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Abstract 

Rootkits – a type of software that specializes in hiding entities in computer systems 

while enabling continuous control or access to it – are particularly difficult to detect 

compared to other kinds of software. Various tools exist for detecting rootkits, utilizing 

a wide variety of detection techniques and mechanisms. However, the effectiveness of 

such tools is not well established, especially in contemporary academic research and in 

the context of the Linux operating system. 

This study carried out an empirical evaluation of the effectiveness of five tools with 

capabilities to detect Linux rootkits: OSSEC, AIDE, Rootkit Hunter, Chkrootkit and 

LKRG. The effectiveness of each tool was tested by injecting 15 publicly available 

rootkits in individual detection tests in virtual machines running Ubuntu 16.04, 

executing the detection tool and capturing its results for analysis. A total of 75 detection 

tests were performed. 

The results showed that only 37.3% of the detection tests provided any indication of a 

rootkit infection or suspicious system behaviour, with the rest failing to provide any 

signs of anomalous behaviour. However, combining the findings of multiple detection 

tools increased the overall detection rate to 93.3%, as all but a single rootkit were 

discovered by at least one tool. Variation was observed in the effectiveness of the 

detection tools, with detection rates ranging from 13.3% to 53.3%. Variation in 

detection effectiveness was also found between categories of rootkits, as the overall 

detection rate was 46.7% for user mode rootkits and 31.1% for kernel mode rootkits. 

Overall, the findings showed that while an individual detection tool‘s effectiveness can 

be lacking, using a combination of tools considerably increased the likelihood of a 

successful detection. 
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Abbreviations 

AIDE: Advanced Intrusion Detection Environment 

AMT: Active Management Technology 

APT: Advanced Package Tool 

EFI: Extensible Firmware Interface 

HIDS: Host-based Intrusion Detection System 

HPC: Hardware Performance Counter 

IDT: Interrupt Descriptor Table 

LKM: Loadable Kernel Module 

LKRG: Linux Kernel Runtime Guard 

ME: Intel Management Engine 

OSSEC: Open Source HIDS Security 

PAM: Pluggable Authentication Modules 

PID: Process ID 

SMM: System Management Mode 

SSDT: System Service Dispatch Table 

UID: User ID 

UMH: Linux Usermode Helper 

VM: Virtual Machine 

VMI: Virtual Machine Introspection 

VMM: Virtual Machine Monitor 
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1. Introduction 

This chapter describes the background and motivation for this study. The research 

problem and research questions are also defined. Finally, the utilized research method 

and the structure of the thesis are described. 

1.1 Motivation 

A rootkit is a type of software that specializes in hiding its presence in computer 

systems. The main purpose of a rootkit is to facilitate continuous access to the system it 

is installed on. While often associated with malware, the use of rootkits is not 

necessarily limited to malicious purposes, as they can also be employed for legitimate 

functions such as remote system management and advanced anti-malware solutions 

utilizing stealth. (Hoglund & Butler, 2006, p. 4) 

Regardless of the legitimacy and underlying purposes of rootkits, specific tools can be 

utilized by computer forensic investigators, information security professionals, system 

administrators and other users to assist in checking that no unauthorized, continuous 

access to computer systems is taking place. As such, rootkit detection can be a useful 

tool for assisting in the process of inspecting a computer system’s state of security as a 

part of a more comprehensive information assurance strategy, or even just for satisfying 

personal curiosity. 

Because rootkits strive to hide themselves and/or other software, detecting them may 

require specialized tools and techniques. While memory forensics and other methods of 

manual analysis can provide a more flexible and effective approach to rootkit detection, 

employing them generally requires more knowledge and resources, especially time 

(Bunten, 2004; Wampler & Graham, 2007). In contrast, automated detection tools may 

be utilized by users with less knowledge of operating system internals and concepts of 

information security in general (Freiling & Schwittay, 2007). This suggests that rootkit 

detection tools can be relevant for continuous reactive system monitoring and in 

scenarios where no applicable expertise or resources are readily available. 

1.2 Research problem and questions 

The effectiveness of detecting modern Linux rootkits using rootkit detection tools is not 

currently clearly understood. This is evidenced by the small number of studies 

conducted on the topic, especially in recent years. There is also a lack of substantial, up-

to-date empirical evidence on how publicly available detection tools and, by extension, 

the techniques they utilize compare against one another in the context of detection 

effectiveness. In addition, it is not entirely clear how effective the tools are in detecting 

different categories of rootkits. To fill this research gap, the objective of this study was 

to empirically determine how effective selected Linux rootkit detection tools are in 

detecting a selected set of currently prevalent publicly available rootkits targeting 

Linux-based systems. 
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In an effort to find answers to the research problem, the following research questions 

were addressed in this study: 

RQ1: Can rootkit detection tools be used to effectively detect modern Linux 

rootkits? 

RQ2: What differences are there in the effectiveness of rootkit detection tools for 

Linux?  

RQ3: What kinds of rootkits can be effectively detected using rootkit detection tools 

for Linux? 

1.3 Research method 

An experimental research combining a trial and comparison experiment (Tedre, 2014) 

was carried out in an emulated environment by infecting virtual machines running 

Linux distributions with chosen rootkits. The selected detection tools were then used to 

attempt to discover indications of the rootkits’ presence in the system. Data on whether 

a detection tool was able to detect a rootkit or not was collected to facilitate further 

analysis and evaluation of effectiveness. 

The effectiveness of each detection tool was evaluated by determining whether the tool 

was able to successfully detect a rootkit, provide a warning of a possible 

infection/compromise or suspicious behaviour, report a false positive or miss the 

rootkit’s existence entirely. The results were analysed to produce a comparison of each 

tool’s effectiveness in detecting a specific rootkit. This took into consideration the 

number of successful detections, false negatives as well as false positives. Based on the 

analysis, detection rates were calculated for each detection tool. The analysis was then 

used to answer the research questions and summarize the findings. 

1.4 Structure 

This study is structured as follows: Chapter two discusses the theory relating to rootkits 

and rootkit detection, including prior research conducted on the topic. Chapter three 

describes the research method, environment and tools used as well as the procedure for 

evaluation. Chapter four describes the empirical results and findings of the study in 

detail. Chapter five summarizes the findings and provides discussion on their meaning, 

implications and relation to prior research. Finally, Chapter six concludes the study, 

summarizing its contents as well as presenting the limitations of the findings and 

proposing future research directions. 
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2. Background 

This chapter describes the literature search conducted to find relevant studies related to 

this study’s topic, as well as the prior research that is directly related to this study. In 

addition, key concepts about rootkits, rootkit detection and some Linux operating 

system concepts relevant for the topic are described. 

2.1 Literature search 

In order to find relevant sources for this study, a search for related literature was 

conducted. Three academic search engines were used: Google Scholar, Microsoft 

Academic and CiteSeerX. In addition, five full-text library databases were queried: 

IEEE Xplore, ACM Digital Library, Wiley Online Library, arXiv E-print Archive and 

SpringerLink.  

Terms used for the search included the names of the rootkits and rootkit detectors 

involved in this study. Various terms and synonyms for rootkit detectors were also 

applied. Generic keywords such as names of operating systems and terms describing 

effectiveness as well as evaluations were used in combination with the other terms in an 

attempt to find literature related to the evaluation of rootkit detection effectiveness in 

any context. Any paper with a title considering the topic of rootkits or rootkit detection 

was regarded as relevant. For detailed search terms and corresponding result counts, see 

Appendix A. 

For Google Scholar, about 3200 results were returned for the search, around 300 of 

which were deemed to be relevant for this study’s topic, based on a cursory review of 

the papers’ titles. For Microsoft Academic, about 3000 results were returned, around 

300 of which were deemed relevant. For CiteSeerX, about 8500 results were returned, 

about 100 of which were considered relevant. The results were sorted by relevance and 

the titles were sequentially inspected until a full page (of 20 results) no longer 

referenced rootkits or rootkit detection in the papers’ titles. 

For IEEE Xplore, 130 results were returned, 30 of which were relevant. For ACM 

Digital Library, 114 results were returned, 18 of which relevant. For Wiley Online 

Library, 15 results were returned, only 3 of which were considered relevant. For arXiv 

E-print Archive, 18 results were returned, 7 of which relevant. Finally, 351 results were 

returned for SpringerLink, 41 of which were found to be relevant for the topic. 

Most papers referenced in this study were obtained via Google Scholar, IEEE Xplore, 

ACM Digital Library or SpringerLink. Both IEEE Xplore and ACM Digital Library 

were found to host multiple relevant conference and journal publications on the topic of 

computer security, digital forensics and operating systems, while the Lecture Notes in 

Computer Science series available via SpringerLink was found to include several 

relevant conference proceedings on digital forensics and intrusion detection. 
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2.2 Evaluation of rootkit detection effectiveness 

Not much prior research is available on rootkit detection and the effectiveness of 

specific detection methods, even less so in the context of Linux rootkits. What research 

exists on the topic is either unavailable online or quite dated, with most of it conducted 

before the 2010s. However, existing research does provide some valuable information 

on the obfuscation techniques used by rootkits as well as how they can potentially be 

detected. Specifically, papers by Bunten (2004), Todd et al. (2007) as well as Freiling 

and Schwittay (2007) describe particularly relevant evaluations of the effectiveness of 

rootkit detection methods. 

An overview of rootkits for Unix-based systems (including Linux) has been presented, 

describing some of the techniques utilized by them as well as presenting methods 

available for detecting and preventing them. The overview categorized Unix-based 

rootkits into two categories (user mode and kernel rootkits) and posited that rootkits 

were first operating in user mode but have since been largely eclipsed by kernel 

rootkits, which can modify the behaviour of the operating system kernel and thus 

potentially gaining greater control of the system. (Bunten, 2004.) 

Three methods for preventing kernel rootkits from operating have also been presented in 

the same study. The first is disallowing the loading of kernel modules at runtime. The 

second is using mandatory access controls (MAC) to prevent unauthorized access to the 

kernel’s virtual memory via the /dev/kmem device file. The third is utilizing kernel 

modules that specifically look for rootkits and attempt to prevent them from executing 

in the first place. (Bunten, 2004.) 

File integrity tools such as AIDE and Tripwire, rootkit detectors such as Chkrootkit and 

Rootkit Hunter as well as kernel integrity checkers such as KSTAT have been 

highlighted as prevalent rootkit detection methods. In addition, manual methods such as 

measuring changes in the number of instructions executed by system calls, analyzing 

logfiles and oddities in the file system (especially in /proc), running intrusion detection 

systems as well as conducting forensic analysis on the contents of memory dumps have 

been discussed. (Bunten, 2004.) 

An evaluation of some of the rootkit detection methods’ effectiveness against a small 

set of Linux kernel rootkits (Adore, Adore-NG and SucKIT) has also been conducted, 

where from a total of 15 detection attempts 10 were successful, with Chkrootkit and 

AIDE finding all three rootkits. However, the conclusion of the evaluation was that 

more universal detection methods are required to counter the obfuscation techniques of 

modern rootkits and that general runtime detection methods are in need as well, 

potentially utilizing methods such as kernel execution flow analysis and integrity 

checking. (Bunten, 2004.) 

An evaluation of rootkit detection effectiveness similar to Bunten (2004) has been 

described, with the distinction that the focus of the evaluation’s research was on 

Windows rootkits and determining how much information detection methods can obtain 

from rootkits. The evaluation considered five rootkits (two user mode and three kernel 

rootkits) with detection attempts by four rootkit detectors, four “offline analysis tools” 

(two anti-virus and forensic investigation tools) and a single “live analysis tool”, 
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executing each detection tool in a virtual machine running Windows XP infected with 

one rootkit at a time. (Todd et al., 2007.) 

The results of the evaluation showed that rootkit detectors provide the most useful and 

plentiful information of the three detection tool types, being able to clearly detect 

rootkits in 14 out of the total of 25 cases, in addition to six partial detections indicating a 

hidden process. The authors noted that there are differences in the tools’ detection 

abilities, as two could only detect hidden files while the other two could also detect 

hidden drivers, ports, processes and services. (Todd et al., 2007.) 

In the same evaluation study, a case of a “network defense competition” using the 

paper’s methodologies was presented. The competition targeted eight systems: two 

virtual machines running Windows Server 2003, two running Fedora Core 2 and four 

running Windows XP, each with a single rootkit installed. The competitors were 

unaware of what the security status was for each system. The case featured the use of 

two anti-virus tools and three rootkit detectors for Windows as well as two rootkit 

detectors for Linux (Chkrootkit and Rootkit Hunter). The results showed that the rootkit 

detectors fared well in the less controlled competition environment as well, with claims 

that rootkit detectors are the leading investigative tools for rootkit forensics. (Todd et 

al., 2007.) 

Another experimental evaluation of the effectiveness of rootkit detection on Windows 

has been conducted. The evaluation considered 11 detection tools and 9 rootkits in four 

different versions of Windows. The effectiveness of each detection tools was compared 

by assigning each a score based on their detection results; a tool was given a score of 0 

if it failed to detect a rootkit, 1 if it detected some modifications made by the rootkit or 

2 if it detected all modifications made by the rootkit. Two tools were able to detect all 

but one rootkit, while the other tools provided mixed results. The results prompted the 

researchers to propose a detection methodology where three detection tools 

(BlackLight, IceSword and SVV) are used in combination for reliable rootkit detection 

in different contexts and investigator skill levels. The research advocated for similar 

experiments to be conducted in the future to verify the detection rates of rootkit 

detection tools. (Freiling & Schwittay, 2007.) 

A process for experimentally evaluating the effectiveness of a rootkit detection tool 

implantation has also been described. The evaluation considers a view comparison 

(cross-view-based) detector using virtual machine introspection (VMI). The evaluation 

data gathering process consists of creating a virtual machine, defining a clean state 

without rootkits injected, executing the tool with the clean state, injecting a rootkit, 

executing the tool again and extracting the tool’s results for analysis. This process is 

repeated for each rootkit sample. The tool’s effectiveness is evaluated by comparing 

results of the test run against the clean state and states where rootkits are injected, in 

addition to checking that the results match the behaviour specified for each rootkit 

through reference information. (Richer, Neale & Osborne, 2015.) 

2.3 Linux 

There are a few concepts in the Linux operating system and its user-space tools that are 

relevant for understanding how rootkits are injected and how they manage to operate in 

the system. The concepts of library preloading with dynamic linking, separation of the 

user and kernel space, system call handling and loading code to the kernel using kernel 

modules will be briefly explained. It should be noted that there are many other key 
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concepts related to rootkit injection and operation which are not described here, as 

doing so would be disproportionate for the scope of this study. 

Dynamic linking is a method for linking libraries to programs at runtime, where 

libraries can be shared by the programs that require them. This is distinguished from 

static linking, where linking happens at compile time. In Linux, it is possible to use the 

LD_PRELOAD environment variable to specify a shared object whose function 

implementations will be loaded before and preferred over other libraries for a program’s 

execution. (Free Software Foundation, 2015.) 

For example, the C standard library function fopen() could be defined in a custom 

shared object to change its behaviour (e.g. return a file pointer to /dev/zero whenever 

attempting to open /dev/urandom, otherwise return a pointer to the actual requested 

file) when called by a program loaded with the LD_PRELOAD variable set to the path of 

the shared object. The LD_PRELOAD variable is one of two common ways of injecting 

rootkits into programs, the other being the use of a global preload configuration file 

(Carbone, 2014). 

