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ABSTRACT

Insider threat is one of the most significant security risks for
organizations, hence insider threat detection is an important task.
Anomaly detection is a one approach to insider threat detection.
Anomaly detection techniques can be categorized into three categories
with respect to how much labelled data is needed: unsupervised, semi-
supervised and supervised.
Obtaining accurate labels of all kinds of incidents for supervised

learning is often expensive and impractical. Unsupervised methods
do not require labelled data, but they have a high false positive rate
because they operate on the assumption that anomalies are rarer than
nominals. This can be mitigated by introducing feedback, known as
expert-feedback or active learning. This allows the analyst to label a
subset of the data. Another problem is the fact that models often are
not interpretable, thus it is unclear why the model decided that a data
instance is an anomaly.
This thesis presents a literature review of insider threat

detection, unsupervised and semi-supervised anomaly detection. The
performance of various unsupervised anomaly detectors are evaluated.
Knowledge is introduced into the system by using state-of-the-art
feedback technique for ensembles, known as active anomaly detection,
which is incorporated into the anomaly detector, known as isolation
forest. Additionally, to improve interpretability techniques of creating
rule-based descriptions for the isolation forest are evaluated.
Experiments were performed on CMU-CERT dataset, which is the

only publicly available insider threat dataset with logon, removable
device and HTTP log data. Models use usage count and session-based
features that are computed for users on every day. The results show
that active anomaly detection helps in ranking true positives higher on
the list, lowering the amount of data analysts have to analyse. Results
also show that both compact description and Bayesian rulesets have the
potential to be used in generating decision-rules that aid in analysing
incidents; however, these rules are not correct in every instance.

Keywords: anomaly detection, unsupervised, semi-supervised,
isolation forest, IForest, IF, one-class support vector machine, OC-
SVM, local outlier factor, LOF, ensemble, active learning, active
anomaly detection, AAD, compact descriptions, Bayesian rulesets
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TIIVISTELMÄ

Sisäpiirinuhat ovat yksi vakavimmista riskeistä organisaatioille. Tästä
syystä sisäpiiriuhkien havaitseminen on tärkeää. Sisäpiiriuhkia voidaan
havaita poikkeamien havaitsemismenetelmillä. Nämä menetelmät
voidaan luokitella kolmeen oppimisluokkaan saatavilla olevan
tietomäärän perusteella: ohjaamaton, puoli-ohjatta ja ohjattu.
Täysin oikein merkatun tiedon saaminen ohjattua oppimista

varten voi olla hyvin kallista ja epäkäytännöllistä. Ohjaamattomat
oppimismenetelmät eivät vaadi merkattua tietoa, mutta väärien
positiivisten osuus on suurempi, koska nämä menetelmät perustuvat
oletukseen että poikkeamat ovat harvinaisempia kuin normaalit
tapaukset. Väärien positiivisten osuutta voidaan pienentää ottamalla
käyttöön palaute, jolloin analyytikko voi merkata osan datasta.
Tässä opinnäytetyössä tutustutaan ensin sisäpiiriuhkien

havaitsemiseen, mitä tutkimuksia on tehty ja ohjaamattomaan ja
puoli-ohjattuun poikkeamien havaitsemiseen. Muutamien lupaavien
ohjaamattomien poikkeamatunnistimien toimintakyky arvioidaan.
Järjestelmään lisätään tietoisuutta havaitsemisongelmasta käyttämällä
urauurtavaa aktiivista poikkeamahavainta (engl. active anomaly
detection) -palautemetelmää, joka on tehty havaitsinjoukoille
(engl. ensembles). Tätä arvioidaan Isolation Forest -havaitsimen
kanssa. Lisäksi, jotta analytiikko pystyisi paremmin käsittelemään
havainnot, tässä työssä myös arvioidaan sääntöpohjaisten kuvausten
luontimenetelmä Isolation Forest -havaitsimelle. Kokeilut suoritettiin
käyttäen julkista CMU-CERT:in aineistoa, joka on ainoa julkinen
aineisto, missä on muun muuassa kirjautumis-, USB-laite- ja HTTP-
tapahtumia.
Mallit käyttävät käyttöluku- ja istuntopohjaisia piirteitä, jotka

luodaan jokaista käyttäjää ja päivää kohti. Tuloksien perusteella
aktiivinen poikkeamahavainta auttaa epäilyttävämpien tapahtumien
sijoittamisessa listan kärkeen vähentäen tiedon määrä, jonka
analyytikon tarvitsee tutkia. Kompaktikuvakset (engl. compact
descriptions)- ja Bayesian sääntöjoukko -menetelmät pystyvät luomaan
sääntöjä, jotka kuvaavat minkä takia tapahtuma on epäilyttävä, mutta
nämä säännöt eivät aina ole oikein.

Avainsanat: ohjaamaton, puoli-ohjattu, eristysmetsä, yksiluokkainen
tukivektorikone, havaitsinjoukko, aktiivinen oppiminen, aktiivinen
poikkeamahavainta, kompaktikuvaukset, Bayesian sääntöjoukko
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1. INTRODUCTION

Insider threat is a security risk that originates within the target organization.
Insiders have knowledge about the organization’s computers, network and
policies, and they have authorization. For example, insiders may be current
or former employees, or contractors. Insider threats manifest primarily as
intellectual property theft, information technology sabotage, fraud and espionage.
[1]
The Global Economic Crime and Fraud Survey [2] conducted by PwC in 2018

found that 53 % of US companies had been affected by fraud during the previous
24 months. The share of frauds committed by insiders rose from 29 % in 2016 to
43 % in 2018. In the global survey conducted by Vormetric, Inc. in 2015, only
11 % of organizations reported that they are safe from insider threats [3].
The 2019 Data Breach Investigation Report [4] conducted by Verizon found

that 34 % of data breaches involve internal actors. This share was the largest in
the healthcare industry, where most (59 %) breaches are associated with internal
actors.
Threats can be detected using signature-based and anomaly-based tools.

Signature-based tools require the development of signatures for specific threats;
hence, they cannot adapt to unknown threats. For the detection of such threats,
an anomaly-based approach is required.
Anomaly detection can be performed using supervised, semi-supervised, or

unsupervised techniques. Since supervised techniques require labelling large
amounts of data, which is often infeasible in the real-world environment the focus
here is on semi-supervised and unsupervised techniques. Unsupervised techniques
have high false positive rate because they tend to detect all abnormal events, and
this may not completely align with what the security analyst is interested in. To
achieve lower false positive rate, the security analyst should be able to improve
the anomaly detector by providing feedback. This is known as active learning,
and it can be achieved using active anomaly detection (AAD). The objective of
this thesis is to evaluate this technique.
Additionally, it is crucial for the system decisions to be interpretable by the

analyst, so that incidents can be investigated more effectively. The system should
be able to display the most prominent evidence to the analyst so that they can
respond accordingly. For this reason, another objective of this thesis is to evaluate
recently developed description methods.
In section 2, insider threat detection, related systems and research are

introduced. Anomaly detection and unsupervised anomaly detection techniques
are then introduced. Common unsupervised anomaly detection methods and
isolation forest (IForest) with AAD are evaluated using the public insider threat
dataset by CMU-CERT. Finally, compact description (CD) and Bayesian rule
sets (BR), which are rule-based description methods, are evaluated for IForest.
These description methods may allow an analyst to analyse potential incidents
more effectively.
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2. INSIDER THREAT DETECTION

The literature offers several similar definitions of insider threat. Security
information and event management (SIEM) software and intrusion detection
system (IDS) are not specifically intended for insider threat detection, but they
can be used for this purpose. Several studies of insider threat detection have been
conducted in the literature, and they are introduced in the following subsections.

