
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING
DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

MASTER’S THESIS

OPTIMIZATION TECHNIQUES FOR
CELL-FREE MASSIVE MIMO SYSTEM

Author Chamalee Wickrama Arachchi

Supervisor Prof. Nandana Rajatheva

Second Examiner Dr. Shashika Manosha

(Technical Advisor Dr. Pekka Pirinen)

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344908452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Wickrama Arachchi C. (2019) Optimization Techniques for Cell-Free Massive
MIMO System . University of Oulu, Degree Programme in Electrical Engineering,
29 p.

ABSTRACT

The problem of max-min signal-to-interference plus noise ratio (SINR)
for uplink transmission of cell-free massive multiple-input multiple-output
(MIMO) system is considered. We assume that the system is employed
with local minimum mean square error (L-MMSE) detection. The objective
is to preserve user fairness by solving max-min rate optimization problem,
by optimizing transmit power of each user equipment (UE) and weighting
coefficients at central processing unit (CPU), subject to a transmit power
constraint at each UE. This problem is not jointly convex. Hence, we
decompose original problem into two subproblems, particularly for optimizing
power allocation and weight coefficients. Then, we propose an iterative
algorithm to solve these two subproblems alternately. Weight coefficient
subproblem is solved in the form of generalized eigen value problem
while power allocation subproblem is solved by approximating as geometric
programming (GP) problem.

Keywords: Cell-free massive MIMO, max-min SINR problem, geometric
programming, generalized eigen value problem, L-MMSE.
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škl local estimate ofkth UE at lth AP
si information bearing signal at ith UE
SINRk effective SINR of kth UE
SINRk,max maximum effective SINR of kth UE under fixed power case
t slack variable
vkl local combining vector at lth AP to estimate sk
yl received signal at lth AP
Zl received pilot matrix at lth AP
tk pilot index assigned to kth UE
ztkl correlated signal with Zl and corresponding pilot signal at lth

AP for kth UE

τp length of pilot sequence
τc length of coherence interval
βkl large scale fading coefficient between UE k and AP l
Φk kth mutually orthogonal pilot signal
Ψtkl correlation matrix of the received signal ztkl
σ2 variance

Cn the set of complex n dimensional vectors
Cm×n the set of complex m× n matrices

∇f(x) gradient of function f at x
∼ distributed according to
≈ approximated according to
|x| absolute value of the complex number x
‖x‖ Euclidean norm of the vector x
XH Conjugate transpose (Hermtian) of matrix X
XT Transpose of matrix X
X−1 Inverse of matrix X
diag(x) diagonal matrix with the elements with the vector x
E{x} The expected value of x
logk logarithm in base k
NC(0,R) multi-variate circularly symmetric complex Gaussian

distribution with correlation matrix R
CN (0, σ2) circularly symmetric complex Gaussian distribution with zero

mean, variance σ2

N (0, σ2) real-valued Gaussian distribution with zero mean, variance σ2

6



1 INTRODUCTION

In this chapter, we briefly describe the background and motivation about next generation
wireless networks and importance of mathematical optimization in sophisticated radio
resource management. Further, we present thesis objectives and contribution related to
cell-free massive MIMO, followed by the outline of the thesis.

1.1 Background and Motivation

Fifth generation (5G) networks were standardized to meet growing demands of high
spectral efficiency (SE), low latency, ultra reliability, and massive machine type
communications. While 5G is being deployed around the world, researchers from both
academia and industry are paving the way towards sixth generation (6G) networks [1]. In
particular, network densification, massive multiple-input multiple-output (MIMO), and
millimeter-wave (mmWave) bands have recently emerged as the promising physical layer
enablers for 5G and beyond [2]. Thus, there are open mathematical and computational
challenging problems which are related to the three main pillars of physical layer:
employing MIMO networks, utilizing ultra-dense networks (UDN), and exploiting new
frequency bands.
Massive MIMO (mMIMO) has become one of the most promising candidates towards

fifth generation (5G) systems and beyond, due to improved spectral efficiency (SE); but
not sacrificing extra bandwidth and transmit power resources [3]. In contrast to multi-
user MIMO, mMIMO system deploys hundreds or even thousands of antennas at a base
station (BS) exploiting spatial degrees of freedom (DoF) which leads to a huge improvement
of SE. Coordinated multi-point (CoMP), synonymously referred to as multicell operation,
is one of the promising ways to improve SE through BS cooperation [4]. CoMP provides
improved SE, specially for cell edge users by mitigating inter cell interference via the
coordination between the interfering and serving BSs.
Cell-free massive MIMO (Cell-free mMIMO) is a hybrid model which combines

the features of distributed MIMO and mMIMO [5]. By design, it is a user-centric
implementation to overcome inter cell interference and provide macro-diversity [6].
Moreover, the excessive handover issue in small-cell systems can be solved using cell-free
topology [7]. Thus, cell-free massive MIMO has attracted a lot of research interest recently.
In cell-free mMIMO system architecture, it deploys large number of distributed access
points (APs) over a geographical area where number of users are much lower than number
of APs and all users are simultaneously served in the same time-frequency resource block
by spatially distributed APs. In the existing literature, each AP performs multiplexing
with receiver processing techniques; for example see maximum ratio (MR) [8], zero
forcing (ZF) [7], and MMSE processing [9]. In this thesis, we evaluate the performance of
cell-free mMIMO system with multi-antenna APs and local-MMSE (L-MMSE) detector,
in terms of max-min fairness policy.
On the other hand, sophisticated radio resource management strategies for next

