\l/

R

UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Tommi Jarvenpaa

Distributed Microservices Evaluation in Edge
Computing

Bachelor’s Thesis
Degree Programme in Computer Science and Engineering
May 2020

Jarvenpaid T. (2020) Distributed Microservices Evaluation in Edge
Computing. University of Oulu, Degree Programme in Computer Science and
Engineering, 38 p.

ABSTRACT

Current Internet of Things applications rely on centralized cloud
computing when processing data. Future applications, such as smart
cities, homes, and vehicles, however, generate so much data that
cloud computing is unable to provide the required Quality of Service.
Thus, edge computing, which pulls data and related computation from
distant data centers to the network edge, is seen as the way forward
in the evolution of the Internet of Things.

The traditional cloud applications, implemented as centralized
server-side monoliths, may prove unfavorable for edge systems, due
to the distributed nature of the network edge. On the other hand,
the recent development practices of containerization and microservices
seem like an attractive choice for edge application development.
Containerization enables edge computing to use lightweight virtualized
resources. Microservices modularize application on the functional level
into small, independent packages.

This thesis studies the impact of containers and distributed
microservices on edge computing, based on service execution latency
and energy consumption. Evaluation is done by developing a
monolithic and a distributed microservice version of a user mobility
analysis service. Both services are containerized with Docker
and deployed on resource-constrained edge devices to conduct
measurements in real-world settings.

Collected results show that centralized monoliths provide lower
latencies for small amounts of data, while distributed microservices are
faster for large amounts of data. Partitioning services onto multiple
edge devices is shown to increases energy consumption significantly.

Keywords: Internet of Things, Container, Latency, Energy
consumption

Jarvenpdd T. (2020) Hajautettujen Mikropalveluiden Arviointi
Reunalaskennassa. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 38 s.

TIIVISTELMA

Nykyiset Esineiden Internet -jarjestelmit hyodyntavat keskitettya
pilvilaskentaa datan prosessointiin. Tulevaisuuden sovellusalueet,
kuten alykkiat kaupungit, kodit ja ajoneuvot tuottavat kuitenkin
niin paljon dataa, ettei pilvilaskenta pysty tayttamaan tarvittavia
sovelluspalveluiden laatukriteereja. Pilvipohjainen sovellusten toteutus
on osoittautunut sopimattomaksi hajautetuissa tietoliikenneverkoissa
tiedonsiirron viiveiden takia. Taten laskennan ja datan siirtamista
tietoliikenneverkkojen paatepisteisiin reunalaskentaa varten pidetaan
tarkeana osana Esineiden Internetin kehitysta.

Pilvisovellusten perinteinen keskitetty monoliittinen toteutus saattaa
osoittautua sopimattomiksi reunajirjestelmille tietoliikenneverkkojen
hajautetun infrastruktuurin takia. Kontit ja mikropalvelut vaikuttavat
houkuttelevilta vaihtoehdoilta reunasovellusten suunnitteluun ja
toteutukseen. Kontit mahdollistavat reunalaskennalle kevyiden
virtualisoitujen resurssien kiayton ja mikropalvelut jakavat sovellukset
toiminnallisella tasolla pienikokoisiin itseniisiin osiin.

Téassa tyossa selvitetddan konttien ja hajautettujen mikropalveluiden
toteutustavan vaikutusta viiveeseen ja = energiankulutukseen
reunalaskennassa. Arviointi tehdadin todellisessa ympéaristossa
toteuttamalla mobiilikayttajien liikkumista kaupunkialueella
analysoiva keskitetty monoliittinen palvelu sekid vastaava hajautettu
mikropalvelupohjainen toteutus. Molemmat versiot kontitetaan ja
otetaan kayttoon verkon reunalaitteilla, joiden laskentateho on
alhainen.

Tuloksista nahdaan, ettd keskitettyjen monoliittien viive on
alhaisempi pienille datamaarille, kun taas hajautetut mikropalvelut
ovat nopeampia suurille méaarille dataa. Sovelluksen jakaminen usealle
reunalaitteelle kasvatti energiankulutusta huomattavasti.

Avainsanat: Esineiden Internet, Kontti, Viive, Energiankulutus

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMA
TABLE OF CONTENTS
FOREWORD
ABBREVIATIONS
1. INTRODUCTION
2. BACKGROUND
2.1. Internet of Thingso
2.1.1. Cloud Layeroooii
2.1.2. Edge Layer ..o
2.1.3. Perception Layer............cooiiiiiiiiiii
2.2. Development Technologies for Edge Computing......................
2.2.1. Virtualization i
2.2.2. MICTOSEIVICES . . .ottt ettt e
3. EXPERIMENTS
3.1. User Mobility Analysisc.oiiiiiii i
3.2. Mobility Data Processingcooiiiiiiiiiiiiiiiiiiii i
3.3. Service Design and Implementationo
3.3.1. Centralized Monolith................... ...
3.3.2. Distributed Mobility Microservice....................oooo...
3.4. Testbed and Experiments ...
3.5, Results. ..o
4. ANALYSIS OF RESULTS
A1, LabenCy .ot
4.2. Energy Consumptiono
4.3, DISCUSSION ...ttt e
5. CONCLUSION
6. REFERENCES

FOREWORD

I would like to thank M.Sc. Lauri Lovén for helping me with R, Ph.D. Leena
Ruha, the second examiner, and especially D.Sc. (Tech.) Teemu Leppénen, the
supervisor of this thesis. I would also like to thank Professor Jukka Riekki for the
opportunity to work at Ubicomp. Working here has been an excellent experience.

This thesis was financially supported by the MEC-Al-project, funded by the
Future Makers program of Jane and Aatos Erkko Foundation and Technology
Industries of Finland Centennial Foundation, and by the Academy of Finland
6Genesis Flagship (grant 318927).

Oulu, 6th May, 2020

Tommi Jarvenpéa

IoT
QoS
VM
OS
Ul
AP
ED
UE
CPU
SBC
RPi
API
SOA
DB
MTA
IP
MMS
SCP
CSV

ABBREVIATIONS

Internet of Things

Quality of Service

Virtual Machine

Operating System

User Interface

Access Point

Edge Device

User Equipment

Central Processing Unit
Single-Board Computer
Raspberry Pi

Application Programming Interface
Service-Oriented Architecture
DataBase

Mobility Trace Analysis
Internet Protocol

Mobility MicroService

Secure Copy Protocol
Comma-Separated Values

1. INTRODUCTION

The future applications of the Internet of Things (IoT), such as smart cities,
vehicles, and homes will increase the volume of generated data massively [1].
Smart cars, for example, will generate approximately 4000 Gigabytes of data per
hour [2] that should be processed in near real-time to avoid accidents. Today, [oT
system architectures are based on centralized cloud computing [3]. However, with
cloud computing, data must be transmitted to centralized data centers before
processing, accumulating latency, consuming network infrastructure resources,
and energy, which reduces the battery life of resource-constrained end devices.
Current network bandwidths are also unable to handle the volume of data,
creating bottlenecks for computation [4]. Cloud computing is thus ill-equipped
to provide the necessary Quality of Service (QoS), i.e. latency. Because of this,
a new computational paradigm, edge computing is seen as the way forward [5].

Edge computing pulls application resources, i.e. computation and data from
the distant cloud to the network edge into close proximity of loT devices. Moving
processing as close as one hop away [6] reduces network infrastructure usage and
application execution latencies, consequently improving the Quality of Experience
for users.

