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ABSTRACT

Federated learning (FL) is a promising decentralized training method for on-
device machine learning. Yet achieving a performance close to a centralized
training via FL is hindered by the client-server communication. In this work,
a novel joint client scheduling and resource block (RB) allocation policy
is proposed to minimize the loss of accuracy in FL over a wireless system
with imperfect channel state information (CSI) compared to a centralized
training-based solution. First, the accuracy loss minimization problem is cast
as a stochastic optimization problem over a predefined training duration. In
order to learn and track the wireless channel under imperfect CSI, a Gaussian
process regression (GPR)-based channel prediction method is leveraged and
incorporated into the scheduling decision. Next, the client scheduling and
RB allocation policy is derived by solving the aforementioned stochastic
optimization problem using the Lyapunov optimization framework. Then, the
aforementioned solution is extended for scenarios with perfect CSI. Finally,
the proposed scheduling policies for both perfect and imperfect CSI are
evaluated via numerical simulations. Results show that the proposed method
reduces the accuracy loss up to 25.8 % compared to FL client scheduling and
RB allocation policies in the existing literature.

Keywords: Federated learning, channel prediction, client scheduling,
Gaussian process regression.
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ĥ Channel estimation
λ Resource allocation
λ Resource allocation vector
Λ Resource allocation matrix
γ SINR
γ̂ SINR estimate
γ0 SINR threshold
ε Error
ν Auxilary variable for Lyapunov framework - upper bound
l Auxilary variable for Lyapunov framework - knowledge
q Virtual queue for tracking upper bound of the error
g Virtual queue for tracking knowledge
φ Trade off parameter
fm Doppler frequency
ϕ Coefficient of exploration
νavg Running average
f Loss function
r Rate
p Power
N0 Noise
I Interference
ψ Dual function
ς Variance
% Regualizer
θ Dual variable
argmax Argument maximum
argmin Argument minimum
w Model parameter (weight)
w Model parameter (weight) vector
j Knowledge
j Knowledge vector



J Knowlegde matrix
c Covariance
C Covariance matrix
ζ1 Sin-squared kernal length parameter
ζ2 Sin-squared kernal period parameter
T Training duration

Functions

∑∑ Double summation
|x| Euclidean norm of vector x
I(x) Indicator function, i.e. returns 1 if x ≥ 0, 0 otherwise
L(·) Lyapunov function
P(·) Probability of the event
E(·) Expected value of a random variable or variable
(·)? Solution of an optimization problem
X† Transpose of X
0 Vector of 0s, i.e., (0, . . . , 0); size of the vector is implicit
1 Vector of 1s, i.e., (1, . . . , 1); size of the vector is implicit



1 INTRODUCTION

Artificial intelligence (AI) is defined as “the science and engineering of making intelligent
machines” by John McCarthy, recognized as one of the fathers of AI [1]. After defeating
the top human “Go” players by “AlphaGo”, the huge potential in AI is proven to the
world without a doubt [2]. AI can be explicitly programmed by using a pile of if-then
statements or a complex statistical data mapping to a model which is referred as machine
learning (ML). Thus, machine learning is a branch of AI and it allows systems to learn
from data without being explicitly programmed by human.
ML model becomes more accurate in predicting or making decisions with the increasing

size of the dataset it has been trained on [3]. Thus for ML, data plays a crucial
role. In cloud ML, also denoted as “centralized” method, it is required all training
data to be available on one single place, where the ML model is trained. On the
other hand, proliferation of internet of things (IoT) such as cameras, wearable devices,
and autonomous vehicles generating wealth of data every second. Coupling with ML
applications, this data opens up doors for plenty of possible meaningful applications
[4]. Applications dedicated for medical purposes and for vehicular networks are such
instances. However, users’ unwillingness to reveal privacy-sensitive data (i.e., medical
treatment details) for such applications prevents it from its growth. Typically, these
data is unevenly distributed over a large number of devices, and every device has a tiny
fraction of the data. Thus, these devices are required to offload the raw data to a cloud
for training ML model, since quality of the ML model will be low if the model is trained
on an edge device alone with its tiny portion of data [3]. Further, most of these devices
are inter connected with one another and servers over wireless networks. In addition to
the infrastructure and power costs in wireless networks, since bandwidth is rare, over-
the-air communication is a costly option. Thus, in “centralized” approach to train a
ML model, communication cost plays a significant figure in addition to aforementioned
privacy concerns [5]. However, a promising solution for the aforementioned issues, is to
adhere with distributed ML techniques where model is trained locally with local datasets
and aggregated at one central device mostly at the edge of network.
Among the distributed ML techniques, federated learning (FL) is one of the most

commonly used technique. In FL, the goal is to train a high quality ML model whereby
training data reside distributed over a set of clients [6]. Therein, clients perform local
computing to train unique neural network (NN) model with their own data to minimize
a predefined empirical loss function. Thereafter, each client share its locally trained
model parameters (trained weights of local NN model) with a server for model averaging.
Then the server aggregates those models and produce an improved global ML model.
Next, aggregated model is broadcast back to clients, completing a “global iteration”.
Afterwards, clients adopt the received global model and conduct further local trainings.
This training process iteratively continues, until a high quality ML model is trained.
Example applications of federated learning are natural language processing [7], face and
voice recognition [8] at hand-held devices, pedestrian behavior analysis in autonomous
vehicles [9] and diagnosing diseases from wearable devices [10].
ML with FL, enhances users’ hyper-personalized experience in web surfing, online

shopping, etc, while preserving data privacy [6]. The reason is devices communicate and
exchange only their locally trained models instead of their private data. Moreover in
FL, communication overhead is reduced significantly compared to the “centralized” ML



approach. However, with deep NN models with millions of parameters, sharing model
parameters or dataset is going to be more or less the same.
Recent decade, the computational power of handheld devices have significantly

overwhelmed [11]. Thus, an added advantage in distributed ML techniques, is
computation offloading from cloud to devices. FL with these key features have brought
up being a promising edge ML algorithm ensuring “code to data”, instead of “data to
code”.

Figure 1. Federated learning model

Further, in FL, it is assumed that data distribution among clients are independently
identically distributed (IID) for the convergence of FL to centralized approach [6]. It
is numerically shown that, convergence is achieved when the number of global model
exchanging communication rounds are approaching infinity. On the other hand, variance
in the number of data per client is a measure of heterogeneity of dataset distribution.
With the increase of heterogeneity of dataset distribution, affects further increasing the
trained model accuracy gap between centralized approach and FL [12]. Moreover, as
mentioned, most of the handheld devices are connected over wireless networks. Hence,
the reliability of wireless networks affects heavily on the accuracy of the model trained
over wireless network with FL.
Typically, in a wireless link, the received signal power attenuates with increasing

distance between the transmitter and the receiver. On top of this attenuation,
obstructions like buildings, trees, adds fading to received signal power. The reason for
fading is, reflections and scattering from various objects typically creates several copies
of the transmitted signal and reach the receiver via multiple paths with different delays.
This phenomenon is specifically denoted as “multipath fading” in wireless communication
[13]. The effect to the wireless channel is that, this leads to a high error rate with lower
signal-to-noise ratio. Additionally, the over-the-air link between a client and server, is
subject to interference from other clients and network users in the system. Wireless
channels are unreliable, because of those aforementioned interferences, multipath fading,
etc. Further, wireless networks are resources limited (i.e., limited spectrum). Hence, the
amount of resource allocation for wireless clients are generally constrained in an wireless
environment. The quality of the trained model in FL, will heavily be affected when the



training process continues over unreliable wireless links with resource constraints. As
a result, this leads to more emphasis on allocating available spectrum to each client in
an efficient manner, exploiting the unreliability of the wireless channel behavior. As a
solution, it is possible to schedule most effective model parameters to update or most
effective model updating clients per global iteration to share their models or to quantize
the model updates to reduce the communication overhead.
In order to adapt wireless transmissions to unreliable channel conditions, it is required

to measure the channel propagation characteristics between transmitters and receivers
beforehand. This information on channel state is technically denoted as channel state
information (CSI). Measuring CSI beforehand, plays an essential role in wireless system
performance in bit error rate (BER) in decoding phase [13]. CSI represents the combined
effect of multipath fading, scattering and signal power decay with distance. However,
the acquisition of accurate CSI timely involve considerable resource overhead in limited
resource environment. As an alternative approach to estimate the channel is to predict
the channel with an efficient online prediction scheme. With this it is possible to save
the resource overhead involve in channel estimation. However, predicting channel with
online learning tool is more or less erroneous. Thus, there is a trade off with accuracy of
CSI and the expenditure of resource overhead in limited spectrum.

