

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Antti Männikkö

WS-* Web Services and Their Suitability for Modern

Web Applications

Bachelor’s Thesis

Degree Programme in Computer Science and Engineering

January 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344909341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Männikkö A. (2019) WS-* Web Services and Their Suitability for Modern

Web Applications. University of Oulu, Degree Programme in Computer

Science and Engineering. Bachelor’s Thesis, 22 p.

ABSTRACT

WS-* services are older generation web services that follow the specified Web

Service (WS-) standards. The popularity of REST has made these protocols less

used and discussed but there are some cases where they are still useful. This

thesis goes through five arguably most common web service protocols - XML-

RPC, SOAP, WSDL, UDDI and JSON-RPC and discusses their differences and

potential use cases today.

Keywords: WS-*, web service, remote procedure call, SOAP, WSDL, UDDI

Männikkö A. (2019) WS-* web-palvelut ja niiden käyttö nykyaikaisissa

sovelluksissa. Oulun yliopisto, tietotekniikan tutkinto-ohjelma.

Kandidaatintyö, 22 s.

TIIVISTELMÄ

WS-*-palvelut ovat vanhemman sukupolven web palveluita, jotka noudattavat

Web Service (WS-) standardeja. RESTin suosio on tehnyt näiden protokollien

käytöstä ja keskustelusta vähempää, mutta on olemassa joitakin tapauksia,

joissa ne ovat hyödyllisiä. Tämä tutkinto katsoo viittä web-palvelu protokollaa -

XML-RPC, SOAP, WSDL ja JSON-RPC - ja pohtii niiden eroavaisuuksista ja

mahdollisista käyttötarkoituksista

Avainsanat: WS-*, web-palvelu, etäproseduurikutsu, SOAP, WSDL, UDDI

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS
1. INTRODUCTION .. 7

1.1. Motivation and Scope ... 7
2. WEB SERVICE PROTOCOLS ... 9

2.1. XML-RPC .. 9
2.2. Simple Object Access Protocol (SOAP) .. 9
2.3. Web Service Description Language (WSDL) .. 10

2.4. Universal Description, Discovery, and Integration (UDDI) 11
2.5. JSON-RPC.. 12

3. COMPARISON .. 14
3.1. Usage .. 14

3.2. Security and Error Handling... 14
3.3. Popularity ... 15

4. DISCUSSION .. 17

5. CONCLUSION .. 19
6. REFERENCES ... 20

FOREWORD

The rapid advancement of web technologies makes it difficult to keep up with

current trends. With the abundance of new web frameworks and tools, it is

sometimes good to look in the past and see how things have changed, and in some

cases, find a new use for old technology.

Oulu, 03.02.2020

Antti Männikkö

ABBREVIATIONS

HTTP Hypertext Transfer Protocol

XML Extensible Markup Language

RPC Remote Procedure Call

JSON Javascript Object Notation

REST Representational State Transfer

WS- Web Standard-

IoT Internet of Things

API Application Programming Interface

1. INTRODUCTION

Web development and design paradigms have come a long way since the emergence

of the web in the early 90s. Modern web applications are not just .html and .css-files

deployed as frontend together with a basic backend. Tools, such as web frameworks,

Object-relational mapping (ORM) and JavaScript have helped developers to create

more dynamic and user-friendly web applications. At the same time, expectations on

what a web application should look like and what functions it should bear have

slowly risen

One of the technologies that does not gather as much discussion as other web

technologies are web services. Originally, web services were meant for

communication between two computers over the Internet but since then their usage

has expanded to other gadgets such as mobile and IoT devices.

 The current dominance of REST, an architectural style that utilized web

resources, has made older services less obsolete, and why not? REST is relatively

simple to understand, is platform independent and is pretty fast performance wise.

However, WS-* - a series of web service specifications - services are still used in

some environments, and REST is still compared to SOAP.

 Web development is a constantly evolving field and new technology comes and

goes in a very fast pace. In contrast to other technologies, the web services have

evolved very little but still maintained a noticeable relevancy. Web APIs have been

the buzz for a while and protocol calls between older (possibly legacy) and never

systems can use both REST and XML-style approaches between the two.

 Web services are widely used but the definition of what web service varies when

asked [12]. World Wide Web Consortium (W3C) defines web service as “...a

software system designed to support interoperable machine-to-machine interaction

over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP-messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related standards” [13].

