
Voice-controlled in-vehicle infotainment system

University of Oulu

Faculty of Information Technology and

Electrical Engineering / Information

Processing Science

Master’s Thesis

Jere Mourujärvi

7.4.2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344910111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

Speech is a form of a human to human communication that can convey information in a

context-rich way that is natural to humans. The naturalness enables us to speak while

doing other things, such as driving a vehicle. With the advancement of computing

technologies, more and more personal services are introduced for the in-vehicle

environment. A limiting factor for these advancements is the impact they cause towards

driver distraction with the increased cognitive stress load. This has led to developing in-

vehicle devices and applications with a heightened focus on lessening distraction.

Amazon Alexa is a natural language processing system that enables its users to receive

information and operate smart devices with their voices. This Master’s thesis aims to

demonstrate how Alexa could be utilized when operating the in-vehicle infotainment

(IVI) systems. This research was conducted by utilizing the design science research

methodology. The feasibility of voice-based interaction was assessed by implementing

the system as a demonstrable use-case in collaboration with the APPSTACLE project.

Prior research was gathered by conducting a literature review on voice-based interaction

and its integration to the vehicular domain. The system was designed by applying existing

theories together with the requirements of the application domain.

The designed system utilized the Amazon Alexa ecosystem and AWS services to provide

the vehicular environment with new functionalities. Access to cloud-based speech

processing and decision-making makes it possible to design an extendable speech

interface where the driver can carry out secondary tasks by using their voice, such as

requesting navigation information. The evaluation was done by comparing the system’s

performance against the derived requirements.

With the results of the evaluation process, the feasibility of the system could be assessed

against the objectives of the study: The resulting artefact enables the user to operate the

in-vehicle infotainment system while focusing on a separate task. The research proved

that speech interfaces with modern technology can improve the handling of secondary

tasks while driving, and the resulting system was operable without introducing additional

distractions to the driver. The resulting artefact can be integrated into similar systems and

used as a base tool for future research on voice-controlled interfaces.

Keywords
Automatic Speech Recognition (ASR), Amazon Alexa, Design Science Research, Route

navigation, Amazon Web Services (AWS)

Supervisor
PhD, Teemu Karvonen

3

Foreword

Firstly, I would like to thank my former employer Professor Pasi Kuvaja for accepting

me to the M3S research unit as a research assistant, giving me the opportunity to write

my thesis on this topic and being a part of the project APPSTACLE. I am grateful for all

the help and support I received as I was working under your supervision. My appreciation

goes to Teemu Karvonen for supervising my thesis and supporting me throughout the

process. I would also like to thank the M3S research unit and its staff for providing me

with a supportive and motivating environment to work in.

I would like to thank Arun Sojan Kudakacheril for being a co-supervisor for this thesis. I

also want to thank him as a colleague, for helping me solve various challenges and as a

friend, for providing support and the kind words of encouragement for me during difficult

times. Thank you for being there for me.

Furthermore, I would like to give my thanks to Ahmad Bani Jamali who acted as my

opponent for this thesis. His support has been tremendous, and I value the amount of time

that was spent to provide me with guidance and suggestions for improvement in this thesis.

I am grateful for my family for supporting me throughout my time here at the university.

I would also like to thank my friends, colleagues and the Saunaclub for the great company

throughout the years.

Jere Mourujärvi

Oulu, April 7, 2020

4

Abbreviations

AI Artificial Intelligence

API Application programming interface

APPSTACLE open standard APplication Platform for carS and

TrAnsportation vehiCLEs

ASR Automatic Speech Recognition

AVS Alexa Voice Service

AWS Amazon Web Services

CALO Cognitive Assistant that Learns and Organizes

CDI Compact Driver Interface

DARPA Defense Advanced Research Projects Agency

DSR Design Science Research

GPS Global Positioning System

IDE Integrated development environment

IPA Intelligent Personal Assistant

HCI Human-Computer interaction

HMI Human Machine interaction

NHTSA National Highway Traffic Safety Association

NLP Natural Language Processing

OEM Original Equipment Manufacturer

POI Point of Interest

SDK Software development kit

VODIS Voice Operated Driver’s Information Systems

5

Contents

Abstract ... 2

Foreword ... 3
Abbreviations .. 4
Contents .. 5
1. Introduction .. 6
2. Research problem and Methodology .. 9

2.1 Research method .. 10
2.2 Design Cycles .. 11

3. Prior research .. 14

3.1 Speech interfaces ... 14
3.2 In-vehicle environment .. 16
3.3 Speech interface and the in-vehicle environment .. 17
3.4 Requirements derived from the literature .. 20

4. Design ... 22

4.1 Requirements development .. 22
4.1.1 Gathering project requirements .. 22
4.1.2 Developing the final requirements ... 23

4.2 Selecting the system components .. 25
4.2.1 Echo Dot ... 25
4.2.2 Amazon Alexa .. 26

4.2.3 AWS services: Lambda and IoT ... 29

4.2.4 Google Maps APIs: Geocode and Directions ... 30
4.2.5 Navigation interface: Android-based smart device 31

4.3 Designing the system structure .. 33

4.3.1 General structure... 33
4.3.2 Network design ... 33

4.4 Developing the system ... 34
4.4.1 Alexa & Lambda .. 34
4.4.2 Navigation interface ... 36

5. Evaluation ... 39

6. Discussion .. 43
6.1 Limitations: .. 44

7. Conclusion .. 47
8. References .. 48

Appendix A: JSON files used in data exchange ... 52
Appendix B: System diagrams .. 57
Appendix C: System source code ... 58

6

1. Introduction

In recent years, voice interaction and intelligent personal assistants have gained more

popularity in both commercial and industrial areas, as Intelligent Personal Assistants

(IPAs) are utilized to provide speech-based support in business processes (Hüsson &

Holland, 2019). With the constant flow of new technology being introduced and

theoretical concepts becoming reality before our very eyes, giving focus on issues that

accompany these newly introduced concepts is welcomed. Since the beginning of

automotive development, the in-vehicle platform has constantly been a target for

innovation. The first electronic systems for the cars were introduced in the ‘60s.

Nowadays most of this functional innovation comes from developing software into the

automotive systems (Mössinger, 2010). Developers are introducing new ways for the

driver to interact with the in-vehicle systems. However, the process of driving a vehicle

limits the level of interaction a driver can have with novel interfaces. Developing new

interfaces and functionalities to use within the car leaves innovators struggling with the

safety-critical aspects and requirements of the automotive environment. (Chen et al.,

2008)

Human-computer interaction (HCI) can be described as follows: Human, meaning the

user, users or a sequence of users. Computer, meaning any technology from general

desktops to large or embedded systems, with non-computerized parts. And interaction,

meaning the direct or indirect communication that happens between the human and the

computer. A user interacts with the computer to accomplish something. The interfaces of

communication are for example. keyboards, controllers, touch screens and other devices

designed for user input (Dix, 2004). Human-machine interaction (HMI), similar to HCI,

is the concept of interaction between human and a machine. This idea of interaction

between the human and a machine has derived from how reactive the computer-based

artifacts have become throughout the years (Suchman, 1990). In the context of this study,

HMI is addressed as the interaction between humans and a vehicle with heightened

technological capabilities.

Visual and physical interaction capabilities of the driver are already occupied by the task

of keeping the vehicle safely on the road. When designing systems for the vehicular

environment, Smith (2000) emphasizes that keeping your eyes on the road and hands on

the wheel are the most obvious requirements for keeping physical and visual distractions

to a minimum when operating a vehicle (Smith, 2000). Driver distraction has a major

contributing factor to traffic accidents in general (Patel, Ball & Jones, 2008). This has led

to having minimized driver distraction as one of the key goals in HMI. These HMI

products generally focus on controlling multiple in-car functionalities, such as navigation,

telephony, vehicle dynamics, etc. and they fall under one of the following categories:

haptic based and voice-based HMI (Weng et al, 2016). Without figuring out a new

approach to the issue, the innovators are left with just a handful of communication

interfaces to safely introduce new interaction methods.

Speech is a form of communication that is used to verbally express us, and it can be

carried out while performing other tasks. Voice-based interaction has been proven useful

in the domain of Intelligent Personal Assistants (IPAs), where microphone enabled

devices provide information and operate with other smart devices in the household.

Voice-based interaction with an IPA is an activity that is not dependent on the user’s

physical or visual attention. Customers with disabilities have also benefitted from using

IPAs, as they provide extended control over daily tasks that are otherwise too difficult to

7

achieve (Gao, Pan, Wang & Chen, 2018). Due to this, voice interaction can be said to be

the most suitable method of communication between the driver and the vehicle. (Weng et

al., 2016) Introducing a speech interface for an in-vehicle context has not been possible

in the past, as the technical requirements for developing such a tool were too difficult to

fulfill with the available technology. Factors such as embeddedness, voice recognition

and robustness cause difficulties that have been challenging to solve in the past. (Hansen,

Kim & Angkititrakul, 2008)

What kind of improvements can the utilization of speech-controlled IPAs provide for the

in-vehicle environment? The sheer existence of cloud-computing could help to solve the

prevalent technical challenges that exist in the vehicular environment. The issue of

handling secondary tasks in the vehicle has received notable recognition from car

manufacturers, and some manufacturers have already implemented speech recognition

features into their vehicles. In these vehicles, speech recognition facilitates features such

as dictating emails and text messages, playing music, provide navigation capabilities and

start the car engine (Khan, Akmal, Ali & Naeem, 2017). Weng et al. (2016) describe the

in-vehicle dialog system development as a process that “requires multidisciplinary

expertise in automatic speech recognition, spoken language understanding, dialog

management, natural language generation, and application management, as well as field

system and safety testing” (Weng et al., 2016, p. 49).

The objective of this Master’s thesis is to find out if modern voice-based interaction

solutions can be utilized to create a feasible voice-controlled infotainment system for the

vehicular environment. In this context, the infotainment system means a system that is

responsible for conveying information to the users of the system. In the context of this

study, a navigation-based system is built to provide the user with navigation capabilities.

In the field of information technology, it is common for new technologies to come by and

solve issues unsolvable by prior technologies. This study was an attempt to fill the

research gap of utilizing modern technologies to solve the long-lasted issue of drivers

being distracted by non-essential services in the automotive environment. Modern voice-

based interaction solution refers to the currently available Intelligent Personal Assistants

IPAs, namely the Amazon Alexa (Amazon, 2010b). Alexa is utilized in creating a speech

interface to operate the infotainment system.

The reasoning behind choosing Amazon Alexa over the other IPA candidates was based

on the early introduction of the Alexa Skills Kit, which made it easier for third-party

developers to create new Alexa skills. While Google’s own IPA, Google Assistant,

displayed similar customization capabilities as Alexa with its own platform called

“Actions on Google”, there were several key points between that contributed to the

decision process. In development, Alexa skills can be customized to interact with third

party services. For example, retrieving weather information by requesting it by utilizing

Amazon Alexa and the AWS Lambda serverless cloud computing platform (Kusuma et

al., 2019). A large number of existing applications, design guidelines and

implementations made with Alexa was considered a significant difference during the

decision process (Kinsella, 2019). Learning to design and develop applications was

determined to be easier with a technology backed by a larger and more mature community.

The implemented system is evaluated by measuring it against the issues and solutions

identified in prior research, as well as the requirements derived from the project use case.

Introducing the extensive usability improvements that the voice-based interaction

technology provides for the safety-critical vehicular environment is the main objective

for conducting this research. The resulting work could bring us closer to a situation where

8

common tasks in the vehicle can be solely operated by voice. Although the road to self-

driving vehicles being a commodity is still long ahead of us, paving the road starts from

the process of easing the drivers to use the navigational- and other infotainment systems

with varying non-invasive interfaces to support the traditional driving process.

This thesis was conducted in collaboration with the APPSTACLE project in which the

author of this thesis was a member of (ITEA3, 2016a). Project APPSTACLE’s goal was

to provide an open and secure car-to-cloud and cloud-to-car platform. This platform

provides an open ecosystem where software development and deployment can be done

while adhering to the quality requirements of the automotive industry. The wide

availability of vehicles capable of utilizing this platform and the existence of the

ecosystem opens the market for improving legacy and creating new features for the

automotive context. The project started in October 2016 and was concluded in December

2019. Participants included companies and universities from multiple countries: Finland,

Germany, the Netherlands, and Turkey. (ITEA3, 2016b) As a result of the project, the

open-source project and platform called Eclipse Kuksa were released in November 2019.

This platform interconnects vehicles to the cloud and provides developers with a set of

software and its IDE. Eclipse Kuksa is now the project that carries out the vision of the

project APPSTACLE. (Eclipse, 2019)

The results of this research contribute both for the knowledge base, the application

domain as well as the automotive industry in the following ways:

• Provide insight on speech recognition in vehicles by utilizing the Design Science

Research (DSR) methodology to design, develop and evaluate a voice-controlled

navigation system.

• Demonstrate the capabilities of currently available speech recognition

technologies.

• Provide a use-case for the APPSTACLE project that demonstrates the use of third-

party services within the car-to-cloud platform.

• Present evaluation results that show how Amazon-based services can be used and

improved to provide cloud-based ASR.

• Use these evaluation results to describe the advantages and disadvantages of this

artifact and identify the room for improvement.

This thesis follows the Master’s Thesis template provided by Halonen (2017) from the

University of Oulu. The template is used to guide students to write a Master’s Thesis that

follows the regulations of the University of Oulu. The structure of the thesis is as follows.