2.1. Definition of insider threat

Brackney and Anderson [5] define an insider as “an already trusted person with
access to sensitive information and information systems.” Pfleeger et al. [6] define
an insider as “a person with legitimate access to an organization’s computers and
networks.” According to Spitzner [7], an insider has access to critical information,
knows the structure of the organization, and is most likely seeking information,
rather than information technology systems. The access to the information may
be authorized; it is the use of the information that comprises the threat. Greitzer
and Frincke [8] define an insider as “an individual currently or at one time
authorized to access an organization’s information system, data, or network.”
The CMU-CERT Insider Threat Center [1] define malicious insider and

unintentionl insider threat separately. They define malicious insider as “a current
or former employee, contractor, or business partner” who “has or had authorized
access to an organization’s network, system, or data” and “has intentionally
exceeded or intentionally used that access in a manner that negatively affected the
confidentiality, integrity, availability, or physical well-being of the organization’s
information or information systems or workforce.”
In [9], the CMU-CERT define an unintentional insider threat as a “a current

or former employee, contractor, or business partner” who “through action or
inaction without malicious intent causes harm or substantially increases the
probability of future serious harm to the confidentiality, integrity, or availability
of the organization’s information or information system.”
Greitzer and Frincke [8] define insider threat as “harmful acts that trusted

insiders might carry out; for example, something that causes harm to an
organization, or an unauthorized act that benefits the individual.” Pfleeger et al.
[6] define insider threat as “an insider’s action that puts at risk an organization’s
data, processes, or resources in a disruptive or unwelcome way.” Hunker and
Probst [10] define insider threat as “an individual with privileges who misuses
them or whose access results in misuse.”
In this work, the distinction between malicious and unintentional insider threat

is unnecessary. Insider threat is considered to be a harmful action by a person
that has or had authorized access to the organization’s network, systems, or data.
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Table 1. Potential data sources for insider threat detection

Data source Description
Logon logs Analyse when employees log on and to which systems.
Physical access logs Identify unusual work hours or correlate with other sources, such as

logon activity.
File access logs Identify unusual file access or access to confidential data.
Email logs Identify relevant communications, such as communication with

competitors or phishing.
HTTP/DNS logs Analyse what websites employees browse.
Network monitoring logs Identify unusual traffic patterns, such as insider exfiltrating data.

2.2. Security information and event management

Event correlation is the process of examining events to find relationships between
them. In general, this can help in determining the underlying cause of a problem.
Event correlation is therefore an important technique in insider threat detection
and can be achieved using SIEM solutions.
SIEMs generally have following capabilities [11,12]:

1. Data aggregation: Aggregates data across many sources.

2. Correlation: Integrates different data sources through various correlation
techniques, to find useful information.

3. Alerting: Provides automatic analysis of correlated events and produces
alerts.

4. Presentation: Produces informational charts using event information and
assists in the detection of patterns and the identification of activity that
deviates from standard patterns.

5. Compliance: Applications can be used to automate the gathering of
compliance data, producing reports that can be adapted to existing security,
governance and auditing processes.

6. Retention: Employs long-term storage of historical data for correlation
over time, and for forensics and compliance reasons.

Additionally, recent SIEMs also have to some extent, the capability of analysing
user and entity behaviour using machine learning [13, 14]. Insider threat
monitoring can incorporate information from multiple data sources, such as logon
logs, email logs, file access logs, physical access logs, and web browsing logs (Table
1). For a more comprehensive list of possible data sources, see [1] by CMU-CERT.

2.3. Intrusion detection system

An IDS is either a standalone system or a component of an SIEM system. It
detects unauthorized behaviour in a system or network. Intrusion detection
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systems are mainly designed to detect external actors, but because many technical
actions overlap with those of internal actors, an IDS can be useful in insider threat
detection.
Satria et al. [15] define an IDS as a collection of tools, methods and resources

that assist in the detection, assessment and reporting of unauthorized access.
According to Kemmerer and Vigna [16], an IDS cannot detect intrusions itself,
but can detect evidence of them as they are ongoing or after they have occurred.
These systems can collect information by monitoring network traffic or by

analysing events from information systems; for example, by examining log files
or by looking for policy violations or rare events [17].
Intrusion detection systems are commonly classified based on the data source

[17]:

1. Network-based IDS (NIDS): These IDSes detect intrusions in the
network data. Intrusion usually manifest as irregular patterns. NIDS
analyses and models traffic to identify regular traffic and suspicious activity.
These IDSes are capable of gathering and analysing entire packets, including
payload, internet protocol addresses and ports. However, a NIDS may have
some difficulties processing all network traffic during periods of high volume
traffic, potentially leading to the failure to recognize an attack. Another
disadvantage is that in the case of encrypted traffic, a NIDS may not be
able to analyse the data.

2. Host-based IDS (HIDS): These IDSes operate on a single host. They
focus on identifying local suspicious behaviour, such as attacks against the
host and attacks perpetrated by the user on the host. They have been used
for various tasks, such as monitoring system calls, code analysis, detection
of buffer overflows, privilege misuse and analysis of system logs. They
are classified as agent-based systems, because they require installation of
software on the host. Host-based IDSes are vital, because they can detect
attacks that NIDS cannot, such as those using encrypted traffic.

By the detection technique, IDSes are classified as anomaly-based, signature-
based (rule-based) or hybrid. Anomaly-based techniques are also referred to as
profile-based [17]. In 1987, Denning [18] suggested that security violations could
be detected by looking for anomalies in audit records.
In anomaly-based techniques, the operator does not have to configure the

system to detect threats; it automatically learns to detect them. In this technique,
a profile is created that describes the nominal behaviour for a target. The target
may be a system, a user, or some other resource or group of resources. The profile
is used as a baseline, to which the observed behaviour is compared. The profile is
created based on data gathered over a defined period; for example, a day, a week
or a month. This period is called the training period. If the profile is not updated
automatically it is referred to as static; if the profile is updated when new events
are observed, it is referred to as dynamic. The disadvantage of a static profile
is that it cannot adapt to changing behaviour that is considered nominal in the
environment. [19]
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Dynamic profiles also have disadvantages [17, 20]. These profiles may adapt
to consider malicious behaviour as nominal if the behaviour changes gradually,
staying below the threshold of detection. Such a response is called a false negative.
As the system does not have any preconceptions of how threats manifest, it
can detect both known and unknown threats. For this reason, anomaly-based
detection is a popular technique in IDS systems.
Another benefit of this technique is that it can detect internal threats. For

example, a threat is detected if a malicious actor steals an account and exhibits
behaviour that is outside the nominal behaviour of the legitimate account holder.
As profiles are different for different targets, it is not easy for an intruder to know
what kind of behaviour is outside the norm of the target. [21]
The disadvantage of this technique is that it detects all anomalies, but not

all anomalies are unauthorized or malicious. Building accurate profiles can be
difficult because the system and user behaviour can be complex. For example,
maintenance or backup operations may not be included in the data used in the
training phase, and so they would trigger an alert. For this reason, anomaly-
based techniques can result in a high false positive rate (FPR), especially when
the behaviour of users and systems varies significantly. [19]
Signature-based detectors use well-defined signatures and rules. When the

system detects a threat that matches a signature defined in its database, it
triggers an alert. This technique is highly accurate and has a low FPR. The
major disadvantage is that, if a threat does not have a signature in the database
the system cannot detect it. Hybrid systems implement combination of anomaly-
based and signature-based techniques. [17]

2.4. Related research

This section reviews studies of anomaly-based insider threat detection.

Table 2. Related research on anomaly-based insider threat detection

Paper Detection techniques Granularity Feedback Interpretability
[22] Clustering, Markov Model, and rarest change model Day
[23] Hidden Markov Model, Graph Analysis, GMM, many others Day
[24] IForest, Random Forest Day
[25] PCA Day
[26] IForest -
[27] CDF, mean and variance, IForest Day
[28] Ensembles of individual detectors, IForest, GMM, many others Day
[29] LSTM Day
[30] CNN, LSTM Day
[31] PCA, IForest Day
[32] IForest, Graph Analysis -
[33] Deep Autoencoder Day
[34] Deep Autoencoder Day
[35] Logistic Regression, Random Forest, Artificial Neural Network Day, week, session
[36] LSTM Day
[37] LSTM Session

For each study, Table 2 shows which detection techniques and granularities
were evaluated and whether feedback or interpretability was addressed. A lot of
insider threat detection research [22–24, 28, 38] has been supported by DARPA
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through the Anomaly Detection at Multiple Scales programme. This programme
aims to detect anomalies in massive datasets to detect insider threats.
Goldberg et al. [27, 28] and Senator et al. [23] used detection system called