In the edge approach, application-specific components are deployed to resource-
rich edge servers, which have large amounts of memory and computational power
[7] in a distributed fashion inside self-contained packages, i.e. Virtual Machines
(VM) [3]. VMs typically have a large overhead in the form of a guest operating
system (OS) and hardware emulation, making deployment, instantiation, scaling,
and relocation very resource consuming. However, containers have recently
emerged as a lightweight alternative for VMs [8]. Containers include a single
process and its execution environment, but unlike VMs, they do not virtualize
hardware. This makes the size of containers smaller and further enables the
deployment of distributed applications to the edge.

As server-side ToT applications are typically developed as monoliths [9], i.e.
applications with a single code base, edge computing and the usage of containers
are not enough to solve problems with application development and scalability.
To address these issue, a new approach to application development has emerged.
Microservices [9, 10] divide applications on the individual process level into
independent and lightweight packages, which can then be containerized and
deployed to the edge. The benefits include independent development and
deployment, isolation, and scalability. These benefits make microservices an
attractive choice for edge application development.

In this thesis, an edge computing service is implemented as a monolith and in
accordance with the microservices paradigm. Both versions are then containerized
and deployed on low-resource edge devices in order to create two real-world
prototypes of a user mobility analysis service. The effects of the two software
architectures on two important edge computing workload allocation optimization
metrics latency, and energy consumption [4] are then compared in real-world
settings.

The rest of the thesis is organized as follows. Section 2 provides an overview of
the IoT system architecture, edge computing, virtualization, and microservices.

Section 3 presents the structure and processing of the mobility data used in
the services, the design and implementation of both services, the measurement
testbed, and the results. In Section 4, the gathered results are analyzed and
discussed. Section 5 concludes the thesis.

2. BACKGROUND
2.1. Internet of Things

Internet of Things, originally coined by Kevin Ashton in 1999 for the usage
of radio frequency identification tags in supply chain management [11] has
been a major topic of research. Rose et al. define IoT as a scenario where
internet connectivity and computational capabilities are extended to everyday
objects allowing them to generate, exchange, and consume data [12], but no
universal definition exists. The goal, however, is to make devices operate without
human interaction through massive distributed networks of heterogeneous devices
connected across the internet.

[oT systems can be applied from personal to national level. In everyday life,
[oT devices can e.g. be seen as home appliances and wearable devices. Different
industries such as healthcare and transportation have their applications, and
on the national level, IoT systems include smart water and energy grids. The
combination of such technologies can be used to create smart cities, e.g.

[oT is able to provide seamless ubiquitous computing, but to achieve this,
hardware, middleware, and data analysis tools are required[l]. Current IoT
systems rely on a cloud-centric architecture that contains a cloud, edge, and
perception layer [3, 13]. IoT applications and the data analysis tools reside in the
cloud layer and use the data generated by the perception layer that they receive
through the edge layer. These layers are depicted in Figure 1.

Cloud Layer ‘ Applications ‘
y . |
) Y

Edge Layer ‘ Edge Devices

Perception Layer loT Devices

Figure 1. Cloud-centric IoT architecture.

2.1.1. Cloud Layer

The cloud layer is the topmost layer of the IoT system architecture. It consists of
applications, hosted in data centers, i.e. the cloud, that provide the required
visualization and interpretation tools. The resources of the cloud layer are

virtually unlimited, but distances from IoT devices are typically long and the
generated data must be transmitted across multiple networks.

The cloud layer is centered around cloud computing, which has dominated
many areas of the I'T industry. Cloud computing, defined by NIST as a model
for enabling ubiquitous, convenient, on-demand network access to shared and
configurable resources, has five essential characteristics [14]:

e On-demand self-service
e Broad network access
e Resource pooling

e Rapid elasticity

e Measured services

This means that resources are shared between multiple users, automatically
controlled and optimized, as well as, rapidly scaled up or down when needed.
The cloud can also be accessed with any device with internet connectivity.

Applications in the cloud follow the physically two-tiered client-server model
[15], which is an example of a centralized system. As the model name suggests, in
centralized systems computational elements, i.e. nodes, are divided into clients
and a centralized server which communicate over a network. Nodes refer to
hardware devices or software processes. Often only the User Interface (UI) is
implemented client-side while the rest of the application, including processing
and data, is located server-side. The server provides a specific service and waits
for incoming requests from clients. When a request is received, service execution
starts, and after completion, the server sends a reply back to the client. In the
cloud-centric IoT architecture, IoT devices are the nodes and the cloud is the
server.

The cloud layer suffers from the problems of cloud computing [16, 17], and
centralized systems [15]. Major cloud issues for IoT include long distances
between devices and data centers, and privacy, as cloud providers have full control
over data stored in the cloud. Problems in centralized systems include the server
being a single point of failure and network reliability. If the server crashes
or becomes otherwise unavailable, the whole system stops working. Network
transmission failures also hinder system performance as requests and replies can
be lost.

2.1.2. Edge Layer

The edge layer is located in the middle of the IoT system architecture. In
the cloud-centric approach, the main objective of this layer is to transmit data
between the two other layers [13]. Networking infrastructure in the form of
hardware and middleware supports this bidirectional communication. The edge
layer includes devices such as servers, routers, Access Points (AP), gateways, and

cellular base stations that use various communication technologies and protocols
due to device heterogeneity.

In the cloud-centric IoT architecture, the computational resources at the
network edge are left untapped. However, edge computing, a paradigm that
has grown in popularity during recent years [5], makes the utilization of these
resources possible. Edge computing is defined by Open Edge Computing as
computation taking place at the network edge in small data centers located near
the users [18]. However, in academic research, definitions for edge computing
vary greatly as no universally accepted definition exists.

The edge computing paradigm pulls computation from centralized cloud data
centers to the network edge by exploiting the computational resources of Edge
Devices (ED) capable of processing, storing, and visualizing data. Utilizing edge
computing and the close proximity of EDs provides the following benefits [4, 6]:

e Improved connectivity

e Reduced end-to-end latency

e Reduced energy and network infrastructure resource consumption
e Better privacy

Edge computing can be used to enhance cloud computing by masking outages
and pre-processing device-generated data with EDs on the route to the cloud [4] or
even completely remove the need for cloud computing. Overall edge computing
provides better QoS for IoT than cloud computing. However, edge computing
suffers from issues, such as:

e Programmability of heterogeneous IoT systems

e Finding the balance between latencies created and energy consumed by
computation and communication.

e Handling crashes and ensuring that the whole system is not rendered useless
in case of one part failing

Existing edge computing solutions provide application resources requested by
devices inside VMs that are then executed in close proximity to devices [3].
An example of this is an edge-centric code offloading system for Android-based
devices implemented in [19].

The edge layer is an example of a distributed system [15]. Such systems are
characterized by two features:

e Consisting of autonomous nodes
e Appearing as a single coherent system

Distributed systems can contain a handful or even millions of physically
distributed heterogeneous nodes. These nodes are programmed to achieve
common goals by exchanging messages over a network [15]. Depending on the
system overlay network, each node can have either a set of known neighbors or

a list of application-specific nodes to communicate with. These connections, as
well as the difference between distributed and centralized systems, are illustrated
in Figure 2.

To address the heterogeneity of nodes, middleware is utilized in distributed
systems. Middleware adds a layer between the node’s OS and applications, that
provides a unified interface everywhere in the system and hides differences in
node OSs and underlying device hardware. Common types of middleware services
include communication, transaction, and service composition.

When designing distributed systems, certain goals must be met to make the
process worthwhile and to have the system fulfill the characteristics of distributed
systems. These goals include:

e Easy resource sharing between users

All aspects of distribution being transparent

Scaling being easy and possible in the size, geographical, and administrative
dimension

The system always acting accordingly to user expectations

e Components being small, adaptable, portable and easily integrated into or
used by other systems

Striving for the single coherent system characteristic, however, creates problems
as nodes can fail at any time, and the effects can be very unexpected. A failed
node can, for example, have no noticeable effect or bring the whole system to a
grinding halt. A high degree of transparency also reduces system performance,
and achieving full transparency is impossible.

| Node .j : Node .j Node Node

Centalized \ /
Server . Node |
| Node | | Node / - e Sy
o Ny — o/ Node |
Centralized System Distributed System

Figure 2. Node connections in a centralized and distributed system.