The paper starts by defining the research problem and the questions. Next, the design

science research methodology is introduced and described. Then a literature review is

conducted to help understand and summarize the existing knowledge related to speech

interfaces, the in-vehicle environment and the integration of these two areas. From the

findings of the literature review and the domain-specific needs of the use-case, a set of

requirements is generated. The system is designed and developed based on these

requirements. The implementation of the system is done in small cycles to ensure

alignment with the requirements. The system is evaluated by analyzing how the

implemented system meets the requirements. Finally, the results are discussed along with

the limitations and identified opportunities for future research.

9

2. Research problem and Methodology

The objective of this thesis is to design develop and assess a voice-controlled interface to

be used in an in-vehicle environment. To achieve this goal, the following research

questions were defined:

RQ1. How a voice-controlled interface can be integrated into the in-vehicle

context?

RQ2. What are the advantages and disadvantages of a voice-controlled interface

in the in-vehicle system?

By answering these research questions, the thesis can provide insight on how a speech

controlled in-vehicle navigation system should be designed and developed, and if there

still exist problems that the current commercial solutions cannot answer to. The first

research question is directed towards defining the design- and development process. By

answering it, the reader should have a clear idea of how the system is being built and what

are the technologies that are utilized in the process. The second research question is

directed towards evaluating the designed artefact to see what kind of effects the target

solution has in the application domain. Whether these effects are positive or negative and

what areas do they cover, the results reveal how well the designed solution could be

utilized in the application environment.

The knowledge base was examined through the process of a literature review. The

purpose of the review was to gather existing literature that covers the research topic from

the following three aspects: Speech interfaces and automatic speech recognition, the in-

vehicle environment as the application domain and the speech recognition application

process to the in-vehicle environment. For non-scientific literature, websites that were

created by the companies and organizations behind the tools and services used in the study

were examined.

The results of the literature review were used to construct literature-based requirements

that were utilized during the design, development, and evaluation of the design artefact.

The literature review provided both the literature-based requirements that acted as the

basis for the design- and development work, and the evaluation criteria for assessing the

rigorousness of the resulting artefact against the combined evaluation criteria. Literature-

based requirements included both technical- and application domain-specific

requirements. These requirements were merged to finally come up with a set of

requirements that provide a strong basis for the design part of the research process.

The research question 1 was answered by examining the currently existing methods and

applications that are implemented in the vehicular environment. As the basis of the voice-

controlled interface is previously known (Alexa), the task of domain integration remains

to be answered by investigating the currently existing methods and applications.

The research question 2 was answered by evaluating the designed system against the

constructed requirements. The evaluation process provides us verification on each of the

advantages and disadvantages by evaluating the features of the tool and the challenges of

the environment case by case.

10

2.1 Research method

As this thesis aims to build and evaluate a new system based on empirical research, the

study will follow the design science research (DSR) methodology as the approach method

for this thesis. Hevner and Chatterjee (2010) provide a formal definition for Design

science research:

 “Design science research is a research paradigm in which a designer answers questions

relevant to human problems via the creation of innovative artefacts, thereby contributing

new knowledge to the body of scientific evidence. The designed artefacts are both useful

and fundamental in understanding that problem. (Hevner & Chatterjee, 2010, p. 5)”

DSR enables organizations to address tasks that improve effectiveness with the use of

information technology. There needs to be a balance between the focus on technological

artifacts and maintaining a theory base. Neglecting the theory can result in the

development of a well-designed artifact without actual use in the organizational setting

(Hevner, March, Park & Ram, 2004). Hevner (2007) emphasizes the importance of

providing a clear and consistent theoretical base for the design and execution of high-

quality design science research projects. It is essential to understand and communicate

the design science research process to gain support from other information system

professionals and to make design science research seen as a credible source of information

among other design science-oriented research communities. (Hevner, 2007)

As stated by Hevner (2004), DSR is conducted in collaboration between the business

needs of the application environment and the applicable knowledge from the knowledge

base. Primarily, rigorousness in DSR is achieved by evaluating the quality and efficiency

of the artifact by utilizing the knowledge base for computational and mathematical

methods (Hevner, 2004). In DSR, the task of conducting a literature review is done to

assess a selection of appropriate theories and methods that can be utilized in the

construction and evaluation of the designed artefact.

Answering a research problem with the use of DSR means that there are multiple different

DSR frameworks to choose from. Deciding on a suitable framework for a study is a

process of identifying the general needs and projected outcomes of your research, whether

it is to focus on increasing industrial relevance, or to provide valuable meta-artifacts for

progressing the knowledge base, or to provide something in between. In the case of this

study, the Three Cycle Framework by Hevner (2007) was chosen as the one to be

followed for fulfilling this research. This framework borrows an existing framework from

Hevner (2004), with a new overlaid focus on the implementation of three inherent cycles,

as seen in Figure 1.

11

Figure 1. Design Science Research Cycles based on this research context (Hevner, 2007).

The essay from Iivari (2007) portrays the key properties of the design science research

paradigm. Hevner supports the analysis from Iivari and portrays the theses in Iivari's essay

into three design research cycles. Relying on these research frameworks paves the road

towards a well-structured DSR study that maintains a balance between relevancy and

rigorousness of the study (Iivari, 2007).

The left side of Figure 1 represents the contextual environment; The application domain

in which the designed artifact would prove its usefulness by either solving an existing

problem or simply filling a spot open for opportunities. In the context of this study, the

APPSTACLE project and the selected target environment along with its technical stack

will fill the position of the contextual environment. These will act as the sources for

enforcing the relevancy of the study. As Hevner (2007) states, good design would often

begin by identifying and representing the opportunities and problems in their application

domain (Hevner, 2007). Identified opportunities provide a reason for improvement even

without recognizing any problems (Iivari, 2007).

The right side of the figure contains the knowledge base, which is composed of

foundations and methodologies. Hevner et al. (2004) describe that the knowledge base

provides prior research and results in the forms of artefacts such as foundational theories,

models, frameworks and methods. These artifacts can be results from workshops, design

products and algorithms from similar DSR works and scientific theories in general. In

contrast to behavioral science, rigorousness in DSR is often achieved by applying

computational and mathematical methods to evaluate the quality of the research work.

(Hevner et al., 2004). In the context of this study, the theoretical knowledgebase consists

of studies and workshops that have resulted in meta-artifacts that reveal existing issues

and problems within this topic area.

2.2 Design Cycles

Hevner (2007) defines the DSR cycles in the following manner:

Relevance cycle: The process of identifying potentiality inside the application domain.

Upon initiation, it provides design science research an application context where one can

gather both the requirements for the research and the evaluation criteria for the finished

research work. A cycle is iterated if the designed artifact cannot maintain utilization in

practice. In this study, the relevance cycle consists of gathering requirements from the

application domain, which in this case is represented by the project and its purpose. It is

12

important to ensure that the designed requirements and other artefacts of this study stay

relevant to the target application domain in which the designed system is considered to

be deployed.

Rigor cycle: The Rigor cycle provides past knowledge for the research project. To

recognize the designed artefacts as research contributions for the knowledge base,

researchers need to thoroughly research and reference the existing knowledge base. While

basing design science research on supporting theories is seen as an important aspect of

the research, finding supportive theories in for every single DSR project is deemed

unrealistic (Iivari, 2007). The research contributions of the DSR project to the knowledge

base are what sells it to the academic audience: Extensions of original theories and

methods made during the research and the resulting meta-artifacts and experiences

generated by the design and evaluation of the artifact in the application environment.

The application of the rigor cycle in this study can be seen in the following process:

Assessing that the gathered knowledge correctly aligns with the relevancy of this study.

This means acknowledging how the selected studies and workshops are relevant to the

subject of voice-based interaction and the automotive environment. If there are issues

discovered and solutions proposed, do they support the rigorousness of this research?

With these existing research materials, this DSR study gains the means of justification

and evaluation guidelines for the resulting artefact.

Design cycle: The main internal cycle of the DSR project. The cycle iterates around

constructing, evaluating and refining the design of the target artifact. The cycle gains the

requirements for the design from the relevance cycle while design- and evaluation

methods are gained from the rigor cycle. Maintaining the balance between each of these

iteration cycles is essential for constructing the artifact (Hevner, 2007).

The environment of this research is the automotive domain, that the underlying project

APPSTACLE is focused on improving. The system is intended to be used in collaboration

with existing devices that provide infotainment for the in-vehicle environment. The goal

of this tool is to provide insight into using an alternative method of communication with

these existing navigation- and infotainment systems available in the car. Without the

voice-controlled interface available, operating the existing navigation systems is

preferred to be done before starting the driving process. Operating the navigation system

while driving impacts the safety of the driver and other vehicles in the vicinity of the car,

as the focus of the driver is directed towards the navigation interface and one of the hands

leaves the steering wheel to operate it.

As the development of the artefact was a core process of this research, the development

of the artefact was done in cycles. Each cycle had a specific objective to accomplish and

they were evaluated in a follow-up evaluation cycle. The cycles of this research work are

presented as follows:

Cycle 1. Gathering project requirements: With the literature requirements summarized,

a separate relevancy cycle was initiated for gathering application domain-based

requirements from project personnel. These requirements were evaluated with the support

of the project personnel with relevant expertise in the subject.

Cycle 2. Developing the final requirements: The final requirements were developed by

merging the rigorous requirements gathered from the literature review and the relevant

requirements generated with the project personnel. Cycle completion was done by

13

successfully carrying out the following evaluation cycle. Evaluation of this cycle was

done by analyzing the requirements with the other members of the project while

considering the limitations on time and resources. Depending on the nature of the

requirement, the iteration was conducted by refactoring the requirement or removing it

completely.

Cycle 3. Selecting the system components: The objective of this cycle was to choose

the components for carrying out the required tasks. The chosen components must be

suitable to work with the designed system structure and they must follow the set

requirements. The completion of this cycle was confirmed when all the components were

selected, and they were assessed to function together to fulfill the requirements.

Cycle 4. Designing the system structure. The objective of this cycle was to design the

structure for the components of the system. The requirements gained from the prior cycle

were utilized to design the system. This cycle was estimated completed when the designed

structure would align with the requirements that define the system or the parts that were

under the design process.

Cycle 5. Developing the system: The objective of this cycle was to develop the system

to fulfill the features that were defined in the requirements. Each part of the system was

merged as defined in the designed structure, which resulted in the creation of the designed

artefact. The completion of this cycle was confirmed when the following evaluation cycle

was defined completed by the author.

After the cycles were completed, the system in its whole was evaluated by assessing the

functional- and performance capabilities against the prior requirements. The assessment

procedure measured the functional capabilities of the system by comparing them against

the traditional voice-operated system, Alexa and its skills. Successfully evaluating the

artefact with the laboratory setting that simulates the vehicular domain as its environment

allowed the research questions to be answered thus solving the research problem. Having

solved the research problem provides new knowledge towards the knowledge base in the

form of designing a voice-controlled interface for the in-vehicle environment by using

the Amazon Alexa.

14

3. Prior research

This chapter introduces the prior literature that was gathered in the literature review

process. The literature is related to the subjects of voice-based human-machine interfaces

and the in-vehicle system. To provide the reader with an understanding of the core subject,

it is important to explain the concept by introducing the literature under the following

topics areas: Speech interfaces from past to present, Description of the in-vehicle

environment and Existing implementations of speech interfaces in an in-vehicle

environment.

3.1 Speech interfaces

Speech recognition has been an attractive research topic since the 1950s. The basis for

voice or speech identification technology was pioneered in the 1960s by Texas

Instruments (Khan et al., 2017). Since that time the topic has been investigated in hopes

of designing a speech interface that can provide a highly user-friendly human-machine

interaction experience (Herbig, Gerl & Minker, 2010a). The aggressive research and

development processes have brought speech recognition technology into the present,

where the technology has been integrated into the mainstream (Khan et al., 2017).

In the study by Hunt (2002), the domain of automatic speech recognition was said to be

mainly dominated by automatic dictation software from 1990 to mid-2000. In automatic

dictation, users engage in a dialogue with computers to edit, format and correct textual

input. The first versions of said dictation software required its users to learn how to pause

between each word, making the dictation process time-consuming. Later, the dictation

software evolved to work much more efficiently by requiring no pauses, using larger

vocabularies and ensuring higher precision. PC Speech recognition by dictation was still

not sparking much curiosity. (Hunt, 2002)

Hunt also investigated some factors that may have had an indirect relation to the use of

dictation technology: Automated dictation technology heavily relied on new computers

that could respond to the processing power- and memory consumption requirements.

Another factor was that automatic dictation was directly competing with the keyboard

and mouse, that many people had already learned to use when interacting with personal

computers. It was true that the speaking to another human was largely different from

speaking with a dictation system, as similarly to efficient typing, one would need to learn

how to speak to a dictation system (Hunt, 2002). Zheng, Liu & Hansen (2017a) describe

that commercial focused voice-based human-machine interfaces are typically established

by utilizing two modules presented in Figure 2.