PRODIGAL. They used detectors such as IForest, Gaussian mixture model and
hidden Markov model.
Gavai et al. [24] detected anomalous behaviour using IForest and features

extracted from social data including email communication patterns and online
activity, such as web browsing. Brdiczka et al. [38] combined structural anomaly
detection in social networks and psychological profiling of individuals. Their
structural anomaly detection consisted of graph analysis, dynamic tracking
and machine learning. Goldberg et al. [27] proposed methods that explain
and aggregate user-days. User-days are one day time periods that include
monitored activity for a particular user on that day. These methods involve
the temporal aggregation of user-days to find users with multiple high-ranking
days. Qiujian et al. [31] partitioned the day into four periods and used principal
component analysis to select significant features as a pre-processing step before
the application of IForest.
Sun et al. [26] used IForest and applied it successfully to an enterprise

environment. In their approach, if the score was above a specific threshold it was
considered anomalous, and the user was flagged. Gamachchi et al. [32] introduced
a framework for insider threat detection based on graphical analysis and various
anomaly detection approaches. In the framework, they used IForest because it
has linear time complexity and low memory requirements.
Recently, many approaches based on deep learning have been proposed for

insider threat detection. For example, Tuor et al. [29] presented unsupervised
learning approach to detect anomalies from logs in real time. They developed
two variants of their system: one uses a deep neural network and the another
uses long short-term memory neural network (LSTM).
The deep learning approach proposed by Yuan et al. [30] uses LSTM to create

abstracted temporal features for user behaviour from user action sequences.
While the approach of Tuor et al. [29] can miss anomalous behaviour that occurs
within one day, the model proposed by Yuan et al. is trained using user-action
sequences and can therefore, detect anomalous behaviour that occurs within one
day. Similarly, Lu et al. [36] proposed an LSTM-based approach, in which the
parameters were tuned for best performance. The system has higher recall than
principal component analysis or support-vector machine (SVM) methods.
Liu et al. [34] proposed a deep autoencoder-based system. Each autoencoder

was trained on a subset of the data from one data source, which represents
user’s nominal behaviour. They created four detectors, one for each data
source (logon/logoff logs, removable device logs, HTTP logs, file logs). Using
the reconstruction error, top-N recommendation algorithm was applied to each
detector. The result was four dimensional normalized top anomalous vectors.
These feature vectors are standardized with respect to the user and the averaged
reconstruction loss is used as maliciousness score. The top-N algorithm was used
again to report user-days with the largest maliciousness scores. Autoencoders
were optimized for audit data empirically. Both Yuan et al. [30] and Liu et
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al. [34] chose approaches based on deep learning to mitigate the amount of feature
engineering required.
Chattopadhyay et al. [33] proposed a supervised deep autoencoder-based

approach. They computed statistical measures from the time series of each feature
to preserve the variation of user behaviour. For this, they used a sliding time
window. These statistical feature vectors were concatenated into a single feature
vector.
Legg et al. [25] proposed an unsupervised system, which allows the analyst to

provide feedback. Le et al. [35] proposed supervised machine learning methods
and that incorporates feedback. For detecting cyber-attacks, Siddiqui et al.
[39] developed a system that uses IForest for attack detection. It provides
explanations of detected anomalies and improves detection using feedback.
Most approaches report insiders using a granularity of one day [23, 24, 27, 29,

30, 34–36, 38]. This generally means that one feature vector is constructed for
each entity (user or role) per day. Only a few approaches have used week [35]
or session [35, 37] granularities or partitioned the day into time periods [36, 37],
such as morning, midday, evening and night. Such a partitioning is based on the
notion that users behave differently during these periods. Liu et al. [34] chose to
partition day into hours.
Most approaches use frequency features (specifically the number of actions over

a period, such as number of logons, number of computers used and number of
emails sent) and statistical features (e.g., time of the first and last logon and mean
and standard deviation of transmitted data size) [22–25,27,28,31,33,33,35].
Additionally, [23,27] use a ratio of features computed from other features. [25,

33,35] also used session features, such as session duration.
Some papers addressed interpretability in the context of insider threat detection

by using a modified IForest algorithm [24], visualization tools [25], single feature
anomaly scores [23,27,29,34] or drop-out explanations [27].
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3. ANOMALY DETECTION

Anomalies are considered to be patterns in data that deviate from the expected.
Depending on the context, anomalies are also known as outliers, discordant
observations, exceptions, aberrations, surprises, peculiarities and contaminants
[40].
Hawkins [41] defined an anomaly (outlier) as follows: “An outlier is an

observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism.” Anomaly detection
techniques have been widely used in various domains, such as intrusion detection
[42], fraud detection [43] and fault detection [44].
There are several challenges in anomaly detection [40]. As mentioned

previously, in the context of intrusion detection, in which the detected anomalies
are caused by malicious behaviour, the adversaries tend to adapt their behaviour
to make it appear nominal. The notion of nominal behaviour may evolve
in the environment and the current notion of nominal behaviour may not be
representative of nominal behaviour in the future. This is known as concept
drift [45].
Moreover, the lack of availability of labelled data for the training and validation

of models is a major issue. Furthermore, there is no such thing as the best the
anomaly detector across all domains. The performance of the detector depends on
how well the detector’s definition of an anomaly matches the analyst’s conception
of an “interesting anomaly” [46].
Because of these challenges anomaly detection is difficult in general form. Most

existing techniques focus on solving a specific formulation of the problem. Usually,
the factors are defined by the domain in which anomalies are detected. [40]
Additionally, computational power, memory and real-time constraints should

be considered when determining which techniques can be used in the real-world.
Anomaly detection can be performed offline (also known as batch mode) if all data
instances are available. Most anomaly detection techniques operate in the offline
mode. In the online mode, data instances often arrive in real-time sequentially
in data streams. [45,47]

3.1. Types of anomaly detection techniques

Anomaly detection techniques use a supervised, semi-supervised, or unsupervised
approach. Supervised approaches have higher detection rates and lower FPRs
than unsupervised approaches; however, unsupervised approaches can detect
unknown behaviour, but supervised approaches cannot. Obtaining accurate and
representative data of all types of behaviours is often expensive. Labelling is
usually performed by an expert. Obtaining data of anomalous behaviour is more
difficult than obtaining data of nominal behaviour. Often, the data are dynamic
in nature; for instance, new anomalies may arise and old anomalies may no longer
be considered anomalous. [48]
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In a supervised approach, the dataset is assumed to be fully and correctly
labelled. In a semi-supervised approach, the training data consists only of only
nominal data. [49]
Unsupervised approaches do not require training data; therefore, such

approaches are the most widely applicable. They assume that nominal data
instances are more common than anomalies [40]. If this assumption is not
true unsupervised approaches suffer from high FPRs. Because unsupervised
approaches do not require any labels, they can detect unknown anomalies.
Usually, these approaches use clustering, distance or density-based methods to
identify outliers within a dataset. [48, 49]

3.2. Types of anomalies

Anomalies can be classified into three types: point anomalies, contextual
anomalies and collective anomalies. A point anomaly is an instance of data
which has been found to be anomalous with respect to the rest of the data. This
is the simplest type of anomaly. [40]
A data instance is a contextual anomaly only in a specific context. The notion

of context is derived from the structure of the data and it is specified as part of
the problem. Each data instance is specified using contextual and behavioural
attributes. Contextual attributes are used to determine the context for the data
instance and behavioural attributes define non-contextual characteristics. [40]
In a collective anomaly, related data instances are anomalous with respect

to the rest of the dataset. Individual data instances may not be anomalies
themselves, but when they occur together they are anomalous; that is, a specific
sequence is considered anomalous, not the individual data instances. [40]
Anomalies can be further classifies as: local or global. For example, when

there are multiple clusters and points that are nearby and far away from clusters,
points that are far away from clusters are considered global anomalies. When
neglecting these points and focusing only on the clusters and points nearby, the
points that are near to clusters can be seen as anomalies. These are called local
anomalies. [49]

3.3. Anomaly detection output

Two techniques exist for reporting anomalies [40, 49]: scoring and labelling.
Scoring techniques assign an anomaly score for each data instance in the dataset.
Domain-specific knowledge may be used to choose a threshold; or anomalies may
be ranked by score, with the analyst focusing on a few of the top anomalies on
the list. [40]
Labelling techniques label data as either nominal or anomalous; they do

not allow an analyst to directly choose a threshold, but the selection can be
made indirectly by tuning a parameter. In a supervised approach, labels are
usually used because they are commonly supported in the available classification
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algorithms. In unsupervised and semi-supervised approaches scores are more
common, for the practical reasons mentioned previously. [49]

3.4. Evaluation metrics

The area under the ROC curve (ROC-AUC) is a commonly used evaluation
method in unsupervised anomaly detection to measure the overall performance
of the detector across all possible threshold values [50–52].
The receiver operating charasteristic (ROC) curve (Fig. 1) is obtained by

plotting true positive rate (TPR) and true negative rate (TNR) with various
threshold values. TPR is on the vertical axis and TNR is on the horizontal axis.
TPR and FPR are defined as seen in Equation (1).

TPR = TP

TP + FN
,FPR = FP

FP + TN
, (1)

where TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives and FN is the number of false negatives. A
perfect classifier has TPR of 100 % and FPR of 0 %.

Figure 1. ROC curve

However, an ROC curve is not the best metric when the anomalous and nominal
classes are imbalanced [53–55]. In such situation, a precision-recall curve (Fig.
2) is more informative. In such a curve, recall is plotted against precision with
various threshold values. Precision is on the vertical axis and recall is on the
horizontal axis. Recall is the same as TPR and precision is defined as seen in
Equation (2).

Precision = TP

TP + FP
(2)

In the precision-recall space, a perfect classifier has recall and precision of 100
%. [53,54]
The recall@k metric is a metric commonly used in recommender systems [56].