While LD_PRELOAD is applicable to a shell session or single executables, library 

preloading can also be achieved for all user-space executables. This type of global 

library preloading utilizes the /etc/ld.so.preload file. The file may contain a list of 

paths to preloadable shared libraries that are loaded before other shared libraries 

whenever the dynamic loader is invoked. (Free Software Foundation, 2015.) 

The Linux kernel operates in its own part of virtual memory called the kernel space, 

which is separated from the user space used by applications. Only the kernel (and its 

modules) can directly access hardware and system resources, so it has absolute control 

over the system. Processes executing in the user space can request resources or services 

from the kernel via system calls, which transfer execution to the kernel using either the 

SYSCALL/SYSENTER instruction (in x86-64 after kernel version 2.6) or an interrupt (in 

x86). The kernel handles system calls by passing execution to the system call handler 

pointed to by the system call table, using the appropriate system call number as its 

index. Finally, the system call is handled by the kernel and execution returns to the 

process that initiated the system call, unless an error occurs. (Love, 2010, pp. 69-83.) 

The normal flow of handling a system call, in this case open(), is illustrated in Figure 

1. 

 

Figure 1.  System call handling by the Linux kernel (adapted from Bunten, 2004). 
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Manipulating the system call table is one of the key methods used by rootkits operating 

in kernel space to infect an operating system and control the kernel’s behaviour. 

However, many other kernel data structures can also be used for injecting rootkits into 

the kernel space. These include interrupt handlers, exception tables, debug registers and 

function trampolines. (O’Neill, 2016, p. 225.) 

The functionality of the Linux kernel can be dynamically extended with loadable kernel 

modules (LKM), which are generally used to load drivers and modify the kernel’s 

behaviour while it is running. LKMs can call kernel functions and thus alter its data 

structures, making them a powerful tool for manipulating the kernel. (Henderson, 2006.) 

LKMs are a very common technique for implementing kernel mode rootkits, as they can 

be easily loaded and don’t require the kernel to be recompiled, making it simpler and 

easier to inject a rootkit into the kernel (Bierfert, 2007). Loading LKMs can be disabled 

or restricted in the kernel to limit the attack surface for kernel rootkit injection, though 

this may prevent the system from working as expected, especially when external 

hardware is connected to the system (Bunten, 2004). 

2.4 Rootkits 

There exist various definitions of what rootkits are, with a varying degree of emphasis 

on their intended use. Some definitions classify rootkits as malware used for nefarious 

purposes while others simply specify them as a type of software with a single purpose: 

to hide the presence of some software (often themselves) in the operating system they’re 

installed on. Therefore, it is relevant to specify exactly what definition is used in this 

study. 

Russinovich (2006a) has defined a rootkit as “software that hides itself or other objects, 

such as files, processes, and registry keys, from view of standard diagnostic, 

administrative, and security software”. Russinovich’s definition is supported by a 

similar description: “a rootkit is a set of programs and code that allows a permanent or 

consistent, undetectable presence on a computer” (Hoglund & Butler, 2006, p. 4). A 

more comprehensive definition describes a rootkit as a set of software tools installed to 

a system with the purpose of allowing continuous, privileged and arbitrary control and 

access to the system as well as disguising or controlling access to its files, processes, 

ports and other objects (Harley & Lee, 2007). 

Often installed by attackers for the purpose of leaving a persistent yet hidden method of 

access to a computer system, rootkits are frequently associated with malicious purposes. 

However, the definition by Harley and Lee (2007) does not strictly preclude rootkits 

from being used for legitimate applications and is a sufficiently appropriate generalized 

definition. It is therefore the definition used in this study. 

Rootkits can be categorized based on which privilege level they execute at. A common 

practice is to divide rootkits into two categories: user mode and kernel mode (also 

referred to as user-level and kernel-level), as done by Bunten (2004), Harley and Lee 

(2007), Todd et al. (2007) and many others. These two categories effectively specify 

whether the rootkit executes in the user space or the kernel space of the operating 

system. 

User mode rootkits execute in the user space of the operating system, and thus do not 

have direct access to the kernel. Some early rootkits, such as t0rnkit, overwrite key 

programs like ls, ps, login and top with custom code which filters the output of the 
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programs based on rules specified by the attacker. To hide traces of intrusion, such 

rootkits may also manipulate logfiles, though they often still leave behind some 

indications of system intrusion. (Bunten, 2004.) 

User mode rootkits can hook into executables by modifying or overriding functions in 

dynamically linked libraries (Carbone, 2014). Linux-based user mode rootkits can 

leverage the preload mechanism in the dynamic linker/loader to intercept calls to library 

functions and control their execution in various ways. (Tian, Wang, Zhou & Zhang, 

2011) One example of a known modern Linux user mode rootkit is JynxKit (ErrProne, 

2011a), which can open an SSL-encrypted backdoor and hide files and directories by 

hooking functions in the C standard library such as open() and readdir(). The rootkit 

also uses the preload mechanism for injection. Figure 2 illustrates the hooking of 

open() by JynxKit for the ls command to hide specific files (matching predefined 

variables MAGIC_GID or MAGIC_DIR) when injected with the preload mechanism. 

 

Figure 2.  Hooking of open() by JynxKit (adapted from JynxKit source code, ErrProne, 2011a). 

Kernel mode rootkits operate in the kernel space, which gives them more privileges than 

can be acquired by user mode rootkits in the user space (Bravo & Garcia, 2011). Such 

rootkits can directly intercept and override system calls to alter the operating system’s 

behavior to exert deep control over the system (Bunten, 2004). In Linux, there are a few 

ways kernel mode rootkits can be attached to the kernel. A kernel mode rootkit can be 

loaded as an LKM, which is allowed to modify many kernel data structures (such as the 

system call table) via the interrupt descriptor table (IDT) (Tian, Wang, Zhou & Zhang, 

2011). It can also be injected using the /dev/kmem device file to write the rootkit code 

to the kernel’s virtual memory space and then executing it as a system call (Bunten, 

2004). However, more modern kernel versions no longer allow modifying the kernel 

memory by writing such files as a security measure (O’Neill, 2016, p. 229). 

As with user mode rootkits, kernel mode rootkits generally rely on hooking, though in 

their case a common target is the operating system’s system call table. The rootkits can 

manipulate the interrupt handler routines, IDT and the system call table so that 

whenever a system call is called, the execution flow is directed to the rootkit’s code. 

The rootkit can then use the original system call on its own discretion when needed. 

(Tian, Wang, Zhou & Zhang, 2011.) 
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For example, the SucKIT kernel mode rootkit for Linux creates a copy of the kernel’s 

system call table and changes many of the copied table’s entries to point to the rootkit’s 

code, while also modifying the interrupt handler to point to the modified system call 

table. Additionally, the rootkit overrides the init daemon with its own implementation 

on system boot while redirecting access to /sbin/init to the original init so that any 

checksum calculated from it matches the original unmodified version, foiling some 

simple detection attempts. (Bunten, 2004.) The system call table manipulation 

conducted by SucKIT is visualized in Figure 3, representing a common operating 

mechanism for kernel mode rootkits. This is contrasted with the normal system call 

handling shown in Figure 1. 

 

Figure 3.  System call table manipulation by the SucKIT rootkit (adapted from Bunten, 2004). 

In the Windows operating system family, kernel rootkits can hook into kernel data 

structures such as the system service dispatch table (SSDT), IDT and individual kernel 

functions. They can also be placed within layered driver stacks in the Windows Driver 

Model framework to intercept and manipulate data passed between the drivers. (Kim, 

Park, Lee, You & Yim, 2012.) However, these mechanisms are not covered as this 

study purposely focuses on Linux rootkits. 

In the interest of completeness, it should be noted that while the two rootkit categories 

are sufficient in distinguishing the rootkits examined in this study, they are not 

extensive enough to categorize all types of rootkits in existence. Rootkits may also often 

exist in multiple categories, as they can operate at various privilege levels and 

protection rings at once. This gives them different levels of control and access to 

systems. 

Besides user mode and kernel mode rootkits, there exists a variety of rootkits with the 

capability of operating beyond the kernel’s immediate reach, such as bootkits as well as 

firmware and hardware rootkits. Such rootkits can resist attempts to detect and remove 

them by operating at levels with more privileges than the kernel itself. As an example of 

a low-level rootkit, the Thunderstrike EFI rootkit (Hudson & Rudolph, 2015) modifies 

the boot ROM of a wide range of Apple’s MacBook series of laptops. 

Infecting the device before the operating system has been loaded allows Thunderstrike 

to survive any software-based removal attempts, including re-installation of the 

operating system and even replacement of the device’s storage devices. The rootkit, 
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however, requires a separate device to inject itself into a target system. (Hudson & 

Rudolph, 2015.) An improved version, Thunderstrike 2, does not require any hardware 

for injection and can in fact infect peripheral devices such as Thunderbolt adapters to 

spread to other devices as well (Hudson, Kovah & Kallenberg, 2015). 

Table 1 shows a categorization of protection rings (a concretization of privilege levels), 

with an example of a rootkit existing at each privilege level. A lower ring value 

indicates greater privileges. The rootkits used for this study operate at rings three (user 

mode) and zero (kernel mode). 

Table 1.  Protection rings (adapted from Tereshkin & Wojtczuk, 2009). 

Protection ring Domain Example rootkit 

Ring 3 User mode JynxKit2 

Ring 0 Kernel mode SucKIT 

Ring -1 Hypervisor Blue Pill 

Ring -2 System Management Mode (SMM) The Watcher 

Ring -3 Chipset/firmware (e.g. ME, AMT) Thunderstrike 

 

It should be noted that there is no universally established consensus on the classification 

of rootkits in the negative protection rings. This is especially true for “ring -3” rootkits 

as described by Tereshkin and Wojtczuk (2009), who place them at the chipset level. 

Potential targets for chipset level rootkits include the Intel Management Engine (ME) 

and Active Management Technology (AMT) administration systems, which are run 

directly on a separate chipset, independent of the computer’s CPU (Tereshkin & 

Wojtczuk, 2009). 

2.5 Rootkit detection 

Rootkit detectors can be categorized into five distinct categories: signature-, behaviour-, 

cross-view-, integrity-, and hardware-based detectors (Todd et al., 2007). Each category 

has a different set of mechanisms with advantages and disadvantages inherent to them, 

and it’s not uncommon for rootkit detection tools to utilize techniques from multiple 

categories. For example, the Rootkit Hunter (Rootkit Hunter, 2018) rootkit detector 

incorporates signature, behaviour and integrity checking in its suite of detection 

mechanisms. 

Signature-based detectors check files for data that is characteristic of certain rootkits, 

such as specific strings stored in files or binaries (Todd et al., 2007). Many signature-

based rootkit detectors rely on a database of such signatures, indicative of the presence 

of known rootkits. Such databases are often implemented as a simple file bundled with 

the software, listing rootkits and the signatures specific to them. For example, the 

OSSEC host-based intrusion detection system includes a database of rootkits and 

specific files used or generated by them as a part of its detection toolset (OSSEC Project 

Team, 2019). 

Behaviour-based detectors check for changes in system behaviour – such as the number 

of system calls executed by a specific program – that may be caused by rootkits (Todd 

et al., 2007). For example, a behaviour-based rootkit detection system using hardware 

performance counters (HPCs) found in modern CPUs has been designed to detect 
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hooking of various Windows kernel data structures. The system captures information 

from a number of HPCs – for example, the number of branches executed or caches 

prefetched – and attempts to detect changes in them. To establish a baseline for rootkits’ 

effects on the HPCs’ data, the system is bootstrapped by collecting HPC traces with 

synthesized rootkits (representing a specific type of rootkit behaviour) injected. The 

system uses machine learning models to classify the collected HPC traces as either 

clean or infected to train it to detect new rootkits exhibiting similar behaviour. (Singh, 

Evtyushkin, Elwell, Riley & Cervesato, 2017.) 

Cross-view-based detectors gather system information (e.g. open sockets, running 

processes) from multiple interfaces and observe differences in their output to determine 

if one (or more) of them has been modified by potential rootkits (Todd et al., 2007). As 

an example of a cross-view-based detector, the deprecated RootkitRevealer tool for 

Windows compares the information from the Windows API with file system or registry 

contents (for example, a list of files) to check if they are consistent with each other, and 

alerts the user in case they’re not (Russinovich, 2006b). 

Integrity-based detectors gather snapshots of the system state (e.g. checksums of 

memory contents) and compare them against system state snapshots that are known to 

be valid and uncompromised (Todd et al., 2007). They are relatively common, with 

widely used tools such as Rootkit Hunter and Chkrootkit incorporating integrity checks 

as part of their detection mechanisms. For example, Rootkit Hunter uses a database of 

file properties (e.g. SHA-256 hash, inode number, file size, modification date, user and 

group IDs and permissions) gathered from a variety of system binaries, which it 

compares against when running a system check to confirm the properties have not been 

tampered with (Rootkit Hunter, 2018). 

Finally, hardware-based detectors are devices which monitor changes made to kernel 

data structures and functions as well as search for signatures in memory that may 

signify a rootkit’s presence (Todd et al., 2007). Such detectors are quite rare, although a 

few products do exist in the market. One example of a hardware-based detector, a kernel 

integrity monitoring system called Copilot, has been designed as a separate device used 

on the PCI bus. The system’s authors claim it can read the physical memory of a 

running operating system using direct memory access (DMA) and continuously monitor 

the memory used by the Linux kernel using MD5 hashes to detect modifications to its 

critical data structures such as the system call table. (Petroni, Fraser, Molina & 

Arbaugh, 2004.) 

In addition to categorization based on functionality, detectors can also be classified in 

terms of their execution context. Three approaches to rootkit and malware detection in 

virtual machines have been described: host- and network-based protection and virtual 

machine introspection. Host-based protection runs in the guest operating system itself, 

functioning as a host-based intrusion detection system (HIDS). Network-based 

protection, on the other hand, works at the hypervisor level, running intrusion detection 

on the inbound and outbound network traffic outside the guest operating system’s reach. 

(Hua & Zhang, 2015.) Finally, virtual machine introspection (VMI) uses the virtual 

machine monitor (VMM) software to inspect the entire state of the virtual machine, so it 

has full visibility of the guest OS’s behaviour while operating outside of it and thus 

remaining invisible to it (Garfinkel & Rosenblum, 2003). 

Extensive research on developing rootkit detectors using advanced detection 

mechanisms has been conducted. A detector has been demonstrated that can operate 

outside of virtual machines using virtual machine introspection and reconstruct their 
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data to detect hidden processes with a higher degree of tamper resistance than detectors 

that run inside the guest OS (Hua and Zhang, 2015). A cross-view-based rootkit 

detector leveraging VMI has also been demonstrated. It uses VMI to obtain both the 

external view (memory images of a virtual machine instance) and the internal view 

(outputs of commands run inside the guest VM using APIs provided by the VMM) of a 

running VM and conducting view comparison to observe and detect differences – often 

indicative of potential system manipulation by rootkits – between them. (Richer, Neale 

& Osborne, 2015.) 

An integrity-based detector targeting LKM rootkits using statistical methods has also 

been developed. The detector uses outlier analysis to compare the distribution of 

addresses stored in the kernel’s system call table between the targeted system and a 

known uncompromised system. The authors of the detector state that the detector does 

not require existing knowledge of a particular system’s state prior to an infection. The 

detector is successful in detecting rootkits with a “high degree of confidence”, based on 

experiments conducted with two separate LKM-based rootkits. (Wampler & Graham, 

2007.) 