Figure 2. System overview of a voice-based navigation interface (Zheng et al., 2017a)

15

As seen in Figure 2, the speech recognition process starts with the module called

Automatic Speech Recognition (ASR). Its task is to process the audio streams into

sequences of words or sentences, which are then carried over to the second module called

Natural Language Processing (NLP) (Zheng et al., 2017a). For human-vehicle navigation

dialog systems, NLP has two major tasks: In navigation-based applications, the task of

intent detection is to decide if the retrieved text is a sentence that is related to navigation

or not. Next up is the task of semantic parsing, where the retrieved text is analyzed to

figure out which words of the sentence are related to the context (of navigation) and which

are not. An example of this task is provided by Zheng et al. (2017b) in the following Table

1, where the sentence is labeled against the semantic role chunking method presented by

Hacioglu, Pradhan, Ward, Martin & Jurafsky (2004), where each word is tagged in the

format of Inside Outside Beginning (IOB). In this sentence, the context of the Point of

Interest (POI) is “a Japanese restaurant” and the context of the navigation search area is

“near here”. (Zheng et al., 2017b; Hacioglu et al., 2004)

Table 1. Semantic parsing example (Zheng et al., 2017b)

Sentence Context

is O

there O

a B-point.of.interest

Japanese I-point.of.interest

restaurant I-point.of.interest

near B-search.area

here I-search.area

There have been multiple efforts devoted towards the field of general-purpose voice-

enabled intelligent personal assistants (IPAs). The U.S. Defense Advance Research

Projects Agency (DARPA) has funded several key programs related to IPAs. The

DARPA Communicator -project is seen as a major early effort towards developing robust

multi-modal speech-enabled dialog systems that carry advanced conversational

capabilities to engage with humans in varying types of interactions. DARPA funded the

CALO (Cognitive Agent that Learns and Organizes) project, which eventually generated

several spinoff projects, such as the well-known SRI International’s Siri intelligent

software assistant. (Weng et al. 2016)

Speech interfaces of the present are generally identified as tools with the capability of

retrieving speech containing audio input and processing the speech externally by utilizing

cloud computing technologies. Of these interfaces, the most well-known are the ones

provided by the big tech companies, such as Apple Siri and Google Voice Actions (Zheng

et al., 2017a). The interest in speech-based dialog systems took a large step forward in

2011 when Apple acquired the first voice-enabled Intelligent Personal Assistant (IPA)

called Siri and launched it on the iPhone. With the availability of massive computational

powers provided by cloud computing technologies, other voice-enabled IPAs and AIs

began to get integrated into dialog systems. These newly developed IPAs allowed users

to operate devices, access information and fulfill personal tasks in a more versatile

16

manner. The list of notable IPAs includes titles like Apple Siri, Amazon Echo, Google

assistant and, Microsoft Cortana IBM Watson and Baidu. (Weng et al., 2016)

The study by Gao et al., (2018) focused on understanding how the consumers were using

the Amazon Echo -voice-activated wireless speaker. This task was carried out by

analyzing consumer reviews of the product from the Echo’s Amazon product page. The

following statements were supported by the qualitative analysis: Hands-free is one of the

top features that many reviewers enjoy. Remote voice interaction of the device allows its

users to issue commands while they are busy with other tasks, such as cooking. There

was a small subset of the customers that in their reviews mentioned other competitor’s

assistants and gave Echo a 1- or 2-star rating, and the majority of these reviews focused

on how Echo’s capability to answer questions was inferior to its competitors. Other

reviewers commented that the Echo device does hear and understand your words, but it

is not able to answer them. (Gao et al., 2018)

Unlike the other IPAs that are available in the market, Alexa is designed to handle speech

in the form of providing skills instead of holding a conversation: Speaking to it invokes

different skills that are designed to be activated upon hearing certain keywords, such as

“Hey Alexa, how is the weather outside?” This phrase would activate a built-in skill that

seeks the weather information from the location you had set beforehand. Amazon’s

website describes Alexa skills as voice-activated apps that add capabilities to your Alexa-

enabled device (Amazon, n.d.). The feature that motivated this study of improving the

vehicular context was the vast customization capabilities that the Alexa can provide: As

it is possible to connect the voice-operated IPA to Amazon’s cloud platform, the AWS

widens the usability of Alexa skills even further by opening up new ways to interact with

other services that are designed to work seamlessly with one another. (Amazon, 2011)

3.2 In-vehicle environment

Driving a car is a process that requires complete visual attention from the driver. Along

with the basic functionalities, cars are equipped with varying functions that serve different

purposes related to tasks that improve the driving experience, such as lights and window

wipers. Drivers are expected to learn to use these functionalities without giving them

much visual attention, which is already prioritized for driving the car. (Sandnes, Huang,

Yo-Ping., Huang, Yeh-Min., 2008)

One of the most prevalent issues of the in-vehicle environment is the amount of additional

noise that accompanies the driving process (Hansen, 2008; Hunt, 2002; Shozakai,

Nakamura & Shikano, 1998; Hong, Rosca & Balan, 2004). Shozakai et al. (1998) list and

categorize the noises of the in-car environment into four types, as shown in the following

Table 2.

17

Table 2. Noises of the in-car environment (Shozakai et al., 1998)

 Known Unknown

Stationary Engine etc. Road, wind, air-

conditioner, etc.

Non-

stationary

Car stereo speaker,

navigation guide, traffic

information guide

Bump, wiper, winker,

conversation, noise

from passing a car to

the opposite direction

As a solution for the challenge of reducing visual demand in driving, alternative methods

of interaction have been proposed. These methods vary from tactile, touch-based

interfaces to interfaces controlled by voice. These methods were intended to be usable

without expending the already reserved visual focus. One of the alternatives that do not

utilize speech recognition was proposed by Sandnes et al. (2008): A tactile interface that

represents a chording keyboard, which is used to issue commands that operate various

functionalities in the car (Sandnes et al., 2008).

Kirson (1995) Describes a Compact Driver Interface (CDI) for use in the in-vehicle

navigation and route guidance system. For inputting commands, the design uses a tactile

input device, which enables the driver to operate the system without having to look at the

controls, and the design is similarly designed for the driver not having to divert their

attention from the task of driving to receive navigation instructions, as the system

responds to the driver by voice. While the interface design communicates in a way

opposite to this study, the principles of appreciating the driver distraction are still apparent.

(Kirson, 1995)

Driver awareness has been one of the major safety concerns since the development of

automobiles. In 2008, there were over six million vehicular accidents in the USA which

killed 42,000 people and left 3 million people injured. Driver distraction is estimated to

contribute to 20-30 percent of all crashes on motor vehicles. As stated by National

Highway Traffic Safety Association (NHTSA) in the study by Hansen et al., (2008),

driver distraction is classified into four distinct types: visual, auditory, biomechanical

(physical) and cognitive distraction. These distraction types are not mutually exclusive,

for example, operating a phone includes all four forms of actions. (Hansen et al., 2008)

3.3 Speech interface and the in-vehicle environment

To design a speech interface for the in-vehicle environment, various issues have been

identified that are necessary to be solved in the design process. Without a solution for all

these issues, no speech interface can be developed to operate within the standards of

safety and robustness that are expected in the in-vehicle environment. Several modern

speech interfaces built for the automotive domain have been released in the industrial

market. They provide sub-tasks such as speech interface, navigation, and telematic

services. Further detail on the technicalities is however not informed. (Zheng et al, 2017a)

Speech recognition began to appear in cars made for production in early 2000. During

that time, speech recognition appeared in the form of dictation systems and was generally

competing with the traditional keyboard and mouse users. One of the first projects that

intended to realize a robust speech interface for the in-vehicle environment was the

18

VODIS (Voice Operated Driver’s Information Systems). The project ultimately led to the

design and development of a speech control system, targeted towards the in-vehicle

environment, such as navigation and the car stereo (Shozakai et al, 1998). However,

introducing speech recognition to the in-vehicle environment meant that there was no

competition with the keyboard anymore. It was also noted that the in-vehicle environment

was knowingly noisy, and drivers could not be expected to wear headsets mounted with

microphones to interact with the system (Hunt, 2002).

Barros & Boucher (1996) from Liikkuva Systems discovered the following challenging

problems via spending over two years researching and developing navigation

technologies:

1. The success of ITS (Intelligent Transport System) applications depends solely on

the accuracy of the map utilized by the program.

2. The most important issue in the ITS movement is the personal safety implications:

Integration of voice recognition and speech synthesis is necessary for an In-vehicle

navigational system. Accuracy of the road information is directly associated with

the acceptance of the product.

3. The capability of altering a route calculation requirement while in transit.

4. The integration of technologies from different companies and service provides is

a major problem. To develop useful and reliable navigational systems, cooperation

between participating companies is a fundamental requirement, panning over

government, private and educational entities.

They conclude that the success and overall effectiveness of ITS movement in the US are

dependent on the two following statements: Cooperation between private technological

firms, government and educational entities and Constant development of ITS technology

integrating software programs and making the technology easily accessible for the

common user. (Barros & Boucher, 1996)

Herbig et al (2010a) identify multiple in-car speech recognition aspects that are open for

improvement: Users with no familiarity towards speech recognition systems should be

able to both safely participate in road-traffic and simultaneously operate the systems.

Speech recognition enabled infotainment- and navigation systems should not be

personalized to a single user. However, some studies provide insight and reasoning on

designing and developing personalized in-vehicle information systems: Moniri, Feld &

Müller (2012) base their motive on providing a more comfortable and accessible

experience to people from different user groups. This would impact safety, as the users

would spend less time making the automotive experience comfortable for themselves, as

the system does it for them (Moniri, Feld & Müller, 2012). However, Herbig et al (2010a)

explain that if the speech interface is only used by a small set of users e.g. five recurring

speakers, it is useful to train the system with the users’ speech patterns to improve

accuracy and efficiency (Herbig et al. 2010a).

As the system is being developed for an embedded environment, efficiency in both

computation power and memory consumption are important design parameters (Herbig

et al., 2010b). This statement is supported by Qian, Liu & Johnson (2009), who presented

a fast decoding algorithm for a Mandarin speech recognition system. The proposed speech

recognition strategy could improve the speech recognition speed by six-fold and use half

of the memory with little accuracy degradation when compared to the baseline system

(Qian et al., 2009). Similar decoding algorithms were proposed by Chung, H., Park, Lee,

Chung, I. (2008) with similar intentions of improving the efficiency and memory

19

management when recognizing POIs on an in-car navigation device (Chung et al., 2008).

The research conducted by Qian et al (2009) focused on the issues on the embedded ASR

systems that still lacked the proper solutions against the computational requirements. The

research team proposed a fast decoding algorithm to help solve the efficiency issue with

accessing a very large vocabulary with a system working with the limited speed- and

memory size constraints of an embedded environment. (Qian et al., 2009)

Hataoka, Araki & Matsuda (2008) address additional problems that would require

resolving before speech recognition can be utilized in any real environment: Usability

problem describes how every interface should have a transparent navigation model, and

how ASR systems generally lack this kind of functionality. This leads to the user not

knowing if their input has been recognized or not. If the input is misrecognized, the user

cannot understand why this misrecognition occurred and how to manage their next action

(Hataoka et al., 2008). Transparency in the navigation model helps to build the robustness

of the system, as constant feedback from a speech-controlled system keeps the user aware

of what it does with the given input. This is especially important in the context of this

study, as spoken dialogue will act as the medium for both the input and verification of the

given input.

Out of vocabulary (OOV) problem, addressed by Hataoka et al., describes how meanings

and locations may have multiple ways to express them, and how it is essential for ASR

systems to handle this kind of situations. Improving ASR interfaces to solve the OOV

problem was identified as one of the most urgent issues to be solved in the future (Hataoka

et al., 2008). This problem was also referred to in the related works by Jeong, Kim & Lee

(2003), where a framework designed to improve speech-driven information retrieval was

introduced. One of the goals of the said framework was to solve the OOV problem (Jeong

et al., 2003).

Robustness (in computer science) is the factor of how well the system can recover and

function if/or an error occurs due to erroneous or unexpected input. Robustness in the

ASR systems is recognized in various parts of the process. Hansen et al. (2008) address

the variety of background noises existing in a vehicular environment to be one of the

research challenges that must be addressed to achieve speech interactive systems that are

reliable and natural to use. Also, speakers or drivers will experience cognitive stress from

driving which would further modify their vocal effort to overcome noise levels within

their ears. (Hansen et al., 2008). In the vehicular environment, the speech signal may

experience degradation as noise belonging to the in-vehicle environment may interfere

with it. The need for robustness is synonymous with dealing with the noises caused by

the external and internal sources, as described in Table 2 (Hataoka et al., 2008; Kadambe,

2002).

Since the 1970s, there have been dozens of attempts to utilize speech enhancement

techniques in hopes of suppressing the noise to improve the overall feasibility of speech-

based interaction with the vehicular components. (Hong et al., 2004). In the study by Ding,

He, Yan, Zhao & Hao (2008), both low-cost and robust mandarin speech recognition was

being proposed. The noise suppression was conducted by applying two algorithms to

firstly suppress the background noise and then to introduce a gain function to the

remaining noise-reduced spectral components. (Hong et al., 2004; Ding et al., 2008).

Additional noise received while a speech interface is on standby affects how precisely the

voice is recognized (Ding et al., 2008). These additional noises could end up making

creating speech recognition errors. The study by Tam et al., (2014) highlights the

20

importance of detecting speech recognition errors in ASR: Recognition errors directly

affect the natural language understanding of a system with no suitable mitigations against

it, such as an error-correcting dialogue manager (Tam et al., 2014). Related to this issue,

the study by Jeong et al. (2003) focuses on decreasing speech recognition errors through

a semantic-oriented approach. This approach aims to improve the recoverability from a

situation where an erroneous query has been introduced to the ASR. The Semantic-

oriented correction process tries correcting the erroneous input by assessing several

related candidates and comparing these candidates with words from a domain dictionary,

in hopes of discovering candidates with the most similarities to the original input. (Jeong

et al., 2003)

The issue of handling different styles of pronunciation due to dialects and foreign

language has also been studied in prior research. While pronunciation has been identified

as a challenge for speech processing in multiple studies (Hunt, 2002; Zheng et al., 2017),

the study by Ding et al. (2008) utilized the method of training the acoustic model with

multiple accented mandarin speech databases that have been modified with pre-recorded

in-car noise to simulate the target environment (Ding et al., 2008).

