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Abstract  

Indoor air quality is important for our health and well-being. It has been proven that the 

air quality affects the performance of the workers. One way to achieve better air quality, 

would be to adjust the air conditioning and heating. By predicting the room conditions 

one can react faster to changes and ensure that the room conditions stay favourable. 

The existing machine learning (ML) models that are used for CO2 prediction are rather 

basic. This study aims to improve upon the performance of the models compared to earlier 

studies. The focus of this thesis is to study what type of model would give the best results, 

what type of training data should be used, and how long history should be fed into the 

model.  

One of the goals of this thesis is to examine whether a deep neural network is better than 

a wider one. The used data consists of indoor air measurements from nine variables: CO2, 

Temperature, pressure, illuminance, volatile organic compound (VOC), movement 

detection, humidity, door state. The data was gathered in VTT’s Oulu office (in Finland). 

Different combinations of input variables are experimented on, to find out, which inputs 

should be fed into the network. The performance is compared to other models commonly 

used in prior studies. These models include previous value forward (PPV), line fit, and a 

Multilayer perceptron with one hidden layer (MLP1). Several hyperparameters are tested 

to find out which combination of parameters has the lowest error. 

Compared to earlier studies, the developed deep Multilayer Perceptron (MLP) model 

improved root mean squared error (RMSE) by 0,997 ppm. This indicates that deep models 

perform better for CO2 prediction tasks. The total root mean squared error was 6.07 ppm. 

This improvement makes it possible to give more accurate readings for the air 

conditioning control system, which in turn makes it easier to keep CO2 levels low. A 

history length of seven minutes is used as the input, and the model predicts ten minutes 

ahead. 
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1. Introduction 

 

We spend a large portion of our time indoors, and indoor air quality affects both our 

wellbeing and performance. Too high CO2 levels cause performance to decrease and 

negative effects for the occupants. To this end, indoor air can be controlled so that the 

CO2 level doesn't get too high. To better control the indoor CO2 concentration, it is 

beneficial to predict CO2 level, which allows the ventilation system to adjust the 

ventilation pre-emptively. The focus of this thesis is to build a neural network that can 

predict the CO2 level in indoor air. 

This chapter describes the motivation and research objectives of the study. Research 

methods and prior contributions from existing literature are also described. Finally, the 

main contributions of this study are explored, and the outline of the thesis is given. 

1.1 Motivations for controlling indoor air 

It is very important to predict CO2 level in the future. By predicting CO2 level, we can 

better control the ventilation and avoid high CO2 concentration in buildings and rooms. 

There are three main motivation behind this study and to predict CO2 level in future, i.e. 

saving energy, increasing comfort and improving job performance. Energy savings come 

from the reduced need to heat (or cool) the house. Also, the fact that ventilation doesn’t 

have to be running all the time saves energy. 

A study Merema, Delwati, Sourbron, and Breesch (2018) found that energy requirements 

for ventilation could be reduced by 25-55% and heat losses by 25-32% when compared 

to a constant rate ventilation system. Li, Wall and Platt (2010) observed a 62% reduction 

in the required airflow when a demand-controlled ventilation system was configured to 

keep CO2 concentration at a specific level. Several studies found that cognitive 

performance decreased when CO2 concentration was high (Satish et al. ,2012; Maddalena 

et al. ,2015; Haverinen‐Shaughnessy, Moschandreas, & Shaughnessy, 2011; Haverinen-

Shaughnessy & Shaughnessy, 2015). Haverinen‐Shaughnessy et al. (2011) observed that 

students passed standardized tests at a higher rate with higher ventilation rates. Several 

studies mentioned Sick Building Syndrome (SBS) (Khazaei, Shiehbeigi, & Kani, 2019; 

Skön, Johansson, Raatikainen, Leiviskä, & Kolehmainen, 2012).  According to the World 

Health Organization (WHO), SBS is a condition where a person has symptoms for 

apparently no reason while they are in a building (World Health Organization Regional 

Office for Europe, n.d.). Norhidayah, Chia-Kuang, Azhar, and Nurulwahida (2013) found 

that ventilation was one factor that can predict sick building syndrome. Chao et al. (2003) 

found that upper respiratory symptoms were more prevalent with higher CO2 

concentrations. 

In summary by controlling a ventilation system based on demand, one can improve 

energy efficiency, job performance, and make the environment more comfortable for the 

occupants. By predicting the future values of CO2 one can react faster to changes in CO2 

concentrations and prevent CO2 concentrations from rising too high. 
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1.2 Research objectives 

The purpose of this study is to find out an effective neural network model for predicting 

carbon dioxide (CO2) levels in indoor air. By predicting the CO2 levels, the control of 

the ventilation can be done more intelligently which can improve the sense of satisfaction 

for the worker and potentially reduce the energy costs. 

For regression tasks it has been established, that a model that combines inputs from 

several different predictors gives better results than any single predictor (Zhang, 2003; 

Divina, Gilson, Goméz-Vela, García Torres, & Torres, 2018; Evitan, 2019). To limit the 

scope of the thesis, combined models (combined regressors) are excluded. 

1.3 Research questions 

In this thesis, two research questions are answered. The first research question is related 

to the structure of the network. The second research question attempted to find out what 

kind of training data should be used. Research questions are the following: 

RQ1: What kind of network structure would produce the most accurate CO2 

prediction results? 

This research question aims to find out what the structure of the network should be. 

RQ1.1 What network type should be used? 

This question aims to find out if one should use a wide or a deep network, and which type 

of network should be used, and what activation functions should be used. The tested 

networks are the following: Multilayer Perceptron (MLP), Long short-term memory 

(LSTM), Gated recurrent unit (GRU), and Convolutional neural network (CNN). 

RQ1.2 Should shortcut connections be used? 

In image classification, a lot of effort has been spent on developing effective network 

structures. One of these structures is called the “skip connection”, also known as “shortcut 

connection”. This structure was also explored in this study in order to determine, whether 

it also benefits neural networks related to CO2 prediction. 

RQ1.3 What to feed to the network? 

Another factor that is related to the network structure is the number of input time steps 

one should feed into the network since this affects the number of parameters the first 

hidden layer will have. Feature engineering also affects the number of parameters for the 

first hidden layer and is experimented on as well. 

RQ2: What kind of training data gives the most accurate CO2 prediction results?  

There are two sub-questions are related to this research question. 

RQ2.1 Should low variation sections be excluded? 

This question aims to find out if all training data should be used, or if low variation 

sections should be excluded from the training data. Most of the time office rooms are 

empty, which was also evident in a study by Candanedo & Feldheim (2016), where it was 
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found that anywhere from 64% to 79% of the time office rooms are empty. This type of 

data can easily result in unbalanced data, where low variation sections are 

overrepresented. My assumption is that network trained with all the data could result in 

lower prediction accuracy due to the imbalanced dataset. 

RQ2.2 Should training data from other rooms be used? 

This question aims to find out if training data should only come from the same room one 

is trying to predict, or should one also include other rooms in the training data. 

1.4 Main contribution 

The main contribution of this thesis is to propose neural networks which can predict CO2 

level in future efficiently. For this purpose, four different neural networks, i.e. MLP, 

LSTM, GRU and CNN are proposed and compared. In addition, a method for selection 

and cleaning data is introduced in order to use appropriate data for prediction. 

Furthermore, feature engineering is conducted in order to select the best set of features to 

be used by the neural networks. 

1.5 Thesis Outline 

This thesis consists of six chapters. Chapter 1 gives an overview of the research 

objectives, motivations, and contributions of the study. Chapter 2 describes how earlier 

studies have predicted CO2 values in the past. Chapter 3 discusses the research methods 

that were used in the study. Chapter 4 focuses on the implementation details, and details 

of each of the used networks. Chapter 5 contains the study, and the findings of the study. 

The final chapter highlights the findings, explores the limitations, and suggests possible 

future work regarding CO2 prediction. 
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2. Prior research 

This chapter analysed the existing literature related to the study. In addition, it also 

explores the issues in existing methods. In order to search related literature, we used a list 

of relevant keywords. Three search engines, i.e. Google Scholar, Scopus and Finna Search 

Engine for Oulu University Student are used for finding relevant literature. In total 69 

research articles were found using these search engines. The goal was to find literature 

that were recent, relevant to this study and have high impact. These three criteria are used 

to select the best articles. Finally, 39 research articles were selected for this study. 

The structure of this chapter is the following. Section 2.1 analyses the methods proposed 

for CO2 measurement. Section 2.2 explains various neural networks that were used in 

this study. Section 2.3 summarizes the techniques that were used related to this study. 

Section 2.4 describes common methods that were used in prediction tasks. Section 2.5 

describes the limitations of earlier research regarding CO2 prediction. 

2.1 CO2 measurement methods 

This section describes how CO2 level is measured either directly or indirectly. Two 

approaches are proposed in the literature for measuring CO2 concentrations: 1. Direct 

measurement, 2. and measuring the occupancy count in the room. The occupancy counts 

can be estimated using approaches such as occupancy schedule, occupancy sensors 

(motion sensors), and people counter on the door (Murphy, 2016). Another alternative to 

predict the occupancy would be to use cameras and automated person detector algorithms 

(Dong et al., 2010). 

Skön et al. (2012) attempted to predict CO2 by only using temperature and relative 

humidity as the inputs. The study found that trying to predict CO2 merely from other 

variables such as temperature and relative humidity is difficult. (Skön et al., 2012.)  This 

view was also expressed by another study by Khazaei et al. (2019). One way to estimate 

CO2 level would be to estimate it using mass balance equations, occupancy counts and 

airflow of the room (Calì, Matthes, Huchtemann, Streblow & Müller, 2014). However, 

this would require detailed information about the airflow and the occupant count. Due to 

this, perhaps the most straightforward way to measure CO2 is to use a CO2 sensor. 

According to Merema et al. (2018) the placement of CO2 sensors is crucial. If this is not 

done properly, then the measurements will not represent the conditions that the people 

are sensing indoors. Measurement device near the exit does not work very well instead, 

the sensor was placed slightly closer to where people were present. (Merema et al., 2018.) 

The CO2 sensor should be mounted anywhere from 120 cm to 180 cm from the floor, 

away from air vents (“At What Height Should Sensors be Mounted?”, n.d.; “CO2 Sensor 

Location: Where to Mount Your CO2 IAQ Monitor”, 2012). Merema et al. (2018) 

mounted the sensors at 1.5 m height in their study. 

2.2 Various neural networks 

This section describes various neural network building blocks that can be used for 

regression tasks. Section 2.2.1 describes the convolutional neural network (CNN).  

Section 2.2.2 explains the multilayer perceptron (MLP). Section 2.2.3 details the Long 

short-term memory (LSTM) unit. Section 2.2.4 describes the gated recurrent unit (GRU). 
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2.2.1 Convolutional neural network (CNN) 

This section explains how CNNs are used in literature for regression tasks. Convolution 

operation was first used by Fukushima in his Neocognitron paper (Fukushima, 1980, as 

cited in Nan, 2019). A crucial step in the use of convolutional neural networks is the use 

of backpropagation to train CNNs. The Convolutional network utilizing back 

backpropagation was first discussed by LeCun (LeCun et al., 1989, as cited in Nan, 2019). 

Let us first discuss what convolution is. See Figure 1 and Figure 2 below to see the 

difference between normal convolution and dilated convolution. 

 

 

 
Figure 1. Standard convolution (Tsang, 2018. Used with permission from the author.) 

In a convolution, an NxM neighborhood (grey area in Figure 1) and an NxM weight 

matrix (not depicted in Figure 1) are combined using a dot product. One may need to pad 

the original image with additional pixels at the edges if one wants to keep the resulting 

feature map (green area in Figure 1) the same size as the original image. In CNNs the 

goal is to calculate the values of these weight matrices. There can be several weight 

matrices, on each layer of the network. The number of weight matrices is dependent on 

how many convolutional nodes a specific layer has; each convolutional unit produces its 

own weight matrix. 
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Figure 2. Dilated convolution. (Tsang, 2018. Used with permission from the author.) 

The difference between a normal convolution and dilated convolutions is visible in Figure 

1 and Figure 2. In the normal version, the neighbouring pixels are multiplied with the 

weight matrix. In dilated convolution, there is a gap between the pixels that are then 

multiplied (grey area in the image) with the weight matrix. 

Convolutional neural networks have been mainly used in image classification in the past. 

For instance, Karpathy et al. (2014), and Redmon and Farhadi (2017) used CNNs in their 

image classification networks. CNNs have been successfully applied in regression tasks 

as well. For instance, Borovykh, Bohte, and Oosterlee (2018) utilized Google’s WaveNet 

architecture in order to predict future values of a time-series — WaveNet is based on 

convolutions and dilated convolutions; Oord et al. (2016) used WaveNet to generate 

audio. Both instances demonstrate convolutional neural network’s usability in regression 

tasks. WaveNet consists of layers of dilated convolutions that are able to predict the next 

value in a time-series (Borovykh et al., 2018). 

2.2.2 Multilayer Perceptron (MLP) 

Perceptron was invented in 1958 by Frank Rosenblatt (Rosenblatt, 1958). A perceptron 

is a binary classifier that utilizes the Heaviside step function as the activation 

("Perceptron", n.d.). A multilayer perceptron is a network where several layers of 

perceptrons are used in successive layers. Other activations than Heaviside step function 

can also be used in multilayer perceptrons. Simple multilayer perceptron can be seen in 

Figure 4. 
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Figure 3. Multilayer Perceptron 

Here the input layer contains features that are fed to the network and are always visible 

to the user. Output is also visible to the user. The output from D1 is activated using an 

activation function. B1 and B2 are biases. During training, the networks learns the 

weights and biases. Below are some examples on how to calculate the output from the 

network. Activation function in the example in 3-4 is hyperbolic tangent (tanh). 

tanh(x) =
e2x−1

e2x+1
     (1) 

D1 = w1Inp1 +w2Inp2 +w3Inp3 + B1  (2) 

D1Act = tanh(D1)     (3) 

D3Act = tanh(D1Actw7 + D2Actw8 + B2)  (4) 

The general equation for an activated neuron is the following: 

DAct = Act(∑ wixi + Bn
i=1 )    (5) 

Where B is the bias for that specific layer, n is the number of neurons in the previous 

layer, and Act is the activation function that was used. Furthermore, w stands for weight, 

and x is the output from a specific neuron. Each output from the previous layer is 

multiplied with a corresponding weight, for that specific neuron. 