1.1 Overview

The main contribution of this work is a novel joint client-scheduling and resource
block (RB) allocation policy for FL under imperfect CSI. I consider a set of
clients that communicates with a server over wireless links to train a NN model within
a predefined training duration. First, derive an analytical expression for the loss of
accuracy in FL with scheduling compared to a centralized training method. Here, the
CSI knowledge is obtained via CSI prediction and knowledge exploration-based sampling.
Then, cast the client scheduling and resource block (RB) allocation problem to minimize
both the loss of FL accuracy and the CSI prediction uncertainty under communication
constraints. Therein, the objective of the scheduling problem is to optimize a tradeoff
between the accuracy loss minimization and maximizing the network-wide knowledge on
CSI. Due to the stochastic nature of the aforementioned problem, resort to the drift-plus-
penalty (DPP) technique from the Lyapunov optimization framework to decouple the
problem into a per time solvable sub problems [14]. Finally, the proposed solution under
both perfect and imperfect CSI are evaluated via numerical simulations. Simulation
results show that the proposed solution achieve up to 25.8% reduction in loss of accuracy
compared to state-of-the-art client scheduling and RB allocation methods.
The presenting of the thesis is organized as follows. After this introduction in this

section 1, presents state-of-the-art. Then in section 2, presents the system model
and formulates the NN model training over wireless links, under imperfect CSI as an
optimization problem. In Section 3, formulated problem is recast in terms of loss of
accuracy with scheduling compared to a centralized training method. Then, GPR-based
CSI prediction technique is introduced and Lyapunov optimization is used to solve the
problem and derive client scheduling and RB allocation policy under both perfect and
imperfect CSI. Section 4 evaluates the proposed scheduling policies. Finally, conclusions
are drawn in Section 5.



1.2 State-of-the-art

1.2.1 Neural network model based machine learning : A brief overview

A neural networks performs similar functionality with neurons in human nervous system.
Consider an example neural network model in Fig. 2 consisting of three layers: hidden
layer, input layer and output layer.

Hidden layer Output layerInput layer

Inputs Outputs

1Bias

Figure 2. Neural network model

Inputs to a NN model can be texts, audio files, image pixels, etc. The inputs (x) that
are fed into the input layer are then multiplied with their corresponding weights (w1).
These weights indicates how important that input is to the outcome. Then, weighted
values are summed up, passed through an activation function (i.e., tanh, rectified linear
unit (ReLU), sigmoid) and forwarded to the next layer. This continues up to the output
layer. In this view, the input-output relation is cast as a functional approximation
y = g(x,w) that depends on the choice of weight parameters. Here, the values of the
weights are known as the model. The node called bias, allows to adjust the activation
function curve to meet desired output. The goal is to tune the weights that infer outputs
for given inputs. This procedure is known as the model training. Within the scope of
this thesis, we only focus on NN model training with the supervised learning. Under
supervised learning, a set of inputs and their corresponding labelled outputs known as
training data is used for the model training. At the beginning of model training a
randomly chosen values are assigned as the weights. Then the weight parameters are
optimized using a loss function quantifies the performance of the trained NN model.

Loss function and regularization:

The loss functions measures and quantifies the performance of the trained model. Based
on the application requirement: to derive a functional approximation (regression) or to
classify data (classification), the choice of the loss function varies. Table 1 lists down
a set of widely used loss functions. Here, for i-th input training data, yi is the actual
output, ŷi is the prediction from NN model, yi,j = 1 if i-th element belongs to class j and
0 otherwise, and pi,j is the probability that i-th element in class j. Moreover, a training
dataset D consisting D samples assumed.



Table 1. Commonly used loss functions for NN model training [15].

Loss function Definition Application
Mean absolute error (MAE) 1

D

∑
i∈D |yi − ŷi| Regression

or `-1 loss
Mean square error (MSE) 1

D

∑
i∈D(yi − ŷi)2 Regression

or `-2 loss
Multi-class cross entropy −∑i∈D yi,j log2(pi,j) Classification
or negative loglikelihood

Multi-class support vector machine max(0, 1− yi,j ŷi,j) Classification
(SVM) or Hinge loss

In addition to a loss function, a regularizer %(·) function is used, to penalize unnecessary
over-fitting ofw to the dataset in training process [16]. Overfitting means that the output
of the trained model perfectly (almost) align with the labelled outputs in the training
dataset while exhibits poor performance with new data, i.e. high training accuracy and
low inference accuracy. The reason for this is few weight parameters in the model are
heavily dominating the prediction. The term over-fitting is clearly convincing from the
following Fig. 3.

Iteration (t)

(I)

(II)

Underfitting Overfitting

1 2 3
1

2

3

x

y

x

y

x

y

Figure 3. (Left) Changes of the loss function f() with model update iterations over (i)
training data and (ii) validation data, and (Right) regressed function.

Generally, two datasets are used in NN model training as shown in Fig. 3. Those are
used for the purpose of training the NN model and for the validation separately. The
validation dataset, which is not used for training of NN, evaluatesthe performance of the
trained model against unseen new data. This is called test accuracy. From Fig. 3, it can
be observed that the test loss function value decreases with training iterations. Excess
training further improves the training accuracy resulting the outputs to be biased towards
only the training labels. Hence, the model no longer will be suitable to infer the unseen
data. As a result, loss over the validation data increases and test accuracy regrades.



Hence, thereafter the value of f(w) increases for the validation dataset. Thus, that point
is the good choice that depends on the choices of training data. To overcome this kind
of over-fittings a regularization function is added to optimization problem with respect
to weights. Introducing a regularizer penalize the weights which are growing too much.
Such most commonly used regularization functions and their features are described as
follows:

• L1 norm (Lasso) - ||w||1 : This has the property that force w to become sparse
during optimization/ training, since shrink the parameters to zero. In the solution
for a L1 regularized training, majority of features have zero weights and very few
will have non zero values. Thus, L1 norm in regularizer produces a simple model,
that is interpretable and contains only a subset of inputs for decision making.

• L2 norm (Ridge/ Tikhonov) - ||w||2: Here, the regularization term is the sum of
squares of weights (w). L2 regularization forces weights to be small but not make
them zero as in L1 norm. Thus, L1 norm does non sparse solution.

1.2.2 Distributed optimization for machine learning

Distributed optimization offers the promising scalability in ML systems and
computational offloading capability. The challenge for that goal is, developing an
communication efficient distributed optimization algorithm for the distributed clients.

CoCoA method:

In [17], a framework for distributed optimization is presented, denoted as communication-
efficient distributed dual coordinate ascent (CoCoA). Authors of this work have developed
a primal-dual framework that can be applied for variety of convex optimization problems.
Next, authors have derived the convergence rate of the proposed CoCoA method for
minimizing the objectives with convex regularized loss functions. The significance in
CoCoA distributed optimization is, that the scalability does not degrade the convergence
speed. In this work, decoupled subproblems which are independently solved subproblems
in each client, are allowed to be solved to any accuracy level towards its optimal solution
depending on client’s computational capabilities. Thus, the proof that presents in this
work, is helpful in analysis on computation vs. communication trade-off.

Federated Learning:

Similarly to the work in [17], a distributed optimization framework is proposed in [6]
without using primal-dual formulation. The goal of this work is to optimize a set of
parameters w that minimizes an arbitrary cost, which is separable over the data points
as follows:

min
w
f(w) = 1

n

n∑
i=1

fi(w;xi, yi), (1)

where n is the number of data points, w are the model parameters vector, and (xi, yi)
is the i-th data inputs and its corresponding label. The function fi is typically a loss
function that numerically represents the how efficiently neural network model predict



with w with input xi with respect to given label or output yi. This is the first article
proposing distributed machine learning optimization denoted as federated learning. In
this work they have assumed that, data points are IID distributed across a large number
clients. Further, data lies on clients’ handheld devices, which may be privacy sensitive.
Authors of this work have proposed an algorithm to solve (1) in distributed setting.
Notably, proposed algorithm has achieved higher convergence rate compared to CoCoA
method in [17]. Idea in the algorithm is that distributed clients train a neural network
model with each local datasets inside global iteration. Then each client update weights to
a server where models are averaged and produce w̃. This is broadcast back to clients and
for the next communication round w̃ is used as reference model for all clients in solving
their sub problem. However, in this proposed distributed setting, largest bottleneck is
the communication overhead. This overhead scales with the number of clients and the
depth of NN model (number of layers, number of nodes per layer, and connectivity among
layers), in which the communication conditions need to be accounted towards the design
of fast and accurate FL over-the-air.