1.1. Motivation and Scope

This thesis is a literature review and a future-probing discussion of web service

protocols that, to at least some degree, fit in this description: XML-RPC, SOAP,

WSDL, UDDI and JSON-RPC.

 Most of the mentioned web services are 20 years or more old, representing the

first generation of web service protocols. How has the architecture stood out the test

of time and what is their legacy? The motivation for this thesis is to find alternatives

to REST services and find use cases where they are better than REST - and in the

case of there being none, find out why the service has fallen out of favor.

 First is the introduction of the web service protocols, with examples of structure.

The next chapter makes some comparisons within the services and goes deeper on

some areas - usage, security and popularity. After that comes discussion, where the

future and possible use cases as well as what are WS-* services strengths and

weaknesses are discussed. Lastly, the conclusion chapter summarizes previous

chapters.

8

 While REST is mentioned in many places, the main purpose of this thesis is not

strict comparison of the two. Rather, REST is mainly mentioned to give the reader

insight on how the web services have progressed and the transition of technology

over the short history of web technologies. Finally, we conclude the thesis with a

speculation of what might be a plausible future for the older technologies that still

seem to have a place in the world.

9

2. WEB SERVICE PROTOCOLS

This chapter describes the services and presents examples of services. Many, if not

the most, older systems remote procedure calls (RPC). In a nutshell, the client sends

a message containing details of what it wants, and the server handles the code

implementation part and sends it back via message, also known as request-response

messaging. As a simplified example of this, the client wants to know what 2 + 2 is

and sends it via message, the server does the calculation and sends the answer 4 back

to client.

2.1. XML-RPC

XML-RPC is a simple protocol to make RPC over HTTP. As the name implies, the

request and return bodies are in XML, a human readable markup language that is

widely used in messaging [7]. It is an early iteration of messaging protocols, from

which many more robust and advanced web services have evolved.

Figure 1. An example of request call in XML-RPC [7].

2.2. Simple Object Access Protocol (SOAP)

SOAP - created by Microsoft during the late 90s, now maintained byW3C [3] - is a

general messaging protocol. It is a deviation of the XML-RPC, as it uses the same

protocol for messaging and RPC. Transporting works through HTML-protocol [1].

SOAP consists of three different elements, one of which is optional. Every

message has an Envelope element that informs that the XML-document is a SOAP-

message and every other element is a child to this element. Body element contains

the message itself and may contain any amount of child elements, including the Fault

element that has a relevant error message. The optional Header element has

contextual information that is needed for processing purposes, and it is always the

first child of Envelope [2].

10

Figure 2. The basic structure of SOAP-message and an example message with

myMethod-method [2].

The biggest use of SOAP is for RPC purposes. There are few requirements before

use: a way to transport the parameters between the SOAP and application and the

parameters names and order must always correspond [1, 2]. For example, in order to

use the example message Figure 2, we would have to call a method myMethod(msg,

key) with myMethod(“Hello World!”, “aa123”).

2.3. Web Service Description Language (WSDL)

WSDL was created by Microsoft and IBM for the purpose of endpoint

communication - in other words, it tells what is needed in order to communicate with

network service. Like SOAP, it is XML-based and is also maintained by W3C [1, 4].

A common WSDL template has four informational elements. Types have the data

type information used by the service, Interface (known as PortType in version 1.1)

lists possible operations, Binding describes the transfer protocol and Service has the

information on endpoints [4].

11

Figure 3. A basic structure of WSDL template and an example .wsdl-file (source:

WSDL 2.0 documentation) [4].

Figure 3 shows an example of TicketAgent.wsdl [4]. Types tell that there is XML-

scheme, whereas the interface lists two operations, listFlights and reserveFlights,

with their own input and output.

2.4. Universal Description, Discovery, and Integration (UDDI)

UDDI is a business-focused web service that is based on SOAP and WSDL,

maintained by Organization for the Advancement of Structured Information

Standards (OASIS). Its idea is to find a client service either by querying or browsing

[5]. Sometimes referred to as “phone directory” of web services, UDDI has three key

components called pages. White pages contain information such as names, addresses

and contacts. Yellow pages have the information on service in a categorized form.

