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Abstract

The aim of this thesis is to introduce the quantum phenomena called entangle-
ment and theoretical models for quantifying it in the context of mainly bipartite
systems. The approach taken is in terms of quantum information and the thesis
discusses the uses of entanglement in this �eld.

1 Introduction

Entanglement as a resource is one of the cornerstones on which we are currently
attempting to build information-processing units of non-classical nature. Although
it is not currently very clear if quantum entanglement is an absolute requirement
for a general quantum computer, entanglement is still the most popular and best
known candidate for utilizing the non-classical e�ects of the quantum world.

Foundations for the principle of entanglement go back to the 1930s and the
famous Einstein-Polsky-Rosen(EPR) - article [1]. After this initial discovery, en-
tanglement remained somewhat poorly understood phenomena till the late 1990s
with the relative explosion of new research with real contributions to new under-
standing. A major push to the research interest was the emerging �eld of quantum
computing and the research that clari�ed the nature of quantum information en-
tropy by Schumacher [2].

The emergence of entanglement in quantum mechanics is a direct result of
the �rst postulate of quantum mechanics, which states that the quantum system
is completely described by a wave funtion dependant on location in space and
time. When de�ning a general quantum state, we require a few mathematical rules
to hold true, namely continuity, �niteness and linear mapping. These properties
alone imply that the linear system superposition principle holds. This principle
also generalises to multi-particle states easily. Thus entanglement is fundamentally
the superposition principle generalized to a composite system. Mathematical proof,
beyond what was discussed, is omitted, being fundamentally simple in nature but
somewhat laborious. Concrete experimental proof exists in multitudes and some
can be found in Refs. [3; 4; 5].

Quantum entanglement can be discussed in relation to many types of systems.
The path taken in this thesis approaches the problem mainly from the point of
view of quantum information and speci�cally the unit of qubit. There exists theo-
retical models of entanglement for di�erent kinds of quantum mechanical units like
harmonic oscillators and other such systems with more than two states. These dif-
ferent kinds of systems would require a whole di�erent framework to be developed
and in many cases does not exist to a meaningful degree.

The work starts with a brief introduction into quantum information, from which
we proceed to introduce two important applications of entanglement, super-dense
coding and quantum teleportation. From here we continue to the actual theoretical
framework of two-particle entanglement and de�ne the existence and entanglement
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criteria for both pure and mixed states of these systems. The treatment of bipartite
systems continues by examining mixed state entanglement measures a bit closer
and the two-particle chapter closes with a brief but important introduction to
true quanti�ers of entanglement, entanglement cost and entanglement distillation.
Naturally from here one continues to the larger systems of three or more qubits,
which we are able to introduce brie�y, and we also discuss the problems and details
related to these systems. The thesis ends with a discussion portion that touches on
most of the topics discussed previously.

2 Quantum information theory

Quantum information theory is partly a sub-discipline of the general quantum
theory, with mixed in principles from traditional information theory. It focuses
in the possibilities of information processing by the use of quantum phenomena.
These new computational methods and processes are of great interest for their
promise of additional computing power for certain traditionally very demanding
problems. The new quantum mechanical unit of processing, the qubit, might seem
trivial on the surface, but as even the relatively simple examples will show, the
qubit allows us operations that are beyond the scope of traditional bits. This alone
might imply that quantum information brings with it a second, more powerful age
of information.

The �eld of quantum information is still very young in terms of science. The
impetus for developing a theory of quantum information processing came from the
realisation that a quantum information processing system might be more powerful
than a classical one, credited to Richard Feynman [6], dating to 1981. Some short
time later it was shown by Paul Benio� that quantum systems can model classical
computers [7], important step towards quantum advantage over classical informa-
tion processing. Finally in the mid to late eighties, David Deutsch concluded the
question by demonstrating that quantum advantage existed [8; 9]. These are some
of the works that started the interest in quantum information, and the real devel-
opment of the �eld in part picks up from the articles; Schumacher in 1995 [2], Hill
& Wootters in 1997 [10] and Wootters in 1998 [11]. Seminal textbook for quantum
computation and quantum information was published in 2000, incidentally carrying
this exact name [12].

The fundamental questions that quantum information seeks to answer are ulti-
mately ones that have been and continue to be of interest to traditional information
processing, including topics like data searching, path optimisation and cryptogra-
phy. Some famous examples of so called quantum advantage in information process-
ing are the prime factoring problem (Shor's algorithm) and data searching (Grover's
algorithm). The quantum advantage continues to be an active research topic that
relies on the discoveries of new algorithms of quantum mechanical nature.
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relation to matrices as

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. (1)

Multiplying the qubits together obey the Kronecker product

|0〉 ⊗ |0〉 = |00〉 =


1
0
0
0

 , |1〉 ⊗ |0〉 = |10〉 =


0
0
1
0

 . (2)

Beginning with superdense coding, we �rst need to introduce an important con-
cept related to entanglement, the so called Bell basis states or EPR-pairs. These
states are de�ned as maximally entangled states of two qubits and a way of pre-
senting such states is as follows

|β00〉 =
1√
2

(
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B

)
, (3)

|β01〉 =
1√
2

(
|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B

)
, (4)

|β10〉 =
1√
2

(
|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B

)
, (5)

|β11〉 =
1√
2

(
|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B

)
, (6)

where the subscripts A and B denote the qubit that introduces the basis state.
Superdense coding is a task of transmitting information from a party A, tra-

ditionally called Alice, to the recipient, Bob, also denoted as B. These parties
are de�ned to be an arbitrary distance apart and thus in principle the process of
transferring information in this way works over any amount of distance.