Optimizer - Stochastic gradient descent (SGD) technique:

Optimizers are used to minimize objective functions updating parameters in them. In ML
model training applications to solve (1), using GD technique performs update in (2) but
using datasetD. The capabilities of ML methods are limited computing being the limiting
factor by the need of high computational power over large datasets. Since, selecting
a large dataset for training on every iteration of GD is computationally exhaustive,
choosing a random subset of data samples and run GD is more efficient and faster [18].
Stochastic gradient descent (SGD) is an implementation of this concept using a batch
of data samples solving the aforementioned issue. As a solution for the above limitation
SGD, the stochastic approximation of GD, is proposed [18]. Here, instead of deriving
the gradient over the whole dataset, the gradient is calculated over a subset of data (a
batch) as follows:

w := w − η∇f(w) = w− η
∑

i∈S⊂D

∇fi(w)
|S|

(2)

where η is the learning rate, which determines how far for each step of update w should
change in the direction of ∇f(w), S is the subset of the original dataset D, and |S| is the
cardinality of the subset S. This greatly reduces the computational complexity in terms
of matrix multiplication and inversion. Continuing this process iteratively will achieve
f(w)|w=w? as low as possible if f is convex.



Fig. 4 shows the effect of the learning rate (η) in minimization of f during the training
process.

(I)

(II)

(III)

(IV)

Iteration (t)

Figure 4. Effect of learning rate to change in the objective function value per iteration,
with (i) too higher (ii) high (iii) low and (iv) just perfect learning rate values.

Mostly, the choice of η yields a tradeoff between convergence speed and the optimality
of the solution. If loss function f is convex, then there should exist a best choice for
learning rate that will provide the fastest convergence as it is guaranteed to achieve the
optimality.
The main advantage of using SGD as optimizer for NN model training is that the

reduction in computational burden and faster iterations. SGD further have the advantage
of escaping local minima due to the randomness in parameter updates. The reason for this
is a gradient calculated over stochastically chosen subset of dataset may direct towards
a locally nonoptimal solution, allowing the iterative process to escape a local minimum.
However, aforementioned advantages are achieved in expense of slightly less convergence
rate with respect to GD. Due to the randomness occurred by selecting a portion of
dataset, undesirable fluctuations can be observed in weight updates. Another limitation
is learning rate is not adaptively change since the learning rate is fixed throughout
the learning process. To resolve above limitations in SGD, several variants have been
proposed in the existing literature. The following are few of such variants of SGD in
literature.

• Momentum method [19]: SGD with momentum method remembers the update
of the weight in each previous iteration, and computes the next weight change
with contribution of previous update. This is mathematically represented as w :=
w+α∆w−η∇f(w), where α is the contribution factor. This SGD variant tends to
keep the same direction more likely, preventing from oscillations unlike in original
form of SGD. Thus, this method has been used in the training of NN.

• Averaged SGD [20]: This SGD variant records the average of its parameter
vector over time. The mathematical representation of the update is, w :=
w − η∇f(1

t

∑t
i=1w). In this variant of SGD, reduces the fluctuations of weight

updates compared to the original form of SGD.



• RMSProp (Root Mean Square Propagation) [21]: In RMSProp, the key idea is
to divide the learning rate by running average of the magnitudes of gradients in
terms of mean square. This method keeps the effect of previous gradient changes
while admitting new values. Towards this, a new function v(w, t) := γv(w, t− 1) +
(1− γ)(∇f(w))2, is introduced where γ is the forgetting factor. Then the weights
at each iteration is updated as, w := w − 1√

v(w,t)
η∇f(1

t

∑t
i=1w)

There are several other SGD optimization variants such as AdaGrad (adaptive gradient),
Kalman-based Stochastic Gradient Descent (kSGD), etc. SGD in any above variants
will have specific features towards some application requirements in distributed ML like
adaptive learning rates, smooth weight updates, etc.

1.2.3 Distributed machine learning under communication constraints

As mentioned in section 1.2.2, communication overhead is the main bottleneck in FL
and model parameter updating utilize communication resources depending on the model
depth and number of clients. However, if the training with FL communicates over
a resource constrained wireless, then model parameter updating might be impossible
for some clients. Furthermore, due to channel uncertainty, model updating may not
be smooth, even though resources are available. Except few works considering FL
over wireless networks, the vast majority of the existing literature in FL assumes ideal
client-server communication conditions, which means no resource limitations or channel
uncertainties.

LAG - reusing outdated gradient concept:

In [22], a gradient updating technique named lazily aggregate gradients (LAG) is proposed
to reduce communication overhead by reusing outdated gradient updates. Therein, a set
of simple rules are imposed to detect slowly varying gradients and to reuse the outdated
gradients. This prevents transmitting unnecessary (less effective) updates and saves
bandwidth. The work generally can be applied for distributed machine learning as well
as multi-agent optimization, and distributed signal processing [22].
With contrast to GD, in LAG use either the current gradient update from a client

or an outdated gradient computed using previous gradient update. The rule to update
the gradient or not depends on the difference between current aggregated gradient and
current calculated gradient. Thus, server first broadcast aggregated model update to all
clients, then if clients with aforementioned difference greater than some threshold then
update the difference only. Here this rule is decided by worker and the other method
is server determines which client should send their gradient difference. Then those who
are in that set calculates gradient difference and update server. It has been shown that
a significant communication reduction with numerical simulations compared to gradient
descent.

Client scheduling based communication overhead reduction:

In [23], authors analyze another approach which is possible in order train a NN with FL
under a resource limited and unreliable environment. Therein, due to limited resources,



only a portion of clients can be scheduled to update the model parameters in each
communication round. In their work authors study the impact of conventional scheduling
policies such as random (RAND), round robin (RR), and proportional fair (PF) on the
accuracy of FL over wireless networks.
For the comparison, first authors of the paper develop an analytical model to

characterize the performance of FL with scheduling in wireless networks assuming to have
a homogeneous data distribution among the clients. Particularly, using that analytical
model tractable expressions are derived which are applicable to analyze scheduling
schemes and interferences. The assumption of this work is if the channel is having a
low signal-to-interference-plus-noise ratio (SINR) then the update is dropped even if
the client is scheduled for that communication round. Then aforementioned derived
analytical model is used analyze the aforementioned scheduling policies. Authors of
this work have shown that FL with PF outperforms RAND and RR with a high SINR
threshold while under low SINR RR is more preferable. However, though they compare
three conventional scheduling policies, an optimal scheduling policy is not derived in this
work and further in this work a probabilistic distributions are used, particularly Rayleigh
distribution instead of estimation or predictions.
Similar approach of scheduling in FL is drawn in [24] to overcome limitations in wireless

resources. Therein, the training loss of FL is minimized at each model exchanging
iteration. For this work aforementioned, clients-server conventional system model is
considered. Since with transmitting all training parameters of FL over wireless links with
resource constraints and with typical unreliability, the quality of the ML model trained
will be affected. This effect due to the limitation of wireless resources, is minimized
by the server per global communication round, by selecting an appropriate subset of
clients for execution of FL model averaging. In this work this objective is achieved
by formulating this as an optimization problem subjected to aforementioned resource
limitations in wireless networks. The goal of the optimization problem is to minimize
loss function as in [6] which is the representation of the quality of the model trained.
Using this, a closed-form expression for the expected value of the convergence rate is
derived. Then using that to analyze the impact of wireless resource conditions on FL,
derived optimal transmit power allocation for clients under given resource block allocation
for uplink and scheduling policy. Thereafter, scheduling of clients and uplink resource
block allocation is optimized. However, in this work assumed to have a perfect CSI at
the clients and server. Moreover, an optimal user scheduling policy for entire training
period is not derived.