generation wireless communication networks have been identified as a key requirement
with the accelerated demands for radio resources, such as channel capacity, spectrum,
quality of service (QoS) requirements, delay requirements, and many others. Specifically,
it is understood that a wide variety of resource management problems of recent interest,
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including power/rate control, beamformer design of MIMO networks, and many others
are directly or indirectly reliant on the generic max-min optimization problems [10].
In this thesis, a greater emphasis is placed on developing algorithms for max-min rate
optimization problem, which is known to be generally non convex [11].

1.2 Thesis Objectives and Contribution

• Objective: Applying optimization techniques for resource management in wireless
communication networks (5G and beyond).

• Contribution: Developing an iterative alternating algorithm to solve the max-min
SINR problem for the uplink of a cell-free mMIMO system employed with L-MMSE
detector.
The focus of the earlier paper [9, Corollary 2] was to maximize individual signal-to-
interference plus noise ratio (SINR) by only changing weighting coefficients; but,
taking powers as fixed. In contrast to previous work, our research contribution is to
maximize the smallest SINR of the system by changing both transmit power and
weight coefficients. Note that, considered max-min SINR problem is a non-convex
joint optimization problem with respect to weight and power allocation coefficients.
Thus, the proposed iterative algorithm is based on alternating computational
framework where non-convex joint optimization problem is divided into two easier
optimization problems and solve each one of them in a sequential manner. More
specifically, first subproblem is derived as well-known generalized eigenvalue problem
and second subproblem is derived as an approximated geometric program, such that
modern optimization tools are capable of solving those well-structured problems;
eventually, obtaining a suboptimal solution for the joint optimization problem.

1.3 Thesis Outline

The remaining of this thesis is organized as follows:

• Chapter 2: Includes the necessary theoretical background and provides an overview
of the main constitutional parts of the thesis.

• Chapter 3: Provides the details of the work carried out, where the system model is
described. Herein, details of the channel estimation and uplink payload transmission
are visited, we provide detailed problem formulation and algorithm derivations
related to cell-free system model.

• Chapter 4: Illustrates the performance and effectiveness of the proposed algorithm
numerically.

• Chapter 5: Concludes this thesis and provides potential future research directions.

8



2 BACKGROUND AND LITERATURE

In this chapter, we present basic features associated with cell-free networks and
optimization techniques used in our proposed algorithm.

2.1 Cell-free Massive MIMO

2.1.1 Overview of Network Deployments

In this section, we briefly discuss several different types of network deployments in the
existing literature.

• Conventional cellular network: By design, conventional cellular architecture
consists of disjoint sets with cell boundaries as illustrated in Figure 1 (top-left).
Herein, each UE is exactly connected to one base station (except in handover scenario)
and each base station handles different number of active UEs at a particular time
instance. One of the main bottleneck of this network model is that UEs within
one cell cause inter-cell interference to UEs in other cells. On the other hand,
"network densification" has been recognized as a key player to cater high capacity
requirement [12]. However, the more we densify the network, the more we pay for
inter-cell interference. This is due to the fact that the implementation of conventional
cellular network is more towards cell-centric than user-centric.

• Network-centric network with CoMP-JT: Another type of network
deployment is to include "base station cooperation" for the network-centric
implementation, as shown in Figure 1 (top-right). In contrast to conventional
cellular network model, multiple base stations are located within a cell. Hence, UEs
residing in each cell are served by multiple base stations leading to higher SE. See
1 (bottom-left).

Figure 1. Example of network deployments. Top-left: A conventional cellular network.
Top-right: A conventional network-centric implementation of CoMP-JT. Bottom-left: A
user-centric implementation of CoMP-JT. Bottom-right: A cell-free mMIMO network. [6,
Figure 1]
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• User-centric network with CoMP-JT: In contrast to network-centric
implementation of CoMP-JT, each UE communicates with its nearest set of APs
facilitating a user-centric communication model.

• Cell-free network: The word "Cell-free" implies that there are no cell boundaries
at least from user perspective [6]. In the cell-free literature, base station is referred as
access point (AP). As illustrated in Figure 1 (bottom-right), all APs are connected to
central processing unit (CPU) via fronthaul connections providing full cooperation
with all APs. However, if there are multiple CPUs in the deployment area, then
CPUs are connected by back-haul links. That is because those back-haul links
enable user-centric communication in the areas covered by multiple CPUs [6].
A major performance bottleneck of conventional cellular networks is the poor network
coverage at cell edge users. But, cell-free networks are capable of alleviating inter-cell
interference by cooperating between APs while conventional cellular networks suffer
from poor coverage mostly at cell edge due to strong inter-cell interference near cell
boundaries [6].