The detection tools used in this study can be categorized under signature-based, 

behaviour-based, cross-view-based and integrity-based detectors. Only hardware-based 

detectors are not covered out of the categories described by Todd et al. (2007), so the 

range of detection mechanisms should be sufficiently varied to establish a relatively 

broad coverage in the scope of this study. Also, the detectors are all host-based, running 

inside the guest operating system. This means that no network-based detection, virtual 

machine introspection or any other out-of-band detection mechanisms are used. 
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3. Methodology 

This chapter describes the research methods, tools and processes used to conduct the 

empirical research in this study. The rootkits and rootkit detection tools selected for this 

study are also presented. Finally, the procedure used to evaluate the tools’ effectiveness 

is described. 

3.1 Research method 

This study was an empirical research in which the effectiveness of rootkit detection 

tools’ ability to discover the presence of various rootkits was evaluated and compared. 

Specifically, the study can be classified as a trial experiment where properties of a 

system are evaluated or tested to determine how well they meet their specifications or 

other criteria (Tedre, 2014). In the context of this study, the system consisted of the 

rootkit detection tools installed in the operating system and the evaluated property was 

the effectiveness of the detection mechanisms used by the tools to detect rootkits, which 

were collectively evaluated by injecting rootkits, running the detection tools 

individually and finally recording and analysing the results of the detection tests. 

In addition to being a trial experiment, this study can also be classified as a comparison 

experiment, where a number of solutions are compared based on some criteria set to 

determine which of them are the best for a specific problem (Tedre, 2014). In this study, 

the solutions were the rootkit detection tools, the criterion was the tools’ effectiveness in 

detecting rootkits (or indications of them) and the problem was rootkit detection in a 

Linux-based operating system. 

An emulator-based experimental research technique was utilized in which real programs 

were executed inside an emulated environment. Two types of emulated environments or 

emulators can be specified: a sandboxed execution environment confined inside a 

virtual machine and a bare-metal execution environment where no virtual machine is 

used but the execution properties of the hardware are altered to emulate specific 

conditions. (Gustedt, Jeannot & Quinson, 2009.) This study opted for the former option, 

as real-world programs (rootkit detection tools and rootkits) were executed in a 

virtualized environment (a virtual machine) that closely emulates a real-world execution 

environment and context. 

An emulation experiment is contrasted with three other types of experiments in terms of 

the application and the execution environment: in-situ experiments, simulations and 

benchmarks. In in-situ experiments, real-world programs are executed in a real-world 

environment without any emulation or simulation present. In simulations, a model of 

the program under investigation is executed in a simulation that abstracts away parts of 

the environment that are irrelevant for the study. In benchmarks, a model of the program 

is executed in a real-world environment with a focus on its quantitative instrumentation. 

(Gustedt, Jeannot & Quinson, 2009.) 

There were two primary reasons for choosing an emulation-based experiment 

environment over the other environments. The first was repeatability; emulating the 
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environment using virtual machines allowed the detection tests to be easily and 

accurately repeated between test runs to double-check the test results, investigate 

potential issues and reduce overall variability of the result data. The second was 

security, as virtual machines provide some isolation between the guest and host 

operating systems by virtue of virtualization. As rootkits can be (and often are) used for 

malicious purposes, it made sense to take precautions to prevent potential attacks 

against the testing system. 

3.2 Rootkits 

A total of 15 rootkits were used in this study. The rootkits were split into two categories 

(user mode and kernel mode) for a representation of 6 user mode and 9 kernel mode 

rootkits. The included user mode rootkits were Azazel, Bedevil, BEURK, JynxKit2, 

Vlany and Zendar. The kernel mode rootkits were Diamorphine, Honey Pot Bears 

Rootkit, Keysniffer, LilyOfTheValley, Nuk3 Gh0st, Puszek, Reptile, Rootfoo Linux 

Rootkit and Sutekh. 

Three selection criteria were applied for the rootkits in this study. First, they had to be 

open sourced and freely available online. Secondly, the kernel mode rootkits had to also 

support the kernel version used by the Linux distribution selected for testing. Finally, 

they had to adequately fit the rootkit definition criteria described by Harley and Lee 

(2007), which specifies rootkits as a type of software with the objective of enabling 

continuous, privileged and arbitrary control and access to a computer system while 

hiding or managing access to its contents such as files, processes and ports. While 

restricting the selection of rootkits to those that are publicly available does potentially 

limit the generalizability of the study, it was deemed too risky and cumbersome to 

attempt to collect “real-world” malicious rootkits in the wild using research honeypots 

or other collection mechanisms.  

3.2.1 User mode rootkits 

JynxKit2 is a user mode rootkit based on an older rootkit, JynxKit. It features 

rudimentary hiding of files and processes. The rootkit relies on the preloading 

mechanism used by Linux’s dynamic linker and loader (ld-linux) to override 

functions defined in other libraries to hook into programs that are to be infected. The 

hooks are used to intercept calls to shared objects and system calls in an attempt to hide 

the rootkit’s presence in the system. It features a backdoor based on the accept() 

system call, which can be used to drop a reverse shell in the target system to allow 

remote access and operation. (ErrProne, 2011b.) 

Azazel is a user mode rootkit based on JynxKit2, with features such as file, login, 

connection and process hiding, utmp and wtmp log manipulation as well as backdoors. 

It also uses preloading for injection. The rootkit can hide files and directories in the file 

system whose names include a string configured at compilation time. It also includes 

features to avoid detection and debugging, such as string obfuscation and hooking the 

PCAP packet capture API (to hide backdoor traffic) and ptrace(). The rootkit includes 

two backdoors using accept() and another encrypted backdoor using PAM, which can 

also be used to grant root privileges to users connecting through it. The ports used by 

the backdoors and other remote connections are hidden by the rootkit. (Chokepoint, 

2017.) 



20 

BEURK Experimental Unix Rootkit is an another user mode rootkit with a similar set of 

features as in Azazel, such as file, process and login hiding, accept() backdoors and 

anti-detection/debugging countermeasures. The rootkit can be used to hide files and 

directories whenever their names contain a predefined string. It can also obfuscate 

strings and automatically remove traces of its actions from utmp and wtmp logs. Like 

other user mode rootkits, it too relies on preloading to inject itself to programs. (Unix-

Thrust, 2017.) 

Vlany is another LD_PRELOAD -based user mode rootkit with a variety of anti-

detection/debugging features. It can hide files, processes, users, network connections 

and includes a PAM backdoor for SSH access in addition to the accept() backdoor in 

the other rootkits described above. It also features mechanisms to prevent its removal, 

including modifying the operating system’s dynamic linker. The rootkit hides processes 

in the system whenever the process owner’s group ID (GID) matches a particular GID, 

specified at compilation time. The author of the rootkit claims that the process hiding 

feature is more advanced and dependable than Azazel’s hiding mechanisms and that the 

rootkit’s PAM backdoor is an improvement over the accept() backdoors. 

(Mempodippy, 2019.) 

Bedevil is a rootkit by the author of Vlany, created as an effort to improve upon its 

design and implementation. It features file and process hiding based on GIDs, logging 

of user authentications and outgoing SSH credentials as well as a PAM backdoor with 

encryption and utmp/wtmp hooking (similar to the one found in Vlany). It has 

rudimentary methods for detecting when it’s being run in virtualized environments such 

as VirtualBox (which it detects by searching for the string VBOX in /proc/scsi/scsi). 

It can also hide its presence in process memory region mapping information in the 

Linux /proc file system. (Rowan, 2019.) 

Zendar is a simple user mode rootkit utilizing the preloading mechanism for injection. It 

disguises itself as a shared library (libsslcore.so) and hides the file by default to 

prevent detection by cursory inspection and detection tools. The rootkit can also hide 

files with names matching a specific string. For backdoor access, the rootkit creates a 

user who can override hooking and obfuscation and whose existence is also hidden from 

the /etc/passwd and /etc/shadow files. (Ring-1, 2015.) 

Table 2 compares the features of each user mode rootkit used in this study. The column 

named self indicates that the rootkit can conceal itself, file indicates that the rootkit can 

hide files or directories, process indicates that the rootkit can hide tasks or processes, 

and connection means that rootkit is able to hide sockets, ports or other indications of 

network connections. Logging indicates that the rootkit can capture or log data such as 

entered keystrokes or login credentials. Cells marked with an x indicate that the feature 

is supported by the rootkit, while an empty cell means that the feature is not supported 

by the rootkit. 
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Table 2.  Comparison of user mode rootkit features. 

Rootkit Self File Process Connection Logging Backdoor 

JynxKit2 x x  x  x 

Azazel x x x x  x 

BEURK x x x x  x 

Vlany x x x x  x 

Bedevil x x x  x x 

Zendar x x    x 

 

All user mode rootkits selected for this study can hide themselves as well as files and 

directories. Most rootkits can also hide processes and connections. Only Bedevil 

contains logging features. All user mode rootkits also contain a backdoor feature to 

enable remote access. 

3.2.2 Kernel mode rootkits 

Diamorphine is a kernel mode rootkit that can hide itself as well as any processes, 

kernel modules and files its operator chooses. It is implemented as an LKM, allowing it 

to intercept system calls and override the kernel’s functionalities, giving it practically 

full access to the system. At compilation time, a magic string can be specified for the 

rootkit which is then used to hide files or directories whose names are prefixed with it. 

To hide/unhide the rootkit and grant a user root privileges, specific signals can be sent 

to any process to trigger the mechanisms. Hiding or unhiding a specific process works 

by sending that process a predefined signal. The rootkit does not include a backdoor, so 

it needs to be combined with other software to enable remote access and operation. 

(Mello, 2019.) 

Honey Pot Bears Rootkit is another kernel mode rootkit implemented as an LKM. It can 

give root privileges to processes that receive a predetermined signal by changing their 

user ID (UID) to 0. It can also hide files with names matching a specific prefix and 

processes with a specific name or process ID (PID) configured by the attacker. The 

rootkit can also create a user account hidden from anyone inspecting the /etc/passwd 

and /etc/shadow files to facilitate elementary backdoor access. (Kleiman, Gao, Khan 

& Song, 2019.) 

Keysniffer is an LKM that can be classified as a kernel mode rootkit due to its kernel 

hooking capabilities. It is a keylogger that records keyboard events to debugfs, an in-

memory file system used for Linux kernel debugging. It does not feature any particular 

anti-detection mechanisms except that it prevents accessing the log file by non-root 

users and the module is named “kisni.ko” by default to avoid immediate suspicion when 

listing kernel modules. (Jana, 2019.) While Keysniffer may not meet the criteria of all 

rootkit definitions due to its lack of specific hiding functionalities, it does meet the 

criteria by Harley and Lee (2007) and is thus included in this study. 

LilyOfTheValley is an LKM rootkit with file and process hiding as well as privilege 

escalating features. It can hide itself as well as files with a specific prefix in their names. 

It can also give root privileges to users interacting with the kernel module through the 
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/proc file system. The rootkit also comes with a client program that can be used to hide 

and unhide arbitrary processes in the system by any user who has permissions to 

execute the program. (Algayar, 2017.) 

Nuk3 Gh0st is an another LKM-based rootkit with multiple different hiding features. It 

is able to hide itself from kernel module lists to prevent detection by basic manual 

inspection. The rootkit can also hide arbitrary files and directories in the file system as 

well as any processes and TCP/UDP ports. It can also give root privileges to users and 

prevent the module’s removal by kernel module manipulation commands such as 

rmmod. The rootkit comes with a separate client program which can be used to control 

all of the aforementioned functions. (Schällibaum, 2018.) 

Puszek is an LKM-based kernel mode rootkit which allows files and processes 

(including their connections) to be hidden in the system. It can hide files and directories 

in the file system whenever their names match a predefined suffix. It can also hide 

processes where any part of a process’s command line matches a predetermined string. 

It is also capable of capturing and logging HTTP requests and can detect and store 

passwords found in the requests to a separate log file. The rootkit can use two separate 

methods of modifying the system call table’s write permissions for improved 

compatibility, either by manipulating the CR0 control register directly or using a kernel 

helper method to set the system call table’s page writable. In addition, the rootkit can 

hide itself from the /proc file system along with other module listings and can also 

prevent attempts to remove it. (Eterna1, 2018.) 

Reptile is an another LKM-based x86-64 kernel mode rootkit with features such as 

arbitrary privilege escalation as well as file, process and connection hiding. In addition 

to hiding files in the file system, the rootkit can hide content within files, whenever the 

content is enclosed within special tags (<reptile></reptile> by default). It can also 

persist itself between reboots and includes anti-detection functionalities such as string 

obfuscation and file encryption. The rootkit includes an encrypted backdoor which can 

spawn a reverse shell upon receival of a magic packet from a separate client program 

that is included as a part of the software package. (Augusto, 2019.) 

Rootfoo Linux Rootkit is an LKM rootkit developed as a demonstration of a kernel 

mode rootkit and its injection and manipulation capabilities. The rootkit can execute a 

program installed in a specific location inside a kernel thread to elevate the privileges of 

the process. It can also hide itself from the /proc file system and can prevent detection 

by basic manual inspection as well as module listing tools such as lsmod. (Hodges, 

2019.) 

Sutekh is an LKM-based kernel rootkit with the primary intention of granting root 

privileges to user mode processes. It works by hooking the execve() and umask() 

system calls in a copied version of the system call table and comes with a separate 

privilege escalation program that can give any user executing it immediate root 

privileges by spawning a root shell. The rootkit does not feature any particular evasion 

or anti-detection mechanisms. (PinkP4nther, 2019.) Like Keysniffer, Sutekh doesn’t 

meet the all of the criteria of more strict rootkit definitions, though it does fit the 

definition by Harley and Lee (2007). 

Table 3 compares the features of each kernel mode rootkit used in this study. The first 

four columns after the rootkit name are related to the rootkits’ hiding mechanisms. Self 

indicates that the rootkit can conceal itself, file indicates that the rootkit can hide files or 

directories, process indicates that tasks or processes can be hidden by the rootkit, and 



23 

connection indicates that the rootkit can hide sockets, ports or other indications of 

network connections. The privileges column indicates that the rootkit supports elevating 

the privileges of a process to root, while the logging column indicates that the rootkit 

can capture or log system events such as keystrokes entered by users. Cells marked with 

an x indicate that the rootkit supports the feature, while an empty cell indicates that the 

feature is not supported. 

Table 3.  Comparison of kernel mode rootkit features. 

Rootkit Self File Process Connection Privileges Logging Backdoor 

Diamorphine x x x  x   

Honey Pot Bears  x x  x  x 

Keysniffer      x  

LilyOfTheValley x x x  x   

Nuk3 Gh0st x x x x x   

Puszek x x x x    

Reptile x x x x x  x 

Rootfoo Linux Rootkit x    x   

Sutekh     x   

 

Most kernel mode rootkits selected for this study can hide themselves as well as files, 

directories and processes. Most can also provide privilege escalation for arbitrary 

processes. Only three can hide connections, one provides logging features and two 

feature a backdoor option. 

3.3 Rootkit detection tools 

Five software tools with capabilities suitable for detecting rootkits were chosen for this 

study: OSSEC, AIDE, Rootkit Hunter, Chkrootkit and LKRG. Each tool is available as 

open source software, supports the Linux operating system and is actively supported 

(updated more than once in 2019). Ensuring that the detection tools were relevant was 

considered an important factor in upholding the relevance of this study itself, as the 

results could be more applicable to real-world scenarios where such tools are used for 

rootkit detection purposes. 