It is a measure of relevant instances in the top-k with respect to all instances.
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Figure 2. Precision-Recall (RR) curve

For example, if recall@k is 100 %, then all relevant instances are in the top-k. In
the context of this thesis, k is the number of instances an analyst is capable of
analysing (i.e., the budget) and relevant instances are anomalies that the analyst
is interested in detecting.

3.5. Methods

In this section several of the most popular methods for unsupervised point
anomaly detection are presented.

3.5.1. Local outlier factor

The local outlier factor (LOF) introduced in [57] is the most well-known density-
based local-outlier detection algorithm and was the first to introduce the concept
of local outliers [49]. This algorithm assigns an degree of being an outlier to
each data instance. The algorithm is local in the sense that it only considers a
restricted neighbourhood of a data instance. Local outliers are outliers relative
to the densities of their neighbourhood. The local densities are estimated using
the k-nearest neighbours for each data instance.
In Fig. 3, one can see the local densities for A, B, C and D. The lines from the

point A illustrate the instances used in A’s local density estimation. A is clearly
an local outlier due to having a lower density than its neighbours.
The LOF requires the construction of a neighbourhood around every data point,

involving calculation of pairwise distance between each data point, which is a
process of O(n2) time complexity. Subsampling can be used to reduce complexity
of LOF. The Minnesota Intrusion Detection System [42] subsamples the dataset
and compares all data points to this smaller set, which reduces time complexity
to O(n ∗m), where n is the size of the data and m is the size of the subsample.
The advantage of the LOF is that it can be used to detect all kinds of outliers,

including those that cannot be detected using distance-based algorithms [42].
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D

Figure 3. LOF local densities (k = 3)

According to the evaluation carried out in [49], LOF-based methods perform
poorly with datasets containing global anomalies, generating many false positives;
hence these methods should be avoided if the goal is to detect global anomalies.

3.5.2. Clustering

Clustering is a popular technique used to detect anomalies. Clustering-based
anomaly detection is usually conducted in unsupervised or semi-supervised way.
In the former approach, the model is trained using both nominal and anomalous
data; in the latter, it is trained using only nominal data and the trained model
is then used as a profile describing nominal behaviour. If the assumption holds
that anomalous data instances are a minority and do not form large clusters
themselves then the unsupervised approach can be used. [58]
There are many clustering techniques and variations thereof. The most

common distance metric used in clustering is Euclidean distance. In this metric,
each feature contributes equally to the calculation of the distance. This may
not be desirable in many applications; for example, when features have different
variabilities or are correlated. This would cause features with higher variability
to dominate those with lower variability. An alternative is the distance metric
known as Mahalanobis distance. [59]
K-means is one of the most well-known clustering algorithms. It is commonly

used because it has a linear time complexity [49]. One such anomaly-based IDS
is ADMIT [60], which monitors a user’s terminal usage, creates a baseline profile
corresponding to nominal usage for the user and verifies future data instances
against the profile. K-means partitions the data into k clusters. Instead of k-
means, ADMIT used a dynamic clustering approach because they did not want
to preset k.
K-means clustering has also been used for anomaly detection in network traffic.

Munz et al. [61] used k-mean clustering to separate traffic into nominal and
anomalous clusters. They then computed cluster centroids for use in scalable
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real-time anomaly detection. They chose k = 2 because they assumed that
nominal and anomalous traffic form two clusters.

3.5.3. Support-vector machines

The standard SVM was introduced by Boser et al. [62] in 1992. The original
SVM is a two-class-based supervised classification technique. One-class SVM
(OC-SVM) is a variation of SVM widely used approach in anomaly detection.
It was introduced by Schölkopf et al. [63], and the idea of using OC-SVM for
anomaly detection was proposed by Schölkopf et al. [64] in 2001.
The OC-SVM is usually used in semi-supervised way. The training data are

presumed to belong only to one-class [65]. The Schölkopf OC-SVM creates a
hyperplane (Fig. 4a [66]) with a maximum margin from the origin in feature
space separating all data points from the origin [63]. The OC-SVM can be used for
anomaly detection because it can overcome the over-fitting problem by creating
a soft margin using slack variables [67].
When the dataset cannot be separated linearly, kernel functions can be used

to map it into higher dimensional space, where it can be separated linearly. This
is called the “kernel trick” [68].
The OC-SVM approach by Tax and Duin [69] uses a hypersphere (Fig. 4b [66])

instead of a hyperplane. It aims to minimize the volume of the hypersphere. It
uses slack variables to create soft margin similarly to the Schölkopf approach.

(a) (b)

Figure 4. Hyperplane (a) and hypersphere (b) with border support-vectors. Red
instances are anomalies. Adopted from Erfani et al. [66]

3.5.4. Ensemble-based methods

The main idea behind ensemble-based methods is to combine multiple detectors to
create a detector that outperforms each individual detector in the ensemble [70].
In 2008, Liu et al. [51] proposed IForest, which is an ensemble-based decision
tree algorithm for unsupervised anomaly detection. It was later improved in
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2012 [71]. IForest is a state-of-the-art unsupervised anomaly detection method.
Most model-based approaches to anomaly detection first build a profile of nominal
instances and then identify as anomalies any instances that do not conform to
this profile. For this reason, these approaches are optimized for profiling nominal
instances instead of detecting anomalies. This can introduce false positives (i.e.,
the detection of nominal instances as anomalous).
IForest isolates anomalies instead of profiling nominal instances (Fig. 5). This

method assumes that anomalies are in a minority and that their values are very
different from nominal instances. The method builds an ensemble of isolation
trees (Fig. 6) for a given dataset and then considers as anomalous those data
instances that have short average path lengths. The idea behind this is that
outliers are easier to separate from the rest of the data than inliers. An anomaly
score is derived from the average path length. [71]

2.

1.

Figure 5. An anomaly isolated with two partitions

Nominal

Anomaly 

Figure 6. An isolation tree. Shallower leaf nodes have a higher anomaly score
than deeper leaf nodes.

IForest builds a model with multiple subsamples to reduce the effects of masking
and swamping. Masking occurs when there are too many anomalies, when
anomaly clusters become large and dense. Swamping, on the other hand, occurs
when nominal data instances are identified as anomalous. Anomaly detection
with IForest proceeds in two stages. The initial training is carried out by building
isolation trees using subsamples of the training set. In the isolation trees, at each
node, a random feature is selected and a random split point for that feature. In
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the testing stage, anomaly scores for test instances are computed by passing them
through isolation trees. [71]
According to empirical evaluation [71] IForest performs better than LOF in

terms of ROC-AUC and has a linear time complexity. IForest performs well
for high-dimensional problems and in situations where the training data does
not have any anomalies. IForest also has a low constant and a low memory
requirement. Because of these factors, it scales well to large datasets with high-
dimensional problems and a large number of irrelevant attributes.
Many IForest variations exist. Zhiguo and Minrui [72] extended IForest to

work on streaming data using the sliding window technique. Marteau et al. [73]
proposed a hybrid IForest that solves limitation in IForest known as “blind
spots” and extends it to semi-supervised and supervised learning. The supervised
extension enables the incorporation of knowledge about known anomalies. “Blind
spots” exists in IForest because the algorithm assumes that anomalies have
shorter path lengths thanl nominal data. This is true in normally distributed
data; however, it is not true in general. For example, it is not true for data
distributed in a concave set, like a torus, as demonstrated by Marteau et al. [49].
In the case of torus, the “blind spot” is inside it and the IForest performs no better
in the “blind spot” than a random classifier. The hybrid IForest uses distances to
neighbouring nominal and anomalous data as additional sources of information
to overcome the “blind spot”.
In addition to testing the hybrid IForest on synthetic data, it was also tested

on intrusion detection datasets. It was found that it compares favourably to
standard IForest and one- and two-class SVM in terms of ROC-AUC.
Das et al. [74] also extended IForest to semi-supervised anomaly detection by

incorporating feedback from the analyst. Compared to the standard IForest, their
technique performed similarly or better depending on the dataset.
A similar technique to IForest is the robust random cut IForest proposed by

Guha et al. [55]. In standard IForest, the dimensions to be partitioned are
chosen uniformly at random. The advantage of this is that dimensions are
treated independently and it is unaffected by different scaling of dimensions.
The disadvantage is that because cuts are chosen uniformly across dimensions,
when there are many irrelevant dimensions in the dataset most of the partitions
are in the irrelevant dimensions and this causes the algorithm to perform poorly.
Robust random cut IForest is also designed to work on streams and it can be
dynamically updated by inserting and deleting data points.