Quantization based communication overhead reduction:

A contrast framework to aforementioned methods is proposed in [25] by adopting idling,
selecting, and quantizing based approach to increase communication efficiency in FL.
Therein, they have reduced the communication overhead to tackle with communication
bottleneck in a wireless environment. This proposed method is denoted as “FEDPAQ”
in this work which means “Federated Learning method with Periodic Averaging and
Quantization”. In FedPAQ authors has proposed three main features in order to reduce
communication overhead:

• Periodic averaging: In contrast with the conventional FL, where all clients
synchronize their models through the server in each communication round, in this



work authors propose to store updates at clients and execute averaging at the server
periodically. This approach is significant to reduce the communication cost but of
course with the trade-off with the accuracy of the trained model. Consequently,
this approach reduce the overall communication overhead in training model with
FL.

• Selecting a sub set of clients for model update per communication round: Ideally
as aforementioned, a wireless communication system is with resource limitations.
Thus, only a portion of clients are able to simultaneously upload their model
parameters in FL. This results in a dramatically slow training since aggregation
process can only be initialized once after all parameters are updated. Therefore, in
this work authors propose further to select only a portion of clients to update
model parameters in FL in each communication round. Further, having all
clients participating in the training process even introduces significant overhead
eventhough given unconditional channel state. Thus this, intuitively reduce the
overall communication overhead as well in FL model training. This selection criteria
can be affected by several factors as proposed by authors. Accordingly, a selected
client should be able to reach server without being thorny, should be plugged in,
idle and connected to a free wireless network.

• Quantized model update: Most importantly, this is the contrast novel idea this work
propose to reduce the communication overhead. That is to deploy quantization
operator to model update of clients before uploading it to the server for aggregation
in each communication round. This ideally reduce the communication overhead
depending on the quantizer used with expense of the accuracy of the trained model
accuracy. Furthermore, this approach reduces the time taken to upload model
parameters in FL of clients.

Then authors of this work has proved the convergence guarantees of the proposed method,
FedPAQ considering strongly-convex and non-convex losses. Finally, authours presents
empirical results which demonstrates that the communication and computation tradeoff
with proposed FedPAQ method.
Finally, it can be noted that the communication aspects in FL are neglected in the

aforementioned works such as channel uncertainties due to issues discussed earlier. For
instant, optimal client scheduling and resource allocation throughout the entire training
duration, even under the absence of the perfect channel state information (CSI) is not
addressed in the existing literature.

1.2.4 Stochastic optimization - Lyapunov optimization framework

If randomness is presented in the objective function or in constraints or in both, the
problem becomes a stochastic optimization problem. The formal representation of a
stochastic optimization problem is as follows:

minimize ȳ0 (3a)
subject to ȳi ≤ 0, i ∈ {1, 2, ..., K} (3b)

α(t) ∈ A, (3c)



where α(t) is the optimal decision chosen from the feasible set of the decision variables
A, y0(t) is the time dependent objective function, ȳi are continuous convex constraints.
Some of the state-of-the-art methods to solve such stochastic optimization problems

are direct search methods, for instant Nelder-Mead method, but those methods are
computationally exhaustive. The other methods in literature are namely stochastic
approximation, stochastic programming. Lyanunov optimization framework proposed
in [14] is a method to decouple and solve such stochastic optimization problem in the
form (3). First, to track the dynamics of the time average constraints over the time in
(3), auxiliary variables γ(t) are introduced to achieve γ̄ = ȳ. To track those time average
conditions are met, a set of virtual queues are introduced and evolve as follows:

Qi(t+ 1) = max(Qi(t) + γi(t)− yi(t), 0) ∀i. (4)

Then, Lyapunov function is defined as,

L(t) = 1
2
∑
i

Qi(t)2, (5)

where Qi s are introduced queues. With the definition of (5), one slot Lyapunov drift
∆(t) = L(t + 1) − L(t) is computed. Then, upper bound of the ∆(t) is derived. Let
V be a parameter which controls the tradeoff between queue stability and optimality
of the solution of (3). In [14], it has been proved that by minimizing the upper bound
of drift-plus-penalty (DPP: ∆(t) + V yavg0 ) expression on each slot t, yields γ̄ = ȳ when
t→∞, where yavg0 = 1

t

∑t
τ=1 y0(t).

Applications of Lyapunov optimization:

In [26], authors have cast joint power allocation and user scheduling problem in ultra
dense small networks (UDNs) to a dynamic stochastic game using mean-field game
(MFG) theory. Then it is solved using the DPP approach in the Lyapunov optimization
framework. Therein, the Lyapunov optimization framework allows to decouple master
problem into several subproblems defined per base station (BS).
Authors of the paper [27], have used Lyapunov stochastic framework to derive an

online control algorithm for data center devices to reduce time averaged electric utility
consumption in a data center. The proposed algorithm operates without any knowledge
in statistics of the workload or utility consumption for processes in datacenter.

1.2.5 Communication channel uncertainty:

Channel is a medium which is used to transmit signals from one place to another. There
exist three key propagation phenomenon due to reflections, diffraction and scattering
nature of the signal through a wireless over the air channel [13]. Namely path loss,
shadow fading and multipath fading. Total attenuation is the overall effect from these
three phenomenon. Attenuation due to path loss can be modelled using free space path
loss model. Moreover, the effect of the attenuation due to aforementioned multipath
phenomenon is approximated for simulations with models. Such models are,



• Rayleigh fading model using Rayleigh probability distribution: This distribution is
achieved by taking the magnitude of a complex number with real and imaginary
parts from two IID zero mean gaussian random variables (RV). Mathematically
this probability distribution is given by, P(r) = 2r

E(R2) exp
(
−r2

E(R2)

)
, where R is the

random variable. This distribution following envelope of channel response is ideal
for the case where without line of sight (LoS) component present in transmission.
Rayleigh fading model is a reasonable model when there are many objects causing
scattering before signal reaches the receiver, in the channel path. Thus, now R
is the absolute value of the channel response |h(t)|. There power is exponentially
distributed in the distribution while phase is uniformly distributed.

• Clarke-Gans fading model: In this model main assumption is an isotropic scattering
in a Rayleigh distributed fading model [28]. Gans have developed a model including
Doppler effect by a Doppler filter [29]. Using this model, correlated Rayleigh
distributed channels can be simulated with appropriate Doppler frequency values.
Clarke and Gans’s fading modelling is represented in following Fig. 5,
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Figure 5. Generating Clarks Gans faded model

Another popular method of fading model distribution called Rician distribution. This
model is ideal for modelling the envelope of the channel response of a channel having
LoS conditions. Here LoS component is the dominant. Nakagami model is a generalized
version of Rayleigh distribution [30]. There are more other statistical and empirical
models for modelling fading effect in different environments in literature.

1.2.6 Gaussian process regression (GPR) for predictions

Regression means estimating an unknown function with given a set of inputs and
observations. GPR got the attention of machine learning applications since this is very
light weight learning method which allows to learn with covariance also denoted as kernel
machines using probabilistic approach. Suppose there is a unknown, untractable function
g, with output y(t) = g(t, x(t)) [31]. If g is known to be gaussian process (GP) it’s output
at time t (y(t)) can be estimated via regression. In general, Gaussian process regression
is a method to interpolate data points generated from an unknown function. Therein,
this predicted values are modelled by a Gaussian process with a prior covariances.
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Figure 6. Prediction of sin x function using GPR.

In Fig. 6, shows how GPR used to predicting the process of sin x with 6 observation
points. There, it is clearly visible that confidence interval is less in intermediate
observation points compared to beyond of observation points. However, the GP model
has captured the pattern of function sin(x) with observation points. Further, the data
points “anchor” the predicted function at locations.
The work of [32] provides comprehensive theoretical aspects of GPs in machine learning.

Further, a wide variety of kernel functions are explained with their properties. Typically,
an unknown deterministic or stochastic function guessing is uncertain due to lack of data
points and noise in measurements.
In the context of modelling dynamics of an unknown function basing on [33] book,

provides a comprehensive theoretical aspects. Simply, with the data available in GPR,
build a model that match to the unknown function from which the data used for training
or fitting are generated. However, the model structure is not specifically defined a priori
as in neural networks, but is developed from the data. After learning or fitting, using
that model make predictions with inference for any input and outputs are real-valued.
In GP, the Bayesian framework allows to handle aforementioned aspect, with probability
distribution with a collection of random variables, which are from a joint Gaussian
distribution as below,

g(x) = GP(m(x), K(x,x′)) (6)
where m(x) is the mean function, and K(x,x′) is the covariance function. With
aforementioned two parameters a GP can be fully specified. Covariance function defines
correlations between observed data points in the process

K(x,x′) = E
(
g(x)g(x′)

)
(7)



This covariance function must produce a positive semi definite covariance matrix, since
in the prediction its necessary to take the inverse of this covariance matrix. As mentioned
before, there exists several such defined kernel functions.