2.1.2 Pilot-based Channel Estimation in Cell-Free Massive MIMO

In contrast to conventional cellular networks, all users in cell-free networks are
simultaneously served by all APs in the same time-frequency resource. Hence, pilot-based
channel estimation which is inherited from mMIMO plays a critical role in cell-free
networks. Generally, users are allocated with non-orthogonal pilots due to the fact that
the length of the pilot sequence is limited by coherence time interval. Mostly in the
cell-free literature, there is no channel state information (CSI) sharing among APs.

2.1.3 TDD Operation

In cell-free systems, uplink (from users to APs) and downlink (from APs to users)
transmission are proceeded by time-division duplex (TDD) operation. As shown in Figure
2, each coherence interval is basically divided into three phases: uplink training, downlink
payload data transmission, and uplink payload data transmission [5]. In addition to
aforementioned TDD configuration, another possible configuration includes downlink
training in which downlink pilots are used explicitly for downlink channel estimation.

Uplink Pilots Uplink Payload Downlink Payload Uplink
Pilots

Uplink
Payload

Downlink
Pilots

Downlink
Payload

Tc Tc

Bc Bc

Figure 2. TDD frame structure. Left: The TDD frame without downlink pilots, Right:
The TDD frame with downlink pilots. Guard intervals are not shown in the figure as it is
deducted from the coherence time interval.
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2.1.4 Power Control

To ensure user fairness, max-min power control is utilized in the cell-free networks [5]. This
mechanism provides uniformly good service to all users, irrespective of their geographical
location. Moreover, this power control is done at CPU on the large-scale fading time
scale [5], since CPU does not have the channel estimates; but only channel statistics.

2.1.5 Local MMSE Processing

We choose the combining vector at each AP such that the conditional mean squared error
between the data signal and received signal is minimized. The word "Local" is highlighted
in the sense that each AP locally estimates its signal before passing to CPU for final
decoding [9].

2.2 Eigenvalue Problems

Eigen value problems play a critical role as one of the fundamental mathematical problems
in the field of communication. In this section, we briefly discuss different types of eigen
value problems.

2.2.1 Basic Eigenvalue Problem

The basic eigenvalue problem can be stated as follows [13]:

Definition 1: Given a square matrix A ∈ Cn×n, we consider the problem of finding non
zero vector x ∈ Cn and a scalar λ ∈ C.

Ax = λx, (1)

where λ can be considered as eigenvalue and x is referred to as eigenvector.

Geometrically, the eigen vectors represent the directions of the spread whereas
eigenvalues represent the magnitude of the spread [14]. More precisely, (1) is a right
eigenvalue problem and x is a right eigenvector for λ. Similarly, left eigenvalue problem
is defined as solving xHA = λxH . Unless otherwise stated, “eigenvector” is referred to
“right eigenvector”.

2.2.2 Generalized Eigenvalue Problem

In most applications, eigenvalue problem is not exactly in the form of standard
eigenvalue problem as defined in (1) but of the generalized form. Generalized eigenvalue
problem (GEP) consists of a pair of matrices which is referred to as matrix pencil in the
literature [15].
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The generalized eigenvalue problem can be stated as follows [16]:

Definition 2: Given two matrices A,B ∈ Cn×n, we consider the problem of finding non
zero vector x ∈ Cn and a scalar λ ∈ C.

Ax = λBx, (2)

where λ can be thought as generalized eigenvalue and x is the corresponding eigenvector.

Easily note that when B = I, where I is the identity matrix, the generalized eigenvalue
problem equals to the basic eigenvalue problem.

In many engineering applications, GEP has special structured forms: for example
discretizing partial differential equations one can solve (2) with A is a Hermitian matrix
and B is Hermitian and positive-definite matrix. Generally, this problem is called as
Generalized Hermitian Eigenvalue Problem.

2.2.3 Rayleigh Quotient

The Rayleigh quotient of a vector x ∈ Cn and Hermitian matrix A ∈ Cn×n is the scalar
defined by [13]

r(x) = xHAx
xHx

. (3)

To further explore the behaviour of Rayleigh quotient in mathematical sense, the gradient
of R(x), which is denoted by ∇R(x) is calculated as follows:

∇r(x) = (xHx)2Ax − (xHAx)2x
(xHx)2 = 2(Ax −R(x)x)

xHx
. (4)

From (4), we can see that the gradient of R(x) goes to zero when R(x) is equal to an
eigenvalue of matrix A and x is equal to the corresponding eigenvector.
In geometrical sense, the eigenvectors of A are the stationary points of R(x) and

corresponding eigenvalues A are the values of R(x) at these stationary points. For
example, refer Figure 3.

2.2.4 Generalized Rayleigh Quotient

The generalized Rayleigh quotient for a vector x ∈ Cn is the scalar given by [13]

R(x) = xHAx
xHBx

. (5)

The generalized Rayleigh quotient is closely associated with GEP stated in subsection
2.2.2. The relationship between GEP and generalized Rayleigh quotient can be shown
using differential calculus. Assuming A and B are symmetric matrices, gradient of R(x)
with respect to x is calculated as follows:

12



Figure 3. Suppose X = {x ∈ R3 | xTx = 1} and A is a symmetric matrix. Then,
R(x) is a continuous function on X and three stationary points of R(x) are orthonormal
eigenvectors of A.

