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ABSTRACT

To enable autonomous driving in intelligent transportation systems, vehicular
communication is one of the promising approaches to ensure safe, efficient,
and comfortable travel. However, to this end, there is a huge amount of
application data that needs to be exchanged and processed which makes
satisfying the critical requirement in vehicular communication, i.e., low
latency and ultra-reliability, challenging. In particular, the processing is
executed at the vehicle user equipment (VUE) locally. To alleviate the
VUE’s computation capability limitations, mobile edge computing (MEC),
which pushes the computational and storage resources from the network
core towards the edge, has been incorporated with vehicular communication
recently. To ensure low latency and high reliability, jointly allocating
resources for communication and computation is a challenging problem in
highly dynamics and dense environments such as urban areas. Motivated
by these critical issues, we aim to minimize the higher-order statistics of
the end-to-end (E2E) delay while jointly allocating the communication and
computation resources in a vehicular edge computing scenario. A novel risk-
sensitive distributed learning algorithm is proposed with minimum knowledge
and no information exchange among VUEs, where each VUE learns the best
decision policy to achieve low latency and high reliability. Compared with the
average-based approach, simulation results show that our proposed approach
has the better network-wide standard deviation of E2E delay and comparable
average E2E delay performance.

Keywords: 5G and beyond, URLLC, risk sensitive, mobile edge computing,
vehicular networks.
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1 INTRODUCTION

1.1 Background and Motivation

With the evolution of information technology (IT), we are moving towards a digitized
society. Under this evolution, traditional transportation systems are being upgraded to
intelligent transportation systems to mitigate the drawbacks of the traditional systems
such as traffic jams, road accidents, etc. Transition can also improve traffic safety and
achieve more reliable and efficient transportation [1]. However, it is not easy to facilitate
the requirements of intelligent transportation in communication perspective because there
should be an effective way to provide real-time information for road users, intelligent
vehicles, and transportation system operators to make better decisions. Therefore, fast
and reliable information exchange and data processing are really critical in applications
such as autonomous driving and smart cars. To address these issues, vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication have been introduced to enable
those services [2].
V2V communication can be used to improve the performance of transportation systems

in three main areas, i.e., safety, comfort, and efficiency [3]. When autonomous driving
is considered, its safety totally depends on the the sensor data and information received
from other vehicles and the infrastructures. One of the major problems in current
transportation systems is a vast number of accidents happening in daily basis. According
to [4], nearly 1.25 million people die in road accidents each year. If there is a way to
communicate or exchange information among vehicles, it can benefit vehicles to take
intelligent decisions such as avoiding traffic jams and accidents, and it might even be a
help to minimize the human error and save lives.
In V2V communication, vehicles exchange their information such as the speed, location,

direction of travel and braking. In V2I communication, vehicles communicate with
infrastructures such as surveillance cameras, intelligent traffic signal posts, intelligent
road blocks, etc [5], [6]. To achieve the performance of V2V and V2I communication,
it is mandatory to have a reliable and low latency communication. However, with high
mobility and a vast number of vehicles, it is very difficult to ensure quality of service
(QoS) with limited resources. Vehicular ad-hoc networks (VANETs) has been introduced
to achieve a reliable communication which consists of road side unit (RSU) and vehicles
equipped with processing capabilities, various sensors, cameras, the global positioning
system (GPS), radio transceivers, and other equipments [3].
Ultra reliable and low latency communication (URLLC) is one of the three pillars of

fifth generation (5G), which is the main requirement of the mission-critical and low-
latency applications such as V2V and V2I communication. Delivering information with
low latency and ultra reliability significantly improves the performance of V2V and V2I
communication.
Today, at the edge of 5G, driven by 5G specifications such as URLLC, there is a