• Squared exponential (SE) kernel: An element in K is calculated within this kernel
function as below,

k(xi, xj) = α2 exp
(
− 1

2

(
(xi − xj)

λ

)2)
(8)

where λ and α are hyper parameters which determines length scale and amplitude
respectively. This kernel is very smooth. Thus, infinitely differentiable. Significance
of this kernel function is that in this function, the variables close to input space are
highly correlated, while far away are uncorrelated.

• Periodic or sin-squared kernel: An element in K is calculated within this kernel
function as below,

k(xi, xj) = exp
(
−

2 sin2
(
xi−xj

2

)
λ2

)
(9)

where λ is a hyper parameter which determines periodicity. A scaling factor is
added to the beginning if required.

There are several other kernel functions such as Matern class of kernel, linear kernel, etc.
All kernel functions depicts different properties capturing the features of the data points.
After fitting the model, then for single point (x∗) predictions, a posteriori is a simple

Gaussian.
p(g(x∗)|y) = N (m,σ2) (10)

where, m = kT∗K
−1y and σ2 = k(x∗, x∗) − k∗TK−1k∗. There (k∗)i = k(x∗, xi). The

same procedure for multiple point predictions but the posterior defined over functions
is a Gaussian process. However, with number of posterior, the GPR complexity is in
O(n2).

Applications of GPR:

Applications of GPR is spreaded over vast field such as machine learning, networking,
wireless communication, control, etc since GPR is a competitive light weight tool for
active learning. In wireless communication channel is uncertain as mentioned in section
1.2.5. Entropy based approach for wireless scheduling using GPR to predict the channel
is presented in [34]. Here in this paper also authors have used GPR for active learning and
used it’s aforementioned advantage of explicit quantifying ability of information content.
Exploration and exploitation based objective is optimized for wireless scheduling using
the information content of GPR.
In [35], the author has used GPR for control applications. There, he has proposed a

method quantifying the information acquired using entropy measure from information
theory for each controlling step. Thereafter, aforementioned information collection is
combined with the control objectives to cast a multi objective optimization problem. The
proposed method is a dual approach for active learning and control scheme. Gaussian
processes (GP) are used for regression of the state space equations of discrete non-linear
systems. More importantly, the GPR framework gives added advantage to explicitly
quantifying of information content.
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2 SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system consisting a set K of K clients that communicate with a server over
wireless environment. Therein, the k-th client has a private dataset Dk of size Dk, which
is a partition of the global dataset D of size D = ∑

kDk. A set B of B(≤ K) resource
blocks are shared among the clients when communicating with the server.
Let sk(t) ∈ {0, 1} be an indicator where sk(t) = 1 indicates that the client k is scheduled

by the server for uplink communication at time t and sk(t) = 0 otherwise. To schedule
several clients simultaneously, one RB is allocated to each scheduled client. Hence, we
define the RB allocation vector λk(t) = [λk,b(t)]∀b∈B for client k with λk,b(t) = 1 when
RB b is allocated to client k at time t, and λk,b(t) = 0 otherwise. The client scheduling
and RB allocation are constrained as follows:

sk(t) ≤ 1†λk(t) ≤ 1 ∀k, t. (11)

The rate at which the k-th client communicates with the server at time t is given by,

rk(t) =
∑
b∈B

λk,b(t) log2

(
1 + p|hk,b(t)|2

Ik,b(t) +N0

)
, (12)

where p is a fixed transmit power of client k, hk,b(t) is the channel between client k and
the server over RB b at time t, Ik,b(t) represents the uplink interference on client k from
other client over RB b, and N0 is the noise power spectral density.
Under imperfect CSI, the channels need to be estimated via sampling prior to

transmission. The channel sampling data at time t is collected per RB allocation over
the transmissions throughout {1, . . . , t− 1}, then the future channel is inferred using the
past observations as ĥ(t) = J

(
t, {tn, h(tn)}n∈N (t)

)
. Here, tn is a sampling time instant

and the set N (t) consists of sampling indices until time t, i.e., n ∈ N (t) is held only if
s(tn) = 1 and tn < t. With the estimated channels, a successful communication between a
scheduled client and the server is defined by satisfying a target minimum rate. Therefore,
according to (11), the rate constraint can be imposed per RB allocation in terms of a
target signal to interference plus noise ratio (SINR) γ0 as follows:

λk,b(t) ≤ I
(
γ̂k,b(t) ≥ γ0

)
∀k, b, t, (13)

where γ̂k,b(t) = p|ĥk,b(t)|2
Ik,b(t)+N0

and the indicator I(γ̂ ≥ γ0) = 1 if γ̂ ≥ γ0, I(γ̂ ≥ γ0) = 0
otherwise.
The aim of model training is to minimize a regularized loss function,

F (w,D) = 1
D

∑
xi∈D

f(x†iw) + ξ%(w) (14)

by fitting a weight vector w that is known as the model over the global dataset D, within
a predefined communication duration T . Here, f(·), %(·), and ξ are the loss function,
the regularization function, and the regularization coefficient, respectively. Due to the
limitations of communication and privacy, we adopt FL as model training technique to
derive the optimal weights that minimize F (w,D). As said, in FL each client computes
a local model over its local dataset and shares the local model with the server. Upon
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receiving the local models from all clients, the server does model averaging, calculates
the global model, which is broadcasted to all clients.
Under imperfect CSI, channels between clients and the server over each RB are

predicted using their past observations prior to the communication. With λk,b(t) = 1,
the channel hk,b(t) is sampled and used as an observation in the future. It means that
the RB allocation and channel sampling are carried out simultaneously. In this regard,
we define the information on the channel between client k and server at time t that can
be obtained by RB allocation as jk(t) = [jk,b(t)]k∈K. For accurate CSI predictions, it is
essential to acquire as much information about the CSI over the network [36]. In this
view, we maximize ∑k j

†
k(t)λk(t) at each t while minimizing the loss F (w,D). This

iterative process is carried out over a training duration of T as illustrated in Fig. 7.
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Figure 7. FL with client scheduling under limited wireless resources and imperfect CSI.

The empirical loss minimization problem for all t ∈ {1, . . . , T} is formally defined as
follows:

minimize
w(t),s(t),Λ(t),∀t

F
(
w(T ),D

)
− ϕ

T

∑
k,t j

†
k(t)λk(t) (15a)

subject to (11)-(13), (15b)
AΛ†(t) � 1, (15c)
1†s(t) ≤ B, (15d)
s(t) ∈ {0, 1}K ,λk(t) ∈ {0, 1}b, (15e)
wk(t) = argmin

w′
F (w′,w(t− 1),Dk), (15f)

w(t) = ∑
k
Dk

D
sk(t)wk(t), (15g)
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where Λ†(t) = [λ†k(t)]k∈K, ϕ(> 0) is the parameter which controls the impact of the
information exploration, and A is a B × K all-one matrix. The orthogonal channel
allocation in (15c) ensures collision-free client uplink transmission with Ik,b(t) = 0 and
constraint (15d) defines the maximum allowable clients to be scheduled due to the
limitation in the RB availability. The stochastic gradient decent (SGD) based local
model calculation at client k is defined in (15f). The global model update carried out
according to (15g) depending on the dataset size of each scheduled client.
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3 OPTIMAL CLIENT-SCHEDULING AND RB
ALLOCATION POLICY VIA LYAPUNOV

OPTIMIZATION

It can be noted that the optimization problem (15) is coupled over all clients. Hence,
in what follows, the discussion of decoupling (15) over clients and the server, and then
deriving the optimal client scheduling and RB allocation policy.

