
Secure Coding Intention via Protection Motivation
Theory Based Survey

University of Oulu

Faculty of Information Technology and

Electrical Engineering

Degree Programme in Information

Processing Sciences

Master’s Thesis

Tommi Sallinen

Date 27.4.2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344910619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

According to studies, programming skills are obtained by a large number of persons but

most of them lack the ability to produce secure software. This statement reflects the

essence of this thesis and provides a direction to problem solving.

The focus of this study is a research into the possibility of using a questionnaire

prepared with the use of a protection motivation theory (PMT) to provide a indication of

intention for software developers towards secure programming techniques. This study

answers the following research question: Can secure programming intention be aroused

with a PMT questionnaire?

The questionnaire consists of three categories: background-, awareness-/knowledge-

and PMT questions. Background questions are used to identify the focus group.

Awareness and knowledge questions are used to provide secure coding information

which is reflected by cognitive thinking via PMT questions. The questionnaire was built

as web survey and distributed via professional social network.

The questionnaire uses focused subject group working in micro and small enterprises

(<50 employees). The study results are analysed against PMT components to validate

focus group selection as a correct choice. Survey findings analysed in qualitative

manner (partly in quantitative), indicates that majority of subjects created intention

towards studying or using secure coding techniques. The focus group PMT analysis

results shows that in each PMT section, at least over half indicated positive response

into it.

These results will provide a deeper research direction for how to promote secure coding.

Keywords
secure programming, secure coding, protection motivation theory, pmt, survey,

questionnaire

3

Foreword

The main idea and motivation for this study resulted from my own observations and an

increasing number of software vulnerability news. Also, my personal interest in lifelong

learning added own characteristics to this study. Making this study was been long

marathon, with up- and downhills. Complementing this thesis has been a time-

consuming but at the same very rewarding process.

I would like to thank my supervisor Mari Karjalainen for starting this project with me

and Ari Vesanen for guiding me. Special thanks also to my lovely wife and kids for

supporting my “never-ending” project. Lastly, thanks to Joanna Seppänen for

proofreading this thesis.

I truly hope that my study will highlight the importance of a programmer in the field of

secure coding.

Tommi Sallinen

Oulu 27.4.2020

4

Abbreviations

PMT = Protection Motivation Theory

SDL = Secure Development Life Cycle

SDLC = Software Development Life Cycle

SMB = Small and Medium size Business

UML = Unified Modelling Language

5

Contents

Abstract ... 2
Foreword ... 3

Abbreviations .. 4
Contents .. 5
1. Introduction .. 6
2. Research on Secure Coding .. 9

2.1 Organisational tools, frameworks and standards ... 9

2.2 Designing secure software ... 10
2.3 Securing software development lifecycle .. 11
2.4 Secure coding ... 11

2.4.1 Taxonomy ... 12
2.4.2 Practices and principles .. 13
2.4.3 Awareness... 14

2.5 Prior research on secure coding via Protection Motivation Theory 15

2.5.1 Search strategy.. 15
2.5.2 Relevant prior research ... 16

3. Protection Motivation Theory .. 17
4. Research Method .. 19
5. Data Collection ... 20

5.1 Background questions .. 21
5.2 Awareness and knowledge questions .. 22

5.3 PMT -based questions .. 24
5.4 Constructing questions ... 25

6. Data Analysis ... 26
7. Discussion .. 31

8. Conclusions .. 33
8.1 Research limitations ... 33

8.2 Future research ... 34
References ... 35
Appendix A. Questions ... 39

Appendix B. Search Queries ... 42
Appendix C. Online Survey .. 45

6

1. Introduction

Long subcontracting chains and possibilities provided by the internet increase the value

of software development and the importance of each company. On the other hand,

global internet use and complicated information systems drastically increase an attack

surface which is tackled with different information security tools. Regardless all

development lifecycle models, standards, company rules, principles, practices, tools

etc., the last and most important person in the organization is the software developer

who writes the code (Mahadevan, Simon, & Meservy, 2011). Taking this into

consideration we could think that the most important defence against a malicious hacker

is a secure minded programmer. Small and medium business cannot afford to put money

into planning and implementing information security throughout organisation. Expertise

and knowledge of each employee is more important to the company than company rules

or practices. Tackling information security risks purely via technology is destined to fail

as human factor is the weakest link in the security (Mitnick & Simon, 2002).

Nowadays secure programming teaching is being tested and researched. In most cases

secure programming learning is done via face-to-face teaching. This study is

researching the possibility to increase motivation and attitude towards secure

programming, so that a person would start to learn the subject and also would be more

secure minded. Can we empower single individual to be as a critical part of secure

programming? (Bishop & Frincke, 2005.)

Best practices, standards and company rules cannot hinder the fact that software

developers have to be aware of secure issues related to programming (Futcher & Von

Solms, 2008). Most critical problem is that software developers do not have security

view of their product which can be also seen as awareness (Jones & Rastogi, 2004).

Software developers should build easier-to-defend code (McGraw, 2004). Tackling

secure coding challenge we should have advance in three areas: education, standards

and metrics (Graff & Van Wyk, 2003).

Crossler et al. (2013) proposes that one of the future research directions would be

improvement of information security compliance by using the Protection Motivation

Theory (PMT) which is driven by fear appeals. This study uses PMT to explain and to

reflect data acquisition results. The research method that is utilised is the qualitative

questionnaire. (Crossler, et al., 2013.)

Using PMT make it possible to drive the subject towards a desired action or behaviour

via cognitive thinking process (Rippetoe & Rogers, 1987; Rogers, 1983). Where fear

and vulnerability are motivating factors in it. Combining this with authors own interest

in secure coding resulted in forming the following research question.

RQ: Can secure programming intention be aroused with a PMT questionnaire?

This is a qualitative research that aims at studying whether a PMT based questionnaire

can create intention towards secure coding. By using qualitative data analysis, it is

possible to identify if any intention is aroused. The target group of the survey is micro

and small business personnel who have extensive knowledge in the field of

7

programming. The focus group of the questionnaire includes programmers who work in

small enterprises.

Author’s own personal interests lie in promoting and studying secure and quality

programming. The information security field has been extremely interesting to follow,

study. Author’s interest in educating regular programmers to be more secure minded in

their work has led to completing this thesis.

Previous research focused on the way to enforce secure programming via development

lifecycles, tools, training, testing, programming language and teaching

techniques/curriculum which are either above (organizational rules, policies, training,

top-to-down management etc.) or below (IDE tools, programming languages etc.) a

programmer. All of these are discussed in this thesis but in relation to the challenge of

applying secure programming mindset.

Figure 1. Different impact levels of secure programming.

Figure 1 represents the impact of programmer’s practical work on different levels of

software development. This figure highlights the importance of programmer’s

awareness and knowledge, as he or she is single most important element of the whole

software development process. Regardless of a development stage (design,

programming, testing/verification etc.), developer is always involved. (Figure 1)

Figure 1 clearly shows that the number of interfaces that affect a programmer is high. It

can be seen that study fields below a programmer can produce empirically measured

data. The study of different levels of organisation research presented above is more

focused on handling secure programming as a homogeneous mass. Individual studying

requires a combination of three components: practical programming, software

development methods and behavioural theories.

8

A software security awareness research field has similar characteristics to information

system security awareness. However, the approach is closer to practical work tasks and

programming challenges. This study leans towards the software security awareness

research field but it is different in nature as it aims at awaking developer’s intention

towards secure coding via questionnaire that includes PMT nuances. Contrary to typical

awareness research, this research explores the potential of the subject group for secure

programming awareness. It worth of noticing that the software security awareness

research field is close to this study. The difference is that this study aims to create

intention towards learning secure coding. It is possible to use results of this study to

promote secure coding in its all perspectives to developers. According to author, secure

coding awareness differs from secure coding knowledge because awareness does not

provide a developer with solid knowledge that could be reflected to in each

programming task in hand.

The second chapter of this thesis provides background information on the current

situation. The concept of information security is discussed with the focus on secure

software development in chapters 2.1, 2.2 and 2.3. Chapter 2.4 covers the topic of

secure programming and its different perspectives. Moreover, it provides the reader

with a broader understanding of the information security field. The need for this kind of

research is discussed in Chapter 2.5. and the theory used in this research is described in

Chapter 3. Chapter 4 presents the research method, theories and leads reader to core of

this study. In addition to these, data gathering method and tactics are discussed in

Chapter 5 together with a thorough connection between these theories and implemented

surveys. Data analysis of collected results shown in Chapter 6 is followed by a

presentation of these results in Chapter 7. Final conclusions are drawn, and research

questions are answered in Chapter 8.

9

2. Research on Secure Coding

This chapter provides a cross-section of methods and tools used inside of an

organization in order to make a more secure code. It should be noticed that the

implementation of many organizational tools or methods is based on top-to-down

management as secure programming methods and tools are in use of individual

developer.

“Securing coding is the practice of developing computer software in a way that guards

against the accidental introduction of security vulnerabilities” (Wikipedia, 2017).