2.2.3 Long-Short-Term Memory (LSTM) 

This section describes how LSTMS work. LSTM was invented by Hochreiter & 

Schmidhuber (1997). LSTM is able to capture long term dependencies over 1000 

timesteps to the past (Hochreiter & Schmidhuber, 1997). The structure of an LSTM node 

is described in Figure 4 and also in the equations 7-12 that follow.  
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Figure 4. Long short-term memory (”Long short-term memory”, n.d.) 

The LSTM equations in matrix form are the following (Olah, 2015) 

ft = σ(Wf ⋅ [ht−1, xt] + bf)  (7) 

it = σ(Wi ⋅ [ht−1, xt] + bi)  (8) 

Ĉt = tanh(WC ⋅ [ht−1, xt] + bC) (9) 

Ct = ft ∗ Ct−1 + it ∗ Ĉt  (10) 

ot = σ(Wo ⋅ [ht−1, xt] + bo)  (11) 

ht = ot ∗ tanh(Ct)   (12) 

LSTM can be trained in stateful or stateless mode. In stateful mode, the hidden state ht 
from the previous prediction will be used as the initial state for the next one 

(“tf.keras.layers.LSTM”, 2020). 

2.2.4 Gated Recurrent Unit (GRU) 

GRU has been motivated by LSTM. Compared to LSTM, the GRU unit is simpler and 

easier to implement. (Cho et al., 2014.) Figure 5 displays GRU that was used in this thesis, 

which is the default GRU version that is implemented in TensorFlow 

("tf.keras.layers.GRU", 2020). 
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Figure 5. Gated Recurrent Unit ("Gated recurrent unit", n.d.) 

In Figure 5 h[t-1] is the hidden state from the previous step, and x[t] is the current input 

value. The equations for GRU are shown in equations 13-16 below (Cho et al., 2014): 

rt = σ(Wrx + Urht−1)  (13) 

zt = σ(Wzx + Uzht−1)  (14) 

ĥt = tanh (Wĥx + Uĥ(rt ∗ ht−1)) (15) 

ht = ztht−1 + (1 − zt)ĥt  (16) 

GRU can be trained in stateful or stateless mode. In stateful, mode the hidden state ht 
from the previous prediction will be used as the initial state for the next one 

("tf.keras.layers.GRU", 2020). 

2.3 Prediction of CO2 

This section discusses methods that were used to predict the future values of CO2. 

Khazaei et al. (2019) studied how multilayer perceptron (MLP) can be used to predict the 

future value of CO2 in indoor air. The focus of their study was to eliminate the need to 

count the people in the room in order to control ventilation based on the people count. 

They focused on predicting the CO2 concentrations in order to control the room 

conditions. In addition to measuring CO2, they also measured relative humidity and 

temperature. The data they used was sampled once per minute. They discovered that CO2 

could be predicted accurately at least five minutes in the future. The mean squared error 

(MSE) was 17 ppm, which according to the paper is accurate enough for demand-

controlled ventilation. The neural network algorithm was trained using the Levenberg–

Marquardt algorithm, early stopping was used to prevent overfitting, and none of the 

networks were overfitted. In the study, hyperparameters such as neuron count in the 

hidden layer and the number of input time-steps to use, were found by experimenting with 

different variations in order to see which one gave the best results. The best artificial 

neural network (ANN) was one multilayer perceptron with one hidden layer of 

perceptrons (Dense), which had four neurons. The network took four previous time steps 

as the input. It should be noted that minimum concentration for CO2 was 485 ppm in the 
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study. (Khazaei et al., 2019.) According to Rödjegård (2017), the outdoor CO2 

concentration is 400 ppm. Due to this, one could assume that CO2 levels would retreat to 

400 ppm during the unoccupied period and the resulting CO2 average to be somewhere 

near 400 ppm. This highlights a potential issue with the comparability of the studies since 

the data that is used by each author can be very different. 

Macarulla et al. (2017) predicted CO2 levels by constructing mass balance equations to 

predict the CO2 levels. They had data that was sampled once per 15 minutes. Their best 

model reached root mean squared error (RMSE) of 41.10 ppm. (Macarulla et al., 2017.) 

The downside of using mass balance equations is that one has to know the occupancy 

count, the ventilation rate, and the CO2 concentration of the air that is being ventilated. 

To train an ANN one does not have to know all this information. 

Falk (2018) predicted CO2 values ten minutes to the future. He noticed that data from the 

weekends was quite monotone, due to this only data from weekdays were included in the 

training process. Falk predicted the CO2 by using the previous five previous time steps. 

Previous value forward (PPV) was used as the baseline that all methods should beat. He 

found that the best models were LSTM with RMSE 9.09, Feed Forward Neural Network 

(FFNN) with RMSE 44.89. The rest of the models performed worse than PPV predictor 

(RMSE 44.96). (Falk, 2018.)  

2.4 Common methods in regression 

This section describes methods that are commonly used in regressions tasks. Regression 

is a set of statistical processes that can be used to estimate an outcome variable based on 

features. Regression is used in prediction and forecasting. ("Regression analysis", n.d.) A 

study by Kuremoto, Hirata, Obayashi, Mabu, and Kobayashi (2019) explored the effects 

of different training methods for artificial neural networks. Backpropagation (BP) was 

compared to stochastic gradient ascent (SGA) which was shown to improve performance 

when predicting certain variables. The main difference between SGA and BP is that BP 

is a supervised method while SGA is a reinforcement learning method. The paper showed 

a deep belief network (DBN) that can be used for time-series prediction, see Figure 6. 

(Kuremoto et al., 2019). 

 

Figure 6. Deep belief network (DBN) for time-series forecasting (Kuremoto et al., 2019). 

There are many time-series prediction methods other than neural networks. For instance, 

Autoregressive integrated moving average (ARIMA) is used in many cases (e.g. Zhang, 

2003; Wu, Zhu, Li, & Wu, 2017). It has been shown that ARIMA models are lightweight 

and can complete time-series regression tasks quite accurately (Wu et al., 2017). Wu et 
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al. (2017) discovered that ARIMA model trains usually faster than even a simple neural 

network model. Zhang (2003) discovered that a hybrid model with combined ANN and 

ARIMA could improve the prediction accuracy when compared to a situation where only 

one of these methods is being used. Zhang (2003) mentioned that the combined models 

should ideally be dissimilar to each other, in order to make the prediction error and 

variance smaller. 

Evitan (2019) built eight different regressors to predict housing prices. They used 

correlation analysis between features to determine which features to feed to the 

regressors. In addition, the distributions of values between the train and test sets were 

explored, and some values whose distributions are different in training and test sets may 

cause the trained model to overfit. Another problem was that certain values were 

systematically missing from the data. Some sections of the data had outliers that behaved 

very differently from the rest, so they were left out. The best regressor had RMSE of 

0.1079. Meanwhile, the combined regressor produced an RMSE of 0.0640, which is much 

better than any single regressor. The best results from individual repressors were 

produced by Elastic net, Lasso, and Ridge methods. (Evitan, 2019.) The study by Evitan 

(2019) highlights the benefit of using combined regressor to increase the prediction 

accuracy. 

The format in which inputs are fed to the neural network influences the predictive 

performance. Kumar and Goyal (2013) used Principal component analysis (PCA) to 

generate inputs to the neural network. This was compared to scaled inputs for each raw 

variable. It was found that the inputs that were created using PCA gave consistently better 

prediction results than simply feeding scaled inputs to the network. (Kumar & Goyal, 

2013.) This study highlights the importance of properly scaling the inputs and generating 

proper features. 

Aggarwal, Kirchmeyer, Yadav, Keerthi, and Gallinari (2019) attempted to predict 

housing prices using neural networks. According to the authors: Gaussian Process (GP), 

Deep neural network (DNN) and Boosted trees are the state-of-the-art models for 

regressions problems. The study used GP, Boosted trees, DNN (MLP based), and 

Conditional Generative Adversarial Network (CGAN). They used multiple hidden layers 

in their MLP network that had up to 100 neurons on each layer. They found that ELU 

activation function worked better than ReLU and Leaky ReLU on the network when there 

were three hidden layers in the network. ReLU worked better on the 13-layer network. 

On the final layer, they used sigmoid activation. Adam optimizer was used in this study, 

and Batch Size was set to 100. The experiment was run on 2.7 GHz processor. The authors 

did not notice any significant speed-up when using Tesla M40 GPU to train the network. 

It was found that Boosted trees gave generally the best results, but they could not find a 

method that would give the best result across all different datasets. CGAN is competitive 

with state-of-the-art methods, and it gave the best Negative Log Predictive Density 

(NLPD) score on two of the used datasets. (Aggarwal et al., 2019.) 

The use of ReLU activations on the majority of the layers by Aggarwal et al. (2019) is 

consistent with my previous experiences regarding neural networks. ReLU doesn’t suffer 

from vanishing gradients nearly as much as sigmoid activation does, which is probably 

why ReLU was used on the majority of the layers. 
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2.5 Limitations of prior research 

This section describes the limitations of prior research related to regression. There are 

several limitations in existing methods. Most of the existing methods use basic neural 

networks. Hyperparameter optimization and network structures, were in some cases not 

discussed in detail, which makes it difficult to replicate the results from those studies. The 

sampling frequency in some studies was low, anywhere from 15 minutes to 1 hour. Very 

few papers in general, discussed CO2 prediction using neural networks. 

The comparability of these studies is challenging. The sampling intervals were different. 

In most cases, the studies predicted a different number of minutes to the future. Studies 

used various metrics to calculate the errors (discussed later). Also, the lack of a 

benchmark dataset that everyone could use is also somewhat problematic and makes it 

difficult to compare results across different studies. 

Some papers had trouble getting enough high-quality data. For instance, a study by 

Zuraimi, Pantazaras, Chaturvedi, Yang, Tham and Lee (2017) had data with one-hour 

sampling interval. This is not frequent enough for demand-controlled ventilation. Khazaei 

et al. (2019) predicted the future values of CO2 five minutes to the future. The network 

structure was rather basic, one hidden layer with four neurons. Early stopping prevented 

overfitting. (Khazaei et al., 2019). Early stopping is a method for preventing the model 

from overfitting of the model. Essentially the training is halted once validation error starts 

to increase. (Prechelt, 1998.) This ensures that the model does not overfit on the training 

data and performs better on unseen data. Kasche and Nordström (2020) compared several 

regularizations methods on MNIST and CIFAR-10 dataset and found that dropout 

regularization is better than early stopping. Dropout regularization works by randomly 

dropping units (and their connections) from a neural network while it’s training 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Another study by 

Srivastava, Mansimov, and Salakhudinov (2015) found that dropout regularization 

achieves better results than L2 Regularization. This means that the results of Khazaei et 

al. (2019) study can potentially be improved by using the dropout regularization method, 

and by using more than four neurons in the hidden layer. 

Very few papers focused on future value prediction for CO2 using neural networks. The 

papers that were found usually had one or two hidden layers. Sometimes the 

hyperparameter optimization process was not described in high enough detail to make the 

study repeatable. In some cases, the exact network structure, and sometimes the neuron 

counts were described vaguely. This makes it difficult to reproduce the results in the 

absence of a generally accepted benchmark dataset. 

Any of these details could result in improved accuracy. According to Pantazaras, Lee, 

Santamouris, and Yang (2016) there are still very few papers related to CO2 level 

prediction. Wei et al. (2019) studied 37 papers related to predictive models regarding 

indoor air quality. None of the 37 regression models that were studied had more than two 

hidden layers. Sometimes zero hidden layers were used. (Wei et al., 2019.) A similar 

observation was made during the prior research phase of this thesis. Most of the network 

structures related to CO2 level prediction had very few hidden layers in general. 

Comparing the results obtained from different articles is rather difficult. The reason for 

this is the fact that the used data can vary wildly among different papers. For instance, the 

CO2 concentration in a classroom can reach higher levels than in office rooms since there 

are usually more occupants there. Candanedo and Feldheim (2016) also found that getting 
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the data from earlier research is problematic. This rises another potential problem for the 

comparability of the studies due to the differences in the data. 

In prior studies regarding CO2 prediction, there are several sampling intervals that are 

used. For instance, Zuraimi, (2017) and Pantazaras et al. (2016) sampled once per hour. 

Meanwhile, Khazaei et al. (2019) used a one-minute sampling interval. The issue exists 

for the prediction horizon as well. Khazaei et al. (2019) predicted five minutes to the 

future; Falk (2018) predicted 10 minutes to the future. In some cases, predictions were 

made up to 60 minutes to the future, for instance Pantazaras et al. (2016). Due to various 

sampling intervals and prediction horizons, it’s difficult to compare the results. 

Data cleaning and selection methods can also affect the results. For instance, Falk (2018) 

noticed that weekends had very little variations in CO2 levels, which is why data from 

weekends was excluded. Most studies did not discuss the data selection methods, which 

could mean that all the data was used. The data selection method will also affect the 

comparability between different studies. 

Another problem when attempting to compare results in time-series articles is that they 

may use different metrics in order to measure accuracy. Aggarwal et al. (2019) used MAE 

and NLPD; Falk (2018) used RMSE, R-squared (R2), and F1-Score; Macarulla et al. 

(2017) used standard error (SE); and finally, Khazaei et al. (2019) used mean squared 

error (MSE). The following metrics seemed to be the most common MAE, MSE, and 

RMSE. 

A potential issue with time-series prediction papers is, that there isn’t an agreed-upon 

benchmark dataset to test against. For instance, in the field of Image recognition, it is 

common to test the model against CIFAR10, CIFAR100, or ImageNet datasets. For time-

series prediction, a popular dataset like this could not be found. Some less-known datasets 

were used. For instance, Aggarwal et al. (2019) used many datasets such as CA-housing 

dataset. Meanwhile, Kuremoto et al. (2019) used CATS dataset. A dataset that would be 

used by everyone could not be found. So the best way to evaluate the models between 

different articles would be to consider the best models in each study, instead of trying to 

cross-compare the results between studies that are not fully comparable with each other 

due to the reasons stated in this section. 
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3. Methods and Materials 

In this thesis, a neural network predictor is built that can predict CO2 level in indoor air. 

