

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Jussi Jokio

Back-end Reference Architecture for Smart Water

Meter Data Gathering Service

Master’s Thesis

Degree Programme in Computer Science and Engineering

February 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344909345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jokio J. (2020) Back-end Reference Architecture for Smart Water Meter Data

Gathering Service. University of Oulu, Degree Programme in Computer Science

and Engineering. Master’s Thesis, 48p.

ABSTRACT

The Finnish waterworks industry is on the brink of digitalization. Currently,

many of them have started to convert their water meters to smart water meters.

However, there is yet no suitable solution for gathering the IoT data from these

smart water meters.

 To answer their arising needs, many pilots and workshops have been

conducted. Those pilots have yielded some basic ground rules for their use

cases. In this study, those ground rules have been gathered as a set of

requirement categories. The categories are studied and analyzed in order to

establish a reference architecture for IoT data-gathering systems suitable for

waterworks.

Using the requirements and the reference architecture, an information

system, Dataservice, was implemented by Vesitieto Oy. The system gathers the

IoT data and visualizes it to waterworks’ employees. The System was deployed

in Microsoft’s cloud service, but other cloud vendors were examined as well.

The system has a two-folded database system, the data required by the system,

like users and user groups, are held in the SQL database. The IoT-data is held

in a NoSQL database. The selected NoSQL database provider was MongoDB as

it could be integrated with the cloud provider.

Keywords: IoT, Big data, Smart water meter, software architecture, software

requirements

Jokio J. (2020) Etäluettavien vesimittareiden datapalvelun viitearkkitehtuuri.
Oulun yliopisto, tietotekniikan tutkinto-ohjelma. Diplomityö, 48 s.

TIIVISTELMÄ

Suomen vesihuolto on digitalisaation partaalla. Tällä hetkellä monet

vesilaitokset ovat alkaneet vaihtaa vanhoja analogisia vesimittareitaan

älykkäiksi vesimittareiksi. Vesihuoltolaitokset eivät kuitenkaan ole löytäneet

kaikille sopivaa ratkaisua IoT-tiedon keräämiseen älykkäistä vesimittareista.

Vastatakseen vesilaitosten tarpeisiin, monia pilotteja ja työpajoja on järjestetty

eri yhteistyökumppaneiden kanssa. Näistä eri piloteista on muodostunut käsitys

siitä, kuinka vesimittareiden digitalisaatio voidaan ratkaista vesilaitoksilla.

Tässä tutkimuksessa eri laitosten väliset perussäännöt on koottu

ohjelmistovaatimusluokiksi. Näitä luokkia tutkitaan ja analysoidaan

vesilaitoksille sopivan IoT-tiedonkeruujärjestelmän viitearkkitehtuurin

luomiseksi.

Vaatimuksia ja viitearkkitehtuuria hyödyntäen Vesitieto Oy toteutti

tietojärjestelmän nimeltään ”Dataservice”. Järjestelmä kerää IoT-tiedot ja

visualisoi ne vesilaitosten työntekijöille. Järjestelmä otettiin käyttöön

Microsoftin pilvipalvelussa, mutta myös muita pilvipalvelun palveluntarjoajia

tutkittiin. Järjestelmässä on kaksiportainen tietokantajärjestelmä. Järjestelmän

tarvitsemat tiedot kuten käyttäjät sekä käyttäjäryhmät pidetään

SQLtietokannassa ja IoT-tiedot pidetään NoSQL-tietokannassa. Valittu NoSQL

tietokantajärjestelmä oli MongoDB, koska se voitiin integroida

pilvipalveluntarjoajan kanssa.

Avainsanat: Esineiden internet, IoT, big data, älykkäät vesimittarit,

arkkitehtuuri, vaatimusmäärittely

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD

ABBREVIATIONS
1. INTRODUCTION .. 8

1.1. Motivation .. 8
1.2. Description ... 9

1.3. Disclaimer for cooperation ... 11
2. STATE OF ART .. 12

2.1. IoT .. 12

2.1.1. Description .. 12
2.1.2. Connections and protocols .. 12

2.2. Big data... 13
2.3. Cloud services .. 13

2.4. Meter manufacturers... 14
2.5. Waterworks currently ... 15
2.6. Waterworks regulations .. 15

2.6.1. European Union’s regulations ... 15
3. REQUIREMENTS ... 17

3.1. Use cases .. 17
3.2. Functionalities .. 19

3.3. Business requirements .. 19
3.4. Data requirements... 20

3.4.1. Long Term storage database and short storage database 22
3.4.2. Data analysis point-of-view .. 22

3.5. Data transfer requirements ... 23

3.5.1. Receiving data ... 23
3.6. Error handling... 25

3.7. Integration and interface requirements ... 26
3.8. Security requirements ... 27

3.8.1. Client authentication ... 27
4. IMPLEMENTATION .. 29

4.1. Architecture .. 29
4.2. Database ... 34

4.2.1. SQL or NoSQL .. 34

4.2.2. Database design ... 35
4.3. API.. 35
4.4. Testing .. 36
4.5. Evaluation ... 37

5. DISCUSSION .. 39

5.1. Requirements .. 39

5.2. Implementation ... 39

5.3. Evaluation ... 39
5.4. Improvements ... 40
5.5. Future development .. 40

6. CONCLUSION .. 41
7. REFERENCES ... 42

FOREWORD

The author would like to thank the following supervisors; Dr. Tech. Satu

Tamminen and PhD Markus Harju for their guidance during the realization and

writing process of this study.

The author would also like to thank the peer member Markus Heino as well as

Suomen Vesitieto Oy for their valuable feedback and support.

Acknowledgments are also due to the mentally supportive individuals of the

research team, through whose support work and its importance have gained more

passion and encouragement.

Oulu, February 6th,

2020

Jussi Jokio

ABBREVIATIONS

AI artificial intelligence

API application programming interface

AWS amazon web services

BLL business logic layer

CEO chief executive officer

CRUD create, read, update & delete

EEA European economic area

EU European Union

FIWA Finnish water utilities association

GDPR general data protection regulation

HTTP hypertext transfer protocol

IoT internet of things

IS information system

ISS information system success

LoRa long range

LoRaWan long range low power wide area network protocol

LPWAN low power wide area network

ML machine learning

MQTT message queuing telemetry transport

NoSQL not only structured query language

PaaS platform as a service

QoS quality of service

SaaS software as a service

SQL structured query language

UI user interface

UX user experience

 8

1. INTRODUCTION

In the modern-day industrial economy, information creates revenue and revenue

creates business. With information, a business is able to create more informed

decisions and with more informed decisions, the business is able to thrive. Even

though waterworks are usually more non-profit organizations, they cannot operate

without revenue. In Finland, waterworks are usually government-funded and creating

revenue is not the most critical aspect of their business. The main function of the

Finnish waterworks is to provide service and maintain their financial and operational

status quo.

The field in which Finnish waterworks operates can be seen as ancient if one

considers digitalization. On a survey of one Finnish waterworks, a classic pen and

paper methods were uncovered along with an individual excel sheet. Mainly non-

digital methods can be witnessed by the number of different digitization projects

currently in progress by the Finnish Water Utilities Association (FIWA) [1].

Recently, FIWA has funded many multiorganizational digitization projects all over

Finland. Alas, it seems painfully clear that Finnish waterworks are usually among the

last organizations where new innovations or behavior models are adopted, especially

regarding information technology. One could argue that, in Finland, the lack of

digitalization is not as critical an issue as in other countries where freshwater is not

an expendable asset [2, 3].

1.1. Motivation

It can be argued that the reason behind waterworks outdated methods lies in the lack

of competition. Finnish waterworks are usually owned by the cities or are

government-funded. This creates a non-competitive atmosphere. Even if some of the

smaller waterworks are co-operational, digitalization has not yet fully found its way

in this field. One of the other underlying reasons might be the excessive freshwater

supplies in Finland [4]. There is no real motivation to hunt down leaks since it does

not critically affect their business. There is no value in optimizing their process as

their supplies are seen as a renewable natural resource. However, the amount and

quality of fresh water is something that Finland takes serious interest in as a nation.

Even if smart water meters have been on the market starting from 2009 [5], only a

handful of Finnish waterworks have started obtaining them. Only one of the

waterworks had started a survey of smart water meters in 2015 [6]. In Finland, it is

mandatory, by a law from 2013, to have a water meter in each household, but it was

estimated in 2014 that, only in 300,000 households, water meters were actually

installed. From these 300,000, only a half were smart water meters. This estimation

was based on the data gathered from different water meter manufacturers. [7]. Since

2014, the numbers have certainly raised, but there is still a problem. There are not

any reasonably priced information systems that could have collected the data from

these water meters. There are many individual smart water meter data gathering

systems implemented by manufacturers. But the problem with them is that they only

support their own meters. A systematic and integrative solution is needed.

 In addition to FIWA, there are many different organizations and enterprises that

aim to bring Finnish waterworks to the 21st century. One of those organizations is

Vesitieto Oy. It is a software company that is currently supplying many Finnish

9

waterworks with a new customer information system [8]. In 2018, they already had

supplied multiple waterworks with their information systems (IS). Their goal is to

provide unified information systems for as many Finnish waterworks as possible and

to decrease the number of different systems needed to manage a waterworks as a

business. Because of their connection to many waterworks, Vesitieto Oy was able to

initialize an ambitious project for a unified and standardized data gathering system.

1.2. Description

The aim of this study is to create a foundation for Dataservice software for

waterworks data management and gathering. Data will be gathered from smart water

meters via the internet. This data-gathering software will be implemented for

Suomen Vesitieto Oy and it will be part of, or more accurately, working adjacent

with, their customer and invoicing software. Even when the systems can cooperate,

the goal is to create a stand-alone system without the Vesitieto IS. Thus, creating an

information system for waterworks with or without Vesitieto IS. The designed and

implemented data gathering service software is later referenced as Dataservice.

 Dataservice itself is a web-service application that gathers data from different

sources like smart water meters, different grid sensors, and open-source data

providers. It includes the user interface, application interface, and a storage system.

The goal of Dataservice is to be a Software-as-a-Service (SaaS) platform, where data

is distributed to different vendors, like customer portals, invoicing systems and

customer information management systems. These systems are able to retrieve

gathered data from Dataservice, and Dataservice acts as a data center for each

system.

Dataservice will be a distributed system, operating within cloud storage.

Important aspects of this study are to conclude the best cloud vendor for Dataservice,

create a suitable requirement set and provide a reference architecture.

Data gathering software will collect data over the internet sent by smart water

meters or other smart devices connected to the Internet of Things (IoT). The sent

arithmetic data is collected and stored in a cloud service where the system has been

deployed. From the cloud service, the data can be processed and analyzed. The

analyzed data can then be shown to waterworks employees to help them manage

their jobs. The overlay of the whole system has been displayed in Figure 1 below.