Now let us say Alice has two classical bits of information that are to be sent
to Bob. They go about this task �rst by sharing an entangled pair of qubits, for
example the Bell state

|β00〉 =
1√
2

(
|0A0B〉+ |1A1B〉

)
. (7)

We can now call these qubits of the individual parties |φA〉 for A and |φB〉 for B.
After either sharing these qubits, or receiving them from a third party, they

can separate. Now when Alice has decided on what classical bits she want to send,
some local operations on their half of the qubit pair are performed. These local
operations are denoted by the important Pauli spin matrices

σ0 = I =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (8)
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Figure 2: Quantum teleportation circuit. The protocol starts by sharing of
an entangled qubit, after which the parties can separate. Now Alice, hav-
ing a quantum state she wants to send, performs the required CNOT and
Hadamard gates with her quantum state and the qubit pair. Then she per-
forms two measurements and sends the results forward to Bob, classically,
after which Bob performs the required operations depending on Alice's mea-
surement outcomes, denoted by X and Y . The result is that Bob receives the
Alice's quantum state.

These operations depend on the classical bits that are to be sent, illustrated in
Figure 1.

Then after the local operation has been performed, that is, when the entangled
quantum state has been appropriately left either intact (case 00) or operated on
with the corresponding Pauli spin matrix, Alice sends her qubit to the receiver.
After receiving the qubit, Bob makes a Bell basis measurement with the four pos-
sible outcomes, that is, equivalent to two bits of information. More speci�cally,
the operations Bob performs after receiving the qubit are: �rst CNOT-gate with A
being the control and B as the target and then H ⊗ I to qubit A. Hadamard-gate
H is a gate that creates a superposition out of a single basis state. CNOT-gate
�ips the target qubit if the control qubit reads |1〉.

This is then how we are able to send two bits of classical information with the
one quantum bit, in this case |φA〉. We also see that this involves some trickery in
that we always still had two qubits to work with, but the Alice never had classically
de�ned access to the qubit |φB〉, thus it is fair to say that two bits have indeed
been transferred with one qubit.
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2.1.2 Quantum teleportation

The famous phenomena of quantum teleportation utilizes the entanglement e�ect to
carry units of quantum information across in theory arbitarily large distances. This
example illustrates the power of entanglement in terms of manipulating quantum
states without the loss of their quantum mechanical properties[12].

The quantum teleportation utilises the aforementioned maximally entangled
pairs, the Bell states, to transport the state of a qubit across any distance, instan-
taneously. To an untrained eye this would seem like a violation of known physical
laws, but we see this is discrepancy is recti�ed by the details of the phenomena.

We start again with two parties, Alice and Bob, that separate after sharing
a pair of entangled qubits. We then require that Alice, the sender, has an addi-
tional qubit in a state |ψ〉 that she has not measured, i.e. the quantum state is
unknown and undisturbed. The steps of transferring this qubit |ψ〉 to Bob are then
the following; Alice takes her additional qubit, |ψ〉, and performs an interaction,
CNOT-gate with her half of the entangled pair |φA〉. The result of the CNOT-
operation is then sent through a Hadamard gate. Output of the Hadamard gate
and the original qubit |φA〉 are measured by Alice, and these results are transferred
to Bob via two classical information channels. This procedure is then �nished at
the Bobs end by performing operations, that depend on the information received
from Alice, to the entangled qubit in his possession. This results in Bob receiving
the original state |ψ〉 that was to be transferred and consuming the entanglement
between the original pair. We can also illustrate this phenomena with the aid of a
quantum circuit diagram, see Figure 2.

In conclusion, quantum teleportation allows the transfer of quantum mechanical
information units, which in classical terms seems almost trivial. Classically we are
able to send units of information freely, them being easily readable, describable,
copyable and thus transferrable. The qubit on the other hand is governed by the no-
cloning theorem that prohibits classical solutions to qubit transfer [14]. We can see
that it can be circumvented to a degree by teleporting the qubit: the teleportation
protocol allowing us to at least change the location of our information.

3 Two-particle entanglement

The phenomena of entanglement is naturally introduced with a system of two
qubits, bipartite system being the most elementary system that can exhibit entan-
glement. Systems of qubits can be divided in two sub-categories, pure and mixed.
We call a system pure when it consists of one state or a superposition between two
states, while a mixed state is a statistical ensemble of pure states. This division
already distinguishes some of the methods of which we can use to measure the
entanglement present, even when treating only two particles.