The introduction of the speech interface to the in-vehicle context reveals unique

challenges. Zheng et al. (2017) point out that the technical challenges of implementing an

in-vehicle dialog system contain similarities in implementing dialog systems towards

general purposes. Context-related challenges are identified from in-vehicle data

collection efforts and the development of an in-vehicle dialog system. The task of

developing a natural spoken language understanding navigation dialogue system has been

one of the highest demanded in recent years. It is desired to have an intelligent dialogue

system, holding the conversational capability that of an assistant. The driver of a car

would be providing the desired location information in a way that is natural for humans.

This leaves the dialogue system alone with the task of understanding each bit of

information gathered and coming up with the desired destination up for navigation (Zheng,

2017). Hunt (2002) describes the potentiality of the hands-free features that in-car speech

recognition could provide: Being able to control the air-conditioning and the radio

without taking your hands off the wheel is both convenient and a safety asset. Hunt also

argues that the most interesting in-car application of speech recognition would be for

navigation systems, as such systems offer great help in guiding drivers to their

destinations in territories unfamiliar to the driver. (Zheng, 2017; Hunt, 2002)

Cloud-based intelligent assistance systems have been popularizing the in-vehicle speech

recognition due to the high level of language understanding accuracy. However, the

impact of cloud-based speech systems is seen to be limited to the ASR accuracy and the

naturalness of Text-to-speech for dialog system development (Weng et al., 2016). Even

after the popularization of these assistance systems, one of the persisting issues is how

the speech recognition feature can still distract the driver, which leaves lots of consumers

unsatisfied. (Weng et al., 2016; Khan et al., 2017)

3.4 Requirements derived from the literature

To successfully develop and evaluate a speech interface for the in-vehicle environment,

it is crucial to acknowledge the environmental limitations and context-wise expectations

that come with developing one for a specific environment. These expectations and

environmental limitations were collected from prior literature and built into literature-

derived requirements, which later are merged with the application context requirements

21

to form the final requirements. Identified issues and solutions that are relevant to the

design study are summarized into objectives to be fulfilled with the designed tool. These

objectives will also act as the evaluation criteria for assessing the tool.

From the prior studies, the following requirements were retrieved. In Table 3, the term

tool refers to the chain of applications and devices that together form the artifact in

question.

Table 3. Requirements for developing a speech interface for the in-vehicle environment

Requirement Description

R1 The tool should be capable of recognizing and understanding spoken

language (Ding et al., 2008).

R2 The tool understands multiple meanings for the same location,

acknowledging the OOV problem (Hataoka et al., 2008) (Jeong et al.,

2003).

R3 The tool should function in a transparent fashion (Hataoka et al., 2010).

R4 The tool should be usable without visual distraction (Sandnes et al.,

2008) (Hansen et al., 2008).

R5 The tool should be usable with minimal auditory distractions (Hansen

et al., 2008).

R6 The tool should be usable with minimal cognitive distraction (Hansen

et al., 2008).

R7 The tool should be usable without physical distraction (Hansen et al.,

2008).

R8 The tool should be error-tolerant in speech recognition (Tam et al.,

2014) (Jeong et al., 2003).

R9 The tool should function in the embedded environment (Herbig et al.,

2010b) (Qian et al., 2009).

R10 The tool should understand speech without making specifications

(Herbig et al., 2010a).

R11 The tool should withstand in-vehicle noises (Hataoka et al. 2010)

(Kadambe, 2002) (Herbig, 2010a) (Ding, 2008).

As shown in Table 3, the retrieved requirements follow a trend of being more targeted

towards how the tool is designed and how it would affect its users in the target application

domain. These requirements provide a strong basis on the evaluation guidelines to be

generated together with the domain-specific requirements.

22

4. Design

After gathering the requirements derived from the literature review, the development of

the system could begin. The development process used the iterative development

methodology as it was described in chapter 2.

4.1 Requirements development

Requirements for developing the system were designed to provide a structure of how the

designed system would be built and to provide the evaluation criteria for the developed

tool to be evaluated against. The developed requirements were constructed from two

domain areas: The first domain was the existing knowledge base that provided the state-

of-the-art methods and other relevant research work used in both development and

evaluation. The second domain was the project

The sections follow the process of introducing the whole toolchain as a concept for the

reader, to ensure straightforwardness: The reader understands what are the tools

themselves, how do these tools operate regarding the context of this study, what kind of

information do these tools relay when they interact with each other and how the process

is seen by the end-user.

4.1.1 Gathering project requirements

These requirements were compiled from use-case meetings held with the local

APPSTACLE project members and discussing with project members from Germany

during other events related to the project, including hackathons and project status

meetings. In these use-case meetings, the local project group discussed with the author

about how voice-based communication methods could be utilized with the system

designed in the APPSTACLE project. The local project group consisted of research

fellows and PhD students, while the other project members involved with the requirement

specification were working in the engineering industry. With the collaboration of project

members local and international, a list of requirements could be compiled and validated

at the end of May 2019. The list of requirements can be seen in Table 4. Two terms

indicate the following items: system indicates a computational device intended to be

accessed, and the tool indicates the designed artifact. The wording used to represent the

requirement levels have been modified to match the environment of a use-case

representation instead of representing the real-world environment.

23

Table 4. List of requirements derived from the project personnel.

Requirement ID Requirement description

R1 The system must be operable with the tool by using

speech.

R2 The tool should work within the same environmental

limitations as a normal car.

R3 The tool should not introduce situations that interfere

with the driving task.

R5 The tool should work with multiple users.

R6 The tool should provide navigation functionality in the

vehicle.

R7 The tool should understand English locations.

R8 The tool should understand Finnish locations.

R9. The tool should implement route planning.

R10. The tool should be fault-tolerant: Withstand erroneous

speech recognition situations.

R11. The tool should withstand temporary service

breakdowns: disconnections etc.

As shown in Table 4, the requirements that were collected with the help of the project

personnel were more practical and function oriented. That is expected, as the amount of

knowledge towards the other technologies utilized in this research was limited among the

project personnel.

4.1.2 Developing the final requirements

With the project requirements specified and validated, they can now be combined with

the requirements derived from the literature. This combining process resulted in us a list

of requirements that can be seen in Table 5. The requirement order was based on what

areas the requirements focus on and what tools are involved in each requirement.

For the final requirements, similar requirements were merged and requirements that were

not directly relevant to the project were left out. The included requirements were deemed

relevant for evaluating the artefact. The requirements were defined to provide evaluation

guidelines for the following functionalities: The voice interaction tool functions how ASR

based systems should function. The voice interaction interface can operate the navigation

component by voice. The requirements should fulfill at least some of the in-vehicle

domain-specific requirements, such as the expected robustness in error-correcting and

voice recognition.

These domain-specific requirements define how much the user of the system has to

provide attention to the tool for getting their task fulfilled. For example, if the system fails

to provide the correct address, the user has to interact with the system again, which

24

introduces unnecessary interference on driving. The requirements are designed to be

fulfilled within the time- and resource limitations of this project. In a real-world situation,

these requirements would be accompanied by requirements that would also focus on how

efficiently each requirement is fulfilled.

Table 5. List of final requirements

Requirement ID Requirement description

R1 The system must be operable with the tool by using speech.

R2 The tool should recognize the normal spoken language.

R3 The system must provide navigation functionality.

R4 The system should withstand erroneous situations in

speech recognition

R5 The system should function in a vehicular environment.

R6 The system should provide route-planning.

R7 The system should function with multiple users.

R8 The system should inform the user of its functionality

R9 The tool should understand multiple meanings for the same

location

R10 The system should be usable with minimal auditory

distractions.

R11 The system should be usable with minimal cognitive

distraction.

R12 The system should be usable without physical distraction.

R13 The system should be usable with minimal visual

distraction.

R14 The tool should not introduce situations that interfere with

the driving task.

R15 The system should withstand temporary service

breakdowns.

R16 The tool should understand English locations.

R17 The tool should understand Finnish locations.

As shown in Table 5, the finalized requirements cover both the areas of development and

the evaluation criteria against the target environment. Based on the limitations of this

study, wording the requirements has been more lenient to suit the research topic of

25

explaining how a voice-controlled interface can be designed, instead of estimating if this

artefact fulfills the safety-critical aspects of the application domain.

4.2 Selecting the system components

This section describes and illustrates the tools and devices that were utilized in the artefact

design process.

4.2.1 Echo Dot

The Echo Dot is a small, tube-shaped device that is equipped with lights, speakers and a

microphone. It is a smart device that belongs to the Amazon Echo product family. It is

designed for providing a communication interface between the end-user and the Cloud-

based service called Alexa (Chung, Park & Lee, 2017). Communication between these

services is handled via connecting to the internet by setting it up on a wireless network.

Figure 2. The product Amazon Echo Dot

Echo dot relays the phrase that the user spoke out to a cloud-based service that uses

Automatic Speech Recognition to figure out what does the phrase contains. After

estimating the best candidates for each word inside the phrase, the estimated phrase

(utterance) is then relayed to the Alexa -service.

26

4.2.2 Amazon Alexa

Alexa acts as the command interface between the user and the navigation service. The

service is based on skills, which are defined as the apps of the Alexa. These apps enable

the user to perform various tasks and engage with other smart services by using your

voice (Amazon, 2019). Upon invoking the Echo Dot device by speaking out a phrase to

it, Echo records it and transmits the audio signal to the Alexa Voice Service (AVS), which

is responsible for parsing the audio into a recognizable command that invokes a specific

skill. AVS takes the audio through the process of speech recognition and natural language

processing to get an estimate of the phrase that was spoken to the Echo device (Amazon,

2010a). The figures and screenshots shown in this section are taken from the web-based

Alexa developer console, located in the AVS.

Figure 3. Screenshot from the AVS illustrating the process of invoking the custom Alexa skill
with the words “navigate me”

The custom skill is invoked by interacting with the Echo device by and including the

invocation name in the spoken sentence, along with the desired location. This interaction

process is illustrated in Figure 4.

Figure 4. Screenshot from AVS illustrating how the Alexa skill is invoked.

27

Figure 5. Screenshot of the Alexa developer console MapIntent functionality, showing how the
custom skill can be invoked.

Sample utterances are a list of different types of phrases that activate the custom intent.

This process can be seen as setting up the semantic parsing process of the designed

system: Instructing the skill to classify each type of word found in the sentence into pre-

determined categories. As seen in Figure 5, MapIntent can be activated not only by

mentioning the invocation name ‘navigate me’, but by using similar sentences that

involve the intention of traveling and the desired location (the POI). As per the design

principles of Alexa skills, the designer of the skill has to ensure that each sentence

synonymous with the intent of navigating is captured. There are multiple ways of

describing the desired location. These location-describing words are captured with the

usage of Intent slots, as illustrated in the following Figure 6.

Figure 6. Intent slots that capture the user’s desired location, located in the AVS.

As shown in Figure 6, different intent slots can be designated to capture different types

of location defining information. Slots need to have a specified slot type that defines what

kind of information the slot can capture. The intent slots named addressNumber and

knownLocation utilize the slot types that are pre-made by Amazon. These slot types are

populated with numerous types of values that are generally known to be used in these slot

types. AMAZON.StreetName

28

There are pre-made list types available for hundreds of different categories, such as names

of different animals, titles of books and names of cities in a specific language. The

following Figure 7. lists the type of contents located in AMAZON.StreetName.

Figure 7. Example of contents in the AMAZON.StreetName -Slot type, located in the AVS.

As shown in Figure 7, the contents of the list types are designed to contain all of the

possible examples that fit into the specified category. These skills are designed to provide

various kinds of help to the user: Information about weather and reading out text articles

from various sources. There are also skills that help the user to operate other smart devices,

such as turning on lights, setting the AC and remotely open the garage door. The skills

can be modified to your liking, and users can create custom skills that fit their own needs

(Amazon, n.d.).

In the context of our study, a custom skill was developed for Alexa. This skill instructs

the service to handle incoming intent requests in a specific fashion that is visualized in

Figure 8.

Figure 8. Illustration of how a phrase is captured and processed into the Alexa service.

Upon receiving voice lines that Alexa recognizes as intents related to the navigation skill,

Alexa relays this information to the cloud platform running the code that handles the

confirmation of the location and further relays the confirmed information to the in-car

computer interface.

29

4.2.3 AWS services: Lambda and IoT

AWS (Amazon Web Services) is a subsidiary of Amazon, designed to provide cloud-

computing services and platforms to customers ranging from individuals to large

organizations and companies. The services running in AWS are designed to work

seamlessly with each other and they function on a pay-as-you-go -fashion.

For the context of our study, AWS provides us the platform for monitoring and

customizing the designed speech interface. The Alexa skills service is connected to a

chain of services hosted in the AWS called Lambda and IoT. Figure 9 portrays how each

of these services communicates with each other and achieve the aforementioned

functionality.

Figure 9. Illustration of Amazon services and how they interact with each other

The program running inside the Lambda service provides handling for each custom intent

that has been set up to trigger the lambda function. Figure 10 illustrates the designer view:

a function that has been set up inside the AWS Lambda service.