Literature presents secure programming from multiple different perspectives. These

perspectives vary from standards and development methods to tools and training. As in

the case of information security, also secure coding awareness refers to a wide range of

perspectives in the secure coding. Main perspectives of secure coding are represented in

the following subchapters.

Directly relevant studies are represented in the Prior research -chapter.

2.1 Organisational tools, frameworks and standards

Previous research focused on secure programming for example creating guidelines,

which drives software development on the organisational level. Others learning

perspective and secure programming are viewed via curriculum by acknowledging the

difference between different software security categories. The meaning of software

security robustness is reflected in capability and process level maturity (CMM level).

(Futcher & Von Solms, 2008; Yasinsac & McDonald, 2006)

There are many different secure programming standards available, which provide

guidance. The ones that are mostly used are: ISO/IEC (ISO/IEC 27002, ISO/IEC TR

13335) standards, which define the framework for software life cycle processes. For

example, ISO/IEC 27002 states that limited security is possible to achieve by technical

means. ISO/IEC 27002 standard focuses more on achieving proper security level by

using management controls and procedures. (Futcher & Von Solms, 2008.)

An organisation could use Software Security Assessment Instrument (SSAI) to improve

software security. SSAI consists of Software Security Checklist (SSC), Vulnerability

matrix, Flexible Modeling Framework (FMF), Property- Based Tester (PBT) and a

collection of Security Assessment Tools (SATs). (Gilliam, Wolfe, Sherif, & Bishop,

2003; Gilliam, Kelly, Powell, & Bishop, 2001.)

10

McGraw (2006) proposes seven touchpoints to be used inside of an organization to

increase software security:

1. Code Review (tools)

2. Architectural Risk Analysis

3. Penetrating Testing

4. Risk-Based Security Testing

5. Abuse Cases

6. Security Requirements

7. Security Operations

An external analysis is not defined as a touch point but its importance is emphasized

(McGraw, 2006).

Requirements
and use cases

Risk-based
security tests

Test plans Code Test
results

Field
feedback

Abuse
cases

Security
requirements

Risk
analysis

External
review

Design

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Figure 2. Best software security practices applied to different software phases (McGraw, 2004;

McGraw, 2006; Van Wyk & McGraw, 2005)

The touch points or best practices (Figure 2) can be applied in different software

development phases. Secure software development is used parallel with existing SDLC.

In this way, secure software development does not need to have its own development

life cycle model. (McGraw, 2004.)

2.2 Designing secure software

One approach is to ensure security of software via design. This is called secure by

design and it can be achieved by securing software via SecureUML which is a variation

of a regular UML design for modelling access control policies (with Role Based Access

Control) utilised in model-driven software development (Lodderstedt, Basin, & Doser,

2002). Other modelling extension is UMLsec which can be used to express security

relevant information (demands mandatory requirements to be filled) (Jürjens, 2002).

According to Viega and McGraw (2002) “It is always better to design security from

scratch than to try to add security to an existing design.” (p. 14). This statement reflects

the core idea of this study on how to improve secure programming among software

developers in such a way that software development includes security perspective from

the very beginning and software developers are secure minded in their work. Best

practices proposal for secure programming relies on defining security requirement via

abuse cases by recognizing overt functional security and emerging characteristics. This

lies solid foundation via requirements for secure coding. (Viega & McGraw, 2002;

McGraw, 2004.)

11

2.3 Securing software development lifecycle

Securing software development lifecycle has a major role in most frameworks and

standards. The reason for this is that it provides a managerial tool to produce secure

software. Securing development lifecycle could be a combination of existing

methodology with secure coding nuances or it can be own software development

methodology. Ensuring security of software can be also done parallel to existing

software development cycle so that discovered security risks and issues are fixed in the

software development phase where they were founded. (Byers & Shahmehri, 2007.)

Secure coding can be implemented into SDLC in many different ways from

standardized frameworks, by using ready SDLC which emphasizes secure coding,

building customized SDLC with secure coding in mind or by picking up best practices

suitable for SDLC in hand.

Frameworks

Frameworks gives general guidelines for securing development lifecycle. NIST SP 800-

64 document describes framework to be used in different parts of SDLC. Document

helps to select and acquire right security controls but document cannot be used directly

to implement SDLC. (Kissel, et al., 2008.)

One example of framework is: Comprehensive, Lightweight Application Security

Process (CLASP), CLASP is part of Open Web Application Security Project (OWASP).

Security companies related to OWASP consortium contributed and reviewed CLASP.

(Gregoire, Buyens, Win, Scandariato, & Joosen, 2007.)

Secure development lifecycle

Microsoft Secure Development Lifecycle (MS-SDL) if founded and used widely by

Microsoft. Purpose of MS-SDL is to have secure software development for all cloud-

based software. MS-SDL goes hand-in-hand with business threat analysis as part of

MS-SDL is to estimate business impact of certain threat. Microsoft -company shares

publicly MS-SDL to everybody who is interested of it. (Lipner, 2010.)

Comparison of MS-SDL and CLASP indicates that CLASP is lightweight and it can be

more customized for specific usage comparing to MS-SDL which do not provide same

flexibility as CLASP. (Gregoire, Buyens, Win, Scandariato, & Joosen, 2007; Futcher &

Von Solms, 2008.)

2.4 Secure coding

By using secure coding skills, a software developer minimises the amount of

vulnerabilities in the source code. Arbaugh, Fithen and McHugh (2000) have defined

the life cycle of vulnerability, which consists of birth, discovery, disclosure, correction,

publicity, scripting and death. It should be noted that according to this study, even after

discovering and patching, abuse of vulnerability increased until most people had

upgraded to patched version. (Arbaugh et al., 2000.)

Secure programming can be divided into two different subfields: software security and

application security. As software security focuses on designing and building secure

software, application security is done after development in post facto way. According to

some studies, an application security solution is not the right way to implement secure

12

programming because developers should have a secure programming mindset or

awareness right from the beginning (Zenah & Aziz, 2011; Tøndel, Jaatun, & Meland,

2008). Implementing security after deployment could lead into conflicts with system

requirements which can be seen also as a vulnerabilities (Anderson, 2008). It is

important to inspect software in its real use environment so that all vulnerability aspects

can be seen. (Hoglund & McGraw, 2004.)

Kumar, Pandey and Ahson (2007) lists the following secure coding practices: coding

standards, code reviews, unit testing for security and defect management. On the other

hand, study proposes use of tools to automate parts of code review which can be

implemented in to practice regardless of the organization size. (Kumar, Pandey, &

Ahson, 2007.)

2.4.1 Taxonomy

Bugs are existing software problems which can stay hidden as they are not executed but

their number can be reduced by using code scanners. Bugs are simple implementation

problems that can be tackled on an implementation-level. Flaws have deep roots in

software and they spawn from an implementation level to design. Because of their

subtle nature, flaws exist in the code without being exploited. Vulnerability is either

individual or it is a combination of bugs and flaws. Attackers exploits vulnerabilities to

achieve their goals. Complexity of flaws makes bugs more appealing targets of exploits.

(Hoglund & McGraw, 2004.)

Exploits of vulnerabilities fall into following categories (Gilliam, Wolfe, Sherif, &

Bishop, 2003):

1. Environment variables

2. Buffer Overflows

3. Data as Instructions or Script Injections

4. Numeric Overflows

5. Race Conditions

6. Network Exposures

7. Information Exposure

8. Operational Misuse

9. Default Settings

10. Programmer Backdoors

The list above reflects vulnerabilities of the implementation level and it should be well

understood by a developer whom does not have secure coding knowledge. Most

complex and discreet vulnerability is design-level vulnerability. Creating design

vulnerability automation is difficult as it requires extremely good expertise.

Vulnerability imposes major security risk in the code. (Hoglund & McGraw, 2004.)

Reports of vulnerabilities are steadily increasing mainly because of three factors:

connectivity, extensibility and complexity. By connectivity, we mean a growing number

of internet connectivity, which increases attack surface and enables remote attacks. As

an attacker does not need to be in the proximity of his or her target. Extensibility of i.e.,

applications, operating systems and web browsers, creates a major challenge to prevent

vulnerabilities from existing. This in turn, puts more pressure on a design phase of

software. Most software created to day has high complexity which leads to an

increasing number of vulnerabilities. (McGraw, 2002.)

13

2.4.2 Practices and principles

NIST SP 800-14 documentation provides a list of important principles and practices

which should considered in secure programming. This documentation also connects

practices and principles with each other. (Swanson & Guttman, 1996.)

Besides of the NIST SP 800-14 documentation, Viega and McGraw (2002) proposes 10

principles based on their experience:

1. Secure the weakest link

2. Practice defence in depth

3. Fail securely

4. Follow the principle of least privilege

5. Compartmentalize

6. Keep it simple

7. Promote privacy

8. Remember that hiding secrets is hard

9. Be reluctant to trust

10. Use your community resources

Most of these listed principles are self-explanatory, but as we start to discuss each of

them, we can see paradox between the “practice defence in depth” and “keep it simple”

–principles. As defence-in-depth embraces the importance of building redundancy,

“keep it simple” principle embraces simplicity and understandability of your system. By

using software risk management, the principles mentioned above can be applied

successfully and efficiently. (Viega & McGraw, 2002.)