∇R(x) = 2Ax(xHBx)− 2Bx(xHAx)
(xHBx)2 = 2Ax − 2R(x)Bx

xHBx
. (6)

By setting ∇R(x) = 0 gives

Ax = R(x)Bx, (7)

which is in the form of (2). Hence, maximum and minimum points of R(x) is obtained as
eigevalues of corresponding GEP. Likewise optimal x which maximize or minimize R(x)
becomes the eigenvector corresponding to optimal eigenvalue.
Solving maximization problem of generalized Rayleigh quotient with respect to x, i.e.,

x∗ = arg max
x

R(x), is the eigenvector corresponding to the largest eigenvalue. Similarly,
x∗ = arg min

x
R(x) is the eigenvector corresponding to the smallest eigenvalue.

2.3 Geometric Programming

Geometric programming (GP) is a powerful tool to solve wide variety of problems in
field of science, engineering, finance, and statistics [17]. A geometric program is a special
type of mathematical model with specific objective and constraint functions under the
umbrella of optimization problems [17].

Following definitions on polynomials are important in our context.

Definition 3: A monomial f is a real-valued function of x:

f = cxa1
1 x

a2
2 · · · xan

n , (8)

where x = (x1, x2, . . . , xn) is a vector of positive real variables, the coefficient c is positive,
and the exponents ai ∈ R.
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Definition 4: A posynomial g is any sum of monomials, i.e., a function of the form

g =
t∑

k=1
ckx

α1k
1 xα2k

2 · · · xαn,k
n , (9)

where each coefficient ck is positive.

Definition 5: The standard form of GP is defined as follows [18]:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, · · · ,m,
gi(x) = 1, i = 1, · · · , p

(10)

where fi is a posynomial function and gi is a monomial function. The optimization
variables are denoted by x which is an n-dimensional vector.

The GP problem (10) is not convex, however it can be shown that a GP can be converted
into a convex optimization problem via a logarithmic and variable transformation. We
can first transform the variables as ui = log xi and take the logarithm of the objective
and constraint functions to obtain the following equivalent problem:

minimize log f0(eu1 , ......, eun)

subject to log fi(eu1 , ......, eun) ≤ 1, i = 1, · · · ,m,
log gi(eu1 , ......, eun) = 1, i = 1, · · · , p.

(11)

• The transformed monomial function gi(x) can be written as follows:

log gi(eu1 , ......, eun) = ai
Tu + bi,

where ai ∈ Rn×1, u ∈ Rn×1 , and bi ∈ R.

• The transformed posynomial function fi(x) can be written as sum of Ki ∈ Z+

monomials:
fi(u) =

Ki∑
k=1

eaik
T u+bik ,

where aik ∈ Rn×1, u ∈ Rn×1, and bik ∈ R.

Note that above transformations would turn a monomial function into an affine function
and a posynomial into a sum of exponentials of affine functions. Thus, GP (10) transforms
into the following equivalent convex optimization problem:

minimize log
Ki∑
k=1

ea0k
T u+b0k

subject to log
Ki∑
k=1

eaik
T u+bik ≤ 0, i = 1, · · · ,m,

Gu+ d = 0.

(12)
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2.4 Alternating Optimization

Let f(x) is the target optimization function and x is an n-dimensional vector of
optimization variables. The underlying theory behind alternating optimization (AO)
is to replace difficult joint optimization of f(x) over all x variables, with a sequence
of easier optimizations; easier in the sense that it involves only grouped subsets of the
variables [19]. Thus, AO is an iterative procedure to optimize (minimize or maximize)
the target function f(x) in which minimization/maximization is performed jointly over
all variables by iteratively optimizing f(x) over subset of optimization variables. In
state of the art, AO is being considered as an efficient computational framework to
solve non-convex optimization problems [19,20]; for max-min rate optimization problem,
see [11].

15
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3 SYSTEM MODEL, PROBLEM FORMULATION AND
ALGORITHM DERIVATION

3.1 System Model and Analysis

3.1.1 Introduction

In this chapter, we derive a closed form expression for spectral efficiency (SE) in cell-free
massive MIMO network in terms of weight and power coefficients. Here, we assume that
local MMSE processing is used at each AP. To maximize achievable SE, prior published
work [9, Corollary 2] treat power coefficients as fixed. However, in our study, we consider
power coefficients as variables and propose an iterative algorithm to maximize achievable
SE by changing both power and weight coefficients.

3.1.2 Cell-free System Model

We consider a cell-free massive MIMO system with L APs each equipped with N antennas
and K single antenna users randomly distributed in a large area. We assume that K � L.
Each AP is connected to the central processing unit (CPU) through fronthaul connection.
The channel co-efficient vector between lth AP and kth UE is denoted by hkl ∈ CN . We
model the channel using block fading model where hkl is fixed during time-frequency blocks
of τc samples. In other words, coherence block consists of τc number of samples. Channel
coefficients are independent and identically distributed (i.i.d) random variables. In each
block, hkl is an independent realization from a correlated Rayleigh fading distribution
defined as follows:

hkl ∼ NC(0,Rkl), (13)

where Rkl ∈ CN×N is the spatial correlation matrix.