Figure 10. The designer tab in AWS Lambda provides a general view of the lambda function
and its resources.

The left side of the resources view is reserved for the resources that are designated to

trigger the lambda function. The right side shows the resources that the function has been

permitted to utilize. The services called AWS CloudFormation and DynamoDB are there

to provide scalability for serving multiple users and storing information related to the

service managed by the lambda function. For this study, these two services are used for

30

storing log files of the lambda service for debugging purposes. These logs are made

viewable with the CloudWatch Logs -service. AWS IoT service provides the capability

for the lambda function to trigger a “publish to broker” -command, which is then received

by navigation tool subscribed to this same broker.

As Lambda is a web-service provided by AWS, the configuration of the lambda functions

can be done in multiple ways. Figure 11 illustrates how the intent handling function can

be customized from the web page.

Figure 11. Web-based inline code editor provided by AWS Lambda.

As seen in Figure 11, Lambda accepts functions in a variety of languages by providing

them specified runtime environments. Code doesn’t necessarily have to be entered via the

inline code editor; it can be uploaded to the service directly with a zip file or by utilizing

the uploading services provided by AWS.

By utilizing Lambda, the Alexa skill can now be configured to activate programs that

further extend the functionality of our speech interface: Opening the communication

between the speech interface and the component providing us the navigation capabilities,

the in-car computer interface.

4.2.4 Google Maps APIs: Geocode and Directions

In this study, Google Maps services are being utilized to verify the locations of our

requests and to provide the routing guidance to fulfill the navigation task. The calls made

for the Google Maps API are visualized in the system architecture diagram located in

Appendix B1. Calling the API requires the user to acquire an API key to identify the caller

and authenticate their request. The designed system calls the Google Maps API in two

separate instances, geocoding for verification and directions for route guidance. The

calls along with their parameters are visualized in Figure 12.

Figure 12. The API calls with the parameters explained.

31

The calls illustrated in Figure 12 are received by the Google Maps API service and the

service returns an answer to each call. The contents of this answer can vary from error

codes to the estimated location of the desired POI made in the API call.

4.2.5 Navigation interface: Android-based smart device

In the context of this study, a smart device capable of running an Android-based operating

system is used as the in-vehicle navigation interface. The smart device runs a custom

application that is set up to accept messages from the AWS IoT communication service.

The main functionalities of this android application are explained in more technical detail

in the development section. This section introduces the navigation device along with its

functions and libraries that are utilized within the navigation tool.

Figure 13. illustrates the navigation device and an example of how it would be utilized

within the in-vehicle environment. The navigation interface should be safely observable

from the viewpoint of the driver. The navigation interface can be run from other Android

enabled smart tools available. Our example can be mounted on the dashboard but having

an in-car computer run the navigation software instead is a viable option as well. This

way the application can be on the car computer screen, usually located in the middle of

the dashboard.

Figure 13. Navigation interface in the form of Samsung S6 -smart device, mounted on a stand.

The android-based navigation interface utilizes the MQTT messaging protocol to receive

location requests from the Lambda function activated by the custom Alexa skill. To

enable the communication between these two applications, the AWS IOT service is set

up to provide an endpoint in which these two applications can publish and receive

messages from one to another. Figure 14 illustrates how the android application is given

32

an AWS endpoint as it is assigned as a Thing. Figure 15 shows how the android-based

navigation device connects with the AWS IoT with the assigned endpoint. The

information shown from the connection is displayed in their designated text boxes.

Figure 14. AndroidNavigtor is assigned as a Thing in the AWS IoT

Figure 15. MQTT subscription activity in the navigation interface.

As the navigation interface is activated by receiving a message via the MQTT

subscription, the navigation interface displays a new window where the Google Maps

SDK for Android is utilized to provide a map utility for this research. A visual

representation of the Maps utility is provided in the figures located in chapter 4.4.2.

33

4.3 Designing the system structure

This chapter defines how the overall system structure was designed and how its

components were designed to function with one another. This design process included

the description of the system workflow, accompanied by figures for visual presentation.

4.3.1 General structure

The structure of the system was based around three main components that were deemed

necessary to fulfill the main research challenges. The selected main components were

chosen based on the examination of the existing literature and the component's estimated

ability to provide the desired functionality. These components were Amazon Echo and

Alexa, Amazon Lambda and the Android-based navigation interface. Amazon Echo and

its underlying services were used for providing the required ASR and NLP functionality.

Amazon Lambda services were used to program the retrieved voice commands to verify

the POI and transmit the verified location. The navigation interface was used to retrieve

the verified location from the Lambda function and provide the user with routing guidance

between this location and the current location of the user, thus fulfilling the research

objective.

The architectural structure of the system is visualized in Appendix B1. The system is

designed to run in an in-vehicle environment, but as how the system design requirements

emphasize mobility and embeddedness of the application environment, the entirety of the

system could be run in any kind of environment where verbal communication with the

communication interface is not restricted, and visual contact can be made with the

navigation interface. The user initiates the process by speaking to the Echo device, which

then transmits the received speech as an audio signal towards the Alexa services, where

the speech is processed, parsed and transmitted to the Lambda function in JSON. Lambda

function confirms the location with the Geocoding API and transmits the now verified

location back to the Alexa and towards the navigation device by AWS IoT. The android-

based navigation device retrieves this location information via MQTT and requests

navigation data from the Directions API. The user is given both the verified location

spoke by Alexa and the map with the route from their current location to the requested

POI is shown on the navigation interface.

4.3.2 Network design

Figure 16 illustrates the network setup for the designed voice-based interaction system.

To enable remote connectivity between the Amazon Echo and the navigation interface

with the AWS and API -services, a mobile hotspot utilizing a 4G network was used.

MQTT connection handled the transmission of POI information between the AWS IoT

and the navigation interface. API requests were conducted by using HTTPS GET requests,

which returned us the payload based on the correctness of the request.

34

Figure 16. Illustration of the network setup.

With the illustrated network setup, the designed system can be utilized with more mobility

available. However, network availability has to be ensured for the device to provide a

mobile hotspot.

4.4 Developing the system

In this section, the development process of the complete system is presented. Each of the

components and the necessary main modules and libraries that are relevant to the research

question. All the modules, functions and services that are relevant to proceeding the study

are presented here. Each section is accompanied by visual and textual descriptions of their

contents and functionalities.

4.4.1 Alexa & Lambda

Alexa acts as the command interface between the user and the navigation service. Upon

receiving voice lines (utterances) that Alexa recognizes as intents related to the navigation

skill, Alexa relays this information to the cloud platform running the code that handles

the confirmation of the location and further relays the confirmed information to the in-

car computer interface. After Alexa confirms the processed audio signal to contain speech

that matches the invocation request of the MapIntent -skill, Alexa categorizes the contents

35

of the spoken audio signal into the pre-determined slots and sends this information to the

AWS Lambda. A JSON code example of this is provided in Appendix A1.

The Alexa service categorized the desired POI “Oulun yliopisto” into the slot called

Location, where the slot had been taught to capture pre-defined locations for this study.

The lambda is now activated after receiving the intentRequest. Upon activation, the

lambda function activates an intentHandler based on the received intentRequest. This

activation process is shown in Appendix C1. After calling the correct intentHandler, the

values of the intentRequest are gathered with the handleMapIntentRequest function,

which is presented in Appendix C2.

This snippet of code checks which one of the location slots contains the desired POI. If

the POI is in the Location slot, the addressnumber -slot could also contain information.

If both slots contain values, they are combined as one to generate a viable address. The

retrieved address or location is then placed into the command -variable and that variable

is given as a parameter for the verifying function getConfirmedLocation.

The following lines of code are from the getConfirmedLocation function, which resides

in the program activated by the skill invocation from Alexa. The program is hosted in

AWS lambda. The function getConfirmedLocation is presented in Appendix C3. This

function aims to confirm the validity of the address or location received from the user.

The confirmation process attempts to retrieve a location that corresponds to the user’s

desired POI, which now resides in the location parameter. This is done by calling the

Geocode -API to confirm the validity of the requested location. As we are working with

a function that awaits a response from a remote location, the function is asynchronous.

The interaction procedures between the application and the Google API are visualized in

the following Figure 17. The API request task is described in chapter 4.2.4.

Figure 17. Request and response model example between the client(s) and the API server.

As seen in the code snippets presented in Appendices A2 and A3, making an API request

delivers us a JSON -file that contains the results of our query. These results are dependent

on whether the request was successful, and whether the requested location was valid or

not. The following two JSON code snippets show us the difference between a successful

and a failed geocoding query. A successful query for the Geocoding API verifies that the

36

desired POI retrieved from the user is a valid location. If the API request fails, the desired

POI is not deemed as a valid location and the user is prompted to provide a new location.

After successfully retrieving either one of these JSON files from the Geocoding API, the

contents of this retrieved JSON file are inspected with the remainder of the

handleMapIntentRequest -function, as shown in the appendix C4. In this function, it can

be seen that the results of the JSON retrieval are set into the object called “obj”. This

object is then inspected to see if the request was successful or not. Upon retrieving a

successful request, the user is informed of this by calling the callback function and using

the retrieved address from obj.results[0].formatted_address as the location indicator. Two

separate processes happen here:

Process 1: The user has confirmed the verified address and how it is being projected on

the navigation interface. Alexa receives a JSON file with the instructions to speak out the

phrase located in the response -JSON object, provided in Appendix A4. This process lets

the user of the system know if the request they inquired was successfully handled or not.

Process 2: The coordinates of the confirmed location are sent to the navigation interface

with the use of sendLocation -function, which utilizes the AWS.IotData -library that

handles message publishing between the lambda function and the navigation interface.

The setup- and publishing of the message are visualized in Appendix C5. In this function,

the parameters params contains the pre-defined MQTT topic where the navigation

interface has subscribed to. The payload contains the confirmed location coordinates

coords as its parameters and is preceded by the tag “GOTO:”, which identifies the

message as the one that initiates the routing functionality in the navigation interface.

After these two processes have completed, the lambda function turns itself off and it can

be activated again by re-invoking the MapIntent skill.

4.4.2 Navigation interface

The application handling the navigation interface and running on the android-operated

smart device has been set up to listen to a customer-specific AWS IoT client endpoint

that corresponds to the pre-defined client- and customer identification keys. This endpoint

acts as the MQTT -based message broker that the lambda function publishes to and the

navigation interface subscribes to. All the client identifying information (e.g. Api-key,

client id) are stored in the Gradle build automation tool’s environment configuration file

gradle.properties.

Upon subscribing to the shared messaging topic with the lambda function and

successfully receiving a message, the message contents are carried into the MapsActivity

-class, which handles both routing and displaying the navigation interface. The code that

initiates the MQTT subscription process and starts the message handling function

subscribe are handled by the MainActivity -class as shown in Appendix C6. For now, the

function proceeds upon receiving a message that contains the routing -specific tag

“GOTO:”. After the message has been confirmed to contain a location, the received

message is added as extended data to the soon introduced activity class MapsActivity. The

GoogleMap object starts its initialization process when the MapsActivity is accessed.

First, a private field mMap is declared for the class MapsActivity:

private GoogleMap mMap;

37

The MapsActivity sets a callback object which triggers when the GoogleMap object is

ready to be used:

mapFragment.getMapAsync(this);

The code snippet located in Appendix C7 shows the process that generates the map and

invokes the other associated methods that manipulate the map: Adding the user’s current

location and moving the camera on top of it. The location of the user is retrieved by

utilizing LocationManager to capture the Global Positioning System (GPS) coordinates

in getLocation(). The method datadownload.execute() calls the DataDownload class

method execute(), which initiates the process of retrieving the routing guidance between

the current location and the desired POI retrieved from the MQTT transmission in

MainActivity.

To generate the routing between our current location and the desired POI, the Google

Maps API is used similarly as during the confirmation of the location in the Lambda

function. This time the directions API is called to provide us the routing directions from

the origin= location of this navigation device to the location destination=, that was

prompted by the user and confirmed with the use of lambda function running the geocode

request. This process can be found written in Appendix C8.

The function getDirections takes the API request URL combined with the origin and

destination information as its parameter, named requestURL. The function carries out an

HTTP GET request on the address located in requestURL. The google maps backend

answers to this request by taking the location-based information from the URL and

attempts to provide a response in the form of a JSON file. The JSON file resulting from

the API request is shown in Appendix A5. For a better viewing experience, only one of

the step -objects are left in the code snippet.

A routing plan between our location and the target location has now been successfully

retrieved. For the context of this study, no progression is made any further with this

information, as proving that the system can successfully retrieve and provide routing

instructions was deemed enough to prove the feasibility. However, an example of how

this information can be used to provide route guidance between two places is briefly

introduced in the next section.

The routing data exists within the JSON in two formats: the textual html_instructions

used for speaking out the movement instructions and in the form of encoded polylines. In

this example, the polylines are utilized to “draw” the route between these two locations

into the navigation interface. The code snippet for this is located in Appendix C9. It

visualizes the process of decoding each of the polyline.points -object found in the JSON

file. Every steps object contains a polyline.points -object to be decoded, which are found

in every legs -object, which are found in the routes -object of the delivered JSON file.

The decoded polyline.points object provides us a list of GPS coordinates in the form of

latitude and longitude values. These values dictate the start- and endpoints for all the lines

to be drawn on the map, and they are stored in the lineOptions -object of the

PolylineOptions -class.