3.5.5. Artificial neural network-based methods

Autoencoders are artificial neural network based methods that can be used
in semi-supervised and unsupervised anomaly detection. An artificial neural
network consists of many computational units called neurons. A neuron takes
inputs x1, x2, ,,,, xN and an interception term (bias). The output of the neuron is
computed using the formula f(∑n=N

n=1 Wixi + b), where N is the number of input
connections, Wi is the corresponding weights, b is the intercept term and f is the
activation function (e.g., sigmoid or tanh). [75]
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Layers between the input and output layers are called hidden layers, and units
in those layers are called hidden units. An autoencoder with multiple hidden
layers is called a deep autoencoder. [75,76]
An autoencoder applies back-propagation to set the values of the output layer

to those of the input layer. By limiting the number of hidden units, the network is
forced to learn a compressed representation of the input. If there are many hidden
layers units, a sparsity is used on the hidden units instead. This algorithm often
results in similar lower-dimensional representation to the principal component
analysis. The network of a simple autoencoder with one hidden layer can be seen
in Fig. 7. [75]
Autoencoders are mostly used for feature learning and dimensional reduction.

The key insight that allows the use of autoencoders for anomaly detection is that
anomalies are incompressible and therefore cannot be effectively projected into
the lower dimensional representation [77]. In the use of autoencoders for anomaly
detection, the anomaly score can be derived from the reconstruction error. When
a deep autoencoder trained on nominal data is used to reconstruct an anomalous
data instance the reconstruction error is larger than on nominal data [78].
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Encode Decode
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Figure 7. An autoencoder with one hidden layer

Madani and Vlajic [78] used an autoencoder in the context of network intrusion
detection under adversarial contamination. The autoencoder was trained on
nominal traffic data that had contaminating data (malicious traffic). When the
contamination rate was lower than 2 %, contamination did not degrade detection
rate much.
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Malhotra et al. [79] proposed an LSTM-based autoencoder for anomaly
detection on time-series data. The autoencoder was trained on only nominal
sequences. Given anomalous sequence, it would not be able to reconstruct it
well; hence, the reconstruction error is larger. Their approach worked well on
predictable and unpredictable time-series.

3.6. Incorporating expert feedback

Anomaly detection algorithms usually provide scores that are used to rank
anomalies, and the most anomalous instances are shown to the analyst. From
these, the analyst identifies the most interesting anomalies. Hence, it is preferable
that the anomaly system can be configurable by the analyst, so that it can be
guided by the analyst’s conception of an interesting anomaly, reducing the number
of false positives. The analyst investigates these highly scored cases and then
labels them as anomaly or nominal.
Using feedback to guide detection is known as active learning. In active

learning, the learning algorithm queries an analyst for labels using a chosen query
strategy. Labels are used to improve the prediction accuracy. The overall goal is
to minimize the number of queries required to reach the target performance. [80]
Several studies have been conducted into how to incorporate feedback into

anomaly detection systems [74, 80–83]. Techniques introduced in [80] and [82]
exhibit similar performance and are considered to be state-of-the-art. Both of
them build upon the same tree-based model proposed by Das et al. [74].
Both of them also use the same “greedy” query-selection strategy. This strategy

is efficient and works well in practice [80]. In this context, greedy selection refers
to the selection of the most anomalous instances based on the score.
Active anomaly detection [80] is a human-in-the-loop learning framework for

discovering anomalies via ensembles of anomaly detectors. The feedback provided
by the analyst is used to change the scoring mechanism to rank true anomalies
higher. The scoring function combines the scores of the anomaly detectors in the
ensemble using a weight vector w. The weight of an ensemble member can be
considered to be its relevance to the score.
Weights are adjusted based on the feedback for the goal of maximizing the

number of true anomalies shown to the analyst. Optimized weights w are
learned using a gradient descent algorithm. Active anomaly detection makes
the assumption that θ fraction of instances are anomalous. The AAD IForest
uses leaf node region scores of isolation trees.

3.7. Model interpretability

Interpretable models are required to support the analyst in distinguishing between
malicious and non-malicious activity. Studies have confirmed the benefit of
explanations for the analyst [84].
Providing descriptions is critical for feedback, because the anomaly detector’s

future performance depends on the analyst’s ability to classify instances correctly.
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Doshi-Velez and Kim [85] defined interpretability as the “ability to explain
or to present in understandable terms to a human.” Das et al. [80] defined
explanations as “the most important reason(s) that influenced the algorithm’s
predicted output” and interpretability as “the representation of predictions in a
concise and easy-to-understand manner”
Not all systems have to be interpretable. Explanations are not required if

there are no significant consequences or the problem has been well-studied. The
need for interpretability arises from an incompleteness in the formalization of the
problem. [85]
The more interpretability a model is, the easier it is to comprehend why it

made a certain prediction. Hence, there is a need for interpretability when there
is value in providing a rationale for a prediction. Moreover, models can only
be debugged and audited if they can be interpreted. When something in the
model goes wrong the explanation for the erroneous prediction can be used to
understand the cause of the error. Additionally, it is easier for users to trust a
system that provides good explanations. [80,86]
There are model-agnostic and model-specific interpretation methods. The

commonly used solution to the explainability problem is to use model-specific
methods, so called “interpretable” models, such as decision trees and decision
rules [87]. These approaches use models in which explanations can be created
by inspecting the components of the model, such as a single rule or a path in a
decision tree. These work well as long as the model is accurate and the internal
components of the model are reasonable restricted [88].
Model-agnostic methods are flexible. The model is treated as a black-box, and

the explanations are seperated from the model. Hence, the explanations work
with any model. Model-agnostic methods use approaches such as learning an
interpretable model from the predictions of the black-box model, by changing
inputs and observing how the model reacts or both. [88] A recently introduced
model-agnostic method is local interpretable model-agnostic explanations [89].
If the model is very complex obtaining a global understanding of it can be very

difficult. Local explanations may be inconsistent with one another because the
model may use a feature differently depending on other features. [88]
Model-agnostic methods face some challenges. Rudin [90] argued that model-

agnostic methods should not be used in high-stakes decision-making. According
to Rudin [90], there is a widespread belief that more complex black box models
are more accurate; however, this is often not true, especially when the data
are represented in terms of naturally meaningful features. Explanations from
model-agnostic methods may be more inaccurate than those from model-specific
methods. Inherently interpretable models should be designed instead when
applicable. [90]
One way to interpret a model’s predictions is to use ruleset-based descriptions.

Ruleset-based approaches are popular because they are easy for users to
understand. A ruleset model consists of rules, and each rule is a conjunction
of conditions. Alternative names for ruleset models include disjunctive normal
form and classification rules. [91]
Das et al. [80] introduced a compact descriptions (CD) approach for finding

compact subspaces. It can be used to describe discovered anomalies. The
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algorithm starts at as many candidate subspaces as there are leaves in the
forest. Feedback from the analyst is used in choosing the most relevant candidate
subspaces. The algorithm penalizes complex rules; it prefers subspaces that are
simple to define and thus easier for the analyst to interpret.
An alternative approach to CD is supervised Bayesian rulesets (BR) [91]. This

approach utilizes Bayesian priors to reduce the search space in the search for a
globally optimal “maximum a posterior probability” solution for rulesets. The
BR used with AAD takes as the training set the queried data instances and a set
of randomly labelled instances that are assumed to be nominals [80].
Das et al. [80] discovered that BR has greater precision than CD, whereas CD

has higher recall. They also observed that CD usually generates simpler rules.

3.8. Score normalization

When ranking scores from multiple models (or users), scores should generally
be on the same scale. One common method to achieve this is standardization
(Fig. 8). Standardization is achieved by rescaling the samples to have a mean
of zero and unit variance by substracting the mean and dividing by the standard
deviation (Eq. 3):

z = x− µ

σ
, (3)

where x is the score to be standardized, µ is the mean, σ is the standard deviation
and z is the standardized score (also called z-score).
If the mean and the standard deviation of the distribution is not known, they

are estimated from the available data. This method assumes normal distribution;
hence, it is not optimal for non-normally distributed scores. This method is not
robust because both the mean and standard deviation are sensitive to outliers.
Another method is to use robust normalization [92]. This scales the data using

the quantile range (Eq. 4):

y = x− q1(x)
q2(x) − q1(x) , (4)

(a) Original (b) Standardized

Figure 8. Effect of standardization
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where x is the score to be standardized, q1 and q2 are quantiles, and y is the
normalized score This method requires determining the quantiles q1 and q2.
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4. DESIGN & IMPLEMENTATION

This section provides a high-level description of the system, the dataset and the
used software in the evaluation.