huge trend towards MEC, where computation and processing happen closer to the edge
rather than in the cloud so that latency and traffic in the core network can be minimized
[7]. At the same time, the resource limitations at vehicle nodes such as computational
capabilities, power, and storage will also be released.
V2V and V2I communication requires very high QoS requests. Moreover, during a

traffic jam there can be a huge number vehicles close to an intersection in an urban



area [2] which makes it difficult to allocate the limited resources such as power and
spectrum in an optimum manner. Due to high dynamics and dense urban environment,
it is very difficult to achieve the strict requirements of latency and reliability.
Motivated by the above factors, we analyze the system performance of a vehicular

edge computing network, which consists of V2I communication and MEC, in an urban
environment. Our main objective is to achieve the low latency and high reliability
requirements with V2I communication and MEC, where VUEs are able to offload the
data for processing. Furthermore, we propose a joint utility and policy estimation-
based learning approach. Firstly, each VUE observes its channel state to all the entities
in the network and decides the communication action. Then each VUE observes its
instantaneous utility, estimates the utility function, and builds a decision policy. In this
thesis, the proposed approach is based on the risk-sensitive metric. Instead of minimizing
the average delay in conventional communication design, we aim at minimizing the
higher-order statistics of the delay distribution. Thus, the probability distribution
function of E2E delay is compacted towards the mean E2E delay, and the probability of
occurring higher delays is minimized resulting in minimal information loss. The proposed
approach improves the reliability while minimizing the E2E latency so that stricter QoS
requirements in V2I communication can be satisfied.

1.2 Structure of the Thesis

The thesis is structured as follows. First we thoroughly refer the related work and
background in Chapter 2 including few related concepts, and theories, which is used
in our problem formulation and system model. Then as mentioned in Section 1.1, the
system model and problem formulation are introduced in the Chapter 3. In system
model V2I communication scenario is developed, and MEC is embedded into the system
model. Next we formulate the problem, setting our objective as satisfying the QoS
requirements. Here, we introduce a risk-based latency minimization problem, which will
take into account not only the average latency but also higher-order statistics of the
latency distribution. To ensure high reliability, it is not enough to pay attention only
on minimizing the latency. Therefore, our proposed method which minimizes the higher-
order statistics of the delay distribution will ensure high reliability. There are two parts of
the problem formulation. Firstly, we develop the optimization problem for each VUE in
which the VUE’s objective is to find out the decision policy that minimizes E2E latency
while maximizing the reliability. Then we develop another optimization problem at the
MEC server, where the MEC server finds the optimum power allocation for all the VUEs
that minimizes the exponential sum of E2E latencies. In Chapter 4, we propose a risk-
based distributed learning algorithm that each VUE learns the best decision policy with
time, so that the VUE’s optimization problem can be solved. Then we introduce our
baseline approach which we use to compare our proposed algorithm. The last chapter
is about the simulation and results. There, we compare the results of the proposed
algorithm with the baseline approach and analyze performance of the proposed approach
varying system parameters, and based on results, conclusion is developed. According
to the results it can be seen that the proposed approach performs way better than the
baseline approach, and standard deviation of the delay distribution is low compared to
all other approaches, so that reliability is high. Finally all the references are listed.
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2 LITERATURE AND RELATED CONCEPTS

2.1 Literature

Most of the research work in V2V and V2I communication consider VANETs with
computing capabilities integrated into the system model. Since the MEC architecture
extends computing, storage, and applications to the network edge, it helps to reduce
traffic in back-haul and E2E latency while ensuring high reliability. The authors in [8]
consider a scenario, where vehicles and fixed road infrastructures are integrated to
VANET to build a edge computing-enabled VANET. Therein, to ensure high reliability
in the considered architecture, the authors propose a reliable computation uploading
strategy considering partial offloading, task allocation, and re-transmission processing.
RSUs play a key role on enabling various vehicular applications such as autonomous

