chain rule again, we have

∂Ei
∂βi,jm

=
∂Ei
∂Zi,j

· ∂Zi,j
∂Ui,j

· ∂Ui,j
∂βi,jm

,

where the �rst term is

∂Ei
∂Zi,j

=
∑
k∈K

ei,k ·
∂ei,k
∂Zi,j

=
∑
k∈K

ei,k ·
∂ei,k
∂Vi,k

· ∂Vi,k
∂Zi,j

= −
∑
k∈K

ei,k · g′k(Vij) · αi,kj

= −
∑
k∈K

δi,kαi,kj . (3)

Thus, we get

∂Ei
∂βi,jm

= −
∑
k∈K

ei,kg
′
k(αi,k0 + Z>i αi,k)αi,kj · f ′j(βi,j0 +X>i βi,j) ·Xi,m .

Putting equations (1) and (3) together, we get

δi,j = f ′j(Ui,j)
∑
k∈K

δi,kαi,kj .

40

The expression for δi,j is the product of two terms. The �rst term, f ′j(Ui,j), is

the derivative of the activation function fj evaluated at the jth hidden node.

The second term is a weighted sum of the δi,k (which requires knowledge

of the error ei,k at the kth output node) over all output nodes, where the

kth weight, αi,kj, is the connection weight of the jth hidden node to the kth

output node. Thus, δi,j at the jth hidden node depends on the set {δi,k} from
all the output nodes.

The gradient descent update to βi,jm is given by

βi+1,jm = βi,jm − ε
∂Ei
∂βi,jm

= βi,jm + ε · δi,j ·Xi,m , (4)

where ε is the learning rate parameter of the back-propagation algorithm.

The back-propagation algorithm is de�ned by the weight-update equa-

tions (2) and (4). These update formulas identify two stages of computation

in this algorithm: a "feed-forward pass" stage and a "back-propagation pass"

stage. After an initialisation step in which the weights are assigned values,

these stages in the algorithm are performed.

In feed-forward pass, the inputs enter the node from the left and emerge

from the right of the node. The output from the node is computed as a

weighted sum, and the results are passed from left to right through the layers

of the network.

In back-propagation pass, the network is run in reverse order, layer by

layer, starting at the output layer. First, the error is computed at the kth

output node and then multiplied by the derivative of the activation function,

in order to get the sensitivity δi,k at that output node. The weights {αi,kj}
that are feeding into the output nodes are updated by using equation (2).

Second, the sensitivity δi,j at the jth hidden node is computed. Then, the

weights {βi,jm} that are feeding into the hidden nodes are computed by using

equation (4).

This iterative process is repeated until some suitable stopping time.

41

3.6 Loss functions

There are multiple ways to calculate the loss at the output node. Mean

Squared Error (MSE) is the most commonly used loss function for regression

problems. It can also be called L2 loss. MSE is the sum of squared distances

between the target variable Y and the predicted value Ỹ

MSE =
1

n

n∑
i=1

(Yi − Ỹi)2 .

The range of MSE function is from 0 to∞; the closer to 0 the MSE value is,

the smaller the loss.

Whenever a machine learning model is trained, the goal is to �nd the

point that minimises the loss function. However, when the back-propagation

algorithm is used to search for the minimum of the loss function, the found

point might be a local minimum. In that case, it is not be possible to �nd

a direction to take small steps in, so that the loss function value contin-

ues decreasing. In a local minimum, the loss function value always di�ers

from 0. Naturally, the loss function reaches the global minimum, 0, when the

prediction is exactly equal to the true value.

Since MSE squares the error e (e = Y − Ỹ), the value of MSE increases

signi�cantly if e > 1. This means that if there is an outlier in the data,

the value of e is large, and the value of e2 is even larger. This makes the

model with MSE loss give more weight to outliers. Therefore, MSE is not

very robust to outliers. But if the outliers in the data represent anomalies

that are important and should be detected, MSE loss should be used.

With neural networks, MSE is a useful loss function because its gradient

is not constant anywhere. The gradient of MSE loss is high for larger loss

values and decreases as loss approaches 0, making it more precise at the end

of training (see Figure 17). MSE behaves nicely even with a �xed learning

rate. [17]

42

Figure 17: The gradient of MSE loss decreases as loss approaches 0. [17]

3.7 Optimisers

For training neural networks, optimisers are responsible for �nding param-

eters θ of a loss function J(θ). The most common and established method

for optimising neural network loss functions is the gradient descent. How-

ever, the need to set the learning rate ε turned out to be particularly crucial

and problematic, so many improvements of gradient descent algorithm have

been proposed. Setting the learning rate too high can cause the algorithm to

diverge, and setting it too low makes it slow to converge. Generally, it is ben-

e�cial to decrease the learning rate gradually over time. Several algorithms

have been developed to have adaptive learning rates, and they are some of

the most popular optimisation algorithms used nowadays.