3.1.3 Pilot Transmission and Channel Estimation

We consider uplink transmission where all users send uplink pilots and payload data in
τp and τc − τp samples respectively. In order to estimate the channel coefficients in the
uplink, all users send simultaneously pilot sequences of length τp to the APs.
Let τp mutually orthogonal pilot signals φ1, . . . ,φτp

with ‖φt‖2 = τp are used for
channel estimation. We consider a large network where K > τp so that each pilot signal
is assigned to more than one UE . tk represents the pilot index assigned to kth UE as
tk ∈ {1, . . . , τp}. Then, the received pilot matrix Zl ∈ CN×τp at lth AP is given by

Zl =
K∑
i=1

√
pihilφT

ti
+ Nl, (14)

where pi ≥ 0 is the transmit power of ith UE , Nl ∈ CN×τp is the noise at AP. The
elements of Nl are assumed to be independent and identically distributed as CN (0, σ2)
and σ2 is the noise power.
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After AP receives Zl, it first correlates Zl with corresponding normalized pilot signal
φtk

/
√
τp, which is denoted as ztkl , 1√

τp
Zlφ

∗
tk
∈ CN . It can be simplified as follows:

ztkl =
K∑
i=1

√
pi√
τp

hilφT
ti

φ∗tk + 1
√
τp

Nlφ
∗
tk

=
∑
i∈Pk

√
piτphil + ntkl, (15)

where ntkl is an N-dimensional vector distributed as NC(0, σ2In). After performing
correlation operation, the MMSE estimate of channel coefficient vector between lth AP
and kth UE, ĥkl is given by [9],

ĥkl = √pkτpRklΨ−1
tkl

ztkl, (16)

where Ψtkl = E{ztklzHtkl} = ∑
i∈Pk

τppiRil + IN is the correlation matrix of the received
signal ztkl. The estimate ĥkl and estimation error h̃kl = hkl − ĥkl are independent vectors
distributed as ĥkl ∼ NC

(
0, pkτpRklΨ−1

tkl
Rkl

)
and h̃kl ∼ NC(0,Ckl) with

Ckl = E{h̃klh̃Hkl} = Rkl − pkτpRklΨ−1
tkl

Rkl. (17)

3.1.4 Uplink Data Transmission

During the uplink data transmission, all users send their signals simultaneously to all
APs. The transmitted signal from ith UE is distributed as si ∼ CN (0, pi) and pi is the
transmitted power at ith UE. The N-dimensional receiver noise at lth AP is distributed
as nl ∼ NC(0, pi). The received signal at lth AP is given by

yl =
K∑
i=1

hilsi + nl. (18)

We assume that an L-MMSE detector is employed at each AP and the received signal
at lth AP is first pre multiplied by vkl where vkl ∈ CN is the local combining vector at lth
AP to estimate sk. Let škl is the local estimate of kth user at lth AP. The local estimate
of sk is given by

škl , vHklyl = vHklhklsk +
K∑

i=1,i 6=k
vHklhilsi + vHklnl. (19)

The mean squared error (MSE) of kth symbol at lth AP is denoted by MSEkl = E{|sk −
vHklyl|2

∣∣∣{ĥil}}. The combining vector that minimizes the MSE can be derived by computing
the first derivative of conditional expectation and setting it to zero. The optimal combining
vector which minimizes the MSE is given by

vkl = pk

(
K∑
i=1

pi
(
ĥilĥHil + Cil

)
+ σ2IN

)−1

ĥkl. (20)

The pre processed signals using combining vectors at each AP are then forwarded
to CPU for signal detection. The forwarded signals are further multiplied by weight
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coefficients at CPU to improve achievable rate. CPU does not have the knowledge of the
channel estimates and therefore, only channel statistics are utilized to maximize SE.
Let akl is the weight coefficient of kth user at lth AP. The aggregated signal at CPU to

detect sk is given by

ŝk =
L∑
l=1

a∗klškl. (21)

By substituting (19) in (21), we can derive that

ŝk =
(

L∑
l=1

a∗klvHklhkl
)
sk+

L∑
l=1

a∗kl

 K∑
i=1,i 6=k

vHklhilsi

+ n′k (22a)

= aHk gkksk +
K∑

i=1,i 6=k
aHk gkisi + n′k, (22b)

where gki = [vHk1hi1 . . . vHkLhiL]T ∈ CL is the receive-combined channels between kth
UE and each of the APs, ak = [ak1 . . . akL]T ∈ CL is the weighting coefficient vector,
{aHk gki : i = 1, . . . , K} is the set of effective channels, and n′k = ∑L

l=1 a
∗
klvHklnl.