driving, road safety, infotainment, and collaboration services with high throughput and
low latency. In the work [9], the authors study the viability of the solar-powered RSU,
consisting of small cell base stations and MEC servers. Since the solar power has spatial
and temporal fluctuations, and data traffic demand also varies with time, there might be
a mismatch between the RSU’s power consumption and solar power generation, leading
severe QoS. The authors jointly study the RSU’s power consumption minimization
problem, the temporal energy balancing problem, and the spatial energy balancing
problem. Subsequently, three algorithms are proposed, which decide battery charging
and user association control for minimizing the QoS loss under the delay constraint of
the computing tasks.
Local vehicular computing solely cannot satisfy the computational needs of vehicular

networks, which is very sensitive to computational power. Additionally, it is very
challenging to guarantee the reliability of vehicular computation offloading due to the
dynamic and random nature of vehicular networks. The authors in [10] study a reliability-
oriented stochastic optimization for V2I-based computation offloading, which improves
the reliability performance in stochastic situations and can be used to design a threshold-
based decision making policy for computation offloading. The proposed approach is based
on the dynamic programming for computation offloading in the presence of the deadline
constraint on application execution. The authors improve the reliability of computation
offloading by maximizing the lower bound of the expected successful probability of data
transmissions.
Edge computing has been proposed to address the challenges of the conventional cloud

computing paradigm. The major drawback of conventional cloud computing is the delay
caused by the limited backhaul capacity and excessive network hops. Edge computing
requires a large scale deployment of edge computing servers to successfully cater the
stringent requirements of QoS and quality of experience (QoE) of vehicular applications
which are both delay and computational intensive [11]. The large scale deployment of
edge computing servers also causes management and operational problems that might add
additional cost. One of the promising solutions is vehicular fog computing [12]. Therein,
base stations and edge computing servers are able to offload their overloaded tasks to
nearby vehicles with under-utilized computational resources. However, despite the above
mentioned advantages, it is difficult to find an optimal task assignment strategy in a
way that fulfills the low-latency and high-reliability requirements [13]. There are many
mathematical tools to address the task assignment problem including matching theory



9

[14], coalitions game [15], and Stackelberg game [16]. In [13], the authors present a low-
latency massive-connectivity vehicular fog computing framework using two-dimensional
matching algorithm to deal with the task assignment problem between vehicular fog nodes
and user equipments (UEs). The proposed pricing-based stable matching algorithm is
used to drive the stable matching.
Performance of wireless vehicular communication systems highly depend on efficient

radio resource management (RRM), but stringent QoS-based V2V communication
requirements make it challenging [17]. The quality of the wireless links in V2V and V2I
communication varies due to the mobility of vehicles. If queuing latency is considered,
it varies due to dynamic nature of traffic arrivals and service rates. There are few works
focusing on bounding the maximal queue length within a threshold value and do the
radio resource management (RRM) [18], [19].
Some works focus on latency and reliability. The work [18] proposes a proximity and

QoS-aware resource allocation approach considering the queuing latency and reliability
requirements. The main problem is decoupled into two interrelated sub-problems. Firstly,
the RSU groups vehicles into zones based on their physical proximity using the proposed
virtual clustering mechanism and allocates resource blocks in each zone given the vehicles’
traffic demands and their QoS requirements. Then the power minimization problem of
each VUE is formulated subject to probability constraints on data queue length which is
a measure of queuing latency and reliability. Even though there is a reduction in average
queue length, it does not cover the reliability aspects of V2V communication.
The authors in [19] model a power minimization problem considering the network-

wide maximal data queue length. The problem is subject to both first and second-
orders statistics of latency and reliability. To avoid incurring signalling overhead by
exchanging queue state information (QSI) among vehicles and the RSU, authors leverage
principles of extreme value theory (EVT) locally to estimate the maximal queue length.
This semi-centralized and distributed dynamic power allocation solutions combining tools
from Lyapunov stochastic optimization and EVT minimize the mean and variance of
the maximal queue length. However, both works [18] and [19] only consider the queue
length and queue delay statistic to define the reliability which is a very small part when
computational and transmission delay is considered.
To our best knowledge, the formulated framework to achieve high reliability