Adam (Adaptive Moments) is one of the most e�cient and widely used

optimisers. It adapts the learning rate of every weight, dividing it by the

square root of the sum of their recent historical squared values. It uses mo-

mentum, which means that when calculating the direction to optimise the

loss function, in addition to the current gradient, it also takes into account a

couple of the previous gradients. For weights with high gradients, the learn-

ing rate decreases rapidly. Weights with small updates have a small decrease

43

of the learning rate. Adam optimiser avoids lowering the learning rates too

rapidly by changing the gradient accumulation into an exponentially weighted

moving average. [22]

3.8 Convolutional layers

Besides the basic type, the fully-connected linear layers which were presented

in Chapter 3.4, there are also di�erent types of layers. Convolutional neural

networks (CNNs), which consist of convolutional layers, are a widely used

application with many advances. They are often used for image classi�cation,

but they can be used with numeric data as well.

Fully-connected neural networks always receive a vector as input. The

input vector is multiplied with a matrix of weights to produce an output.

This is applicable to any type of input: an image, a sound clip or an un-

ordered collection of numerical features � whatever the dimensionality, their

representation can always be �attened into a vector before the transforma-

tion. Inputs are usually multi-dimensional arrays with one or more axis, e.g.

width and height axis for an image, or time axis for a sound clip. One axis,

called the channel axis, is for accessing di�erent views of the data, e.g. the

colour channels of an image: red, green and blue (RGB).

A discrete convolution is a linear transformation that preserves the or-

dering of data instead of �attening. It takes advantage of the data structure,

which is very handy in some tasks. For example, if the input feature map is

a two-dimensional data grid, the output values of a discrete convolution can

be computed. The kernel is a grid that slides across the input feature map.

In the following example �gures, the kernel is a grid of value(
0 1 2
2 2 0
0 1 2

)
.

At each location, the product between each element of the kernel and the

input element it overlaps is computed. The results are summed up to obtain

the output in the current location. The �nal outputs of this procedure are

called output feature maps. Kernel values are often chosen so that the multi-

44

plication enhances the input values in some way, to highlight the input traits.

Kernel values are usually set automatically by the network.

The kernel is moved across the input feature map left to right, top to

bottom, one step at a time. This step, which is the amount of movement

between the locations of the applied kernel, is called the stride. Stride is the

size of the step that the kernel takes to move from a location to the next one

while sliding across the input feature map. By increasing stride, the size of

the resulting output feature map can be decreased. [21]

Figure 18: The blue grid is the input feature map of size (5, 5) = 5, where

the kernel is the shaded area. In this case, the kernel of size (3, 3) = 3 is �t

into the input feature map, and it slides across the map with stride = 1. The

output feature map is the green grid of size (3, 3) = 3. The output value of

the multiplication in current location is the shaded square. [20]

An alternative approach to applying a kernel to an input feature map, e.g.

an image, is to ensure that each pixel in the image is given an opportunity

to be at the center of the kernel. Then, a border called padding can be added

45

around the outside of the feature map. [21] The padding is the number of

zeros concatenated at the beginning and at the end of the axis.

Figure 19: Convolution with input size = 5, kernel size = 3, stride = 2,

padding = 1 and output size = 3. [20]

The convolution in Figure 18 and Figure 19 is an example of a two-

dimensional convolution, but it can be generalised to n-dimensional convo-

lutions. In this project, only one-dimensional convolutions are used.

This process can be repeated using kernels with di�erent values to form

multiple output feature maps, i.e. output channels. It is common to have

multiple input feature maps stacked onto one another, like the three colour

channels for an image. For each output channel, each input channel is con-

volved with a distinct part of the kernel. The resulting set of feature maps

is summed elementwise to produce the corresponding output feature map.

The output of the convolution is the set of output feature maps, one for each

output channel. [20]

The output shape of a convolutional layer is a�ected by the input shape,

46

as well as the choice of kernel shape, padding and stride. The relationship

between these properties is not trivial. This is a contrast to fully-connected

layers whose output size does not depend on the input size.

A convolution with input size i, kernel size k, stride s and padding p has

an output size of

o =

⌊
i+ 2p− k

s

⌋
+ 1 .

3.9 Dropout

Dropout is a regularisation technique that randomly zeroes some of the el-

ements of the input feature map with probability p, using samples from a

Bernoulli distribution. Each channel will be zeroed out independently on

every forward call. This has proven to be an e�ective technique for regulari-

sation and preventing the co-adaptation of nodes. [23]

Dropout is used to reduce over�tting and improve generalisation. Over-

�tting means that the model learns the training data too well; it learns the

detail and noise in the training data to the extent that it negatively impacts

the model's performance on new data. Basically, the model over-learns the

training data and is not able to generalise to new, unseen data. Under�tting

refers to a model that can neither model the training data nor generalise to

new data. It tries to learn the data way too generally, and thus has poor per-

formance even on the training data. Over�tting and under�tting are the two

biggest causes for poor performance in machine learning algorithms. Over�t-

ting is probably the most common problem, and there are multiple techniques

to reduce over�tting in machine learning models. However, it is generally a

good thing if the model is able to over�t a little bit � it means the model is

able to learn the behaviour of the training data. [24]

Dropout can be used with most layer types, but it is commonly used with

fully-connected layers because fully-connected layers have the most param-

eters and tend to cause over�tting. Probabilistically dropping out nodes in

the network is a simple method for this. The probability p of dropout can

be chosen by testing di�erent values, depending on how much the network is

47

over�tting. The usual dropout probability for hidden layers is from p = 0.2

to p = 0.5. [27]

3.10 Hyperparameter optimisation

The network parameters which the network cannot learn itself and which

have to be chosen manually are called hyperparameters. Hyperparameters

are set before training. These are for example the learning rate, number of

layers, number of nodes in each layer, batch size, dropout probability and

number of epochs.