The Design Science Research (DSR) approach is used to build this network. This chapter 

describes how the DSR approach is followed in this thesis. This chapter is divided into 

two sections. Section 3.1 describes the guidelines for conducting DSR. Section 3.2 

describes how DSR was applied in this thesis. 

3.1 Design science research (DSR) 

DSR is a design methodology that aims to find answers to relevant human problems. This 

process contributes new knowledge to the body of scientific evidence. In DSR, the 

knowledge and understanding regarding the problem and its solution are found during the 

creation and use of the artefact. (Hevner & Chatterjee, 2010.) In other words, the 

researcher does not know the exact structure of the design artefact until after the artefact 

has been built. The guidelines for conducting DSR research are shown in Table 1. 

Table 1. DSR Guidelines (Hevner, March, Park, & Ram, 2004) 

# Guideline Description 

1 Design as an Artefact Design Science research should generate a feasible artefact. 

This artefact must be in the form of a construct, method, a 

model, or an instantiation. 

2 Problem Relevance 

 

Provide a technology-based solution for a relevant business 

problem. 

3 Design Evaluation The usefulness, quality, and efficacy of the artefact must be 

demonstrated via evaluation methods. 

4 Research Contributions Clear and verifiable contributions should be provided in 

terms of design artefact, design foundations, and design 

methodologies. 

5 Research Rigour Rigorous methods should be used during the construction 

and evaluation of the design artefact. 

6 Design as a Search Process The use of available means to reach the desired outcome, 

while the laws of the problem environment are satisfied. 

7 Communication of Design-

science Research 

DSR should be presented effectively both for technology-

oriented and management-oriented audiences. 

 

The problems that DSR method is trying to solve are characterized by unstable 

requirements; constraints based on environmental contexts that are not well-defined; 

complex interaction among subcomponents of the problem and solution; flexibility to 

change the prior processes and artefacts; reliance on cognitive abilities (e.g. creativity) to 

create a solution; and teamwork to produce effective solutions. (Hevner et al., 2004.) 

Documenting the artefact development process is a core part of DSR (Hevner & 

Chatterjee, 2010). 
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3.2 Use of DSR in this thesis 

The research process for DSR was formed by an earlier paper by Peffers et al. (2007). 

They identified six activities for producing DSR (Peffers et al., 2007). These activities 

are visible in Figure 7. 

 

Figure 7. The iterative nature of DSR research (Peffers et al., 2007). 

The artefact in this work is a neural network predictor that can predict CO2 values up to 

10 minutes to the future. Six activities discovered by Peffers et al. (2007) and their use in 

this thesis are described next. 

Activity 1: Problem identification & motivation 

In this stage, the specific research problem is defined. The motivation for controlling 

indoor air ventilation are reduced energy consumption, wellness, and better job 

performance. These motivations were discussed in length in section 1.1. The specific 

problem that is solved in this thesis is to predict CO2 in indoor air using neural networks 

up to 10 minutes to the future. 

Activity 2: Define the objectives for a solution 

The objective is to find an effective neural network structure that can predict CO2 levels 

in indoor air (RQ1). Ideally, the model should outperform existing neural network 

models. Another objective is to find out what kind of training data one should use (RQ2), 

and if shortcut connections should be used in the network (RQ1). 

The second research question regarding training data selection will be experimented by 

comparing the same network with different inputs. One network receives all data during 

training, while the other one only receives those areas, where CO2 value fluctuates 

significantly. The second experiment related to training data was to find out if data from 

other rooms helps the prediction accuracy when one is predicting data from just one room 

or is it better to just use data from that one room. 

Activity 3: Design and development. 

The design of the artefact was done iteratively. Early iterations were related to training 

data selection, activation functions, and what type of neural network should be used: 

MLP, LSTM, GRU, or CNN. The hyperparameter optimization was done using a grid 

search. Each of these models had similar parameter counts to ensure that the other did not 
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perform better simply because of having more parameters. Once the best performing 

model was found, it was then further tuned, by attempting to use more complex network 

structures such as skip connections (shortcuts). The following iterations then further tuned 

the hyperparameters (such as features) of the best performing network. MLP network 

showed good results in the early stages of the study and was chosen to be tuned further. 

The hyperparameters were then further tuned, across several experiments. Each 

improvement that were found during the experiment would be used as a starting point for 

the next experiment. For instance, if N input steps were found to produce the best results, 

the next experiment would then use N input steps for tuning the next hyperparameter. 

Activity 4: Demonstration.  

To demonstrate that the neural network model can predict future values of CO2, the 

network was first trained using a small dataset from a single room. At a later stage, the 

full dataset from all rooms was used to train the network, to see if including data from 

other rooms would improve the accuracy of the model. 

Various hyperparameters were tested: learning rate, learning rate decay, input time steps, 

and others. The full list of hyperparameters is visible in Appendices G, H, I. Chapter 5 

below discusses the iterations of the hyperparameter tuning process, and also describes 

the networks structures that were tested. 

Activity 5: Evaluation. 

Comparison to previous papers regarding CO2 prediction is challenging due to the 

reasons stated in section 2.5. Due to this, the comparison is done instead by creating 

baseline models that represent the earlier literature. These baseline models are trained 

with the same dataset as the proposed new models, which means that baseline models and 

proposed models can then be compared. Baseline models are neural network with one 

hidden dense layer (MLP1), line fit (LF), and previous value forward prediction (PPV). 

Here MLP1 is similar to what was used in most of the earlier research. MLP1 gives us a 

comparison point when attempting to compare the effectiveness of the networks that were 

built in this thesis, to those that were used in earlier studies. 

To demonstrate that the proposed network produces good predictions, RMSE error was 

calculated between real value and the predicted value. In addition, also MAE and MSE 

errors are shown to make it easier to cross-compare results between different publications. 

However, RMSE score was the determining error criteria based on which all the 

parameters were chosen. Accuracy measures, data selection, data cleaning, data selection, 

and feature engineering are discussed further in chapters 4 and 5. The fact that the 

developed network can predict future values better than earlier models used in the 

literature demonstrates the effectiveness of the network. The RMSE score is lower 

compared to all the baseline models: MLP1, Line fit, and PPV. These results are visible 

in section 5.6.5. 

Activity 6: Communication. 

The prediction of CO2 levels in indoor air is an important problem because it helps 

demand-controlled HVAC system to respond faster to changes. This makes it possible to 

keep CO2 within a reasonable range, which in turn keeps workers more comfortable and 

makes them more productive while also accruing monetary benefits compared to a 

ventilation system that is not demand-controlled. Network structures and training 

parameters were made available to the reader, which I find to be an improvement over 
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previous research, where networks structures were not always readily available. Training 

data and codes are not shown since they are owned by VTT. 

This study was published in JULTIKA repository, which contains publications that 

originated from the University of Oulu. The citation of this thesis follows the APA 

guidelines. The structure of the DSR method closely follows the activities that were 

suggested by Peffers et al. (2007). General structure of the thesis is based on the faculty 

of Information Processing Science guidelines in Oulu University. 
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4. Implementation 

This chapter presents the proposed method for predicting CO2 level. To predict CO2 the 

following four neural networks were used: MLP, CNN, LSTM and GRU. In addition, the 

method for cleaning and data selection are also discussed. Furthermore, some feature 

engineering is used in order to find the best performing features. 

This chapter is organized in the following manner. Section 4.1 describes the dataset that 

was used. Section 4.2 explains how the data was cleaned and selected. Section 4.3 

presents the network structures that were used. Section 4.4 introduces the 

hyperparameters that were used. Section 4.5 describes how feature engineering was done. 

Section 4.6 discusses the criteria based on which the fitness of each model is determined. 

4.1 Dataset 

This section describes the dataset acquisition process. The dataset was gathered in VTT’s 

Oulu office in 2019 from January until May. The data collection phase was done by other 

VTT employees as a part of the SCOTT project. The dataset was gathered from thirteen 

rooms of different sizes. Senseair K30 sensor provided the measurements for CO2 using 

one-minute sample interval. Other sensors that measured CO2 were a device called 

“MCF-LW12CO2” and a sensor called “SENSEAIR LP8”. These both had a sampling 

frequency of 15 minutes. Table 2 describes the details of each sensor. Each row in the 

column is related to either a device or to a sensor. The “measured value” column describes 

the variable(s) that the device is measuring. The “sensor/device” is the marketed name 

for the product. Sampling interval describes how often each sensor measures the listed 

variables. The last column details the source for the product details. 

Table 2. Details about sensors and measurement devices. 

Measured value Sensor / Device Sampling interval Source for product details 

Temperature (°C), 

relative humidity 

(%) 

Silicon Labs 

Si7021 1 min Silicon Labs (n.d.) 

Air pressure (Pa) Bosch BMP180 1 min Bosch Sensortec GmbH (2020) 

PIR (Integer value 

between 0-12. 

0 = no movement) 

Panasonic 

EKMB1301113K 1 min Panasonic (n.d.) 

CO2 (ppm) SENSEAIR K30 1 min ”K30” (n.d.) 

CO2 (ppm), relative 

humidity (%), 

Brightness (lux), 

pressure (Pa), 

temperature (°C) MCF-LW12CO2 15 min mcf88 (n.d.) 

CO2 (ppm) 

SENSEAIR LP8 
(inside MCF-

LW12CO2 device) 15 min “LP8 pin headers” (n.d.) 

Noise (dB) PeakTech PT8005 

5 sec. Time weighting: 

slow (1s). PeakTech (n.d.) 

door state (0=open, 

1=closed) 

Reed switch 

(Manufactures by 

Guard) 1 min SP-Elektroniikka (n.d.) 
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CO2 sensors were placed 1.1 meters above the ground level. This sensor placement is 

similar to an earlier study regarding CO2 level prediction, where sensors were placed 1.25 

m above the floor (Macarulla et al., 2017). The sensors are on the same wall as the outflow 

vent is located, but not directly next to the outflow vent. The goal was to place the sensor 

in a location where the air is well mixed. Following variables were measured from each 

room: CO2, relative humidity, pressure, temperature, brightness value (Lux), volatile 

organic compound (VOC), noise (dB), door state (open vs closed), and the amount of 

movement in the room (PIR). 

4.2 Data cleaning & Selection 

This section describes how data was cleaned and selected. The structure of this section is 

the following. Section 4.2.1 describes how data was cleaned. Section 4.2.2 discusses the 

way in which data was selected. Section 4.2.3 explains how data was split into training, 

testing, and validation data. 

4.2.1 Data cleaning 

This section describes the steps that were taken to clean the data. The data cleaning 

consists of three steps: 1. Data re-alignment, 2. outlier detection, 3. dealing with outliers.  

First, let’s discuss the re-alignment of the data. The measurement interval for the devices 

was not precisely 60 seconds, which means data was misaligned. Due to the 

misalignment, the data was re-aligned to match the 60-second sampling interval using 

linear interpolation. Two past time-steps and one new time steps were used to fit a line. 

Then the line fit equation was used to interpolate the CO2 value to match the 60-second 

sampling interval. This is also visible in Figure 8, where raw values are used to fit a line, 

and the re-aligned value is a result, that was found by linear interpolation, based on the 

raw values. This type of re-alignment was done for humidity, temperature, pressure and 

CO2. Other variables (Lux, PIR, door state, VOC, noise) were re-aligned simply by 

rounding them to the nearest full minute, without using linear interpolation. Lux, PIR, 

door state, and noise can all change from a small value to their maximum value very 

quickly. Because of this linear interpolation was not used. VOC was sampled only once 

per 15 minutes, which means that linear interpolation could result in large errors since the 

measured raw values are so far from the re-aligned values. 
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Figure 8. Re-alignment using linear interpolation. 

Next, let’s discuss the way in which outliers were detected. Most of the changes in CO2 

levels are almost zero since rooms are unoccupied for large portions of time. Due to this, 

it would not make much sense to clean the data with a sliding windows anomaly detection. 

This is because once someone enters the rooms and CO2 starts to rise, then that risen 

value would be an outlier compared to rest of the CO2 values that have almost no change 

in them because there was nobody in the room. 

A two-step process was used to detect outliers. First, if the measurement value, for 

instance, CO2 concentration, was too high or too low, then the value is an outlier. Second, 

if the rate of change for the measured variable is too high, or too low, then the value is an 

outlier. The first outlier type is called a Global outlier, while the second type is a 

Contextual outlier (Cohen, n.d.). In this study, Kernel Density Estimation (KDE) is used 

to determine the thresholds for contextual outliers. In earlier work by Dai, Song, Sheng, 

and Jiang (2017), KDE has been used in data cleaning. 

Limits for both outlier types were set in order to programmatically clean the data from 

outliers. The limits for global outlier detection were chosen to exclude the clear outliers 

that don’t match typical office conditions. For instance, 130 dB noise levels would be 

excluded. The limits (for rate of change) for contextual outliers were determined using 

KDE. 
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Table 3. Cleaning settings for global outliers 

Variable Min Max 

Temperature (°C) 0 40 

Relative Humidity (%) 0 99 

Pressure (mb) 950 1200 

CO2 (ppm) 300 5000 

Noise (dB) 30 130 

Lux (cd) 0 2000 

PIR 0 12 

VOC (ppm) 0 500 

Door State 0 1 

 

KDE was done on the rate of change values. KDE is a non-parametric way to build a 

variable’s probability density function ("Kernel density estimation", n.d.). If the 

probability density falls below a certain threshold (occurs too rarely), then it’s an outlier. 

See Figure 9 below to get an idea how this was done. The vertical orange lines in the 

figure determine the rate of change that is considered too high; the values near zero are 

inliers (x-axis). By looking at the highest probability density of CO2 in the chart, one can 

notice that it peaks above 0.8, and quickly declines on both sides. This means that most 

of the time CO2 levels have remained stable or the changes have been small. 

 

Figure 9. Kernel density estimation for CO2. 
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Some variables such as Lux, Noise, PIR, and State can change from their minimum value 

to their maximum value in an instant which is why they were only cleaned using their 

absolute values. In other words, only CO2, humidity, temperature and pressure were 

cleaned using the rate of change approach (contextual outlier). All parameters were 

cleaned using the global outlier detection limits described in Table 3. 