while minimizing the latency considering E2E delay profile, i.e., computation and
communication, has not been investigated in the literature. At the same time, there
are many distributed learning approaches, which learn the optimal decision policy with
minimum or no information exchange [20], [21]. Nevertheless, this is the first work in
which the distributed learning approach is used to model a V2I communication problem
considering the effect of the random variations of the channel between vehicle and the
other entities. Therefore, the proposed approach is very suitable for scenarios in V2V
and V2I communication since the overhead information exchange can also be minimized
ensuring low latency and high reliability.
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2.2 Related Concepts

2.2.1 Manhattan Mobility Model

When the performance of the VANET is analyzed, there are so many characteristics that
affect performance of the network including movement of vehicles, positions, cross roads,
traffic lights, vehicle density, speed restrictions, road side obstacles, speed variations, etc.
[22].
Mobility models have been introduced to represent these characteristics that affect the

communication between V2V and V2I. The Manhattan mobility model is used to model
the movements of vehicles in urban areas.

Figure 2.1. Manhattan mobility model [22].

Figure 2.1 represents a map of an urban area in which each street has a two lanes for
each direction and vehicles move on these horizontal and vertical streets. When a vehicle
reaches an intersection, it can move with 0.5 probability on same street, 0.25 probability
of turning to left, and 0.25 probability of turning to right [23]. The velocity of the
vehicles is restricted, and there is a velocity dependency between two vehicles. Vehicles
are allowed to change their lanes and there are high temporal and spatial dependencies.

2.2.2 Rayleigh Fading

Rayleigh fading is a statistical model which is used to model the effect of transmission
medium, i.e., propagation environment, which varies according to the Rayleigh
distribution. This model is mostly used to model urban environments, where there is
no dominant propagation path between the transmitter and the receiver, i.e., non-line-
of-sight propagation. If there is a dominant path, i.e., line-of-sight (LOS) propagation,
Rician fading is used rather than Rayleigh fading. When the radio signal heavily scatters
along the way due to the objects such as buildings, trees, and other objects, according to
the central limit theorem, the channel impulse response can be modeled as a Gaussian
distribution irrespective of the distribution of individual components. Thus, the Rayleigh
fading channel can be modeled with the following probability distribution
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Pr(x) = x

σ2 e
( −x2

2σ2 ), x ≥ 0. (1)

2.2.3 Path Loss

Path loss is the variation of the received signal power over the distance when a radio
signal propagates through space. This happens because of dissipation of the transmitted
power due to the effects such as free-space loss, refraction, diffraction, reflection, and
absorption. Path loss is influenced by the environment, characteristics of the space, and
also the distance between transmitter and receiver. Path loss in the linear scale is defined
as the ratio of transmitted power to received power and expressed as follows:

PL = Pt
Pr
. (2)

In addition, we write path loss in the log-scale as

PL(dB) = 10 log10(
Pt
Pr

). (3)

There are many path loss models which are being used to model the transmitted
power loss. The simplest one is the free space path loss model that assumes LOS
and no obstacles between the transmitter and receiver. Ray tracing, two-ray model,
and dielectric canyon (ten-ray model) [24] are some other models which consider the
complex environment effects such as shadowing and multi-path effects. But for the
general analysis, it is convenient to use a simplified path loss model which captures the
essence of signal propagation. Following the simplified and commonly-used path loss
model [24], which is a function of distance, the attenuated power is expressed as

Pr = PtK[d0

d
]γ. (4)

Similarly, the attenuated power in dBm is

Pr(dBm) = Pt(dBm) + 10 log10(K)− 10γ log10(
d

d0
). (5)

Here, K is a constant, d0 is a reference distance for the antenna far-field, and γ is the
path loss exponent.