The learning rate ε de�nes how quickly the network updates its parame-

ters. It is said to be the most important hyperparameter to tune. Low learning

rate slows down the learning process but converges smoothly. Larger learning

rate speeds up the learning but may not converge. A good starting point is

usually ε = 0.01.

The number of layers in the network is usually chosen by experiment-

ing. A single-layer network can only be used to represent linearly separable

functions, meaning very simple problems. Most problems that need solving

are not linearly separable. Neural network with one hidden layer can ap-

proximate almost any required function. However, the learning can be more

e�cient with multiple hidden layers. Usually, deep neural networks also per-

form better. [30]

The number of input nodes equals the number of input features, and the

number of output nodes equals the wanted output size. The number of nodes

in a hidden layer is usually chosen by experimenting. Large number of nodes

in a layer, used with regularisation techniques such as dropout, can increase

the accuracy of the network. Small number of nodes may cause under�tting.

The batch size is the number of data samples that are fed into the network

at a time, after which the updating of parameters happens. It is commonly

found that the larger batch size, the better performance, because the network

will generalise better when learning with more data. However, increasing

batch size slows down convergence. Due to memory limits, the batch size

48

cannot be too large. [22] A good default for batch size is usually a power of

two, such as 16, 32, 64, 128 and so on.

For the dropout probability, a value from p = 0.2 to p = 0.5 is generally

used. Too low probability has minimal e�ect, and too high probability results

in under-learning. When dropout is used on a larger network, it is likely that

the performance gets better.

The number of epochs is the number of training loops: the number of

times the whole training data is gone through with the network. The number

of epochs needs to be increased until the validation loss stops decreasing (or

starts increasing again, in which case the network is over�tting). [29]

The default con�gurations of the hyperparameters work well on most

problems. However, hyperparameter optimisation (hyperparameter tuning)

is required in order to get the most out of a given model. Hyperparameter

optimisation can be problematic for many reasons: many hyperparameters

interact with each other, the computational resources are limited, and the

model can easily start over�tting. Hyperparameter selection is both an opti-

misation and generalisation problem: the solution needs to have good perfor-

mance but without over�tting. Usually, the most reliable way to choose the

hyperparameters is by systematic experimentation, but it always depends on

the problem and the data. [31]

49

4 Thesis project

In this thesis project, the neural network was built by coding it with Pytorch

library in Python. The network was trained with PRACH channel data from

Nokia. It was used to predict the I/Q data signal in certain user-de�ned

situations. A good source of learning about coding neural networks and us-

ing Pytorch is a Udacity online course called "Intro to Deep Learning with

Pytorch". [19]

4.1 Designing the network

When designing a neural network, the �rst step is to get the data ready. In

most cases, data needs pre-processing to �t the problem in hand (for data

pre-processing, see Chapter 2.3).

Next, the network architecture needs to be de�ned. Depending on the

problem and the size of the data, the structure of the network needs to be

chosen: number of layers, layer types, sizes of these layers and the activation

functions to use between the layers. The loss function needs to be de�ned to

calculate the losses. The optimiser type that performs the weight optimisation

needs to be chosen, and the learning rate parameter needs to be speci�ed.

The batch size needs to be chosen, as well as the number of training epochs.

Then, the network model can be created with the chosen settings. After

creating the suitable initial model, training can start. The network is trained

with the training data set. The training is done with the optimiser which

does the weight optimisation with back-propagation. The training data is

gone through multiple times, and the training data is shu�ed each epoch.

After each training epoch, the prediction ability of the network can be checked

with the validation data set. It is helpful to keep track of the training and

validation losses which measure the di�erence between the prediction and the

target. The losses should be decreasing, meaning that the network is learning

to be better in predicting with each epoch.

After suitable number of epochs, the training is stopped. The network

50

model has now updated weights and should provide a good enough prediction.

The prediction ability of the network can be tested with the testing data

set. If the network works well enough and the loss is small enough for the

requirements, the network can be used for prediction.

4.2 Pre-processing

All the data was generated with the simulator that was presented in Chapter

1.1.5. Some of the input parameter values were randomised in the simulation

script, so the input parameter sets were all unique. After pre-processing and

standardising the data as described in Chapter 2.3, the data was ready to be

fed in the network to start training. One sample of data had an input of size

(1 × 9) as there were 9 input features, and an output of size (2 × 15408) as

this was the I/Q data with two parts I and Q, both of length 15408.