Graff and Van Wyk (2003) proposes a list of good practices to be used during

implementation; inform yourself (self-education/learning), handle data with caution

(sanitize inputs), reuse good code whenever practicable (minimise re-doing), insist on

sound review processes (peer review, independent validation and verification, security

tools), make generous use of checklists and be kind to maintainers (use standards,

remove obsolete code, test all code changes). Inform yourself –practice underlines the

importance of self-efficacy via self-learning of coding and especially secure coding.

(Graff & Van Wyk, 2003.)

From the point of view of secure programming, it is possible to strategically select only

safe programming languages as some programming languages are technically unsafe (C

and C++). Safe languages like Java do not cause the problems which C/C++ causes. For

example, C/C++ has flaws which enable simple attacks like buffer overflow. Secure

coding can be achieved also by developing own typed language to enhance secure

programming. (Viega & McGraw, 2002; Swamy, et al., 2011.)

Secure programming can be enforced via selecting integrated development environment

(IDE) which has secure programming promoting features (Zhu, Lipford, & Chu, 2013;

Microsoft, 2015). Different approach is to create teaching and learning tool to promote

secure programming (Zenah & Aziz, 2011).

14

2.4.3 Awareness

Different studies research secure coding awareness and they bring forward a wide range

of perspectives that vary from promoting policies to awareness tools.

Developers should have a secure programming mindset or awareness from the

beginning of project (Zenah & Aziz, 2011; Tøndel, Jaatun, & Meland, 2008).

Implementing security after deployment could lead to conflicts with system

requirements which can be seen also as a vulnerability (Anderson, 2008). Secure coding

awareness is fundamental for implementing secure coding skills.

Software
Security

Awareness

Training and
Education

Awareness
Campaign

Interview

Survey

Industrial/
Academia

Interaction

Tests and
Experiments

Games and
Simulations

Awareness
Tools

Online
Community

Media and
Advertisement

Figure 3. Techniques of Software Security Awareness (Banerjee & Pandey, 2010).

Figure 3 represents Banerjee and Pandley (2010), the pinpointed areas which would

affect creation of software security awareness. The study revises existing literature

related to security awareness and it concludes that the attack from inside performed, for

example, by an employee is the biggest threat to the system. (Banerjee & Pandey,

2010.)

One approach states that awareness and attitude of a software developer can be changed

via IDE tools (Whitney, Lipford, Chu, & Zhu, 2015). The other approach proves the

point that security awareness can be changed through educating a development, security

and operational team (Steven & Peterson, 2006).

An awareness increasing tool, Palantír, used in Configuration Management (CM)

systems, decreases unresolved conflicts in the code (Sarma, Hoek, & Redmiles, 2007).

Other similar tool, YooHoo awareness system, has the same goal but it is developer

specific (Holmes & Walker, 2008). The same awareness tools could be used to promote

secure programming principles and practices.

15

2.5 Prior research on secure coding via Protection Motivation
Theory

This study differs from typical secure coding awareness because it examines closer to

programmer’s work tasks as the ability to implement secure coding as a result of

cognitive reasoning. Therefore, finding prior research was difficult. This problem was

tried to be tackled with a research strategy.

Relevant research is represented in its own subchapter.

2.5.1 Search strategy

Search query is built in three phases. Firstly, keywords are identified, secondly query

parts are constructed and lastly, parts are combined into each database command syntax.

Search keywords

A list of keywords was collected into Table 9 (Appendix B. Search Queries) to support

building search queries. These were collected from book literature and from references

collected in previous chapters. These keywords were categorised based on what they

represented.

Main part of the search query is a “secure coding” concept. This concept is a

combination of secure –an adjective and programming -a verb with recognition of

different variations and words used in literature. The subject of this research is

identified as a programmer with its different variations and mostly used words that are

used most. From qualitative data collection methods, a survey/questionnaire and an

interview represent a data collection category. As PMT is selected theory, it represents

the theory category in the search word table.

Parts of queries

Parts of search query are represented in Table 10 (Appendix B. Search Queries). The

search clauses were created by combining keywords in Table 9 (Appendix B. Search

Queries) with their own category.

Each search clause was prioritized based on the importance of target information.

Prioritization was used to indicate the importance of each query part in the whole search

query.

Database queries

Search for prior research was accomplished by using the following databases: IEEE,

Scopus, Web Science, ProQuest. Each of them uses different search command syntax.

Individual database search queries are represented in search result Tables 11-13

(Appendix B. Search Queries). Each of them is a combination of query parts based on

their prioritization. IEE electric library results are extremely low as PMT is used only in

few studies.

16

2.5.2 Relevant prior research

Finding relevant prior research by using Chapter 2.5.1 search strategy was not

successful. By performing different combinations of search query parts in Google

Scholar, the research using PMT and questionnaire was found in the study of Woon Tan

and Low (2005).

Woon et al. (2005) used in their research protection motivation to promote information

security in home wireless network security features. This study used a survey structured

with hypothesis for each section of PMT that were then used to create questions for

each PMT section. Three different sections are: demographic, main research questions

and knowledge quiz sections. The knowledge quiz was used to measure respondent’s

level of knowledge of network security. The results from this quiz were used to validate

measured results in relation to self-efficacy. The knowledge domain quiz measures

respondent’s awareness in the given field. (Woon, Tan, & Low, 2005.)

Woon et al. (2005) study context was different from this study but the idea of using a

questionnaire as a way of delivering information and possibly creating intention towards

desired goal was same.

There was not any research where secure coding was promoted with PMT. All other

research related to secure coding was always missing the most important element,

software developer. It is clear that that a great amount of research was performed from

tools to code analysis and from standards to development life cycle. However, the main

source of software development, the software developer, has not been yet studied

equally well.

17

3. Protection Motivation Theory

Selecting PMT was based on previous usage of theory and especially fear arousal aspect

of it. PMT is used to predict users’ intentions to protect themselves after communicator

recommendations (Floyd, Prentice-Dunn, & Rogers, 2000). PMT was used in this study

to create questionnaire so that different sections of PMT can be recognized in the area

of secure coding.

The PMT theory is widely used in the computer science field to measure effectiveness

of intervention. The Protection Motivation Theory (PMT), created by Ronald Rogers

inspects subjects individually. Later on, Rogers refined and connected fear arousal to

PMT. (Rogers, 1983.)

During the years PMT has evolved and it has been used only partially, not with all the

PMT components. This study uses the PMT model including fear arousal which is

defined by Boss, Galletta, Lowry, Moody and Polak (2015) as full nomology of PMT.

(Rogers, 1983; Floyd, Prentice-Dunn, & Rogers, 2000; Boss, Galletta, Lowry, Moody,

& Polak, 2015.)

In the study, software developers are perceived as individuals. The Protection

motivation theory (PMT) views each person as an individual and it excludes

environmental factors, such as organization, co-workers etc. (Rogers, 1983.)

RESPONSE
EFFICACY

SELF-EFFICACY

SEVERITY

VULNERABILITY

RESPONSE
COST

INTRINSIC
REWARD

EXTRINSIC
REWARD

- Environmental
* Verbal persuasion

* Observational
learning

-Intrapersonal
* Personality

variables
* Prior experience

COGNITIVE MEDIATING PROCESSES

THREAT
APPRAISAL

COPING
APPRAISAL

COPING MODES

ACTION or INHIBITION
OF ACTION

-SINGLE ACT
- REPEATED ACTS
- MULTIPLE ACTS

- REPEATED, MULTIPLE
ACTS

PROTECTION
MOTIVATION

SOURCES OF
INFORMATION

M
al

ad
ap

tiv
e

re
sp

on
se

Response facilitating
factors

Response inhibiting
factors

Ad
ap

tiv
e

re
sp

on
se

FEAR
AROUSAL

Figure 4. Protection Motivation Theory (Rogers, 1983; Floyd, Prentice-Dunn, & Rogers, 2000)

The schema of PMT is shown in Figure 4. For a survey to be successful, it needs to

have focused questions in each response facilitating factors of PMT schema.

The core of a cognitive mediating process core is made from 2x2 table (Figure 4) that

contains both factors of increasing and decreasing probability to respond to a given

recommendation in coping and threat appraisal. The emphasis of PMT is on cognitive

processes rather than fear (Rogers, 1983)

In PMT (Figure 4), the source of information begins cognitive mediating process

towards threat and coping appraisal. Both of them generate motivation to action (or

inhibition of action). The cognitive mediating process produces threat (maladaptive) and

18

coping (adaptive) appraisal. As a result, both lead to protection motivation or intention

to act. (Floyd, Prentice-Dunn, & Rogers, 2000.)