10

Figure 1: Web-service overlay for Dataservice.

The SaaS web-service consists of three different areas, the back-end, front-end, and

the Smart-end. The front end means basically the user interface (UI) of the system as

well as some minor client-sided data manipulations and visualizations. The back-end

is the database, business layer logic (BLL) and the application program interface

(API). The API is the main hub for the system, and it handles all the requests coming

to the system. It is a vital point of integration between the system and any external or

internal software. The BLL-component holds some data validation and processing

functions and is considered to be the main data handler. The database is only storage

for data, but still a crucial point for IS success. Although there are many arithmetic

operations done inside the BLL, the main data manipulations and analysis are done

within the smart-end by machine learning (ML) algorithms, Artificial intelligence

(AI) agents and data analysis tools. These tools could be external applications like

MATLAB or internal code libraries.

As seen in the system overlay, all these areas need to be connected together. The

web-service itself is also connected to the IoT network and is able to receive data

from IoT devices. Together, the devices and the web-service form a symbiosis. None

of these areas can fully function without the other. When symbiosis between each

different component is completed, Dataservice can be called an information system

(IS) [9, 10].

The important thing to notice about this study is that the study is limited to clean

water, smart water meters. However, the real Dataservice will also include other

sensory data and IoT devices as well. In the scope of this study, it is adequate to limit

the research to only smart water meters and clean water, as the concept of IoT is the

same for other devices. Of course, there are different challenges to overcome when

dealing with wastewater, for example. In this study, the devices are seen as entities

that send validated data successfully. In addition to receiving data, Dataservice needs

to register and identify each broadcasting device. The process of registering devices

and gathering data to Dataservice will follow relatively standardized methods, thus,

the processes are studied with smart water meters.

11

1.3. Disclaimer for cooperation

This study lays the foundation for Dataservice software. The goal is to initialize a

working software that can be implemented further. There is currently available

another study that will display the user interface and front-end of the software. This

study is done by Mr. Markus Heino [11]. In the future, the current project will

feature more sophisticated methods for data analysis. As the implementation for the

project has only begun, it is more reasonable to invest in software development.

When development project reaches adequate state. A study will be conducted to find

suitable machine learning (ML) algorithms and artificial intelligence (AI) tools.

12

2. STATE OF ART

Smart water meters have been available for Finnish waterworks for a few years now,

even though not many of waterworks have utilized them fully. Smart water meters

introduce a new digitalization opportunity for waterworks, namely, the Internet of

Things (IoT). Finnish waterworks are not highly digitalized and the concept of IoT is

just surfacing to their business field. Waterworks have just scratched the surface of

the possibilities of IoT and digitalization.

2.1. IoT

The internet is coming more and more accessible around the world. Only the most

remote places lack reception these days. This growing robustness of the internet

network layer has been the basis for more devices to be connected to the internet,

creating a phenomenon called Internet of Things (IoT).

2.1.1. Description

Internet of things (IoT) is a concept introduced by Kevin Ashton in 1999 [12]. IoT

network means a network where different devices are connected and are

communicating with each other. The devices are connected to the internet by

embedding measurement sensors with network connection technology. The term IoT

is fairly commonly linked to ubiquitous computing (ubicomp), as there are many

inventions that require data traffic and other communications. It has been argued that

IoT and cloud computing are the two main actuators of ubicomp [13]. IoT

communications happen over the internet layer of communications, hence it has been

called the internet of everything or industrial internet [14, 15].

2.1.2. Connections and protocols

Different IoT devices have many different use cases, so there are many different

options on how they need to function, other devices use Bluetooth connections, still

others require more reliable and long-distance communication methods [16, 17].

Probably, the most common form of IoT data transfer protocol for any pedestrian is

Bluetooth, as it is widely used in modern devices. It is used in short distance wireless

communications and it has grown a more common technology with smartphones [18,

19]. Even if Bluetooth is a versatile technology, it has its limits. Bluetooth has a

short-range and is not the most stable connection. Also, the current rising trend in

security awareness has shed light on many Bluetooth security risks [33].

An ISO standard for data transfer protocol that is currently used in many IoT

devices and different networks is Message Queuing Telemetry Transport (MQTT).

The MQTT works over the existing TCP/IP layer. The system has multiple nodes,

which connect to a single broker. For Bluetooth connections, there has been created a

variant for MQTT called MQTT-S. [20, 21]

Because water meters are placed inside or even underground, the communication

medium must be strong enough to penetrate through walls and soil. Currently, many

water meter manufacturers are using LoRaWan connections with smart water meters.

13

LoRaWan is a type of LPWAN networks, LPWAN stands for Low Power Wide area

networking protocol. It has almost a 10km broadcasting range and inside the Europe

region, the LoRaWan operates between 433-915 MHz. The LoRaWan has been

explicitly developed for battery-powered devices to connect to the Internet of Things.

Much like IEEE is managing the World Wide Web, the LoRa Alliance is managing

the LoRaWan [22, 23].

 It is possible to configure LoRaWan devices to use a MQTT-protocol. LoRaWan

devices will need a common gateway that is using the MQTT broker. Devices are

connected to a single gateway and the gateway will use MQTT to transfer data

beyond the gateway. Using both MQTT and LoRaWan will isolate devices because

they cannot see beyond the gateway. [24]

Digita Oy is one of the Finnish companies that provides a LoRaWan network

[25]. Currently, Digita Oy is the biggest service provider in Finland, but most likely,

other service providers will emerge in the future.

2.2. Big data

A database of the size of 1Tb cannot be described as a big data database. Even if the

database has 100Tb, it may not be a big data database. Big data is not only defined

by the sheer volume of the bits. Big data is a highly abstract concept with four

identified characteristics: Volume, Variety, Velocity, and Value. These

characteristics are known as the 4 V’s [26]. The data is in massive volumes and it is

not possible to process all of it at the same time within a reasonable time limit. When

dealing with smart water meters, Dataservice does not need to handle all of the water

meter readings and water meters at the same time.

The data is of a different variety. The different devices and sensors send different

measurements, so the data is heterogeneous. Different data objects have different

sizes and attributes. This creates a major dilemma for database designing.

The amount of data is increasing at a certain velocity. Smart IoT devices send

requests periodically and as needed. The amount of data received raises with each

IoT device connected to the system, so does the velocity of the data, as requests are

piling up.

The ability to create value from the gathered data is the main goal of Dataservice.

The value lies not only in the single data entry, but also in the bigger picture. With a

large enough data pool, it is possible to analyze the data and possibly make minor

predictions or projections of the real world. Some of these methods have been

utilized already in smart farming, for example [27]. Another method of utilizing big

data is to create a real-time model of the real world, this method has been studied in

several cities [28].

2.3. Cloud services

When dealing with large quantities of data, it is not justified to use personal

computers for computing. Nor is it cost-efficient to build and manage one’s own

server room to reach sufficient computing power. There are many international

companies that provide Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service

(IaaS) options. Many international companies have developed a PaaS and IaaS cloud

computing services, and the three most used ones are, Amazon web services (AWS),

Microsoft Azure and Google Cloud. Their business model allows anyone to build

14

their software on their cloud servers and they provide the needed computing power

for the software. This method is called cloud computing. [29, 30, 31]

Cloud computing also provides an easy way to ensure scalability and enables the

software to become a distributed system. However, it is not just computing power

that is needed from these vendors. Dataservice will require an increasing amount of

disk space as well. As the databases grow larger and larger, it is mandatory to invest

in the scalability of the database, as well as the software distribution. While using

cloud vendors, it is just a trivial question of money and disk space can be scaled up

[32]. Another benefit from cloud vendors is that the largest ones, Google, Amazon,

and Microsoft, also provide a Machine Learning (ML) support on their respective

platforms. [30, 34]

Vesitieto Oy has concluded that this Dataservice system will be uploaded to

Microsoft Azure. The reason for choosing Azure was that Vesitieto Oy has already

done software on Azure. Also, Azure allows the usage of MongoDB. MongoDB is a

modern distributed document database that utilizes JSON-like documents as data sets

[35]. It can be argued that there are better options for NoSQL database engines, like

TimescaleDB, etc. which have faster performance. But in Dataservice, it is more

benefiting to prioritize the database query speed over writing speed [36].

2.4. Meter manufacturers

With smart water meters, it will be possible to display even real-time data. But not

just water meter reading data, modern smart water meters are also able to measure

even more aspects, like pressure, flow speed and temperature [37, 38]. The diversity

of sensors and models provides few challenges for Dataservice developers.

One of the biggest challenges for Dataservice is the heterogeneity of the smart

water meters. There is no real standardization between different manufacturers, and

as a consequence, each has its own designs. The heterogeneity provides a challenge

because the receiving end needs to be able to handle every water meter

manufacturer’s data and import that data to the database. Handling different data

structures is an elementary function for Dataservice, as the data needs to be stored in

somewhat homogeneous data models. In the future, one optimistic goal for

Dataservice could be the standardization of smart water meter models. The challenge

of heterogeneity does not limit only to smart water meters, when other sensor types

are added to the network, the challenge grows exponentially burdensome.

Currently, in Finland, there are not so many installed water meters which are

connected to any network. There are traditional analog water meters, or the

connected meters are not transferring data. Therefore, the data is not accessible to

waterworks employees. Other than waterworks employees, the data can be useful to

consumers, water meter manufacturers, and mechanics. The lack of data provides

another challenge; Dataservice is not much of service when there is no data to

analyze, of course. Luckily, the trend today is that many of new installed or changed

water meters are capable of data transfer. Currently, Finnish waterworks are

purchasing smart water meters from Axioma, Kamstrup, and other manufacturers

and distributors.

15

2.5. Waterworks currently

Waterworks aim to be more productive, but more importantly, waterworks value

their quality and reliability. The Waterworks’ main goal is to provide clean water for

the city and the people around them. This means their business is quality-critical

more than quantity-critical. Waterworks want to manage their product quality. The

aim of Dataservice is to ease managing the waterworks quality of service (QoS).

In Finland, waterworks are part of the public sector and are seen as the country’s

infrastructure. Thus, there is no competition between waterworks. The lack of

competition leads to a lack of innovation. Currently, many Finnish waterworks are

analyzing their yearly water consumptions and other values using well-composed

excel sheets or even by paper. For example, a local waterworks of Oulu, Oulun Vesi,

has begun converting their water meters to smart water meters in 2018. In contrast to

Oulun Vesi, Oulun Energia had converted all of their water meters to smart water

meters already in 2012 [39, 40].

It is uncertain why the waterworks industry is dragging on, instead of updating

their tools. It certainly is not because of a lack of choice or tools. For example, a

company called TaKaDu is providing a highly flexible grid visualization tool and it

is already in use in some Finnish heating plants [41].

2.6. Waterworks regulations

The government has settled some laws for the waterworks quality of service (QoS).