3.1 Decoupling of original problem via dual updates

Let us consider an ideal unconstrained scenario where the server gathers the entire data
samples and trains the global model in a centralized manner. Let F0 = minw F (w,D)
be the minimum loss under centralized training. By the end of training duration T , we
define the gap between the studied FL under communication constraints and centralized
training as ε(T ) = F

(
w(T ),D

)
− F0. Here, ε(T ) is the loss of FL with scheduling

compared to centralized training. Note that minimizing (15a) remains unchanged by
minimizing the gap ε(T ) under the same set of constraints.
To analyse the loss of FL with scheduling, we consider the dual function of (15a) with

the dual variable θ = [θ1, . . . , θD] and X = [Xk]k∈K with Xk = [xi]Dk
i=1 as follows:

ψ(θ) = min
w,z

( ∑
xi∈D

1
D
fi(xTi w) + ξ%(w) + θT (θ − z)

D

)

= −ξ%∗(Xθ
ξD

)−
D∑
i=1

f ∗i (−θi)
D

= −
K∑
k=1

Dk∑
i=1

1
D
f ∗i (−θi)− ξ%∗(v), (16)

where v = Xθ/ξD, z = XTw is a newly introduced variable, and f ∗(.), %∗(.) are
the conjugate functions of f(.) and %(.), respectively. With the dual formulation the
relation between the primal and dual variables is w = ∇%∗(v) [23]. Based on the dual
formulation, the loss of FL with scheduling is ε(T ) = ψ0 − ψ

(
θ(T )

)
where ψ0 is the

maximum dual function value obtained from the centralized method.
Note that the first term of (16) decouples per client and thus, can be computed locally.

In contrast, the second term in (16) cannot be decoupled per client. To compute %∗(v),
first, each client k locally computes ∆vk(t) = 1

ξD
Xk∆θk(t) at time t. Here, ∆θk(t) is

the change in dual variable θk(t) for client k in the time t given as below,

∆θk(t) ≈ argmax
δ∈RDk

(
− 1
D

1†[f ∗i (−θk(t)− δ)]Dk
i=1 −

ξ

K
%∗
(
v(t)

)
− 1
D
δ†Xk%

∗
(
v(t)

)
− η/ξ

2D2‖Xkδ‖2
)
, (17)

where η depends on the partitioning of the D [37]. It is worth noting that ∆θk(t) in (17)
is computed based on the previous global value v(t) received by the server. Then, the
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scheduled clients upload (∆vk(t),∆θk(t)) to the server. Following the dual formulation,
the model aggregation and update in (15g) at the server is modified as follows:

v(t+ 1) := v(t) +
∑
k∈K

sk(t)∆vk(t), (18a)

θk(t+ 1) := θk(t) +
∑
k∈K

1
K
sk(t)∆θk(t). (18b)

Using (18a), the server computes the coupled term %∗
(
v(t+ 1)

)
in (16). The decoupling

of the original problem (15) using dual formulation is presented in the following figure
from a schematic diagram,
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Figure 8. Model update representation using dual formulation.

Note that from the t-th update, ∆θk(t) in (17) maximizes ∆ψ
(
θk(t)

)
, which is the

change in dual function ψ
(
θ(t)

)
corresponding to the of client k. Let θ?k(t) be the local

optimal dual variable at time t, in which ∆ψ
(
θ?k(t)

)
≥ ∆ψ

(
θk(t)

)
is held. Then for a

given accuracy βk(t) ∈ (0, 1) of local SGD updates, the following condition is satisfied:

∆ψk
(
∆θ?k(t)

)
−∆ψk

(
∆θk(t)

)
∆ψk

(
∆θk(t)

)
−∆ψk(0)

≤ βk(t), (19)

where ∆ψk(0) is the change in ψ with a null update from k-th client. For simplicity, we
assume that βk,t = β for all k ∈ K and t, hereinafter. With (19), the gap between FL
with scheduling and the centralized method after T number of communication rounds is
ε(T ).

Theorem 1 (Upper bound of ε(T )). The upper bound of the ε(T ) after T number of
communication rounds is given as,

ε(T ) ≤ D
(

1− (1− β)∑∑k≤K
t≤T

Dk

TD
sk(t)

)T
.

For the proof of 1 see [ Appendix 7.1 ]
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This yields that the minimization of ε(T ) can be achieved by minimizing its upper
bound defined in (1). Henceforth, the equivalent form of (15) is given as follows:

minimize
[∆θk(t)]k,s(t),Λ(t),∀t

D
(

1− (1− β)
∑
t,k

Dk

TD
sk(t)

)T
− ϕ

T

∑
k,t

j†k(t)λk(t) (20a)

subject to (15b)-(15e), (17), (18). (20b)

3.2 GPR-based metric for information on unexplored CSI

For CSI predictions, we use GPR with a Gaussian kernel function to estimate the
nonlinear relation of J(·) by assuming that it follows a Gaussian process (GP) as a
prior.
In this view, for a finite data set {tn, h(tn)}n∈N , the aforementioned GP becomes

a multi-dimensional Gaussian distribution, with a zero mean and covariance C =
[c(tm, tn)]m,n∈N given by,

c(tm, tn) = exp
(
− 1

ζ1
sin2

(
π
ζ2

(tm − tn)
))
, (21)

where ζ1 and ζ2 are the length and period hyper-parameters, respectively [38].
Henceforth, the CSI prediction at time t and its uncertainty/variance is given by [32],

ĥ(t) = c†(t)C−1[h(tn)]n∈N , (22)
j(t) = c(t, t)− c†(t)C−1c(t), (23)

where c(t) = [c(t, tn)]n∈N . Note that the client and RB dependence is omitted in the
discussion above for notation simplicity. Here, the channel estimation is given in (22).

Theorem 2 (Information content of GPR). The CSI uncertainty in GPR prediction is
used as the information content j(t)
For the proof, see [ Appendix 7.2 ]

With Theorem 2, CSI uncertainty is used as the information j(t), in which exploring
highly uncertain channels provides more insight. It is worth noting that under perfect
CSI ĥ(t) = h(t) and j(t) = 0 since there is no information content with a zero probable
quantity, according to information theory.

3.2.1 Joint client scheduling and RB allocation

Due to the time average objective in (20a), the problem (20) becomes a stochastic
optimization problem defined over t = {1, . . . , T}. Therefore, we resort to the drift
plus penalty (DPP) technique in Lyapunov optimization framework to derive the optimal
scheduling policy [14]. Therein, Lyapunov framework allows us to transform the original
stochastic optimization problem into a series of optimizations problems that are solved
at each time t, as discussed next.
First, we denote u(t) = (1 − β)∑k sk(t)Dk/D and define its time average ū =∑
t≤T u(t)/T . Then, we introduce auxiliary variables ν(t) and l(t) with time average



29

lower bounds ν̄ ≤ ū and l̄ ≤ 1
T

∑
k,t j

†
k(t)λk(t) ≤ l0, respectively. To track the time

average lower bounds, next we introduce virtual queues q(t) and g(t) with the following
dynamics [14]:

q(t+ 1) = max
(
0, q(t) + ν(t)− u(t)

)
, (24a)

g(t+ 1) = max
(
0, g(t) + l(t)−∑k j

†
k(t)λk(t)

)
. (24b)

In this view, (20) can be recast as follows:

minimize
[∆θk(t)]k,s(t),Λ(t),ν(t),l(t)∀t

D(1− ν̄)T − ϕl̄ (25a)

subject to (20b), (24), (25b)
0 ≤ ν(t) ≤ 1− β ∀t, (25c)
0 ≤ l(t) ≤ l0 ∀t, (25d)

u(t) =
∑
k

(1− β)Dk

D
sk(t) ∀t. (25e)

The quadratic Lyapunov function of q(t) is L(t) =
(
q(t)2 + g(t)2

)
/2. Given

(
q(t), g(t)

)
,

the expected conditional Lyapunov one slot drift at time t is ∆L = E[L(t + 1) −
L(t)|q(t), g(t)]. Weighted by a tradeoff parameter φ(≥ 0), we add a penalty term,

φ
(
∂
∂ν

[(1− ν)TD]ν=ν̃(t)E[ν(t)|q(t)]− ϕE[l(t)|g(t)]
)

=

− φ
(
DT

(
1− ν̃(t)

)T−1
E[ν(t)|q(t)] + ϕE[l(t)|g(t)]

)
, (26)

to obtain the Lyapunov DPP. Here, ν̃(t) = 1
t

∑t
τ=1 ν(τ) and l̃(t) = 1

t

∑t
τ=1 l(τ) are

the running time average of the auxiliary variables at time t. Using the inequality
max(0, x)2 ≤ x2, the upper bound of the Lyapunov DPP is given by,

∆L− φ
(
DT

(
1− ν̃(t)

)T−1
E[ν(t)|q(t)] + ϕE[l(t)|g(t)]

)
≤

E[q(t)
(
ν(t)− u(t)

)
+ g(t)