Since accommodating for increased traffic is extremely expensive or impossible
for an unscalable system [20], achieving scalability with any centralized
or distributed system is crucial for ensuring proper QoS. However, these
architectures scale differently.

System scalability consists of three dimensions, size, geographical, and
administrative [15], which all affect the system differently.

e Size: How easily users and resources can be added to a system, and how
they affect its performance

e Geographical: How distances effect communication latencies

e Administrative: How easily a system spanning multiple independent
organization can be managed

From the three dimensions of scalability, centralized systems mainly scale in the
size dimension. When traffic to a centralized server increases, the server can only
be scaled up, i.e. upgrading the CPU, adding memory and storage, etc. However,
scaling up is effective up to a certain point, and as request volume increases, even
modern machines will eventually run into problems. If clients are connected to
the server over a network, geographical scaling comes into play in the form of
transfer speed and physical distance [20]. Aside from well-optimized transfer
protocols, centralized systems do not have good means to address increases in
latencies and lost messages due to wide-area network reliability. For centralized
systems, administrative scalability only determines the effect of the increased
workload on the administrative workload [21], making administrative the least
significant dimension.

Compared to centralized, distributed systems are a lot more scalable as they can
scale in all three dimensions of scaling. In the size dimension, distributed systems
can scale up as well as out. Scaling out means adding more nodes to the system.
Adding nodes reduces computational bottlenecks and distances between nodes.
Well executed geographical scalability negates the effects of latencies created by
the distance and reduced reliability of wide-area networks. The importance of
administrative scalability is increased as distributed systems can span multiple
independent organizations making administration tasks more complex. Systems
should thus be made easily operable to avoid a large increase in administrative
workload.

When scaling systems, one should keep in mind that as a system gets larger,
operating it becomes difficult for humans, and fine-grained control is lost [21].

2.1.3. Perception Layer

The perception layer is the bottom-most layer of the IoT system architecture.
It controls and interacts with physical devices, as well as collects data [13].
Data collection happens through ubiquity enabling hardware including stationary
sensor networks, actuators, and sensors embedded into User Equipment (UE),
such as smartphones. The volume of data generated by devices is massive [1],
and in many use cases requires near real-time processing and a high level of
privacy.

Modern UEs are capable of locating themselves through different means,
including the Global Positioning System or by using Wi-Fi APs with the Wireless

Positioning System. Monitoring user movements is crucial for providing advanced
mobile services. The ability of UEs to locate themselves enables opportunistic
mobile computing, i.e. opportunistically leveraging resources from other devices
in the environment [22], in this case, resources are leveraged from the network
edge, creating a distributed system. For example, location-aware crowdsensing
solutions have been developed for the edge with microservices [23] and web-
integrated smart objects [24].

Since processing data consumes energy, the most important resources for
devices in the perception layer, it is offloaded to the higher layers through an
interface. However, offloading computation to the cloud or the edge still presents
a trade-off between latency and energy consumption [4, 25].

2.2. Development Technologies for Edge Computing

In edge computing, the focus of this thesis, virtualization is used to provide
resources as virtual packages to devices requesting them [3], and the microservices
paradigm [9, 10] is used to design suitable applications on the distributed edge
layer. Due to these reasons, an overview of the two technologies is provided.

2.2.1. Virtualization

As described by Campbell and Jeronimo [26], virtualization is the process of
decoupling an operating system from the underlying hardware of a physical
machine. Virtualization can thus be thought of as a computer implemented
in software running inside another computer. Virtualization enables us to run
multiple isolated instances of heterogeneous OSs on the same host machine.
An OS running inside a virtual environment is called a Virtual Machine. VMs
emulate physical hardware such as Central Processing Units (CPU), memory and
physical storage. Benefits of virtualization include more efficient use of available
resources, easier system management, and the ability to deliver pre-configured
environments, i.e. an application and its libraries, binaries, and data.
Virtualization is a crucial technology for edge computing for three reasons [27]

e An application running inside a VM works on any ED that supports
virtualization regardless of the underlying hardware

e Abstraction of underlying hardware makes application development easier

e VMs isolate applications from each other, and thus the failure of one will
not have an effect on others in a well-designed system

However, the inclusion of a guest OS and the virtualization of hardware makes
VMs multiple gigabytes in size making deployment, instantiation, relocation,
and maintenance resource consuming for edge computing. Containers have
recently emerged as a lightweight alternative for VMs [8]. Containers provide
by and large the same benefits as VMs, but their size is smaller as they only

emulate the guest OS and not the hardware. Unlike VMs, containers are
typically designed to run a single process allowing applications to be partitioned
into small independently developable and deployable packages. A container
typically contains an application-specific functionality, and potentially the data
it uses. Figure 3 presents the architectural differences between VMs and Docker
containers. The performance of containers has been shown to be close to bare-
metal for edge computing [28].

Real-world IoT services, e.g., can consist of multiple containers, making their
management arduous. Such problems can be solved by utilizing container
orchestration platforms, such as Kubernetes [29], which is a cloud-based, open-
source platform for container management automation.

However, when deciding between VM and container-virtualization, some things
should be noted. In [30], it is argued that when concerns for edge computing
attributes such as platform integrity and multi-tenant isolation are dominant,
VMs should be used instead of containers. In addition, in [27], it is stated
that container compromisation or crashes can in some cases affect the whole
system. As an example of container utilization in edge computing, a low-latency
video analytics system based on containers was implemented in [31]. In [32] the
usage of Docker containers was evaluated for [oT edge computing using Single-
Board Computers (SBC). The results show that the activation times of containers
on SBC are relatively short and utilizing container-virtualization has a nearly
negligible effect on performance.

App1& = App2& App38&
Bins/Libs | BinsiLibs Bins/Libs

Containerized
App 3 &
Bins/Libs |

Containerized
App 2 &
Bins/Libs

Containerized
App 1 &
Bins/Libs |

Guest OS Guest OS Guest OS

‘ Docker Engine ‘

‘ Hypervisor ‘ ‘ Host OS ‘

‘. Physical Hardware ‘ ‘ Physical Hardware ‘

Virtual Machine Docker

Figure 3. VM and Docker container architectures.

2.2.2. Microservices

Microservices are an auspicious paradigm for distributed IoT systems, as their
design goals match each other well. Microservices modularize applications at the
process level, transforming processes into individually developable and deployable
packages, that communicate with each other through lightweight Application
Programming Interfaces (API). Such partitioning turns applications into sets of

loosely-coupled small and autonomous services. In the real-world, applications
decompose into hundreds or even thousands of microservices [9].

Microservices are implemented and deployed with containers. Compared to
the traditionally monolithic server-side applications [9] and VM deployment, this
combination of two lightweight technologies consumes fewer resources making
it beneficial for edge computing. Other benefits of the microservices system
architecture include [10]:

e Heterogeneity of technologies as each microservice can be created using
different technologies

e [solation of failure

e Scaling in all three dimensions of scalability
e Composability

e Reduced complexity of individual processes

While no established microservices development practice exists [33],
microservices have adopted the Service-Oriented Architecture (SOA) for
distributed systems [33]. Thus it is important to examine their similarities
and differences [34]. Both software architectures are used to partition monoliths
into co-operating processes integrable across heterogeneous platforms. In SOA,
processes communicate through an enterprise service bus, and typically the data
for all services is stored in the same DataBase (DB). Microservices, on the
other hand, communicate through APIs, and all have their own DB. Overall,
microservices are more autonomous and loosely-coupled. Figure 4 illustrates the
differences between the two paradigms.