4.1. System description

The proposed system aims to create ranked lists that reduce the workload
of the security analyst by ranking suspicious events higher on the list. The
chosen feature engineering approach is based on the related research. User-
day granularity was chosen because it is the most common granularity in the
literature, as seen in the related research section. Most approaches use frequency,
statistic and session features, or a variation thereof. Similar features are used in
this approach.
Log files from multiple sources are taken as input by the system (Fig. 9). The

system then parses and aggregates the log entries into features for each user-day.
Feature vectors describing user-days are then processed by the anomaly detector,
which outputs an anomaly score for each instance. Optionally, the anomaly scores
are normalized. The instances are ranked by their anomaly scores.
In the unsupervised experiment, this list is created for each day and an item in

the list represents the activity of the user on that day. In the AAD experiment,
this list is created for each user; therefore, on the top of the list are the most
anomalous days for that user.

Pre-process

Aggregate by user-day

Extract features
(frequency, statistics, session)

Unsupervised
detector

Active
Anomaly Detection

Anomaly detection

Normalize scores
Ranked

list(s)

Analysis
logon

http

Log data

...

Feedback

Figure 9. System diagram

4.2. Dataset

The CMU-CERT insider threat dataset [93], that contains logon, HTTP, email,
file and removable device log data is used in this work. This dataset has been
used in many studies [30, 33,34,36].
The dataset consists of synthetic data from a simulated organization (see [94]

for how the dataset is generated). There are multiple revisions of the dataset.
Version r4.2 was chosen, because it is a “dense needle” dataset; that is, it contains
multiple incidents of each scenario. Newer revisions include more scenarios. From
Table 3, one can see the number of records and users in the log files of each data
source.
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Table 3. No. of records and users in each data source

Source No. of records No. of users
Logon 854859 1000
Device 405380 265
Email 2629979 1000
HTTP 28434423 1000
File 445581 264

The system is evaluated by detecting malicious insiders that participate in the
following scenarios [93]:

1. User who did not previously use removable drives or work after hours begins
logging in after hours, using a removable drive, and uploading data to
wikileaks.org. Leaves the organization shortly thereafter.

2. User begins surfing job websites and soliciting employment from a
competitor. Before leaving the company, they use a thumb drive (at
markedly higher rates than their previous activity) to steal data.

3. System administrator becomes disgruntled. Downloads a keylogger and uses
a thumb drive to transfer it to his supervisor’s machine. The next day, he
uses the collected keylogs to log in as his supervisor and send out an alarming
mass email, causing panic in the organization. He leaves the organization
immediately.

The total number of user-days in the dataset is 330,452. From Table 4, one can
see the number of insiders in each scenario, and how many user-days have insider
threat activity. The dataset contains records from the 2nd of January, 2010, to
the 17th of May, 2011.

Table 4. No. of malicious insiders and no. of user-days with malicious activity
in each scenario.

Scenario No. of insiders No. of user-days
1 30 85
2 30 861
3 12 40

The data sources used are the log files from logon, removable device, HTTP,
email and file activity. The features constructed from these data sources are
shown in Table 5. In Table 6, is the log file format of each data source. “UUID”
is a unique event identifier; the “KEYWORDS” field contains keywords such as
“keylogger”, “malware”, “budget” and “shutdown”. Keywords are not used in the
evaluation.
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Table 5. Features constructed for each user-day

Feature Description
n_dev_conn Count of removable device events
n_dev_pc Count of computers with removable device events
min_dev_session Minimum removable device connection duration
max_dev_session Maximum removable device connection duration
min_dev Time of the first removable device event
max_dev Time of the last removable device event
n_logon Count of logon events
n_logon_pc Count of computers with logon events
min_logon_session Minimum logon session duration
min_logon Time of the first logon event
max_logon Time of the last logon event
n_email Count of sent emails
n_email_pc Count of computers used to sent emails
n_max_email_recipient Maximum count of email recipients
n_max_email_attachment Maximum count of email attachments
n_http_req Count of HTTP requests
n_http_hostname Count of host names
n_http_pc Count of computers used to sent HTTP requests
n_file Count of transferred files
n_file_pc Count of computers used to transfer files
min_file_time Time of the first file event in hours
max_file_time Time of the last file event in hours

Table 6. Data source log file formats

File Format
logon.csv UUID,DATETIME,USER,PC,{Logon, Logoff}
device.csv UUID,DATETIME,USER,PC,{Connect, Disconnect}
email.csv UUID,DATETIME,USER,PC,TO,CC,BCC,FROM,SIZE,ATTACHMENTS,KEYWORDS
http.csv UUID,DATETIME,USER,PC,URL,KEYWORDS
file.csv UUID,DATETIME,USER,PC,FILENAME,KEYWORDS

4.3. Implementation

Data exploration and initial model development was carried out using Python and
Jupyter Notebooks. Python was chosen because it has a developed ecosystem
for data science. Jupyter Notebooks allow interactive development and data
visualization.
PyOD [95] was used in evaluation of unsupervised models. It is a Python

toolkit that provides a uniform application programming interface for various
unsupervised anomaly detection techniques. This allows rapid evaluation of
different techniques. Scikit-learn [96] was used to compute evaluation metrics.
The technique introduced in [80], known as AAD was chosen over [82], because it
has implementation available in Python [97]. The BR and CD evaluations used
the implementation by Das et al. [97]. The BR was based on the implementation
by Wang et al. [91].
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5. EVALUATION

In the first set of experiments, the performances of IForest, OC-SVM and LOF
were compared in different scenarios and for different data sources. All detectors
use default hyperparameters. IForest had 100 trees in the ensemble and 256
samples were used to train each tree. LOF used the 20 nearest neighbours;
and OC-SVM used the radial basis function kernel, with a kernel coefficient
of 1/nfeatures. Scores were computed by running 10 iterations and taking the
average. Quantile range for the robust score normalization was determined
empirically (q1 = 0.95, q2 = 0.05).
By adjusting hyperparameters, it is possible to a obtain higher performance.

However, this can be difficult in the real world due to the lack of labelled data,
and because of added complexity tuning was not performed in this study. When
evaluating scenario-based performance other scenarios were filtered out from the
data.

5.0.1. Unsupervised detector performance

In this experiment, the objective was to evaluate the system by determining how
much the detectors decrease the number of users required to investigate per day
to catch malicious insiders. This was implemented by assigning a daily budget
for the analysis; that is, the number of users that can be investigated per day.
This is encapsulated by the recall@k metric, where k is the daily budget.
In scenario 1, insider activity occurred after hours, and so the logon-only model

(Fig. 10a) resulted in high recall. However, the highest recall was obtained by
combining the logon and device features (Fig. 10b). Adding irrelevant data
sources had a negative impact on recall (Fig. 10c). In most cases, robust score
normalization resulted in higher recall than standardization.
The insiders in scenarios 2 and 3 were more difficult to detect, and so in Figs.

11 and 12 daily budget is shown up to 800 users.
In scenario 2, the IForest model that used all data sources obtained the highest

recall (Fig. 11c). When using only logon and device data sources (Fig. 11a), the
recall of the unnormalized IForest was poor; IForest with standardization was
significantly better. Furthermore, LOF resulted in the highest recall at budget
of 200 users; however, it does not improve at larger daily budget.
Similarly, in scenario 3, IForest obtained the highest recall overall. The model

that used logon and device sources resulted in the highest recall at smaller daily
budget (Fig. 12b). In the model with all data sources (Fig. 12c) at lower budget
the recall is worse, but it obtains higher recall at higher budget than in the Fig.
12b. In scenario 2 (Fig. 11c) and 3 (Fig. 12c), the highest recall was obtained
with the models that used data sources.
Robust score normalization tended to perform better at smaller daily budget,

whereas z-score normalization performed better at larger budget (Figs. 10, 11 and
12). Normalization does not have a positive impact on IForest overall, although
there are some exceptions, such as that shown in Fig. 11a, where z-score IForest
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(a) With logon features

(b) With logon and device features

(c) With logon, device, email, http and file features

Figure 10. Recall@k with respect to k. Shows that in scenario 1, the unnormalized
IForest detector resulted in the highest recall, and the highest recall was obtained
using logon and device features (b).
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had the highest recall of IForest detectors. In the case of LOF and OC-SVM,
normalization had a significant impact on recall (Figs. 10, 11 and 12).
From the Table 7, one can see the recall of detectors with different data sources

combinations more precisely. From the Table 7a, one can conclude that the
highest recall in scenario 1 at daily budget of 10 users was 96 %. In other words,
the detector with the highest recall missed 3 user-days. In scenario 2 (Table
7b), the highest recall at daily budget of 400 users was 96 %; that is to say, the
detector missed 37 user-days. In scenario 3 (Table 7c) when using all data sources
at daily budget of 400 users, the IForest detected all user-days.
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(a) With logon and device features

(b) With logon, device, email and http features

(c) With logon, device, email, http and file features

Figure 11. Recall@k with respect to k. Shows that in scenario 2, the unnormalized
IForest detector resulted in the highest recall, and the highest recall was obtained
using all features (c).
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(a) With logon features

(b) With logon and device features

(c) With logon, device, email, http and file features

Figure 12. Recall@k with respect to k. Shows that in scenario 3, the unnormalized
IForest detector resulted in the highest recall, and the highest recall was obtained
using all features (c).
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Table 7. Recall at daily budget and number of detected user-days in scenario
1 (a), 2 (b) and 3 (c). The highest performance detector for each data source
combination is shown in bold.