Once data from each sensor had been cleaned, they were then combined with other data 

from the same room. If there were more than one sensor that measured the same variable, 

then the median of the values was used. As an example, if there were three CO2 sensors, 

then the median value of all three CO2 values were used. Median was used because it can 

potentially reduce the number of measurement errors if there are at least three sensors of 

each type in the room. If certain room didn’t contain all nine measured variables, then 

data from that room was not used in the study. 

4.2.2 Data selection 

Next, let’s discuss the data selection methods that were used. The first selection method 

aims to find out if training data should only contain sections with high variation. The 

second selection method attempts to determine if data from other rooms would improve 

the prediction results. Table 4 contains a brief description of both data selection methods 

that were experimented on. These data selection methods are then discussed further in the 

rest of the section. 

Table 4. Data selection methods 

Data selection method Explanation 

“var” Only data sections where CO2 levels have high variation are included in 

this. 

“all” All possible data was used, even sections that have long periods of time, 

where CO2 remains near 415 ppm. 

 

The selection method for variating data is discussed next. This experiment aims to find 

out if it’s better to include all possible data for the training or just the data that has high 

variation in it. See Figure 10 to see a typical behaviour of CO2 levels in indoor air. It 

should be noted that most of the data consists of long, flat, “uneventful” sections, where 

variation is minimal. 
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Figure 10. Typical cleaned CO2 data 

My assumption was that including these uneventful sections in the training data will not 

improve the prediction accuracy. I expected the predictor to only learn to repeat the 

previous value since the CO2 level remains at ~415ppm most of the time. In order to test 

this assumption, the uneventful sections were excluded from training and then the training 

was repeated, by including all the data and finally comparing these two results. The 

experiment results regarding data selection, are explored in section 5.3.1. The data 

selection process is discussed next. Data selection process is visualized in Figure 11. 

 

Figure 11. Training data selection 

The high variation sections were chosen by first finding the sections where CO2 is above 

430 ppm (red section in the image), then that section was extended by 30 minutes to a 

direction (green arrow in the image). If the CO2 value was still above 430 then the 

sections were extended by another 30 minutes to that direction until CO2 value was no 

longer above 430 at which point the section was cut. This was then repeated in the other 

direction. This ensures that the training data captures the transition from low CO2 to high, 

and back from high to low while excluding the data sections where CO2 value remains 

near 400 for extended periods of time. In addition, any section whose length was less than 

40 minutes was excluded. The main interest in the study is to predict CO2 values in 

sections where there is a high variation of CO2 since that usually indicates that someone 

is in the room and ventilation may be needed. This means, that in most cases validation 
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and test datasets only contained variative sections of the data. This makes it easier to 

determine if the built models operate well on the variative data. The performance that was 

observed when training with all data (even sections with low variations) data was good, 

but the relative differences between various predictors became very small. In order to 

highlight the model’s ability to predict variating sections, only the variating sections of 

the data are focused on. 

Another data selection method was related to the training data, and if including data from 

other rooms would reduce the prediction error. Test data was separated in such a way that 

it only contains 20% of the data from one room. Then the rest of the data was used for 

training (64%) and validation (16%). Figure 12 visualises the way in which data was split 

to training, val, and test sets. 

 

Figure 12. Data selection process for training data. 

Both data selection methods predicted the same instances of the target room, the only 

difference was the training data that was used. In Figure 12 the upper selection method 

only uses training data from the same room one is trying to predict. Meanwhile, the lower 

selection method uses all available training data, even if it’s not from the same room. 

4.2.3 Train, validation and test data 

Training data selection was done in the ways, described in section 4.2. The amount of 

training instances depends on which room was used. In most cases, Room A was used 

because it had a lot of training data. Table 5 depicts the training set sizes for all data that 

was used. In the table “_all” means that all data was included, while “_var” means that 

only sections with high variation are included.  The values in Table 5 represent how much 

training, testing, and validation data each of the rooms contained. The amount of training 

instances varies slightly with each test. This is because when the history length changes, 

one gets either more or less training instances. Longer histories produce less training 

instances. 

Table 5. Used training data. 

 Room 

name 
Train_all Train_var Validation_all Validation_var Test_all Test_var 

ALL 

ROOMS 423389 139453 101621 34252 135136 40955 

Room A 52549 15732 22337 6769 30997 10323 

Room B 30515 11904 11704 4953 11629 4347 

Room C 38380 16822 10967 4513 17796 11568 

Room D 36696 7529 11100 2101 13425 3924 

 

Training data was used to train the model, and validation data was used to tune the 

hyperparameters. Test set is a separately held out section for the data. This section is not 
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used for training model, adjusting hyperparameters, nor is it used for scaling of the values 

either. Test set is simply used to determine the fitness of a model. This is known as the 

“holdout cross-validation” method. Test set in this study always contains the last 20% of 

the data from a single room. This method was used at all stages of the study. 

N-fold cross-validation was not used because it would cause training times, and related 

analysis times to increase too much. For instance, 3-fold cross-validation would cause 

training times to triple. Some experiments took up to 4 days of constant computing to 

finish and analyse. By using three-fold cross-validation it would take up to 12 days, which 

is far too long and would have meant that I could not keep up with the schedule that was 

laid out by VTT. Hold out cross-validation was used instead. 

4.3 Proposed Neural Networks 

This section describes the proposed neural networks for CO2 prediction, which was one 

of the research goals (RQ1). Various neural networks are discussed in section 4.3.1. 

Networks with various depths are explored in section 4.3.2. Experiment regarding 

widening the deep network is discussed in section 4.3.3. Shortcut connections are 

described in section 4.3.4. 

4.3.1 Neural Networks used 

This section describes the proposed neural networks, and the building blocks they were 

built from. The exact network configurations for each of the four networks are also 

shown. There are four building blocks that are used in this thesis: Dense unit for the MLP 

network, Long short-term memory (LSTM) node for the LSTM network, Gated recurrent 

unit (GRU) for the GRU network, and convolutional layer for the CNN.  

LSTM and GRU networks used data from five previous minutes, that were fed to the 

network. Meanwhile, MLP and CNN networks took the previous ten minutes of data as 

the input. All the networks have one dense unit on the last layer. To make the results 

comparable across each network, the trainable parameter count for each network is set to 

~11k by altering the number of neurons in the hidden layers of the networks. The feature 

set that each network used was the scaled CO2 value along with a difference set of CO2. 

These features are described in detail in section 4.5. Figure 13 contains all the networks 

that were used at this stage of testing. 

The MLP network consists of five Dense layers, followed by an activation. The neuron 

count per layer was set to 49. A two per cent dropout layer was added before the last 

hidden Dense-49 layer, which randomly drops two per cent of the neurons from the 

previous layer. Dropout 

CNN re-used most of the hyperparameters from MLP network. The main difference 

between hyperparameters was, that CNN had 35 hidden units instead of 49. In CNN, 

Downsampling of feature vectors was done by increasing the stride. Similar 

downsampling method was also used by He et al. (2016). For CNN, some studies had 

good results with dilated convolutions. In this test adding dilation to the network caused 

worse results, which is why dilation was not used in the CNN. The kernel size of the 

network was set to 1x2, which means it’s a one-dimensional convolution. 
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The proposed LSTM network contains 34 LSTM nodes following the input layer, and 

four Dense-34 layers. Similarly, to the MLP network, a two per cent dropout was added 

before last the hidden dense layer. The built GRU network is almost the same as the 

LSTM network, but since GRU is simpler than LSTM unit, the neuron counts were 

increased to 37. Both LSTM and GRU models were trained in stateless mode. 

 

Figure 13. Networks that were tested. 

In addition to proposed networks, four baseline models were included at this stage of 

testing: line fit using with 2 inputs, line fit with 3 inputs, previous value forward (PPV), 

and MLP1 which is a multilayer perceptron with one hidden layer. Line fit algorithms are 

linear regression models, where n previous input steps are used to plot a line. This is then 

extrapolated 10 minutes to the future, and the predicted value is then picked from the 10-

minute mark. A total of two, line fit algorithms were used. The first one used two input 

steps, and the other three input steps. Various other line fit histories were experimented 

on, but two- and three-minute histories gave the best results. The line fit algorithms were 

kept the same for the whole duration of the study. 

Dropout layers are only active during training. All the networks presented in this study 

only contain one dense unit on the last layer. This last dense unit then predicts CO2 value 

10 minutes to the future. 

4.3.2 Network depth 

Another example of a structure that was studied in this thesis was, whether the network 

should be wide or deep. First, a deep network was built. Then a shallow model was built 

that had the same amount of trainable weights as the deep network. Finally, the results 

were compared. To test if deep of wide network is better the deep model was first built, 

then a wide model called MLP1-WIDE was created. The MLP1-WIDE has one hidden 

layer, and the wideness of the network was increased until it had the same number of 

parameters as the deep model. 
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4.3.3 Widening the deep network 

This section describes the networks used when experimenting if its beneficial to make the 

deep network into a wider version. The networks used in this experiment are visible in 

Figure 14. 

 

Figure 14. Various MLP networks 

This experiment alters the number of dense units on each layer to five different values: 

16, 32, 64, 128, 256. The models are trained with various dropout values to determine 

what is the best amount of dropout for each model. Once the best dropout rates were 

found for the validation data, then the test RMSE scores of each network were compared. 

4.3.4 Shortcuts 

This section describes what shortcut connections are, and how they were used. An 

example regarding the structures of a neural network can be seen below in Figure 15. 

Shortcut connections were found to be effective in earlier work by He, Zhang, Ren, and 

Sun (2016). 



32 

 

Figure 15. Shortcut connection. (He et al., 2016). 

Shortcut connection is a connection that does not, directly connect to the next layer, but 

instead skips one or more layers. The shortcut connection is either addition or 

concatenation. In “addition shortcut”, the values are added. In “concatenation shortcut” 

the values are stacked side by side. For instance, if the start of the shortcut contains 64 

output, and it is combined with 64 outputs, then the result would be 128 outputs after the 

concatenation. This type of shortcut doesn’t require the combined paths to have the same 

width. In additive shortcuts, equal width is required, and the resulting output has the same 

number of outputs as the combined paths had on their own. In “addition shortcut” 

combining 64 outputs with 64 outputs the resulting output shape has 64 units. 

The network structures used in this experiment are visible in Figure 16 and Figure 17. In 

the figures “CS” stands for concatenation shortcut, “AS” stands for add shortcut, “BN” 

for batch normalization, and “LN” for layer normalization. For each network, various 

dropout values were tested. For the shortcut networks, various locations for the dropout 

node were experimented. 
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Figure 16. Shortcut networks 

Normalization layers were placed before the shortcut reconnects to the main branch. I 

found this to be effective for ResNet-20 model for CIFAR-10 dataset in the past. 
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Figure 17. Shortcut networks. BN = Batch Normalization, LN = Layer normalization 

The “MLP-64-AS2” variants have dropout right before the last dense layer. This dropout 

placement was inspired by earlier research by Szegedy, Ioffe, Vanhoucke, and Alemi 

(2017). 

4.4 Hyperparameters 

This section gives a brief overview of the hyperparameters used: activation function, 

learning rate, and other hyperparameters. Two separate activation functions were being 

searched in this thesis. The main activation, and the activation that is placed after the last 

layer. The main activation is used in most parts of the networks. Last activation is only 

used on the last layer of the network. Figure 18 displays the positioning of the activation 

functions in the network. 
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Figure 18. The location of activation functions. 

In total 23 activations were tested. The full list of activation functions can be seen in 

Appendix F. 

This thesis uses an adaptive learning rate in the training process. This means that after N 

epochs the learning rate was reduced multiplying the existing learning rate by X if there 

hadn’t been any improvements in the error. Essentially X is a value between 0-1, which 

means that learning rate gets reduced once it’s multiplied with X. The full list of various 

Hyperparameters can be found in Appendices G, H, and I. 

4.5 Feature engineering 

This section describes feature engineering. All nine measured variables could each have 

six types of features. Let’s first assume history length is 7 minutes, in the experiments, 

the history length varied between 1 and 30 minutes. Because 60-second sampling interval 

there will be seven values for each variable using 7-minute history. 

The features are the following: scaled, minimum (MIN), maximum (MAX), median, 

average (AVG), difference (diff). Scaled feature is simply a scaled variable, that is scaled 

using scikit-learn packages’ RobustScaler function. There would be seven scaled values 

for each variable when history length was seven minutes. MIN, MAX, median, and AVG 

features were calculated using the scaled values from that seven-minute history length. 

The “diff” feature is calculated by calculating the difference between each measured 

variable. More specifically by subtracting the previous minute’s measured value from the 

current minute, which gives us six difference values. When the difference set was used, 

the history length was initially increased to eight, to make sure than we get seven 

differences. If a scaled feature was used at the same time as the difference feature, then 
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the oldest scaled value was removed. This ensures that both difference, and scaled values 

to contain the same amount of inputs. Once difference and scaled features had been 

calculated, then the MIN, MAX, median, and AVG features were calculated based on the 

scaled values. 

Timestamp was used to build the following features: minute, hour, IsWeekday. 

Timestamp was converted from UTC to local time before it was used. Only the most 

recent timestamp value was used, even if the history was longer than one minute. Minute 

feature was calculated by extracting the minute from the timestamp and then scaling the 

value using RobustScaler. The hour feature was created in a similar manner as the minute. 

IsWeekday is a number which is either one, or zero. IsWeekday is zero when it’s either 

Saturday or Sunday, otherwise, it’s one. 

To help to decide which features to use, correlation matrices were built. In Figure 19 one 

can see the correlation matrix between different variables. All correlation matrices used 

in this thesis were built by using the seaborn package. In Figure 19 the correlations 

between each variable was calculated to see how well each variable correlates with the 

current CO2 level. Movement sensor (pir_cnt) has the highest correlation here, followed 

by volatile organic compound (voc), and noise had the third-highest correlation. Door 

state has a weak negative correlation with CO2 levels. 