(
l(t)−

∑
k

j†k(t)λk(t)
)

+ L0

− φ
(
DT

(
1− ν̃(t)

)T−1
ν(t) + ϕl(t)

)
|q(t), g(t)], (27)

where L0 is a uniform bound on
(
ν(t) − u(t)

)2
/2 +

(
l(t) − ∑

k j
†
k(t)λk(t)

)2
/2 for all

t. The motivation behind deriving the Lyapunov DPP is that minimizing the upper
bound of the expected conditional Lyapunov DPP at each iteration t with a predefined φ
yields the tradeoff between the virtual queue stability and the optimality of the solution
for (25) [14]. In this regard, the stochastic optimization problem of (25) is solved via
minimizing the upper bound in (27) at each time t as follows:

maximize
s(t),Λ(t),ν(t),l(t)

∑
k

(q(t)(1− β)Dk

D
sk(t) + g(t)j†k(t)λk(t)

)
− α(t)ν(t)−

(
g(t)− φϕ

)
l(t) (28a)

subject to (15b)-(15d), (25c), (25d), (28b)
0 � s(t),λk(t) � 1, (28c)
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where α(t) = q(t)−φDT
(
1− ν̃(t)

)T−1
. Note that the constant κ is removed, the variable

∆θk(t) with constraints (17) and (18) are decoupled from (28), and the Boolean variables
are relaxed as linear variables. Here, the objective and the constraints in (28) are affine,
and the problem is a linear program (LP). Due to the independence, the optimal auxiliary
variables are derived by decoupling the (28a), (25c), and (25d) as follows:

ν?(t) =
1− β if α(t) ≥ 0,

0 otherwise,
l?(t) =

l0 if g(t) ≥ φϕ,

0 otherwise.
(29)

The optimal scheduling s?(t) and RB allocation variables Λ?(t) are found using an interior
point method (IPM). It is due to the nature of LP, the optimal solution of the relaxed
problem lies on a vertex of the feasible convex hull yielding the optimal solution for the
problem with the Boolean variables. The joint client scheduling and RB allocation is
summarized in Algorithm 1.

Algorithm 1 Joint Client Scheduling and RB Allocation
Input: D, γ0, β, p, B, ξ
Output: s?(t),Λ?(t) for all t

1: q(0) = g(0) = 0, ν(0) = l(0) = 0, v(0) = 0
2: for t = 1 to T do
3: Each client computes ∆θk(t) using (17)
4: Channel prediction with (22)
5: Calculate ν?(t) and l?(t) using (29)
6: Derive s?(t) and Λ?(t) by solving (28) using an IPM
7: Local model (∆vk(t),∆θk(t)) uploading to the server
8: Update ν̃(t), q(t) via (24), v(t) and θ(t) with (18)
9: Global model v(t) broadcasting

10: t→ t+ 1
11: end for
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4 SIMULATION RESULTS

In this section, we evaluate the proposed client scheduling method using MNIST dataset
assuming f(·) and %(·) as cross entropy loss functions with a Tikhonov regularizer. For
the training loss function, εmethod = accuracycentralized − accuracymethod is used. Here, the
centralized training refers to the training takes place at the server with the access to the
entire dataset. A dataset of 6000 samples consisting of equal sizes of ten classes for 0-9
digits are used over K = 10 clients. In addition, the uplink transmission power is set to
p = 1W and the channel follows a correlated Rayleigh distribution with mean to noise
ratio equal to γ0. For perfect CSI, it is assumed that a single RB is dedicated for channel
measurements. The remaining parameters are presented in Table 2.

Table 2. Simulation parameters

Parameter Value Parameter Value Parameter Value
γ0 1.2 B 6 β 0.7
ζ1 2 φ 1 ξ 1
ζ2 5 η 0.2 |N | 20
T 100 ϕ 1 p 1

4.1 Distribution of dataset among clients

To partition the training dataset over clients, we use the Zipf distribution to determine
the local training dataset size. In other words client k owns a dataset with the following
distribution of zipf.

Dk = Dk−σ∑
κ∈K κ−σ

(30)

Here, the Zipf’s parameter σ = 0 yields uniform data distribution over clients (600
samples per client), and increasing σ results in heterogeneous sample sizes among clients.
It can clearly be noted how the dataset is distributed among clients with Zipf σ parameter
from the following figure:
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Figure 9. Zipf data distribution among clients with zipf’s parameter σ, for D = 6000

Under perfect CSI, we denote the proposed scheduling method as data quantity aware
scheduling policy “QAW". By deriving the optimal client scheduling and RB allocation
based on the findings in [23], we obtain the quantity unaware baseline “QUNAW". Under
imperfect CSI, the proposed GPR-based channel prediction and client scheduling method
is coined as “QAW-GPR". Whereas the random scheduling baseline is denoted by
“RAND". Finally, to highlight the upper bound performance, we use the vanilla FL
method [6] without RB constraints, which is denoted as ‘IDEAL" hereinafter.
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4.2 Loss of accuracy comparison

Fig. 10 compares the loss of accuracy in all FL methods at each model aggregation round
with respect to centralized model training.
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Figure 10. Comparison of the loss of accuracy in all FL methods for each model
aggregation round vs. centralized training with perfect and imperfect CSI and B = 6,
Zipf parameter σ = 1.017.

In IDEAL within simulations there is no any communication constraints, which means
any amount of clients can be scheduled regardless of any uncertainty in communication
channel. Thus IDEAL is the best case scenario or the lowest accuracy loss that can be
achieved. As expected, it can be noted from the figure that IDEAL has the lowest loss of
ε(100) = 0.7 due to the absence of communication constraints. Under perfect CSI, Fig.
10 plots QAW, QUNAW and RAND accuracy losses for comparison.
Further, for B = 6, shows that the quantity aware scheduling (QAW) reduces the

loss by 15.9 % compared to QUNAW. Under imperfect CSI, QAW-GPR and RAND
are compared in Fig. 10 alongside IDEAL and QAW. While RAND shows a poor
performance, QAW-GPR outperforms QAW by reducing the loss by 28 %.
However, in QAW allocates one RB for CSI measurements thus, only the rest of the

RBs are allowed to be utilized for clients to upload their model and download the global
model. The main reason for the improvement in QAW-GPR compared to both the others
is due to the aforementioned utilization of all B = 6 RBs for scheduling clients compared
to QAW.
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4.3 Impact of per-client dataset size

Fig. 11 plots the impact of heterogeneity in the training sample size per client on the
loss of accuracy.
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Figure 11. Comparison of the loss of accuracy per client dataset size.

Here, the x-axis represents the number of data samples per client with the minimum
number of training data, i.e., the dataset size of the 10th client D10 as per the Zipf’s
distribution. All methods exhibit higher losses in accuracy when the training samples
are asymmetrically distributed over clients, i.e., for the lower D10. As D10 is increased,
the losses in accuracy are reduced. It is also worth noting that the losses of accuracy in
the proposed methods QAW and QAW-GPR remain almost constant for D10 > 100. The
loss reductions in QAW-GPR over QAW are due to the additional RB with the absence
of CSI measurement. In contrast, QUNAW yields higher losses when training data is
unevenly distributed among clients. The reductions of the loss in QAW at D10 = 40
are 25.72 % and 20.87 % compared to QUNAW and RAND, respectively. The reason
behind the these lower losses of the proposed methods over the baselines is that client
scheduling takes into account the training dataset size. For D10 = 600, due to the equal
dataset sizes per client, the accuracy loss with QAW and QUNAW identical. Therein,
both QAW and QUNAW exhibit about 18.4 % reduction in accuracy loss compared to
RAND.
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4.4 Impact of number of the resource block availability

The following Fig. 12 draws the impact of the number of resource block availability of
proposed methods both QAW and QUNAW with reference to IDEAL.
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Figure 12. Comparison of the loss of accuracy in all FL methods for each model
aggregation round vs. centralized training with perfect CSI and B = {3, 6}, Zipf
parameter σ = 1.017.