2.2.4 Edge Computing

Emerging technologies such as Internet of things (IoT), V2V and V2I communication
generate a huge amount of data that need to be processed, subject to low latency and high
reliability requirements. This makes cloud computing and other conventional approaches
inefficient due to bandwidth limitations and the large response time.
The main objective of edge computing is to push computing, network control, and

storage closer to the location where it is needed (e.g., base stations and access points)
promising dramatic reduction in latency and high reliability [25].
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MEC is one solution which enables IT and cloud computing capabilities within the radio
access networks. Mobile devices offload computational tasks to MEC servers due to lack
of computational power and also energy saving purposes [25]. Evaluating computational
performances of mobile and edge nodes are very important since it directly affects the
E2E latency of whole communication. Moreover, the central processing unit (CPU) cycle
frequency of the MEC server or the mobile device is the main performance indicator when
execution latency of particular task is calculated.
Given that L is the task input data size (in bits), and X is the computational workload

intensity (in CPU cycles per bit), the execution latency (Tc) can be calculated as follows:

Tc = LX

fs
. (6)

As per the above equation, high CPU clock speed is preferred for low latency.



13

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Architecture and End-to-End Delay

We consider a Manhattan mobility model as shown in Figure 3.1, in which a set C of C
cameras equipped with transceivers are installed at an intersection. A set V of V vehicular
user equipments (VUEs) are randomly located on two perpendicular roads under the
coverage of a single RSU, which is installed close to the intersection. The cameras
at the intersection monitor the nearby street view, and all cameras’ images should be
synthesized to have the full view of the intersection. All VUEs use the synthesized image
to make intelligent decisions in order to sustain the traffic safety. Synthesizing procedure
(processing) is unique for each VUE. A MEC server is installed at the RSU to provide
the computational services, and all the cameras are connected to the RSU through a fiber
link.

Figure 3.1. System model.

VUEs also have their own computational capabilities. Compared to the MEC server,
VUE’s processing capability is weaker. Therefore, VUEs are in favour of receiving
synthesized images through MEC server rather than directly receiving raw images from
cameras and synthesizing on their own. However, if all the VUEs intend to offload, the
MEC server’s computational, power, and spectrum resources will be shared among the
VUEs. The system performance such as computational and transmission latency will
increase, resulting in inefficient communication. When the performance of the whole
system is considered, there is a trade-off between offloading to the MEC server and local
computation.
We let αi ∈ {0, 1} to express VUE i’s decision, either for task-fetching which is directly

receiving the images from cameras and compute locally (by αi = 0), or offloading which
is receiving the synthesized image from MEC server (by αi = 1) as illustrated in Figure
3.2. Moreover, hji denotes the channel between camera j and VUE i, and the downlink
(DL) channel from the MEC server to VUE i is hsi. Pc is camera’s transmit power which
is identical for all cameras. Each camera has its own dedicated bandwidth Wc. Hence,
when a camera sends its image to the VUEs, there is no interference from the other
cameras. The value of αi is decided by the each VUE having intention of minimizing the
E2E latency while ensuring the reliability.



14

Fiber Link

Offloading ,

Lo
ca

l c
om

pu
ta

tio
n,

Computational 
and storage resources

RSU+MEC

Figure 3.2. System model overview.

We assume that each VUE knows its full channel state information to all cameras and
to the MEC server. All the cameras know their channel states to all the VUEs, and MEC
server also knows its channel state information to all the VUEs. Before communication
starts, VUE i sends its decision αi to the cameras (if αi=0) or to the MEC server (if
αi=1), as shown in the Figure 3.3 and Figure 3.4.

VUE sends its decision  
to all the cameras

Each camera knows its
channels to all the VUEs

Each camera 
, broadcasts its image
considering the worst

camera to VUE link 

VUE wait till it receives all
the imagesCompute LocallyUse synthesized image to

sustain traffic safety

Figure 3.3. End to end communication flow given αi=0.