Using the channel statistics at the CPU, the effective SINR of kth UE can be expressed
as [9],

SINRk=
pk
∣∣∣aHk E{gkk}∣∣∣2

K∑
i=1

piE{|aHk gki|2} − pk |aHk E{gkk}|
2+σ2aHk Dkak

(23a)

=
pk
∣∣∣aHk E{gkk}∣∣∣2

aHk (
K∑
i=1

piE{|gki|2} − pk |E{gkk}|2+σ2Dk)ak
(23b)

=
aHk

(
pkE{gkk}(E{gkk})H

)
ak

aHk (
K∑
i=1

piE{|gki|2} − pk |E{gkk}|2+σ2Dk)ak
(23c)

where Dk = (E{‖vk1‖2}, . . . ,E{‖vkL‖2}) ∈ CL×L and the expectations are with respect
to all sources of randomness. Note that the uplink effective SINR of kth UE can be
formulated as a generalized Rayleigh quotient [21] with respect to ak.
Assuming that UEs transmit with fixed powers, we maximize generalized Rayleigh

quotient in (23b). Hence, the optimal weight coefficient vector of kth UE, under fixed
power constraints is given by,

ak =
(

K∑
i=1

piE{gkigHki}+ σ2Dk

)−1

E{gkk} (24)

which leads to the maximum value under fixed power constraints,

SINRk,max = pkE{gHkk}

×
(

K∑
i=1

piE{gkigHki}+σ2Dk−pkE{gkk}E{gHkk}
)−1

E{gkk}. (25)
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An achievable rate of kth UE is given by

Rk =
(

1− τp
τc

)
log2 (1 + SINRk) . (26)

Max-min rate problem can be formulated such that minimum uplink user rate is maximized
subject to individual transmit power constraint at each UE. This max-min rate problem
can be formulated as follows:

maximize
pk, ak

Rk

subject to ||ak|| = 1, ∀ k,
0 ≤ pk ≤ p(k)

max, ∀ k,

(27)

where p(k)
max is the maximum transmit power available at user k.

3.2 Problem Formulation and Algorithm Derivation

In this section, we design an iterative algorithm as a suboptimal solution to maximize the
minimum SINR in cell-free massive MIMO system with L-MMSE detector.
Problem (27) is not jointly convex with respect to optimization variables, ak and pk.

Thus, standard convex optimization tools cannot be directly applied to solve problem
(27). Therefore, in the sequel, we propose an approach to find suboptimal solution for
(27), by alternately solving two subproblems, as illustrated in Figure 4.

3.2.1 Weighting Coefficients Design

First, we fixed transmit powers of all UEs and solve the weighting coefficient subproblem
to maximize uplink SINR of kth user (23c), for all k. These optimal weight coefficients
are obtained by solving optimization problem (28) as follows:

maximize
pk, ak

aHk
(
pkE{gkk}(E{gkk})H

)
ak

aHk (
K∑
i=1

piE{|gki|2} − pk |E{gkk}|2+σ2Dk)ak

subject to ||ak|| = 1, ∀ k.

(28)

Problem (28) is a generalized eigenvalue problem [22]. The optimal coefficient values
can be obtained by determining the generalized eigenvalue of the matrix pair Ak =
pkE{gkk}E{gkk}H and Bk =

K∑
i=1

piE{|gki|2} − pk |E{gkk}|2 +σ2Dk corresponding to the
maximum generalized eigenvalue.

3.2.2 Power Allocation

We solve the power allocation subproblem by fixing weight coefficients in master problem
(27). The power allocation subproblem can be formulated as following max-min problem:
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max
pk

min
k=1,··· ,K

SINRk (29)

subject to 0 ≤ pk ≤ p(k)
max, ∀ k.

Then, problem (29) can be rewritten by introducing a new slack variable as

maximize
t, pk

t

subject to 0 ≤ pk ≤ p(k)
max, ∀ k,

SINRk ≥ t, ∀ k.

(30)

From (23c) the uplink effective SINR of kth UE can be approximated as follows.

SINRk≈
aHk

(
pkE{gkk}(E{gkk})H

)
ak

aHk (
K∑

i=1 6=k
piE{|gki|2}+σ2Dk)ak

(31)

Proposition 1 : With the SINR approximation in (31), problem (30) can be
approximated into a GP.

Proof: The form of the SINR constraint in (30) is not a posynomial function.
Therefore, it can be first rewritten and then approximated into a posynomial function as
follows:

aHk

(
K∑
i=1

piE{|gki|2} − pk |E{gkk}|2+σ2Dk

)
ak

aHk (pkE{gkk}(E{gkk})H) ak
≤ 1
t
, ∀k.

From (31), SINR constraint can be approximated as follows:

aHk

(
K∑

i=1 6=k
piE{|gki|2}+σ2Dk

)
ak

aHk (pkE{gkk}(E{gkk})H) ak
≤ 1
t
, ∀k. (32)

With a simple rearrangement, (32) can be converted to following equivalent inequality.

p−1
k

 K∑
i 6=k
akipi+ ck

 <
1
t
, ∀k, (33)

where
aki = aHk (E{|gki|2})ak

aHk (E{gkk}(E{gkk})H)ak
and

ck = aHk Dkak
aHk (E{gkk}(E{gkk})H)ak

.