In order to obtain action, adaptive and maladaptive responses facilitating factors must

overweight their decreasing counter parts. Otherwise no motivation is aroused. Threat

or fear appealing source of information initiates cognitive mediating process. (Rogers,

1983). Fear arousal generates vulnerability in subject’s perception, which leads to

protection motivation. (Floyd, Prentice-Dunn, & Rogers, 2000.)

The main principle of PMT is that one tries to protect himself from danger based on

four beliefs, which Rogers (1983) lists as the following: ”(1) the threat is severe, (2) one

is personally vulnerable to the threat, (3) one has the ability to perform the coping

response, and (4) the coping response is effective in averting the threat.” (pp. 170).

Both, adaptive and maladaptive responses feature response facilitating and inhibiting

factors. Facilitating factor components stimulate intention towards protection

motivation easier as they provide positive motivation for the subject, regardless of path

response. On the other hand, inhibiting factors are components which prevent subject’s

intention towards desired action(s). (Figure 4)

Adaptive response coping, is based on subjects’ high response efficacy (i.e., perception

of own responsibilities) and self-efficacy (i.e., sensitivity to learn new things), which are

negatively affected by response cost (i.e., additional work required by intended action).

Adaptive response could be understood as action which is done by adapting new

information via learning process into repairing action. (Floyd, Prentice-Dunn, & Rogers,

2000.)

Contrary to the adaptive response, maladaptive response coping is engaged by intrinsic

(i.e., personal satisfaction of job well done) and extrinsic (i.e., thanks given by co-

workers) rewards, which are supported by high severity (i.e., own perception of threat)

and vulnerability (i.e., how threat is involved in a personal level). Fear arousal coping

comes from personal vulnerability towards recognized threat. (Floyd, Prentice-Dunn, &

Rogers, 2000.)

PMT has been part of fundamentals of the fear appeals theory. Fear appeals have three

different components: magnitude of noxiousness, probability of occurrence and efficacy

of recommended response. If one of the previously mentioned components equals zero,

no motivation is aroused. (Rogers, 1975.)

Rogers (1983) states that “We learned that fear arousal (which includes a physiological

component) can affect attitude change only by first altering the cognitive appraisal of

the severity of the threatening event.“ (pp. 173). Reflecting on Rogers’ statement, we

should focus on representing threats or noxious events from facts to subjects which then

connects facts and threats in their own mind. (Rogers, 1983.)

Rippetoe and Rogers (1987) found in their study that regardless subject’s measured

coping, threatening communication was pushing the subject more towards adaptive or

maladaptive coping appraisal. Based on previous findings, this study focuses on using

fear appraisal to motivate engaged subjects to desired intention. PMT is used to create

different questions that aim to promote subject’s fear arousal in form of intention in

order to find out more about the secure coding. The questions should be created in a

way that they touch subject’s particular PMT component. (Rippetoe & Rogers, 1987.)

19

4. Research Method

This study uses qualitative research as a research method. This research is based on

questionnaire that includes the questions created with the use of using PMT.

Data collection is completed by a web questionnaire, but this study is uses questions in

a qualitative manner to drive subject’s intention towards secure coding.

Qualitative research can be seen as flexible, subjective and grounding, just to name a

few. The purpose of qualitative research is to study phenomenon in their natural settings

and it approaches the world in a naturistic and interpretive way. Research method

intends to understand and describe social phenomena from inside to outside.

(Silverman, 2005; Flick, 2008; Flick, 2018).

A questionnaire in qualitative research is done for selected population (Marshall &

Rossman, 2006). Smaller population increases resolution of details in cost of scope

(Silverman, 2005). Thus, this study has a narrow and focused group of subjects to

improve gathered data quality and details.

Table 1. Qualitative research perspectives (Flick, 2018).

 Approaches to subjective

viewpoints

Description of the

making of social

situations

Hermeneutic analysis of

underlying structures

Theoretical

positions

Symbolic

Interactionism

Phenomenology

Ethnomethodology

Constructionism

Psychoanalysis

Genetic structuralism

Methods of

data

collection

Semi-structured interviews

Narrative interviews

Focus groups

Ethnography

Participant observation

Recording interactions

Collecting documents

Recording

Interactions

Photography

Film

Methods of

interpretation

Theoretical coding

Content analysis

Narrative analysis

Hermeneutic methods

Conversation analysis

Discourse analysis

Analysis of documents

Objective hermeneutics

Deep hermeneutics

Research perspectives are summarized in Table 1. This study’s theoretical position is

the phenomenology study of questionnaire respondent which is called from this on the

subject. An interpretation method is hermeneutic as subject’s intention towards secure

coding is aroused through cognitive understanding of information given by means of the

questionnaire.

20

5. Data Collection

Data collection is accomplished by a web survey which focuses on discovering

background information and subject’s current knowledge of secure coding. Also, the

questionnaire focuses on discovering response inhibiting factors in both adaptive and

maladaptive responses. It should also discover preferred media of subject’s source of

information. Most importantly, the questionnaire may also give a hint of aroused

intention towards secure coding.

Preliminary questions are used to narrow the focus group in such a way that subjects do

not need to self-reflect on themselves. Concentrating on work and task relating

questions provides better answers. Background questions have a major role in selecting

correct focus group for the research. This is also major risk of this research if minimum

number of answerers is not achieved.

The survey (Appendix C. Online Survey) was constructed with the use of the Webropol

–tool (Webropol, 2019) and distributed as a link to a professional networking platform

with narrow subject group.

Focus group

In this research it is important to focus only certain focus group. A desired target subject

should have the following characteristics: responsible towards own work, focused on

programming work, self-learning and curiosity to discover new. These elements are

included in the questionnaire to filter the subjects.

The focus group of this study is defined by the author as programmers working in small

(<50 persons) enterprise (European Commission, 2014) where software development

done by only a few persons. However, employees in a small enterprise have wide

knowledge of domain. The author assumes that small enterprise does not have the

structure typical for a large organization. Hence, it does not have organizational

policies, rules, software development lifecycle models etc. Focus on subjects in small

companies helps to direct a questionnaire to implementation-level problems. Because

small enterprises have limited resources to focus on fixing vulnerabilities resulting from

bugs.

The author understands that PMT is more effective in the case of subjects who believe

that they have wider responsibility of their own work.

Questionnaire structure

The focus on the questions needs to be directed in such a way that driving factors to

self-learning, in both maladaptive and adaptive response cases are achieved and both

threat and coping appraisal paths can be used in future research.

The questionnaire consists of three sections: background information, awareness and

knowledge, PMT based questions. Each section forms a group of questions that are used

to give information on a process of subject’s cognitive thinking.

21

Questions in each of the section are listed in the full appendix (Appendix A. Questions)

and they are identified with a question identification number.

5.1 Background questions

Subject’s suitability for the focus group is filtered with the use of a background

questionnaire with the following categories:

Table 2. Background question categories.

Category Target Reason Question

Maturity Responsibility Life experience should affect taking responsibility for

own actions

1, 2, 3, 4

Education Knowledge Basic knowledge on the subject 2, 6

Company

size

Work environment Different -sized companies requires different ways of

doing practical programming (free vs. strict)

3

Work

experience

Knowledge Longer experience in the programming field could

give better perspective of software vulnerabilities

4

Work role Practical or

Architectural

What is subject’s input to software development 5

Practical

coding

Involvement level How often does the subject use secure coding? 6

List of background questions:

Q1: What is your age?

Q2: What is your education level?

Q3: How many employees are there in your company (or in a typical client

company)?

Q4: How long (years) have you been working in the field of programming?

Q5: What is your work role(s)? (rank roles if you have many)

Q6: How often do you do practical programming in your work?

The purpose of each background question is to identify the subjects according to

previous specifications. Most of the time, workers have multiple work roles, thus roles

should be ranked. A rank order allows the subjects to establish primary and secondary

work roles, e.g., even though a manager does mainly management work, he or she could

also do some programming.

Involvement level supports work role questions answer. For example, a subject feels

that his primary work role is being a programmer and secondary a designer. However,

his level of involvement is low because most of his time is spent on designing.

22

5.2 Awareness and knowledge questions

Awareness and knowledge questions are based on secure coding implementations in

different forms. These questions are not formed with a specific programming language

in mind. They contain information useful for all software developers.

Table 3. Awareness and knowledge questions.

Category Target Reason Question

Secure coding principles

and practices

Awareness Is the topic familiar to the subject 7, 8, 18

Organizational policies General rules Is secure programming enforced through

organizational policies and rules?

9, 10, 11,

12

Practical work Practical

knowledge

Is subject aware of practical secure

coding methods?

12, 13

Organizational standards Practical work

framework

Is software development driven by certain

standards?

14, 15

Software development

lifecycle

Practical

programming

How is software development organized? 16, 17, 19

List of awareness and knowledge questions:

Q7: Do you know what secure programming / coding is?

Q8: Have you used secure programming principles and practices in software

development?