The introduction begins by going over some mathematical tools at the core of
the measures. We start by de�ning the density matrix. This is done mainly to get
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a handle on the mixed state quantum systems, but can be used in the pure state
case as well. The density matrix describes the statistical state of a given quantum
system and can be used to calculate outcomes of measurements on this system.
The formal de�nition can be stated as

De�nition 1. Density matrix;

ρ ≡
∑
i

pi |ψi〉 〈ψi| , (9)

where pi denotes the probability of the system to be in the state |ψi〉, their sum is
de�ned to be one

∑
i
pi = 1 and they obey 0 ≤ pi ≤ 1.

The density matrix, or often the density operator, has many interesting prop-
erties, one of which is relevant to entanglement, that allows us to quickly check if
the given density matrix is of a pure state. For a pure state, it holds that

ρ = ρ2. (10)

By tracing the density matrix we are also able to distinguish pure and mixed
states with the information that for pure states Tr(ρ2) = 1, and for mixed states
Tr(ρ2) < 1. Tracing over any valid density matrix also gives us the result Tr(ρ) = 1,
which means that the eigenvalues of valid density matrices always sum to one.

Moving on to the second and very related mathematical concept, the reduced
density matrix, that we de�ne as

De�nition 2. Reduced density matrix;

ρA ≡ TrB(ρAB), (11)

where TrB is a partial trace over the system B, de�ned as

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2|TrB(|b1〉 〈b2|). (12)

The reduced density matrix allows us to quantify correlations within a multi-
partite quantum system, and to ignore unnecessary or undetected parts of a given
system. This is also relevant in open quantum system time evolution, which alone
signi�es its importance.

Third and the �nal mathematical concept to be introduced is the von Neumann
entropy. Moving from classical worlds entropy to the quantum equivalent, we need
a new de�nition of entropy. This formulation is called the von Neumann entropy
and it de�nes entropy with the aid of the density matrix formulation, which can
be stated as

De�nition 3. Von Neumann entropy;

S(ρ) ≡ −Tr(ρ ln ρ), (13)

or alternatively with the eigenvalues αx of the density matrix

S(ρ) = −
∑
x

αx lnαx. (14)
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Von Neumann entropy can be used to measure the purity of a given state by
noting that for a given pure state, we �nd it to equal zero. The more physical
interpretation to von Neumann entropy could be stated to mean the number of
qubits required to transfer a quantum state by a source of statistical nature [2].

3.1 Pure state

Pure states are the most basic representations of objects of quantum mechanical
nature that involve multiple particles. These are mostly unnatural states in the
sense that virtually everything that exists is in some form of contact with the
surrounding environment. Still, they are surprisingly useful and widely used. We
start by de�ning the pure state

De�nition 4. Pure state [15];

Bipartite quantum system consisting of Hilbert spacesHA andHB, with dimensions
dA and dB, can be de�ned as vectors in the tensor-product of the two Hilbert spaces
HA ⊗HB. Then for any vector in this composite system, we have

|ψ〉 =

dA,dB∑
i,j

cij |ai〉 ⊗ |bj〉 ∈ HA ⊗HB, (15)

where cij is a complex vector of length da × db.
For pure states the probability co-e�cient of equation (9) is equal to one, since

we only have one possible state. In other words,

ρ = |ψ〉 〈ψ| . (16)

This allows us to treat pure states in the bra-ket representation.
Quantifying entanglement of these states is considerably simpler than the mixed

counterparts, since pure states have some simplifying mathematical properties like
only one non-zero eigenvalue in their diagonal basis and the non-existence of a
probabilistic nature of the mixed state. Many of the entanglement measures also
reduce to the entanglement entropy because of the mathematical properties.

We are now ready to begin the de�nition for the entanglement of pure states,
which can be formally expressed for two qubits as

De�nition 5. Bipartite pure state entanglement[15];

For a pure state |ψ〉 ∈ H, H = HA ⊗ HB, we call it entangled if we can not �nd
states |φA〉 ∈ HA and |φB〉 ∈ HB such that they satisfy

|ψ〉 = |φA〉 ⊗ |φB〉 , (17)

where H denotes the total Hilbert space and the indices their respective qubit.
Composite states satisfying this equation are called separable or product states.
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The meaning of separable or product states in physical terms is that the states
exist completely void of any quantum mechanical correlations between them. Now
working with the bra-ket representation, we are able to quantify entanglement with
a tool called Schmidt decomposition.

Theorem 1. Schmidt decomposition [12];

De�ning |ψ〉 as a pure state of H = HA ⊗HB, there exist orthonormal states; |iA〉
for system A, and |iB〉 for system B such that

|ψ〉 =
∑
i

λi |iA〉 ⊗ |iB〉 , (18)

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1. These are called

Schmidt co-e�cients. The proof is essentially a restated form of the singular value

decomposition.