The left-hand side of (33) is a posynomial function. Both inequality constraint and
objective function are in the form of posynomial function. Therefore, approximated
version of the power allocation problem (30) is a standard GP problem as defined in (10).
Q.E.D.
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Therefore, problem (30) can be formulated as a geometric programming problem which
can be solved using convex optimization software.

3.2.3 Proposed Algorithm

Thus, we proposed an iterative algorithm to find suboptimal solution for master problem
(27) by alternately solving these two subproblems. The proposed algorithm is summarized
in Algorithm 1.

Weight	Coeffients	subproblem

Generalized	Eigen	Value	Problem

(GEV)

Power	Allocation	subproblem

Geometric	Programming	Problem

(GP)

Max-min	SINR
problem

weight	coefficents	

power	coefficents

Figure 4. The basic idea of Algorithm 1.

Algorithm 1
1. Initialize p(0) = [p(0)

1 , p
(0)
2 , · · · , p(0)

K ], i = 0
2. Repeat
3. i = i+ 1
4. Set p(i) = p(i−1) and find the optimal weight coefficients a(i) = [a(i)

1 , a
(i)
2 , · · · , a

(i)
K ]

through solving the generalized eigenvalue Problem (28)
5. Compute p(i+1) through solving Problem (30)
6. Go back to Step 3 and repeat until required accuracy



22

4 SIMULATION SETUP AND NUMERICAL RESULTS

In this chapter, we present numerical results to evaluate the performance and convergence
of our proposed iterative algorithm with different simulation settings.

4.1 Parameters and Setup

We define the simulation setup of cell-free mMIMO model with parameters summarized
in Table 1. The system consists of L number of M -antenna APs which are uniformly
distributed in a grid, covering a square area of 1000×1000 m (D×D). Initially, we divide
simulation area into 4 virtual cells in order to facilitate UE placement. It is assumed
that total number of UEs as K in which K/4 number of users are randomly dropped in
each cell. Eventually, simulation results are averaged over 100 UE distributions. Here,
we consider communication over a 20MHz bandwidth with a receiver noise power σ2

of −96dBm [9]. It is assumed that maximum transmit power of each UE lies between
90 mW - 120 mW and all UEs transmit at their maximum transmit power in channel
estimation phase. Moreover, simulations are performed over three cases of pilot reuse
factors (f = 1, 4, 8). For pilot reuse factor of 1 (mutually orthogonal pilot assignment),
we assume that τp = K, however τp is reduced with higher reuse factors.
Similar to [9], 3GPP urban microcell model is considered as propagation model with

2 GHz carrier frequency. Small scale fading coefficients are generated using correlated
Rayleigh fading in which Gaussian local scattering model with 15◦ angular standard
deviation [21, Sec. 2.6] contributes for the spatial correlation matrix. Moreover, large
scale fading coefficients are generated independently as follows [9]:

βkl [dB] = −30.5− 36.7 log10

(
dkl
1m

)
+ Fkl (34)

where dkl is the distance between UE k and AP l and Fkl ∼ N (0, 42) is the shadow fading.

Table 1. Cell-free Massive MIMO network.

Simulation area 1 km × 1 km
Bandwidth 20MHz

Number of APs L
Number of UEs K

Number of Antennas per AP N
UL noise power −96 dBm

Samples per coherence block τc = 200
Pilot reuse factors f
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4.2 Results and Discussions

4.2.1 Performance Analysis

In this subsection, we evaluate the performance of our proposed algorithm with respect
to fixed power scenario for few simulation setups.

• Simulation setup 1
We first compare the cumulative distribution of the achievable uplink rate of given
simulation setup with hundred of four-antenna APs, forty users (L = 100, M = 4,
K = 40) and pilot reuse factor of 4. As illustrated in Figure 5, the proposed
algorithm significantly outperforms due to the fact that optimization is performed
over both power and weight coefficients.
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Figure 5. The cumulative distribution of the per-user uplink rate, with random pilots
assignments of f = 4 for L = 100, K = 40, N = 4 and D = 1 km.

• Simulation setup 2
Next, we evaluate the cumulative distribution for three cases of mutually orthogonal
pilots, f = 2 and f = 4. For this simulation, cell-free massive MIMO system
is considered with sixty-four number of two-antenna (L = 64, M = 2) APs and
sixteen number of users (K = 16). Figure 6 presents the cumulative distribution
of the achievable uplink rate for the proposed algorithm and fixed power scheme
for three different pilot assignments. The results show that even for different pilot
assignments, the performance of proposed scheme is higher compared to fixed power
case. However, in the case of orthogonal pilot assignment, there is a prominent
increase in the min-user uplink rate compared to non-orthogonal pilot schemes.
Among non-orthogonal pilot assignments, f = 2 case outperforms over f = 4 case
due to the fact that channel estimation error increases with pilot reuse factor.