 

Figure 19. Correlation between variables 

Perhaps a more interesting correlation is between crafted features and CO2 value ten 

minutes in the future, which were calculated to guide the feature selection process 

(Appendices A-E). The following variables were excluded as features due to low absolute 

values for correlation: pressure, temperature, humidity. VOC had high correlation; 

however, it was only sampled once per 15 minutes, which means that VOC data is 

delayed, and may reduce the accuracy. Even though CO2_diff had low correlation, it was 
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included as a feature because it gave good results at an earlier stage of experimentation. 

In other words, the following features were chosen for experimentation: Co2, Co2 diff, 

PIR, noise, lux, isweekday, hour, and door state, VOC. Various combinations of these 

features were tested, and the full list of feature sets can be seen in section 5.6.5. In an 

earlier stage of experimentation, only scaled CO2 and CO2 diff had been used for all four 

network types: GRU, LSTM, CNN, MLP. However, at a later stage, only MLP networks 

were used to experiment with features. Figure 20 contains the MLP networks that were 

used at the last stage of experimentation with various features sets. Other network types 

aside from MLP, had already been excluded at an earlier stage. 

 

Figure 20. Networks used for feature engineering. 

The dropout values for MLP-64 were dependent on the used feature set. The dropout 

values for each feature set can be found in Appendix M. 

4.6 Testing methodology 

Neural network training has some randomness involved in it. A network can have 

anywhere from a few parameters up to billions. Due to this, there are many local minima 

where the training can get stuck, which causes different results on different training 

sessions. To reduce the effects of randomness each test was repeated anywhere from 3 to 

40 times and the average was then calculated. Usually, 40 times was chosen, but in some 

instances, this had to be reduced due to the large number of parameters that were explored. 

For instance, activation functions had to be initially tested 3 times to weed out those 

activations that clearly performed worse than the others. The networks were then sorted 
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based on their average error. In addition, statistical significance levels were calculated 

using Bartlett’s test. Bartlett’s test calculates if the variance between two groups are equal. 

If variances were equal, then one can use Student’s T-test, otherwise, Welch’s T-test 

should be used. The p-value was then read from either the Student’s test or from Welch’s 

test. By utilizing this methodology, one can be relatively sure that the chosen 

hyperparameters are the best ones and not caused by randomness. Data was split three 

ways: first, the 20% of the data was moved to the test set. The remaining 80% was split 

to training and validation sets by 80/20 split, which resulted in 64% of the total data in 

the training data (0.8*0.8), and 16% (0.2*0.8) to the validation data. The data selection is 

visualized is discussed in section 4.2.2. Hyperparameters for each model were tuned 

based on the variating sections for the validation data. The deciding factor, regarding 

which model is best was then done based on the RMSE error of the test data. 

The model fitness was evaluated with the variating data sections (as discussed in section 

4.2.2). This is because for the occupants it’s more important that the ventilation control 

works well when someone is in the room, and variating sections should therefore have 

priority. 
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5. Results and Findings 

This chapter presents the experiments that were performed, and the results of those 

experiments, along with the findings of this study. Several experiments were done during 

the experimentation phase. This chapter describes various experiments which aim to 

improve the performance at each stage. The emphasis in the study is the find the optimal 

hyperparameters, that should be used in the designed neural network. This means that p-

value is used to determine the best hyperparameters. The magnitude of the difference is 

not a major concern until at later stages where all the best hyperparameters have been 

found and the model is then compared to earlier studies. 

Random seeds were not fixed in this study. I discovered this strategy too late, which meant 

that it had to be excluded to meet VTTs deadlines. Due to this, there can be small 

differences in results when the same network is trained on the same dataset. However, 

this shouldn’t affect the conclusions since each network was trained ~40 times, and p-

values were used to determine if the difference could be dependent on randomness (or 

random initializations). This gives us a good certainty that results are valid while making 

the reproduction of the study slightly more difficult. 

This chapter is organized in the following way. The sections are shown in the order in 

which the experiments were done. Each experiment builds upon the results of the earlier 

experiment. Software and hardware tools are discussed in section 5.1. Evaluation method 

is discussed in section 5.2. Data selection methods are discussed in section 5.3. Activation 

functions are discussed in section 5.4. Various network configurations are discussed in 

section 5.5. Experiments done for the MLP network are discussed in section 5.6. The 

findings are summed up and compared to earlier research in section 5.7. 

5.1 Software, and hardware tools 

This section describes the software and hardware tools that were used. First, let’s discuss 

software tools. The programming language in this thesis was Python. The main tool for 

building and training the neural network is the Keras package that is included in 

TensorFlow v2. Data cleaning is done with the help of the following modules: scikit-

learn, NumPy, pandas, and matplotlib. 

The hardware tools are the following. The networks were trained using Intel Core i7-

7600U CPU @ 2.80GHz. Training was also attempted on Tesla P100-PCIE-12GB GPU, 

but the training took twice as long when compared to CPU. Even with larger batch sizes 

the GPU still spent more time per epoch. Aggarwal et al. (2019) had the same observation 

in their study. 

5.2 Evaluation criteria 

This section describes how model fitness was determined. Hyperparameters for all the 

models were tuned based on the validation data. Once the hyperparameters had been 

found, the resulting model was then evaluated based on its RMSE error on the test data. 

RMSE was chosen because almost all previously mentioned CO2 prediction papers 

displayed RMSE as one of the measurements (Macarulla et al., 2017; Falk, 2018; 

Pantazaras et al., 2016). MSE and MAE errors are shown as well. 
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Error measurements are discussed next. It should be noted that all networks developed in 

this thesis minimize the MSE score which means that RMSE and MSE scores are 

prioritized over MAE. MAE error is calculated by averaging the absolute differences 

between the real and the predicted value. MSE error is calculated by averaging the 

squared differences between the real and predicted value. RMSE is a square root of MSE. 

The equations are shown below. Equation 17 displays ow MAE is calculated. Equation 

18 depicts how MSE is calculated. Equation 19 shows how RMSE is calculated. 

MAE =
1

N
∑ |Yi − Ŷi|
n
i=1     (17) 

MSE =
1

N
∑ (Yi − Ŷi)

2n
i=1    (18) 

RMSE = √MSE = √
1

N
∑ (Yi − Ŷi)

2n
i=1   (19) 

Comparison to previously used neural network structures is not directly possible. This is 

because of the reasons mentioned in section 2.5 (different training data, various sampling 

intervals, various prediction horizons, etc.). Due to these problems a baseline MLP model 

was built with 49 neurons in the hidden layer. Using 49 neurons resulted from using the 

same neuron counts as the deep MLP model that had 49 neurons on each layer (section 

5.5). MLP1 is a simplified version of the deep model since MLP1 only contains one 

hidden layer. Using one hidden layer for the MLP1 model was decided because most 

other studies used one hidden layer. Khazaei et al. (2019), Zuraimi et al. (2017), and Falk 

(2018) all used one hidden layer. I found one paper that used two hidden layers: Skön et 

al. (2012). 

MLP1 acts as a proxy model that is a close estimate compared to what most literature 

regarding CO2 prediction has used in the past. By this, we can be sure that the proposed 

models perform better than earlier research, and the improved performance isn’t just the 

result of having easier data to predict. The full structure of the baseline model “MLP1” is 

visible in Figure 13. In addition, MLP1-WIDE will have the same parameter count as the 

developed deep network. The MLP1-WIDE is also a good representation of earlier 

research since it has the same parameter count as the models in this thesis while having a 

similar structure to what was used in earlier CO2 prediction papers. At the last stage: 

feature engineering (section 5.6.5) there is a comparison between the best deep model 

compared to MLP1, and MLP1-WIDE, which should give the reader a summary on how 

the deep model compares to earlier research. 

5.3 Training data selection 

This section describes how training data should be selected and is closely related to RQ2. 

Section 5.3.1 discusses if one should include only the training data, where there is a 

significant variation in CO2 levels. Section 5.3.2 discusses the effects of adding more 

training data from other rooms. 

5.3.1 Included training data 

The purpose of this experiment is to find out if it’s enough to just train the network with 

the variating sections of the data. Roughly 60%-70% of the data contains sections, where 

CO2 value remain close to 415 ppm. My assumption was, that these low variation sections 
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don’t improve the prediction accuracy. It would speed up the training speed per epoch if 

these sections can be omitted from training. 

The setup for the experiment was the following. All data that was used, was originated 

from Room A, and the model that was used was MLP-49 that was discussed earlier in 

section 4.3.1. Fifteen networks were first trained by using all of the training data. Then 

another fifteen networks were trained using only the variating sections of that training 

data (as described in section 4.2.2). 

The results are the following. MAE score for the test data was 7.651ppm when training 

with variating sections. MAE score was 7.493 when using all the available training data, 

which is slightly better. The p-value between these two experiments was 1.15 * 10^-15, 

which means statistically very significant, and this indicates that it’s best to use all the 

available data for training. Table 6 below shows the results of this experiment.  

Table 6. Network performance with various training data selection methods. 

Room 
A 

 Dataset 
size      

Input 
Time 
Steps 

Data selection 
method. 

Trai
n set 
size 

Test 
set 
Size 

AVG 
TRAIN 
MAE 

AVG 
VAL 
MAE 

AVG 
TEST 
MAE 

p-value compared the 
best method. 

Calculated for test 
MAE. 

16 

All data for training. 

Variative data for 

validation and test. ~50k 6 176 2.510 3.181 7.493 N/A   

16 

Only variating data 

for each dataset. ~15k 6 176 6.930 9.874 7.651 1,15E-15 *** 

 

The training took ~2 minutes when using all the data with 50k training instances. This 

resulted in 2*40 = ~80-minute training time across 40 networks. Training only with “var” 

data there is some performance degradation in the MAE score, but the model trains much 

faster. Due to this, it may be beneficial to tune hyperparameters using the “var” data, and 

only later use all the possible data, which would enable faster experimentation. However, 

in this study 80 minutes wasn’t considered too long, which is why all data was used in 

the next experiments. 

It can be concluded that it’s better to use all the available data for the final model since 

~2-minute training time is rather short. At this stage of experimentation, the decision to 

use RMSE had not yet been done, therefore the errors that were measured at this stage 

were done using MAE. 

5.3.2 Training data from other rooms 

The purpose of the experiment is to find out if adding more training data from other rooms 

helps to reduce the prediction error further. The setup for the experiment was the 

following. The experiment was repeated for three rooms: Room A, Room B, and Room 

C. The used neural network was the MLP-49 discussed in section 4.3.1. This model was 

trained using data from that same room. Then the same network was trained by using data 

from all rooms. This was done a total of 40 times for each room and for both data selection 

methods. The results are visible in Table 7. 
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Table 7. Training data selection. One room VS many rooms. 

Test data 
from 

Train data 
from 

AVG TEST 
MSE 

AVG TEST 
RMSE 

AVG TEST 
MAE 

p-value for 
TEST RMSE 

Room A 

Room A 131.59 11.47 7.33 

4.07E-22 
  

*** ALL 

ROOMS 
134.07 11.58 7.22 

Room B 

Room B 348.66 18.67 11.8 

8.59E-30 
  
*** ALL 

ROOMS 
363.86 19.07 12.15 

Room C 

Room C 38.22 6.18 3.37 

1.71E-37 
  

*** ALL 

ROOMS 
40.14 6.34 3.57 

 

It was found that Room A, Room B, and Room C all had better RMSE scores when only 

training with data from that same room was included. P-values were statistically very 

significant in each case which would indicate that it’s better to always use data from the 

same room when training the networks. The magnitude of the improvements range 

between 0,11 - 0.4 ppm (1-3 %). In this case, the training times when including all rooms 

was about ten times as high when compared to just using one room. Because using single 

room had better performance and trained significantly faster, it’s better to use training 

data from the same room that one is predicting. 

5.4 Activation functions 

The purpose of this experiment is to find out which activation functions should be used 

in the network. The section is closely related to RQ1.1. The setup for the experiment was 

the following. Training the network 40 times using all 23 activations would take a long 

time, and I wouldn’t be able to keep up with the schedule laid out by VTT. Due to this, 

each network was initially trained only a few times. This made it possible to quickly weed 

out those activation functions, that resulted in significantly higher errors. After this initial 

step, the most promising activation functions were then used to train the network 40 times 

for each activation. Two separate experiments were done at this stage. First one was to 

find out what is the best main activation (as discussed in section 4.4). The second 

experiment related to activation functions aimed to find out the best activation for the last 

layer. 

The most promising main activations were ELU, SWISH, Mish, GELU, rrelu, and lisht. 

Table 8 contains the results of the experiment. The difference between the best four 

activations ELU, SWISH, MISH, GELU is relatively small which is also visible in the p-

values. I decided to choose ELU activation as the main activation because it has the best 

RMSE score. Mish activation had essentially the same based on the p-value, but since 

MISH takes longer to train according to Misra (2019), it is better to use ELU. 
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Table 8. Experiment results for main activation. 

    

Data Selection method: 

all = all data used. 

var = only data with high variation was 

used.   
Room A    var var var     

Input 

Time 

Steps Model 

Main 

activation 

Last 

activation 

AVG TEST 

MSE 

AVG 

TEST 

RMSE 

AVG TEST 

MAE 

p-value 

for 

TEST 

RMSE 

  

10 

MLP-

49 elu tanh 136.022 11.663 7.309 N/A   

10 

MLP-

49 swish tanh 136.525 11.684 7.222 0.046 * 

10 

MLP-

49 mish tanh 136.558 11.686 7.233 0.075   

10 

MLP-

49 gelu tanh 136.674 11.691 7.237 0.011 * 

10 

MLP-

49 rrelu tanh 137.311 11.718 7.372 1.07E-04 

**

* 

10 

MLP-

49 lisht tanh 141.145 11.879 7.559 9.22E-10 

**

* 

 

Next, let’s discuss the results regarding the last activation. The best performing 

activations after the initial test showed that SWISH, MISH, tanh, and GELU activations 

to be the best ones. The results are shown in Table 9. Here the differences between various 

activations were very small. P-values indicated that there is no statistically significant 

difference between those four activations (on the last layer). 

Table 9. The last activation function. 