Q9: Does your company use information security policies?

Q10: Do you use vulnerability lists in your work?

Q11: Do you use code analysis and/or secure programming tools in your work?

Q12: Do you use secure development lifecycle (SDL) in your work?

Q13: What kind of software development lifecycle method is used in your projects?

Q14: Do you use secure software development standards in your work? (i.e.,

ISO/IEC 27002)

Q15: Do you use “secure by design” –design method in your work?

Q16: Do you use integrated development environment (IDE) tools with software

security promoting features?

Q17: Do you use code reviews in your work?

Q18: Do you know what an “attack pattern” is?

Q19: How do you select a programming language for a project?

These questions measures awareness and pre-existing knowledge, but also should

indicate lack of subject’s knowledge in secure coding. Subject’s knowledge of secure

programming is measured from different perspectives (organization, practical methods,

standards and development methods). Hence, the questions work as a PMT’s source of

information and prepares the subject for PMT based questions. Questions are based on

general knowledge of secure coding (Chapter 2).

23

To be able to do coping response and being personally vulnerable to threat are linear

functions of PMT (Rogers, 1983). Hence, intention towards studying secure coding

should be stimulated among the subjects who are motivated but not aware of secure

coding. Collecting motivation source with the use of open questions will be used in

future research.

As previously defined, the focus of this study is on finding out whether it is possible to

create for a software developer an intention towards secure coding. It is important that

the questions allow to define motivation of the subject (importance of motivation was

discussed in Chapter 3). As discussed in the Chapter 2.4, learning about secure

programming should come first on a general level. Next it can be intensified once

knowledge domain has been deepened.

It is also crucial to identify the best influence channel for the future use in research. This

can be done by using open questions.

24

5.3 PMT -based questions

Software security awareness and motivation are enforced through PMT -based

questions. Questions categories are based on PMT sections and they are directed to

specially to address software developers who work in SME’s.

Table 4. PMT questions categories.

PMT section Object of question Subject of question Question

Source of information Subject Tools, media 24

Instrinct reward
+M

Subject 22

Extrinsic reward
+M

Subject Positive feedback 26, 27, 28

Severity
-M

Subject Software 25

Vulnerability
-M

Subject Responsibility 31

Response efficacy
+A

Self-education Learning, Homing 23, 29

Self-efficacy
+A

Subject Learning 20, 21

Response cost
-A

Employer Time, Money 30

Protection motivation Subject Intention 32

A
 Adaptive response

M
 Maladaptive response

+ Response facilitating factor
-
 Response inhibiting factor

List of PMT based questions:

Q20: Do you improve your knowledge of programming by i.e., reading books or

taking courses in your working hours?

Q21: Do you improve your knowledge of programming by i.e., reading books or

taking courses in your spare time?

Q22: Do you find satisfying to be able to implement something you have learnt?

Q23: What motivates you to learn about new programming techniques or

languages?

Q24: What media/tools or sources do you prefer to use while learning new things

related to programming?

Q25: How critical do you see your software’s impact?

Q26: How often do you receive positive feedback (for example spoken, online chat,

email etc.) from your colleague(s) on your work performance

Q27: How often do you receive positive feedback (for example spoken, online chat,

email etc.) from your manager(s) on your work performance

Q28: How important to you is the feedback you receive?

Q29: Do you have hobby projects related to programming? (open source etc.)

Q30: Would you be ready to produce a secure code even if it required more effort?

Q31: Are you concerned that the software you produce may lack some critical

security point of view?

Q32: I am likely to use or study secure programming techniques in the future.

25

Questions should provide answers to each section of PMT schema. Questions types are

categorized according to Table 4. Each PMT question contains knowledge of secure

coding, which should affect subject’s motivation to answer the final question about

secure coding intention.

Self-efficacy is important quality of the focus group. Subjects with high self-efficacy,

express higher willingness to comply recommendations (Rogers, 1983). Because of this,

subjects that have self-efficacy can be analysed. Self-efficacy also reflects subjects’

motivation to learn (Zimmerman, 2000). In this study self-efficacy is measured in terms

of free time learning and programming. Self-efficacy is not referred to directly as

subjects’ perspective can be different from the truth. This shows how much each

individual is motivated to improve themselves voluntarily. Questions in the severity and

vulnerability sections are based on own understanding of produced software usage and

its importance. It should be possible to identify correctly uneasiness of the subjects by

realising and assessing potential risks and damage of developed software. Severity

questions are in one matrix questions; thus, subject can easily compare severity levels

and their importance. In extrinsic reward questions, colleague and manager feedbacks

are asked in the same, matrix question. In this way, subject can reflect own importance

of acceptance, between colleagues and managers.

Fear arousal is done by combining previous information from the questionnaire with

subject’s present situation. Intention is measured with last question that indicates

subject’s intention to study or use secure programming techniques.

5.4 Constructing questions

Most of the questionnaire’s questions are closed questions, which makes answering

them easier, faster and more substantive. The primary goal is to make the subject read

the questions carefully and think well about their content. In this way closed questions

works as information distribution objects.

With certain questions, additional information is needed. For example, with ranking and

matrix question types (Appendix C. Online Survey) as more specific guidance is

required.

Open questions are used when answers differ and depend on each individual.

Constructing answer options for these questions would narrow results drastically.

Matrix questions are used where answer could be neutral. For example, between two

opposites (Appendix C. Online Survey). These questions are also used when there is a

main question posed but with a variating subject.

26

6. Data Analysis

Graff and Van Wyk (2003) define three factors which have negative impact on

producing secure coding among software developers: technical factor, physiological

factor and real-world factor. The technical factor means technical complexity of

software which makes it difficult to produce really a secure code. In terms of the

physiological factor, a certain type of mental model or mindset is needed to produce a

secure code. This can be really hard to adapt by software developers. In every software

development project, there are real-world constrains or real-world factors, such as time

pressure or low secure coding requirements from customers. (Graff & Van Wyk, 2003.)

Author’s personal hypothesis was that subjects whom feel more responsibility in their

work and who self-educate will indicate intention towards secure coding.

Firstly, personnel from different-sized enterprises answered the questionnaire. The

focus group of this study includes subjects who work in SMEs. The answers were

narrowed to the subjects who work in a micro enterprise (<10) or in small enterprise

(<50).

Secondly, data analysing is focused on the subjects who answered the question of

regularity of their programming work “often (i.e. few times in a week)” or “Very often

(everyday)”. This narrows data to the subjects who perform practical programming

work.

The survey request was sent to 17 persons and nine of them provided their answers.

Five out of nine matched the focus group criteria.

Figure 5. Answers of 3 option questions.

Figure 5 shows questions with 3 answer options: “Yes”, “No” and “Unknown/wish”. The

“Unknown/wish” answer reflects subject’s lack of knowledge of the particular

information, except with Q20 (“Do you improve your knowledge of programming by

i.e., reading books or taking courses in your working hours?”), Q21 (“Do you improve

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

7 8 9 10 11 12 14 15 16 17 18 20 21 22 29 30 32

Question Id

Yes No Unknown/wish

27

your knowledge of programming by i.e., reading books or taking courses in your spare

time?”), Q29 (“Do you have hobby projects related to programming? (open source

etc.)”) and Q32 (“I am likely to use or study secure programming techniques in the

future.”). The subjects who responded to these questions wish to know more or they

express certain intention to learn more about the questions’ information. Figure 5

contains all other categories (awareness Q7-Q19 and PMT Q20-Q32) except for

background questions (Q1-Q6) and open questions (Q23 and Q24).

Figure 6. Answers of vulnerability.

Subject’s personal vulnerability via produced code delivered different answers (Figure

6). The majority of subjects still recognized own vulnerability (“In every project” and

“In some projects“).

On the one hand, all the subjects answered getting intrinsic reward by implement

something that they have learned (Figure 5, Q22: “Do you find satisfying to be able to

implement something you have learnt?”). This leads to a conclusion that, an employer

should find a way to appreciate subjects’ efforts to learn new information because it

could encourage them to try to learn even more. On the other hand, this could also

influence subjects’ motivation in a negative way if the new knowledge they have

acquired is not taken into consideration while discussing development improvements.

0

10

20

30

40

50

In every project In some projects No

P
er

ce
n

t

Q31: Are you concerned that the software
you produce may lack some critical

security point of view?

28

Figure 7. Answers to the feedback questions.

Figure 8. Importance of the feedback (Q28: “How important to you is the feedback you
receive?”).

Answers to PMT extrinsic reward questions are represented in Figure 7 and in Figure 8.

They show that the subjects receive more feedback from their colleagues than from their

managers, even though both sources of feedback are equally important to them.