38

When all the lines are added to the lineOptions -object, it is used as the parameter for the

method addPolyLine that is called on the GoogleMap object. The results of this process

can be seen in Figure 18, as the red-colored route drawn between two locations on the

map.

Figure 18. The resulting navigational view is displayed in the smart device.

Figure 19. By zooming in, the routing guidance can be viewed more precisely.

As seen in the first view illustrated in Figure 18. The red line represents the routing

information that was parsed from the JSON file. In Figure 19, the route can be seen to

follow general traffic guidelines. The user has now gained the knowledge of how to

traverse between their current location and the desired POI, therefore fulfilling the use

case.

39

5. Evaluation

This section presents how the artifact was evaluated against the requirements that were

generated by merging before the implementation of the system. The evaluation procedure

was carried out by the author throughout each of the design cycles. Requirements

focusing on the system were evaluated as the development process of the complete system

was concluded. Evaluation of the tool was carried out in a similar fashion. The design-

and development process was carried out from February 2019 to November 2019. The

evaluation process was carried out by the author in a laboratory setting, as the focus of

the evaluation was to assess the functionality of the artifact against each requirement.

This was made to prove that the system fulfills the purposes defined in the requirements

section. Evaluation of how this system fulfills these requirements in a real vehicular

environment was not within the scope of this research.

In addition to the evaluation process, a separate demonstration of the specified

requirements was presented during the use-case demonstration showcase as seen in

Figure 20. The demonstration of the use-cases was held alongside the final project

meeting in Eindhoven, the Netherlands in mid-December 2019.

Figure 20. Demonstration of the use-case and its navigation functionality.

Each of the requirements is marked with a description of the said requirement and a status

attribute that discloses if said requirement evaluation was deemed achieved, partially

achieved or not achieved. Each requirement also has an evaluation point which contains

a description of how said requirement had achieved its status.

40

R1: The system must be operable with the tool by using speech

Status: Achieved

Evaluation: The tool was capable of providing operations with the use of speech, as long

as the custom skill was invoked properly.

R2: The system should recognize normal spoken language

Status: Partially achieved

Evaluation: As per the design principles of Alexa, the conversation had to be initiated

with the invoke phrase, limiting the ways to interact with the tool. To fully achieve this

requirement, a list of all possible phrases synonymous with the invoke phrase would need

to be made.

R3: The system must provide navigation functionality

Status: Achieved

Evaluation: The system could successfully verify and provide the desired POI on the

navigation interface.

R4: The system should withstand erroneous situations in speech recognition

Status: Partially achieved

Evaluation: The system could re-prompt the user to provide the desired POI again, but

in instances where a similar-sounding but different POI was found, the re-prompting did

not occur. This is a design-level issue, which stems from the existence of multiple

locations with similar or same names. Prompting the user to choose one of the possible

locations was not within the scope of this study and will be further discussed in the

limitations. However, the Alexa service can be configured to ask for confirmation on all

prompts.

R5: The system should function in a vehicular environment

Status: Achieved

Evaluation: The system could provide its functionality while deployed in a vehicular

environment.

R6: The system should provide route-planning

Status: Achieved

Evaluation: The system could successfully retrieve the direction information from the

current location to the desired POI.

R7: The system should function with multiple users.

Status: Achieved

Evaluation: The tool accepts speech from multiple users.

R8: The system should inform the user of its functionality

Status: Partially achieved

Evaluation: The system gives feedback by voice on how each command is processed: A

successful command makes the system return a spoken phrase “Navigating to {POI}”

while transmitting the information to the navigation interface. Incorrect queries re-prompt

the user to try again. Related to R4, the existence of multiple locations is not informed to

the user of the system.

R9: The tool should understand multiple meanings for the same location

Status: Not achieved

41

Evaluation: The fulfillment of this requirement is dependent on how well the context-

specific skill types (e.g. AMAZON.StreetName) are constructed to include these

synonymous POIs. In the context of this study, the missing POI synonyms were added to

the self-made list of locations. This process should be carried out for all possible locations

and synonyms, which was not realistically possible.

R10: The system should be usable with minimal auditory distractions.

Status: Achieved

Evaluation: The user interacts with the tool by invoking the function and stating the

desired POI.

R11: The system should be usable with a minimal cognitive distraction

Status: Partially achieved

Evaluation: The user expends cognitive resources on interacting with the system in a

similar fashion as it would expend when interacting with a traditional navigation system.

However, re-prompts create additional cognitive distraction as the user has to specify the

desired POI either more clearly or by coming up with synonyms for the POI.

R12: The system should be usable without physical distraction

Status: Partially achieved

Evaluation: The user does not have to physically interact with the system and the

navigation device when it is running. Starting up the system still requires the user to select

the navigation tool from the device. This can be done before starting the driving process,

but in cases where a new desired POI comes up, the application still requires physical

attention to start it.

R13: The system should be usable with minimal visual distraction

Status: Partially achieved

Evaluation: While interacting with the voice-interface was possible without making

visual contact, interaction with the navigation interface still requires visual focus from

the user. This, however, is an issue that persists with any tools and devices that are

introduced to the vehicular environment.

R14: The system should not introduce situations that interfere with the driving task

Status: Partially achieved

Evaluation: The system can mostly be used without it interfering with the driving task.

However, in situations such as the ones in R11, R12, and R13, the driver is required to

expend more focus on the tool than normally.

R15: The system should withstand temporary service breakdowns

Status: Achieved

Evaluation: As of now, the system requires connectivity with the external services only

upon invocation. Temporary disconnects and service breakdowns do not interfere with

successful invocation requests.

R16: The tool should understand English locations

Status: Achieved

Evaluation: The tool is capable of understanding the majority of American and British

locations.

R17: The tool should understand Finnish locations

Status: Partially achieved

42

Evaluation: Unlike American, British and German locations, Amazon does not provide

us a list of Finnish locations, so the task of making the skill capable of recognizing Finnish

locations is left to the developer of the skill. A small list of Finnish locations was made

for this research, to successfully ensure its functionality with said locations.

Table 5. Requirement statuses on a table.

R1

Achieved

R2

Partially

Achieved

R3

Achieved

R4

Partially

Achieved

R5

Achieved

R6

Achieved

R7

Achieved

R8

Partially

Achieved

R9

Not

Achieved

R10

Achieved

R11

Partially

Achieved

R12

Partially

Achieved

R13

Partially

Achieved

R14

Partially

Achieved

R15

Achieved

R16

Achieved

R17

Partially

Achieved

As seen in Table 5, the majority of the requirements were at least partially fulfilled. Based

on the general nature of the requirements and the evaluation process itself, the results

indicate that utilizing a system with similar qualities in the automotive environment

would provide positive results. However, these results would be largely dependent on the

resources invested in building the system to expand the vocabulary of the AVS. The

designed artefact would not fulfill the safety-critical requirements of the automotive

environment as it is, but the evaluation results prove that expending resources towards

this concept would lead to a positive outcome when utilizing modern technologies, such

as using cloud-computing with ASR and NLP processes.

43

6. Discussion

The objective of this research was to design and develop a voice-based interface to be

used in the vehicular environment, to investigate the benefits of the hands-free, voice-

based operation and to improve the safety of driving for everyone involved. The research

problem was approached through the utilization of DSR methodology. The design- and

development process was divided into cycles that were iterated to produce a system

capable to fulfill the desired functionality. The designed artefact was evaluated against

the identified requirements, which resulted in the artefact at least partly fulfilling most of

the set requirements. The requirements that were left unachieved were due to limitations

based on resource- and time capabilities and the strictness of the environmental

requirements. The limitations are discussed in the next section, along with methods of

solving the limitations.

This DSR method was conducted to answer the research questions described in chapter

2. The first research question, how a voice-controlled interface can be designed for the

in-vehicle system? was answered by the design work that was conducted during this

research. The voice-operated infotainment system design started by first choosing the

Amazon Alexa as the user interface for providing the voice-based control functionality.

This decision was based on the possibility to customize the Alexa service to provide us

the required functionality, as mentioned in chapter 3.1. The development process utilized

the Amazon Alexa and the associated Amazon services with the intent to extend the

usability of the customized Alexa skill. The android-based navigation interface and the

APIs from Google were utilized to simulate an infotainment system. The development

process followed the steps described in the development chapter 4: Gather requirements,

design system structure, setup Alexa by constructing the custom skill base along with the

invocations, intents and sample utterances. Next steps were to generate a lambda function

where the functionality of the custom skill is defined, set up an AWS IoT service to

transmit the POI data from lambda to the navigation interface, implement the navigation

interface and its connectivity with the lambda function and the google maps API and

provide the user with a visual representation of the route from its location to the desired

POI.

The answer to the second research question, what are the benefits and challenges of a

voice-controlled interface in the in-vehicle context? was provided by the collaborative

process of examining the literature and evaluating the results of the conducted DSR. The

main benefits of the designed voice interface navigation system identified from the

literature and the DSR process were that the task of physically operating in-vehicle

infotainment systems can be replaced with the voice-based operation. The usage of

Amazon Alexa as the voice-based interface for navigation provides similar improvements

to operating secondary tasks while being busy with the driving task, similar to how the

reviewers experienced in the paper by Gao et al., (2018).

The main challenges of the designed system were related to both the technical properties

of the Alexa and the nature of speech-based communication: To enhance robustness in a

speech-recognition based control system, the underlying service that is handling the ASR

and NLP processes need to be trained to the context of the deployed target environment.

In the case of this study, this means that the developed voice-control system needs to be

trained to function correctly in the in-vehicle environment. Training a foreign language

to the service would require a separate training process to be carried out.

44

As for the nature of speech-based communication, the user of the system has to expend

cognitive resources to initiate a conversation with the developed system: The custom skill

was invoked by speaking out the phrase “Alexa, navigate me to POI”. This kind of

conversation is not considered natural, thus requiring the user of the system to learn how

to invoke the custom skill to achieve the desired functionality.

The development of an in-vehicle dialog system has benefits for the driver both in the

present and the future: It has the capability of reducing driver distraction from the services

currently available through connectivity. In the future, with vehicles being fully

autonomous, the in-vehicle dialog system plays the role of assisting the passengers

occupying the automated vehicle in various tasks (Weng et al., 2016). This thesis provides

insight into the topic of voice-controlled in-vehicle infotainment systems by designing a

system that utilizes the currently available technologies that directly improve the ASR-

and NLP processes in voice-based interaction. This work aims to fill the research gap

in utilizing currently available commercial products in new environments. Cloud

computing can be seen as a direct step forward in the area of improving both ASR and

NLP processes.

While speech-driven communication has been reported to provide improvements in the

vehicular environment by allowing the driver to stay focused on operating the vehicle

while operating secondary tasks by voice, such tasks do still cause driver distraction

(Hansen et al., 2008). Similar issues were observed when evaluating the designed system.

The developed system could enable the task of operating the navigation system solely by

voice, but these tasks still induce distraction to the driver in both auditory- and cognitive

areas of distraction (Hansen et al., 2008)

6.1 Limitations:

APPSTACLE project was one of the main motivators for this study, as the research topic

was selected based on both the interests of the author and the needs of the project itself.

The research was conducted throughout the project. The results gained from the design

and development process provided insight into the use-cases fulfilled by our project team

in Oulu. Another source of motivation for the study was the selection of Amazon Alexa

as the tool that provides the voice-controlling functionality for the designed system. The

ease of integrating the service into other services relevant to the study was a deciding

factor behind utilizing this set of Amazon-based services. A similar study by utilizing

other services and tools available would introduce variability and fill the gaps in the

knowledge base on this subject. In the event of someone willing to expand this study

further, the source code for both the lambda function and the navigation tool is in the

following address: https://github.com/jmouru/voice-interface.

Some factors highly relevant to the vehicular context were not taken into consideration

as heavily as they should have been when developing the requirements. One such factor

is the sensitivity of the processing time in the integrated electrical devices: As the vehicle

is constantly moving, network services cannot be constantly guaranteed on the road. This

means that relying on external processing is not very ideal (Zheng et al, 2017a). Such

requirements were all the efficiency-based requirements that would define a time window

in which the artefact should be able to function. Now the requirements were fulfilled as

long as the artefact provided the required functionality. This is also a viable option for

further extending the research in this topic area. While the designed system could provide

its desired functionality without introducing additional physical or visual distractions,

45

auditory and cognitive distractions are distraction types that seem to persist in the

vehicular environment no matter what kind of improvements are being directed at them.

Solutions to these distraction challenges can surely lessen the amount of distraction so

that they introduce less of it than the currently existing sources, such as listening to the

radio, glancing at the speedometer or just conversing with another passenger.

In the evaluation chapter, requirements such as R4 introduced new-found challenges for

the designed artefact: During the verification of the desired POIs, some POIs defined by

the user would have multiple possible locations that correspond to the desired POI.

During the design- and development process, such situations could not be handled by the

application, which in turn would simply return the first candidate from the list of possible

locations. Solving this issue could be done in future studies: Utilizing the DSR

methodology to design a decision management tool that holds the possible values and

selects one with the support of estimation calculations or prompting the user to choose

one.

To scale the design- and development work to fit into a Master’s thesis, a notable amount

of keywords that indicate the requirement levels of each requirement were modified for

leniency. Using the keyword “should” instead of “must” enables the possibility to

describe the process more thoroughly if the requirement cannot be fulfilled. If the

designed system were to be directly implemented into an actual in-vehicle environment,

the specified requirements would be worded more strictly. During the development

process of this research, Amazon published a new SDK that is specifically made for

integrating Alexa into the in-vehicle environment. This study does not utilize this SDK

but acts as its own system to prove the feasibility of this experiment with the tools and

components provided (Amazon, 2018).