The laws ensure that every person has access to sustainable water sources and that

the environmental ideologies are successful. The business model for waterworks is

regulated with local laws and regulations. In Finland, public sector institutions are

mandated with local regulations as well as country laws. These regulations could

vary based on the city’s local politics. These regulations deal with QoS, availability

and other qualities for waterworks and pipe grids. QoS for waterworks roughly

includes the actual quality of the water, as it needs to be constantly monitored for

impurities or bacteria. The Finnish legislative administrator states that each Finnish

person has a right to clean tap water. The water needs to be reasonably accessible

with reasonable expenses. The first mandate of the water management act also states

that the sanitation must be adequately implemented. [42]

2.6.1. European Union’s regulations

Other than local governments, regulations can come from higher instances. The EU

has enacted many different directives and regulations that need to be followed. The

EU has not yet directed any mandates that precisely consider waterworks, but it has

given a guideline or a blueprint for safeguarding Europe’s water resources. [43]

Another directive, implemented by the EU, for information systems is recently

actualized general data protection regulation (GDPR). GDPR was created by the EU

in 2018 and all European or European localized web-applications or storage systems

needed to be finalized accordingly by 25.5.2018. The GDPR was implemented for

better internet data safety. The goal was to prevent unnecessary security breaches

inside databases that hold personal data. Personal data is any piece of data that can be

used to single out any real person or their family. In Finland, the GDPR did not cause

16

as many actions as in other countries, since our internet regulations were already

covering this clausal. Also, the GDPR obligated the personal database owners to

provide a statement of usage and reason for the stored personal data. [44]

Because Dataservice holds and processes personal data of natural persons, it is

legally seen as a personal information database. Thus, Dataservice must uphold the

relatable new GDPR. The GDPR dictates that the data gathered within the EU or

European Economic Area (EEA) must stay within that geological area. Another thing

Dataservice needs to fulfill is the data gathering agreement with the users. The data

of any natural person must be pseudo-anonymized and any person has a right of

access and a right of erasure for their data. Therefore, the system must be able to

delete and retrieve data for a single water meter or a single person. [44].

17

3. REQUIREMENTS

Dataservice must be designed as a stand-alone service. One major function is to

support Waterworks using the Vesitieto system, but the system is designed as a

service. At first, the primary users for Dataservice are waterworks office employees,

like customer support or invoicing. However, in the future, Dataservice will be

accessible for many different organizations like water meter manufacturers, different

data transfer service providers and even for government officials.

At this point in time, supporting the Vesitieto system is the main function for

Dataservice from the business point of view. In the future, things will need to evolve

further, as it is not financially sustainable to design a whole system just as a support

for another system. Especially when both of the systems are designed in the same

company.

3.1. Use cases

 Similar to most large ISs, there are many different use cases, hence there should be

implemented many user groups and user roles. However, a user viewing visualized

data on their device is a typical use case for the data gathering applications. The aim

of Dataservice as an application is to gather all of the consumption information

currently received by the Vesitieto web-applications in one place. This centralized

data gathering allows performing more complex data analytics, as there is more data

available. And in most cases, more data means more predictability. Other use cases

for Dataservice are data providing for invoicing, data storing and data gathering.

The most important use case for Dataservice is the gathering of device messages,

this use case is displayed in Figure 2. An IoT device, a smart water meter, in this

case, is sending its current reading through LoRaWan. The LoRaWan service

provider carries the message to Dataservice API. The device manufacturer is

identified from the message, as the manufacturer can use different message

encodings in their device messages. With the manufacturer’s decoder, it is possible

to decode the message. The water meter needs to be identified from the message, to

ensure data integrity. When the manufacturer or water meter could not be identified,

the message must still be saved in the database. Therefore, the system features an

unidentified messages table, where all problematic messages are stored.

This unidentified message storage ensures better data integrity, as the messages

are not discarded in unexpected situations. These situations could happen when

manufacturers or LoRaWan service providers change their data encoding or when the

system suffers from bad internet quality. These unidentified messages must be

identified somehow. With advanced machine learning algorithms, it is possible to

automate the problem solving, but for now, the identifying is made by hand.

18

Figure 2: Receiving a device message.

Dataservice creates business value for stakeholders by helping the invoicing

process, this use case is displayed in Figure 3 below. Dataservice will be integrated

into Vesitieto invoicing system as a data provider. When an employee is invoicing a

consumption place, he will need the installed water meter identification number, in

order to identify the water meter. With the water meter number, the Vesitieto system

can request water meters consumption data. This data is then utilized in the invoicing

process. The invoicing itself is made in the Vesitieto system, but the consumption

history for each water meter will be provided from Dataservice.

Figure 3: Invoicing use case.

19

Active management of numerous water meters requires easily accessible

information of geological, historical and financial data. Geological data means that

there is some sort of map interface for the user or at least some knowledge of the

water meters’ region. Historical data holds the water meter installation dates, the next

scheduled meter change date, and different accuracy data. Financial data, on the

other hand, tells a slightly different tale such as who has paid the bill for certain

meters and who are the stakeholders for different water meters.

These measurements help the waterworks workers to deduce and plan the next

area, where they need to change multiple water meters. The ideal scenario for

Dataservice is that the user could inspect and plan the water meter changes by region.

This regional change scheduling is a common procedure for many waterworks.

Most use cases described above are just for waterworks management purposes.

However, the business model does not need to limit to waterworks. It can be argued

that water meter manufacturers are also interested in their product's performance

data. Thus, Dataservice must support data availability for manufacturers, as well as

waterworks.

Dataservice has many different use cases for different actors. The use cases vary

from the waterworks management to informing the local authorities if something is

wrong in the water supplies. It is safe to assume that this many functionalities are not

something that could be implemented overnight. Keeping this in mind, the scope of

this study has been narrowed down to just one group of actors, the waterworks

employees. The functionalities of the use cases have been limited to water meters.

However, it is imperative to plan Dataservice according to future development.

3.2. Functionalities

As a part of digitalization Finnish waterworks, Allied ICT Finland (AIF) has started

an undertaking with the title “Water Ecosystem - Vesilaitosten digitalisointia”. In

one of their workshops, the agenda was to identify different goals and hindrances for

digitalization. These goals can be further generalized as four major requirement

categories:

1. Business

2. Data

3. Data transfer and integration

4. Security

Each category has been identified and validated in the AIF workshop. These are

the most critical aspects of any IS supplied to waterworks. By following these points,

supplied IS has more ground to become successful. [45]

3.3. Business requirements

What makes Dataservice application successful from a business point of view? The

system must obviously provide some profit or other financial value for the

waterworks or organization. This is not always easy to pinpoint as there are many

different ways to measure financial value. Financial value can be indirect, like

positive headlines on newspapers, or physical investments in infrastructure.

20

Managing the waterworks infrastructure is just one way of creating business value,

but other stakeholders have different needs. Waterworks human resources

management has very different requirements and interests compared to grid

management personnel. By creating business value for other stakeholders as well,

acquiring Dataservice could be justified by waterworks. However, there are some

overlapping interests as well. For example, the grid management and customer

service workers might want to see the consumption places over a map. It is wise to

design these overlapping interest points for both user groups.

The one quantitative attribute is the amount of money saved. Money can be saved

by optimizing work methods or cut the amount of losses. When speaking of

waterworks, leakages create losses. Dataservice should help the users to prevent or at

least localize leakages inside their pipe grids. Managing the water grid can be seen as

the primary object for waterworks, as it is the only way to keep their QoS at a

mandatory level. Easing the grid management creates indirect value for the business,

in the form of time and more productive work hours. Management easing could

include something like visualizing the grid in real-time and highlighting the pipes

that are behaving unnaturally. In the future, it could be possible to even display 3D-

models or VR-models of the grids.

The most fatal error for the waterworks business model is when the quality of

their service drops. A QoS drop can mean situations when there is no more water for

consumption places, or the water is not usable for households. In the future,

Dataservice aims to prevent these critical errors. Preventions can be done with risk

assessments and periodical management. Dataservice will need highly sophisticated

machine learning algorithms in order to be able to do these predictions. Making these

predictions and assessments more accurate will allow Dataservice to have business

value for any stakeholder. It is cheaper to prevent a catastrophe than fixing one.

3.4. Data requirements

Without data, Dataservice is nothing, but when there is data, the system must ensure

that the data is correct and intact. Even correct and validated data is not always

enough, as in some cases, data is time-sensitive. It makes a huge difference if the

information about a leakage comes after 4 hours instead of 4 seconds. Dataservice

needs multiple validation mechanisms to provide the most accurate and validated

data with enough certainty.

For Dataservice application, different database engines have been studied [46,

47]. The studies revealed that for large heterogeneous datasets, an unstructured

database schema is a more viable option [48, 49, 50]. However, it can be argued, that

structured databases are quicker when dealing with smaller (not big data) sized data

sets. Thus, the system architecture will be two-folded. The short time storage will be

implemented with each data point as is, and the long-term storage will be created as

NoSQL time-series data buckets. Time-series data means that instead of saving many

single data points of an item, the system gathers one large “bucket” of individual

points. This bucket is then saved on the database as a single item.

For example, the system needs to save a water meter reading once a day for a

month. When using a normal database schema, at the end of a month, they would

have 30 data points on their database. But if they would use a time-series data

schema, they would have a single data point with 30 smaller data objects inside that

21

point. An example of time-series bucketing is presented in Figures 4 and 5, Figure 4

as non-bucketed data and Figure 5 as bucketed data.

The benefit of time-series bucketing lies in scalability in both ways. It is possible

to scale the time-series as hourly or even minutely measured data. The same

principles are true in every bucketing intervals. It is encouraged to include all smaller

scale buckets inside the larger bucket. For example, if there is a bucket with 1-minute

intervals, those buckets should be stored inside a bucket for the respective hour.

Thus, the database has a continuum of linear data that is possible to unpack with

highly specific timestamps.

However, time-series bucketing does have an issue, if a device is sending requests

on deviating intervals, instead of predetermined intervals. In this case, the time

buckets could have an excessive amount of empty data points. Consider the

following example:

 let ”b” be the time-series bucketing with time interval “t” and B is the bucket one

layer above the first bucket with time interval T. If the first request comes at the start

of the bucketing interval t=0, it can be stored inside the mentioned bucket. Now, if

the next request comes at, t >= 2, the time bucket has no values inside the t=1 This

has two different solutions. One is to just leave an empty value in t=1, but this fills

the database with many empty values that are not usable. The other solution is to not

add the t=1 bucket at all. By not adding the t=1 bucket, we only store actual data

inside the database.

Neither of these solutions, however, can guarantee that the device is functioning

properly. If the device has stopped sending requests, there is no data on when the

device has sent the latest un-successful request. Because of this, the database must

provide a feature where all of the income device requests are stored. This way, the

data integrity will be held up. The request database only stores the incoming byte-

array with some metadata to identify perhaps the sender and a timestamp for the

request.