Lastly, green pages have the technical information of service [1].

12

Figure 4. An example of the UDDI businessEntity element [1].

The businessEntity element (as seen in figure 4) is the main entity on UDDI. In

addition to containing information such as white page, it has a businessService

element to display provided service, categoryBag for further categorization of

services and identifierBag for a non-contact identifier such as D-U-N-S number [5].

Figure 5. An example of a tModel template [1].

Other mentionable entities of UDDI are bindingTemplate and tModel.

bindingTemplate has technical information for applications, such as service key.

tModel, on the other hand, is used for describing concepts in the UDDI registry.

Example of tModel usages are protocol definitions or categorization groups [5].

2.5. JSON-RPC

During the 21st Century, Javascript has risen as a de facto language to web

development. In conjunction to that, the interest to JSON as a data format has also

13

become more popular. JSON-RPC was designed as a simple alternative to XML-

RPC and it shares many similarities, such as error codes [6].

Figure 6. An example of JSON_RPC objects, the first being Request and second

being Response [6].

JSON-RPC Request object has four parts: jsonrpc, which specifies the used version;

method, which contains the name of a wanted method; params to the method and id

which can be a string, number or null. The Response object has response or error

member, depending on the success on a method call, on top of jsonrpc and id. Unlike

in Request case, id is not optional in Response and must match with REquest objects

id [6].

14

3. COMPARISON

This chapter compares differences in web services described in previous chapter.

3.1. Usage

The intended usage of web service is not always clear. Understanding what a service

can and cannot do saves a lot of headache from the developer.

Table 1. How different web services are used.

Usage
XML-RPC SOAP WSDL UDDI JSON-RPC

Simple

messaging

Communication Description Discovery Simple

messaging

XML- and JSON-RPC’s advantages are their simplistic nature. The downside of this

is that they are less optimization for different environments [20]. XML-RPC and

JSON-RPC are rarely used nowadays; an example of where both could shine is

learning environment where students are less experienced with messaging with

RPCs.

One of the reasons for SOAP’s longevity in web development is its platform

independence. If client implementation can handle XML, it can communicate with a

SOAP server. Almost every programming languages have an implementation of

SOAP framework, including Python, Java or C#.

Figure 7. Using Zeep Python library to read WSDL file and message to the SOAP

server [30].

WSDL main function is to provide information on web service. WSDL service has

two important pieces of information: the abstract interface of the application and

specific information on end-point connection [1].

UDDI’s idea is to connect businesses all over to world together. Using UDDI’s

registry, the user could find potential service he or she needs. UDDI has been

criticized for various issues, such as scalability and bottlenecking [21].

3.2. Security and Error Handling

Over the years, web services have been susceptible to different types of security

attacks. XML without encryption makes it relatively easy to access and decipher

information [22]. Another well-known XML exploit is to send an oversized file,

creating an XML Denial of Service (XDoS) attack [22]. SOAP’s routing can be

changed to allow Denial of Service (DoS) and man-in-the-middle attacks [23].

15

WSDL is vulnerable to parameter tampering, where users can try to get sensitive

information by changing the parameters, as well as user scanning WSDL document

and finding sensitive information such as port types [24].

Despite the potential issues, SOAP has been as a secure protocol. WS-Security

protocol was published early on its lifecycle, and it contains methods such as

message integrity, confidentiality and authentication [25].

Error handling and fault tolerance are something that everyone who works in

programming field appreciates - completely bug-free programs are sparse and in the

event of bug or crash, it is nice to know what exactly triggered it. While web services

cannot fix the underlying problem - that job is usually left to frameworks - it can

send a response element containing the error Table 2.

Table 2. Fault Handling elements on various services.

Fault Handling

XML-RPC SOAP WSDL UDDI JSON-RPC

<fault> element <fault> element SOAP <fault>

element

SOAP <fault>

element + error

codes

Error member

in Response

Error handling elements are pretty much the same in XML-based services. The Fault

element consists of error code with an error message. This makes debugging slightly

easier.

There are debates if SOAP’s fault tolerance is good enough. Many have theorized

and developed a different style of fault managers [8, 9] or middleware element

[10,11] for SOAP to give more robust fault tolerance.

3.3. Popularity

While generally on the downswing, services like SOAP are still used in applications

like distributed computing and banking services due to its security, legacy support

and asynchronous requesting [19].