Proof. Let |a〉 be any �xed orthonormal basis for system A and |b〉 similarly for
system B. We can then write |ψ〉 as

|ψ〉 =
∑
ab

kab |a〉 |b〉 (19)

for a matrix k with complex numbers kab. Then with the singular value decompo-
sition [16] we decompose k = udv as

|ψ〉 =
∑
iab

uaidiivib |a〉 |b〉 , (20)

where u and v are unitary matrices and d is a diagonal matrix containing positive
elements. Now we can de�ne the elements of the singular value decomposition as

|iA〉 ≡
∑
a

uai |a〉 , |iB〉 ≡
∑
b

vib |b〉 and dii ≡ λi. (21)

Now combining equations (20) and (21) we end up with

|ψ〉 =
∑
i

λi |iA〉 |iB〉 , (22)

which is the equation (16).
The �rst notable mathematical result from Schmidt decomposition is that for

a given pure state, the reduced density matrices of the subsystems have equal
eigenvalues. The second useful result is that for a product state, we �nd that if the
Schmidt rank (rank of the matrix d) equals to one, the state is a product state.

Next we de�ne an important entanglement measure, the entropy of entangle-
ment. All of the entropy measures introduced for bipartite states in this work reduce
to the entropy of entanglement for pure states and this is the case for most but
not all known measures at present overall. The formal de�nition of the entropy of
entanglement can be stated as
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De�nition 6. Entropy of entanglement [17];

For a given pure bipartite state, entropy of entanglement E can be de�ned with
the reduced density matrix of either of the subsystems

E(ψ) = −Tr(ρA ln ρA) = −Tr(ρB ln ρB), (23)

or by the eigenvalues αx of either of the reduced density matrices or by the Schmidt
coe�cients λx

E(ψ) = −
∑
x

αx lnαx = −
∑
x

λ2x lnλ2x, (24)

which can be derived easily with the Schmidt decomposition.
Notable property to this de�nition is that while an entangled pure state has

a total entropy of zero, the reduced density matrices of the subsystems are fun-
damentally correlated with each other and, thus, they are in a mixed state with
non-zero entropy. So a subsystem of a pure state can have a non-zero entropy while
the entropy of the whole system is zero. This idea is expanded upon in the following
example.

Example 1. Bell state entanglement

Let us examine the entropy de�nition of entanglement by calculating this measure

for one Bell state

|B10〉 =
|10〉+ |01〉√

2
. (25)

The density matrix of this state can be expressed as

ρ =
∑
i

pi |ψi〉 〈ψi| = |B10〉 〈B10| =

(
|10〉+ |01〉√

2

)(
〈10|+ 〈01|√

2

)

=
|10〉 〈10|+ |10〉 〈01|+ |01〉 〈10|+ |01〉 〈01|

2
=

1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 . (26)

For this matrix we calculate the eigenvalues

det(ρ− λI) = 0 =⇒ λ1 = 0, λ2 = 1. (27)

Now using the alternate form of von Neumann entropy (14) we �nd

S(ρ) = −
∑
x

αx lnαx = −(3 ∗ 0 ln 0 + 1 ln(1)) = 0. (28)
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This is the result that a pure state has zero total entropy. It is a general result for

all pure bipartite states.

Moving on to the reduced density matrix, we can calculate it as follows

ρA = TrB(ρ) =
TrB(|10〉 〈10|) + TrB(|10〉 〈01|) + TrB(|01〉 〈10|) + TrB(|01〉 〈01|)

2

=
|1〉 〈1| 〈0|0〉+ |1〉 〈0| 〈1|0〉+ |0〉 〈1| 〈1|0〉+ |0〉 〈0| 〈1|1〉

2

=
|1〉 〈1|+ |0〉 〈0|

2
=
I

2
(29)

Now we can use this reduced density matrix to calculate the entropy of the subsys-

tem A

E(ρA) = −Tr(ρA ln ρA) = −Tr
(I

2
ln

(
I

2

))
= ln 2 (30)

In conclusion we �nd that the entanglement entropy of the partial system A is equal

to ln 2, which indicates maximal bipartite entanglement. This holds equally for the

subsystem B, as per Schmidt decomposition. This does not mean that the state as

a whole has entropy, just that the two partials of this system have entropy. These

partials are thus mixed in nature and as per Schmidt decomposition, we actually

require these subsystems to be mixed for entanglement to exist. It also turns out

that if we compute any of the Bell states in this manner, we �nd this exact result

for all of them.