Figure 4: Each received request has its own data point.

22

Figure 5: Each hour has a single data point inside one bucket.

3.4.1. Long Term storage database and short storage database

After some time, it is inevitable that the gathered data is no longer relevant to see on

a daily basis. Dataservice will implement long-term storage functionality as a part of

the 4th category, data management. The point of this long-term storage is that the

data is no longer used but is still stored and therefore it is not lost. However, the data

will be stored in a bit different form. The long-term storage will implement time-

series transformation. The transformation is done for each meter and on each month

and day. This bucketing will decrease the amount of individual data points inside the

table; thus, it also decreases the retrieve times [51, 52, 36] Along with decreasing

retrieval times, the system will also implement long-term and short-term storage,

division. The short -term storage will store new data and the long-term storage will

store the rest of the data in time-series buckets. The division between the new and

older data allows managing the costs of the storage. Long-term storage will be

written on slower Hard Disk Drive (HDD) and the short-term storage will be stored

on faster Solid-State Drive (SSD) [53]. In general, SSD costs more than HDD, thus it

will be cheaper to store large amounts of old data in HDD. Short-term storage will be

used to retrieve almost real-time and real-time data. In order to be able to provide

real-time data, the data retrievals need to be as fast as possible.

3.4.2. Data analysis point-of-view

Just saving and holding the data is one of the requirements, but it does not yet yield

anything of use. Dataservice must be able to do something useful with the data,

otherwise, it is only a glorified file cabinet. Gathered quantitative data needs to be

accessible for many different statistical or mathematical tools, coding languages,

software, and engines, like Python, MATLAB or R. From these external tools, it is

easier to draw conclusions or models, as these tools are designed for that purpose

unlike the back-end of Dataservice. [54]

Using the latest techniques, it is possible to implement external and internal

interfaces from Dataservice to data analysis tools and software. For example, it is

possible to export certain data to excel sheets or other file formats, and then convert

that file again to MATLAB or other similar software designed for analysis. If

23

necessary, it is even possible to implement one’s own data analysis tools with

external components. However, implementing own tools inside the system is not the

most cost-efficient solution, as it requires multiple work hours depending on the

project. Hence, it is wise to choose to implement interfaces cautiously.

3.5. Data transfer requirements

Our system must be able to handle multiple overlapping HTTP (Hypertext transfer

protocol) requests at any time. Because of this, the API should be implemented using

a stateless Representational State Transfer (REST) architecture. As a stateless

service, the system does not save current session information and all relevant data

comes with each request. By using a stateless REST API, Dataservice allows its API

to serve multiple clients at the same time. [55]

Furthermore, as each request will be handled by itself, it prevents the data to be

corrupted on mixed up. Still, it is imperative that the system handles the critical

section, namely the database, smoothly and securely. Critical section locking can be

handled through the Operating System (OS) or other underlying software. Usually,

the database provider has already implemented these locks, but it is safe to

implement the critical section carefully.

3.5.1. Receiving data

The biggest issue with data transfer is that the system needs to be able to receive

even an unknown message inside the database. The system needs to be able to

recover from any malfunctioning IoT device or requests. Handling any unknown

message is not something that needs to function with all of the messages that comes

knocking on the API’s door. Filtering out unauthorized requests is the easiest way to

handle junk from the web. After successful authorization, the system needs to decode

the request message.

24

Figure 6: Flow chart of receiving an IoT device message.

Figure 7: A sequence diagram of receiving an IoT device message.

25

A specified use case, receiving water meter reading, is displayed in Figure 2

above in Chapter 2. Additionally, a flow chart representing that use case is displayed

in Figure 6 and a sequence diagram in Figure 7. All other IoT device messages

follow more or less the same route.

Dataservice needs to be able to dynamically validate the connections and inputs.

Connecting the message with the correct IoT device is mandatory to process. If the

message cannot be connected with the correct device, the data cannot be ensured to

be intact anymore. This will drastically decrease Dataservice QoS. As stated below,

ensuring data integrity is one of the main requirements for the system.

3.6. Error handling

Nowadays, the internet is a highly reliable network with multiple error prevention

protocols, like checksums, cyclic redundancy checks, etc. [79]. Even with these

protocols, errors could occur in data transfers. Even if the error percentage is 0.01%,

it means 100kb when transferring 1Gb of data. This is something to consider when

dealing with big data data-transferring systems, as 1Gb of transferred data could

potentially happen under reasonable short time constraints [21].

One of the problems handling many different class structures is that the data types

and units can vary based on the sending end. For example, if one device uses a

timestamp in milliseconds, and the other one a timestamp in ticks, the constructed

date-object has different values, even if the timestamp is actually the same. This

needs to be accounted for when creating API interfaces for different IoT devices.

These problem areas can be solved with adequate project planning and by

designing and implementing a sufficient number of interfaces between systems.

While implementing interfaces, it should be kept in mind that interfaces are not

dynamic solutions. Any changes done to either the receiving or the requesting system

requires changes in the interfaces as well.

The importance of error handling can be seen in Figure 6. It is apparent that error

handling should be done excessively detailed. Wholesome error prevention and

recording allow the system to preserve data integrity even when all messages are not

saved correctly. An error could occur when there is too much data inside a message

or when there is not enough data inside a message. When an error occurs, or the

system does not recognize the device, the system must not discard the message.

Instead, the system must be able to logically deduce what is the unknown part of the

request and add a suitable fix. If no suitable fix is found, at least the system must

save the received message for further inspecting and alert users that an error has

occurred.

If message decoding cannot be done, the system can argue, with reasonable

certainty, that the request has been corrupted on transfer or the received message

source could not be authenticated. The system has no need for corrupted or

unauthorized messages, and these can be discarded. However, it might be beneficial

for maintenance to get a hold of these corrupted messages if they are recurring.

Arguably, even more important than error handling is the error logging. Suitable

and descriptive log messages should always be created in every error situation.

Excessive logging is the basis of updating and bug fixing of any system. As the web

services are deployed on some remote server, there are not many straightforward

methods for getting debug information out of the service. Arguably, the easiest way

26

is to generate error logs as errors occur. Logs can be stored inside the database or

even text files, whatever works best with the current technology and architecture.

Well-constructed logs help to identify any error-prone sections in the system and

provide insight into the errors. As time goes by, the logging can help the developers

to identify different error-prone sections and implement suitable fixes. However,

there are some issues to be concerned about, implementing logging can take multiple

work hours and finding a suitable logging method can be burdening. Also, as time

goes by, the number of logs increases. It should be noted within the implementing

that older log records can be removed or destroyed when they are outdated. This can

be done manually, but it is less boresome to implement some form of a digital

solution.

If, and when errors occur, the system should notify the corresponding user or

users. The notifying should be instant as the error has not had the time to multiply or

escalate yet. In the future, it is possible to implement suitable data validation

algorithms and data correcting tools based on the previous data. The mathematical

error-correcting could be utilized by an AI.

3.7. Integration and interface requirements

Dataservice’s two most important integration interfaces are the one with waterworks

current existing customer information system and the IoT input interface. It is

elementary that our system must be able to handle the evolving needs of both of

these techniques. The application programming interface (API) must be able to

handle different inputs from many different IoT sensors and it must provide and

support an unstructured dataset.

One of the major categories was integration into existing systems. It is imperative

that different systems are working together instead of having multiple adjacent

systems working independently. In a worst-case scenario, there are multiple systems

gathering the same data multiple times. The implemented system must provide an

API for waterworks current systems. This was one of the major categories identified

by the AIF workshop [45]. This means that all implemented systems and

functionalities should be able to exploit the existing systems and databases. The

importance of integration rises from the volume of different systems that are

currently overflooding waterworks employees. In a worst-case scenario, employees

might have an individual system for each of their tasks and then there is also an

application for monitoring working hours. Because of this surplus of applications and

systems, Dataservice must provide a means to lessen the number of needed systems

and not to become one on top of the pile.

If Dataservice only handles the IoT devices and their messages, the data analysis

will be arguably insufficient. As there are many different users using Dataservice,

they have different use cases. For example, a waterworks chief executive officer

(CEO) does not need to see the most accurate volumes for each different water meter

specified by date.

CEO wants to see the bigger picture and probably they want to use currency as

units instead of cubic meters or liters. A customer service employee instead wants to

see the customer's previous invoices, current consumption and maybe any future

scheduled tasks going for a single customer or few customers living geologically

close to each other. These kinds of specified needs raise a growing need for specified

27

data analysis, but it is not possible to provide the needed data if there is not enough

data to analyze.

Data analysis can be improved by adding some existing data from other systems.

These can be anything from customer data or invoicing data to work management

data. With additional data, the analysis can be done for many different user groups

and many different use cases. Successful integration with existing systems also

benefits Dataservice as a business.

It is much more easily accepted if the system does not require any data-

conversions before the system can be utilized fully. Currently, migrating from a

legacy IS to newer IS is burdensome because of the data conversions. According to

Vesitieto, each waterworks client has their own scheduled implementation project.

And in that schedule, the conversions take at least 50% of the complete schedule.

Even if the new IS has been already completed and tested, the conversions take a

long time in order to function properly.

Integrating with other systems can be time-consuming and stressful for a

developing point of view. Existing system providers could be less than enthusiastic

to open their projects. Even with open relationships, the integrations usually take

multiple work hours of planning, designing and implementing specific interfaces.

3.8. Security requirements

The system must be adequately secured as the database is classified as a personal

information database and Dataservice will be used for invoicing. Thus, it is

imperative to ensure data integrity and validation. It is crucial for the operation of

Dataservice to continuously be able to provide reliable and truthful data. Because

Dataservice is used for invoicing, the system must prevent any tampering of the

water meter readings or any modifications in water consumption. This roughly

means that maleficent outside force may not be able to tamper with saved data inside

or outside the system.

The Dataservice IS consists of the web-service and the IoT devices connected to

it. Thus, IoT devices are a relevant part of the system and therefore part of the

security designing [56]. However, in the scope of this study, the IoT device and

network provider security could be argued to be seen as adequate or at least

sufficient. Many taxonomies and approaches for IoT devices have been researched

more comprehensively in other studies [57, 58], 59]. Even with embedded security

functions, Dataservice should never just blindly accept the incoming requests as

valid and secured data.