At a glance from Fig. 12, it is noticeable that reduction in the resource block availability
have caused in scarification in gains in terms of accuracy loss. For B = 3, the accuracy
losses in both QAW and QUNAW are almost identical. The reason for that is when
B = 2 the available RBs for scheduled clients communication is 2. Thus the impact
of scheduling with the knowledge of dataset size of clients, get declined with decreasing
number of RBs.
However, the increase in the accuracy loss due to doubling of the RBs to B = 6 value in

QUNAW is 20.74 %. In QAW method, that increase in the accuracy loss is 28.63 % From
these value figures notably QAW performs very well when increasing the communication
feasibility. The reason behind it is that the dataset effect considered scheduling impact
to accuracy is higher when there is more possibilities to schedule clients. Thus, it can be
concluded that the effect of QAW shines when there is higher number of RB available.
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4.5 Impact of Fairness

Finally, in terms of fairness, the accuracy per client for different FL methods are
investigated in Fig. 13.

Figure 13. Fairness comparison of the training accuracy among clients, Zipf parameter
σ = 1.071.

Here, IDEAL exhibits the highest average training accuracy of 95.3% as well as the
lowest variance of 5.6 over the clients compared to all other methods. This demonstrates
that the most fairness in terms of training accuracy is provided by IDEAL thanks to
benefit of unconstrained communication. With QAW-GPR, 93.5% of average accuracy
and 10.7 variance is observed. Client scheduling utilizing all B = 6 RBs offers the
advantage for the aforementioned performance over all the other methods considering
the communication limitations. It can be also be seen that QAW and QUNAW have
almost equal means (92%) and variances of 16.9 and 19.5, respectively. Scheduling
clients to train over a larger dataset in QAW provides a lower variance in accuracy over
QUNAW. Although RAND is CSI-agnostic, it yields an average accuracy of 92.8% and
the highest variance of 19.41. This indicates that the client scheduling without any
insight of datasize distribution and CSI cannot provide high training accuracy or fairness
under communication constraints.
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4.6 The impact of CSI correlation on the GPR-based prediction

Fig. 14, compares complementary cumulative distribution function (CCDF) plots of the
GPR-based CSI prediction errors for the Rayleigh distributed channels with different
correlations. The channels are generated with Clark-Gans model as described in section
1.2.5. Lower Doppler frequency (fm), implies higher correlation between channel samples.
Thus, by changing fm three level of correlated channels are generated with average of
channels’ absolute values, 1.076.
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Figure 14. The error CCDF of GPR-based predictions for three correlated Rayleigh
distributed channels with different correlations.

From Fig. 14, it can be noted that GPR-based prediction accuracy improves with the
channel correlation. Channel prediction error is calculated taking the the absolute value
of the difference between prediction and the actual (|ĥ− h|). For the higher correlation
(fm = 2) all the predictions are precise, in which the prediction errors are below of
0.479. For medium correlation (fm = 5) the maximum error is 0.9442 where as for the
lower correlation (fm = 10), it reaches up to 1.757, which is the highest from all three
correlations.
Further from Fig. 14, it is shown that, there is 99.9 % reliability that prediction errors

with higher correlation are only up to 0.296. With lower correlation, it is 99.9 % reliable
that prediction errors are below 1.373 where as with medium correlation it is 0.8944.
When the correlation is higher channel shows less fluctuations. Thus, prediction

captures the pattern of channel fluctuations with less previous data and predict channel
more accurately. Hence, the GPR prediction accuracy have an impact with the correlation
of channels.
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5 CONCLUSION AND FUTURE EXTENSIONS

In this thesis, a joint client scheduling and RB allocation policy for FL over wireless links
under imperfect CSI is proposed. The problem of client scheduling and RB allocation
was cast to minimize the training loss compared to centralized approach and the CSI
uncertainties. Resorting to GPR-based channel prediction method and deriving an upper
bound for the loss of accuracy in FL compared to a centralized approach, the stochastic
optimization problem was solved using Lyapunov optimization. With extensive set of
simulations, we evaluated the performance of the proposed methods for both perfect and
imperfect CSI. Results show that the performance of the proposed methods outperforms
the baseline client scheduling and RB allocation methods adopted in FL, especially when
training data is unevenly distributed among clients.
In this work, for the convenience of optimal client scheduling policy derivation, it

is assumed that all the clients have the ability to solve its local NN model training
subproblem upto a certain accuracy irrespective to the dataset size and computational
capabilities. Practically, with the dataset size and due to computational capability
differences, optimality that each worker solve its subproblem, is not the same. Thus,
analyzing the impact of computation and communication on FL accuracy are potential
future extensions.
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7 APPENDICES

7.1 Proof of upper bound of ε(T )

After t and t+ 1 communication rounds the expected increment in the dual formulation
of objective (15a) function is as below,

E
(
ψ(θ(t+ 1))− ψ(θ(t))

)
≥ E(ψ(θ(t+ 1)))− E(ψ(θ(t)))

This inequality holds since the expectations of difference is greater than the difference
of the expectations. Thereafter, add and subtract the same phrase, which is the optimal
dual function value to the R.H.S. for the formulation.
E
(
ψ(θ(t+ 1))− ψ(θ(t))

)
≥ E(ψ(θ?))− E(ψ(θ(t))) + E(ψ(θ(t+ 1)))− E(ψ(θ?))

=
K∑
k=1

∆ψ(∆θ?k(t))− E(ψ(θ(t))) +
K∑
k=1

∆ψ(∆θk(t))−
K∑
k=1

∆ψ(∆θ?k(t))

From (19) and following definition E(ψ(θ(t))) = ∑K
i=0 ∆ψ(0) since its same as previous

communication round update,

E
(
ψ(θ(t+ 1))− ψ(θ(t))

)
≥

K∑
k=1

∆ψ(∆θ?k(t))− E(ψ(θ(t)))− β
{ K∑
k=1

∆ψ(∆θ?k(t))− E(ψ(θ(t)))
}

= (1− β)
{ K∑
k=1

∆ψ(∆θ?k(t))− E(ψ(θ(t)))
}

This is the ultimate bound when all the data points in D are utilized. However with
scheduling and upto t number of communication iterations,

E
(
ψ(θ(t+ 1))− ψ(θ(t))

)
≥ (1− β)

{ K∑
k=1

∆ψ(∆θ?k(t))− E(ψ(θ(t)))
}

≥ (1− β)
(

t∑
τ=1

K∑
i=1

Dk

tD
sk(t)

){ K∑
k=1

∆ψ(∆θ?k(t))− E(ψ(θ(t)))
}

Now, following Appendix B in [23],
{∑K

k=1 ∆ψ(∆θ?k(t)) − E(ψ(θ(t)))
}
≥ s̄

{
ψ(θ?) −

E(ψ(θ(t)))
}
, where s̄ ∈ (0, 1), it can be derived,

ε(T ) = E
(
ψ(θ?)− ψ(θ(T + 1))

)
= E

(
ψ(θ?)− ψ(θ(T ))

)
− E

(
ψ(θ(T + 1))− ψ(θ(T ))

)
≤ E

(
ψ(θ?)− ψ(θ(T ))

)
− (1− β)

(
t∑

τ=1

K∑
i=1

Dk

TD
sk(t)

){
ψ(θ?)− E(ψ(θ(T )))

}

=
(

1− (1− β)
T∑
τ=1

K∑
i=1

Dk

TD
sk(t)

){
ψ(θ?)− E(ψ(θ(T )))

}
...

≤
(

1− (1− β)
T∑
τ=1

K∑
i=1

Dk

TD
sk(t)

)T{
ψ(θ?)− E(ψ(θ(0)))

}
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In [17] it is proved that
{
ψ(θ?)− E(ψ(θ(0)))

}
< D. Following that,

ε(T ) ≤
(

1− (1− β)
T∑
τ=1

K∑
i=1

Dk

TD
sk(t)

)T
D

7.2 Proof of GPR uncertainty represents information content

Let the entropy function beH(.). Thus, after sampling the channel h(t) at communication
iteration t, H(ĥ|[h(tn)]n∈N ) = j(t) = 0. Otherwise, j(t) = H(ĥ(t)|t, [h(tn)]n∈N ).
Note that, a posterior distribution of channel given for GPR is Gaussian distributes.

Thus,

p(ĥ(t)|t, [h(tn)]n∈N ) ∼ N (ĥ(t);V (t))

where ĥ(t) is the channel estimate and V (t) is the GPR uncertainty, at communication
iteration t. Since the entropy of this Gaussian distribution closed form expression is,

H(ĥ(t)|t, [h(tn)]n∈N ) = 1
2 log(2πeV (t))

Since, information content j(t) = 1
2 log(2πeV (t)), therefore for j(t), V (t) can be used

as a measuring quantity of information content since log is a monotonically increasing
function.