User User

Service Service Service
1 <> > > 3

I I I v v v

Enterprise Service Bus

Service | | Service | | Service DB1 DB2 DB3
1 2 3
| + |
> DB <
Service-Oriented Architecture Microservices Architecture

Figure 4. SOA and Microservices.

Challenges with microservices include increased complexity of systems overall,
API design [35], orchestration of services, and error handling.

The performance of Docker with microservices was evaluated in [36] and was
shown to be close to bare-metal. Microservices have, e.g., been applied to
building a Smart City IoT platform in [10], and in [37] a vehicle-to-edge real-
time emergency detection system deployed at the edge was presented.

In this thesis, Docker containers are used to deploy a monolithic application and
its microservices counterpart on Raspberry Pi (RPi) 3 Model Bs (SBC, Broadcom
BCM2837 CPU, 1.2GHz, 1GB memory), which act as the EDs.

3. EXPERIMENTS

The purpose of this thesis is to evaluate the feasibility of distributed microservices
versus centralized monolithic applications in edge computing, based on the
workload optimization parameters latency and energy consumption. To achieve
this, two versions of a user mobility analysis service were created. The goal of
the services was to provide refined information on user trajectories and movement
probabilities based on mobility data collected from UE connections to Wi-Fi APs,
located in the city center of Oulu, Finland.

The first service version was a centralized monolith, i.e. all functionalities were
contained in a single package. As seen in Figure 5a, the monolith composed of
four distinctly different functionalities. The second service version modularized
the monoliths functionalities into separate entities according to the microservices
paradigm, creating a distributed Mobility MicroService (MMS), hosted on four
EDs. The distributed MMS architecture is illustrated in Figure 5b. Developing
the services in the two previously mentioned ways was done to enable the testing
of microservices usage in a real-world prototype.

To make evaluation plausible, the main functionalities of both services are very
similar. Both service versions were containerized with Docker and deployed on
RPi 3 Model Bs in order to measure latency and energy consumption in real-world
settings.

Edge Device

Edge Device Edge Device

Container T Mobility .
Web User MI_Ob'"ty Trace Moblh_ty
Interface race P Probability
Analysis nalysis

3.Coordinates

A
6.Result

oordinates

Edge Device
Query

Visualizer by opapiiities

Result

Front End

Mobility

Visualizer Probability

Web User
Interface

5.Probabilities

Map

Remote Map
Service

Remote Map
Service

(a) Monolith execution flow. (b) Mobility Microservice.

Figure 5. Monolithic and MMS architecture.

3.1. User Mobility Analysis

As user mobility analysis is only a means to an end in the monolithic and
microservice application development in this thesis, a brief overview is given.
User mobility analysis is a long researched topic in academia due to its importance
in tracking and predicting human mobility patterns [38], as well as determining

points-of-interest people are likely to visit [39]. Results provided by user mobility
analysis are necessary for example in location-based IoT and edge computing
applications.

Human mobility has been shown to display simple reproducible patterns
[38], for example, due to time-based habitual movements such as commuting.
The relatively small variation in these movements makes prediction feasible.
Traditionally, predictions are done based on analysis of large-scale data sets of
social media data taken from Facebook user locations, Twitter’s user-generated
content, and location sharing services [38]. Analysis is typically done in the cloud.

3.2. Mobility Data Processing

To create any functionality or a UI, an understanding of the data is required. Both
versions of the mobility analysis service use the data provided in [40]. It contains
approximately 114 million entries of session data from UE connections to almost
1300 Wi-Fi APs of the open panOULU Wi-Fi network located in Oulu, Finland,
and was gathered during the years 2007-2015. Table 1 depicts the variables
included in the data. AP coordinates were provided as a separate data set.

Table 1. Example of the unprocessed mobility data

Wi-Fi trail ID | Timestamp | Origin AP | Destination AP | Device ID

78 2007-02-28 | 132 155 5
0:14:46

27179 2007-03-06 308 471
12:35:35

25727450 2010-03-06 | 137 138 4532
13:09:36

25727450 2010-03-06 | 281 138 4532
13:09:39

63641599 2015-02-03 | 964 965 45208
12:53:12

63664813 2015-02-03 | 825 824 90765
22:11:24

To simplify code and reduce computation time, the data was further processed
using R [41], a free programming language and environment for statistical
computing and graphics. Because of the data set’s size, base R was not adequate
for processing, thus the Data.Table package was used. It provides an improved
version of R’s standard data structure designed to reduce computation time.

To address data quality, entries containing missing origin APs were removed,
as devices suddenly appearing do not tell much about user mobility. Next,
the amount of consecutive UE movements with 0-60 seconds between them was
calculated. The resulting time distribution depicted in Figure 6 contains multiple
peaks. The first peak was on very fast movements whose mode was 0 seconds

and the corresponding local minimum on 4 seconds. Fast movements are typically
unnecessary device handoffs between APs, i.e. a device continuously switching
between APs as the user moves [42]. Redundant device handoffs are common in
urban areas and happen due to objects interfering with received signal strength
[42], other reasons include network congestion, temporarily being unable to find
signal coverage [43] or temporarily connecting to an AP with a stronger signal.
Because redundant UE handoffs do not explain user mobility, consecutive jumps
with 0-4 seconds between them were removed from the data.

After the previous preprocessing, the data contained approximately 39 million
entries. However, to align with the research previously done in the MEC-AI
project, only the entries Tuesday, February 3rd, 2015, were used in the services.
Since all the data was for the same day, timestamps were divided into hour,
minute, and second. Wi-Fi trail and device IDs were also removed. Table 2
contains a version of Table 1 with the previously mentioned modifications and
four of the rows deleted as they included data for the wrong date.

15%-
10%-

5%-

. WWWWW

0 5 10 15 20 25 30 35 40 45 50 55 60
Seconds Between Consecutive UE Movements

Normalized Amount of UE Movements

Figure 6. Consecutive UE movements for for each second.

Table 2. Processed version of data from Table 1

Origin AP | Destination AP | Hour | Minute | Second
964 965 12 53 12
825 824 22 11 24

3.3. Service Design and Implementation

The objective of the user mobility analysis services developed in this thesis is to
provide refined information on user trajectories and movement probabilities in
the form of a map image containing the visualized results. To achieve this, the

services must be able to take user input, subset the mobility data accordingly,
extract movement trajectories, calculate movement amounts and probabilities,
and visualize the results. Thus, as seen in Figure 5, the services were designed to
have the following workflow.

1. User accesses the service’s web Ul and specifies the area, time frame and
included APs for the analysis

2. The back-end fetches the selected area’s map from Google Maps

3. A subset of the mobility data is created based on user input and map
coordinates

4. User trajectories and movement amounts are extracted from the subset
5. Probabilities are calculated based on movement amounts
6. APs, movement trajectories, and probabilities are added on to the map

7. The resulting map image is visualized to the user in the web Ul

Figure 7 depicts the UI designed for the services, as well as, an example result
of a user mobility analysis request. The resulting image shows movements leaving
from AP 864 from 8-9 am. The circles represent APs, the arrows represent UE
movements. Probabilities are shown as text on top of the destination AP. The
settings used in the analysis can be modified using the options panel.

According to edge computing conventions, the services were implemented
as virtualized packages using Docker containers. The r-base-dev package was
installed on top of the containers’ Debian base, allowing the deployment of R
software. However, R with no additional packages is not enough to create the
services. Thus, depending on functionalities implemented inside a container, one
or more of the R packages Shiny, Ggmap [44], Data.Table and Ggplot2 were also
installed. Data required by each service was stored in a directory on the host ED
and accessed through Docker Volume. The following presents the goal of each
service component and its implementation.