3.8.1. Client authentication

As far as Dataservice is concerned, the IS security designing needs to be designed to

prevent any unauthorized users to gain access to the system or the data stored in the

database. Dataservice needs to fulfill all of the basic security requirements for any

web-applications may have, like user identification, client privacy, secure data

communications, and identity management. Additional to user handling, the system

needs to be resilient to outside attacks, both from the API and from the UI. Because

Dataservice will be hosted from Microsoft Azure hosting service, the

communication, and network security as well as system availability can be argued to

28

be fulfilled by the service provider. One reason for hosting Dataservice from

Microsoft Azure, or another cloud system provider, for that matter, is that they

ensure a secure execution environment for the system. Any tampering of IoT devices

or other physical security risks will be tackled through authentications and embedded

data integrity protocols. [60]

The most critical point of security is database securing. The system needs to be

able to provide successful data authentication, secure content and tamper resistance.

In order to provide a secured database, the system adopts client authorization filters

on all API endpoints. Authorization filtering will be implemented on both IoT

devices and end-users.

User authentication ensures that only registered and allowed users can receive or

modify the stored data. Requests that only receive the data can be noticeable more

liberal but when someone or something is adding, modifying or deleting data, the

requests need to be thoroughly inspected and verified. In order to filter out the

unverified or unauthorized requests, the system should also implement some sort of

user grouping policy. Generating user groups with access rights or licenses will be

the key aspect of Dataservice’s user filtering.

After successfully filtering unauthorized clients and clients without adequate

access-level, the data modification request can be inspected further. The first thing to

verify on each modify is that the data is valid. With IoT devices, the requests include

a hashed token string which can be used in message validation. Token strings

effectively hinder the man-in-the-middle type of attacks and package-loss errors [61].

The token is generated in the IoT device using the data inside the request and the

receiving end can verify the message payload as a valid message. Of course, token

strings are just one method to achieve validation, but as long as the secret hashing

seed is stored securely, the token is an effective validation method. [62]

29

4. IMPLEMENTATION

Implementation of Dataservice started adjacent to this study. The project

development started with designing as the needed state of the art study had

concluded. The first designing and requirements gathering was done by Vesitieto

collaborating with the AIF workshop and local waterworks [45]. The implementation

phase was done following the Agile software development method [63].

4.1. Architecture

Many IoT technology providers have created their own reference architectures for

IoT-systems [64]. The Dataservice architecture is greatly derived from Microsoft’s

and MongoDB’s reference architectures. The studied references did not limit to these

two, but the structure has been based on the two most similar architectures.

Microsoft’s architecture is presented in Figure 8 and MongoDB’s version can be

seen in Figure 9. When studied, these two architecture options were seen as similar

and the most useful in this case, as the implementation of this Vesitieto Dataservice

will be done using these technologies. Studying these architectures, it is obvious that

there are many common denominators in both reference architectures. [50, 65]

Data services architecture follows both of these reference architectures because

the architecture has been designed based on these two. The architecture was designed

by studying reference architectures and then identifying common denominators on

each architecture. These common aspects were gathered in Figure 10 as the

Dataservice reference architecture.

30

Figure 8: Microsoft Azure IoT Reference architecture.

In Microsoft’s presentation, there are three entities present, “Things”, “Insights”

and “Action”. These entities are encased within the Microsoft Azure. As the system

has been deployed to the Azure cloud, the system can be seen as a distributed system.

This provides the system the enhanced availability and a high error recovery rate.

Arguably distributing the system leads to many different problems like timing,

acknowledgments and data integrity [66]. It can be argued that these things will be

handled by the cloud provider, but it is still something to keep in mind. Furthermore,

this argument can be extended to security as well. If a system is deployed to the

cloud, the cloud provider needs to provide adequate security for their platform. Even

with platform security, it is still elementary to design security mechanisms for the

system. Especially in Dataservice, where data integrity and validity are business-

critical.

As stated above, the architecture consists of three entities. The first entity,

“Things”, is the IoT devices, software and hardware included. The IoT data transfer

can be implemented by using any applicable methods and is not the actual focus

point for the study. Because of that, IoT devices can be seen as a black-box entity,

where data is measured and then transferred correctly. The reason for this black-box

ideology comes from the amount of comprehensive, extensive and definite studies

already conducted in this field. [67, 68, 69]

For systems other than Dataservice, the data transfer is more heterogeneous as the

Vesitieto Dataservice relies on a third-party data transfer provider. This third-party

data transfer is a purely optional method for data transfer, but in this specific case, it

31

is more beneficial to rely on others than implementing own data transfer methods.

This enhances the system’s data transfer security and data integrity because the

gateway only takes the IoT devices messages and transfers them directly to the

Dataservice API. Dataservice will treat all IoT devices the same as the data transfer

comes through the same data transfer provider cloud gateway, ensuring more

consistent data handling.

Because of the third-party data transferring and network, the data traffic is

restricted as there are fewer clients connected to the network of choice. This, in its

turn, improves security and data integrity. Security improvement can be justified as

there are fewer potential threats or maleficent clients connected to the network and

therefore there are fewer potential threats available. On the other hand, if there is a

maleficent client connected to the restricted network, the client probably possesses

more threats or skills than an average client in an open network. Additionally, the

same security concerns as in cloud deployment are important here as well: the third-

party network has, or should have, implemented its own security layers in their

service.

The second entity, “Insights” holds the key elements for this architecture. As the

data arrives through gateways, the system should analyze and standardize the data

into suitable models. These models can be then used in reporting, processing, and in

UI.

As described above, the Dataservice data storage is two-folded SQL and NoSQL

storage. The NoSQL storage is also divided into two, the long-term storage, or cold

path storage, and the short-term storage, or warm path storage. The long-term storage

holds the bucketed time-series and the short-term storage the more recent and live

datasets. This method of implementation allows live data inspecting with more

accuracy. The benefits of the architecture model lie in warm and cold storage. The

smaller size of the warm storage enables high-speed transactions to warm storage,

thus making the web service more user-friendly and the data retrievals take less time.

The separation between warm and cold storage creates more cost-efficient services.

The warm storage needs a costly high-speed disk space, but the cold storage can be

stored in inexpensive slower disk space. This decreases the system’s upkeep costs.

The third entity “Action” holds the actual data analysis and reporting. Actions

utilize the data gathered by the insight entity and yields a human-readable, analyzed

data instead of raw data. This processed data is the main business enabler of

Dataservice. It is elementary that the analysis, validation, and processing of the raw

data is kept under control and implemented with vigorous testing. Integrating

different analysis software, like excel-sheets or MATLAB, or even data analysis

libraries must be allowed. Possible integration interfaces are not necessary before the

need arises, but the system must be able to provide the needed interfaces when the

time comes.

Other than external data analysis tools and methods, the system could be

integrated with ML algorithms, Implementing and integrating the ML is also

something that is not necessary, nor crucial, from the beginning, but it is always wise

to plan ahead.

32

Figure 9: MongoDB IoT reference architecture.

MongoDB’s option has almost identical parts as the Microsoft. This arguably

helped the process of identifying common denominators. It has the same three

entities encapsulated within the application security methods. But unlike the

Microsoft reference architecture, MongoDB does not implement warm and cold

storage separation. Another difference between the two references lies in

integrations. The MongoDB architecture does not explicitly display any integrations,

but studying the Mongo cloud service, the system was able to integrate with their

own data analysis tools.

In the MongoDB’s solution, the IoT device management is included in the

“Things” entity as well. This is a noteworthy insight as the devices also need

physical management and not just digital configuration. Planning the device

management should be also noted in the Dataservice architecture as well. For

example, the management can be eased by adding GPS coordinates for each device

to locate the devices. Other methods can be estimated service intervals, photos of the

installation and notes of the device.

33

Figure 10: Dataservice reference architecture.

In Figure 10, is presented the Dataservice reference architecture included with the

same three entities as both of the previous architectures. The “Things” entity holds

all of the data gathering methods and device management. Devices, smart water

meters, are connected to the system through IoT network, LoRaWan, thus able to

transfer data to the Dataservice API (DS API). The “Storage” system receives,

validates and processes the incoming data streams and stores the validated data to

short-term storage. Additionally, the data streams can be stored in the original data

storage as is in byte format, so that the data can be validated even after some time.

Because the short-term storage is designed to hold only the most recent data and it

uses only fast disk space, the Short-term storage can also be seen as live data storage.

Live data streaming is arguably overkilling in most cases when speaking of smart

water meters and water consumption, but in the future, the use case for live data

could arise. In order to save the more costly short-term storage space, the data must

be transferred to long-term storage. Allocating to the long-term storage happens

through time-series bucketing functions described above.

Dataservice API yields an open interface for the Dataservice web-application.

Through the client application, the data can be visualized and analyzed further.

Client app will be the main portal for Dataservice users. Through the client

application, users can generate reports and even operate automated analysis tools. In

the future, it could be possible even to automatically generate simple AIs to specific

tasks through the client application. In addition to reporting and visualization, the

Dataservice API should provide an interface for data exports. Exporting via different

formats is one of the integration requirements described, but it is not yet apparent

what are the used mediums or formats. Possibly, in the future, the data can be

retrieved automatically through the API itself and no export mediums are needed.

34

4.2. Database

Implementing and designing a database is the most crucial aspect of the system. The

first decided attribute for Dataservice was the database schemas. As the Dataservice

operation time is aimed to be many years, we needed to consider the long-term

storage and implement the database accordingly. It is mandatory for the system to be

vertically scalable, and it needs to be able to adapt to the real-world changing

requirements.

4.2.1. SQL or NoSQL

Structured Query Language (SQL) is a database query language, or more accurately,

it is the syntax that has taken over. It relies on well-structured database relations and

interacts through those related schemas. SQL can be used in most common database

engines as is. [70]

NoSQL means, as the name implies, quite literally not only SQL database

schema. The basic idea is that the management system or the database engine does

not care what is inside the tables. NoSQL databases have few key features, but for

this system, arguably the most important is the ability to dynamically add new

attributes to datasets. [71] Dynamic adding allows the system to evolve, adapt and

overcome the different requirements and payloads from different devices. This

ensures the continuous evolvement of the system [50].

Because Dataservice has both static classes, like users and user groups, it benefits

from using the traditionally structured data relations. However, the unstructured and

possible evolving structure for IoT devices dictates that the system utilizes a non-

relative database schema. This dilemma can be compromised by using a two-folded

database. In this case, the more static and permanent data structures are stored inside

the SQL database and the more dynamic structures inside the NoSQL database. This

two-fold schema allows pinpointing the best methods and functionalities from both,

SQL and NoSQL schemas. The system could have been implemented using only the

other SQL or NoSQL database schemas, but it was deemed more beneficial to store

the sensor models inside the NoSQL and the more static models inside the SQL. [72]

Using SQL for the static models enables the system to use more configurable

database queries and SQL standards. Using a relational database allows the database

to be normalized and distributed if necessary. Also, the relational database schema

ensures there is no duplicate data, thus increasing the data accuracy and integrity.

The relational database supports complex queries and provides multiple users to

access the database at the same time. [72]

Arguably two-folding the database also doubles the upkeep for the system. The

development team needs to be able to design, implement and update both databases.