3.2 Mixed state

Mixed states represent the case where a state of a given quantum system is proba-
bilistic beyond superposition. This can be expressed as the familiar density matrix,
equation (9), now with the coe�cients pi 6= 1. The properties governing the density
matrix lead to a mathematical construct called the convex set. This means that if
we have the states ρ1 and ρ2, the convex combination

ρ = pρ1 + (1− p)ρ2, where p ∈ [0; 1] (31)

is also a state. It is also possible to generalise this to more than two states ρi, with
more than two probabilities or convex weights pi. Now we are able to de�ne mixed
state entanglement
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De�nition 7. Bipartite mixed state entanglement;

Let ρ be the density matrix representing the composite system. Then for a given
state ρ we say that it is a product state if there exist states ρA and ρB satisfying

ρ = ρA ⊗ ρB. (32)

The state is said to be separable if there exist convex weights pi and product states
ρAi ⊗ ρBi such that we can write the state in the form

ρ =
∑
i

piρ
A
i ⊗ ρBi . (33)

If this de�nition does not hold, we call the state entangled.
When compared to the pure state entanglement de�nition (17) we see that

the only change that has been made is the addition of the probabilities for a given
state. Next we are able to de�ne a measure of entanglement for mixed state systems
called entanglement of formation. The measure for two particle systems follows the
procedure of Refs. [10; 11] and can be stated as follows

De�nition 8. Entanglement of formation[10; 11];

Given a mixed state density matrix ρ, entanglement of formation is de�ned as the
average entanglement of the decomposition of pure states that makes up the mixed
state, minimized over all possible decompositions of the density matrix

E(ρ) = min
∑
i

piE(ψi). (34)

We can luckily transform this to a more computable form, �rst by noting that
equation (23) can be written as

E(ψ) = E(C(ψ)), (35)

and de�ning the concurrence C for pure states, an entanglement measure in itself
as

C(ψ) = 〈ψ|ψ̃〉 , (36)

where the spin �ip transformation for pure states of two qubits we de�ne as

|ψ̃〉 = σy |ψ∗〉 . (37)

Concurrence is a measure increasing from zero to one dependent on the entangle-
ment present and as seen above, quite easy to calculate for a given pure state. The
function E can now be explicitly stated as a function of concurrence

E(C) = h
(1 +

√
1− C2

2

)
, (38)
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where the entropy function h(x), in binary form is written as

h(x) = −x log2 x− (1− x) log2(1− x). (39)

This concludes the entanglement of formation for a system of pure states and
by some modi�cations, namely using the density matrix, we can proceed to more
general case of the mixed states. Substituting to the pure state representation a
density matrix we get

E(ρ) = E(C(ρ)). (40)

While at a glance not much has changed, the concurrence as a function of the
density matrix behaves di�erently. To calculate concurrence for a mixed state, we
try to �nd a minimum of all possible decompositions of the density matrix

C(ρ) = inf
∑
i

piCi(|ψi〉). (41)

In Ref. [24] the solution to two qubit system was found to be,

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (42)

where the eigenvalues λi are found with the aid of the spin �ip procedure

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (43)

and note that the eigenvalues are found to be the square roots of the matrix ρρ̃.
Alternatively we can also �nd the eigenvalues with the equation

R =
√√

ρρ̃
√
ρ, (44)

where we take the eigenvalues in decreasing order.
The procedure of quantifying entanglement of formation shown above only

works for density matrices of two qubits, that have two or less non-zero eigenvalues.
The process of generalising this to any bipartite state[10] is more involved and does
not have an e�ect for our purposes. The aim of this measure is to quantify the
information transferring resource required to create a quantum state.

We can now take a closer look on entanglement of formation by calculating it
for a mixed state of two Bell states

Example 2. Mixed state entanglement

Let us say we have two Bell states, the state B01 with a probability of p1 = 3
4 and

the other state B10 with a probability of p2 = 1
4 . We write the density matrix of this

mixed state as

ρ =
∑
i

pi |ψi〉 〈ψi| =
3

4

(
|B01〉 〈B01|

)
+

1

4

(
|B10〉 〈B10|

)
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=
3

4

1

2

(
|00〉 − |11〉

)(
〈00| − 〈11|

)
+

1

4

1

2

(
|10〉+ |01〉

)(
〈10|+ 〈01|

)
(45)

We calculated the latter part of this expression in the �rst example, so by using that

result and computing the other we �nd

ρ =
3

8

(
|00〉 〈00| − |00〉 〈11| − |11〉 〈00|+ |11〉 〈11|

)

+
1

8

(
|10〉 〈10|+ |10〉 〈01|+ |01〉 〈10|+ |01〉 〈01|

)
(46)

and in the matrix form we have

ρ =
1

8


3 0 0 −3
0 1 1 0
0 1 1 0
−3 0 0 3

 . (47)

Now we can start quantifying the entanglement present by using the entanglement

of formation measure. First we note that

σy ⊗ σy =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , (48)

and we can proceed to write the spin �ip transform for the density matrix

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy)

=


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




3
8 0 0 −3

8
0 1

8
1
8 0

0 1
8

1
8 0

−3
8 0 0 3

8




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



=


3
8 0 0 −3

8
0 1

8
1
8 0

0 1
8

1
8 0

−3
8 0 0 3

8

 . (49)

Now we use the spin �ip matrix as

ρρ̃ =


3
8 0 0 −3

8
0 1

8
1
8 0

0 1
8

1
8 0

−3
8 0 0 3

8




3
8 0 0 −3

8
0 1

8
1
8 0

0 1
8

1
8 0

−3
8 0 0 3

8

 =


9
32 0 0 − 9

32
0 1

32
1
32 0

0 1
32

1
32 0

− 9
32 0 0 9

32

 , (50)
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and the eigenvalues of this matrix are