The neural network model "�attens" all matrix format data into vector

format if fully-connected layers are used at any point. The output data of

size (2 × 15408) would be "�attened" into a vector of length 30816, twice

the length of one part, with �rst 15408 elements of I part and then 15408

elements of Q part. Using this long vector as the output almost doubles the

complexity of the network. Training a network of this size is not possible with

the resources available for this project because it takes too much memory. It

would also take a huge amount of computing power and time.

Therefore, the I and Q parts of I/Q data signal were separated into two

cases, and two separate networks were built: one for I part prediction and

one for Q part prediction. The I model is trained with the I part data, and

the Q model with the Q part data. The I model learns to predict the I part

from the given inputs, and the Q model predicts the Q part from the same

inputs. When a prediction of I/Q data is wanted from a set of given inputs,

both networks are used: I model to predict I part, and Q model to predict Q

part. In the end, the I and Q parts are combined back together to form the

complete I/Q data.

Separating I and Q parts means that there might be some lost information

51

about the relationship between I and Q parts. Separating the I/Q data is

normally not recommended. In this project, the output I/Q data is only

used for comparison in the loss function at the end of the network. Based

on that comparison, the network weights are updated again and again. The

network tries to �nd any correlations between the input features and the

output signal.

The case might be di�erent if the output signal was not �attened into one

long vector where the I and Q parts follow each other. In the �nal linear layer,

all output nodes get their own respective sets of weights that determine the

output value in that node. Therefore, all the values in the output signal get

a prediction that does not depend on other output values. This means that

even if the I and Q parts were left together and the network could be trained

to predict this �attened output vector of length 30816, the network would

not look at any connections between I and Q part values. But, as concluded

before, predicting an output that long is too much for the memory capacity

anyway.

This is the reason why the I and Q parts were chosen to be separated.

There is at least one bene�t: the models are smaller and less complex, and the

memory capacity is enough to handle the models. However, it is not certain

that no information is lost when the prediction is done with separate models

for I and Q parts. There might also be di�erences in the predicting abilities

of two models: for some cases, the I model might be better at predicting

the real I part than the Q model for the Q part, or vice versa. This is why

there was no need to calculate any testing loss value for the whole model by

somehow combining the I model loss and Q model loss.

4.3 Network architecture

The neural network was chosen to have 6 layers: 4 convolutional layers and 2

fully-connected linear layers. Dropout technique was used before each linear

layer. This is a 6-layer network; the input layer is not counted as it is just

the input data.

52

When the input is fed into the network, it goes �rst through the four

convolutional layers (for convolutional layers, see Chapter 3.8). They increase

the size of the input by adding more channels. Basically, the input is a vector

(or a column) of length 9, and each convolutional layer adds more channels

(or more columns) to this input.

After four convolutional layers, the obtained data matrix is �attened into

one vector. After the last convolutional layer, the data matrix (output of the

convolution) has 2048 channels. The size of this �attened vector is 2048 · 9 =

18432. With the fully-connected layers, the size is decreased to 15408. This is

the size of the wanted output, I or Q part of the I/Q signal. Before each fully-

connected layer, dropout of probability p = 0.2 is used to reduce over�tting

(see Chapter 3.9). The dropout probability was chosen with trial-and-error

approach, after experimenting with several values.

The structure of this neural network is demonstrated in Figure 20.

Figure 20: The architecture of the neural network that was built for the

project. The diagram is made with the NN-SVG tool by Alex Lenail. [25]

Convolutional layers are used in this network because they produced the

best result out of all tested model structures. With convolutional layers, the

size of input can be increased with less computing than with only linear

layers. Therefore, it is also faster to train a convolutional network. However,

53

the �nal layer is required to be a linear layer to achieve better results. This

is the part where the network takes most time in training because in linear

layers, all nodes get their own respective weights, and the size at the end of

the network is so large.

ReLU is used as an activation function for all the layers except the out-

put layer. The output layer has no activation function because the research

problem is a regression problem (see Chapter 3.3).

For training the network, Adam (see Chapter 3.7) is used as an optimiser

to update the weights each loop with a learning rate ε = 0.001. The learning

rate was chosen by testing some negative powers of 10, like 10−1, 10−2, 10−3

and so on. The loss function that calculates the error between target output

and predicted output is MSE loss (see Chapter 3.6).

For the model, a batch size of 128 is used for training and validation.

Out of the tested batch sizes, 128 seemed to work best without being too

slow to converge. Batch size has more importance on training part, because

it is the number of samples fed into the network after which the weights

are updated. For validation and testing, no weight updating is done. For

them, batch size is just the number of samples for which the trained network

does the predictions and calculates the average loss. All the batch losses are

averaged into one loss for the epoch. For testing, the used batch size is 16,

but other batch sizes were also used during all the testing.