24

0 0.5 1 1.5 2 2.5 3 3.5 4

Min-user uplink spectral efficiency [bit/s/Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

f = 4 (Fixed power)

f = 4 (Proposed)

f = 2 (Fixed power)

f = 2 (Proposed)

orthogonal pilots (Fixed power)

orthogonal pilots (Proposed)

Figure 6. Min-user uplink rate with different pilot reuse factors L = 64, K = 16, N = 2
and D = 1 km. The dashed curves refer to the proposed Algorithm 1, while the solid
curves present the fixed power case.

• Simulation setup 3
Next, we evaluate the cumulative distribution of the achievable uplink rate of another
simulation setup with hundred of four-antenna APs and forty users (L = 100,M = 4,
K = 40) for both orthogonal pilots and pilot reuse factor of 8. Figure 7 presents
the cumulative distribution of the achievable uplink rate for the proposed algorithm
and fixed power scheme. The results show that performance of our proposed scheme
is higher compared to fixed power scheme and f = 1 outperforms over f = 8.
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Figure 7. Min-user uplink rate with different pilot reuse factors L = 100, K = 40, N = 4
and D = 1 km. The dashed curves refer to the proposed Algorithm 1, while the solid
curves present the fixed power case.
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4.2.2 Convergence of proposed algorithm

Next, we investigate the convergence of our proposed algorithm over set of different
channel realizations.

• Simulation setup 1
We consider a simulation setup with hundred of four-antenna APs, forty users
(L = 100, M = 4, K = 40), and pilot reuse factor of 4. As shown in Figure 8, the
algorithm finds fast suboptimal solution within two number of iterations.
The effectiveness of the proposed algorithm is illustrated in the simulation result
which maximizes the smallest SINR of the system, in each iteration. The proposed
algorithm requires no additional precautions in the initialization, and convergence
to a suboptimal solution is possible within a very small number of iterations.
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Figure 8. The convergence of the proposed max-min SINR approach for L = 100, K = 40,
N = 4, f = 4 and D = 1 km.

• Simulation setup 2
The convergence of proposed algorithm is further investigated for another simulation
setup with hundred of two-antenna APs, sixteen users (L = 64, M = 2, K = 16 ),
and pilot reuse factor of 2.
As illustrated in Figure 9 , the convergence to a suboptimal solution is possible
within a very small number of iterations.
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Figure 9. The convergence of the proposed max-min SINR approach for L = 64, K = 16,
N = 2, f = 2 and D = 1 km.
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5 CONCLUSION AND FUTURE WORK

5.1 Summary and conclusion

We studied cell-free mMIMO which has been identified as a potential candidate to cater
the high capacity requirements of next generation networks; 5G and beyond. Compared
to collocated mMIMO, coordinated multi-point (CoMP) which is a distributed version
of MIMO provides improved spectral efficiency specially, for cell edge users via the
coordination between the interfering and serving BSs. In the sequel, cell-free mMIMO, a
hybrid model, that combines features of distributed MIMO and mMIMO, improves the
spectral efficiency by mitigating inter-cell interference with its user centric implementation.
The max-min optimization problem in the uplink cell-free mMIMO system with L-MMSE

reciever was considered. We proposed an alternating, iterative and suboptimal solution to
maximize the smallest SINR by changing both weight and power coefficients. Although the
original problem is nonconvex, the proposed algorithm finds a suboptimal solution. The
original problem was decomposed in to two subproblems; weight coefficient subproblem
was solved using generalized eigen value problem whereas approximated version of power
coefficient problem was solved by geometric programming problem. Effectiveness of the
proposed algorithm was discussed in the simulation result which maximizes the smallest
SINR of the system, in each iteration. Further, we provided convergence results for a
set of different channel realizations of two different simulation setups. As evidenced
from these numerical results, the convergence of our proposed algorithm was validated.
However, the proposed algorithm requires no additional precautions in the initialization,
and convergence to a suboptimal solution is possible within a very small number of
iterations. These simulation results validated that the smallest SINR of the system is
higher with proposed algorithm, with respect to fixed power scheme.
In addition, we studied the behaviour of minimum uplink rates for three different pilot

assignments and results were numerically presented. These results empirically showed
that even for different pilot assignments, the performance of proposed scheme is higher
compared to fixed power case. Further, it was understood that orthogonal pilot assignment
outperforms with respect to non-orthogonal pilot assignments.

5.2 Future work

The analysis of the convergence and optimality of the proposed alternating algorithm is
one of possible research work to be carried out in the future. Moreover, the performance
analysis of “cell-free” networks have basically utilized correlated Rayleigh fading and 3GPP
microcell urban channel model with 2GHz carrier frequency. However, new performance
evaluations under realistic channel conditions is an interesting topic for future work.
Moreover, Full-dimension (FD) MIMO system is considered to be the official MIMO

enhancement in third generation partnership project (3GPP) [23]. FD-MIMO system
consists of active antenna elements which are capable of dynamically adjusting the gain of
the antenna elements, providing an additional gain with respect to conventional MIMO.
Therefore, another possible extension is to explore optimization techniques and signal
processing aspects for novel hybrid system model which combines cell-free massive MIMO
and FD-MIMO systems.
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