    

Data Selection method: 

all = all data used 

var = only data with high 

variation was used.   
Room A   var var var     

Input 

Time 

Steps Model 

Main 

activati

on 

Last 

activati

on 

AVG 

TEST 

MSE 

AVG 

TEST 

RMSE 

AVG 

TEST 

MAE 

p-value for TEST RMSE   

10 

MLP-

49 elu swish 135.216 11.628 7.265 N/A   

10 
MLP-
49 elu mish 135.471 11.639 7.283 0.484  

10 

MLP-

49 elu tanh 135.581 11.644 7.292 0.276   

10 

MLP-

49 elu gelu 194.841 12.588 7.921 0.326  

 

It should be noted that GELU activation had one very bad experiment run, where test 

RMSE went to 50 ppm. This raised the test RMSE much higher than the rest. Tanh had 

worked in one of my earlier experiments and did not produce anomalous readings like 

GELU did. Tanh activation also has comparable performance with SWISH and MISH 

activations. Therefore, tanh was the selected activation function. 
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5.5 Experimenting on various neural networks 

The purpose of this experiment was to find out what type of neural network works best 

for predicting CO2 values. The section is closely related to RQ1.1. The setup of the 

experiment was the following. First four types of neural networks were trained: LSTM, 

GRU, CNN, and MLP. After this the baseline models were trained: line fit with two 

previous CO2 values, line fit using 3 previous CO2 values, MLP1, and PPV. 

The experimental setup was the following. First four networks with similar parameter 

counts were built. Each of these networks had different network configuration. The 

proposed networks: MLP, LSTM, GRU, and CNN were built to contain 5 hidden layers 

and 11k parameters. The parameter counts of each network was matched to 11k by 

adjusting the wideness of the networks. This way results between each type of network is 

comparable due to the similar parameter counts. The matching parameter counts are also 

visible in the “Params” column of Appendix J. The network structures are described in 

section 4.3.1, and full lists of the used hyperparameters are visible in Appendices G, H, 

and I. Once the best model was found, then the next step would be to determine if it’s 

better to use a deep model or a wide model. In the initial experiment, deep MLP 

outperformed the other models. Because of this, a wide MLP model (MLP1-WIDE) was 

built, which had one hidden layer and ~11k parameters. 

The results of the first experiment are the following. The deep MLP model outperformed 

LSTM and CNN models. The difference was statistically significant. Difference between 

deep MLP and GRU model was very small, and the difference was not statistically 

significant. All the developed deep models outperformed the baseline models. The results 

of these experiments are visible in  Table 10. Full results table is too large to fit on a page. 

Due to this, the complete results are visible in Appendix J. Deep MLP network had the 

best RMSE performance (11,55 ppm on variative data), but GRU also performed well 

(11,67 ppm). MLP was chosen for the following iterations due to its good performance 

and simplicity. 

Table 10. Results of testing various network types (Room A). 

 

 
Data Selection method: 

all = all data used 
var = only data with high variation was used. 

  

 
 all var all var all var 

p-value for TEST 
RMSE 

Input 
Time 
Steps 

Model 
AVG 
TRAIN 
MAE 

AVG 
TEST 
MAE 

AVG 
TRAIN 
MSE 

AVG 
TEST 
MSE 

AVG 
TRAI
N 
RMS
E 

AVG 
TEST 
RMSE 

10 MLP 2.679 7.290 47.750 136.011 6.910 11.662 N/A   

5 GRU 2.898 7.353 52.006 136.271 7.211 11.673 0.443   

5 LSTM 2.956 7.255 52.950 137.032 7.276 11.706 2.38E-03 ** 

10 
MLP1-

WIDE 
3.018 7.198 54.645 140.084 7.392 11.836 2.65E-33 *** 

10 CNN 3.095 7.230 55.578 140.181 7.455 11.840 1.24E-18 *** 

3 Linefit 3.381 7.516 57.289 147.883 7.569 12.161  -   

2 Linefit 3.333 7.739 59.433 146.337 7.709 12.097  -   

10 MLP1 3.430 7.564 61.046 148.759 7.811 12.196 9.14E-24 *** 

1 PPV 3.354 9.080 79.927 194.461 8.940 13.945  -   
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The best performing model from an earlier stage was MLP. Now a wide model was built, 

as described in section 4.3.2. Both models had now ~11k trainable parameters. The result 

was that MLP with 5 hidden layers had better RMSE score (11,662) when compared to a 

shallow network with only one hidden layer (11,836). The difference was statistically 

very significant (p-value: 2,65E-33). The results are visible above, in Table 10. 

5.6 Experiments done with MLP network 

This section describes the various experiments that were done using the MLP network. 

In section 5.5, the MLP network was chosen to be developed further, which is why other 

network types were not used anymore. 

The format of this section is the following. Section 5.6.1 discusses the implications of 

increasing the width of the deep network. Shortcut connections are explored in section 

5.6.2. The effect of having less training data is observed in section 5.6.3. The amount of 

input time steps a network should take is discussed in section 5.6.4. Feature sets are 

discussed in section 5.6.5. 

5.6.1 Making the deep network wider 

The purpose of this experiment is to find out if it’s worthwhile to add more neurons to 

the hidden layers. The section is closely related to RQ1.1. The setup of the experiment is 

the following. First, five deep MLP networks were built. These networks were described 

earlier in section 4.3.3. Each of these networks were trained 40 times and then compared 

to each other. The baseline models are the same as in the earlier experiment (section 5.5). 

The results of this experiment are visible in Table 11. The full table with all possible 

details is visible in Appendix K. MLP-256 had the best test RMSE score, followed by 

MLP-64. It should be noted that MLP1 had a slight performance increase at this stage. 

The difference can be explained by the fact that learning rate was slightly higher (0.00075 

compared to 0.00015) and learning rate was reduced at a slower pace (once per 5 epochs 

instead once per 3 epochs). 

Table 11. Effects of the wideness of the deep MLP network. 

 var = only highly variating data   

 var var var 
p-value for 

TEST RMSE Model 
AVG TEST 
MSE 

AVG TEST RMSE AVG TEST MAE 

MLP-256 134.445 11.595 7.277 N/A   

MLP-64 134.78 11.609 7.286 0.318   

MLP-128 135.284 11.631 7.277 0.006 ** 

MLP-32 136.185 11.67 7.33 1.08E-07 *** 

MLP-16 137.661 11.733 7.326 1.20E-14 *** 

MLP1 142.116 11.921 7.273 1.74E-40 *** 

Line fit 146.337 12.097 7.739     

Line fit 147.883 12.161 7.516     

PPV 194.461 13.945 9.08     
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The p-value between MLP-64 and MLP-256 was 0,318. This means that there is no 

meaningful difference between the model accuracies. It should be noted that the dropout 

value for MLP-128 was not as precisely tuned as it was for MLP-256 and MLP-64, which 

could explain why it’s doing worse than MLP-64. All the developed models performed 

better than the baseline models. MLP-256 contained 268 801 parameters, while MLP-64 

contains 18 049. MLP-256 takes roughly ten times as long to train compared to MLP-64 

while having essentially the same performance. Because of this MLP-64 was chosen to 

be used for the next experiment. 

5.6.2 The use of shortcut connections 

The purpose of this experiment is to find out if it’s worthwhile to use various shortcut 

connections in the network. The section is related to RQ1.2. The setup for the experiment 

was the following. First, various networks were built. These networks were described 

earlier in section 4.3.4. Each of the networks was trained 40 times using data from Room 

A, and then results were compared. 

The results of adding shortcut connections to the network are visible in Table 12. The full 

table is visible in Appendix L. The results for MLP-64 are different compared to an earlier 

phase of the study. This could be a result of using dropout nodes a different way during 

the training phase. For the shortcut experiment, one dropout node was used with 6% 

dropout (see Figure 16). For the other experiment where deep network was widened two 

dropout nodes were used with 4% dropout each (see Figure 14). 

Table 12. Results of adding shortcut connections. 

 

Data Selection method: 

  

all = all data used 

var = only data with high variation was used. 

 var var var 
p-value for 

TEST RMSE Model 
AVG TEST 
MSE 

AVG TEST 
RMSE 

AVG TEST 
MAE 

MLP-64 134.947 11.617 7.277 N/A   

MLP-64-CS 135.368 11.635 7.256 0.12   

MLP-64-AS3 135.657 11.647 7.255 0.013 * 

MLP-64-AS2 136.089 11.666 7.292 1.76E-06 *** 

MLP-64-AS 136.417 11.679 7.296 2.11E-04 *** 

MLP-64-AS2-LN 139.646 11.817 7.452 1.11E-25 *** 

MLP-64-AS2-BN 140.216 11.841 7.433 4.38E-21 *** 

MLP1 142.116 11.921 7.273 2.04E-44 *** 

Line fit 146.337 12.097 7.739  -    

Line fit 147.883 12.161 7.516  -    

PPV 194.461 13.945 9.08  -    

 

The best performing model was MLP-64 with no shortcut connections. Shortcut networks 

with normalization layers had the worst RMSE scores, but still better than the baseline 

models. MLP-64-CS had essentially the same performance as MLP-64 since the 

difference was not statistically significant. This means that it is better to use the MLP-64 

model since it has less parameters and gets the same performance. At this stage, all models 
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had better performance than MLP1, which is the proxy model that represents earlier 

research. 

5.6.3 Using less training data 

This experiment aims to find out what is the effect of having less training data. The section 

is related to RQ2. The percentage of training data that was used was 5, 10, 20, 40, 80, and 

100% of the total usable training data from Room A. The amount of test data remained 

the same in all cases. For each of these, various dropout values were tested, and the best 

dropout values were found based on the validation RMSE. The full results of this study 

are visible in Appendix O.  The short version of the results is visible in Table 13 and 

Figure 21. 

Table 13. Effects of using less training data. 

 

 

Figure 21. TEST RMSE as a function of training set size. 
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Data Selection method: 

  

all = all data used 

 var = only data with high variation was used. 

 

Dataset 
size 

var var var 
p-value for 

TEST RMSE 
Model 

Train 
size 

AVG TEST 
MSE 

AVG TEST 
RMSE 

AVG TEST 
MAE 

MLP-64 45 498 134.947 11.617 7.277 N/A   

MLP-64 27 242 135.384 11.635 7.221 0.217   

MLP-64 36 352 136.06 11.664 7.207 1.12E-04 *** 

MLP-64 18 155 143.016 11.959 7.349 1.35E-39 *** 

Line fit 46 104 146.337 12.097 7.739  -    

Line fit 46 104 147.883 12.161 7.516  -    

MLP-64 9 047 150.08 12.25 7.498 3.36E-28 *** 

MLP-64 4 532 180.433 13.429 8.236 1.50E-32 *** 

PPV 46 104 194.461 13.945 9.08  -    

MLP-64 2 271 201.185 14.159 8.781 2.75E-21 *** 
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In this experiment, it was found that having more training data was better. The used model 

(MLP-64) had ~18.5k parameters. In this experiment, it was found, for the MLP to beat 

line fit, there should be at least as many training instances as there are parameters in the 

network. When there was less training data than parameters, then line fit was better. The 

best results were achieved by using 100% of the data and. In this case, the number of 

training instances was 2.52 times as high as the parameter count of the network. The 

performance degradation is very noticeable when the training set is small.  The difference 

between worst and best results for the MLP-64 had 2,542 ppm difference, which is much 

higher than the difference between various models in earlier experiments. Due to this, the 

model must have enough training data, otherwise the results will suffer. 

5.6.4 Experiment about input time steps 

The purpose of this experiment is to find out how many input time steps one should feed 

to the MLP network. The initial experiment regarding this subject resulted in ten inputs 

to be used. However, at that point, the network didn’t contain any dropout, which could 

mean that we get different results now. The section is related to RQ1.3. 

The setup for the experiment is the following. MLP-64 network from Figure 13 was used, 

and it now uses dropout regularization. To ensure that this experiment is valid, each 

network predicts the same amount instances of the data and contain the same amount of 

training instances. The training frames were first built to have 14 input steps, and then the 

extra time steps were cut off from the end. This ensures that the same instances were 

predicted by each history length and that each network was trained with the same amount 

of training instances. Table 14 below shows the results of this experiment. 

Table 14. Various amount of input time steps (history length) 

Room A 

Data Selection method: 

  

all = all data used 

var = only data with high variation was used. 

var var var var var var  

Input 
Time 
Steps 

AVG 
VAL 
MSE 

AVG 
TEST 
MSE 

AVG 
VAL 
RMSE 

AVG 
TEST 
RMSE 

AVG 
VAL 
MAE 

AVG 
TEST 
MAE 

p-value for 
TEST RMSE 

7 210,614 134,741 14,512 11,608 8,648 7,276 N/A   

6 210,707 134,857 14,516 11,613 8,669 7,305 0,7   

9 211,097 135,035 14,529 11,62 8,688 7,289 0,35   

5 211,073 135,163 14,528 11,626 8,696 7,331 0,11   

10 211,423 135,228 14,54 11,629 8,678 7,281 0,15   

4 211,174 135,309 14,532 11,632 8,704 7,347 0,1   

8 210,773 135,414 14,518 11,636 8,657 7,304 0,07   

12 212,563 135,693 14,579 11,649 8,693 7,288 3,88E-03 ** 

3 212,127 136,203 14,565 11,67 8,772 7,414 3,84E-06 *** 

11 212,109 136,418 14,564 11,68 8,683 7,316 3,08E-05 *** 

 

The differences between various input lengths were rather small. This is evident from the 

p-values that were not statistically significant in most cases. Seven input steps produced 

the best results across all metrics: MSE, RMSE, and MAE. This is why seven input steps 

were chosen to be used in the next experiment. 
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5.6.5 Feature sets 

The purpose of this experiment was to find out which features should be fed to the 

network. The experiment was conducted using various sets of features, which are listed 

in Table 15. All Features were scaled using sklearn’s RobustScaler. A seven-minute 

history was used since it worked well in an earlier experiment. The section is related to 

RQ1.3. 

The used features are the following. Carbon Dioxide (co2), movement sensor data (PIR), 

door state, illumination (lux), noise levels (noise), volatile organic compound (VOC). 

UNIX time is the UNIX time measured in seconds. UNIX time not used directly but 

instead three features were crafted from it: minute, hour, and isweekday. Minute, hour, 

and isweekday features were converted to local time before use. Isweekday has value 1 

during the week, and 0 during the weekend. 