4.4 Training the model

After building the two networks for I and Q parts and separating the pre-

processed data into three sets, the training was started. The models were

trained with the training data sets for 200 epochs. With each epoch, the

training and validation losses were printed out so that it could be monitored

that the losses were decreasing as expected. The training loss is the average

loss over all training data, and the validation loss is the average loss over all

validation data. After 200 epochs, it seemed that the validation loss was not

decreasing anymore, so the training was stopped.

54

Finally, multiple tests were done with the test data sets in order to see

the real prediction ability of the models. The same input samples and the

corresponding target output (I part vector for I part model, and Q part vector

for Q part model) were fed in the models. As a result, the predicted I and

Q parts were obtained from the two models. The test loss values between

the target and predicted output were also received. The I and Q parts were

combined back to form the whole I/Q data. The target and predicted I/Q

data sets were plotted in x and y axis to see the di�erences.

The structure and the used hyperparameters of the network were chosen

mostly by experimenting with di�erent options and choosing the combination

with the best performance. The most common options for starting points were

used for the experimenting. However, it was not possible to test all possible

combinations, due to the time limit. Training one network for 200 epochs

took around three days, so it was very slow to change just one detail and run

the training again, to see if the performance improved.

55

5 Results

Two networks were trained for this project: one for the I part of the I/Q data,

and one for the Q part of the I/Q data. The calculated losses for the models,

training loss and validation loss, were of similar extent. Training loss is the

average loss function value over the whole training data set, and validation

loss is the average loss function value over the whole validation data set.

Training loss is not very signi�cant when deciding whether the model

is good or not, because the model has seen and learned the training data.

What we want to know is whether the model is able to estimate the output

of new, unseen data. This is what validation loss tells us. Therefore, the ideal

validation loss value would be as small as possible. It de�nes how well the

model has learned the general behaviour and features of the data.

Both models were trained for 200 epochs, and both training and validation

loss were calculated for each epoch. The losses were not decreasing evenly

and had some �uctuation at some points, so the model parameters were saved

only when the validation loss was smaller than the minimum of all previous

validation losses.

For the I model, the last save and the �nal model was from the 195th

epoch. For the Q model, the last save was from the 193th epoch. The losses

can be seen in Table 1. The evolution of training and validation losses for

the models during these 200 epochs can be seen in Appendix: for I model, in

Figure 21, and for Q model, in Figure 22.

After the training was �nished, the �nal model and its ability to predict

on unseen data (in this case, the test data) were tested. There were 720

samples in the testing data, and the batch size was chosen to be 16, so the

number of batches was 720 ÷ 16 = 45. The test loss (average loss over all

batches in testing data) for both models are shown in Table 1.

Plotting the predictions and targets in a �gure makes it easier to see

whether the prediction is completely o� or close to the target. Examples of

predictions and corresponding targets are illustrated in the �gures at the end

of the thesis, in Appendix.

56

Model Training loss Validation loss Test loss

I 0.0658 0.3844 0.4751

Q 0.0606 0.3745 0.4736

Table 1: Losses for I and Q models.

Figure 23 and Figure 24 show quite good predictions and their targets of I

part data. For Q part data, these can be seen in Figure 25 and Figure 26. The

whole I/Q data prediction and target are plotted in Figures 27 and 28. The

model estimates the target signal quite well and captures the correct scale.

However, the Q model prediction is slightly worse and does not reach the

maximum values of the target. This can be seen in the plot of the combined

I/Q data: the shape is not completely a circle but more of an ellipsoid.

Figures 29, 30, 31 and 32 show a prediction of a sample with relatively

low I/Q data values. The integer format of the signal can clearly be seen in

the whole I/Q signal plots because the scale is so small.

Sometimes the predictions are not good at all. One example of this is

presented in Figures 33, 34, 35 and 36. In this example, the model is not able

to predict the correct scale of the target signal. The prediction is nowhere

close to the target in the plot. In the target signal, the preamble is clearly

distinct from the rest of the signal, but it is not visible in the prediction

signal.

5.1 Analysis

The large scale of data might be a problem for the network. If the data is not

standardised, the model works even worse. However, the standardisation is

not working as well as expected because the distribution of the data is wide

and uneven, especially for the output.

Some of the samples are hard for the network to learn. Sometimes the

network learns to predict the signal to the correct scale, or at least very close.

57

But for some signals, the scale of the prediction is way too low compared

to the scale of the target signal. This makes the model's predictions quite

unreliable.

As explained earlier, the model uses the input parameters to predict the

output signal. Some of the parameters might have more in�uence on the

output than others. If some input parameters have nothing to do with the

output signal, the model might still force some false correlation between

them which could cause problems. Therefore, it is important for the input

parameters to actually have some correlation with the output.

Finally, the predictions can be checked with the simulator that was used

to generate the data. The predicted signal can be fed in the simulator, and the

simulator will check whether the preamble can be detected. All the samples

were generated with single user, so only one preamble is sent with each signal.

The simulator should be able to detect the preamble from the signal.