λ1,2 = 0, λ3 =
1

16
, λ4 =

9

16
. (51)

Concurrence measure can be calculated with the eigenvalues

C(ρ) = max

{
0,

√
9

16
−
√

1

16
− 0− 0

}
= max

{
0,

1

2

}
=

1

2
. (52)

While concurrence in it self is widely used as a measure of entanglement, we can

still calculate the entanglement of formation

E(ρ) = E(C(ρ)) = E(
1

2
) = h

(1 +
√

1− (1/2)2

2

)
= h(

2 +
√

3

4
)

= −2 +
√

3

4
log2(

2 +
√

3

4
)− (1− 2 +

√
3

4
) log2(1−

2 +
√

3

4
)

≈ 0.355 (53)

The concurrence measure is an entanglement monotone i.e a function quan-
tifying the amount of entanglement in numerical interval between 0 and 1, unity
meaning maximal entanglement and zero a separable or a product state. Entan-
glement monotone also implies that the quantity does not increase under local
operations and classical communications. On the other hand, the numerical result
of entanglement of formation is more physically meaningful since it quanti�es the
amount of entanglement needed to create the state in question. Lastly we might
note that the quantities of concurrence and entanglement of formation are numer-
ically close, and in the next section we examine this idea further.

3.2.1 Bell states entangled

A brief examination into what di�erent probabilities of mixed state systems do to
the entanglement measures of concurrence and entanglement of formation is now
in order. The calculation is familiar from Example 2 and here we present only the
results. Now we present a mixed state system with two possible states and de�ne
the probabilities of the two states, in our case Bell states, to have the form

ρ =
∑
i

pi |ψi〉 〈ψi| = (1− p)
(
|Bnm〉 〈Bnm|

)
+ p
(
|Bn′m′〉 〈Bn′m′ |

)
, (54)

where nm and n′m′ represents the usual Bell basis state notation. From expressing
the probabilities of the states in this manner we gain the ability to reduce the
mixed state of two Bell states to one variable of probability. When we choose an
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Figure 3: Concurrence C (orange) and entanglement of formation E (blue)
as a function of the mixing probability of p in Eq. (54).

appropriate numerical value to our probability, we continue the exact procedure
shown in Example 2, and calculate concurrence and entanglement of formation. If
we repeat this procedure in su�ciently small steps, from 0 to 1, we can plot the
measures of entanglement as a function of the probability, see Figure 3.

The plotted concurrence and entanglement of formation illustrate why concur-
rence in itself has been widely adopted as a measure of entanglement, the two
quantities being very similar in value.

3.3 Positive partial transpose criterion

We will now consider a measure of entanglement that is quite di�erent from the
previous ones in a crucial way, that is, it does not concern itself with entropy of the
system. This criteria we call the positive partial transpose(PPT) criterion [15] and
the use case is for situations when the Schmidt decomposition fails, mainly in the
mixed state systems. To introduce PPT criterion we need to introduce a partial
transposition which relies on the fact that we are able to expand a density matrix
in a selected product basis as

ρ =
∑
i,j,k,l

pijkl |i〉 〈j| ⊗ |k〉 〈l| , (55)

where ρ acts on the familiar HA⊗HB product space. From this decomposition we
have the de�nition of the partial transposition of ρ with respect to subsystem B as

ρTB = (I ⊗ T )ρ =
∑
i,j,k,l

pijlk |i〉 〈j| ⊗ |k〉 〈l| , (56)

and similarly for ρTA by exchanging i and j indices. We can also �nd that the
partial transpositions are related by ρT = (ρTA)TB and thus ρTA = (ρTB )T . Now we
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say that the density matrix ρ is PPT if the partial transposition has no negative
eigenvalues or in other words it is positive semide�nite. After this, stating the
formal PPT criterion is simple

Theorem 2. PPT criterion

Let ρ be a bipartite separable state. Then ρ is PPT.

PPT criterion is a simple yet powerful way to detect and quantify entanglement,
with a caveat that it works only for the low dimensional cases of 2 × 2 and 2 × 3
systems [15]. It is also worth noting that the PPT criterion is stronger than all
of the criteria relying on entropy and for the purposes of two-qubit entanglement,
this criterion is su�cient for detecting all entanglement present [18].