The term “raw” that is found in the table, refers to the scaled value that was read from the 

sensor. Minimum (min), maximum (max), mean (avg), and median values were 

calculated from the scaled raw values based on the history length. For instance, history 

length seven (7 minutes) would calculate features from a seven-minute history.  The term 

“diff” refers to the difference set that is obtained by subtracting the earlier value from the 

current one. To make sure that both diff and raw features have the same length first, and 

additional raw value was used. For instance, for 7-minute history, an additional minute 

was included. Then diff was calculated, and finally, the oldest raw value was dropped to 

ensure that both raw and diff had the same number of units. Features related to time 

(minute, hour, isweekday) only use the most recent timestamp for their calculation, since 

it wasn’t considered important to include all the times, from the 7-minute horizon. 

Some example features will be explained next. Feature set Number 1: “CO2:  raw, diff” 

uses the raw and diff features based on measured CO2. An earlier experiment had found 

that 7-minute history (7-time steps) should be used, which means that a total of 14 input 

values would be fed to the network since Feature set Number 1 contains two features. 

Feature set Number 7 contains features from various measurements: CO2, UNIX time, 

LUX, Noise, PIR, and Door state. Each of these can have several features built from them. 

UNIX time had only one feature crafted based on it, while the measured variables had 

several features each. 
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Table 15. Various feature sets that were used in this thesis. 

Feature Set Name List of used features 

Unicorn CO2:  raw, diff 

Kugelblitz 

CO2:  raw, diff 

PIR:  raw 

Door state:  raw 

Redstone 

CO2:  raw, diff 

PIR:  raw, min, max, avg 

Door state:  raw, min, max, avg 

Phoenix 

CO2:  raw, diff 

PIR:  raw, min, max, median 
Door state:  raw, min, max, avg 

Badger 

CO2:  raw, diff 

PIR:  min, max, avg 

Door state:  min, max, avg 

Salamander 

CO2:  raw, diff 

LUX: min, max, avg 

Noise: max, avg 

PIR:  raw, min, max, avg 

Door state:  min, max, avg 

Maverick 

CO2:  raw, diff 

UNIX time:  isweekday 

LUX: min, max, avg 

Noise: max, avg 

PIR:  raw, min, max, avg 
Door state:  min, max, avg 

Schrödinger’s Cat 

CO2:  raw, diff 

UNIX time: hour, isweekday 

LUX: min, max, avg 

Noise: max, avg 

PIR:  raw, min, max, avg 

Door state:  min, max, avg 

Snowball 

CO2:  raw, diff 

UNIX time:  hour, isweekday 

LUX: min, max, avg 

Noise: max, avg 

PIR:  raw, min, max, avg 

Door state:  min, max, avg 

VOC: raw, min, max, avg 

Blue Whale 

CO2:  raw, diff 
UNIX time:  minute, hour, isweekday 

LUX: min, max, avg 

Noise: max, avg 

PIR:  raw, min, max, avg 

Door state:  min, max, avg 

CO2_RAW CO2:  raw 

 

The network structures that were used are described in section 4.5. Table 16 below shows 

the results of this experiment. 
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Table 16. Network performance using various features. 

 

 

 

Data Selection method: 

 

 

all = all data used 

var = only data with high 
variation was used. 

   var var var Test p-value 

Input 
Time 
Step
s 

Model 
Feature Set 
Name 

AVG 
TEST 
MSE 

AVG 
TEST 
RMSE 

AVG 
TEST 
MAE 

for RMSE 

7 
MLP-

64 
Kugelblitz 114.253 10.688 6.875 N/A   

7 
MLP-

64 
Redstone 115.494 10.746 6.945 0.033 * 

7 
MLP-

64 
Phoenix 116.319 10.784 6.985 0.001 *** 

7 
MLP1-

WIDE 
Kugelblitz 118.728 10.896 6.921 2.30E-16 *** 

7 
MLP-

64 
Maverick 123.69 11.119 7.519 1.09E-14 *** 

7 
MLP-

64 
Snowball 124.664 11.164 7.632 8.47E-25 *** 

7 
MLP-
64 

Badger 124.807 11.171 7.245 1.88E-23 *** 

7 
MLP-

64 
Salamander 125.147 11.185 7.483 7.70E-20 *** 

7 
MLP-

64 
Blue Whale 125.716 11.21 7.61 1.34E-16 *** 

7 
MLP-

64 
Schrödinger’s Cat 127.155 11.274 7.671 9.53E-23 *** 

7 
MLP-

64 
Unicorn 131.749 11.478 7.194 3.25E-47 *** 

7 MLP1 Kugelblitz 136.111 11.665 7.417 4.90E-34 *** 

2 Line fit CO2_RAW 143.629 11.985 7.648  -    

3 Line fit CO2_RAW 145.927 12.08 7.464  -    

1 PPV CO2_RAW 188.741 13.738 8.905  -    

 

There is a noticeable improvement in the RMSE score when using the Kugelblitz feature 

set. Using just the “raw” and “diff” features (Unicorn) as in earlier experiments resulted 

in RMSE of 11.478 ppm. Meanwhile, the Kugelblitz feature set had the best performance 

with an RMSE of 10.688 ppm, which means that feature selection improved the 

performance by 0.790 ppm on their own. This difference is much larger than most 

improvements in the earlier experiments. For instance, the difference between MLP and 

GRU networks was only 0.011 ppm. 

The Redstone feature set also performed well. There is no statistically significant 

difference between Kugelblitz and Redstone feature sets. Their performance was 

essentially the same. Because the Kugelblitz feature set is simpler and produces similar 

results it is best to use the Kugelblitz feature set. 

The Kugelblitz feature set was also used with MLP1 and MLP1-WIDE. Here MLP1-

WIDE has one hidden layer that has the same total parameter count in the network as 

MLP-64 has. Out of these three alternatives MLP-64 had the best performance. 
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5.7 Findings 

This section discusses what were the most important findings. First a brief overview of 

the best hyperparameters, and then the results compared to existing literature. 

RQ1 was related to the structure of the network. MLP was the best network out of the 

four tested network types: MLP, LSTM, GRU and CNN (RQ1.1). ELU activation was 

found to be best as a main activation, while tanh performed best on the last layer. The 

final network structure for the deep MLP network is visible in Figure 20. The best 

network configuration for CO2 prediction was the following. Deep MLP network using 

ELU as the main activation and tanh on the last layer. Normalization layers were not used 

in the final model. The network takes seven input time steps (7 minutes) and predicts ten 

minutes to the future. Shortcut connections (RQ1.2) did not improve the accuracy in this 

study, so it’s better to not use shortcuts for MLP with five hidden layers. The best feature 

set (RQ1.3) was the Kugelblitz feature set described in section 5.6.5. 

RQ2 was related to training data selection. It was found that the network should have at 

least as many training instances as there are parameters in the network. If this is not the 

case, then a line fit algorithm using two previous CO2 values would be superior. It was 

found that it’s best to use all training data and not just sections that have high variation 

(RQ2.1). It was also found that it’s best to have this training data from the same room one 

is trying to predict (RQ2.2). However, it should be noted that the amount of training data 

also factors into this one, if there isn’t enough data it might be beneficial to use data from 

all rooms. In this study, it was found that if the parameter count is higher than the number 

of training instances, then it’s advisable to either reduce the parameter count of the model, 

get more training data from the room, or train the model using data from all rooms. 

In the final experiment regarding various feature sets it was found that the newly 

developed deep MLP model improved the RMSE scores compared to the proxy model 

“MLP1” that was built based on earlier research. Improvement in RMSE scores against 

MLP1 was 0.977 PPM, and against MLP1-WIDE 0.208 PPM (see Table 16). These scores 

were calculated for the variating sections of the data since the differences are easier to see 

there, and variating sections were the main interest in this thesis. It should be noted that 

the proxy model used the same features and shared most of the hyperparameters such as 

activation functions. This means that the performance improvement over previous studies 

is purely based on the network itself. 

Next, let’s discuss the results from previous studies. In the comparison, I’m going to use 

the test score from the “all” data. This means that also sections with low variation in CO2, 

are included in the test data. 

Khazaei et al. (2019) use a one-minute sampling interval and predicted five minutes to 

the future. The resulting MSE score was 17 ppm. In my study prediction was made 10 

minutes to the future, and MSE score was 36.8 ppm. The large difference could be caused 

by the fact that my study predicted 10 minutes to the future, while Khazaei et al. (2019) 

predicted five. 

Macarulla et al. (2017) predicted CO2 levels 15 minutes to the future, with a 15-minute 

sampling interval. The best model reached RMSE of 41.10 ppm (Macarulla et al, 2017). 

My study had an RMSE of 6.07 ppm when predicting 10 minutes to the future which is 

better than the earlier study. 
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Falk use LSTM to predict 10 minutes to the future. One-minute sampling interval was 

used. (Falk, 2018.) The RMSE score was 9.09 ppm. My study had an RMSE of 6.07 ppm, 

which is better. The notable difference could result from using different training data, or 

from the fact that Falk excluded weekends from his data. The sampling intervals and 

prediction horizons were the same in both studies. Table 17 below contains the 

summarization of results of earlier studies and this study. Best model of each study is 

shown, and a baseline if it was used. 

Table 17. Summarization of various studies 

Study Sampling 
interval 
(minutes) 

Future 
prediction 
index 
(minutes) 

 

Used 
history 
length 
(minutes) 

Model RMSE 
(ppm) 

MSE 
(ppm) 

MAE 
(ppm) 

Falk 

(2018) 

1 10 5 LSTM 

1 hidden 

layer 

9.09   

Falk 

(2018) 

1 10 5? * Linefit 48.77   

Khazaei 

et al. 

(2019) 

1 5 1 MLP 

1 hidden 
layer, 4 

neurons 

 17  

Macarulla 

et al. 

(2017) 

15 15  Deterministic 

model using 

mass balance 

equations. 

41.10   

This 

thesis 

1 10 7 MLP 

5 hidden 

layers, 64 

neurons each 

 

6.07 36.8 2.82 

This 

thesis 

1 10 2 Linefit 

2 inputs 

6.845 

 

46.85 3.35 

* Five-minute history is assumed since the history for line fit was not specified in 

the study. 

There is a noticeable difference between the line fit models in this thesis and the line fit 

in Falk’s (2018) study. I would assume that Falk used longer history length to fit the line 

which would result in higher errors for the line fit model. In this thesis, a surprising 

finding is that the LSTM model performed worse than the MLP model did. For instance, 

the study by Falk (2018) concluded that LSTM had better performance than the MLP 

model. 
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Now let’s explore which hyperparameters gave the biggest improvements to the RMSE 

score. Table 18 contains information regarding various experiments and how much each 

experiment improved the performance compared to the second-best alternative. This table 

can be used in future studies to determine which hyperparameters should be tuned further. 

Table 18. Various hyperparameters, and improvements 

Changed variable Chosen 
value 

Difference compared to the 
next best hyperparameter. 

Measured in RMSE 

Comment 

Data selection: all vs var all 0.11 - 0.4 ppm  

Data selection: One 

room vs many 

many 0.223 ppm May depend on the 

used data. With enough 
data, one room may 

produce better results. 

Main activation ELU 0.021 ppm  

Last activation tanh 0.016 ppm   

Network type MLP 0,010 ppm  

Input time steps 7 0.005 ppm  

Feature set Kugelblitz 0.058 ppm Big difference 

compared to the feature 

set used earlier stages 

(0.790 ppm). 

 

Based on the table it would seem, that data selection methods had the biggest difference 

compared to the other alternative. Feature selection improvement over the seconds best 

alternative is small. However, compared to the original features set (Unicorn) the new 

feature set (Kugelblitz) improved the performance by 0.790 ppm. It is possible that this 

feature set is not ideal, which is why both feature engineering and training data selection 

should be explored further. 

To sum up the findings, it can be said that deeper produce lower RMSE errors. This is 

evident from the fact that the models proposed in this study, always outperformed the 

MLP1 model, when using the same features for each model. Improvement of the 

multilayer model was not evident before the study, because earlier CO2 prediction studies 

didn’t explore networks that were deeper than 1-2 hidden layers. 
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6. Conclusions and future work 

This chapter describes the most important findings, limitations, and discusses future 

work. This study was about finding an effective way to use a neural network to predict 

the future value of CO2 in indoor air. 

Because results across different studies are not comparable because of different datasets, 

sampling intervals, and measurement units, it was decided that a benchmark model should 

be built instead. This way all the models would predict the same data and use the same 

sampling interval. The benchmark model was an MLP network with one hidden layer. 

This thesis found that deep models have a slightly better RMSE score compared to 

shallow models that had been used in earlier research. Four neural networks were 

proposed: LSTM, GRU, CNN, and MLP. Out of these MLP had the best performance, 

and GRU also had similar performance. Due to its simplicity, the MLP model was chosen 

to be tuned further. The deep MLP architecture improved on the prediction RMSE 

compared to the benchmark model “MLP1” by 0.977 ppm (8%), which is noticeable. The 

improvement over “MLP1-WIDE”, was smaller at 0.208 ppm (or 2%). All proposed 

models outperformed the benchmark model. Out of the proposed models CNN had the 

worst performance. 

There are five limitations in this study, which are the following. Activation functions were 

only tested briefly, more iterations are needed, dropout layers could use further tuning. 

The fourth limitation was that the data selection method was chosen to be all data, which 

was a result of using MAE score instead of RMSE score. Finally, random seeds were not 

locked in this study. 

The first limitation is related to activation functions. Because there were so many 

activation functions they were only tested briefly. Because differences between various 

activation functions very small in many cases it is conceivable that some improvements 

can be made by experimenting more with the activation functions. Furthermore, some 

research shows that it may be beneficial to omit activation function from certain parts of 

the network (Zhao, Zhang, Guan, Tang, & Wang, 2017; Gross & Wilber, 2016), which 

means further study is warranted regarding activation functions. 

The second limitation is related to the number of iterations that were used. At an earlier 

phase of the study, it was found that ten-minute history length was ideal. However, at a 

later stage, it was found than seven-minute history was instead ideal. Essentially what this 

means is, that changing one parameter influences another. Due to time limitations, the 

iterations had to be stopped earlier than desired. Ideally, each experiment should be 

repeated iteratively until the results no longer change. 