It is also noted that developing a SQL database and a NoSQL database are not

similar processes, this could mean that the developers need to invest more time over

the other implementation. Developers might have a better knowledge of other

structures than the other and this could lead potentially to some avoidable security

issues. Two databases mean that the maintenance workload doubles as well. Backups

need to be made on both databases and any integrity tests need to be converted to

others as well.

35

4.2.2. Database design

As stated above, the development project follows an agile spiral methodology. This

can be witnessed, especially in database designing. The designing begins by selecting

the database schema. In this case, Dataservice will have a two-fold database system;

the system data will be inside the SQL database and the IoT data will be inside the

NoSQL database. System data includes any objects that have mostly constant

relations with each other, like users, user groups and users’ rights inside the system.

IoT data, on the other hand, will include all of the different sensors, like water meters

or temperature sensors, as well as the IoT devices communication messages. These

heterogeneous sensor models are more suitable for the NoSQL database.

With SQL relational databases, the key aspect of the database implementation and

design is to plan ahead. The database needs to provide an unhindered base for future

development. It is possible to change database schemas after the first design, but it

could be burdensome work, especially if the system is in use and needs migrations.

Thus, it is beneficial to plan ahead while designing the database schema and be

prepared for future development. For example, Dataservice will implement a

dynamic language option. Because of this, the language option has been already

designed into the database schema even though the functionality has not been

developed. With SQL databases, it is also beneficial to optimize the database.

Optimizing can be done manually or with external tools [73, 74 p.501-536].

With NoSQL databases, the designing is less time-consuming, as there are no

relations that need optimizing. However, it is possible to optimize the queries and the

models inside the database. More important than optimizing, is choosing the right

tool for the system. Different NoSQL database engines have different use cases.

Different database engines are more suitable for different datasets. [75]

4.3. API

As stated above, the goal of this Dataservice is to function as a data distribution

center for many different systems. Therefore, Dataservice must provide a stable,

secure and straightforward application programming interface (API). An API usually

provides, as the name implies, an interface for data management over the Internet.

The main functions for API are: GET, POST, PUT, DELETE and PATCH. These are

also known as the HTTP (Hypertext transfer protocol) request headers or CRUD

functions (Create, Read, Update, and Delete). The most important objective of the

API is to be an interface between the client and the storage. The API will provide

CRUD functions for all of the needed objects. [55]

Another important aspect to implement and the document is the HTTP response

status codes. The status codes are described in Table 1 below. These status codes are

defined in HTTP standard RFC2116 [76]. The standards allow the API and the client

to work together and recover from errors. The status codes allow the server to send

its response to the correct path for the client to receive it. For example, if an error

occurs in the client, the response status code will be 400 or any other number below

499. Perhaps, the most known, and irritating, status code is the error code 404, “Not

Found”. It means that the requested resource was not found on the server.

Categorizing the status codes benefits the systems to be prepared for different

situations. A well-implemented system should be able to handle all of these

scenarios. Usually, it is not efficient to implement a handler for every exact status

36

code. The error codes are the most used ones and need the most handling, but the

informative codes are not as necessary for the client to recognize.

Table 1: HTTP response status codes [55]

Code Category Description

1xx Information Transfer layer information

2xx Success Successful request

3xx Redirection The client must take action to

complete the request

4xx Error on the client-side An error has occurred on the

client

5xx Error on the server-side An error has occurred on the

server

One of the most important aspects of API implementation and objectives is that

the API acts as a gateway for the client and the data storage. The API should be open

for all authorized users using the client application, but no other user may receive

data. However, the API should be able to send and receive requests from different

existing systems and devices as well as users. This versatility of different requesting

endpoint creates an inconvenience with the authorization and security. It is possible

to reject all but authenticated or predetermined requests, but every time some new

entity wants to join Dataservice, the entity, the API or in worst cases both need more

implementing and testing.

The challenges in API implementation lies in balancing with security and

functionality: the more open request routes, the more potential security threats, the

more allowed requests, the more potential security threats. Balancing these threats

and risks could be the key element for the success of the system.

4.4. Testing

Testing an IS can be done with three different testing techniques, i.e. white box, grey

box and black box testing [77]. White box testing focuses on the internal testing of

the system. In white-box testing, the tester does not care if the output is correct or not

and has no knowledge of the bigger picture of the IS. Black box testing, on the other

hand only, sees them as one unit that magically generates output from inputs. Grey

box testing, in its turn, tries to adapt the best of both worlds. The tester has limited

knowledge of the internal logic and the IS as a whole. Dataservice will most likely

utilize both white box and grey box testing techniques.

One thing that needs to be excessively tested is the API and IoT message

gathering. For this purpose, a virtual pseudo meter was created. It sends a genuine

packet over the internet in the same packet as any smart water meter would send, but

37

it generates pseudo data. This testing meter was created to test two things, first, the

actual data receiving, and second, to test live data streaming.

As Dataservice implementation is not completed while this study has been

concluded, the testing results are not visible here. Even so, the system will be

implemented as a code-first system and each functionality will include testing

functions as well. Currently, there are many external libraries suitable for excessive

functional testing, as well as usability tests [78].

4.5. Evaluation

As described earlier in this study, the main requirement for Dataservice is that it can

function independently as well as a support for Vesitieto invoicing IS. The system

was evaluated as a whole based on both the front-end and back-end testing. Those

tests resulted in some different qualitative results. Analysis of the results yielded a

confirmation for the requirements of Dataservice.

A comparative analysis and evaluation should include the same four aspects that

the requirements; business, data, data transfer, and security. These evaluation aspects

should be handled individually as there are different goals to fulfill in each aspect.

However, the evaluation could be accomplished as a single proof of concept

demonstration to client waterworks. Waterworks usually, like most companies and

organizations, publish their annual reports. One way for evaluating and verifying

Dataservice could be generating this annual report.

Even if the direct measurements are not easy to conduct, the amount of saved

money can be witnessed by comparing the current business outcome with previous

annual outcomes. Generating the business results for the annual report demonstrates

the business value for the system, as well as the data integration aspect. Calculating

the business outcome can be seen as a quantitative evaluation milestone.

Validating stored data can be done either with manual testing or through

implemented testing services. The goal is to proof within reason that the stored data

is valid. The stored data can be deemed valid if any new or old data set can be read,

added, updated and deleted correctly.

Evaluating data transferring and integrations is easily demonstrated by testing the

connections between external systems and interfaces. One evaluation goal could be

achieved by generating an extensive consumption report for the waterworks. The

report could include the geological breakdown for consumption, as well as whole

consumption.

Evaluating the security aspect is generally challenging as the concept of a secure

system is abstract. The security evaluation can be done by creating a risk assessment

table and to predetermine a suitable course of action for the most critical risks.

Dataservice will be presented for the target audience when the first iteration of the

software is completed. This early access will allow the actual users to influence on

the functionalities of the system. Engaging users early on the development allows the

users to develop certain connectivity with the software even before the completed

product. This enhances Dataservice change of success. Arguably, there is a danger of

the project to grow unexpectedly large and complex if the user requirements are not

controlled. Every functionality should be justified instead of just blindly accepted.

Further analyzing Dataservice as an information system, it is too early to tell if

Dataservice has been successful or not. ISS is not something that can be

quantitatively recorded or measured [9]. However, it is apparent that this kind of

38

service is needed as more and more smart water meters are installed and connected to

the IoT network. As the IS is developed and the first users are adopting the system, it

is important to enhance the user experience (UX). User experience can be described

as the will to use the system and the feeling the user is experiencing while interacting

with the system. UX can be improved with a better understanding of the user and

designing the user interface (UI) to match the user’s expectations. Even though UX

is a concept more targeted to the client and UI, it is beneficial to design the API and

data retrieval times to suit the UX. User experience and UI could be evaluated using

either qualitative or quantitative methods.

39

5. DISCUSSION

As Dataservice is still under the implementation phase, it is challenging to evaluate

its success as an information system. However, in the scope of this study, the current

stage of implementation looks promising. It is difficult to foresee the users’ attitudes

towards the system. In order to ensure the successful adaption for the system, the

project included multiple personnel from different waterworks.

5.1. Requirements

Gathering the four main requirements categories was done in the AIF workshop and

by interviewing two employees of Oulun Vesi. This insightful interaction with local

waterworks was deemed necessary as waterworks employees are the main user group

for Dataservice. The workshop yielded the four categories, and these were later

verified with the interview.

It can be argued that collecting the requirements in such a narrow user pool is

hindering, but the waterworks industry can be generalized in a few key aspects. Keep

the water clean, transfer the water to consumption places and transfer the wastewater

to purification plants. This generalized way of thinking enables the requirements to

be globalized to suit many waterworks. However, it is imperative to keep in mind

that even the same work processes may have different sub-processes included. These

sub-processes may vary between the waterworks and the implementation should not

hinder or prevent these sub-processes.

5.2. Implementation

The implementation process yielded the reference architecture displayed in Figure

10. The architecture was divided into three; Things, Storage and Action. Things

meant the IoT systems and data gateways, Storage is the actual data receiving,

storing and providing. Storage means the analysis of stored data. In the

implementation, the main focus was on developing a well-structured two-folded data

storage system.

The storage was divided into two, the relational database holds the more static

system management data, like users or system logs. The IoT data will be stored in a

NoSQL non-relational database. This allows the system to store deviating data

structures in the same database table. The NoSQL database has been divided into two

sections as well, the cold data storage and the warm data storage. Warm, or short-

term storage, holds more recent data or even the real-time data. Long-term storage on

the other hand stores the rest of the data. Short-term storage will be utilizing a faster

disk-speed than long-term storage. The conversion from short- to long-term storage

will be fully utilized in the future.

5.3. Evaluation

The evaluation of Dataservice’s first iteration did not yet yield any concrete

evidence. The evaluation was done by showing a demo for different waterworks and

smart water meter distributors. The audience consisted of users from different

40

designed user groups. One of the target audiences was the local waterworks

employees. The software was presented to them briefly followed by an interview.

The interview yielded a few improvements and ideas for future development. The

first iteration was then improved and modified based on the customers' feedback.

Even though no specific result was not found, nor expected, for that matter, the

general mood for the system was accepting and enthusiastic.

5.4. Improvements

The second iteration of Dataservice will be presented to many different organizations

dealing with smart water meters. Different meter manufacturers, network service

providers, waterworks and maybe even some government agencies will be

interviewed, and their insights are taken into consideration. The most valuable

insight, however, arguably comes from waterworks employees, as they are the main

user group for Dataservice.

 In the future, Dataservice might grow to even more versatile at data management.

And it might be distributed abroad and for many other business fields besides smart

water meters, like smart heating and smart electricity.

As for the study of the chosen database engines, the previous researches on the

subject was deemed adequate. In the scope of this study, the database engines were

only studied through state of the art. It can be argued that it would be more precise to

conduct one’s own research on the subject. However, inspecting the state of the art

ended in a reasonably justified ending. The same conclusion can be drawn on the

cloud vendors and state of the art.