Table 3. Amount of Google searches per service in million (source: Google Trends).

Google Searches

Date (M-Y XML-RPC SOAP WSDL UDDI JSON-RPC

01-2004 45 66 67 13 0

01-2009 13 25 43 16 18

01-2014 1 14 24 0 5

01-2019 3 8 10 <1 8

As Table 3 shows, the trending towards WS-* web services has been on decline as

the 21st century has moved on. Possible reasons for this could be demanding

requirements to run them [14], not being loosely coupled as REST [15], being

complex and web services expanding to more areas than just business applications

[16].

UDDI has never been as popular SOAP or WSDL. Part of its massive drop in

searches in 10’s is that major organizations such as Microsoft terminating UDDI

16

services on their servers [17]. However, implementations of the service such as

jUDDI are still developed and maintained [18].

In case of XML- vs JSON-RPC, the former has fallen in terms of popularity, while

the latter has kept up some amount, although still small, of relevance. Javascript’s

relevance in web development has raised the usage of JSON-format which explains

more interested in JSON-RPC.

Table 4. Amount of Google Searches of REST and RESTful (source: Google

Trends).

REST Google Searches

Date (M-Y) REST RESTful

01-2004 15 8

01-2009 36 31

01-2014 59 69

01-2019 90 73

Whereas the trending of WS-* services have gone down, REST and RESTful

services have become more popular over time. In comparison, SOAP had 8,8% and

WSDL 11,1% amount of Google searches compared to REST in January 2019.

17

4. DISCUSSION

The WS-* specified web service protocols have not fared well against more recent

solutions such as REST. For a simple web page, these kinds of services are either far

too complex or too demanding on hardware. However, they bear some use cases that

might interest web developers and designers.

Bandwidth is one the restrictive factors for web development. WS-* services are

particularly taxing on bandwidth with its metadata communication and large XML-

files. In case of very limited bandwidth, services like SOAP is not practical to

implement.

HTTP has been the de facto transport protocol for a while now. However, SMTP

and less popular protocols like Java Message Service (JMS) are still used. RESTful

APIs mostly communicate with HTTP methods, and while it is possible to do a

something like an email implementation, the developer should consider WS-* for

their more inclusive selection of transfer protocol implementations.

WS-* services have some security issues - but in the end, the standardization has

helped to prevent critical cases happening. Very sensitive information such as

banking credentials would be better in the hands of WS-Security compared to what

REST offers [26]. Financial organizations like banks still prefer SOAP and WSDL

over REST because of the formal contract between client and server.

XML- and JSON-RPC are not developed enough to attract developers but could be

used in learning purposes. Their basic architecture could visually show how

messaging and RPC works.

The future for UDDI does not look bright. Bigger organizations terminating their

services and overly low interest in the recent years points that the service is not worth

exploring. However, in case of personal or maybe even organizational interest,

modern implementations are still found.

Mobile development has steadily become one of the biggest part of IT-industry in

terms of users and revenue. While possible, WS-* services are very rarely used in

mobile services due their heaviness and bandwidth consumption.

The biggest question of WS-* services relevancy right now is the relevancy of

XML as a payload format. JSON has become more popular over time, and more

contenders like YAML have also appeared. What does a verbose format like XML

could offer that its counterpart lack? In the future, a web service that offers the same

qualities as SOAP but uses JSON could easily mean that SOAP is no longer more

than a relic from the past of web development.

Another big question is future support of WS-* APIs and frameworks. For

example, Amazon S3 recommends using REST API over SOAP, and future features

will not support SOAP [27]. Some organizations, such as PayPal still support both

SOAP and REST.

The idea of SOAP and WSDL getting more popular is not still completely buried.

The last changes to WSDL standardization made it easier to implement [28] but it at

a time of this writing it has been 12 years since last revision. Making the standard

more compatible with current technologies, as well as making it easier to

communicate with REST based systems would probably grow more interested

towards the service. W3C is still very active and could further implement these

systems forward if there is interest.

One field that will need WS-* service experts are legacy services. In some fields,

such as financial or military, developing new system would take years to design and

18

develop and would be costly, making it better to use older technology for

development. Even so, workarounds such as implementing REST type calls that

include SOAP message inside the call are plausible if new systems are developed to

support the legacy system.