Other detection tools studied and considered for this research were Samhain 

(Wichmann, 2006), Open Source Tripwire (Tripwire, 2019), ClamAV (Cisco, 2019), 

Tiger (Schales, Hess, Warraich & Safford, 2019) and Linux Malware Detect (R-fx 

Networks, 2019). However, these tools were not chosen due as they were not considered 

relevant or feasible enough for rootkit detection in this study. 

Samhain was not chosen because of its complex configuration and extremely verbose 

output which would have made interpreting its results too time consuming and 

complicated. Open Source Tripwire was not chosen because of its overlapping feature 

set with AIDE, which was deemed sufficient for covering file integrity detection in the 

scope of this study. Tiger was not chosen because it uses an already included tool 

(Chkrootkit) for rootkit detection. ClamAV and Linux Malware Detect were not chosen 

because they do not include facilities for rootkit detection but instead focus on 

signature-based detection of viruses and worms. 
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OSSEC is an open source host-based intrusion detection system for multiple platforms, 

including Linux, BSD and Windows. It provides an agent-based continuous system 

monitoring solution with features such as log monitoring, integrity checking and rootkit 

detection. Rootkit detection in OSSEC includes mechanisms such as detecting binary 

modifications, checking for hidden processes and scanning for promiscuous network 

interfaces. The mechanisms are a part of a “rootkit detection engine” named Rootcheck, 

which is included in the core product. (OSSEC Project Team, 2019.) 

Based on the categories by Todd et al. (2007), OSSEC can be categorized as a 

signature-based detector as it checks files created by known rootkits against a signature 

database. It can also be categorized as a behaviour-based detector as it inspects files and 

directories for deviation from expected configurations. The tool can also be considered 

a cross-view-based detector as it checks for the existence of e.g. hidden processes by 

comparing outputs of different commands and observing differences between them. In 

addition, OSSEC can be categorized as an integrity-based detector as it can detect 

modifications made to the file system. 

AIDE – short for Advanced Intrusion Detection Environment – is an open source file 

integrity checker. It provides file integrity verification by monitoring an operating 

system’s file system for modifications. The tool stores properties of the file system’s 

contents, such as file attributes and checksums in a database file and detects if they have 

changed between scans to inform about (possibly malicious and unauthorized) 

manipulation of the file system’s contents. The properties to store in the AIDE database 

can be specified by the user for any configuration of file paths based on regular 

expressions and sets of file properties to collect for each matching path. (Lehti & 

Virolainen, 2019.) 

AIDE can be categorized as an integrity-based detector as it monitors the file system for 

modifications. While not specifically designed for rootkit detection, AIDE can be used 

to identify changes made in the file system by rootkits and is in fact one of the tools 

suggested by the authors of Rootkit Hunter to complement the functionality of rootkit 

detectors (Rootkit Hunter, 2019). 

Rootkit Hunter – also known as rkhunter – is an open source rootkit detector for Unix-

based operating systems. It is implemented as a Unix shell script. The tool attempts to 

detect rootkits by checking file properties, looking for suspicious software 

configurations and abnormalities in kernel modules and system binaries among other 

mechanisms. As its name suggests, its primary focus is on rootkit detection, though it 

may detect traces of other malware as well. The tool can also be configured to use 

Tripwire for additional verification of the file system’s integrity, as well another tool 

called Unhide for additional checking of hidden processes and ports. (Rootkit Hunter, 

2018.) However, the optional tool integrations are not used in this study to keep the 

detector configuration as “normal” as possible. 

Rootkit Hunter can be categorized as a signature-based detector as it contains signatures 

for specific rootkits. It can also be considered a behaviour-based detector due to its 

capability for checking system configurations. The tool can also be considered an 

integrity-based detector as it is able to collect and compare file properties between 

executions. 

Chkrootkit is another open source rootkit detection tool for Unix-based operating 

systems. It is similar to Rootkit Hunter in that it is also implemented as a Unix shell 

script with comparable features such as checking for hidden files, system binary 
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modifications, rootkit signatures and system configurations. It can also check for the 

modification of logfiles in the system. The tool can be used to detect multiple worms 

and trojans as well as other types of malware, though its main focus is on detecting 

rootkits. (Murilo & Steding-Jessen, 2019.) 

Chkrootkit can be categorized as a signature-based detector as it includes signatures for 

known rootkits. It can also be categorized as a behaviour-based detector as it can check 

for unusual configurations of system binaries. Also, it can be considered a cross-view-

based detector as it can check for e.g. inconsistencies between process properties in the 

/proc file system and related system calls. 

LKRG (Linux Kernel Runtime Guard) is a kernel integrity checker and exploit detector 

specifically designed for the Linux kernel. It can monitor the state of key Linux kernel 

data structures and detect modifications by storing and comparing addresses, checksums 

and properties of data structures such as kernel module object lists, interrupt descriptor 

and exception tables as well as control registers. It can also detect active kernel 

exploitation by checking the integrity of process IDs, sandboxing states and SELinux 

variables among other attributes. LKRG can also hide itself from kernel module listings 

to remain stealthy and to counter some anti-evasion features employed by malware. 

(Openwall, 2019.) 

LKRG can be categorized as a behaviour-based detector as it checks for specific values 

in key pointers and variables of the kernel’s data structures. Because it can check and 

compare data (e.g. kernel module listings) from multiple sources, LKRG can also be 

categorized as a cross-view-based detector. As LKRG’s main features are strongly 

related to checksum and property-based comparisons, it can be also categorized as an 

integrity-based detector. 

Table 4.  Rootkit detection tool categories. 

Rootkit Signature Behaviour Cross-view Integrity 

OSSEC x x x x 

AIDE    x 

Rootkit Hunter x x  x 

Chkrootkit x x x  

LKRG  x x x 

 

Table 4 shows the categories each rootkit detection tool used in this study are included 

in. The categories are based on rootkit detector classification described by Todd et al. 

(2007). All of the detector categories except hardware-based detectors are represented in 

this study to provide a wide-ranging coverage of the detection mechanisms used by the 

tools. 

3.4 Test environment 

The environment in which the rootkit detectors were tested consisted of a Linux 

distribution running as a guest operating system in a virtualized environment. The 

virtual machine monitor used to manage the guest operating system was Oracle VM 

VirtualBox version 5.2.22, a hosted type 2 hypervisor that supports full virtualization 

with hardware-assisted virtualization (Oracle, 2020). 
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As discussed earlier, there were two primary reasons for using a virtual machine based 

emulated testing environment in this study: repeatability and security. The hypervisor 

allows the state of the virtual machine to be saved as a “snapshot” at any given moment, 

to which the virtual machine could then be reverted to later on. This made it possible to 

define the common initial state for each test run, preventing modifications to the 

environment made by the rootkits and/or detectors from persisting and affecting other 

test runs. 

Another benefit of virtualization is that it also provides a layer of isolation between the 

host operating system and the software running inside the virtual machine. This helps 

decrease the likelihood of malicious code gaining access beyond the guest operating 

system. (Hyde, 2009.) However, the guest operating system can still communicate with 

the host OS over the network, presenting a potential attack vector for the rootkits to 

attempt to escape containment. 

In the test environment, outbound network communications from the guest operating 

system were restricted by using an application-level firewall to only allow outbound 

traffic to ports 53 (DNS), 80 (HTTP) and 443 (HTTPS) while blocking unestablished 

inbound traffic (except for port 22 in the rootkit installation stage to allow copying files 

over SSH). Also, outbound communication to the host operating system and other 

devices in the LAN (excluding the router) was blocked by firewall rules to prevent the 

guest operating from initiating connections to local devices on its own for potentially 

malicious purposes. 

As mentioned earlier, the source code of each rootkit was also inspected and cursorily 

audited to help prevent potential security breaches. No rootkits were found to contain 

execution paths which would attempt to subvert the system beyond what was described 

in their documentation. These considerations allowed the rootkits to be tested with 

increased confidence that they wouldn’t be able to escape the virtual machine and cause 

external damage, though this can never be completely guaranteed. 

Ubuntu 16.04.6 LTS (Xenial Xerus) was used as the testing environment for executing 

test runs. The distribution is well established and used for desktop, server and other 

applications. At the time of conducting this research, the distribution was still receiving 

continuous maintenance and security updates. The Linux kernel version used by the 

distribution in this research was 4.15.0 and the instruction set architecture was x86-64. 

The full system information string for the distribution using the uname -a command 

was Linux ubuntu1604 4.15.0-45-generic #48~16.04.1-Ubuntu SMP Tue Jan 
29 18:03:48 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux. 

The Ubuntu 16.04 distribution version was chosen over more modern versions such as 

Ubuntu 18.04 due to its kernel version being the most compatible with the kernel mode 

rootkits used in this study. Ubuntu 18.04 (and later versions) uses the much newer 5.x 

kernel series, which most of the kernel mode rootkits surveyed in the initial stages of 

this study did not support. However, it should be noted that many kernel mode rootkits 

evaluated for inclusion in this study did not support kernel version 4.15.0 used by 

Ubuntu 16.04 either, which posed a challenge by limiting the number of usable kernel 

mode rootkits to test. 
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3.5 Test process 

The testing process consisted of three stages. It was partly inspired by a similar testing 

method described by Richer, Neale and Osborne (2015), where rootkits were injected to 

a common initial state for each test using a virtual machine environment with the state 

of the system in specific points of time stored as snapshots, facilitated by the virtual 

machine monitor. As opposed to that study, this one did not use any third-party tools for 

injecting the rootkits or recording data about them, instead relying on simple custom 

shell scripts for automating the injection and data extraction procedures. 

In the first stage, a virtual machine image was created using VirtualBox with the 

following resource specifications: 

 Operating system: Linux (Ubuntu 16.04.6) x86_64 

 CPU: 4 virtual CPUs 

 Main memory: 4096 MB 

 Video memory: 128 MB 

 Disk: 10 GB dynamic VDI 

Port forwarding was set to open TCP port 22 for the guest operating system for SSH 

access from the host operating system to copy files into the virtual machine. The 

Ubuntu distribution was then installed, and the system’s packages were updated to the 

latest available versions. A “clean” snapshot was created from this state, serving as the 

common initial state that was used for each rootkit detector configuration. 

In the second stage, each of the rootkit detectors used was installed and configured in 

their separate virtual machines. A snapshot was created for each of the detectors in a 

state where they were immediately ready to be used. The snapshots were used as the 

starting point for each individual detection test. As discussed in the description of the 

test environment, this helped ensure that the tests could be easily repeated as many 

times as needed with minimal variability. 

Each of the stage two snapshots were loaded with two scripts: a launcher script and a 

logger script. The launcher script’s purpose was to execute a rootkit detection tool with 

a predetermined configuration to conduct a full detection run. The logger script then 

captured and moved the detector’s output to a specified location for retrieval and 

ensured it was ready to be accessed from the host operating system. For detailed 

installation, configuration and execution steps, see Appendix B. 

In the third stage, a rootkit was injected to each of the stage two virtual machine 

snapshots using detailed instructions derived from trial runs (see Appendix C). Once the 

rootkit was injected, a snapshot was taken to ensure the injection could be verified 

without modifying the system in an actual detection test. The detector installed in a 

snapshot was then run using the launcher script. Once the detector had finished running, 

the logger script was executed to record and copy the results of the detection run for 

further analysis. 

The test runs were executed serially, with only one virtual machine instance running at a 

time to ensure that performance remained stable between test runs and that no other 

forms of interference were introduced. In addition to detection runs with a rootkit 

injected, a clean run was also conducted where no rootkit had been installed to capture a 

control result to compare against the other detection runs. 
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While a “real-world” rootkit injection scenario would very likely include a chain of 

exploits including a dropper program, the test process in this study did not use any such 

tools in the injection process. This was to eliminate extraneous variables that could 

affect the detection results as much as possible. In addition, ensuring that no additional 

exploits or tools were introduced to the system made the detection process a “worst-

case”-scenario for the rootkit detection tools, simulating a scenario where any extra 

traces of infection had been removed, thus levelling the field for each test run. 

After all detection runs were completed, i.e. each detector had finished running with 

each rootkit installed on each distribution, the obtained results were used for analysis. 

The maximum duration specified for a single injection-detection run was 30 minutes, 

serving as a cut-off mechanism to ensure that all tests could be executed in a reasonable 

amount of time. 

3.6 Evaluation procedure 

The effectiveness of each detection tool was evaluated to determine how successful the 

tool was in finding a specific rootkit and its corresponding rootkit category (user mode 

and kernel mode). The evaluation considered five options for each detection run: 

whether the detector was able to explicitly detect a rootkit, provide warnings about a 

potential infection, unable to successfully finish the test without exhibiting abnormal 

behaviour, provide a false positive result unrelated to rootkit infection or miss the 

rootkit’s existence entirely. 

The options were categorized into two kinds of detections: positive and negative 

detection indications. The positive detection indication category combined explicit 

detections, potential infection warnings and detection results indicating changes in 

system behaviour that could be caused by rootkits, malware or other system 

exploitation. The negative detection indication category combined abnormal test 

executions without warnings, false positives and detection results that were identical to 

the clean runs. The categorization was performed to enable a more straightforward and 

conclusive comparison between the detection tools.  
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4. Results 

This chapter presents the results of the rootkit detection tests conducted in this study. In 

addition, the phases of the detection test runs are described for each detection tool. 

Finally, the results of the detection tests are summarized. 

4.1 Detection runs 

Each detector was installed and configured from a “clean” virtual machine memory 

snapshot, where the Ubuntu distribution was installed and configured to represent a 

fresh operating system installation. Once configured, another snapshot was taken for 

each detection tool as a starting point for the detection runs. 

Each detection run was executed by injecting a rootkit to the system, capturing a VM 

snapshot directly after injection, executing the rootkit detection tool and capturing the 

test’s results. After each run, the state of the VM was restored using the snapshot where 

the detector had been configured. The rootkit injection was verified separately for each 

rootkit by restoring the snapshot where the rootkit had been injected. For full 

installation, configuration and detection run procedures for each detection tool, see 

Appendix B. For detailed rootkit installation and configuration procedures (including 

injection verification), see Appendix C. 

A total of 75 detection tests were conducted, excluding clean, trial and confirmation test 

runs. Each detection tool was tested against each rootkit, so no combination of detector 

and rootkit was skipped. In some cases, detection runs were repeated to confirm that the 

results were not affected by external events. 

4.2 OSSEC 

In preparation for detection tests, OSSEC version 3.5.0 was downloaded from its 

official GitHub code repository and installed using the included install script. OSSEC’s 

Syscheck and Rootcheck checks were determined to likely exceed the 30-minute cut-off 

based on initial test runs. Therefore, they were configured to execute faster by removing 

a time delay that would have normally been triggered after scanning a certain number of 

files or ports. 

In the clean run, OSSEC’s Rootcheck detected that the file /run/user/1000/gvfs was 

related to a “possible kernel level rootkit” due to a cross-view mismatch where the file 

was visible for readdir() but not for the stat() system call. This was determined to 

be normal behaviour for the system and therefore a false positive. The result output 

displaying the false positive is shown in Figure 4. 
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... 

2020 Jan 29 19:01:23 (first time detected: 2020 Jan 29 19:01:23) 

System Audit: Anomaly detected in file '/run/user/1000/gvfs'. Hidden 

from stats, but showing up on readdir. Possible kernel level rootkit. 

 

Figure 4.  OSSEC clean run false positive. 