5.5. Future development

As the actual implementation of Dataservice first iteration is under development,

there are still many open questions. The study cannot yet predict the volume, variety,

value or velocity of the incoming data. This creates an interesting dilemma for future

research. How to estimate the incoming data traffic and how to prepare for it from

the beginning. Another point of view for this problem could be how to configure

ones’s cloud service for big data traffic.

This study did yield a reference architecture and high-level requirements for the

smart water meter data gathering system. Future research could include more precise

implementation and requirements for smart water meter data gathering services

designed for waterworks.

As stated above, the state-of-the-art review on IoT devices and networks was

deemed adequate in the scope of this study as such Future research could include the

IoT device manufacturers and network providers in the implementation as well. An

interdisciplinary approach for the problem could provide more comprehensive

insights as well as new research proposals.

41

6. CONCLUSION

Finnish waterworks are significantly lacking digitized work methods. Although

FIWA has organized many multiorganizational projects to correct this deficiency, the

waterworks industry has not yet adopted the solutions available. One of the reasons

for this slow pace arguably lies in non-profit structures. Since many of the Finnish

waterworks are funded by the government, their business is not focused on creating

revenue or maximizing profits. Their main goal is to keep producing the freshwater.

Arguably, the lack of competition and demand is hindering the waterworks

digitalization process.

This study aimed to provide keen insight into the IoT data gathering system,

Dataservice. The study includes a set of requirements for the back-end of the system,

not including the user interface nor the IoT devices.

In this study are represented the key requirements for a smart water meter data

gathering service. These requirements were gathered by studying the state of art and

with qualitative analysis of the AIF water ecosystems workshop. Different reference

architectures, cloud service providers and database engines were inspected to provide

an efficient combination. The AIF workshop provided the needed insight for the

system requirements. The found requirements were categorized as the following:

1. Business requirements

2. Data and data integrity requirements

3. Data transfer and integration requirements

4. Security requirements

Following these categorized requirements, a reference architecture was designed.

The designed architecture was then refined as a software project by Suomen

Vesitieto Oy. The project, Dataservice, started in summer 2019 and it was

continuously implemented during and after this study. The implemented Dataservice

will be a SaaS web-service and it will be sold to different Finnish waterworks.

Dataservice version 1.0 will be completed somewhere in the late 2020. It will feature

a smart water meter data gathering and minor data analysis tools.

In the future, Dataservice could be provided even for local authorities for legal

and management purposes, or smart water meter manufacturers as a tool to manage

and inspect the performance of their products. Further improvements also include

opening communications for other sensors and IoT devices, as well as smart water

meters.

42

7. REFERENCES

[1] Vesilaitosyhdistys. URL: https://www.vvy.fi/ Accessed 5.8.2019.

[2] Goldstein H. (2010) Malta's Smart Grid Solution. URL:

https://spectrum.ieee.org/energy/environment/maltas-smart-grid-solution

Accessed 5.8.2019.

[3] Beal C. D. & Flynn J. (2015) Toward the digital water age: Survey and

case studies of Australian water utility smart-metering programs. Utilities

Policy, 32, 29-37.

[4] Gassert F., Luck M., Landis M., Reig P. & Shiao T. (2014) Aqueduct

global maps 2.1: Constructing decision-relevant global water risk

indicators. World Resources Institute, 31.

[5] Oracle. (2009) Smart Metering for Water Utilities. URL:

http://www.oracle.com/us/industries/utilities/046596.pdf Accessed

5.8.2019.

[6] Saarelainen A. (2016) Vesimittarit liittyvät esineiden internetiin

Helsingissä. URL: https://www.tivi.fi/uutiset/vesimittarit-liittyvat-

esineiden-internetiin-helsingissa/d054ba46-40ab-3f6c-bc89-1e362b4676cf

Accessed 5.8.2019.

[7] Katja Solla. (2014) Tuhannet asuntokohtaiset vesimittarit raksuttavat

tyhjää. Yle. URL: https://yle.fi/aihe/artikkeli/2014/01/29/vesimittarien-

kulut-syovat-rahalliset-hyodyt Accessed 5.8.2019.

[8] Suomen Vesitieto Oy. URL: https://vesitieto.fi/ Accessed 5.8.2019.

[9] DeLone W. H. & McLean E. R. (1992) Information systems success: The

quest for the dependent variable. Information systems research, 3(1): 60-

95.

[10] Alter S. (2008). Defining information systems as work systems:

implications for the IS field. European Journal of Information Systems,

17(5): 448-469.

[11] Heino, M. (2019) Tiedon hyödyntäminen ja visualisointi Datapalvelussa.

(Draft manuscript). Master’s thesis, University of Oulu, Department of

Computer Science and Engineering.

[12] Ashton K. (2009) That ‘internet of things’ thing. RFID journal, 22(7): 97-

114.

[13] Gubbi J., Buyya R., Marusic S. & Palaniswami M. (2013) Internet of

Things (IoT): A vision, architectural elements, and future directions.

Future generation computer systems, 29(7), 1645-1660.

43

[14] Lee I. & Lee K. (2015) The Internet of Things (IoT): Applications,

investments, and challenges for enterprises. Business Horizons, 58(4): 431-

440.

[15] Gilchrist A. (2016) Industry 4.0: the industrial internet of things. Apress.

[16] Chen M., Miao Y., Hao Y. & Hwang K. (2017) Narrow band internet of

things. IEEE access, 5: 20557-20577.

[17] Mahmoud M. S. & Mohamad A. A. (2016) A study of efficient power

consumption wireless communication techniques/modules for internet of

things (IoT) applications. Advances in Internet of Things, 6(2): 19–29.

[18] Suresh P., Daniel J. V., Parthasarathy V. & Aswathy R. H. (2014) A state

of the art review on the Internet of Things (IoT) history, technology and

fields of deployment. Proc. 2014 IEEE International conference on science

engineering and management research (ICSEMR). Chennai, India, 1-8.

[19] Gomez C., Oller J. & Paradells J. (2012) Overview and evaluation of

bluetooth low energy: An emerging low-power wireless technology.

Sensors, 12(9): 11734-11753.

[20] Hunkeler U., Truong H. L. & Stanford-Clark A. (2008) MQTT-S—A

publish/subscribe protocol for Wireless Sensor Networks. Proc. 2008 IEEE

3rd International Conference on Communication Systems Software and

Middleware and Workshops (COMSWARE'08). Bangalore, India, 791-

798.

[21] Chen Y. & Kunz T. (2016) Performance evaluation of IoT protocols under

a constrained wireless access network. Proc. 2016 IEEE International

Conference on Selected Topics in Mobile & Wireless Networking

(MoWNeT). Piscataway, NJ, USA 1-7.

[22] About LoRaWAN®. URL: https://lora-alliance.org/about-lorawan.

Accessed 1.10.2019.

[23] Augustin A., Yi J., Clausen T. & Townsley W. (2016) A study of LoRa:

Long range & low power networks for the internet of things. Sensors,

16(9), 1466.

[24] Huang A., Huang M., Shao Z., Zhang X., Wu, D. & Cao, C. (2019) A

Practical Marine Wireless Sensor Network Monitoring System Based on

LoRa and MQTT. arXiv preprint arXiv:1906.09571.

[25] Mikä on LoRaWAN? URL:

https://www.digita.fi/yrityksille/iot/mika_on_lorawan. Accessed

1.10.2019.

[26] Chen M., Mao S. & Liu Y. (2014) Big data: A survey. Mobile networks

and applications, 19(2): 171-209.

https://lora-alliance.org/about-lorawan
https://www.digita.fi/yrityksille/iot/mika_on_lorawan

44

[27] Wolfert S., Ge L., Verdouw C. & Bogaardt M. J. (2017) Big data in smart

farming–a review. Agricultural Systems, 153: 69-80.

[28] Kitchin R. (2014) The real-time city? Big data and smart urbanism.

GeoJournal, 79(1): 1-14.

[29] Mell P. & Grance T. (2011) The NIST definition of cloud computing.

NIST Special Publication 800 (2011) 7.

[30] Sikeridis D., Papapanagiotou I., Rimal B. P. & Devetsikiotis M. (2017) A

Comparative taxonomy and survey of public cloud infrastructure vendors.

arXiv preprint arXiv:1710.01476.

[31] Buyya R., Yeo C. S. & Venugopal S. (2008) Market-oriented cloud

computing: Vision, hype, and reality for delivering it services as

computing utilities. Proc. 2008 IEEE 10th IEEE International Conference

on High Performance Computing and Communications. Dalian, China, 5-

13.

[32] Cáceres J., Vaquero L. M., Rodero-Merino L., Polo Á. & Hierro J. J.

(2010) Service scalability over the cloud. In Handbook of Cloud

Computing. Springer, Boston, MA. 357-377.

[33] Hassan S. S., Bibon S. D., Hossain M. S. & Atiquzzaman M. (2018)

Security threats in Bluetooth technology. Computers & Security, 74: 308-

322.

[34] Zhang Q., Cheng L. & Boutaba R. (2010) Cloud computing: state-of-the-

art and research challenges. Journal of internet services and applications,

1(1): 7-18.

[35] MongoDB. URL: https://www.mongodb.com/ Accessed 9.8.2019.

[36] Kiefer R. (2019) How to store time-series data in MongoDB, and why

that's a bad idea. URL: https://blog.timescale.com/blog/how-to-store-time-

series-data-mongodb-vs-timescaledb-postgresql-a73939734016/ Accessed

9.8.2019.

[37] Stewart R. A., Willis R., Giurco D., Panuwatwanich K. & Capati, G.

(2010) Web-based knowledge management system: linking smart metering

to the future of urban water planning. Australian Planner, 47(2): 66-74.

[38] Hauber-Davidson G. & Idris E. (2006) Smart water metering. Water,

33(3), 38-41.

[39] Kilpeläinen T., Alanärä S. (2019) Oulun Vesi. Corporation meeting with

Oulun Vesi and Vesitieto Oy.

[40] Oulun Energia (2019) Corporation meeting between Oulun Energia and

Vesitieto Oy.

https://www.mongodb.com/
https://blog.timescale.com/blog/how-to-store-time-series-data-mongodb-vs-timescaledb-postgresql-a73939734016/
https://blog.timescale.com/blog/how-to-store-time-series-data-mongodb-vs-timescaledb-postgresql-a73939734016/

45

[41] Case study: Transforming a hidden leak into excellent customer service.

(2019) URL: https://adcf25c6-7658-45b3-ba1c-

6f61503349e0.filesusr.com/ugd/ea34fd_0fca45f6e8cc4a97bbdd962bacd1b

ca8.pdf. Accessed 9.8.2019.