The front-end web UI allows users to send mobility analysis requests and
view the results. The Ul is created with the Shiny package, which enables web
applications to be created using only R code. Shiny also functions as the service’s
server, exposing it to connections on the port 8000. The service front-end can be
accessed by entering the host machine’s Internet Protocol (IP) address and the
port 8000 into a browser. From the UI, users can specify the area to be analyzed,
select which movement amounts to not include in the image, define specific origin
and destination APs, and select a time frame. The front-end passes queries on
to the Mobility Trace Analysis (MTA) and visualizer service components and
visualizes the result to users. The web Ul was also used to measure service
execution latencies, i.e. the time it takes for the resulting image to appear on
the UI after a request is sent, with a logging functionality implemented with the
R function Sys.time() and by saving the results in the Comma-Separated Values
(CSV) file format.

§30L73A R, OULY

Select Map Area - £ S
@ City Center, Oulu _ 0.53846154 0.038461538
O University of Oulu o

MYLLY

Select Zoom Amount: ey

B 18

Amounts to Filter

o] 10

Latitude

MERITULLI
&
&

KUUSILUOTO Fa, &
0100~ g

From Nodes

864 rd

To Nodes e

ETU-LYOTTY

gl .
2560 25,265 25470 25475
Longitude:
Hour Range: .

Minute Range:

Second Range:

Get image

Figure 7. Service UI and an example result.

Mobility Trace Analysis identifies movement trajectories from the data and
calculates the number of movements corresponding to each trajectory. This is
done based on coordinates received from the visualizer service and user input.
Suitable mobility observations are selected by

1. Identifying observations inside the given time frame
2. Identifying APs inside the selected area based on coordinates
3. Identifying observations with origin and destination APs inside the area

This data subsetting is done with the Data.Table package. Unique movements
are then extracted from the subset of observations and the total amount of such
actions is calculated. Origin and destination AP identifiers are replaced with
their coordinates. R’s ability to vectorize functions is utilized to reduce the time
used in MTA. A vectorized function is able to modify all values in a vector at the
same time. The results of the analysis are passed on to the mobility probability
and visualizer components.

The movement probability service calculates the probability of each mobility
trajectory found by the MTA. However, as movement prediction is not the focus
of this thesis, movement probabilities are calculated for movements between APs
with one-hop distance by summing up the number of movements leaving an origin

AP and dividing the number of movements to each of the destination APs with
the sum. Results are passed on to the visualizer. Table 3 contains an example

result of MTA and mobility probability calculation.

Table 3. Example MTA and probability calculation result

Orig Lat Orig Long | Dest Lat Dest Long | Amount | Probability
65.0108271 | 25.4812945 | 65.0238644 | 25.5200225 | 1/5 0.20
65.0108271 | 25.4812945 | 65.0431872 | 25.4877352 | 4/5 0.80
65.0860519 | 25.4812949 | 65.0587324 | 25.5604638 | 3/3 1.00

The visualizer service fetches the map requested by a user and layers the MTA
and probability calculation results on top of it. Requested maps are fetched from
Google Maps using the Ggmap package. Coordinate information is extracted
from the map and sent to MTA. Unique APs found in the MTA result are drawn
on top of the map as circles in their real location. Movements between APs are
illustrated as arrows. The width of an arrow illustrates the number of movements.
Movement probabilities are added near the destination APs. Drawing on top of
the map is done with Ggplot2 graphics objects. The final image is sent to the
web UL

3.3.1. Centralized Monolith

The monolithic service version was realized as a single container. Its architecture
can be seen in Figure ba. As all service components are running on the same
container, no additional functionalities had to be added to enable inter-component
communication. All parts of the analysis are done successively to the whole data
set being analyzed, making service execution linear, as depicted in Figure 8.

3.3.2. Distributed Mobility Microservice

The distributed MMS consists of the four different functionalities modularized
into separate components deployed on different EDs inside containers. The
MMS architecture is depicted in Figure 5b. The microservices communicate with
each other by sending the user’s query and results in R’s native rds file format
using Secure Copy Protocol (SCP). An exception to this is the resulting image,
which is saved by the visualizer in the Portable Network Graphics file format.
Implementing inter-service communication required error checking in the form
of making sure that services do not attempt to read files as they are still being
received, to be added, as this would crash the service. The data required by each
service is stored on their host EDs and accessed through Docker Volume. Unlike
in the monolith, the MMS’s service components are able to run in parallel, as the
MTA divides unique movements into chunks and processes them one at a time.
The size of created chunks is defined in the MTA code. Results for each chunk

are sent to the visualizer and mobility probability microservices so that they are
able to fulfill their task while new MTA results are calculated. As the visualizer
receives data from the other services, it layers them on top of the map. The effect
of MMS architecture on the execution timeline is illustrated in Figure 8.

@ Fropapillty M Monolith

r—User Input: U T M

Time Based Retrieving Retrieving
Modification the Map the map

I &

Coordinates

T
a I
AP IDs Add APs
as points
Analvsis Result 1 Trace
nalysis ~esults Propability Add Traces Analysis
T Analysi Calculation >
race Analysis - § Add Propability
—Analysis Results—& — i N
Propability
Calculation Add Traces Propability

Finished Plot Add Propability Calculation

‘Select APs in area

Trace Analysis

Add Plot to

vl Create

Plot

R =

Add Plot to
T ul
'

Mobility Microservice Moncalith

Figure 8. Execution timeline for the MMS and the Monolith.

3.4. Testbed and Experiments

To test the effects of the distributed MMS, in comparison to the monolith, a real-
world prototype was created for both service implementations. The prototypes
were then used to collect energy consumption and latency data for service
requests. The prototypes were created by deploying the services, containerized
with Docker, on RPis and by orchestrating them with Kubernetes. This is
illustrated in Figure 9. The monolith was deployed on one RPi, and the MMS
was deployed on four RPis connected to the same wireless network so each
microservice was running on its own host machine. Each microservice knew the
IP address of the RPis to whom they had to send messages to. The required
AP location and mobility data were included in the RPis and accessed through
Docker Volume. Service requests were sent through the web UL

During all measurements, the time frame was set to include the whole day, and
the size of the area being analyzed ranged from approximately 150m x 150m to
bkm x bkm. Latencies gathered in [45] for a laptop and desktop computer are a
part of the testbed, as results gathered in this thesis are also compared to them.
However, it should be noted that the implementation evaluated in [45] did not
use R’s vectorization and was not distributed to multiple machines.

Energy consumption for each service was measured with the Monsoon Power
Monitor [46]. One RPi at a time was connected from its 5V power input and
ground pin to the Power Monitor’s main channel. The voltage output provided
by the Power Monitor ranges between 2.1V-4.55V, but RPi 3 typically uses 5.1V

[47]. Setting the Power Monitor output to 4.55V was, however, sufficient in this
case. Figure 10 depicts the testbed during energy consumption measurements.

Orchestrator
Kubernetes
€ Edge Host N (€ Edge Host D ([Edge Host N (O
Mobility .
Monolith —— Trace MOb'".tY Visualizer
Interface : Probability
Analysis

Figure 9. Service orchestration with Kubernetes.

Figure 10. Energy consumption testbed.

3.5. Results

During the early stages of result collection, it was observed that connecting a RPi
to the power monitor increased service execution latencies significantly. Because
of this, the measurements were done separately.