3.4 Entanglement cost and entanglement distillation

Spending the last sub-chapter of bipartite entanglement on justi�cation that even
the most simple forms of entanglement carry immense value is in order. The use-
fulness of bipartite entanglement and the interest in developing a good theoretical
base for it is intimately tied with the idea that entanglement can be used as a
communication resource [19; 20]. That leads us to brie�y introduce two related
concepts, entanglement cost and entanglement distillation. First we introduce en-
tanglement distillation, which quanti�es the rate of which we are able to obtain
the state |Φ+〉 i.e B00 from a given starting state ρ, in asymptotic terms. The for-
mal de�nition of entanglement of distillation is quite involved[18], but verbally we
can say that the equation states that entanglement of distillation is equal to the
supremum of the rates of all possible distillation protocols. We can write this in
mathematical terms [15]

ED(ρ) = sup
LOCC

{
lim

nin→∞

nout
nin

}
, (57)

where we can see the process of local operations and classical communications
(LOCC) mapping nin input copies ρ onto nout output singlet states. Entanglement
distillation is the underlying quantity allowing us to perform quantum teleporta-
tion and superdense coding, and thus quite central to the importance of bipartite
entanglement.

Entanglement cost is the reverse process and a measure dual to entanglement
of distillation. The measure quanti�es the process of transforming a maximally
entangled state asymptotically to some non-maximally entangled state ρ. Again
the formal de�nition[18] stating that entanglement cost equals the minimum rate
of Bell states used to create ρ using LOCC. In mathematical terms we can write[15]

EC(ρ) = inf
LOCC

{
lim

nout→∞

nin
nout

}
, (58)
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which states that entanglement cost is the minimization over all LOCC that map
nin input singlet states onto nout output copies of state ρ. Entanglement cost might
sound familiar to entanglement of formation, and it turns out it equals regularised
entanglement of formation[21].

The entanglement measures presented have some relation beyond the opposite
nature of the two, and from the de�nitions we are able to state a relationship
between the them[15]

EC(ρ) ≥ ED(ρ). (59)

The nature of bound entangled states is such that there exist states which require
entanglement for their generation, but entanglement is not distillable from them.
This generates the inequation between out two measures. For pure states how-
ever, entanglement cost, entanglement distillation and entropy of entanglement are
equal[19]

EC(ψ) = ED(ψ) = E(ψ) = −Tr(ρA ln ρA), (60)

which means that pure states are reversibly transformable into singlet states.

4 Multi-particle entanglement

Entanglement of a system of more than two qubits, even when only adding a
single qubit more, can introduce a large amount of di�culty in analytic solvability
of the system. In this chapter we will introduce some concepts of multi-partite
entanglement that will hopefully illustrate some of the increasing complexity of
these systems.

4.1 Three qubits

Separable pure states of three qubits can be divided into two distinct categories,
the fully separable and bi-separable states. We can de�ne these similarly to the
bipartite case. This introduction can be found in Ref. [15]

De�nition 9. Bi-separable three-qubit state

|ψ〉A|BC = |α〉A ⊗ |δ〉BC (61)

De�nition 10. Fully separable three-qubit state

|ψ〉A|B|C = |α〉A ⊗ |β〉B ⊗ |γ〉C (62)

These de�nitions allow us to conclude that a pure state tripartite system is
genuinely entangled when it is neither bi-separable nor fully separable. We can
also note that only the genuine entangled state requires a physical interaction
between all the parties and we see that when we compare this to the bipartite
case, there is an additional degree of separability present. From the de�nitions
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above we can now present actual states in the familiar form. First we have the
Greenberger-Horne-Zeilinger state

|GHZ〉3 =
1√
2

(|000〉+ |111〉). (63)

The second kind of entangled form of pure three qubit states, is called the W state

|W 〉3 =
1√
3

(|001〉+ |010〉+ |100〉). (64)

The states presented here represent the two de�nitions when we call forth the
classical communications and stochastic local operations, i.e probabilistic local op-
erations, shortened to SLOCC. The SLOCC operations, in our case of three qubits,
can be used to transform any entangled three qubit pure state to either of the de-
�nedW or GHZ state. These states are distinct and inequivalent, as shown in Ref.
[22]. Mathematically these local unitary operations take the form

|ψ〉 = λ0 |000〉+ λ1e
iθ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 , (65)

where we see that there are six parameters required to describe the state, that are
de�ned to satisfy λi ≥ 0,

∑
i λ

2
i = 1 and θ ∈ [0;π]. Additionally when the state is

in W class, we have θ = λ4 = 0, which states that in the set of all pure states, W
class is a set of measure zero. This is also a clear indication that the W states are
a smaller group of states than the more general GHZ states. This mathematical
construct is a generalization of the Schmidt decomposition to three qubits [23].

When considering bipartite mixed state entanglement, one has to refer back to
the possible pure states of the bipartite system. Increasing the qubit count of the
system to three or more parts is maybe somewhat obviously no di�erent. Thus we
are able to de�ne thee qubit mixed state full separation[15] as

De�nition 11. Fully separable mixed state of three qubits

Mixed state ρ is fully separable if ρ can be written as a convex combination of fully
separable pure states. In other words we say that a mixed state is fully separable
if we can write the state with convex weights pi and fully separable states |φfsi 〉 as

ρfs =
∑
i

pi |φfsi 〉 〈φ
fs
i | . (66)

The full separation of mixed state of three qubits is then quite similar to the
bipartite case, and increasing the qubit count of the system would introduce new
terms and computational complexity but at its core the principle would remain the
same. Bi-separability follows the same basic principle and can be de�ned, again in
a three qubit system [15] as
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De�nition 12. Bi-separable mixed state of three qubits

Mixed state ρ is fully bi-separable if we are able to write it as a convex combination
of bi-separable pure states

ρbs =
∑
i

pi |φbsi 〉 〈φbsi | . (67)

Bi-separable states bring out the diverging properties of multipartite states in
comparison to the bipartite systems, i.e the separability within the system can
now be in respect to di�erent partitions. While the bi-separable states contain
entanglement, we might quite justi�ably classify them as a di�erent group to the
genuinely entangled states, since the measures and properties of these states di�er.