(a) Recall@10 in scenario 1. The total number of scenario user-days is 85.

Data sources Detector None z-score Robust

Logon
IForest 0.91 (77) 0.87 (74) 0.87 (74)
OC-SVM 0.67 (57) 0.84 (71) 0.89 (76)
LOF 0.76 (65) 0.54 (46) 0.74 (63)

Logon and device
IForest 0.96 (82) 0.94 (80) 0.95 (81)
OC-SVM 0.79 (67) 0.92 (78) 0.95 (81)
LOF 0.76 (65) 0.49 (42) 0.76 (65)

All
IForest 0.87 (74) 0.82 (70) 0.88 (75)
OC-SVM 0.28 (24) 0.48 (41) 0.42 (36)
LOF 0.15 (13) 0.48 (41) 0.76 (65)

(b) Recall@400 in scenario 2. The total number of scenario user-days is 861.

Data sources Detector None z-score Robust

Logon and device
IForest 0.25 (213) 0.56 (484) 0.55 (475)
OC-SVM 0.49 (419) 0.77 (667) 0.43 (366)
LOF 0.71 (614) 0.24 (204) 0.51 (442)

Logon, device,
email and HTTP

IForest 0.91 (781) 0.90 (773) 0.91 (783)
OC-SVM 0.25 (219) 0.92 (792) 0.51 (437)
LOF 0.61 (528) 0.58 (502) 0.63 (542)

All
IForest 0.96 (824) 0.88 (757) 0.87 (746)
OC-SVM 0.24 (209) 0.91 (781) 0.50 (427)
LOF 0.56 (485) 0.57 (492) 0.57 (493)

(c) Recall@400 in scenario 3. The total number of scenario user-days is 40.

Data sources Detector None z-score Robust

Logon
IForest 0.78 (31) 0.88 (35) 0.90 (36)
OC-SVM 0.62 (25) 0.82 (33) 0.90 (36)
LOF 0.82 (33) 0.47 (19) 0.82 (33)

Logon and device
IForest 0.85 (34) 0.82 (33) 0.88 (35)
OC-SVM 0.68 (27) 0.85 (34) 0.88 (35)
LOF 0.90 (36) 0.50 (20) 0.88 (35)

All
IForest 1.00 (40) 0.95 (38) 0.93 (37)
OC-SVM 0.80 (32) 0.88 (35) 0.85 (34)
LOF 0.85 (34) 0.95 (38) 0.85 (34)
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5.0.2. Active anomaly detection

Active anomaly detection was evaluated against the unsupervised IForest. In
the experiments, “region-based” refers to the IForest AAD implementation by
Das et al. [80], which uses the leaf regions of isolation trees. The “tree-based”
implementation used isolation tree scores. Unsupervised models are the starting
conditions for the AAD (i.e., zero labelled instances). The “unsupervised tree-
based” model has the same detection performance as the standard IForest.
This implementation was evaluated because, in some conditions, the region-

based detector has lower recall than the standard IForest. Plots are shown with
95 % confidence intervals.
Ranked lists were generated for each user and k is the top-k (the budget) days

in the ranked list of each user. They were constructed this way because the focus
of this experiment was solely on evaluating AAD. However, because of this choice,
comparing the recall with those of previous experiments is misleading.
From Fig. 13, one can see that AAD improved the recall in every scenario. The

most significant improvement was in scenario 3 (Fig. 13c), where the improvement
was approximately from 60 % recall@20 to 80 % recall@20 on average. Without
feedback similar recall is obtained at budget of 50 days.
Unexpectedly, even the “unsupervised region-based” detector obtained higher

recall generally than the standard IForest. This improvement was probably due
to the difference in how the anomaly scores were constructed from the IForest
structure. In some cases, the tree-based AAD detector resulted in significantly
higher recall at larger budget (Fig. 14).
From Fig. 15, one can see that the number of labelled data instances required

to obtain the highest recall was different in all scenarios. This experiment was
performed at the budget of 10 days. The most significant improvement was in
scenario 3 (Fig. 15c). From this experiment, one can conclude that the region-
based detector uses labels more effectively because it has steeper recall increase
with respect to the number of labelled instances (Fig. 15).
As can be seen from the Table 8, in scenario 1 AAD detected 7 user-days

more than the respective unsupervised detectors at budget of 5 days, and in
scenario 3 the region-based AAD detected 8 user-days more at budget of 20
days. The highest improvement in recall is in scenario 2, where the region-based
AAD detected 431 user-days, which is 184 user-days more than the unsupervised
detector detected at budget of 20 days.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 13. Recall@k with respect to k in every scenario using all features. Region-
based AAD had the highest recall in every scenario.

Table 8. Shows recall and number of detected user-days at budget of 5 days in
scenario 1, and in scenarios 2 and 3 at budget of 20 days. The budget is the top-k
most anomalous days for each user. The highest result in terms of recall is shown
in bold for each scenario.

Detector Scenario 1 Scenario 2 Scenario 3
Unsupervised region-based 0.85 (72) 0.29 (247) 0.65 (25)
Unsupervised tree-based 0.78 (66) 0.24 (206) 0.54 (21)
AAD region-based 0.93 (79) 0.50 (431) 0.83 (33)
AAD tree-based 0.86 (73) 0.35 (304) 0.64 (25)

Figure 14. Tree-based detectors obtained higher recall than region-based at larger
budgets when using only logon and file features in scenario 1.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 15. Recall@10 with respect to the number of labelled anomalies in every
scenario and up to 50 labelled instances per user. From the subfigures, one can
conclude that the region-based AAD benefits more from the feedback.
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5.0.3. Descriptions

The objective of this experiment was to evaluate how well CD and BR can
generate rules that distinguish anomalies from nominals; that is, how well the
rules describe anomalous activity. The rules were computed for known anomalies.
Precision and recall metrics were used. These metrics were computed for rules

by using the rules to classify instances. If one of the rules encompasses an instance,
it was classified as an anomaly. Weights w computed by the AAD are used to
score regions in the computation of descriptions; therefore, experiments were
evaluated with respect to the number of labelled instances. The reported metrics
are averages of 10 runs with 95 % confidence intervals.
Table 9 shows the computed rules for the user AJR0932. In this case, the

day 10th of September was deemed an anomaly because of the user logged in
on after-hours at 11 PM; the 17th and 18th were deemed anomalous because the
duration of the removable device connection was over 18 minutes. See Appendix
1 for more comprehensive list of what kind of rules were generated and for their
explanations.
Fig. 16, shows the results of the evaluation of the rules with respect to the

number of labelled anomalies using AAD. Occasionally description methods may
not be able to generate a description for an instance. The results show that the
recall of CD was 100 %; the recall of BR was lower. From this, one can conclude
that CD generated rule encompass nearly always the instance that the rule was
generated for. This is not the case for BR; however, BR has higher precision
and so the number of false positives is lower. From Fig. 17, one can see that on
average rules have one to three conditions, depending on the scenario. Compact
descriptions generates shorter rules in all scenarios. This may also explain partly
why BR has higher precision.
The number of labels used by the AAD did not have a significant impact on

generation of descriptions (Fig. 17). The shortest descriptions were generated
for scenario 1 (Fig. 17a) because the actors can be detected using the last_logon
and max_dev_session features, as seen in the Table 9. The scenario 3 (Fig.
17c) is the most difficult scenario to generate descriptions for. This explains the
large confidence interval.
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Table 9. Example decision rules for the user AJR0932 (scenario 1). Salient
features are shown in bold. Generated using CD.