As noticed in the result �gures in Appendix, the preamble is not always

visible in the signal if the I/Q values in preamble part are low. Therefore,

the preamble cannot always be detected, not even for the target signals in

the training data that are taken straight from the simulations. Sometimes

there is misdetection, which means that the preamble is not detected even

though it should be. And sometimes there is false detection, which means

that a preamble (or multiple preambles) is detected when there should not

be anything. Even if the detections are not correct (not even for the target

signal), what should matter is whether the detections are same for the target

and the prediction. This is not always the case, but it is expected as the

predictions were not that close to the target in many cases.

58

6 Future works

Having a neural network to predict the signal from given inputs is not that

useful for PRACH channel use. In this thesis work, the neural network tech-

nique was applied to PRACH channel because PRACH is the simplest chan-

nel with least parameters. The target was to try if it is even possible to

model data in signal format. The goal behind this thesis work was to test

the usage of a neural network �rst with PRACH channel, to see if it might

also work for more complex channels with more parameters, such as PUSCH.

For PUSCH, predicting the data signal might be more useful. The PUSCH

simulations usually take a longer time to run with the simulator, so using

a neural network would be easier and quicker, whereas PRACH simulations

are quite short and the need for quicker simulations is not as urgent as for

PUSCH.

Being able to model simulator data is bene�cial, but it would be even

more interesting to use real-life data from the gNB, perhaps in addition to

simulator data. Real data could be acquired from documented defect no-

ti�cations that are obtained from real-life use cases. These noti�cations are

usually obtained from encountering so-called corner cases, which are extreme

cases where the behaviour is not completely reliable. This is natural because

defect noti�cations often turn up in areas where the product is not working

perfectly. Focusing more on corner cases might be a more interesting target

to study. If some real life data is included in the training data, the gNB

behaviour can be modelled more realistically.

When testing a technique for a problem, it is common to �rst apply it

to the simplest case possible. Keeping this in mind, the input features were

chosen and some parameter values were frozen for this project. In future,

it would be more useful to use data with more than one user. For one user,

there might not even be that many defect noti�cations or corner cases, if any,

because the single-user case is very straight-forward. If the number of users

is increased, the number of input parameters also increases, and the problem

becomes more complex.

59

One idea that came across during the process of writing this thesis was

to use a neural network to model PRACH preamble detection. PRACH is

the channel that the UE contacts �rst. The UE sends a preamble which the

gNB tries to detect from the signal that possibly has some noise. The gNB

tries to determine if there is a UE somewhere that needs to be connected to

the network. The PRACH preamble is included in the PRACH data signal,

and the gNB should be able to detect the preamble from the signal. This

can also be done with the simulator, so the training data could be generated

with the simulator. The input could be the script parameters or the I/Q

data signal, and the output would be the detection outcome (detected or

not). The network could be trained to determine whether the preamble is

detected or not. This would be a classi�cation problem because the output

would be either of two classes: true or false (1 or 0). Building such network

would probably be simpler than the one in this project, because the output

would be one binary value instead of a large integer vector.

For neural networks, hyperparameter optimisation is an area that could

be �ne-tuned even more. In some cases, it could take even months. There are

no clear instructions on how to do hyperparameter optimisation for neural

networks: testing the combinations can be done automatically, but usually it

needs to be done manually, with experimenting and trial-and-error approach.

One limit for hyperparameter optimisation, at least for this project, was time.

If there is enough time, it could be possible to concentrate more on �ne-tuning

all the small parts of the network and trying all possible combinations to �nd

the best model.

Speaking of limitations, along with time, there might be some hardware

limitations. Neural networks tend to require a large amount of memory ca-

pacity and computing power, especially if the output is as large as in this

project. If there is a computer with GPU (Graphics Processing Unit) avail-

able, testing di�erent models and training them could be done much faster.

However, the GPU computer needs to have enough memory to handle the

model if it is very large.

60

Separating I and Q parts from I/Q data may cause some problems or loss

of information. To keep the I/Q data whole, complex-valued neural networks

could be applied to the problem. The output could be the I/Q data in complex

vector format. That way, the I and Q parts could be kept together, and all

information and possible correlations between them could be preserved.

61

7 Summary

Neural networks are a target of interest for many machine learners, especially

in the �eld of computer vision, because of their success in image recognition

tasks. However, they are continuously developed further and widely tested

for many other tasks, like regression.

In this thesis work, a neural network was used for predicting the PRACH

data signal from known input feature values. The output signal was very

large which was one reason for choosing a neural network for prediction.

The mathematical theory shows the way of computing in neural networks.

Neural computing is based on the back-propagation algorithm, which enables

going "backward" through the network to calculate the gradient of the loss

function with respect to the weights. The weights are updated with each

training epoch. This is how the learning gradually happens in the neural

network, and the predictions become better little by little.

As a result, the trained network creates the predictions of received PRACH

signals. Comparing the predictions to the real targets, it is clear that the pre-

dictions are not perfect: some predictions are quite close to the target signals,

but some are way o�. The prediction ability of the network does not seem

very reliable.