Testing the designed tool in a real-world environment introduces the evaluation process

external interference from things such as internal- and external noises, unstable

connectivity and evaluation settings too difficult to limit properly. If the designed tool

was to be evaluated in such environments, a baseline for functionality should be assessed

beforehand. As the scope of this study was to assess how voice-operated interface can be

integrated into the automotive environment, the results of this study can be now specified

as that baseline for further evaluation in the real automotive environment. Any non-

functional requirements that measure how the system functions in situations other than

the dedicated laboratory setting were not considered to be suitable for evaluation. If this

design was evaluated to be suitable for larger-scale deployment to the real automotive

domain, questions related to scalability, reliability, and rigorousness of the design become

more relevant.

Due to time- and resource limitations, the challenge of overcoming robustness in terms

of noise management was not evaluated during the study. The concept of evaluating this

specific requirement area would require redirecting the scope of this study, which in this

case was providing the voice-interaction into the vehicular environment. To evaluate the

robustness aspect of the design more broadly and systematically, the utilization of in-car

noise-simulating tools would be advised. In the study by Ding et al., (2008), the acoustics

model was trained by adding pre-recorded car noises on the samples used to train the

model. Similarly, the study by Khan et al. (2017) focused on improving voice recognition

in the vehicle by implementing a software-based solution that utilized signal processing

principles while providing students with engineering education. The study introduced

different forms of voices to be eliminated with the use of filters. The study resulted in a

model for an in-car control- and security system, that could be operated by speech

46

recognition. While one could argue that the research topic of voice-controlled in-vehicle

infotainment systems is a subject that has been implemented to vehicles by car

manufacturers (Khan et al., 2017).

The APPSTACLE project itself had the primary task of providing an open-source solution

for the issue of automotive software-intensive systems being developed separately in silos

of each car manufacturer or by original equipment manufacturers (OEM). Even though

the source code for the resulting artefact developed during this study is freely available,

a requirement ensuring that the result is made open source was not defined. Even though

Amazon provides open-source support, this decision was justified by the description of

the use-case in the project: Demonstrating the utilization of third-party applications in the

car-to-cloud platform.

47

7. Conclusion

The purpose of this thesis was to find out if tools and services utilizing modern

technologies can be introduced to the infotainment system and its associated tasks within

the in-vehicle environment. The research was conducted by using DSR methodology to

test if the designed system can provide the estimated improvements as described in

chapter 4.

The system was built by integrating the Amazon Alexa and its services with an android-

based device simulating the infotainment system of a vehicle. The implementation of the

system was based on requirements from both literature and the project environment this

study was conducted in. Designing the system was conducted by following the steps of

defining the system structure, defining the workflows and selecting the components and

services suitable for the research. Finally, the software running the desired functionality

was developed and the built system was evaluated to meet the requirements and fulfill the

research task. Following these steps as described during this DSR, the first research

question can be answered. The resulting system was able to prove that voice-based

communication can be utilized to improve the handling of secondary tasks in the in-

vehicle environment. These improvements and the challenges introduced by the

demanding environment of the vehicle were reported in chapter 6, thus answering the

research question 2.

The results of this research provide support for the process of introducing speech-driven

communication capabilities to the vehicular system. This can be seen useful from both

industrial- and academic viewpoints: The domain of speech-driven communication is still

young and open for improvements and innovations. As the currently available

commercial products already provide the basic means to integrate these two areas of

voice-interaction and the in-vehicle environment, one could only imagine how well a

voice-driven system specifically tailored for this purpose would do. As for the knowledge

base, utilizing the distraction- and secondary task improvements that the voice-based

navigation could provide could be a topic of research in areas other than the in-vehicle

environment.

As for the knowledge base, the improvements in both lessening distraction and enabling

secondary tasks could be an interesting research area to extend into. Within the vehicular

environment, speech-based interaction is still in need of solutions to the challenges

identified from prior literature and the results of the DSR conducted in this study. If the

utilization of Amazon Alexa can help solve these challenges, this study verifies the

feasibility of said utilization.

While the challenges of the in-vehicle environment were proven difficult to solve, the

integration of tools and devices are expected to go through the same process to ensure

safe and secure integration to the safety-critical environment that is the car. Further

studies could extend the usability of the implemented voice-controlled interface to other

services located in the vehicle. Additionally, constructing a setting that simulates the

vehicular environment helps the evaluation process in areas such as the level of distraction

and the robustness of the artefact.

48

8. References

Amazon. (2010a). Alexa Voice Service. Retrieved November 27, 2019 from

https://developer.amazon.com/en-US/alexa/alexa-voice-service.

Amazon. (2010b). What is Alexa? Retrieved November 27, 2019 from

https://developer.amazon.com/en-US/alexa.

Amazon. (2011). About AWS. Retrieved November 14, 2019 from

https://aws.amazon.com/about-aws/.

Amazon. (2018). Amazon Alexa Auto Software Development Kit. Retrieved November

27, 2019 from https://developer.amazon.com/en-US/alexa/alexa-auto/sdk.

Amazon. (n.d.). What are Alexa Skills? Retrieved October 30, 2019 from

https://www.amazon.com/gp/help/customer/display.html?nodeId=GG3RZLAA3R

H83JAA.

ITEA3. (2016a). APPSTACLE - open standard APplication Platform for carS and

TrAnsportation vehiCLEs. Retrieved December 23, 2019 from

https://itea3.org/project/appstacle.html

ITEA3. (2016b) Project profile. Retrieved December 23, 2019 from

https://itea3.org/project/result/download/7028/APPSTACLE%20Project%20leaflet.

pdf

Barros, R. J., & Boucher, C. (1996). ITS navigation software. Proceedings of Position,

Location and Navigation Symposium - PLANS ’96, 422–425.

Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F., &

Törngren, M. (2008). Modelling support for design of safety-critical automotive

embedded systems. In M. D. Harrison & M.-A. Sujan (eds), Computer Safety,

Reliability, and Security (ss. 72–85). Springer.

Chung, H., Park, J., & Lee, S. (2017). Digital forensic approaches for Amazon Alexa

ecosystem. Digital Investigation, 22, S15-S25.

Chung, H., Park, J. G., Lee, Y. K., & Chung, I. (2008). Fast speech recognition to

access a very large list of items on embedded devices. IEEE Transactions on

Consumer Electronics, 54(2), 803–807.

Ding, P., He, L., Yan, X., Zhao, R., & Hao, J. (2008). Robust mandarin speech

recognition in car environments for embedded navigation system. IEEE

Transactions on Consumer Electronics, 54(2), 584–590.

Dix, A. (2004). Human-computer interaction (3rd ed.). Pearson / Prentice Hall.

Eclipse. (2019). About. Retrieved December 23, 2019 from

https://www.eclipse.org/kuksa/

Gao, Y., Pan, Z., Wang, H., & Chen, G. (2018). Alexa, my love: Analyzing reviews of

amazon echo. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing,

49

Advanced Trusted Computing, Scalable Computing Communications, Cloud Big

Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 372–380.

Hacioglu, K., Pradhan, S., Ward, W., Martin, J. H., & Jurafsky, D. (2004). Semantic

role labeling by tagging syntactic chunks. Proceedings of the Eighth Conference on

Computational Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004,

110–113.

Sambells, J. (2010). Decoding polylines from google maps direction API with java.

Retrieved October 24, 2019 from https://jeffreysambells.com/2010/05/27/decoding-

polylines-from-google-maps-direction-api-with-java

Kinsella, B. (2019). Google Assistant Actions Total 4,253 in January 2019, Up 2.5x in

Past Year but 7.5% the Total Number Alexa Skills in U.S. Retrieved November 27,

2019 from https://voicebot.ai/2019/02/15/google-assistant-actions-total-4253-in-

january-2019-up-2-5x-in-past-year-but-7-5-the-total-number-alexa-skills-in-u-s/

Hansen, J. H. L., Kim, W., & Angkititrakul, P. (2008). Advances in human-machine

systems for in-vehicle environments. 2008 Hands-Free Speech Communication and

Microphone Arrays, 128–131.

Hataoka, N., Manabu Araki, Takashi Matsuda, Masayuki Takahashi, Ryoichi Ohtaki, &

Obuchi, Y. (2008). Evaluation of interface and in-car speech—Many undesirable

utterances and sever noisy speech on car navigation application -. 2008 IEEE 10th

Workshop on Multimedia Signal Processing, 956–959.

Herbig, T., Gerl, F., & Minker, W. (2010a). Fast adaptation of speech and speaker

characteristics for enhanced speech recognition in adverse intelligent environments.

2010 Sixth International Conference on Intelligent Environments, 100–105.

Herbig, T., Gerl, F., & Minker, W. (2010b). Simultaneous speech recognition and

speaker identification. 2010 IEEE Spoken Language Technology Workshop, 218–

222.

Hevner, A., & Chatterjee, S. (2010). Introduction to design science research. In Design

Research in Information Systems (pp. 1-8). Springer, Boston, MA.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian

journal of information systems, 19(2), 4.

Hevner, March, Park, & Ram. (2004). Design science in information systems research.

MIS Quarterly, 28(1), 75.

Hong, L., Rosca, J., & Balan, R. (2004). Independent component analysis based single

channel speech enhancement. Proceedings of the 3rd IEEE International

Symposium on Signal Processing and Information Technology (IEEE Cat.

No.03EX795), 522–525.

Hunt, M. J. (2002). An examination of three classes of ASR dialogue systems: PC-

based dictation, in-car systems and automated directory assistance. IEEE Workshop

on Automatic Speech Recognition and Understanding, 2001. ASRU ’01., 455–461.

50

Hüsson, D., & Holland, A. (2019). Intelligent personal assistants in business processes:

Evaluation of a Prototype (V-ip-a). Humanizing Technology for a Sustainable

Society, 1133–1145.

Iivari, Juhani (2007) "A Paradigmatic Analysis of Information Systems As a Design

Science," Scandinavian Journal of Information Systems: Vol. 19 : Iss. 2 , Article 5.

Jeong, M., Kim, B., & Lee, G. G. (2003). Semantic-oriented error correction for spoken

query processing. 2003 IEEE Workshop on Automatic Speech Recognition and

Understanding (IEEE Cat. No.03EX721), 156–161.

Kadambe, S. (2002). In-vehicle acoustic chamber ARMA modeling and classification.

Proceedings of 2002 IEEE 10th Digital Signal Processing Workshop, 2002 and the

2nd Signal Processing Education Workshop, 56–61.

Khan, S., Akmal, H., Ali, I., & Naeem, N. (2017). Efficient and unique learning of in-

car voice control for engineering education. 2017 International Multi-topic

Conference (INMIC), 1–6.

Kirson, A. M. (1995). A compact driver interface for navigation and route guidance.

Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information

Systems Conference Proceedings. 6th International VNIS. A Ride into the Future,

61–66.

Kusuma, J., Rashmi, R., Sandhya, K., Tejashwini, S., & Vidyashree, V. Alexa based

Weather Station. International Journal of Research in Engineering, Science and

Management, 2(5), 406-408.

Moniri, M. M., Feld, M., & Müller, C. (2012). Personalized in-vehicle information

systems: Building an application infrastructure for smart cars in smart spaces. 2012

Eighth International Conference on Intelligent Environments (pp. 379-382). IEEE.

Patel, J., Ball, D. J., & Jones, H. (2008). Factors influencing subjective ranking of driver

distractions. Accident Analysis & Prevention, 40(1), 392–395.

Qian, Y., Liu, J., & Johnson, M. T. (2009). Efficient embedded speech recognition for

very large vocabulary Mandarin car-navigation systems. IEEE Transactions on

Consumer Electronics, 55(3), 1496–1500.

Sandnes, F. E., Huang, Y.-P., & Huang, Y.-M. (2008). An eyes-free in-car user

interface interaction style based on visual and textual mnemonics, chording and

speech. 2008 International Conference on Multimedia and Ubiquitous Engineering

(mue 2008), 342–347.

Shozakai, M., Nakamura, S., & Shikano, K. (1998). Robust speech recognition in car

environments. Proceedings of the 1998 IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), 1,

269–272.

Smith Jr, J. F. (2000). Eyes on the road, hands on the wheel: The OnStar approach to in-

vehicle communication and safety. Vital Speeches of the Day, 67(3), 66.

Suchman, L. A. (1990). What is human-machine interaction. Cognition, computing, and

cooperation, 25-55.

51

Tam, Y. C., Lei, Y., Zheng, J., & Wang, W. (2014). ASR error detection using recurrent

neural network language model and complementary ASR. In 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

(pp. 2312-2316). IEEE.

Weng, F., Angkititrakul, P., Shriberg, E. E., Heck, L., Peters, S., & Hansen, J. H. L.

(2016). Conversational in-vehicle dialog systems: The past, present, and future.

IEEE Signal Processing Magazine, 33(6), 49–60.

Zheng, Y., Liu, Y., & Hansen, J. H. L. (2017a). Navigation-orientated natural spoken

language understanding for intelligent vehicle dialogue. 2017 IEEE Intelligent

Vehicles Symposium (IV), 559–564.

Zheng, Y., Liu, Y., & Hansen, J. H. L. (2017b). Intent detection and semantic parsing

for navigation dialogue language processing. 2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC), 1–6.