Satisfied rule last_logon > 22.45 max_dev_session > 18
Feature 2010-09-10 2010-09-17 2010-09-18
n_logon 2 3 0
n_logon_pc 1 1 1
min_logon_session 9 1 2
max_logon_session 9 8 2
first_logon 7 4 0
last_logon 23 18 0
n_dev_conn 0 9 1
n_dev_pc 0 1 1
min_dev_session 0 0 36
max_dev_session 0 21 36
first_dev 0 4 0
last_dev 0 20 0
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 16. Recall and precision of rules with respect to the number of labelled
anomalies using all features. From the subfigures, one can see that CD had higher
recall and BR had higher precision.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 17. Rule lengths of CD and BR. CD had shorter rule lengths on average.
Shorter rules have fewer conditions, and are therefore simpler.
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6. DISCUSSION

From the unsupervised anomaly detector experiment, one can conclude that,
generally IForest achieved the highest performance in terms of recall@k, where k
is the analysis budget (i.e., the number of instances that are investigated), and
it did not require normalization. LOF performed well with some data sources
and poorly with others. This may affect its applicability in practice. This
likely happens because LOF is sensitive to the choice of the nearest neighbours
parameter. Combining multiple detectors using ensemble combination methods
may mitigate this. Similarly, the performance of OC-SVM varied markedly across
different source combinations.
IForest had the most consistent performance across different feature (or data

source) combinations; it generally achieved the best performance. This implies
that IForest is the most applicable unsupervised detector in practice of the
detectors evaluated in this work.
Active anomaly detection was used with the IForest detector. It was found

to improve recall@k, especially at smaller budget sizes; thus, it reduces the
workload of the security analyst because they can discover more threats while
investigating fewer data. Region-based AAD is more applicable than tree-based
because the region-based had generally higher performance and improved more
from the feedback.
The rules created using CD and BR largely filtered out well irrelevant features;

however, the rules occasionally encompassed nominal behaviour or perhaps
overfitted the data. This reduces their usability in practice because the analyst
cannot completely trust the descriptions. Usually, CD had higher precision and
lower recall than BR. This finding is consistent with the results of the experiments
Das et al. conducted [80]. Generally, CD created simpler rules with fewer
conditions.
Objective comparison to related studies is difficult for reasons such as the use of

different datasets (or dataset versions) and evaluation metrics, and differences in
how features are constructed and how the dataset is used in the evaluation. From
the detection point of view, deep learning methods such as the unsupervised one
[34] or the supervised one used in [33] that also utilized temporal aggregation and
keywords likely achieve higher detection performance. Liu et al. [34] compared
their unsupervised deep learning approaches to standard IForest, and the deep
learning approaches performed favourably at lower daily budget.
Interpreting complex models, such as deep neural networks is challenging [88,

98]. Although deep neural networks can reduce the amount of feature engineering
required [30,34].
The system described in this work used only usage count, session and time-

based features; it did not utilize all the information available in the dataset.
To provide more context to the system (such as from organizational structure)
research could be conducted on the usage of graph techniques or on the encoding
of this information into features, as was performed in [34]. Another disadvantage
of the system described here is the lack of temporal aggregation of activity across
days, because, indicators of the insider activity could be spread across multiple
days, as is the case in scenario 2. This has been implemented in many studies
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[33,37]. Perhaps temporal aggregation across days without impacting granularity
could be implemented into the IForest detector by concatenating feature vectors
(known as “shingling”) from multiple days.
The single feature scores used by [23], [29], [27] aims to highlight features that

are the most useful (feature importance) in detecting anomalies. Additionally to
extracting relevant features, decision-rule-based descriptions contain information
about the feature value ranges. Also, the number of instances encompassed by
the rule can be used in determining how anomalous the instance is or how correct
the rule is; a rule generated for a nominal instance likely encompasses many
instances, whereas a rule generated for an anomaly encompasses fewer instances.
This may further assist the analyst in determining if the activity poses a threat.
Goldberg et al. [27] labelled each user-day with human-friendly description for

each of 12 types of concerning user activities on a training dataset and then
created transformation from these features to labels. Similar approach could
be applied to create more human-friendly descriptions for known concerning
activities. Ideally, the description would also include terms that describe the
threat (such as “data exfiltration”, “sabotage” or “espionage”). This requires
information about the threats and the use of signatures or supervised learning
may become a more feasible approach.
The description techniques could be used with other approaches to improve

interpretability further. For example, visualising relationships from the model
features back to log entries may be beneficial.
Studies have found that user behaviour may change during different periods,

such as morning, midday, evening and night [36,37]. Constructing features based
on these observations may be worthwhile. Also, weekends were not filtered out
from the data used in this work, which may have a negative effect on the results
because the user behaviour may change during weekends.
In the AAD experiment, ranked lists were created for each user instead of for

every day. AAD IForest may require normalization when used in the construction
of a single ranked list from multiple users, and this may have an impact on the
performance of the AAD. Additionally, the use of thresholds in producing alerts
could be valuable, so the analyst can be alerted automatically when suspicious
activity was observed. The aforementioned issues could be studied in future
research.
The next step would be to evaluate how useful AAD and descriptions are in a

real corporate environment. Possibly simulated insider scenarios could be inserted
into a dataset collected from a corporate entitys’s environment. The approach
could be extended to role- or device-based activity monitoring [31] because in
some insider scenarios, role- or device-based activities may be better indicators
of insider threat activity than comparing the user’s current activity to the user’s
past activity. Also, evaluation of the IForest variants discussed in the anomaly
detection section would be interesting.
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7. CONCLUSIONS

The objective of this thesis is the evaluation of the recently developed active
anomaly detection and description methods in the context of insider threat
detection. Active anomaly detection, or more generally known as active learning
is important because purely unsupervised techniques tend to detect all abnormal
events, and this may not completely align with what the security analyst is
interested in. Additionally, description methods can provide value because besides
detecting anomalies, the analyst should be able to reason why a particular
instance is an anomaly; the purpose of descriptions is to aid the analyst in
this process. Active anomaly detection and rule-based descriptions operate well
together, because accurate and interpretable descriptions allow an analyst to
label more effectively if an instance is true or false positive, and this label can be
provided as feedback to the active learning algorithm.
Active anomaly detection was evaluated for isolation forest because it was

found to have the highest detection performance of the evaluated unsupervised
detectors. It was found to improve detection by ranking anomalies higher,
allowing analysts to identify more true positives while examining less data.
Both description methods could be used to analyse why a particular instance

was assigned a high anomaly score. However, the created rules cannot completely
distinguish insider threats from nominal activity. Furthermore, how interpretable
these rules are depends on the input features of the detector. Now that the
evaluation is done on synthetic data, the next step is to evaluate how practical
the evaluated active anomaly detection and description techniques are in a real-
world environment.
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9. APPENDICES

Appendix 1 Created decision-rules for anomalies. Shows instances
encompassed by rule-based description and their salient features.

Table 10. The user JJM0203 visits job search websites on these days (scenario
2).

(min_logon_session <= 4.70) & (n_http_req > 95.00)
& (max_file_time <= 5.90)
Date min_logon_session n_http_req max_file_time
2010-09-08 4 103 0
2010-09-09 4 101 0
2010-09-14 0 105 0
2010-09-15 0 101 0
2010-09-28 4 96 0
2010-09-29 0 104 0
2010-10-01 0 98 0
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Appendix 1 Created decision-rules for incidents. Shows instances
encompassed by rules and their salient features.

Table 11. The user AF0535 visits job search websites on these days (scenario 2).

(n_http_req > 32.04) & (n_file <= 0.67)
Date n_http_req n_file
2010-07-02 38 0
2010-07-09 38 0
2010-07-14 34 0
2010-07-19 33 0
2010-07-20 35 0
2010-07-26 39 0

Table 12. The user JJM0203 steals data on these days using thumb drive (scenario
2).

n_dev_conn > 4.96
Date n_dev_conn
2010-10-04 7
2010-10-07 6
2010-10-12 5
2010-10-14 6
2010-10-19 7

Table 13. On these days, disgruntled system administrators complain to
supervisor FBA0348 and sends out mass email (scenario 3).

(n_email > 14.64) & (n_http_hostname <= 38.94)
Date n_email n_http_hostname Description
2010-09-30 16 31 BSS0369 complains via email
2010-10-01 15 25 Mass email
2011-04-28 16 29 JLM0364 complains via email

Appendix 1 Created decision-rules for incidents. Shows instances
encompassed by rules and their salient features.
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Table 14. On these days, disgruntled system administrator logins as supervisor
FBA0348 (scenario 3).

n_logon > 1.83
Date n_logon
2010-10-01 2
2011-04-29 2

Table 15. Rule for the user WDD0366 (scenario 1). Example of how rule-
based descriptions occasionally are overly complex and lack accuracy (TP = true
positive).

(n_logon > 5) & (n_logon_pc > 3) & (n_logon_pc <= 5)
& (n_http_hostname <= 36) & (min_file_time <= 12)
Date n_logon n_logon_pc n_http_hostname min_file_time TP
2010-01-29 6 5 34 0 false
2010-02-05 6 5 27 0 false
2010-02-22 6 5 34 0 false
2010-02-25 6 5 27 0 false
2010-04-12 6 5 21 0 false
2010-05-25 6 5 23 0 false
2010-06-07 6 5 33 0 false
2010-08-25 6 5 24 0 false
2010-10-22 6 5 32 0 false
2011-01-17 6 5 25 0 false
2011-01-24 6 5 27 0 false
2011-01-28 6 5 26 0 false
2011-03-02 7 5 24 0 true
2011-03-03 6 5 35 0 true