[42] FINLEX ® - Ajantasainen lainsäädäntö: Vesihuoltolaki 119/2001. (2001)

URL:

https://www.finlex.fi/fi/laki/ajantasa/2001/20010119?search[type]=pika&s

earch[pika]=vesihuolto. Accessed 1.10.2019.

[43] European Commission - Basics - Managing water resources (2015) URL:

https://ec.europa.eu/environment/basics/green-economy/water-

resources/index_en.htm Accessed 1.10.2019.

[44] Voigt P. & Von dem Bussche A. (2017) The EU general data protection

regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International

Publishing.

[45] Allied ICT Finland (2019) Water ecosystems. Workshops with waterworks

and organizations. Oulu, Finland.

[46] Grolinger K., Higashino W. A., Tiwari A. & Capretz M. A. (2013) Data

management in cloud environments: NoSQL and NewSQL data stores.

Journal of Cloud Computing: advances, systems, and applications, 2(1): 22

[47] Pokorny J. (2013) NoSQL databases: a step to database scalability in web

environment. International Journal of Web Information Systems, 9(1): 69-

82.

[48] Vicknair C., Macias M., Zhao Z., Nan X., Chen Y. & Wilkins D. (2010) A

comparison of a graph database and a relational database: a data

provenance perspective. Proc. 2010 ACM 48th annual Southeast regional

conference. New York, NY, USA, 42.

[49] Han J., Haihong E., Le G. & Du J. (2011) Survey on the NoSQL database.

Proc. 2011 IEEE 6th international conference on pervasive computing and

applications. Sydney, Australia 363-366.

[50] IoT Reference Architecture. (2019) URL:

https://webassets.mongodb.com/iot_reference_architecture.pdf. Accessed

18.12.2019.

[51] Kvalheim C. (2015) The Little Mongo DB Schema Design Book. The Blue

Print Series.

[52] Walters R. (2018) Time Series Data and MongoDB: Part 2 – Schema

Design Best Practices: MongoDB Blog. URL:

https://www.mongodb.com/blog/post/time-series-data-and-mongodb-part-

2-schema-design-best-practices Accessed 18.12.2019.

https://adcf25c6-7658-45b3-ba1c-6f61503349e0.filesusr.com/ugd/ea34fd_0fca45f6e8cc4a97bbdd962bacd1bca8.pdf
https://adcf25c6-7658-45b3-ba1c-6f61503349e0.filesusr.com/ugd/ea34fd_0fca45f6e8cc4a97bbdd962bacd1bca8.pdf
https://adcf25c6-7658-45b3-ba1c-6f61503349e0.filesusr.com/ugd/ea34fd_0fca45f6e8cc4a97bbdd962bacd1bca8.pdf
https://www.finlex.fi/fi/laki/ajantasa/2001/20010119?search%5btype%5d=pika&search%5bpika%5d=vesihuolto
https://www.finlex.fi/fi/laki/ajantasa/2001/20010119?search%5btype%5d=pika&search%5bpika%5d=vesihuolto
https://ec.europa.eu/environment/basics/green-economy/water-resources/index_en.htm
https://ec.europa.eu/environment/basics/green-economy/water-resources/index_en.htm
https://webassets.mongodb.com/iot_reference_architecture.pdf
https://www.mongodb.com/blog/post/time-series-data-and-mongodb-part-2-schema-design-best-practices
https://www.mongodb.com/blog/post/time-series-data-and-mongodb-part-2-schema-design-best-practices

46

[53] Rizvi S. S. & Chung T. S. (2010) Flash SSD vs HDD: High performance

oriented modern embedded and multimedia storage systems. Proc. 2010

IEEE 2nd International Conference on Computer Engineering and

Technology. Chengdu, China. V7-297-V7-299.

[54] Tamminen S., Tiensuu H., Ferreira E., Helaakoski H., Kyllönen V.,

Jokisaari J. & Puukko E. (2018) From Measurements to Knowledge-

Online Quality Monitoring and Smart Manufacturing. Proc. 2018 Springer

Industrial Conference on Data Mining. Cham, Germany. 17-28.

[55] Masse M. (2011) REST API Design Rulebook: Designing Consistent

RESTful Web Service Interfaces. O'Reilly Media, Inc..

[56] Riahi A., Challal Y., Natalizio E., Chtourou Z. & Bouabdallah A. (2013) A

systemic approach for IoT security. Proc. 2013 IEEE international

conference on distributed computing in sensor systems. Cambridge,

Massachusetts, USA, 351-355.

[57] Wurm J., Hoang K., Arias O., Sadeghi A. R. & Jin Y. (2016) Security

analysis on consumer and industrial IoT devices. Proc. 2016 IEEE 21st

Asia and South Pacific Design Automation Conference (ASP-DAC).

Macao SAR, China, 519-524.

[58] Zhang Z. K., Cho M. C. Y., Wang C. W., Hsu C. W., Chen C. K. & Shieh

S. (2014) IoT security: ongoing challenges and research opportunities.

Proc. 2014 IEEE 7th international conference on service-oriented

computing and applications. Matsue, Japan, 230-234.

[59] Babar S., Stango A., Prasad N., Sen J. & Prasad R. (2011) Proposed

embedded security framework for internet of things (iot). Proc. 2011 IEEE

2nd International Conference on Wireless Communication, Vehicular

Technology, Information Theory and Aerospace & Electronic Systems

Technology (Wireless VITAE). Chennai, India, 1-5.

[60] Babar S., Mahalle P., Stango A., Prasad N. & Prasad R. (2010) Proposed

security model and threat taxonomy for the Internet of Things (IoT). Proc.

2010 International Conference on Network Security and Applications.

Chennai, India, 420-429.

[61] Asokan N., Niemi V. & Nyberg K. (2003) Man-in-the-middle in tunnelled

authentication protocols. Proc. 2003 International Workshop on Security

Protocols. Springer, Berlin, Heidelberg, 28-41. DOI:

https://doi.org/10.1007/11542322_6.

[62] Babar S., Mahalle P., Stango A., Prasad N. & Prasad R. (2010) Proposed

security model and threat taxonomy for the Internet of Things (IoT). Proc.

2010 International Conference on Network Security and Applications.

Springer, Berlin, Heidelberg. 420-429. DOI: https://doi.org/10.1007/978-3-

642-14478-3_42.

47

[63] Boehm B. (2002) Get ready for agile methods, with care. Computer, (1):

64-69.

[64] Weyrich M. & Ebert C. (2015) Reference architectures for the internet of

things. IEEE Software, 33(1): 112-116.

[65] Microsoft Azure IoT reference architecture - Azure Reference

Architectures. (2018) URL: https://aka.ms/iotrefarchitecture Accessed

18.12.2019.

[66] Mok A. K. L. (1983) Fundamental design problems of distributed systems

for the hard-real-time environment. Doctoral dissertation, Massachusetts

Institute of Technology.

[67] Paschou M., Sakkopoulos E., Sourla E. & Tsakalidis A. (2013) Health

Internet of Things: Metrics and methods for efficient data transfer.

Simulation Modelling Practice and Theory, 34: 186-199.

[68] Zhu Q., Wang R., Chen Q., Liu Y. & Qin W. (2010) Iot gateway:

Bridgingwireless sensor networks into internet of things. Proc. 2010

IEEE/IFIP International Conference on Embedded and Ubiquitous

Computing. Hong Kong SAR, China, 347-352.

[69] Montella R., Ruggieri M. & Kosta S. (2018) A fast, secure, reliable, and

resilient data transfer framework for pervasive IoT applications. Proc. 2018

IEEE INFOCOM 2018-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS). Honolulu, HI, USA, 710-715.

[70] Li Y. & Manoharan S. (2013) A performance comparison of SQL and

NoSQL databases. Proc. 2013 IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing (PACRIM). Victoria,

B.C., Canada, 15-19.

[71] Cattell R. (2011) Scalable SQL and NoSQL data stores. ACM Sigmod

Record, 39(4): 12-27.

[72] Parker Z., Poe S. & Vrbsky S. V. (2013) Comparing nosql mongodb to an

sql db. Proc. 2013 ACM 51st ACM Southeast Conference. Savanah,

Georgia, USA, 1-6. DOI: https://doi.org/10.1145/2498328.2500047.

[73] Chaudhuri S. & Narasayya V. R. (1997) An efficient, cost-driven index

selection tool for Microsoft SQL server. Proc. 1997 23rd International

Conference on Very Large Data Bases, VLDB. Athens, Greece, 146-155.

[74] Elmasri R. & Navathe S. B. (2011) Fundamentals of database systems

(sixth edition). Boston, MA: Pearson Education.

[75] Lourenço J. R., Cabral B., Carreiro P., Vieira M. & Bernardino J. (2015)

Choosing the right NoSQL database for the job: a quality attribute

evaluation. Journal of Big Data, 2(1): 18.

https://aka.ms/iotrefarchitecture
https://doi.org/10.1145/2498328.2500047

48

[76] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach, P. &

Berners-Lee, T. (1999) Hypertext transfer protocol–HTTP/1.1. Internet

RFC 2616.

[77] Khan M. E. & Khan F. (2012) A comparative study of white box, black

box, and grey box testing techniques. International Journal of Advanced

Computer Science and Applications, 3(6): 12-15.

[78] Dustin E. (2002) Effective Software Testing: 50 Ways to Improve Your

Software Testing. Addison-Wesley Longman Publishing Co., Inc..

[79] Gupta V. & Verma C. (2012) Error detection and correction: An

introduction. International journal of advanced research in computer

science and software engineering, 2(11):193-234.

	Abstract
	Tiivistelmä
	Table of contents
	Foreword
	Abbreviations
	1. Introduction
	1.1. Motivation
	1.2. Description
	1.3. Disclaimer for cooperation

	2. State of art
	2.1. IoT
	2.1.1. Description
	2.1.2. Connections and protocols

	2.2. Big data
	2.3. Cloud services
	2.4. Meter manufacturers
	2.5. Waterworks currently
	2.6. Waterworks regulations
	2.6.1. European Union’s regulations

	3. Requirements
	3.1. Use cases
	3.2. Functionalities
	3.3. Business requirements
	3.4. Data requirements
	3.4.1. Long Term storage database and short storage database
	3.4.2. Data analysis point-of-view

	3.5. Data transfer requirements
	3.5.1. Receiving data

	3.6. Error handling
	3.7. Integration and interface requirements
	3.8. Security requirements
	3.8.1. Client authentication

	4. Implementation
	4.1. Architecture
	4.2. Database
	4.2.1. SQL or NoSQL
	4.2.2. Database design

	4.3. API
	4.4. Testing
	4.5. Evaluation

	5. Discussion
	5.1. Requirements
	5.2. Implementation
	5.3. Evaluation
	5.4. Improvements
	5.5. Future development

	6. Conclusion
	7. References