The good news for a developer that wants WS-* protocol in their architecture is

that there are frameworks that implement SOAP and WSDL and are still in

development. For example, Microsoft’s .Net framework offers many WS-*

specifications and supports SOAP and WSDL [29].

19

5. CONCLUSION

The popularity of WS-* services has dropped since REST architecture came popular.

This does not mean said services are dead - services like SOAP and WSDL have

their uses.

XML- and JSON-RPC are too simplistic for true use, and therefore not relevant in

the current context of web development. Likewise, UDDI services have become less

and less popular as years have moved despite development still going. Major

organizations dropping the support for the service points that there is not much

demand for the service.

SOAP, like other services, has also suffered from newer services appearing in the

market, but it still has some relevance. Platform independence and implementations

for many languages still attract some designers and developers, particularly those

who do not work with the HTTP protocol.

Legacy systems still hang on WS-* services, and while it is possible to implement

interfaces that messages between the old and new technology, experts on the older

web service technology field are still needed.

Object-oriented languages like Java, C# and C++ are widely used. For these

languages, the description of what services contain is very important in order to

avoid errors. WSDL helps developers and designers to understand the services better

and help on implementation.

The future for WS-* style services is dependent on current technology. If for some

reason, XML as a format would disappear in favor of JSON or some other format, it

would mean bad time for older services that rely on XML. In the case of this

happening, the services would need to be redefined or a new service that replaces

them need to be implemented.

20

6. REFERENCES

[1] Curbera, Francisco, et al. "Unraveling the Web services web: an

introduction to SOAP, WSDL, and UDDI." IEEE Internet computing 6.2

(2002): 86-93.

[2] Snell, J., Tidwell, D., & Kulchenko, P. (2001). Programming web services

with SOAP: building distributed applications. " O'Reilly Media, Inc.".

[3] Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H., & Gudgin, M.

(2003). SOAP Version 1.2 Part 1: Messaging Framework. W3C REC REC-

soap12-part1-20030624, June, 240-8491.

[4] Chinnici, R., Moreau, J. J., Ryman, A., & Weerawarana, S. (2007). Web

services description language (wsdl) version 2.0 part 1: Core language.

W3C recommendation, 26(1), 19.

[5] Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M.,

Husband, Y. L., ... & von Riegen, C. (2002). UDDI Version 3.0. Published

specification, Oasis, 5, 16-18.

[6] JSON-RPC Working Group. (2012). Json-rpc 2.0 specification.

[7] Kidd, E. (2001). XML− RPC HOWTO. Tech. Rep.

[8] Liang, D., Fang, C. L., Chen, C., & Lin, F. (2003, December). Fault

tolerant web service. In Tenth Asia-Pacific Software Engineering

Conference, 2003. (pp. 310-319). IEEE.

[9] Dialani, V., Miles, S., Moreau, L., De Roure, D., & Luck, M. (2002,

August). Transparent fault tolerance for web services based architectures.

In European Conference on Parallel Processing (pp. 889-898). Springer,

Berlin, Heidelberg.

[10] Santos, G. T., Lung, L. C., & Montez, C. (2005, September). Ftweb: A

fault tolerant infrastructure for web services. In Ninth IEEE International

EDOC Enterprise Computing Conference (EDOC'05) (pp. 95-105). IEEE.

[11] Merideth, M. G., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., &

Narasimhan, P. (2005, October). Thema: Byzantine-fault-tolerant

middleware for web-service applications. In 24th IEEE Symposium on

Reliable Distributed Systems (SRDS'05) (pp. 131-140). IEEE.

[12] Hanna, S., & Munro, M. (2008, April). Fault-based web services testing. In

Fifth International Conference on Information Technology: New

Generations (itng 2008) (pp. 471-476). IEEE.

[13] World Wide Web Consortium. Web Services Glossary. Retrieved 1 March

2019 from https://www.w3.org/TR/ws-gloss/

https://www.w3.org/TR/ws-gloss/

21

[14] Guinard, D., Trifa, V., Pham, T., & Liechti, O. (2009, June). Towards

physical mashups in the web of things. In Proceedings of INSS (Vol. 9, pp.

17-19).