Response efficacy was asked with open question (question 23: “What motivates you to

learn about new programming techniques or languages?”) and selection (question 29:

“Do you have hobby projects related to programming? (open source etc.)”). Answers

to open question vary from self-improvement into career improvement, but most of

them indicate self-improvement (directly and non-directly). The non-direct answers

refer to the need to improve developed code. The selection answer (Figure 5) supports

0

10

20

30

40

50

60

70

Never Rarely (e.g., on
the end of the

project)

Sometimes (e.g.,
when milestones

are reached)

Often (e.g.,
during the week)

Very often (e.g.,
every day)

P
er

ce
n

t
Q26: How often do you receive positive feedback (for example spoken, online chat, email etc.)
from your colleague(s) on your work performance

Q27: How often do you receive positive feedback (for example spoken or provided via a code
review tool) from your manager(s) on your work performance

0

5

10

15

20

25

30

35

40

45

1 = Not important 2 3 4 5 = Very important

P
er

ce
n

t

From your colleague(s) From your manager(s)

29

this finding, as majority of the subjects are involved in an ongoing open source project

or are thinking about starting one.

The self-efficacy answers vary depending on the subjects (Figure 5, Q20: “Do you

improve your knowledge of programming by i.e., reading books or taking courses in

your working hours?” and Q21: “Do you improve your knowledge of programming by

i.e., reading books or taking courses in your spare time?”). The answer to Q21 has the

most value when subject’s self-efficacy is measured. This is because using personal free

time for learn new can be perceived as greater barrier than using work time for the same

purpose. Over half of the subjects admitted that they use their free time to learning new.

The open question 24 (“What media/tools or sources do you prefer to use while

learning new things related to programming?”), was meant to find out about the source

of information, which are used to learn new. The most common answer turned out to be

“internet”. Some answered a website which works as a discussion forum for

programmers. Most likely, the answers, such as “internet” or a website prove the point

that a subject perceives problem solving as a way to learn new.

Figure 9. Answers on software severity (Q25: “How critical do you see your software’s
impact?”).

The way a subject feels about the severity of own software can be seen from Figure 9.

The subjects do not feel that their software is threating physical world but again they

attach high value to the severity of human safety. The severity answers that refer to

personal data differ from “Not important” into rate 4, which could result from the

difference in understanding personal data.

The response cost question (Figure 5, Q30: “Would you be ready to produce a secure

code even if it required more effort?”) can be interpreted in a way that 80% would like

to put more effort to produce a secure code and the rest would like to try.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

On a physical
environment where

it is executed

On personal data On a device(s) it is
run on

On human safety

1 = Not important 2 3 4 5 = Very important

30

Most of the focus group subjects answered (Figure 5, Q7: “Do you know what secure

programming / coding is?”) that they know what secure coding means. Which indicates

that subjects consider having existing knowledge of it. Only a small percentage was not

aware of it. Even if most of the subjects have pre-existing knowledge of the topic, over

half of them would still like to deepen their expertise (Figure 5, Q32: “I am likely to use

or study secure programming techniques in the future.”). The rest of them were unsure

as they responded with “maybe” to the same question. This indicates that most of the

subjects have intention towards studying secure coding.

31

7. Discussion

It is interesting to find out that the subjects see problem solving as a way of learning

new things. It could be that these subjects do not systematically self-study broader

topics but improve own existing programming skills. A downside of using i.e.,

discussion forums as a source of information is that they provide quick and precise

answers but lack teaching the holistic view of the problem and solution.

This study aims at narrowing the focus group based on authors own experience and

observations of the programming field. Especially observation of programmers working

in different sized enterprises. The validity of the focus group is studied by analyzing the

answers in the PMT categories.

Table 5. Analysis of the answers of the PMT categories.

PMT section Question

Id

Desired answer from the PMT point

of view

Answer analysis

Source of

information

24 Available for micro- and small

enterprise personnel

Discussion and blog sites

Instrinct

reward
+M

22 Get satisfaction by using new

knowledge

All subjects

Extrinsic

reward
+M

26, 27, 28 Feedback is perceived as important (at

least 4)

60% provide the rate of at

least 4

Severity
-M

25 One of the question topics should be at

least 4

80% provide the rate of at

least 4 on “On human

safety”

Vulnerability
-M

31 Most of the project should be

vulnerable

60% provide the rate of at

least “In some projects”

Response

efficacy
+A

23, 29 Positive thinking towards using leisure

time for self-improvement

All subjects

Self-efficacy
+A

20, 21 Existing characteristics for self-

learning during leisure time

60% provide the answer

“Yes”

Response cost
-A

30 Willingness to work more to increase

the quality

80% provide the answer

“Yes”

Protection

motivation

32 Intention towards secure coding 60% have the intention

(40% is unsure)

A
 Adaptive response

M
 Maladaptive response

+ Response facilitating factor
-
 Response inhibiting factor

32

Answer analysis of each of the PMT category is represented in Table 5, which enables

the conclusion that subjects in the selected focus group in all categories express at least

50% likelihood to fulfil the PMT goals in each category. This will most likely will lead

to protection motivation. The question that refers to measuring the intention towards

secure coding supports this conclusion, as over half of the subjects express the intention

towards it.

The subjects that indicated the intention towards secure coding have high correlation

(R= 0,92 and P= 0,03) with self-education (Q20: “Do you improve your knowledge of

programming by i.e., reading books or taking courses in your working hours?” and

Q21: “Do you improve your knowledge of programming by i.e., reading books or taking

courses in your spare time?”). This indicates that those subjects have high self-efficacy

(see importance from Chapter 5.3). When the same analysis is done for all the

respondents, high correlation occurs (R= -0,78 and P=0,01) in positive feedback (Q28:

“How important to you is the feedback you receive?”). The focus group has R= -

0,87/P= 0,06 correlation with the same question. This indicates that the subjects who

express the intention towards secure coding (the “Yes” answer has value 1) value

positive feedback more. However, it should be noted that the amount of analysed data is

small.

The research question of this study is as follows: Can secure programming intention be

aroused with a PMT questionnaire? This study has succeeded in producing the intention

towards secure programming in the case of half of the subjects. The results show that

using this questionnaire as a tool to increase secure code intention is effective.

However, this hypothesis should still be verified with the use of a higher number of

respondents.

33

8. Conclusions

The most effective way to train software developers to be more secure minded is to

describe the problem and then demonstrate the importance of this problem as well as its

impact (McGraw, 2004). Secure coding should not be separated from normal software

development. (Kumar, Pandey, & Ahson, 2007), which is a corner stone of this study

PMT towards the suggested focus group (micro and small enterprises) is highly

effective as most of the PMT categories are answered in a theory expected manner.

Most subjects also indicate the intention towards secure coding in the end of the survey.

This intention is supported with strong self-efficacy among them. Another interesting

finding is that many subjects (also outside of the focus group) see great importance of

positive feedback (Chapter 7).

8.1 Research limitations

Overall answer rate was low. It could be that the subjects perceived the questions as too

sensitive in their company/project and that is why they did not continue with answering

the questions. It is also possible that the questionnaire was too long for them. The

combination of a low answer rate and a qualitative research method makes it impossible

to generalize the results of this study. Generalisation of results is also limited because of

the fact that the material for the analysis was provided by a selected focus group in a

certain kind of software development organization or company.

It also worth of noticing that PMT’s response inhibiting factors have not been studied as

they would require projected manipulation of the subjects, who would then make the

estimation themselves.

The difference between software security awareness and software security knowledge

should also be recognized. Many studies imply that measuring awareness reflects

developers secure coding capability which is based on practical knowledge.

It should be noticed, that within this study, it is difficult to know if subjects had existing

intention towards secure coding. This could be measured with an intervention research.

34

8.2 Future research

Future studies could implement a quantitative survey which can be analysed in statistic

methods. The focus group should still be personnel in micro and small enterprise,

because answers analysis of this study indicates that PMT is effective within a particular

focus group.

The intention towards secure coding among subjects could be increased by increasing

vulnerability. It could be done by using more detailed questions. For example, by asking

programming language specific questions to increase subject’s reflection on own

practical work. I.e., answer to programming questions would also contain secure coding

facts.

Protection motivation could be achieved by an active questionnaire with customized

content based on a subject’s technical background. This would require more focused

and more technical questions, which would increase the effectiveness of response

inhibiting factors.

Intention change towards secure coding could be ensured with a follow-up study. Data

gathered with the use of the follow-up study would help improve the effectiveness of

PMT components and recognise the intention of potential subjects towards secure

coding.

35

References

Anderson, R. J. (2008). Security Engineering: A Guide to Building Dependable

Distributed Systems. John Wiley Sons.

Arbaugh, W., Fithen, W., & McHugh, J. (2000). Windows of vulnerability: a case study

analysis. Computer, 52-59.

Banerjee, C., & Pandey, S. K. (2010). Research on software security awareness. ACM

SIGSOFT Software Engineering Notes, 35(5), 1-5.

doi:10.1145/1838687.1838701

Bishop, M., & Frincke, D. (2005). Teaching secure programming. IEEE security &

privacy, 54-56.