Figure 11a depicts the number of APs and movement actions for each
measurement point in Figure 11b. Service execution latencies and the results
used as comparison [45] are illustrated in Figure 11b. The effects of increasing
communication were measured by using 400, 600, 800, and 1000 observations as
the MTA chunk size. Energy consumption was measured for

e RPI idling, i.e. the baseline energy consumption
e Service idling

e Services processing data for 4 APs

e Services processing data for 218 APs

Results collected with the Power Monitor were exported in CSV format and
later visualized and analyzed using R. Tables 4 and 5 show the mean energy
consumption of each service for the different MTA chunk sizes. Figure 12a depicts
a RPi idling and Figures 12b-12f depicts service energy consumption transients
when analyzing data for 218 APs with MTA chunk size set to 800.

18-

0
ans YY)
SR

Movement Actions (x1000)

o N A O ©

_mB
4 19 46

106

157 218

Number of Access Points

(a) APs and corresponding movements.

100
90-
80-
70
60-
50
40-
30
20-
10-

0-

Seconds

(b) Service execution latencies.

Size of MTA Data Chunk

1000

400

—= 600

— 800

~+ 800 (Desktop)
800 (Laptop)
Monolith

A
7

106 157

Number of Access Points

Figure 11. Latency evaluation results.

Table 4. Mean service energy consumption for 4 APs

MMS
Monolith | UI MTA | Probability | Visualizer
Idle 1.21W 1.21W | 1.22W | 1.21W 1.20W
400 1.49W 1.26W | 1.36W | 1.35W 1.48W
600 1.49W 1.27TW | 1.36W | 1.37TW 1.49W
800 1.49W 1.27TW | 1.37TW | 1.34W 1.49W
1000 1.49W 1.27TW | 1.37TW | 1.38W 1.49W

Table 5. Mean service energy consumption for 218 APs

MMS
Monolith | UI MTA | Probability | Visualizer
Idle 1.21W 1.21W | 1.22W | 1.21W 1.20W
400 1.62W 1.22W | 1.58W | 1.59W 1.49W
600 1.62W 1.22W | 1.62W | 1.61W 1.49W
800 1.62W 1.22W | 1.62W | 1.63W 1.49W
1000 1.62W 1.22W | 1.63W | 1.63W 1.48W

19 46

218

5 10 15 20
Seconds
(a) Raspberry Pi 3 Model B idling.

50 100 150
Seconds
(b) Monolith, 218 APs.

25 50 75
Seconds
(c) UL, 218 APs with 800 chunk size.

30 60 90
Seconds
(d) MTA, 218 APs with 800 chunk size.

20 40 60
Seconds

(e) Mobility probability, 218 APs with 800 chunk size.

30 60 90
Seconds
(f) Visualizer, 218 APs with 800 chunk size.

Figure 12. Energy consumption transients.

120

4. ANALYSIS OF RESULTS

In this section, the collected latency and energy consumption data is analyzed.
The gathered results and the developed services are also discussed.

4.1. Latency

From the measured latencies shown in Figure 11b, it can be observed that
resource-constrained EDs such as the RPi are able to handle service requests
for geographically small areas within a reasonable time. Processing the data
for 4 APs took approximately 7 seconds for the centralized monolith, and 14
seconds for the distributed MMS. The difference between the MMS’s and the
monolith’s service execution latency is caused by inter-service communication,
which makes the MMS lag behind for 4, 19, and 46 APs. After reaching 106 APs,
the distributed MMS provides lower latencies than the monolith, and at 218
APs, the MMS with 1000 MTA chunk size is 9 seconds faster than the monolith.
Decreasing MTA chunk size reduces this latency difference, nonetheless, the chunk
size of 600 is interestingly shown to provide lower latency than 800. Using 400 as
the MTA chunk size was nearly as slow as the monolith for 106-218 APs.

4.2. Emnergy Consumption

Figures 13a-13f illustrate the means and standard deviations calculated from the
energy consumption measurement results presented in Tables 4 and 5. For service
executions, results were calculated based on energy consumed when processing
data for the smallest and largest number of APs.

From Figure 13a, it can be observed that while idling, the RPi 3 Model
B consumes approximately 1.1W on average, and after starting a service,
consumption is increased by approximately 0.1W. As seen in Table 6, the
centralized monolith consumed 1.49W for 4 APs and 1.62W for 218 APs.
Depending on the MTA chunk size, the distributed MMS consumed in total
5.45W-5.51W for the smallest number of APs and 5.88W-5.96W for the largest
number of APs. From the individual service components, the Ul consumed
1.265W for 4 APs and 1.22W for 218 APs. This is due to the Ul doing nothing
while waiting for the resulting image, the mean for the smallest amount of data
is thus higher, as the time spent being idle is shorter. The visualization service
consumes approximately 1.49W regardless of data volume or MTA chunk size.
MTA and mobility probability calculation both used a very similar amount of
energy, 1.34W-1.38W for 4 APs and 1.58W-1.63W for 218 APs.

The data analysis done in chunks by the MMS is especially visible in the MTA’s
and mobility probability’s energy consumption transients seen in Figures 12d and
12e. After a chunk of data is analyzed, the energy consumption decreases while
MTA and mobility probability send results forwards. The drop lasts longer for
probability calculation, as it completes analysis faster than MTA and has to also
wait for MTA results.

When focusing on the whole process, the total energy consumption in edge
computing is the accumulation of each layer’s energy cost [4]. Table 6 presents the
total energy cost while idling and processing data for the monolith and the MMS
with each MTA chunk size. The results show that, while idling, the mobility MMS
consumes 4 times more energy than the monolith and during data processing,
approximately 3.6 times more.

Table 6. Energy consumption accumulation for the monolith and the MMS

MTA chunk size
Monolith | 400 600 800 1000
Idle 1.2W 4.84W | 4.84W | 4.84W | 4.84W
4 APs 1.49W 5.45W | 5.49W | 5.47TW | 5.51W
218 APs | 1.62W 5.88W | 5.94W | 5.95W | 5.96W

4.3. Discussion

In this thesis, an edge computing user mobility analysis service was developed
as a centralized monolith and further modularized into a distributed Mobility
MicroService utilizing the microservices paradigm. The purpose of the
services was to provide refined information on user trajectories and movement
probabilities from the panOULU mobility data set [40]. The monolith was realized
as a single Docker container and the MMS as a set of four containers. Both
service implementations were deployed on low-resource EDs to create a real-world
prototype with the goal of testing the feasibility of distributed microservices in
edge computing, compared to traditional monoliths, based on service execution
latency and energy consumption.

Before service development, the panOULU data set was processed with R to
suit this use case. Unnecessary device handoffs were identified and removed
from the data, as they provide no real information on user mobility. Working
with the data set proved difficult due to its large size. However, utilizing the R
package Data.Table made the process feasible. When observation with missing
values and redundant device movements were removed, the data was significantly
smaller. To align with previous research in the MEC-AI project, only data for
the date February 3rd, 2015, was used. Timestamps were further divided into
hour, minute, and second. Wi-Fi trail and device identifiers were removed, as the
services were not meant for tracking the movements of specific users.

The service implementations relied on R based software to process varying
amounts of mobility data. The usage of R in microservice development is atypical
and likely effected gather results by increasing latencies, e.g. In this case, the
usage of R can be attributed to the developer’s skills. The service development
was an evolutionary process, as many functionalities were redesigned multiple
times. Compared to the monolith, the MMS was more difficult to create. The
distribution of services increased complexity as a way for services to communicate,

2.0-

P(W)
o

o
5

0.0-

2.0-
1.5

£1.0

T
0.5

0.0-

2.0-

1.5

P(

0.5

0.0-

31_0-

2.0
1.76
1.62
1.5
123 124 126 123 124 123
AV ‘;“1-0,
o
] 0.5
BaselineMonolith MTA Probability Ul Visualizer 0.0-
218 APs 4 APs
(a) Idling. (b) Monolith.
2.0
1.5-
128 128 128 128 137 137138138
10
o
0.5
400 600 800 1000 400 600 800 1000 0.0 200 600 800 1000 400 600 800 1000
MTA Data Chunk Slze MTA Data Chunk Slze
(c) User Interface. (d) Visualization.
177 1.79 1.79 1.79 2.0
1.54 1.54 1.56 1.55 152 1.56 153 1.57
1.5-
S10
o
0.5
400 600 800 1000 400 600 800 1000 0.0 400 600 800 1000 400 600 800 1000
218 APs 218 APs
MTA Data Chunk Slze MTA Data Chunk Slze
(e) MTA. (f) Mobility Probability.