OSSEC was able to provide warnings of the existence of a potential rootkit in the 

system for JynxKit2, Zendar, Puszek and Reptile. In the detection run for JynxKit2, 

OSSEC detected link count mismatches in directories /, /etc, /var/spool, 

/var/cache and /var/log/hp, readdir()/stat() mismatches in  files /etc/cups, 

/run/cups, /var/cache/cups, /var/spool/cups and /var/log/hp/tmp as well as 

a single process hidden from ps. All of the results were consistent with the behaviour of 

JynxKit2 based on an inspection of its source code and reference documentation. 

In the case of Zendar, the files /lib/libsslcore.so and /etc/ld.so.preload (both 

manipulated by Zendar) were detected as anomalous by OSSEC with a cross-view 

mismatch between readdir() and stat() system call results. In addition, the 

existence of a non-root user account with UID 0 created by Zendar was detected in 

/etc/passwd. The results were consistent with Zendar’s code and reference 

documentation. 

In the detection run with Puszek injected, OSSEC detected a cross-view mismatch in the 

file /etc/^A. Puszek creates hidden files /etc/modules, /etc/http_requests and  

/etc/passwords for logging and hiding purposes, so the cross-view mismatch was 

very likely connected to them. The detection run was re-executed twice to rule out other 

causes, and their results were identical to the first run. 

Figure 5 shows the most relevant portions of the OSSEC rootcheck results when 

attempting to detect Reptile. OSSEC warned about a hidden file in the root directory, 

triggered by its cross-view-based detection checks. The file was determined to be 

/reptile/reptile_cmd based on a manual inspection conducted after the detection 

run. Also, a mismatch in the file size of /etc/modules and the link count of 

/lib/modules/4.15.0-45-generic/kernel/drivers/PulseAudio was detected by 

OSSEC and classified as a potential rootkit. Both files are manipulated by Reptile, 

confirming that the results were valid. 
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2020 Jan 29 19:06:06 (first time detected: 2020 Jan 29 19:06:06) 

System Audit: Files hidden inside directory '/lib/modules/4.15.0-45-

generic/kernel/drivers/PulseAudio'. Link count does not match number 

of files (2,3). 

 

2020 Jan 29 19:06:06 (first time detected: 2020 Jan 29 19:06:06) 

System Audit: Anomaly detected in file '/etc/modules'. File size 

doesn't match what we found. Possible kernel level rootkit. 

2020 Jan 29 19:06:09 (first time detected: 2020 Jan 29 19:06:09) 

System Audit: Files hidden inside directory '/'. Link count does not 

match number of files (24,25). 

 

Figure 5.  OSSEC results summary for the Reptile detection run. 

Besides direct indications of rootkits JynxKit2, Zendar, Puszek and Reptile, OSSEC 

found suspicious system behaviour in the detection runs for Bedevil and Vlany. 

Detection run results for Azazel, BEURK, Diamorphine, Honey Pot Bears, Keysniffer, 

LilyOfTheValley, Nuk3 Gh0st, Puszek, Rootfoo Linux Rootkit and Sutekh were 

identical to the clean run, with no indications of rootkit injection or suspicious 

behaviour given by the tool. 

In Bedevil’s detection run, OSSEC detected a mismatch in the number of links to 

directory /usr/share/doc/libcolord2. The directory was created by Bedevil during 

its injection phase to host the rootkit executable and its configuration. This means that 

the warning given by OSSEC was relevant. 

In Vlany’s detection run, OSSEC detected a link count mismatch in the /lib directory, 

which is where Vlany installs its shared object file for LD_PRELOAD hooking. However, 

it was unable to detect any specific files manipulated by Vlany, making actual 

identification of the rootkit difficult. 

4.3 AIDE 

To prepare detection tests with AIDE, the latest released version (0.16.2a2-19-

g16ed855) was first installed on the system using Ubuntu’s APT package manager. 

Then, its database of file and directory properties was initialized with aideinit. After 

database initialization, an AIDE configuration file was generated for the system and set 

as AIDE’s default configuration. 

Since AIDE doesn’t explicitly detect the existence of rootkits, interpreting its results 

required additional analysis of the rootkits’ behaviour. Specifically, this meant that the 

files and directories that were created, deleted or modified by rootkits needed to be 

determined based on available references as well as rootkit source code and then 

compared against AIDE’s results to find matches. 

A summary of results for an AIDE integrity check run against the clean system without 

rootkits installed is shown in Figure 6. Constant changes in the file system were 

detected over the course of the AIDE test runs, mostly originating from the /dev and 

/run directories containing volatile device and runtimes files and directories. 
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Summary: 

  Total number of entries:      235723 

  Added entries:                7 

  Removed entries:              5 

  Changed entries:              11 

 

Figure 6.  AIDE results summary for the clean run. 

Based on comparison of AIDE’s results and the files/directories determined to be 

modified by the rootkits used in the detection tests, AIDE was able to detect 

modifications to files and directories made by eight of the 15 rootkits. All user mode 

rootkits left traces that were captured by AIDE, while only two of the nine kernel mode 

rootkits (Honey Pot Bears Rootkit and Reptile) left traces visible to AIDE in the file 

system. 

For Azazel, AIDE detected the addition of files /etc/ld.so.preload and 

/lib/libselinux.so as well as modification of the /lib directory. However, it did 

not detect the addition of files hidden by Azazel using its magic string. In the Bedevil 

detection run, AIDE detected the addition of files /etc/ld.so.preload, 

/etc/system/system/sysinit.target.wants/.17174, multiple files added to 

/usr/share/doc/libcolord2/.19465 as well as the modification of file 

/etc/ssh/sshd_config. All of the files added or modified by Bedevil were found. 

AIDE found files /etc/ld.so.preload and /lib/libselinux.so used for injection 

by BEURK. It also detected files hidden by BEURK’s magic string feature. It also 

found /etc/ld.so.preload, /XxJynx/jynx2.so and /XxJynx/reality.so created 

by JynxKit2, clearly showing the rootkit’s injection. AIDE also detected every 

file/directory added or modified by Vlany, such as /etc/ld.so.preload, 

/etc/ld.so.conf.d, /lib/ld-linux.so.2, /lib/libc.so.test.03, 

/opt/.54xJE6BG and /etc/ssh/sshd_config. Vlany’s injection left a rather large 

injection footprint on the file system with many suspicious files added or modified, so 

the existence of a rootkit was easy to discover in AIDE’s results. 

Most relevant parts of AIDE results summary for the Zendar detection run are shown in 

Figure 7. The added entries are especially suspicious and indicative of a user mode 

rootkit; the preload hooking, disguised shared object as well as rootkit user 

configuration and environment are clearly visible. The files were all confirmed to have 

been manipulated by Zendar for injection and persistence purposes. 
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Summary: 

  Total number of entries:      235733 

  Added entries:                16 

  Removed entries:              8 

  Changed entries:              23 

--------------------------------------------------- 

Added entries: 

--------------------------------------------------- 

... 

f++++++++++++++++: /etc/.passwd 

f++++++++++++++++: /etc/.shadow 

f++++++++++++++++: /etc/ld.so.conf.d/.bashrc 

f++++++++++++++++: /etc/ld.so.conf.d/login 

f++++++++++++++++: /etc/ld.so.preload  

f++++++++++++++++: /lib/libsslcore.so 

... 
--------------------------------------------------- 
Changed entries: 
--------------------------------------------------- 
... 

d =.... mc.. .. .: /etc/ld.so.conf.d 
f >.... mc..C.. .: /etc/passwd 
f >.... mc..C.. .: /etc/shadow 
d =.... mc.. .. .: /lib 

... 

 

Figure 7.  AIDE results summary for the Zendar detection run. 

In terms of kernel mode rootkits, AIDE did not detect modifications to the file system 

made by Diamorphine, Keysniffer, LilyOfTheValley, Nuk3 Gh0st, Puszek, Rootfoo 

Linux Rootkit or Sutekh. It did, however, detect changes to files /etc/group, 

/etc/passwd, /etc/shadow, /etc/subgid, /etc/subuid, all of which are 

modified by the Honey Pot Bears rootkit for backdoor user installation. AIDE also 

detected the deletion of files including the string secret, which is the default magic 

string for hiding arbitrary files by the rootkit. The apparent deletion of such files can be 

quite clearly considered a red flag when analysing results, although the deletion also 

meant that AIDE was unable to track the existence of any files matching the rootkit’s 

magic string. 

AIDE was able to detect the addition of file /lib/modules/4.15.0-45-

generic/kernel/drivers/PulseAudio injected by Reptile as well as modifications 

to files in /lib/modules/4.15.0-45-generic and /etc/modules. However, it did not 

detect the addition of crucial control and persistence files injected by Reptile to 

/reptile. It could be argued that the files detected by AIDE can be difficult to link to a 

rootkit injection, though doing so is dependent on how aware the person analysing 

AIDE’s results is of the specifics of Reptile’s injection behaviour. 

4.4 Rootkit Hunter 

In preparation for detection tests, Rootkit Hunter version 1.4.6 was installed using the 

APT package manager. During installation, the tool was configured not to send emails 

of detection results. After the tool was installed, the file property database used by 
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Rootkit Hunter’s file integrity checker mechanism was initialized by executing the 

command rkhunter --propupd. 

The clean Rootkit Hunter test run without rootkits installed produced some warnings; 

the commands adduser, ldd, lwp-request, egrep, fgrep, and which were determined 

to have been “replaced by a script”, processes for compiz and nautilus had 

“suspiciously” large shared memory segments, SSH root login was found to be enabled 

and eight “suspicious file types” were detected in /dev/. In its summary, Rootkit 

Hunter reported six suspicious files and two potential rootkits. However, these warnings 

were deemed to be default behaviour for the distribution. The check summary report for 

the clean run is shown in Figure 8. 

 

[21:47:09] System checks summary 

[21:47:09] ===================== 

[21:47:09] 

[21:47:09] File properties checks... 

[21:47:09] Files checked: 147 

[21:47:09] Suspect files: 6 

[21:47:09] 

[21:47:09] Rootkit checks... 

[21:47:09] Rootkits checked : 501 

[21:47:09] Possible rootkits: 2 

[21:47:09] 

[21:47:09] Applications checks... 

[21:47:09] All checks skipped 

[21:47:09] 

[21:47:09] The system checks took: 1 minute and 14 seconds 

 

Figure 8.  Rootkit Hunter check results summary for a clean detection run. 

Rootkit Hunter was able to directly detect four of the 15 rootkits tested: JynxKit2, 

Zendar, Diamorphine and Rootfoo Linux Rootkit. However, Zendar and Rootfoo Linux 

Rootkit were incorrectly detected as SucKIT and Diamorphine, respectively. Figure 9 

shows the most relevant results of Rootkit Hunter checks when attempting to detect 

JynxKit2. 

  



35 

 

 

[23:07:45] Checking for Jynx2 Rootkit... 

[23:07:45]   Checking for file '/XxJynx/reality.so'          [ Found ] 

[23:07:45]   Checking for directory '/XxJynx'                [ Found ] 

[23:07:45] Warning: Jynx2 Rootkit                            [Warning] 

[23:07:45]          File '/XxJynx/reality.so' found 

[23:07:45]          Directory '/XxJynx' found 

... 

[23:08:54] System checks summary 

[23:08:54] ===================== 

[23:08:54] 

[23:08:54] File properties checks... 

[23:08:54] Files checked: 147 

[23:08:54] Suspect files: 6 

[23:08:54] 

[23:08:54] Rootkit checks... 

[23:08:54] Rootkits checked : 501 

[23:08:54] Possible rootkits: 3 

[23:08:54] Rootkit names    : Jynx2 Rootkit 

[23:08:55] 

[23:08:55] Applications checks... 

[23:08:55] All checks skipped 

[23:08:55] 

[23:08:55] The system checks took: 2 minutes and 10 seconds 

 

Figure 9.  Rootkit Hunter check results for the JynxKit2 detection run. 

The detection run for Azazel produced some abnormal detection results. As the test was 

executed, each line printed to the screen by Rootkit Hunter produced a display error. 

The errors were not visible in the logfile produced by Rootkit Hunter. This was because 

the actual result (e.g. OK, Warning, Not Found) for each check was simply not saved to 

the file. A screenshot displaying some of the errors is shown in Figure 10. 

Also, according to the logs, system command checks were not run but instead skipped 

entirely without notification. Such errors could be perceived as a bug in the detector 

itself, though they may raise suspicions in some scenarios – especially as the clean runs 

produced correctly formed results output. The tool itself did not provide any indications 

that the errors could be related to malicious activity. 
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Figure 10.  Rootkit Hunter display errors in the Azazel detection run. 

In terms of user mode rootkits, Rootkit Hunter was unable to detect any traces of 

Bedevil, BEURK or Vlany. Of the kernel mode rootkits, Honey Pot Bears Rootkit, 

LilyOfTheValley, Nuk3 Gh0st, Keysniffer, Puszek, Reptile and Sutekh were also not 

detected at all. In these cases, the Rootkit Hunter results output was identical to the 

clean run results. 

Interestingly, it appears that all of the successful detections were achieved by the rootkit 

signature checking mechanisms of Rootkit Hunter. This was especially apparent in the 

explicit detections. No indications of the behaviour or integrity checks contributing to 

the findings were discovered. 

4.5 Chkrootkit 

Chkrootkit version 0.52 was installed using the APT package manager. No further 

configuration was required, so Chkrootkit was immediately ready to be used for the 

detection tests. Chkrootkit doesn’t save the results of a detection run to any logfile by 

default, so its output was redirected to both a logfile and standard output using the tee 

command. The command used to execute each of the Chkrootkit detection tests was: 

sudo chkrootkit | tee /tmp/chkrootkit.log. 

Checking the system without rootkits installed produced warnings of two suspicious 

files found in the system: /usr/lib/debug/build-id and /lib/modules/4.15.0-45-

generic/vdso/.build-id. Chkrootkit did not provide any details on why the files 

were considered suspicious. Also, no summary of the results of the test was given by the 

tool. A snippet of the clean Chkrootkit detection run is shown in Figure 11. 



37 

 

ROOTDIR is `/' 

Checking `amd'... not found 

Checking `basename'... not infected 

Checking `biff'... not found 

Checking `chfn'... not infected 

Checking `chsh'... not infected 

Checking `cron'... not infected 

Checking `crontab'... not infected 

... 

 

Figure 11.  First few check results in the Chkrootkit clean run. 

Chkrootkit did not explicitly detect any of the injected rootkits. However, it did provide 

warnings of a potential rootkit installation for both JynxKit2 and Zendar. In the case of 

JynxKit2, the chkproc check included in Chkrootkit detected a process hidden from the 

ps command with result “Warning: Possible LKM Trojan installed”. The same warning 

was given when testing Zendar, although by the chkdirs check instead of chkproc, and 

without any additional details of the potential infection. 

The execution of Chkrootkit tests were also found to differ from the clean run’s results 

for Azazel, Bedevil and Vlany. When executing a detection run with Azazel injected, 

Chkrootkit’s output included what appears to be the output of the commands it was 

checking instead of the results of the checks. For example, the check for the env 

command printed the environment variables defined for the shell running Chkrootkit 

instead of normal results like “not infected” or “not found”. The Azazel detection test 

was re-executed twice to confirm that the abnormal test execution was actually related 

to Azazel. A snippet of the malformed output logs in the Azazel detection run is shown 

in Figure 12. 
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ROOTDIR is `/' 

Checking `amd'... \c 

Checking `basename'... \c 

Checking `biff'... \c 

Checking `chfn'... \c 

Changing the user information for root 

Enter the new value, or press ENTER for the default 

        Full Name [root]:       Room Number []:         Work Phone []: 

        Home Phone []:  Other []: 

        Checking `chsh'... \c                                                                     

Changing the login shell for root 

Enter the new value, or press ENTER for the default 

        Login Shell [/bin/bash]: Checking `cron'... \c 

Checking `crontab'... \c 

... 