52

Appendix A: JSON files used in data exchange

"request": {

 "type": "IntentRequest",

 "requestId": "amzn1.echo-api.request.1234",

 "timestamp": "2019-11-27T21:06:28Z",

 "locale": "en-US",

 "intent": {

 "name": "MapIntent",

 "slots": {

 "addressNumber": {

 "name": "addressNumber",

 "value": null,

 "confirmationStatus": "NONE",

 "encryptedValue": null

 },

 "knownLocation": {

 "name": "knownLocation",

 "value": null,

 "confirmationStatus": "NONE",

 "encryptedValue": null

 },

 "Location": {

 "name": "Location",

 "value": "Oulun yliopisto",

 "confirmationStatus": "NONE",

 "encryptedValue": null

 }

 }

 }

}

Figure A1. Information stored in the Alexa to Lambda transmission.

53

{

results: [

{

address_components: [

{

long_name: "Oulu",

short_name: "Oulu",

types: [

"locality",

"political"

]

},

{

long_name: "Suomi",

short_name: "FI",

types: [

"country",

"political"

]

},

{

long_name: "90014",

short_name: "90014",

types: [

"postal_code"

]

}

],

formatted_address: "Pentti Kaiteran katu 1, 90014

Oulu, Suomi",

geometry: {

location: {

lat: 65.0593177,

lng: 25.4662935

},

location_type: "GEOMETRIC_CENTER",

viewport: {

northeast: {

lat: 65.0606666802915,

lng: 25.4676424802915

},

southwest: {

lat: 65.05796871970848,

lng: 25.4649445197085

}

}

},

place_id: "ChIJs68F7g8tgEYRoeuhCGs_lug",

plus_code: {

compound_code: "3F58+PG Linnanmaa, Oulu,

Suomi",

global_code: "9GQ73F58+PG"

},

types: [

"establishment",

"point_of_interest",

"university"

]

}

],

status: "OK"

}

Figure A2. The contents retrieved on a successful geocoding API request.

54

{

results: [],

status: "ZERO_RESULTS"

}

Figure A3. The contents retrieved on an unsuccessful geocoding API request.

{

 "version": "1.0",

 "sessionAttributes": {},

 "response": {

 "outputSpeech": {

 "type": "PlainText",

 "text": "Giving directions to: Pentti Kaiteran katu 1, 90014

Oulu, Finland"

 },

 "card": {

 "type": "Simple",

 "title": "Location response",

 "content": "Giving directions to: Pentti Kaiteran katu 1, 90014

Oulu, Finland, 65.0593177,25.4662935"

 },

 "reprompt": {

 "outputSpeech": {

 "type": "PlainText",

 "text": "Please provide a location"

 }

 },

 "shouldEndSession": false

 }

}

Figure A4. Speech response from Lambda function back to the Echo speaker.

55

{

 "geocoded_waypoints": [

 {

 "geocoder_status": "OK",

 "place_id": "ChIJqZ5loqUygEYR3mk0gq4HOyM",

 "types": [

 "establishment",

 "point_of_interest",

 "tourist_attraction"

]

 },

 {

 "geocoder_status": "OK",

 "place_id": "ChIJs68F7g8tgEYRoeuhCGs_lug",

 "types": [

 "establishment",

 "point_of_interest",

 "university"

]

 }

],

 "routes": [

 {

 "bounds": {

 "northeast": {

 "lat": 65.0557963,

 "lng": 25.4789578

 },

 "southwest": {

 "lat": 65.0131899,

 "lng": 25.4650866

 }

 },

 "copyrights": "Map data ©2019",

 "legs": [

 {

 "distance": {

 "text": "5.6 km",

 "value": 5630

 },

 "duration": {

 "text": "10 mins",

 "value": 604

 },

 "end_address": "Pentti Kaiteran katu 1, 90570 Oulu,

Finland",

 "end_location": {

 "lat": 65.0556576,

 "lng": 25.4664207

 },

 "start_address": "Kauppatori, 90100 Oulu, Finland",

 "start_location": {

 "lat": 65.0131899,

 "lng": 25.4650866

 },

56

 "steps": [

 {

 "distance": {

 "text": "0.2 km",

 "value": 216

 },

 "duration": {

 "text": "1 min",

 "value": 73

 },

 "end_location": {

 "lat": 65.0148396,

 "lng": 25.4675274

 },

 "html_instructions": "Head northeast on

Rantakatu toward

Packhusgatan/<wbr/>Pakkahuoneenkatu",

 "polyline": {

 "points": "m{xkKyslzCwAcC{@yAGGMUYa@iB_D[i@"

 },

 "start_location": {

 "lat": 65.0131899,

 "lng": 25.4650866

 },

 "travel_mode": "DRIVING"

 }

],

 "traffic_speed_entry": [],

 "via_waypoint": []

 }

],

 "overview_polyline": {

 "points":

"m{xkKyslzCiD{FcCaE[i@^sBb@iCwA}B_A{Ao@eAq@wAUWG?KFq@`BMPgC|CkBvBaAx@{

@\\wBz@m@Ps@FgACuFc@sCUgAM}@Kc@A{@Cw@Ga@Ga@[iAeAcCcBqIyGy@a@YMe@GuAZkC

dCiBnCaBjCeAzAcAfAcBfAqA^_AJO?cFMqPoAeBQaGa@eBQgB_@eB{@i@e@uB{BaAyA}@g

BkBsFwBoIWs@m@gBYy@a@}@sB_EcBqCMQMQ_CeCUSwA{AuAkAiAi@yAg@G?IDoAUw@MmAI

cAAuCXQDYDyAVGCmBZkDt@yFhBiD~@KNoAb@a@LqD~@]JMIuBh@kDb@_BB_BUKCAb@GzAE

dAGzCCnCBrE@h@@~@BvBLvFNxOD^B|FW@"

 },

 "summary": "Route 8156 and Alakyläntie",

 "warnings": [],

 "waypoint_order": []

 }

],

 "status": "OK"

 }

Figure A5. The contents of a successful Directions API request.

57

Appendix B: System diagrams

Figure B1. System Architecture diagram

58

Appendix C: System source code

function onIntent(intentRequest, session, callback) {

 var intent = intentRequest.intent

 var intentName = intentRequest.intent.name;

 if (intentName == "MapIntent") {

 handleMapIntentRequest(intent,session,callback);

 }

Figure C1. Directing the intent to its specified handler.

if (intent.slots.knownLocation.value === null ||

intent.slots.knownLocation.value === undefined) {

 if (intent.slots.Location.value === null ||

intent.slots.Location.value === undefined) {

 speechOutput = "Please provide a location";

 callback(session.attributes, buildSpeechletResponse(title,

speechOutput, rText,speechOutput, false))

 } else {

 command = intent.slots.Location.value.toLowerCase();

 //If slots.Location has value, addressumber could have

value

 //addressNumber slot, which we check and try to apply if

possible

 if(intent.slots.addressNumber.value !== undefined ||

intent.slots.addressNumber.value !== null) {

 command = command + " "+

intent.slots.addressNumber.value;

 }

 }

 } else {

 command = intent.slots.knownLocation.value.toLowerCase();

 }

var initPromise = getConfirmedLocation(command);

Figure C2. Handling the MapIntent -request and retrieving its associated values.

59

async function getConfirmedLocation(location) {

 return new Promise((resolve,reject) => {

 var escapedLocation = require('querystring').escape(location);

 const queryString = ("/maps/api/geocode/json?address=" +

escapedLocation + "&key={API_KEY}");

 const options = {

 hostname: "maps.googleapis.com",

 path: queryString,

 port: 443,

 method: 'GET',

 json: true

 };

 https.get(options, function (res) {

 var json = '';

 res.on('data', function (chunk) {

 json += chunk;

 });

 res.on('end', function () {

 if (res.statusCode === 200) {

 try {

 var data = JSON.parse(json);

 console.log(data);

 // data is available here:

 resolve(data);

 } catch (e) {

 console.log('Error parsing JSON!');

 }

 } else {

 console.log('Status:', res.statusCode);

 }

 });

 }).on('error', function (err) {

 console.log('Error:', err);

 });

 });

}

Figure C3. Location confirmation handled by calling the Google geocoding API.

var initPromise = getConfirmedLocation(command);

 initPromise.then(function(result) {

 var obj = result;

 var coords;

 if (obj !== null) {

 if (obj.status == "ZERO_RESULTS") {

 speechOutput = "I couldnt find a location for " + command;

 callback(session.attributes, buildSpeechletResponse(title,

speechOutput, rText,speechOutput, false));

 }

 else {

 speechOutput = "Giving directions to: " +

obj.results[0].formatted_address;

 coords = (obj.results[0].geometry.location.lat + "," +

obj.results[0].geometry.location.lng);

 callback(session.attributes, buildSpeechletResponse(title,

speechOutput,rText,(speechOutput + ", " + coords), false));

 sendLocation(coords);

 }

 }

Figure C4. Handling the proceeding based on the contents of the JSON file.

60

var iotdata = new AWS.IotData({endpoint:process.env.ENDPOINT});

function sendLocation(coords) {

 var params = {

 topic: "topic/loc1",

 payload: "GOTO: "+ coords,

 qos: 0

 };

 return iotdata.publish(params, function(err, data){

 if(err){

 console.log("Error occured : ",err);

 }

Figure C5. Setting up the message transmission function.

private static final String IOT_ENDPOINT = BuildConfig.ENDPOINT

mqttManager = new AWSIotMqttManager({client-id}, IOT_ENDPOINT);

public void subscribe(final View view) {

final Intent mapIntent = new Intent(this, MapsActivity.class);

final String topic = txtSubscribe.getText().toString();

try {

mqttManager.subscribeToTopic(topic, AWSIotMqttQos.QOS0,

 new AWSIotMqttNewMessageCallback() {

@Override

 public void onMessageArrived(final String topic, final

byte[] data) {

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 try {

 String message = new String(data, "UTF-8");

 tvLastMessage.setText(message);

 if (message.contains("GOTO:")) {

 String retrievedLocation =

message.substring(message.indexOf("GOTO:") + 4, message.length());

 if(!message.equals(currentLocation)){

mapIntent.putExtra("LOCATION_DATA", retrievedLocation);

 currentLocation = message;

startActivity(mapIntent);

Figure C6. Subscription to the MQTT broker and handling the received messages.

location = getLocation();

lat = location.getLatitude();

lng = location.getLongitude();

mMap = googleMap;

dataDownload.execute();

LatLng curLoc = new LatLng(lat, lng);

if (mMarkerPoints.size() > 1){

 mMarkerPoints.clear();

 mMap.clear();

}

mMarkerPoints.add(curLoc);

mMap.addMarker(new MarkerOptions().position(curLoc).title("Current

location"));

mMap.moveCamera(CameraUpdateFactory.newLatLng(curLoc));

mMap.animateCamera(CameraUpdateFactory.newLatLngZoom(curLoc,12.0f));

Figure C7. Map generation in MapsActivity and assigning the current location.

61

try {

response =

getDirections("https://maps.googleapis.com/maps/api/directions/json?or

igin="+ lat + "," + lng + "&destination="+location+"&key="+APIKEY);

 return new String[]{response};

} catch (Exception e) {

return new String[]{"error"};

public String getDirections(String requestURL) throws IOException {

 String data = "";

 InputStream iStream = null;

 HttpURLConnection urlConnection = null;

 try {

 URL url = new URL(requestURL);

 urlConnection = (HttpURLConnection) url.openConnection();

 urlConnection.setReadTimeout(3000);

 urlConnection.setConnectTimeout(3000);

 urlConnection.setRequestMethod("GET"); //http GET

 urlConnection.setUseCaches(false);

 urlConnection.setAllowUserInteraction(false);

 urlConnection.setRequestProperty("Content-Type",

"application/x-www-form-urlencoded");

 int responseCode = urlConnection.getResponseCode();

 if (responseCode == HttpURLConnection.HTTP_OK) {

 // Reading data from url

 iStream = urlConnection.getInputStream();

 BufferedReader br = new BufferedReader(new

InputStreamReader(iStream));

 StringBuffer sb = new StringBuffer();

 String line = "";

 while ((line = br.readLine()) != null) {

 sb.append(line);

 }

 data = sb.toString();

 br.close();

 }else {

 data = "";

 Log.d("Response", "Responsecode was " + responseCode);

 }

 } catch (Exception e) {

 Log.d("Exception", e.toString());

 } finally {

 iStream.close();

 urlConnection.disconnect();

 }

 return data;

 }

Figure C8. Requesting the routing information with the getDirections -function

private List<LatLng> decodePoly(String encoded) {

 List<LatLng> poly = new ArrayList<>();

 int index = 0, len = encoded.length();

 int lat = 0, lng = 0;

 while (index < len) {

 int b, shift = 0, result = 0;

 do {

 b = encoded.charAt(index++) - 63;

 result |= (b & 0x1f) << shift;

 shift += 5;

 } while (b >= 0x20);

62

 int dlat = ((result & 1) != 0 ? ~(result >> 1) :

(result >> 1));

 lat += dlat;

 shift = 0;

 result = 0;

 do {

 b = encoded.charAt(index++) - 63;

 result |= (b & 0x1f) << shift;

 shift += 5;

 } while (b >= 0x20);

 int dlng = ((result & 1) != 0 ? ~(result >> 1) :

(result >> 1));

 lng += dlng;

 LatLng p = new LatLng((((double) lat / 1E5)),

 (((double) lng / 1E5)));

 poly.add(p);

 }

 return poly;

Figure C9. The function that decodes the encoded polylines (Sambells, 2010).