Lastly full entanglement of the three qubit mixed state follows the two pure
state classes of GHZ and W states, and the W state can be de�ned as

De�nition 13. Fully entangled mixed state of three qubits

Mixed state ρ is fully entangled if we can write it as a convex combination of
W-pure states

ρW =
∑
i

pi |φWi 〉 〈φWi | . (68)

If the state does not belong to the W class, it belongs to the GHZ class. The W
class in itself has been shown to belong inside the GHZ class. Unlike the pure case,
W class in mixed state systems is not a set of measure zero in comparison to the
GHZ class [24]. The problem of assigning a state to the appropriate class has to be
treated as separate problem for the mixed and pure states. The pure state system
has been solved [25], but the general solution to a mixed state ensemble is yet to
be found.

4.2 Generalizing to n-part systems

De�ning the quantum system of an arbitrary amount of particles mostly follows
the familiar formula introduced in two and three qubit sections. In the cases of full
separability we could transform the three qubit equation (62) to N-partite system
by adding N-amount of Kronecker products with the corresponding qubits. The
mixed system full separability is similar given we add the state probabilities to
the equation. A notable departure to the three qubit de�nitions comes when we
consider partial separation. Considering that the correlations can be between any
of the parts of the system we have the notion of m-separability[15]
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De�nition 14. Partial separation of N -partite pure state

We call N -partite pure state |ψ〉 m-separable, for 1 < m < N , if we can separate
the N parties to m parts of p1, ..., pm such that

|ψ〉 =

m⊗
i=1

|φi〉pi . (69)

The N-partite system has (mN )/m! possible ways of partitioning N parties to m
parts. In other words a mixed state is m-separable if we can write it as a convex
combination of m-separable states, that might belong to di�erent partitions.

From here we would start de�ning the mixed state partial separability, but we
run in to the uncomfortable realisation that it is not yet understood well enough
to brie�y glance over. As for the speci�c criteria, we can note that the CCNR
(computable cross-norm or realignment, omitted because of length) [15] and PPT
criterion are roughly generalisable. The two criteria however can only rule out full
separability. Rest of the known criteria are too involved or rely on the consciously
omitted entanglement witness part of entanglement to go over here. The often cited
article titled entanglement detection illustrates this point well [15].

5 Discussion and Conclusions

Let us go over the main points of the thesis. First we went over the quantum infor-
mation theory and introduced some examples that hopefully convinces the reader
of the importance of two-qubit entanglement. It is a point worth repeating that
the bipartite entanglement in itself is exceedingly important in terms of quantum
information, and is not just an introductory tool. The main portion of the work
focused on the details of two-qubit entanglement, where we introduced a working
theory of the phenomena, albeit omitting the entanglement witness formulation
completely. Some noteworthy parts there were the convex roof construction, the
PPT criterion and the entanglement distillation and cost sections. Lastly we went
over some of the easier parts of multipartite entanglement, mainly in the three
qubit realm.

Entanglement as a topic of a roughly twenty page thesis, that is geared towards
a reader that might not be familiar with the subject, is in some ways a di�cult
task. The balancing act of trying to �t enough information to build up the readers
knowledge of the details that build the de�nitions, while simultaneously trying to
introduce a meaningful amount of phenomena and mathematical tools pertaining
to entanglement involves some hard decisions. One of these hard decisions was
made to cut entanglement witness formulation completely, which means the side
of entanglement from direct observables is absent here. It also means that some of
the multipartite de�nitions and phenomena are not able to be discussed, and that
some proofs have to be omitted. Bipartite entanglement section underwent some
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cuts as well, namely the CCNR criterion is something that would have been worth
it to discuss in addition to the entanglement witness.

As an important side-note regarding the future of quantum mechanical process-
ing and to note that the entanglement of a system of particles is not necessarily
the only non-classical correlation; there exist di�erent types of correlations under
the umbrella term quantum discord. The entanglement introduced here is only one
of these non-classical correlations that a quantum system can exhibit. Entangle-
ment as a phenomena is the most studied of these correlations, and the earliest
discovered.

Finally I would like to point the reader towards Refs. [15; 18] for a more detailed
overview of the phenomena of entanglement, and as an illustration of the depths of
this phenomena. It is truly remarkable how vast this arguably very small portion
of quantum mechanics can be.
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