 

Figure 12.  Abnormal Chkrootkit output results in the Azazel detection run. 

When testing Bedevil and Vlany, the check for “bindshell” produced the following 

error: “Cannot open netlink socket: Input/output error”. The errors were verified to 

occur only when either rootkit was installed by executing the tests and the clean run two 

additional times. The detection results for the two rootkits were otherwise identical to 

the clean run. 

Of the user mode rootkits, Chkrootkit produced results identical to the clean run only in 

BEURK’s detection run. In fact, the tool encountered more abnormal detection runs 

than successful detections in the user mode rootkit tests. Chkrootkit was also unable to 

detect any traces of infection or suspicious activity for any of the kernel mode rootkits 

used in this study. 

4.6 LKRG 

LKRG version 0.7 was downloaded from its official release page hosted by Openwall 

and then manually compiled. Compiling LKRG produced a kernel object file 

(p_lkrg.ko) which, when inserted to the kernel, would immediately start executing its 

kernel checking procedures. 

The LKRG detection runs were conducted twice, as both pre- and post-injection tests. In 

pre-injection tests, the LKRG kernel module was inserted into the kernel before rootkit 

injection. Conversely, rootkits were injected into the system before the LKRG kernel 

module was inserted in post-injection tests. The reasoning for running both pre- and 

post-injection tests was to check if there is a difference in LKRG’s effectiveness for 

detecting modifications to the kernel based on if the rootkit is injected before or after 

LKRG has been initialized. 

Figure 13 shows LKRG’s initialization and test results for a clean run. The output was 

identical in detection runs where a rootkit was injected into the system but not detected 

by LKRG. The message “System is clean!” was repeated approximately every 15 

seconds, confirming that LKRG kept executing its checks periodically after it was 

installed.  
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[1765.948683] p_lkrg: loading out-of-tree module taints kernel. 

[1765.951045] [p_lkrg] Loading LKRG... 

[1765.954991] Freezing user space processes ... (elapsed 0.001 

seconds) done. 

[1765.956542] OOM killer disabled. 

[1766.386322] [p_lkrg] LKRG initialized successfully! 

[1766.386326] OOM killer enabled. 

[1766.386326] Restarting tasks ... done. 

[1781.509581] [p_lkrg] System is clean! 

 

Figure 13.  LKRG dmesg output for loading and executing a clean detection run. 

In the pre-injection tests, LKRG was able to detect kernel modifications made by all 

kernel mode rootkits except Keysniffer. Figure 14 shows the most relevant part of result 

output captured using dmesg, where LKRG detected a hidden module (Diamorphine) 

with its cross-view checking feature. 

 

[1793.541744] [p_lkrg] ALERT !!! _RODATA MEMORY BLOCK HASH IS 

DIFFERENT - it is [0x637744befeda89a5] and should be 

[0xcf790917e9f35a54] !!! 

[1793.541748] [p_lkrg] ALERT !!! FOUND LESS[1] MODULES IN MODULE 

LIST[67] THAN IN KOBJ[68] 

[1793.541754] [p_lkrg] HIDDEN MODULE: 

              name[diamorphine] module at addr[000000006e864428] 

              module core[0000000044e537f8] with size[0x1000] 

              hash[0x6d4e0d584a3b6d15] 

[1793.541763] [p_lkrg] !! MOST LIKELY SYSTEM IS HACKED - MODULE WILL 

BE DUMPED !! ** 

[1793.541772] [p_lkrg] ALERT !!! SYSTEM HAS BEEN COMPROMISED - 

DETECTED DIFFERENT 2 CHECKSUMS !!! 

 

Figure 14.  LKRG dmesg detection result for the Diamorphine pre-injection detection run. 

In the post-injection tests, LKRG was able to detect modifications to the kernel made by 

Diamorphine, Nuk3 Ghost, Reptile and Rootfoo Linux Rootkit but not by Honey Pot 

Bears, Keysniffer, LilyOfTheValley, Puszek or Sutekh. This indicates that the post-

injection tests are not as effective in detecting kernel modifications compared to when 

LKRG is installed prior to injection. 

Figure 15 displays a portion of the LKRG detection results for Rootfoo Linux Rootkit, 

where LKRG’s kernel exploit detection feature blocks the use of the UMH (Usermode 

Helper) feature provided by the kernel to invoke Rootfoo’s periodically triggered rootkit 

executable from the user mode. In addition to detecting an exploit, the exploit detection 

feature also prevented further execution of the discovered program. 
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[1792.762722] ROOTKIT executing /tmp/rootkit.sh 

[1792.762905] [p_lkrg] <Exploit Detection> !!! BLOCKING UMH !!! 

[1792.762908] [p_lkrg] <Exploit Detection> Someone is trying to 

execute file: [/tmp/rootkit.sh] 

[1792.762909] [p_lkrg] <Exploit Detection> --- . --- 

 

Figure 15.  LKRG dmesg detection result for the Rootfoo Linux Rootkit post-injection detection 
run. 

No user mode rootkits were detected by LKRG. The most plausible reason for this is 

that the selected user mode rootkits do not attempt to directly modify the kernel’s data 

structures in any way. They rather rely on the LD_PRELOAD mechanism for hooking and 

function purely within the userland. Further tests using rootkits that inject themselves 

using the /dev/mem and /dev/kmem device files could potentially provide some 

interesting results in this regard. 

4.7 Summary 

Of the 75 detection runs conducted, 28 provided indications of a rootkit or suspicious 

behaviour, 4 executed abnormally and 43 produced results identical to the clean runs. 

The results of the rootkit detection tests are summarized in Table 5.
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Table 5.  Rootkit detection results. x: detected explicitly (by name), !: detected as a potential 
rootkit, ?: detected as suspicious, *: abnormal execution, empty cell: not detected (result 
identical to clean run). 

Rootkit OSSEC AIDE Rootkit Hunter Chkrootkit LKRG 

Azazel  ? * *  

Bedevil ? ?  *  

BEURK  ?    

JynxKit2 ! ? x !  

Vlany ? ?  *  

Zendar ! ? x1 !  

Diamorphine   x  ! 

Honey Pot Bears  ?   ! 

Keysniffer      

LilyOfTheValley     ! 

Nuk3 Gh0st     ! 

Puszek !    ! 

Reptile ! ?   ! 

Rootfoo Linux Rootkit   x2  ! 

Sutekh     ! 

 

The results of rootkit detection runs for each detection tool are categorized per outcome 

in Table 6. Explicit detections indicates how many rootkits were specifically named by 

each tool (Rootkit Hunter’s two misidentifications are also counted as explicit 

detections). Potential rootkits/malware shows how many times each tool was able to 

provide at least one warning of a potential rootkit or malware infection. Suspicious 

results indicates how many times each tool successfully produced results which couldn’t 

be labelled as potential infections but could be considered as unusual system behaviour. 

Abnormal test executions specifies how many times the execution of the test did not 

proceed normally. False positives shows how many times each tool gave a warning of a 

rootkit or suspicious behaviour in a clean environment or unrelated to a rootkit. Finally, 

clean results indicates how many times the detection tool’s result was identical with the 

clean detection run.  

  

                                                 

1 Misidentified as SucKIT 

2 Misidentified as Diamorphine 
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Table 6.  Rootkit detection run outcome summary. 

 Explicit 

detections 

Potential 

rootkits/ 

malware 

Suspicious 

results 

Abnormal 

test 

executions 

False 

positives 

Clean 

results 

OSSEC 0 4 2 0 1 8 

AIDE 0 0 8 0 0 7 

Rootkit Hunter 4 0 0 1 2 8 

Chkrootkit 0 2 0 3 0 10 

LKRG 0 8 0 0 0 7 

Total 4 14 10 4 3 40 

 

OSSEC detected four of the 15 rootkits as potential rootkits and provided plausible 

warnings of suspicious system behaviour for two other rootkits. It also consistently 

provided the same false positive in every detection run, including the clean run. OSSEC 

required more configuration than the other tools to enable triggering its detection checks 

manually, as it normally conducts automated periodical system checks with a slow 

scanning pace to reduce its overall impact on system performance. 

AIDE was capable of detecting changes in the file system made by eight of the 15 

rootkits. All of the user mode rootkits left traces visible to AIDE, while only two kernel 

mode rootkits (Honey Pot Bears and Reptile) modified the file system in a way that 

made them detectable by inspecting AIDE’s results. Determining the results for AIDE 

required manual inspection and comparison of the results and the files manipulated by 

the rootkits, making the determination of the tool’s effectiveness a more difficult and 

involved process. This also meant that all of AIDE’s positive results were marked as 

suspicious behaviour, as no rootkit-related warnings were (or can be) displayed by the 

tool. 

Rootkit Hunter was able to detect four of the 15 rootkits, all of which were direct 

detections where a rootkit was named. However, two of the directly detected rootkits, 

Zendar and Rootfoo Linux Rootkit, were incorrectly identified as SucKIT and 

Diamorphine, respectively. Rootkit Hunter was not able to provide any indications of 

suspicious behaviour or potential infection for the rest of the rootkits. The detection run 

was abnormal for Azazel, where it appears that multiple system checks were skipped. 

Rootkit Hunter produced two false positives (marked as potential rootkits) in its clean 

run, which were also shown in all detection runs’ results. Of the five tools used, only 

Rootkit Hunter was able to explicitly detect rootkits by identifying them by name. 

Chkrootkit was capable of detecting two of the 15 rootkits (JynxKit2 and Zendar), both 

of which were user mode rootkits. Its detection run malfunctioned when Azazel was 

installed in the system, where the test output for its checks was from the commands it 

checked instead of the tool’s own results. Detection runs for Bedevil and Vlany also 

produced some abnormal results. Chkrootkit did not provide any summary of the 

detection results, meaning that the logfile needed to be fully inspected to determine if 

something had been detected by the tool. 

LKRG was able to detect potential infection for all kernel mode rootkits except 

Keysniffer in its pre-injection tests. In the post-injection tests, it was able to detect four 
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out of the nine kernel mode rootkits (Diamorphine, Nuk3 Ghost, Reptile and Rootfoo 

Linux Rootkit). This indicates that LKRG is more effective as a proactive tool instead 

of when a rootkit has already been injected to the system. LKRG did not provide any 

indications of infection for the user mode rootkits used in this study. 

Figure 16 displays the number of positive and negative detections by each tool for the 

user mode rootkits. A positive detection in this case indicates that a rootkit injection was 

either explicitly detected, presented as a potential rootkit/malware or the system 

behaviour was considered suspicious. A negative detection on the other hand indicates 

that a detection run with a rootkit injected either produced false positives, results 

identical to the clean run or the run was executed abnormally without any warnings. 

AIDE provided the most positive detections for user mode rootkits, in the form of 

manually verifiable indications of file system manipulation for all six of them. OSSEC 

was the second most effective detector in this category, with four positive and two 

negative detections, followed by Rootkit Hunter and Chkrootkit with two positive and 

four negative detections. LKRG was the least effective in this category, with no 

detections of user mode rootkits. 

 

Figure 16.  Positive/negative detection indications by tool (user mode rootkits). 

Figure 17 shows the number of positive and negative detections by each tool for the 

kernel mode rootkits. It is clear that LKRG was the most effective for detecting this 

category of rootkits, with eight positive detections and one negative detection. OSSEC, 

AIDE and Rootkit Hunter had the same level of effectiveness with two positive and 

seven negative detections. Chkrootkit did not detect any of the tested kernel mode 

rootkits, so it was the least effective detection tool in this category. 
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Figure 17.  Positive/negative detection indications by tool (kernel mode rootkits). 

Figure 18 visualizes the number of positive and negative detections by each tool for the 

set of all tested rootkits. AIDE and LKRG provided the most positive detections in total, 

with eight positive and seven negative detections for both tools. The two were also the 

only detection tools that had more positive than negative detections. OSSEC provided 

six positive detections and nine detections in total, while Rootkit Hunter provided four 

positive and 11 negative detections and Chkrootkit provided two positive and 13 

negative detections. 

 

Figure 18.  Positive/negative detection indications by tool (all rootkits). 

In summary, AIDE was the most effective detection tool for detecting user mode 

rootkits in terms of positive detection indications, though it required manual inspection 

and knowledge of the rootkits’ behaviour to confirm the infections. LKRG was the most 

effective detection tool for kernel mode rootkits, especially when it was already running 

before rootkits were injected. Even when loaded to the kernel after rootkit injection, 

LKRG was more effective in detecting kernel mode rootkits than the other tools. 

OSSEC was the second most effective tool in detecting user mode rootkits, and on par 

with AIDE and Rootkit Hunter in finding kernel mode rootkits. Rootkit Hunter was the 
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only detection tool capable of explicitly detecting specific rootkits injected to the 

system. Chkrootkit was the least effective tool in finding user and kernel mode rootkits. 

The overall detection effectiveness was less than ideal for individual detection tools, as 

the tools’ average detection rate was 37.3% for all rootkits. The strengths and 

weaknesses of each tool were noticeable in the results, indicating that the effectiveness 

of detection could be strategically improved by utilizing multiple tools in detection 

scenarios. For example, using AIDE and OSSEC for covering user mode rootkits and 

LKRG for kernel mode rootkits could vastly improve the detection rates, at least for the 

representation of rootkits used in this study. 

In terms of rootkit detectability, Keysniffer was the only rootkit that was not detected by 

any tool. One potential reason for this is that Keysniffer does not hook the system like 

the other tested rootkits, as it instead registers a keyboard event notifier with the kernel 

and does not manipulate e.g. the system call table. It should be noted that some of the 

stricter rootkit definitions would not consider Keysniffer as a rootkit, though it was 

selected for this particular study.  

Azazel, BEURK, Diamorphine, LilyOfTheValley, Nuk3 Gh0st and Sutekh were only 

detected once (though Azazel additionally caused two abnormal test executions). The 

rootkits with most detections were JynxKit2 and Zendar, as they were both detected by 

four of the five tools. Overall, user mode rootkits exhibited a higher detection rate 

(46.7%) than kernel mode rootkits (31.1%). 
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5. Discussion 

This chapter summarizes and discusses the findings of this study in relation to prior 

research. Each research question is considered and addressed individually. Finally, the 

practicality of the detection tools is discussed. 

5.1 Relation to prior studies 

The focus of this study was on determining the effectiveness of detection tools in 

finding indications of Linux rootkits. Similar studies by Bunten (2004) and Todd et al. 

(2007) have discovered that while such tools show promise in detecting rootkits, they 

also tend to have shortcomings such as lack of universality and reduced forensic 

integrity. This study featured tools used in the studies (AIDE, Rootkit Hunter and 

Chkrootkit) as well as tools for which no similar evaluation of effectiveness was found 

in prior research (namely OSSEC and LKRG). 

Bunten (2004) has called for more general runtime-based detection methods for kernel 

mode rootkits such as kernel integrity checking, which was featured in this study in the 

form of LKRG, representing an advancement in the field of such detection tools. 