With the simulator, it can be tested whether the preamble can be detected

from the predicted signals. It is not possible for all predictions: some are

certainly bad predictions, but some predictions and even their targets just

have too low I/Q values in preamble part so that the preamble could be

detected. However, the results of this project are satisfactory enough, given

the time, memory and computing power resources available.

Some ideas and alternative methods for future works came up during the

process of writing this thesis. Neural networks and other machine learning

algorithms could possibly be utilised in many parts of modelling 5G networks,

such as PRACH preamble detection.

62

References

[1] A. J. Izenman. Modern Multivariate Statistical Techniques: Regression,

Classi�cation and Manifold Learning. Springer-Verlag, New York, 2008.

[2] J. Engelstädter. Lecture 5: A glimpse into stochastic mod-

els. 2019. [Online; accessed October 7, 2019]. URL: https:

//bookdown.org/janengelstaedter/biol3360modelling3/a-

glimpse-into-stochastic-models.html

[3] National Instruments. What is I/Q Data? 2019. [Online; accessed Oc-

tober 31, 2019]. URL: http://www.ni.com/tutorial/4805/en/

[4] M. Q. Kuisma. I/Q Data for Dummies. 2017. [Online; accessed Novem-

ber 4, 2019]. URL: http://whiteboard.ping.se/SDR/IQ

[5] C. Nicholson. A Beginner's Guide to Neural Networks and Deep Learn-

ing. 2019. [Online; accessed October 31, 2019]. URL: https://skymind.

ai/wiki/neural-network

[6] N. Donges. Pros and Cons of Neural Networks. 2018. [Online; ac-

cessed November 11, 2019]. URL: https://www.experfy.com/blog/

pros-and-cons-of-neural-networks

[7] R. Harlalka. Choosing the Right Machine Learning Algorithm. 2018. [On-

line; accessed November 11, 2019]. URL: https://hackernoon.com/

choosing-the-right-machine-learning-algorithm-68126944ce1f

[8] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. The MIT Press,

Massachusetts, 2016.

[9] Nokia. About us: Our history. [Online; accessed January 30, 2020]. URL:

https://www.nokia.com/about-us/what-we-do/our-history/

[10] P. Viswanathan. How Does a Mobile Network Work? 2019. [Online;

accessed January 30, 2020]. URL: https://www.lifewire.com/how-

does-a-mobile-network-work-2373338

63

[11] Wireless Wa�e. Downlink � Uplink. 2018. [Online; accessed January 30,

2020]. URL: https://www.wirelesswaffle.com/index.php?d=01&m=

04&y=18&category=4

[12] The EMF Explained Series. 5G Explained � What is 5G? [Online; ac-

cessed February 3, 2020]. URL: http://www.emfexplained.info/?ID=

25916

[13] N. Kumar. Deep Learning Best Practices: Activation Functions &

Weight Initialization Methods - Part 1. 2019. [Online; accessed Febru-

ary 3, 2020]. URL: https://medium.com/datadriveninvestor/deep-

learning-best-practices-activation-functions-weight-

initialization-methods-part-1-c235ff976ed

[14] A. Lai. Gradient Descent for Linear Regression Explained. 2018.

[Online; accessed March 9, 2020]. URL: https://blog.goodaudience.

com/gradient-descent-for-linear-regression-explained-

7c60bc414bdd

[15] D. Q. Nykamp. Introduction to local extrema of functions of two vari-

ables. [Online; accessed March 9, 2020]. URL: https://mathinsight.

org/local_extrema_introduction_two_variables

[16] I. Poole. 5G Data Channels: Physical, Transport & Logical. [On-

line; accessed March 10, 2020]. URL: https://www.electronics-

notes.com/articles/connectivity/5g-mobile-wireless-

cellular/data-channels-physical-transport-logical.php

[17] P. Grover. 5 Regression Loss Functions All Machine Learners

Should Know. 2018. [Online; accessed March 10, 2020]. URL:

https://heartbeat.fritz.ai/5-regression-loss-functions-

all-machine-learners-should-know-4fb140e9d4b0

[18] T. Stöttner. Why Data Should Be Normalized Before Train-

ing a Neural Network. 2019. [Online; accessed March 11, 2020].

64

URL: https://towardsdatascience.com/why-data-should-be-

normalized-before-training-a-neural-network-c626b7f66c7d

[19] Udacity. Online course: Intro to Deep Learning with Pytorch. [Online;

accessed March 15, 2020]. URL: https://www.udacity.com/course/

deep-learning-pytorch--ud188

[20] V. Dumoulin, F. Visin. A guide to convolution arithmetic for deep learn-

ing. 2018. [Online; accessed March 16, 2020]. URL: https://arxiv.

org/pdf/1603.07285.pdf

[21] J. Brownlee. A Gentle Introduction to Padding and Stride for Con-

volutional Neural Networks. 2019. [Online; accessed March 17, 2020].