The third issue relates to the dropout layers. In certain experiments, several dropout layers 

were used, and each had the same amount of dropout. However, there is no reason why 

each dropout layer should have the same amount of dropout, and it is conceivable that 

performance might improve by experimenting with various dropout values across 

different layers. New developments regarding dropout can be considered for further 

study. For instance, Gaussian dropout outperformed vanilla dropout on several datasets 

such as MNIST, CIFAR-10, and IMAGENET ILSVRC-2012 (Shen, Tian, Liu, Xu, & 

Tao, 2017). 
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The fourth limitation is related to the data selection method. The experiment aimed to 

find out which type of data selection works the best. Should one use all available training 

data, or only use that training data that contains sections with high CO2 variation. At the 

time when this test was done the measurement criteria to use RMSE had not yet been 

done, which means that MAE score was used at this stage. Future studies may want to 

repeat this stage of the experiment by using the RMSE score. 

The fifth limitation in this study was the fact that random seeds were not locked. However, 

this doesn’t threaten the validity of the study. This is because p-values across several 

training sessions were used to determine if the difference between two hyperparameters, 

which means we can be relatively certain that the results are correct. However, the 

repeatability of the study is more difficult without locking the random seeds. In an ideal 

case, the random seeds should have been picked at the start. Picking a single random seed 

wouldn’t be enough, because a specific random seed might be ideal for LSTM while being 

less ideal for MLP. This means that one should pick N random seeds and use the same 

ones throughout the study. For example, pick 40 random seeds, and train the network 

once for each random seed. Then repeat the training with the next predictor using the 

same random seeds. Future studies should use this type (or equivalent) way of initializing 

random seeds to ensure the repeatability of the studies. 

Future research is discussed next. Five main topics for future research are explored. The 

future research topics are the following: CNN performance improvement, the use of 

hybrid models, LSTM/GRU can be trained with better data, transfer learning can be 

considered, a benchmark dataset could be created for CO2 prediction. Each of these topics 

are explored next. 

CNN performance in this study was lacking, even though it has been previously used with 

good results in other prediction tasks, such as speech synthesis. Compared to the WaveNet 

paper by Oord et al. (2016) the sampling frequency in this study is lower. Due to this, 

further research regarding CO2 prediction with CNNs, should consider using data with 

higher sampling frequency, which may help in improving the prediction results of the 

CNN network. Alternatively, advanced network configurations can be considered such as 

WaveNet by Oord et al. (2016) or Transformer by Vaswani et al. (2017). 

One idea for future studies would be to combine a neural network as a part of a larger 

hybrid model. It has been shown that a hybrid model has better accuracy than a single 

model (Divina et al., 2018; Zhang, 2003; Evitan, 2019). Hybrid models were left out of 

this study to limit the scope of this thesis. 

Another idea for future studies would be to obtain higher quality data. In this study LSTM 

and GRU networks were trained in stateless mode because there were so many gaps in 

the training data. Because of this, further studies could further experiment on LSTM and 

GRU, by using better training data, to see if training in stateful mode would yield better 

results. 

The largest improvements in the performance were achieved by the data selection method, 

and the selected features. Future studies could focus on data selection, and on feature 

engineering since they have the most potential for improvement. 

This thesis found that deep models perform slightly better than shallow ones. However, 

it’s hard to say if the improvement is meaningful for the occupants in the room. Future 

studies may be needed where CO2 predictors that are run online and plugged to a 

ventilation control system. This type of study would analyse differences (if any) between 
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various prediction schemes by studying how well the CO2 level stays within an 

acceptable range with various predictors. The measured indicators could be: 1. the 

maximum CO2 values reached (smaller is better), and 2. how long it takes to reach that 

maximum value (longer is better), and possibly other metrics. Ideally, the measured 

rooms should have their occupancies frozen for the duration of the study, meaning that 

the room would always have the same person (people) in it. This could be done via a 

controlled experiment, where a person is asked to repeat some task, while the CO2 values 

are being predicted and controlled, then it's repeated using a different predictor and the 

same person. In addition, the door could remain closed in 50% of the experiments, and 

closed in the other 50% of the experiments, to ensure the balanced data regarding the door 

state for each predictor. This would result in two experiments for each predictor. 

Transfer learning is another idea for further studies. It was found that including data from 

other rooms did not help the RMSE score. Further studies could further extend on this 

experiment, by first training the network with all possible data from all rooms, then fine-

tuning the last layer (or last few layers) of the network with data that is from the same 

room that is being predicted. This is known as transfer learning, which has been used in 

image recognition with good results. For instance, Shin et al. (2016) got improved 

accuracy on certain datasets when fine-tuning AlexNet for medical images. Essentially 

this type of experiment regarding training data could compare three results: 1. training 

data from all rooms, predict one room; 2. train data from one room, predict the same 

room; and 3. train a generic predictor with all data from all rooms, then fine-tune the last 

layer with data only from that same room. 

Further studies could explore how to make papers related to CO2 prediction more 

comparable to each other. In this study, it was found that results are often not directly 

comparable since there isn’t a common dataset that everyone would be using. One 

alternative would be to create a high-quality dataset for indoor air. Another way to make 

studies comparable would be for each of the authors, to include the exact network 

configurations and all the used hyperparameters. This would ensure that the study can be 

compared, even if the dataset itself is not available. 

To conclude it can be said that deep models have slightly better performance than shallow 

models. Future studies regarding controlled ventilation situations may be required to 

determine if this improvement is meaningful for the occupants. 
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Appendix A. Time features (most recent timestep) 

 

Figure 22. Correlation matrix of time features and the future CO2. 
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Appendix B. Average features (7 timesteps) 

 

Figure 23. Correlation matrix between average values within 7 time steps and between the future 
CO2 value. 
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Appendix C. Max features (7 timesteps) 

 

Figure 24. Correlation matrix between max values within 7 time steps and between the future 
CO2 value. 
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Appendix D. Min Features (7 timesteps) 

 

Figure 25. Correlation matrix between min values within 7 time steps and between the future 
CO2 value. 
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Appendix E. Median features (7 timesteps) 

 

Figure 26. Correlation matrix between median values within 7 time steps and between the future 
CO2 value. 
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Appendix F. Activation functions 

Table 19. Activations that were tested. 

Activation Package 

ReLU tf.keras.layers 

tanh tf.keras.layers 

elu tf.keras.layers 

selu tf.keras.layers 

softmax tf.keras.layers 

softplus tf.keras.layers 

softsign tf.keras.layers 

sigmoid tf.keras.layers 

hard_sigmoid tf.keras.layers 

exponential tf.keras.layers 

linear tf.keras.layers 

LeakyReLU tf.keras.layers 

PReLU tf.keras.layers 

ThresholdedReLU tf.keras.layers 

swish tf.nn 

ISRLU keras_contrib 

rrelu tfa.activations 

softshrink tfa.activations 

tanhshrink tfa.activations 

gelu tfa.activations 

hardshrink tfa.activations 

lisht tfa.activations 

mish tfa.activations 
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Appendix G. Hyperparameters for MLP / CNN (1/2) 

Table 20. Hyperparameters for MLP & CNN (1 of 2) 

Model Parameter Tested values 
Used 
value Description 

MLP / 

CNN 

Main 

Activation 23 different activations. ELU 

See chapter 5 regarding activation 

functions. Appendix F has a list of 

all activations that were tested. 

MLP / 

CNN 

Last 

Activation 23 different activations. tanh 

See chapter 5 regarding activation 

functions. Appendix F has a list of 

all activations that were tested. 

MLP / 

CNN inputs 5-39 10 How many input timesteps were used. 

MLP / 
CNN features raw, scaled, raw + scaled 

raw + 
scaled  

MLP / 

CNN learning rate 0.00001 - 0.006 

0.0000

75 What was the initial learning rate 

MLP / 

CNN 

Data 

selection var, all all 

What section of data was used 

for training, all data VS only data that has 

more variation in it. 

MLP / 

CNN 

Normalizatio

n method Layer, Batch, None None Normalization method that was used. 

MLP / 

CNN 

Gaussian 

Noise 

0.006275, 0.0125, 0.025, 

0.05, 0.1, 0.5, None None 

The amount of Gaussian noise to feed in 

the input layer. 

MLP / 
CNN Fluctuation 0, 5, 10, 15, 20, 25 0 

How much neuron count fluctuates 

across successive layers. 

E.g. First layer has base*1,15 

neurons; the following layer has 

base*0,85 neurons. Where base is the 

neuron count we want to be near 
(e.g. 64). 

MLP / 

CNN 

Train data 

from rooms One room, All rooms 

One 

room 

Should data from all rooms be used, or 

just from the 

room we trying to predict. 

MLP 

neuronsperla

yer 16, 32, 49, 64, 128, 256 64  
MLP / 

CNN 

Hidden 

Layers 1, 5 5  
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Appendix H. Hyperparameters for MLP / CNN (2/2) 

Table 21. Hyperparameters for MLP & CNN (2 of 2) 

Mode
l 

Parameter Tested values 
Used 
value 

Description 

MLP / 

CNN 
Batch size 128 128   

MLP / 

CNN 
patience   5 

How many epochs to train before 

learning rate is reduced. 

MLP / 

CNN 
LR multiplier   0,8 

How much should learning rate be 

multiplied by, when reducing the 

learning rate. 

MLP / 

CNN 
optimizer RMSprop, Adam RMSprop   

MLP / 

CNN 

Early Stopping 

Epochs 
12, 17 17 

If no improvement in the network 
performance, continue training this 

many epochs. 

MLP / 

CNN 
kernel_initializer   he_normal 

The way in which the weights were 

initialized. 

MLP / 

CNN 
Dropout 0 - 20 

depends on 

various 

factors: 

network, 

features, 

timesteps, 

amount of 

training 

data, etc. 

How much dropout to use. 

CNN Kenel size 1,2,3,4 2 Size of convolutional kernel 

CNN Padding same, causal causal 
Padding method for convolutional 

features. 

CNN CNN params 
strided conv, 

dilated conv 
strided 

Dilated convolution + max-pooling   

VS     convolution without dilation 

and using stride to downsample. 
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Appendix I. Hyperparameters for LSTM / GRU 

Table 22. Hyperparameters for LSTM and GRU 

Model Parameter 
Tested 
values 

Used 
value Description 

LSTM / 

GRU Main Activation   ELU 

See chapter 5 regarding activation 

functions. 

LSTM / 

GRU Last Activation   tanh 

See chapter 5 regarding activation 

functions. 

LSTM / 

GRU inputs 1,5,10 5 How many input timesteps were used. 

LSTM / 

GRU features   

raw + 

scaled   

LSTM / 

GRU learning rate 

0,000001 - 

0,006 0,000015 What was the initial learning rate 

LSTM / 

GRU Data selection   all 

What section of data was used for 
training, all data VS only data that has 

more variation in it. 

LSTM / 

GRU 

Normalization 

method 

Layer, Batch, 

None None Normalization method that was used. 

LSTM / 

GRU Gaussian Noise   None 

The amount of Gaussian noise to feed in 

the input layer. 

LSTM / 

GRU Fluctuation   0 

How much neuron count fluctuates 

across successive layers. E.g. First layer 

has base*1,15; the following layer has 

base*0,85 neurons. Where base is the 

neuron count we want to be near (e.g. 

64). 

LSTM / 

GRU 

Train data from 

rooms   One Room 

Should data from all rooms be used, or 

just from the room we trying to predict. 

LSTM / 

GRU neuronsperlayer   ~34   

LSTM / 
GRU Hidden Layers   5   

LSTM / 

GRU Batch size   128   

LSTM / 

GRU patience   5 

How many epochs to train before 

learning rate is reduced. 

LSTM / 

GRU LR multiplier   0,8 

How much should learning rate be 

multiplied by, when reducing the 

learning rate. 

LSTM / 

GRU optimizer   RMSprop   

LSTM / 

GRU 

Early Stopping 

Epochs 12, 17 12 

If no improvement in the network 

performance, continue training this 

many epochs. 

LSTM / 

GRU kernel_initializer   he_normal 

The way in which the weights were 

initialized 

LSTM / 

GRU Dropout 0 - 12 

depends on 

various 

factors: 
network, 

features, 

timesteps, 

amount of 

training 

data, etc. How much dropout to use. 
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Appendix J. Testing various network types 

Table 23. Testing various network types. 
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Appendix K. The effect of widening the network 

Table 24. Testing how network wideness affects the performance. 
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Appendix L. Shortcut networks 

Table 25. Performance of various shortcut networks. 
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Appendix M. Network performance with various 
feature sets 

Table 26. Results of testing with various feature sets. 
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Appendix N. Abbreviations 

Adam = Adaptive Moment Estimation. A commonly used optimizer when training neural 

networks. 

ANN = Artificial Neural Network 

ARIMA = Autoregressive integrated moving average 

BN = Batch normalization 

BP = Backpropagation 

CGAN = Conditional Generative Adversarial Network 

CNN = Convolutional neural network  

CO2 = Carbon dioxide 

DBN = Deep Belief Network. DBN is a network that contains several RBMs. 

Dense = a Layer of perceptrons 

DNN = Deep Neural Network. A network that has two or more hidden layers ("Deep 

learning", n.d.). 

DSR = Design Science Research 

ELU = Exponential Linear Unit 

GRU = Gated Recurrent Unit 

HVAC = Heating, ventilation, and air conditioning 

LF = Line fit model 

LN = Layer normalization 

LSTM = Long short-term memory 

MAE = Mean absolute error 

ML = Machine Learning 

MLP = Multilayer perceptron 

MSE = Mean squared error 

NLPD = Negative Log Predictive Density 

PIR = Passive infrared sensor. Also called: Motion detection 

PPV = Previous Value Forward prediction 
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RBM = Restricted Boltzmann Machine 

SBS = Sick building syndrome 

SE = Standard error 

SGA = Stochastic Gradient Ascent 

TanH = Hyperbolic Tangent 

VOC = Volatile Organic Compound 
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Appendix O. Training data amount 

Table 27. The effects of removing some of the training data. 

 

 