Figure 13. Energy consumption means and standard deviations.

as well as additional error checking had to be added. Deciding to use SCP
for service communication was not the most microservice-esque solution. The
additional packages installed on the containers to make SCP work also increased
overhead. Although, creating a typically used API would have made the scale of
this project too large.

The creation of the real-world prototypes required the services to be deployed
on resource-constrained EDs, which were RPi 3 Model Bs. Kubernetes was used
to orchestrate the services. Deploying the monolith took a significantly longer
time than the MMS, demonstrating that deploying monoliths to the edge is not
very preferable. As development was not done on the RPis, a problem was noticed
when attempting to deploy the web UI. The Later package, a Shiny dependency,
did not work properly on RPi. This issue was fixed according to [48]. Each
microservice in the MMS had to know the IP address of other microservices
that they communicated with. The target IP addresses were defined in the
microservice code. Due to this, an IP changing could require multiple microservice
containers to be rebuilt. This issue should be fixed in further development.

Looking back at the design goals of distributed systems, it can be noted
that most of the goals were met in the distributed MMS. Each service can
easily exchange data with each other using SCP. When a user interacts with
the MMS, they only see the UI, thus the distribution stays hidden. Scaling in
the geographical dimension is achieved by adding more EDs with the services
deployed on them. This also means that the MMS scales up and out in the size
dimension. On the other hand, the monolith only scales up. However, deploying
new instances of the MMS components is slightly troublesome, as the IPs of the
other services have to be added to the services code. Administrative scalability
was achieved with Kubernetes orchestratio. With the query options that users are
able to change, the service acts accordingly to user expectations. Each service is
small and easy to change, but at their current state, they are difficult to integrate
into other systems.

During the testing of the measurement process, it was noticed that connecting
a RPi to the Monsoon Power Monitor increased latencies. This is most likely due
to the Power Monitor’s voltage output not being high enough, making the RPi’s
processor speed vary.

The latency evaluation shows that lightweight monoliths and distributed
microservices deployed on low-resource EDs at the network edge are able to handle
service requests concerning small numbers of APs in reasonable time. While the
monolith is faster for small amounts of data, the distributed microservice provides
better performance for large amounts of data. In this case, the MMS surpassed
the monolith’s execution speed at 106 APs, which corresponds to approximately
8000 movement actions. Such results indicate that distributed services should
be able to handle the massive volume of data generated by IoT better than
monoliths.

The gap in latency between the monolith and the MMS for low numbers of APs
is likely caused by latencies added by data transmission. Based on the latency
measurements it was also noticed that intermediate results should not be added
to the map as they arrive. Instead, they should be added at the same time to
reduce the time used saving the image. Comparing the gathered results to the

ones in [45] shows that with code optimization, RPis are able to provide almost
as low latencies as EDs with more computational resources for small numbers of
APs. Latencies for the RPis also behave very similarly to the EDs used in [45].

Lowering the latencies of the MMS was attempted by adding the parallelization
of services, but based on the collected results, this did not work as expected, as
using the chunk size of 1000 is faster than the others.

The energy consumption measurements show that the distributed MMS
consumes more energy than the monolith. This is no surprise, as the MMS
uses four RPis, which makes the MMS consume four times more energy when
idling, and approximately 3.6 times more when processing data. However, this is
acceptable if large amounts of data are being analyzed, as the distributed MMS
processes the data for a shorter time than the monolith.

From the individual services, the monolith and the visualizer consumed the
most energy for 4 APs. For 218 APs, the monolith, MTA, and probability
calculation consumed approximately as much energy, making them the most
energy-consuming services for large amounts of data. MTA and probability
calculation energy usage also trends upwards as computation increases. In all
cases, the Ul used the least energy.

The goal of this thesis, testing the feasibility of distributed microservices for
edge computing, was achieved, as the service execution latencies and energy
consumption were able to be collected. However, as R and RPis were used,
their significance depends on implementation. Services deployed on resource-rich
EDs or created with other programming languages than R, e.g. can have different
results.

In comparison with previous work [49], microservices were used to test the
feasibility of a proposed architecture containing a cloud, fog, and edge layer.
Containerized microservices deployed on RPis at the edge were shown, similarly to
this thesis, to provide lower latencies with increased variance. The fast activation
times of containers observed in [32] were also noticed during the measurement
process of this thesis.

5. CONCLUSION

In this thesis, the feasibility of distributed microservices for IoT edge computing
was tested for two important workload allocation optimization metrics, i.e.
latency and energy consumption. Testing was done with a real-world prototype
of a monolithic user mobility analysis service and a distributed Mobility
MicroService. Both service versions provided refined information on user
trajectories and probabilities for movements between APs of the panOULU Wi-Fi
network.

The collected results showed that centralized monoliths provide better QoS
for small amounts of data and distributed microservices for large amounts of
data. Overall the distributed microservices version consumed significantly more
energy than the monolith. The latencies were also compared to results previously
gathered in [45].

1]

[10]

[11]

[12]

[13]

6. REFERENCES

Gubbi J., Buyya R., Marusic S. & Palaniswami M. (2013) Internet of
Things (IoT): A vision, architectural elements, and future directions. Future
generation computer systems, 29(7), pp. 1645-1660.

Network World (2016). URL: https://www.networkworld.com /article/3147892/one-

autonomous-car-will-use-4000-gb-of-dataday.html. Accessed 25.8.2019.

Leppdnen T. & Riekki J. (2019) Energy Efficient Opportunistic Edge
Computing For the Internet of Things. In: Web Intelligence, 17(3), 10S
Press, pp. 209-227.

Shi W., Cao J., Zhang Q., Li Y. & Xu L. (2016) Edge computing: Vision
and Challenges. IEEE Internet of Things Journal 3(5), pp. 637-646.

Satyanarayanan M. (2017) The Emergence of Edge Computing. Computer
50(1), pp. 30-39.

Yousefpour A., Fung C., Nguyen T., Kadiyala K., Jalali F., Niakanlahiji A.,
Kong J. & Jue P. (2019) All One Needs to Know About Fog Computing
and Related Edge Computing Paradigms: A Complete Survey. Journal of
Systems Architecture.

IBM IT Infrastructure Blog (2018). URL:
https://www.ibm.com/blogs/systems/ibm-power9-scale-out-servers-deliver-
more-memory-better-price-performance-vs-intel-x86/. Accessed 26.8.2019.

Pahl C. & Lee B. (2015) Containers and clusters for edge cloud architectures—
a technology review. In: 3rd international conference on future internet of
things and cloud, IEEE, pp. 379-386.

Dragoni N., Giallorenzo S., Lafuente A.L., Mazzara M. M.F., Mustafin R. &
Safina L. (2017) Microservices: Yesterday, Today, and Tomorrow. In: Present
and ulterior software engineering, pp. 195-216. Springer.

Krylovskiy A., Jahn M. & Patti E. (2015) Designing a smart city internet of
things platform with microservice architecture. In: 2015 3rd International
Conference on Future Internet of Things and Cloud, IEEE, pp. 25-30.

Ashton K. (2009) That ‘internet of things’ thing. RFID journal 22(7), pp.
87-114.