URL: https://machinelearningmastery.com/padding-and-stride-

for-convolutional-neural-networks/

[22] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, R. Horaud. A Compre-

hensive Analysis of Deep Regression. 2019. [Online; accessed March 17,

2020]. URL: https://arxiv.org/pdf/1803.08450.pdf

[23] Pytorch. Document: torch.nn. [Online; accessed March 17, 2020]. URL:

https://pytorch.org/docs/stable/nn.html

[24] J. Brownlee. Over�tting and Under�tting with Machine Learn-

ing Algorithms. 2016. [Online; accessed March 17, 2020]. URL:

https://machinelearningmastery.com/overfitting-and-

underfitting-with-machine-learning-algorithms/

[25] A. Lenail. NN-SVG tool: Publication-ready NN-architecture schematics.

[Online; accessed March 27, 2020]. URL: http://alexlenail.me/NN-

SVG/AlexNet.html

[26] S. Hill. 4G vs. 5G: How will the next generation improve on the

last? 2019. [Online; accessed April 4, 2020]. URL: https://www.

digitaltrends.com/mobile/5g-vs-4g/

65

[27] J. Brownlee. A Gentle Introduction to Dropout for Regular-

izing Deep Neural Networks. 2018. [Online; accessed April 9,

2020]. URL: https://machinelearningmastery.com/dropout-for-

regularizing-deep-neural-networks/

[28] S. Gharat. What, Why and Which? Activation functions. 2019. [Online;

accessed April 14, 2020]. URL: https://medium.com/@snaily16/what-

why-and-which-activation-functions-b2bf748c0441

[29] P. Radhakrishnan. What are hyperparameters? And how to tune the

hyperparameters in a deep neural network? 2017. [Online; accessed

April 14, 2020]. URL: https://towardsdatascience.com/what-are-

hyperparameters-and-how-to-tune-the-hyperparameters-in-a-

deep-neural-network-d0604917584a

[30] J. Brownlee. How to Con�gure the Number of Layers and Nodes

in a Neural Network. 2018. [Online; accessed April 14, 2020]. URL:

https://machinelearningmastery.com/how-to-configure-the-

number-of-layers-and-nodes-in-a-neural-network/

[31] J. Brownlee. Recommendations for Deep Learning Neural Net-

work Practitioners. 2019. [Online; accessed April 14, 2020]. URL:

https://machinelearningmastery.com/recommendations-for-

deep-learning-neural-network-practitioners/

66

Appendix

Figure 21: Training and validation losses for the I part model from 200 epochs.

Figure 22: Training and validation losses for the Q part model from 200

epochs.

67

Figure 23: The I part prediction (red) and target (green) of one sample in

testing data. The I/Q signal values in PRACH preamble part are relatively

large, so the preamble part is clearly distinct from the rest of the signal. The

preamble part can be seen near the end of the signal.

68

Figure 24: The same I part prediction (red) and target (green) as above, in

one �gure. Even though the signal values are not exactly same at every point,

it is clear that at least the PRACH preamble is detected at the exact same

part of the signal, at the same indices.

69

Figure 25: The Q part prediction (red) and target (green) of the same sample

in testing data as above.

70

Figure 26: The same Q part prediction (red) and target (green) as above, in

one �gure. Compared to the I part prediction, the Q part prediction is not as

accurate for this speci�c sample. The predicted values in the preamble part

do not reach precisely the level of the target values in preamble part.

Figure 27: The I and Q predictions of the sample used above are combined to

form the whole I/Q data prediction. The I part is plotted in x axis and the

Q part in plotted in y axis. The red plot is the predicted I/Q data and the

green plot is the target I/Q data. As seen earlier, the Q part prediction did

not reach the exact target level. This can be seen in the shape of predicted

I/Q data: it is not a complete circle but more oval-shaped.

71

Figure 28: The same I/Q prediction and target as above, in the same �gure.

The red plot is the prediction and the green plot is the target.

72

Figure 29: The I part prediction and target for another sample in testing

data. The preamble should be seen at the beginning of the signal. However,

the I/Q values in preamble part are very low for this sample, so the preamble

part does not di�er from the rest of the signal.

73

Figure 30: The Q part prediction and target for the same sample as above.

74

Figure 31: The whole I/Q prediction and target for the same sample as above.

Clearly, the signal does not get high values. It is possible to see that all values

are integers because the scale is so small.

Figure 32: The whole I/Q prediction and target for the same sample as above,

where the prediction and target are plotted in the same �gure.

75

Figure 33: The I part prediction and target for another sample in testing

data. In the target �gure (green), the preamble part gets relatively large

values and can clearly be seen at the end of the signal. It can be easily seen

that the prediction (red) is not good, and the model is not able to predict

the correct scale. The preamble part cannot clearly be detected from the

predicted signal, but in the target signal the preamble part is very distinct.

76

Figure 34: The Q part prediction and target for the same sample as above.

The same e�ect can be seen as in I part prediction: the model is not able to

predict the correct scale, and the preamble cannot clearly be detected from

the predicted signal.

77

Figure 35: The whole I/Q prediction and target, combined from the I and Q

parts above. It can easily be seen that the model is not able to predict the

correct scale of the output for this sample.

Figure 36: The whole I/Q prediction combined from the I and Q predictions

above, in one �gure.

78