Indeed, LKRG displayed promising results in discovering indications of kernel mode 

rootkits. In addition, the inclusion of OSSEC provided detection results from a tool with 

a more universal range of detection features, matching four of the five rootkit detection 

categories described by Todd et al. (2007): signature-, behaviour-, cross-view- and 

integrity-based detection. 

Freiling and Schwittay (2007) have advocated performing periodic evaluations of 

rootkit detection tools to determine their detection abilities and overall effectiveness. 

This study provided such an evaluation in the context of modern publicly available 

Linux rootkits and contemporary open source detection tools. The findings contribute to 

the body of knowledge by improving the understanding of how effective Linux rootkit 

detection tools are in general as well as in relation to each other.  

5.2 RQ1: Rootkit detection effectiveness 

The results of the 75 detection tests conducted in this study showed that the rootkit 

detection tools provided direct indications of rootkits in four cases, or 5.3% of all 

detection attempts. Indications of potential rootkit or malware infections were provided 

by the tools in 14 cases (18.7%). Indications of suspicious system behaviour deviating 

from normal operation were provided by the tools in 10 detection tests (13.3%). 

In total, any indication of infection or suspicious system behaviour was provided in 28 

of the detection tests, meaning that even the most optimistic combined detection rate 

was 37.3%. This means that 62.7% of the detection tests produced results that were 

consistent with the clean tests, where no rootkits were injected to the system. In other 

words, no indications of rootkits were found in close to two thirds of the tests. 
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These results indicate a lower detection effectiveness compared to detection results by 

Freiling and Schwittay (2007) in their evaluation Windows rootkits and detection tools, 

where either all or some of the modifications made by the rootkits were discovered in 

49 of 99 detection tests, for a combined detection rate of 49.5%. It should be noted that 

Freiling and Schwittay (2007) did not run detection tests for every combination of 

rootkit and detection tool, as some of the tools were not applicable for detecting 

indications of some of the rootkits’ hiding functionalities. Therefore, to facilitate a more 

straightforward comparison, the inapplicable tests were counted (by the author of this 

study) as ones where no rootkit indications were detected. 

There was also a significant difference in the detection rate for user mode and kernel 

mode rootkits. User mode rootkits had a combined detection rate of 46.7%, while for 

kernel mode rootkits the rate was 31.1%. This shows indications that the detection tools 

are on average more likely to detect user mode rootkits than kernel mode rootkits. 

However, it should be kept in mind that the detection rates can be drastically different 

for a different selection of rootkits. The detection rates for each detection tool are 

summarized in Table 7. 

Table 7.  Detection rates per detection tool. 

 All rootkits User mode 

rootkits 

Kernel mode 

rootkits 

OSSEC 40% 66.7% 22.2% 

AIDE 53.3% 100% 22.2% 

Rootkit Hunter 26.7% 33.3% 33.3% 

Chkrootkit 13.3% 33.3% 0% 

LKRG 53.3% 0% 88.9% 

Average 37.3% 46.7% 31.1% 

 

The results suggest that the rootkit detection tools’ effectiveness in detecting modern 

Linux rootkits is rather limited when used individually. However, using a combination 

of tools with different detection approaches could significantly improve the overall 

detection effectiveness. For example, using a combination of OSSEC, AIDE and LKRG 

would find indications of 93.3% of the rootkits (all except Keysniffer) used in this 

study. This result is consistent with the findings of Freiling and Schwittay (2007), who 

advocated the use of a combination of multiple rootkit detection tools for more effective 

and reliable detection results. 

5.3 RQ2: Differences in detection tool effectiveness 

The rootkit detection tools used in this study had some notable differences in terms of 

effectiveness. Rootkit Hunter was the only detection tool that was able to directly detect 

any rootkits, with four rootkits explicitly named (two of which were misidentifications). 

AIDE and LKRG provided the most combined indications of potential rootkit infections 

and suspicious system behaviour, with eight detection tests for both tools providing 

non-negative results. 

AIDE was the most effective in detecting indications of user mode rootkits, as its results 

showed modifications made to the file system by all of them. However, it should be 
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noted that the detection results for AIDE required further manual analysis and could 

thus produce variability in future studies with different analysis methods and rootkit 

sample sets. As AIDE only shows the additions, deletions and modifications to files and 

directories in the file system, it does not provide direct warnings specific to rootkits. 

This means that the effectiveness of detection using AIDE relies on the investigator’s 

knowledge of the rootkits’ behaviour and characteristics and may not be practical in 

most scenarios where such intimate knowledge is not available. 

LKRG was by far the most effective tool in detecting kernel mode rootkits, providing 

indications of infection for 8 of the 9 rootkits, for a kernel mode rootkit detection rate of 

88.9%. This is in stark contrast with the other detection tools, which had an average 

kernel mode rootkit detection rate of 21.4%. The result appears to validate Bunten’s 

(2004) advocation for future detection tools relying on kernel integrity checking to 

increase their overall effectiveness. However, LKRG was not able to detect any user 

mode rootkits. This can be explained by LKRG’s inherent focus on checking the 

integrity of the kernel’s data structures for modifications, which was not part of the 

feature set of any user mode rootkit used in this study. 

Chkrootkit did not detect any kernel mode rootkits and had the lowest combined 

detection rate of all detection tools, at 13.3%. This result supports the finding by Todd 

et al. (2007), where Rootkit Hunter was found to be more effective out of the two tools 

in detecting rootkits, especially when considering the explicit detections provided by 

Rootkit Hunter. However, Rootkit Hunter still had the second lowest overall detection 

rate at 26.7%, meaning that its effectiveness in finding the rootkits used in this 

particular study wasn’t exceptional. 

OSSEC was the second most effective tool in detecting user mode rootkits with a 66.7% 

detection rate, though it did not fare as well in detecting kernel mode rootkits, with a 

detection rate of 22.2%. It provided one false positive result, while Rootkit Hunter 

provided two false positives denoting rootkit infection in cases where no rootkits were 

injected to the system. The false positives were consistent throughout all detection tests, 

meaning that they can potentially be ruled out and predicted by researchers and other 

users conducting similar investigations. 

5.4 RQ3: Detection of rootkit types 

The results of the detection tests show that both user mode and kernel mode rootkits can 

be detected by the set of detection tools used in this study. As rootkits that operate 

below the kernel level (in protection rings -1, -2 and -3) were not included in this study, 

the applicability of the detection tools for such rootkits couldn’t be verified. However, it 

is unlikely that the included detection tools would be effective against such rootkits, as 

their actions may not be at all visible to the user space or the kernel, which the detection 

tools solely rely on for information. 

The results also suggest that rootkits incorporating hiding, privilege escalation and/or 

backdoor functionalities can be detected by the detection tools. The hiding features 

appeared to be especially susceptible to detection, as OSSEC, AIDE and Chkrootkit 

managed to provide positive indications of rootkits primarily based on hidden files. 

However, not all included rootkits were detected by the tools, as no detection tool was 

able to detect Keysniffer or even provide any form of indication that differed from the 

results of the clean detection runs. 
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A likely reason for why Keysniffer managed to avoid detection is that it does not 

manipulate the system call table or other kernel data structures in a way that makes its 

behaviour particularly suspicious. Instead, it registers a notifier for keyboard events in a 

way that can be difficult to distinguish from other, more legitimate kernel modules. The 

result closely mirrors that of a similar study by Freiling and Schwittay (2007), where a 

keyboard sniffer rootkit (Klog) was not detected at all because it did not include any 

hiding functionality. It is important to note that Keysniffer indeed does not meet all of 

the criteria of more strict definitions of rootkits, and it may be problematic to use in 

comparisons where such definitions are used. 

5.5 Practicality of the detection tools 

As the effectiveness of detection is often limited by the investigators’ resources 

(Bunten, 2004), the practicality of rootkit detection tools is also a relevant property to 

consider. In terms of practicality and general usability, there were differences between 

the detection tools, as some required more configuration and manual intervention than 

others. However, as the level of practicality can be heavily dependent on the knowledge 

and skillset of the person conducting rootkit detection, quantifying it unambiguously is 

not a trivial task. 

AIDE’s results required the most interpretation, as the tool does not attempt to provide 

warnings or other notifications to the user beyond notifying whether or not the contents 

of the file system have changed since the most recent integrity check. This means that 

detecting rootkits using AIDE is always dependent on the user’s knowledge and skills in 

“connecting the dots” between rootkit behaviour and the state of the file system’s 

contents. Thus, its practicality is limited for example in scenarios where the detection 

process is automated or where the user does not possess sufficient knowledge of rootkit 

behaviour. 

LKRG was relatively simple to setup, as while it had to be manually downloaded and 

compiled, it did not require any additional configuration. Once the LKRG kernel 

module was running, it periodically (or upon detection) sent the results of its checks to 

the kernel message buffer, readable with the dmesg command. While arduous to read 

alongside other kernel events, the results themselves were concise and readable. 

However, the lack of any notification features and simple user-space controls makes 

LKRG less than optimal for less advanced users. 

OSSEC required the most configuration to setup for the detection runs. Setting up the 

latest version of the tool required manual compilation, while ensuring that the checks 

were run on demand (and within specified time constraints) required configuration of 

some internal variables in configuration files. However, this was not the more common 

usage scenario for the tool, where checks are conducted periodically and in small 

batches to reduce the tool’s impact in system performance. OSSEC features extensive 

alert notification options and its result output was detailed yet comprehensible, making 

it suitable for continuous monitoring purposes.  

Rootkit Hunter and Chkrootkit were among the simplest tools to use, as they could be 

directly installed using Ubuntu’s APT package manager and did not require extra 

configuration (except for the initialization of Rootkit Hunter’s file property database). 

Both tools were invoked directly from the command line and sent their output to both 

standard output and a logfile. Rootkit Hunter produced a useful summary at the end of 

its detection run, indicating if any signs of rootkits, malware or suspicious behaviour 
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were detected. Chkrootkit did not, requiring its full, though brief, output to be manually 

inspected to uncover signs of infection. Rootkit Hunter contains functionality to send 

warnings over email, making it more suitable and convenient for continuous 

monitoring. 

It should be noted that none of the detection tools provide any recommendations or 

guidance in the case of a positive detection result. Thus, the task of removing rootkits 

from the system is completely left for the user to handle. LKRG was the only tool that 

could prevent rootkit code from executing in certain situations, making it potentially 

valuable for any system where immediate reactive action to kernel rootkit injection and 

operations is desired. 

Compared to manual detection procedures, the detection tools are less flexible, though 

they do not require as much in-depth knowledge of rootkits and operating system 

internals. While conducting a memory forensics analysis of rootkits, such as the one 

described by Carbone (2014), would arguably be much more thorough and likely to 

discover well-hidden rootkits, doing so would be much less practical in scenarios where 

the rootkit infection and its specifics are not known. Therefore, using automated 

detection tools is a vastly more practical solution for most rootkit detection use cases. 
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6. Conclusion 

The purpose of this study was to evaluate the effectiveness of rootkit detection tools in 

the context of the Linux operating system. Five detection tools – OSSEC, AIDE, 

Rootkit Hunter, Chkrootkit and LKRG – were evaluated by conducting a series of 75 

detection tests with 15 different rootkits. Each individual test consisted of injecting a 

publicly available rootkit to a virtual machine environment running Ubuntu 16.04, 

executing a detection tool and gathering data provided by the tool once it had finished 

running. The tests were conducted for every combination of rootkit detection tool and 

rootkit used in this study. Once all of the tests were finished, the collected data was 

analysed to determine what indications of rootkit infection (if any) each detection tool 

was able to report in their results. 

The results showed that only 37.3% of the detection tests were able to either explicitly 

detect a rootkit, provide indications of potential rootkit infection or warn about 

suspicious system behaviour. The rest of the detection tests failed to produce any 

evidence of rootkit infection or other activity differing from normal system behaviour. 

However, using a combination of detection tools increased the overall detection rate 

significantly, as every rootkit except for one (Keysniffer) was discovered by at least one 

detection tool. 

Effectiveness of the rootkit detection tools used in this study was mixed, with overall 

detection rates varying from 13.3% to 53.3%. There was also variation between 

detection rates for the two categories of rootkits (user mode and kernel mode) used in 

this study, as the overall detection rate was 46.7% for user mode rootkits and 31.1% for 

kernel mode rootkits. This also showed that both rootkit categories could be detected by 

at least some of the detection tools. Overall, the results showed that while effectiveness 

for an individual detection tool could be suboptimal, using multiple tools vastly 

increased the probability of detection. 

The findings of this study can be useful for both practitioners attempting to maximize 

the effectiveness of their rootkit and malware detection systems and improving the 

overall security of their computer systems, as well as academics conducting research on 

rootkits and rootkit detection. This study also contributes to the body of knowledge with 

documentation of rootkit injection and verification procedures, description of a 

systematic testing process and reporting of detection results from a variety of rootkits 

and rootkit detection tools. 

One limitation of this study was that the detection tests were conducted in a virtual 

machine environment. The emulated environment can be detected by rootkits (and other 

software), which allows them to adjust their behaviour to complicate potential forensic 

analysis procedures and to compromise detection results. However, no indication of 

such adjustments occurring without manual action could be found in a cursory audit of 

the rootkits’ source code. 

The rootkits selected for this study were all open source software and publicly available, 

leading to potential selection bias where the more general set of rootkits is not 

accurately represented. No malicious rootkits were collected using research honeypots 
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or other collection mechanisms, as doing so was considered too time consuming and 

potentially unsafe in the scope of this study. Including only publicly available rootkits 

could impact the generalizability of the results, as the rootkits’ functionalities and 

operating mechanisms can be freely studied in detail by authors of the detection tools 

and other parties to improve the detectors’ abilities to detect them as well as other 

rootkits using similar mechanisms and techniques. Also, it is unclear how comparable 

the techniques used by publicly available rootkits are to “real-world” malicious rootkits 

used by malicious actors. Further research could take this into account by using 

malicious rootkits captured in the wild in addition to those that are publicly available. 

Future studies focusing on the evaluation of rootkit detection effectiveness could 

expand the scope of detection tools to cover detection contexts outside of host-based 

detection, where detectors would not exist in the same environment as the rootkits 

themselves. For example, a study where tools using network-based detection and virtual 

machine introspection (VMI) are evaluated would help in understanding how exactly 

the environment in which the detector is placed can affect the effectiveness of rootkit 

detection. 

Another potential avenue of future research would be to conduct a more in-depth 

comparison of the effectiveness of the specific detector categories the detection tools 

can be classified as. Such studies could provide valuable insight into how effective each 

category can actually be, what their pros and cons are and what kinds of rootkits they 

can be most applicable to. This, in turn, could help in improving the effectiveness of 

rootkit detectors themselves. 