Boss, S., Galletta, D., Lowry, P., Moody, G., & Polak, P. (2015). What Do Systems

Users Have to Fear? Using Fear Appeals to Engender Threats and Fear that

Motivate Protective Security Behaviors. MIS Quarterly, 39(4), 837–864.

Byers, D., & Shahmehri, N. (2007). Design of a Process for Software Security. The

Second International Conference on Availability, Reliability and Security

(ARES'07) (pp. 301-309). Vienna: IEEE.

Crossler, R., Johnston, A., Lowry, P., Hu, Q., Warkentin, M., & Baskerville, R. (2013).

Future directions for behavioral information security research. Computers &

Security, Volume 32, 90-101.

European Commission. (2014, October 5). Recommendation 2003/361/EC. Retrieved

from EUR - Lex, Access to European Union law: http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32003H0361&from=EN

Flick, U. (2008). Designing Qualitative Research. London: Sage Publications Ltd.

doi:10.4135

Flick, U. (2018). The SAGE Handbook of Qualitative Data Collection. London: SAGE

Publications Ltd. doi:10.4135/9781526416070

Floyd, D. L., Prentice-Dunn, S., & Rogers, R. W. (2000). A Meta-Analysis of Research

on Protection Motivation Theory. Journal of Applied Social Psychology, 30(2),

407-429. doi:10.1111/j.1559-1816.2000.tb02323.x

Futcher, L., & Von Solms, R. (2008). Guidelines for secure software development.

Proceedings of the 2008 annual research conference of the South African

Institute of Computer Scientists and Information Technologists on IT research in

developing countries riding the wave of technology - SAICSIT '08 (pp. 56-65).

New York: ACM Press.

Gilliam, D., Kelly, J., Powell, J., & Bishop, M. (2001). Development of a software

security assessment instrument to reduce software security risk. Proceedings

36

Tenth IEEE International Workshop on Enabling Technologies: Infrastructure

for Collaborative Enterprises. WET ICE 2001 (pp. 144-149). IEEE.

Gilliam, D., Wolfe, T., Sherif, J., & Bishop, M. (2003). Software security checklist for

the software life cycle. WET ICE 2003. Proceedings. Twelfth IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2003 (pp. 243-248). IEEE.

Graff, M. G., & Van Wyk, K. R. (2003). Secure coding: principles and practices.

Sebastopol: O’Reilly & Associates.

Gregoire, J., Buyens, K., Win, B. D., Scandariato, R., & Joosen, W. (2007). On the

Secure Software Development Process: CLASP and SDL Compared. Third

International Workshop on Software Engineering for Secure Systems (SESS'07:

ICSE Workshops 2007), 1-7.

Hoglund, G., & McGraw, G. (2004). Exploiting Software: How to Break Code.

Addison-Wesley.

Holmes, R., & Walker, R. J. (2008). Promoting developer-specific awareness.

Proceedings of the 2008 international workshop on Cooperative and human

aspects of software engineering - CHASE '08 (pp. 61-64). New York, USA:

ACM Press. doi:10.1145/1370114.1370130

Jones, R. L., & Rastogi, A. (2004). Secure Coding: Building Security into the Software

Development Life Cycle. Information Systems Security, 29-39.

Jürjens, J. (2002). UMLsec : Extending UML for Secure Systems Development. In

≪UML≫ 2002 — The Unified Modeling Language (pp. 412-425). Springer

Berlin Heidelberg.

Kissel, R., Stine, K., Scholl, M., Rossman, H., Fahlsing, J., & Gulick, J. (2008,

October). Security Considerations in the Information System Development

Lifecycle. Retrieved from National Institute of Standards and Technology:

http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf

Kumar, R., Pandey, S. K., & Ahson, S. I. (2007). Security in Coding Phase of SDLC.

2007 Third International Conference on Wireless Communication and Sensor

Networks (pp. 118-120). IEEE. doi:10.1109/WCSN.2007.4475760

Lipner, S. (2010). Security Development Lifecycle - Security Considerations for Client

and Cloud Applications. Datenschutz und Datensicherheit - DuD, 135-137.

Lodderstedt, T., Basin, D., & Doser, J. (2002). SecureUML: A UML-Based Modeling

Language for Model-Driven Security. In ≪UML≫ 2002 — The Unified

Modeling Language (pp. 426-441). Springer Berlin Heidelberg.

Mahadevan, L., Simon, J., & Meservy, T. (2011). Effects of developer cognitive style

and motivations on information security policy compliance. 17th Americas

Conference on Information Systems 2011, AMCIS 2011, 1-8.

Marshall, C., & Rossman, G. B. (2006). Designing Qualitative Research (4th ed.).

London: Sage Publications Ltd.

37

McGraw, G. (2002). Managing software security risks. Computer, Volume 35, Issue 4,

99-101.

McGraw, G. (2004). Software security. IEEE Security & Privacy Magazine, 80-83.

McGraw, G. (2006). Software Security: building security in. Boston: Pearson Education

Inc.

Microsoft. (2015). Security Development Lifecycle. Retrieved 7 29, 2015, from

Microsoft: https://www.microsoft.com/en-us/sdl/default.aspx

Mitnick, K. D., & Simon, W. L. (2002). The Art of Deception: Controlling the Human

Element of Security. Indianapolis, Indiana: John Wiley & Sons.

Rippetoe, P. A., & Rogers, R. W. (1987). Effects of components of protection-

motivation theory on adaptive and maladaptive coping with a health threat.

Journal of personality and social psychology, 52(3), 596-604.

doi:10.1037/0022-3514.52.3.596

Rogers, R. (1983). Cognitive and physiological processes in attitude change: A revised

theory of protection motivation. Social Psychophysiology(July), 153-176.

Rogers, R. W. (1975). A Protection Motivation Theory of Fear Appeals and Attitude

Change1. The Journal of Psychology, 91(1), 93-114.

Sarma, A., Hoek, A., & Redmiles, D. F. (2007). A Comprehensive Evaluation of

Workspace Awareness in Software Configuration Management Systems. IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC

2007) (pp. 23-26). Coeur d'Alene, ID: IEEE. doi:10.1109/VLHCC.2007.7

Silverman, D. (2005). Doing Qualitative Research (2nd ed.). London: SAGE

Publications Ltd.

Steven, J., & Peterson, G. (2006). Essential Factors for Successful Software Security

Awareness Training. Security & Privacy, IEEE, 4(5), 80 -83.

doi:10.1109/MSP.2006.119

Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., & Yang, J. (2011).

Secure distributed programming with value-dependent types. Proceeding of the

16th ACM SIGPLAN international conference on Functional programming -

ICFP '11 (pp. 266-278). New York: ACM.

Swanson, M., & Guttman, B. (1996, September). Generally Accepted Principles and

Practices for Securing Information Technology Systems. Retrieved from

National Institute of Standards and Technology:

http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf

Tøndel, I. A., Jaatun, M. G., & Meland, P. H. (2008). Security Requirements for the

Rest of Us: A Survey. Software, IEEE, 25(1), 20 - 27. doi:10.1093/rsq/11.2.55

Van Wyk, K., & McGraw, G. (2005). Bridging the Gap between Software Development

and Information Security. IEEE Security and Privacy Magazine, 3(5), 75-79.

doi:10.1109/MSP.2005.118

38

Webropol. (2019, 11 25). Webropol. Retrieved from Webropol: https://webropol.fi/

Whitney, M., Lipford, H. R., Chu, B., & Zhu, J. (2015). Embedding Secure Coding

Instruction into the IDE. Proceedings of the 46th ACM Technical Symposium on

Computer Science Education - SIGCSE '15 (pp. 60-65). New York, USA: ACM

Press. doi:10.1145/2676723.2677280

Viega, J., & McGraw, G. (2002). Building Secure Software. Boston: Addison-Wesley.

Wikipedia. (2017, 1 9). Secure coding. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Secure_coding

Woon, I., Tan, G.-W., & Low, R. (2005). A protection motivation theory approach to

home wireless security. Proceedings of the Twenty-Sixth International

Conference on Information Systems (pp. 367-380). Las Vegas: International

Conference on Information Systems.

Yasinsac, A., & McDonald, J. (2006). Foundations for security aware software

development education. Proceedings of the 39th Annual Hawaii International

Conference on System Sciences (HICSS'06) (p. 219c). IEEE.

Zenah, N., & Aziz, N. (2011). Secure coding in software development. 2011 Malaysian

Conference in Software Engineering (pp. 458-464). Johor Bahru: IEEE.

doi:10.1109/MySEC.2011.6140716

Zhu, J., Lipford, H. R., & Chu, B. (2013). Interactive support for secure programming

education. Proceeding of the 44th ACM technical symposium on Computer

science education - SIGCSE '13 (pp. 687-692). New York, USA: ACM Press.

doi:10.1145/2445196.2445396

Zimmerman, B. J. (2000). Self-Efficacy: An Essential Motive to Learn. Contemporary

educational psychology, 25(1), 82-91. doi:10.1006/ceps.1999.1016

39

Appendix A. Questions

Background questions:

Table 6. Background questions.