Rose K., Eldridge S. & Chapin L. (2015) The internet of things: An overview.
The Internet Society (ISOC), 80 p.

Lin J., Yu W., Zhang N., Yang X., Zhang H. & Zhao W. (2017) A Survey
on Internet of Things: Architecture, Enabling Technologies, Security and
Privacy, and Applications. IEEFE Internet of Things Journal 4(5), pp. 1125~
1142.

[14] Mell P. & Grance T. (2011), The NIST definition of cloud computing.

[15] Van Steen M. & Tanenbaum A.S. (2017) Distributed Systems. Maarten van
Steen Leiden, The Netherlands, third ed. URL: distributed-systems.net.

[16] Hoffman P. & Woods D. (2010) Cloud Computing: The Limits of Public
Clouds for Business Applications. In: IEEE Internet Computing 14(6), pp.
90-93.

[17] Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R., Konwinski A., Lee
G., Patterson D., Rabkin A., Stoica I. & Zahari M. (2010) A view of cloud
computing. Communications of the ACM, 53(4).

[18] openEDGEcomputing (2019). URL: https://www.openedgecomputing.org/about/.
Accessed 28.8.2019.

[19] Lin L., Li P., Liao X., Jin H. & Zhang Y. (2018) Echo: An edge-centric
code offloading system with quality of service guarantee. IEEE Access 7, pp.
5905-5917.

[20] Bondi A.B. (2000) Characteristics of scalability and their impact on
performance. In: Proceedings of the 2nd international workshop on Software
and performance, ACM, pp. 195-203.

[21] Weinstock C.B. & Goodenough J. (2006), On system scalability.

[22] Conti M., Giordano S., May M. & Passarella A. (2010) From opportunistic
networks to opportunistic computing. IEEE Communications Magazine 48,
pp- 126-139.

[23] Mirri S., Prandi C., Salomoni P., Callegati F., Melis A. & Prandini M. (2016)
A service-oriented approach to crowdsensing for accessible smart mobility
scenarios Mobile Information Systems, article no. 2821680.

[24] Leppénen T., Savaglio C., Lovén L., Russo W., Di Fatta G., Riekki J. &
Fortino G. (2018) Developing Agent-Based Smart Objects for IoT Edge
Computing: Mobile Crowdsensing Use Case. In: International Conference
on Internet and Distributed Computing Systems, Springer, pp. 235—-247.

[25] Yu W., Liang F., He X., Hatcher W.G., Lu C., Lin J. & Yang X. (2017) A
survey on the edge computing for the Internet of Things. IEEE access 6, pp.
6900-6919.

[26] Campbell S. & Jeronimo M. (2006), An introduction to virtualization.
Published in “Applied Virtualization”, Intel, pp. 1-15.

[27] Tao Z., Xia Q., Hao Z., Li C., Ma L., Yi S. & Li Q. (2019) A Survey of
Virtual Machine Management in Edge Computing. Proceedings of the IEEFE,
107(8) , pp. 1482-1499. IEEE.

[28] Ismail B.I., Goortani E.M., Ab Karim M.B., Tat W.M., Setapa S., Luke
J.Y. & Hoe O.H. (2015) Evaluation of docker as edge computing platform.
In: 2015 IEEE Conference on Open Systems (ICOS), IEEE, pp. 130-135.

[29] What is Kubernetes. URL: https://kubernetes.io/docs/concepts/overview /what-
is-kubernetes/. Accessed 29.9.2019.

[30] Ha K., Abe Y., Eiszler T., Chen Z., Hu W., Amos B., Upadhyaya R., Pillai
P. & Satyanarayanan M. (2017) You can teach elephants to dance: agile
vm handoff for edge computing. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing.

[31] Yi S., Hao Z., Zhang Q., Zhang Q., Shi W. & Li Q. Lavea: Latency-aware
video analytics on edge computing platform. In: Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, ACM, p. 15.

[32] Morabito R. (2017) Virtualization on internet of things edge devices with
container technologies: a performance evaluation. IEEE Access 5, pp. 8835—
8850. IEEE.

[33] Butzin B., Golatowski F. & Timmermann D. (2016) Microservices approach
for the internet of things. In: 2016 IEEFE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), IEEE, pp. 1-6.

[34] Cerny T., Donahoo M.J. & Trnka M. (2018) Contextual understanding
of microservice architecture: current and future directions. ACM SIGAPP
Applied Computing Review 17, pp. 29-45. ACM.

[35] Haselbock S., Weinreich R., Buchgeher G. & Kriechbaum T. (2018)
Microservice design space analysis and decision documentation: A case study
on api management. In: 2018 IEEE 11th Conference on Service-Oriented
Computing and Applications (SOCA), IEEE, pp. 1-8.

[36] Amaral M., Polo J., Carrera D., Mohomed I., Unuvar M. & Steinder
M. (2015) Performance evaluation of microservices architectures using
containers. In: 2015 IEEE 1jth International Symposium on Network
Computing and Applications, IEEE, pp. 27-34.

[37] Zhou P., Zhang W., Braud T., Hui P. & Kangasharju J. (2019) Enhanced
Augmented Reality Applications in Vehicle-to-Edge Networks. In: 2019 22nd
Conference on Innovation in Clouds, Internet and Networks and Workshops

(ICIN), IEEE, pp. 167-174.

[38] Cheng Z., Caverlee J., Lee K. & Sui D.Z. (2011) Exploring millions
of footprints in location sharing services. In: Fifth International AAAI
Conference on Weblogs and Social Media.

[39] Noulas A., Scellato S., Lathia N. & Mascolo C. (2012) Mining user mobility
features for next place prediction in location-based services. In: 2012 IFEE
12th international conference on data mining, IEEE, pp. 1038-1043.

[40]

[47]

[48]

[49]

Kostakos V., Ojala T. & Juntunen T. (2013) Traffic in the smart city:
Exploring city-wide sensing for traffic control center augmentation. I[FEFE
Internet Computing 17(6), pp. 22-29.

R (2019). URL: https://www.r-project.org/. Accessed 29.8.2019.

Rahman M.A., Salih Q.M., Asyhari A.T. & Azad S. (2019), Traveling
distance estimation to mitigate unnecessary handoff in mobile wireless
networks. Annals of Telecommunications, pp. 1-10.

Johnson S.B., Nath P.S. & Velmurugan T. (2013) An optimized algorithm
for vertical handoff in heterogeneous wireless networks. In: 2013 IEEE

Conference on Information and Communication Technologies, IEEE, pp.
1206-1210.

Kahle D. & Wickham H. (2013) ggmap: Spatial visualization with
ggplot2. The R Journal 5, pp. 144-161. URL: https://journal.r-
project.org/archive/2013-1/kahle-wickham.pdf. Accessed 29.8.2019.

Leppéanen T., Savaglio C., Lovén L., Jarvenpéda T., Ehsani R., Peltonen E.,
Fortino G. & Riekki J. (2019) Edge-based Microservices Architecture for
Internet of Things: Mobility Analysis Case Study. Accepted.

Monsoon Solutions Inc. URL: https://www.msoon.com/lvpm-software-
download. Accessed 30.8.2019.

Raspberry Pi Power Supply. URL: https://www.raspberrypi.org/documentation/

hardware/raspberrypi/power/README.md. Accessed 30.8.2019.

Installation failed on Raspberry PI 3 - Debian Stretch - R 3.5.1. URL:
https://github.com/r-lib/later /issues/73. Accessed 2.9.2019.

Alam M., Rufino J., Ferreira J., Ahmed S.H., Shah N. & Chen Y. (2018)
Orchestration of microservices for iot using docker and edge computing.
IEEE Communications Magazine 56, pp. 118-123. IEEE.