Similar studies evaluating rootkit detection effectiveness could also be conducted in the 

future to determine how more modern rootkits are able to evade detection and how 

effective contemporary and future detectors are in detecting such rootkits. Such 

evaluations would help in retaining up-to-date knowledge on rootkit detection 

effectiveness. The results of such studies could also aid in understanding and giving 

recommendations on which detection tools to rely on for effective rootkit detection.  
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Appendix A.  Literature search terms and results 

Google Scholar (patents and citations excluded): 

Search term(s) Total 

results 

Relevant 

results 

“rootkit detection” OR “rootkit detector” OR “rootkit 

scanner” 

1520 85 

("rootkit detection" OR "rootkit detector" OR “rootkit 

scanner”) AND (linux OR unix OR bsd) AND 

"effectiveness"AND "evaluation" 

391 30 

"linux rootkit" OR "rootkit for linux" 167 40 

("linux rootkit" OR "rootkit for linux") AND (detection OR 

detector OR scanner) 

150 30 

“unix rootkit” OR “rootkit for unix” 14 10 

“bsd rootkit” OR “rootkit for bsd” 1 1 

“windows rootkit” OR “rootkit for windows” 486 30 

("rootkit detection" OR "rootkit detector" OR “rootkit 

scanner”) AND (rkhunter OR “rootkit hunter” OR 

chkrootkit OR samhain OR ossec) 

302 31 

("rootkit detection" OR "rootkit detector" OR “rootkit 

scanner”) AND (rkhunter OR “rootkit hunter” OR 

chkrootkit OR samhain OR ossec) AND “effectiveness” 

AND “evaluation” AND “linux” 

83 14 

“rootkit” AND “linux” AND (jynxkit OR jynxkit2 OR 

azazel OR beurk OR vlany OR bedevil OR diamorphine 

OR keysniffer OR nurupo OR puszek OR reptile OR 

rkduck OR “rootkit-kernel-module” OR rtkit OR sutekh 

OR wukong) 

70 16 
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Microsoft Academic: 

Search term(s) Total results Relevant results 

rootkit detection 199 35 

rootkit detector 604 61 

linux rootkit detection 149 52 

línux rootkit detector 40 14 

linux rootkit 36 20 

unix rootkit 994 33 

bsd rootkit 972 45 

windows rootkit 77 27 

chkrootkit 0 0 

rkhunter, rootkit hunter 0 0 

ossec 12 3 

samhain 19 2 

 

CiteSeerX: 

Search term(s) Total results Relevant results 

“rootkit detection” 2321 22 

“rootkit detector” 654 8 

“linux rootkit” 1797 17 

“unix rootkit” 1164 12 

“bsd rootkit” 517 7 

“windows rootkit” 1922 17 

chkrootkit 108 5 

rkhunter 19 2 

ossec rootkit 58 5 

samhain rootkit 46 3 
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IEEE Xplore, ACM Digital Library, Wiley Online Library, arXiv & SpringerLink 

(results represented for each database as relevant/total): 

Search term(s) IEEE ACM Wiley arXiv SpringerLink 

“rootkit detection” OR “rootkit 

detector” OR “rootkit scanner” 

18/39 13/76 1/4 7/13 8/217 

"linux rootkit" OR "rootkit for 

linux" 

9/49 3/24 1/3 0/2 3/18 

"linux rootkit” AND detection 2/28 2/14 0/3 0/2 3/14 

rkhunter OR “rootkit hunter” 

OR chkrootkit OR samhain OR 

ossec 

1/14 0/0 1/5 0/1 7/95 

rootkit AND (jynxkit OR 

jynxkit2 OR azazel OR beurk 

OR vlany OR bedevil OR 

diamorphine OR keysniffer OR 

nurupo OR puszek OR reptile 

OR rkduck OR “rootkit-kernel-

module” OR rtkit OR sutekh OR 

wukong) 

0/0 0/0 0/0 0/0 1/7 
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Appendix B.  Detection tool setup 

Before detection tool setup and the clean (stage 1) snapshot, the following commands 

were executed: 

# 1. disable unattended-upgrades and ntp 

sudo systemctl disable –-now unattended-upgrades 

sudo timedatectl set-ntp 0 

 

# 2. install common tools 

sudo apt install -y build-essential openssh-client openssh-server 

 

 

OSSEC: 

# 1. install compilation dependencies 

sudo apt install -y libevent-dev libpcre2-dev libsqlite3-dev libssl-

dev sendmail zlib1g-dev 

 

# 2. download, unpack and install OSSEC 

OSSEC_VERSION=3.5.0 

wget https://github.com/ossec/ossec-hids/archive/$OSSEC_VERSION.tar.gz 

tar xf $OSSEC_VERSION.tar.gz 

cd ossec-hids-$OSSEC_VERSION 

 

export USER_LANGUAGE=en \ 

    USER_INSTALL_TYPE=local \ 

    USER_DIR=/var/ossec \ 

    USER_ENABLE_SYSCHECK=y \    

    USER_ENABLE_ROOTCHECK=y \ 

    USER_ENABLE_EMAIL=n \    

    USER_ENABLE_ACTIVE_RESPONSE=n \ 

    USER_UPDATE=n \ 

    USER_UPDATE_RULES=n \ 

    USER_CLEANINSTALL=y 

 

echo | sudo -E ./install.sh 

 

# 3. configure OSSEC for testing 

# syscheck and rootcheck: disable sleeping between scans 

sed -re ‘s/(sys|root)(check.sleep)=2/\1\2=0/’ -i \      

    /var/ossec/etc/internal_options 

 

# rootcheck: scan all files 

sed -e ‘s/<rootcheck>/&\n<scanall>yes<\/scanall>/’ -i \  

    /var/ossec/etc/ossec.conf 

 

# 4. capture VM snapshot - Ubuntu 16.04.6 :: ossec installed 

 

 

# 5. execute OSSEC detection (after rootkit injection) 

OSSEC_DIR=”/var/ossec” 

AGENT_ID=”000” 

 

$OSSEC_DIR/bin/syscheck_control -u $AGENT_ID 

$OSSEC_DIR/bin/rootcheck_control -u $AGENT_ID 
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$OSSEC_DIR/bin/ossec-control start 

$OSSEC_DIR/bin/agent_control -r -u $AGENT_ID 

 

# 6. capture OSSEC results logs (after detection run) 

$OSSEC_DIR/bin/syscheck_control -i $AGENT_ID > /tmp/syscheck.log 

$OSSEC_DIR/bin/rootcheck_control -i $AGENT_ID > /tmp/rootcheck.log 

 

AIDE: 

# 1. install AIDE 

sudo apt install aide 

 

# 2. initialize AIDE database and generate configuration file 

sudo aideinit 

mv /var/lib/aide/aide.db.new /var/lib/aide/aide.db 

sudo update-aide.conf 

mv /var/lib/aide/aide.conf.autogenerated /etc/aide/aide.conf 

 

# 3. update AIDE database 

sudo aide -c /etc/aide/aide.conf –-update 

 

# 4. capture VM snapshot - Ubuntu 16.04.6 :: aide installed 

 

# 5. execute AIDE detection (after injection), capture results 

sudo aide -c /etc/aide/aide.conf –-check 2>&1 | tee /tmp/aide.log 

 

Rootkit Hunter: 

# 1. install rkhunter 

sudo apt install rkhunter 

 

# 2. update file property database 

sudo rkhunter –-propupd 

 

# 3. capture VM snapshot - Ubuntu 16.04.6 :: rkhunter installed 

 

# 4. execute rkhunter detection (after injection) 

sudo rkhunter –-check --sk 

 

Chkrootkit: 

# 1. install chkrootkit 

sudo apt install chkrootkit 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: chkrootkit installed 

 

# 3. execute chkrootkit detection (after injection), capture results 

sudo chkrootkit 2>&1 | tee /tmp/chkrootkit.log 
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LKRG: 

# 1. download and compile LKRG 

LKRG_VERSION=0.7 

wget https://openwall.com/lkrg/lkrg-$LKRG_VERSION.tar.gz 

tar xf lkrg-$LKRG_VERSION.tar.gz 

cd lkrg-$LKRG_VERSION 

make 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: lkrg installed (post) 

 

# 3. load LKRG to kernel (before injection in pre-injection tests,     

     after injection in post-injection tests) 

sudo insmod p_lkrg.ko 

 

# 4. capture VM snapshot - Ubuntu 16.04.6 :: lkrg installed (pre) 
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Appendix C.  Rootkit setup 

Before rootkit setup, the following command was executed to install common build 

dependencies: 

sudo apt install bison flex git libpcap-dev libpam0g-dev libssl-dev 

 

 

Azazel: 

# 1. download and install azazel 

git clone https://github.com/chokepoint/azazel 

cd azazel 

make 

sudo make install 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: azazel injected 

 

# 3. verify injection 

touch test__file.txt; echo $? 

> 1 

 

 

Bedevil: 

# 1. download and install bedevil 

git clone https://github.com/naworkcaj/bdvl 

cd bdvl 

chmod +x bedevil.sh 

sudo ./bedevil.sh -i 

    BD_UNAME = TyBOtUqK 

    BD_PWD = BhhdSqAj 

    BD_ENV = kXQMuFnB 

    IDIR = /usr/share/doc/libcolord2/.19465 

    PAM_PORT = 3777 

    MGID = 1256 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: bedevil injected 

 

# 3. verify injection 

echo hello world > test_file.txt 

cat test_file 

> hello world 

sudo chown 0:1256 test_file 

cat test_file; echo $? 

> 1 
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BEURK: 

# 1. download and install beurk 

git clone https://github.com/unix-thrust/beurk 

cd beurk 

make 

sudo make infect 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: beurk injected 

 

# 3. verify injection 

touch test_BEURK_file.txt; echo $? 

> 1 

 

 

JynxKit2: 

# 1. download and install jynxkit2 

git clone https://github.com/chokepoint/jynx2 

cd jynx2 

head -n-2 config.h > config.h 

./packer.sh 

chmod +x autokitter.sh 

sudo ./autokitter.sh 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: jynxkit2 injected 

 

# 3. verify injection 

# bash tab completion for /etc/ld.so.preload shows file exists 

ls /etc/ld.so.preload; echo $? 

> 2 

 

 

Vlany: 

# 1. download and install vlany 

git clone https://github.com/mempodippy/vlany 

cd vlany 

sudo ./install.sh 

    Bootloader location = /boot/grub/grub.cfg 

    PAM backdoor user = hello 

    PAM backdoor password = hello 

    PAM backdoor port = 6699 

    accept() backdoor encryption = no 

    accept() shell password = hello 

    accept() low port = 826 

    accept() high port = 829 

    execve() command password = hello 

    Rootkit library name = IZ0CpjjalYvh 

    Hidden directory = /lib/libc.so.hello.03 

    Environment variable = RNSCWOYUBQIG 

    Autoremove directory = no 

    Snodew backdoor = no 

 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: vlany injected 

 

# 3. verify injection 

# bash tab completion for /lib/libc.so.hello.03 shows file exists 

ls /lib/libc.so.hello.03; echo $? 

> 2 
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Zendar: 

# 1. download and install zendar 

git clone https://github.com/ring-1/zendar 

cd zendar 

 

# in line 74 of file ‘install’, move -ldl to just after zendar.o to 

fix linker flag ordering and enable successful compilation 

sudo ./install 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: zendar injected 

 

# 3. verify injection 

touch test_zendar.txt; echo $? 

> 1 

 

 

Diamorphine: 
 

# 1. download and install diamorphine 

git clone https://github.com/m0nad/diamorphine 

cd diamorphine 

make 

sudo insmod diamorphine.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: diamorphine injected 

 

# 3. verify injection 

time cat & 

> [1] 9590 

> [1]+ Stopped    time cat 

ps o cmd 9590; echo $? 

> 0 

kill -s 31 9590 

ps o cmd 9590; echo $? 

> 1 

kill -s 31 9590 

ps o cmd 9590; echo $? 

> 0 

fg 

> time cat 

 

 

Honey Pot Bears Rootkit: 

# 1. download and install honey-pot-bears-rootkit 

git clone https://github.com/shortland/honey-pot-bears-rootkit 

cd honey-pot-bears-rootkit 

make 

sudo insmod notarootkit.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: honey pot bears injected 

 

# 3. verify injection 

touch secret 

ls | grep secret; echo $? 

> 1 
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Keysniffer: 

# 1. download and install keysniffer 

git clone https://github.com/jarun/keysniffer 

cd keysniffer 

make 

sudo insmod kisni.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: keysniffer injected 

 

# 3. verify injection 

ls /sys/kernel/debug/kisni/keys; echo $? 

> 0 

 

 

LilyOfTheValley: 

# 1. download and install lilyofthevalley 

git clone https://github.com/en14c/lilyofthevalley 

cd lilyofthevalley 

make 

sudo insmod lilyofthevalley.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: lilyofthevalley injected 

 

# 3. verify injection 

touch lilyofthevalley_test.txt 

ls | grep lilyofthevalley_test.txt; echo $? 

> 1 

 

 

Nuk3 Gh0st: 

# 1. download and install nuk3gh0stbeta 

git clone https://github.com/ropch4ins/nuk3gh0stbeta 

cd nuk3gh0stbeta 

make 

sudo insmod rootkit.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: nuk3 gh0st injected 

 

# 3. verify injection 

ls | grep README.md; echo $? 

> 0 

./client –-hide-file README.md 

ls | grep README.md; echo $? 

> 1 
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Puszek: 

# 1. download and install puszek 

git clone https://github.com/eterna1/puszek-rootkit 

cd puszek-rootkit 

make 

sudo insmod rootkit.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: puszek injected 

 

# 3. verify injection 

touch test.rootkit  

ls | grep test.rootkit; echo $? 

> 1 

 

 

Reptile: 

# 1. download and install reptile 

git clone https://github.com/f0rb1dd3n/reptile 

cd reptile 

sudo ./setup.sh install 

    Hide name = reptile 

    Auth token to magic packets = hax0r 

    Backdoor password = s3cr3t 

    Tag name = reptile 

    Source port of magic packets = 666 

    Reverse shell each X time = n 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: reptile injected 

 

# 3. verify injection 

whoami 

> test 

/reptile/reptile_cmd root 

whoami 

> root 

 

 

Rootfoo Linux Rootkit: 

# 1. download and install rootfoo rootkit 

git clone https://github.com/rootfoo/rootkit 

cd rootkit 

make 

sudo insmod rootkit.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: rootfoo injected 

 

# 3. verify injection 

dmesg | grep ROOTKIT hooked call; echo $? 

> 0 
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Sutekh: 

# 1. download and install sutekh 

git clone https://github.com/pinkp4nther/sutekh 

cd sutekh 

make 

gcc -o rs rootswitch.c 

sudo insmod sutekh.ko 

 

# 2. capture VM snapshot - Ubuntu 16.04.6 :: sutekh injected 

 

# 3. verify injection 

id | grep root; echo $? 

> 1 

./rs 

id | grep root; echo $? 

> 0 

 


	Abstract
	Keywords
	Supervisor

	Foreword
	Abbreviations
	Contents
	1. Introduction
	1.1 Motivation
	1.2 Research problem and questions
	1.3 Research method
	1.4 Structure

	2. Background
	2.1 Literature search
	2.2 Evaluation of rootkit detection effectiveness
	2.3 Linux
	2.4 Rootkits
	2.5 Rootkit detection

	3. Methodology
	3.1 Research method
	3.2 Rootkits
	3.2.1 User mode rootkits
	3.2.2 Kernel mode rootkits

	3.3 Rootkit detection tools
	3.4 Test environment
	3.5 Test process
	3.6 Evaluation procedure

	4. Results
	4.1 Detection runs
	4.2 OSSEC
	4.3 AIDE
	4.4 Rootkit Hunter
	4.5 Chkrootkit
	4.6 LKRG
	4.7 Summary

	5. Discussion
	5.1 Relation to prior studies
	5.2 RQ1: Rootkit detection effectiveness
	5.3 RQ2: Differences in detection tool effectiveness
	5.4 RQ3: Detection of rootkit types
	5.5 Practicality of the detection tools

	6. Conclusion
	References
	Appendix A.  Literature search terms and results
	Appendix B.  Detection tool setup
	Appendix C.  Rootkit setup