Id Question Type

[1]

Answer options

1 What is your age? S <25
26-30

31-40

41-50
50<

2 What is your education level? S Doctoral or higher degree

Master’s degree

Bachelor’s degree (University)
Bachelor's degree (Applied sciences)

Lower than bachelor’s degree

3 How many employees are there in your company (or in a
typical client company)?

S <10
<50

<250

>250

4 How long (years) have you been working in the field of
programming?

S None/Student
<1

2-5

6-10
11-20

20<

5 What is your work role(s)? (rank roles if you have many)

1 = primary, 2 = secondary etc.

R2 Programmer

Team Leader

Manager

Designer/Architect

6 How often do you do practical programming in your work? S Never

Rarely (i.e., once a month)

Sometimes (i.e., a few times in a month)
Often (i.e., a few times in a week)

Very often (everyday)

[1]
 S=Selection, O=Open, M1=Multiple choice, M2=Matrix, R1=Rating, R2=Ranking

40

Awareness questions

Table 7. Awareness and knowledge questions.

Id Question Type

[1]

Answer options

7 Do you know what secure programming /

coding is?

S Yes

No

I have heard about it

8 Have you used secure programming

principles and practices in software

development?

S Yes

No

I do not know

9 Does your company use information security
policies?

S Yes
No

I do not know

10 Do you use vulnerability lists in your work? S Yes
No

I do not know

11 Do you use code analysis and/or secure

programming tools in your work?

S Yes

No
I do not know

12 Do you use secure development lifecycle

(SDL) in your work?

S Yes

No
I do not know

13 What kind of software development lifecycle

method is used in your projects?

S One standard method (i.e., scrum, kanban)

Several standard methods (i.e., depends on a project/customer)

Customized method (i.e., contains parts of different methods)
None

14 Do you use secure software development

standards in your work? (i.e., ISO/IEC 27002)

S Yes

No
I do not know

15 Do you use “secure by design” –design

method in your work?

S Yes

No
I do not know

16 Do you use integrated development

environment (IDE) tools with software

security promoting features?

S Yes

No

I do not know

17 Do you use code reviews in your work? S Yes

No

I do not know

18 Do you know what an “attack pattern” is? S Yes
No

I do not know

19 How do you select a programming language
for a project?

M1 Based on an execution platform
Based on own programming skills

Based on the security of language

Based on customer requirements/existing codebase

[1]
 S=Selection, O=Open, M1=Multiple choice, M2=Matrix, R1=Rating, R2=Ranking

41

PMT –based questions

Table 8. PMT questions.

Id Question Type[1] Answer option

20 Do you improve your knowledge of programming by
i.e., reading books or taking courses in your working

hours?

S Yes
No

I would like to

21 Do you improve your knowledge of programming by
i.e., reading books or taking courses in your spare time?

S Yes
No

I would like to

22 Do you find satisfying to be able to implement

something you have learnt?

S Yes

No

23 What motivates you to learn about new programming

techniques or languages?

O

24 What media/tools or sources do you prefer to use while

learning new things related to programming?

O

25 How critical do you see your software’s impact?

- On a physical environment where it is executed

- On personal data
- On a device(s) it is run on

- On human safety

M2 1 = Not critical

2 =

3 =
4 =

5 = Very critical

26 How often do you receive positive feedback (for

example spoken, online chat, email etc.) from your
colleague(s) on your work performance

S Never

Rarely (e.g., on the end of the project)
Sometimes (e.g., when milestones are reached)

Often (e.g., during the week)

Very often (e.g., every day)

27 How often do you receive positive feedback (for

example spoken, online chat, email etc.) from your

manager(s) on your work performance

S Never

Rarely (i.e., on the end of the project)

Sometimes (i.e., when milestones are reached)
Often (i.e., during the week)

Very often (i.e., every day)

28 How important to you is the feedback you receive?
From your colleague(s)

From your manager(s)

M2 1 = Not important
2 =

3 =

4 =
5 = Very important

29 Do you have hobby projects related to programming?

(open source etc.)

S Yes

No

I would like to start one

30 Would you be ready to produce a secure code even if it

required more effort?

S Yes

No

I would like to try

31 Are you concerned that the software you produce may
lack some critical security point of view?

S In every project
In some projects

No

32 I am likely to use or study secure programming
techniques in the future.

S Yes
No

Maybe

[1]
 S=Selection, O=Open, M1= Multiple choice, M2=Matrix, R1=Rating, R2=Ranking

42

Appendix B. Search Queries

Table 9. Keywords used in search strategy.

Keyword Variants Category Search word

secure security Concept secur*

defensive Concept defensive

coding code Concept cod*

programming program Concept program*

development develop Concept develop*

developer developers Subject developer*

programmer programmers Subject programmer*

designer designers Subject designer*

coder coders Subject coder*

survey Data collection survey

questionnaire question
questions

Data collection question*

interview Data collection interview

Protection Motivation Theory Protection motivation

PMT

Theory “protection motivation”

PMT

Table 10. Parts of search query.

Query part Priority

(secur* OR defensive) AND (cod* OR program* OR develop*) 1

(“protection motivation” OR pmt) 2

(survey OR question* OR interview) 3

(coder* OR programmer* OR developer* OR designer*) 4

43

Table 11. Search priority 4

Database Search query Results Noted

publications

Scopus TITLE-ABS-KEY (secur* OR defensive) AND TITLE-ABS-KEY (cod* OR program* OR develop*) AND TITLE-ABS-KEY("protection motivation" OR PMT) AND
TITLE-ABS-KEY(survey OR question* OR interview) AND TITLE-ABS-KEY (coder* OR programmer* OR developer* OR designer*)

0 -

Web of

Science

TS= ((secur* OR defensive) AND (cod* OR program* OR develop*) AND (“protection motivation” OR PMT) AND (survey OR question* OR interview) AND (coder* OR

programmer* OR developer* OR designer*))

0 -

ProQuest all(secur* OR defensive) AND all(cod* OR program* OR develop*) AND all("protection motivation" OR PMT) AND all(survey OR question* OR interview) AND all(coder*
OR programmer* OR developer* OR designer*)

0 -

IEE Electric

Library

("Abstract": (secur* OR defensive) AND (cod* OR program* OR develop*) AND ("protection motivation" OR PMT) AND (survey OR question* OR interview) AND (coder*

OR programmer* OR developer* OR designer*))

0 -

Table 12. Search priority 3.

Database Search query Results Noted publications

Scopus TITLE-ABS-KEY (secur* OR defensive) AND TITLE-ABS-KEY (cod* OR program* OR develop*) AND TITLE-ABS-KEY("protection motivation" OR PMT)

AND TITLE-ABS-KEY(survey OR question* OR interview)

34 -

Web of Science TS= ((secur* OR defensive) AND (cod* OR program* OR develop*) AND (“protection motivation” OR PMT) AND (survey OR question* OR interview)) 46 -

ProQuest all(secur* OR defensive) AND all(cod* OR program* OR develop*) AND all("protection motivation" OR PMT) AND all(survey OR question* OR interview) 32 -

IEE Electric

Library

("Abstract": (secur* OR defensive) AND (cod* OR program* OR develop*) AND ("protection motivation" OR PMT) AND (survey OR question* OR interview)) 0 -

44

Table 13. Search priority 2.

Database Search query Result

s

Noted

publications

Scopus TITLE-ABS-KEY (secur* OR defensive) AND TITLE-ABS-KEY (cod* OR program* OR develop*) AND TITLE-ABS-KEY("protection motivation" OR PMT) 111 -

Web of Science TS= ((secur* OR defensive) AND (cod* OR program* OR develop*) AND (“protection motivation” OR PMT)) 112 -

ProQuest all(secur* OR defensive) AND all(cod* OR program* OR develop*) AND all("protection motivation" OR PMT) 167 -

IEE Electric

Library

("Abstract": (secur* OR defensive) AND (cod* OR program* OR develop*) AND ("protection motivation" OR PMT)) 0 -

45

Appendix C. Online Survey

46

47

48

49

50

51

	Abstract
	Keywords

	Foreword
	Abbreviations
	Contents
	1. Introduction
	2. Research on Secure Coding
	2.1 Organisational tools, frameworks and standards
	2.2 Designing secure software
	2.3 Securing software development lifecycle
	2.4 Secure coding
	2.4.1 Taxonomy
	2.4.2 Practices and principles
	2.4.3 Awareness

	2.5 Prior research on secure coding via Protection Motivation Theory
	2.5.1 Search strategy
	2.5.2 Relevant prior research

	3. Protection Motivation Theory
	4. Research Method
	5. Data Collection
	5.1 Background questions
	5.2 Awareness and knowledge questions
	5.3 PMT -based questions
	5.4 Constructing questions

	6. Data Analysis
	7. Discussion
	8. Conclusions
	8.1 Research limitations
	8.2 Future research

	References
	Appendix A. Questions
	Appendix B. Search Queries
	Appendix C. Online Survey