[15] Pautasso, C., & Wilde, E. (2009, April). Why is the web loosely coupled?:

a multi-faceted metric for service design. In Proceedings of the 18th

international conference on World wide web (pp. 911-920). ACM.

[16] Guinard, D., Ion, I., & Mayer, S. (2011, December). In search of an

internet of things service architecture: REST or WS-*? A developers’

perspective. In International Conference on Mobile and Ubiquitous

Systems: Computing, Networking, and Services (pp. 326-337). Springer,

Berlin, Heidelberg.

[17] Microsoft. What’s New in BizTalk Server 2013 and 2013 R2. Retrieved 5

March 2019 from https://docs.microsoft.com/en-us/biztalk/install-and-

config-guides/what-s-new-in-biztalk-server-2013-and-2013-r2

[18] jUDDI. Retrieved 5 March 2019 from https://juddi.apache.org/index.html

[19] Tihomirovs, J., & Grabis, J. (2016). Comparison of soap and rest based

web services using software evaluation metrics. Information Technology

and Management Science, 19(1), 92-97.

[20] Allman, M. (2003). An evaluation of XML-RPC. ACM sigmetrics

performance evaluation review, 30(4), 2-11.

[21] Al-Masri, E., & Mahmoud, Q. H. (2008, April). Investigating web services

on the world wide web. In Proceedings of the 17th international

conference on World Wide Web (pp. 795-804). ACM.

[22] Moradian, E., & Håkansson, A. (2006). Possible attacks on XML web

services. IJCSNS International Journal of Computer Science and Network

Security, 6(1B), 154-170.

[23] Demchenko, Y. (2004). “White collar” Attacks on Web Services and

Grids. Grid Security threats analysis and Grid Security Incident data

model definition, Draft Version 0.2.

[24] Lindstrom, P. (2004). Attacking and defending web services. a spire

research report.

[25] Rosenberg, J. B., & Remy, D. L. (2004). Securing web services with WS-

security: Demystifying WS-security, WS-policy, SAML, XML signature,

and XML encryption. Sams.

[26] Wagh, K., & Thool, R. (2012). A comparative study of soap vs rest web

services provisioning techniques for mobile host. Journal of Information

Engineering and Applications, 2(5), 12-16.

https://docs.microsoft.com/en-us/biztalk/install-and-config-guides/what-s-new-in-biztalk-server-2013-and-2013-r2
https://docs.microsoft.com/en-us/biztalk/install-and-config-guides/what-s-new-in-biztalk-server-2013-and-2013-r2
https://juddi.apache.org/index.html

22

[27] Amazon. Appendix: SOAP API. Retrieved 18 March 2019 from

https://docs.aws.amazon.com/AmazonS3/latest/API/APISoap.html

[28] Chinnici, R., Haas, H., Lewis, A. A., Moreau, J. J., Orchard, D., &

Weerawarana, S. (2007). Web services description language (WSDL)

version 2.0 part 2: Adjuncts. W3C Recommendation, 6.

[29] Microsoft (2017). Web Services Protocols Interoperability Guide.

Retrieved 19 June 2019 from https://docs.microsoft.com/en-

us/dotnet/framework/wcf/feature-details/web-services-protocols-

interoperability-guide

[30] Zeep: Python SOAP client. Retrieved 26 January 2020 from https://python-

zeep.readthedocs.io/en/master/

https://docs.aws.amazon.com/AmazonS3/latest/API/APISoap.html
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/web-services-protocols-interoperability-guide
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/web-services-protocols-interoperability-guide
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/web-services-protocols-interoperability-guide
https://python-zeep.readthedocs.io/en/master/
https://python-zeep.readthedocs.io/en/master/

	Abstract
	Tiivistelmä
	Table of contents
	Foreword
	Abbreviations
	1. Introduction
	1.1. Motivation and Scope

	2. WEB SERVICE PROTOCOLS
	2.1. XML-RPC
	2.2. Simple Object Access Protocol (SOAP)
	2.3. Web Service Description Language (WSDL)
	2.4. Universal Description, Discovery, and Integration (UDDI)
	2.5. JSON-RPC

	3. COMPARISON
	3.1. Usage
	3.2. Security and Error Handling
	3.3. Popularity

	4. DISCUSSION
	5. CONCLUSION
	6. REFERENCES