VUE sends its decision  
to the MEC server

MEC server knows its
channels to all the VUEs

and VUE locations
MEC server compute for all

VUEs simultaneously

Optimal  power allocationTransmit to all the VUEs
using a dedicated BW

VUEs use synthesized image
to sustain traffic safety

Figure 3.4. End to end communication flow given αi=1.



15

Let us denote Vf = {i ∈ V|αi = 0} as the set of all task-fetching VUEs. In order
to ensure that all VUEs in Vf can correctly receive the image, each camera j sends its
data with the rate Rj, which is decided by considering the minimal channel coefficient
among all corresponding camera-VUE links, to ensure that all VUEs in Vf would be able
to receive the information without a loss. Accordingly, the data rate from camera j to
VUEs is

Rj = Wc log2

(
1 + Pchj,min

WcN0

)
, (7)

where N0 is the noise variance. Then the the transmission delay from camera j to VUEs
is

TTx
j = A/Rj. (8)

Here, A is the size of a camera image. Since VUE i has to wait till it receives all cameras’
images before start synthesizing, the transmission delay in the task fetching phase is

TFet = max
j∈C

TTx
j . (9)

We assume all camera images are in the same size. L is the required CPU cycles per bit
for computation, i.e., the processing density, and fi is the CPU cycle frequency (in cycles
per second) of each VUE. The computation delay at the VUE i is calculated as,

TComp
i = CAL/fi. (10)

If αi = 0, VUE i’s E2E delay TE2E
i includes the transmission delay and the local

computation delay, i.e.,

TE2E
i = max

j∈C


A

Wc log2

(
1 + Pchj,min

WcN0

)
+ CAL

fi
. (11)

For task offloading, let us analogously denote the set of VUEs with the task-offloading
decision as Vo = {i ∈ V|αi = 1}. When αi=1, the communication and computation
procedures happen in three steps. First all cameras send their images to the MEC server
through a fiber link and transmission delays from cameras to the server are negligible
compared to the other delays in the network. When MEC server receives all the camera
images, it starts to synthesize for all VUEs in Vo. Here we consider that the MEC server
computes all the VUEs’ dedicated images simultaneously so that total computational
resources are shared among VUEs equally. The computational delay at the MEC server
is expressed as

TComp
s = |Vo|

CAL

fs
. (12)

Subsequently, the MEC server sends the synthesized image to each VUE i ∈ Vo using a
dedicated bandwidth Ws and the transmit power Pi. The power allocation mechanism
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will be detailed in Section 3.3. Accordingly, the the corresponding DL rate (from the
MEC server) to the VUE i is expressed as

Ri = Ws

|Vo|
log2

(
1 + Pihsi|Vo|

WsN0

)
. (13)

Then the DL transmission delay from MEC server to the VUE i is

TDL
i = B/Ri, (14)

where B denotes the synthesized image size. If αi = 1, VUE i’s E2E delay includes the
computation delay at the MEC server and the DL transmission delay, i.e.,

TE2E
i = |Vo|CAL

fs
+ B|Vo|

Ws log2

(
1 + Pihsi|Vo|

WsN0

) . (15)

3.2 Risk Minimization for the VUE’s End-to-End Delay

URLLC promises to reduce E2E latency while improving the reliability. Latency-sensitive
and mission-critical applications like V2V and V2I communication strongly depend on
the low latency and ultra reliability. Motivated by V2V and V2I communication’s latency
and reliability requirements, we pay attention to the E2E delays of VUEs. As a reliability
measure, we leverage the concept of risk from financial mathematics, where risk is closely
associated with gaining or losing something valuable. Since higher delays can result in
losing the information along the way putting traffic safety at a stake, we aim at minimizing
the risk which means minimizing the probability of occurrence of higher delays. To do
that we use the entropic risk measure which is defined as 1

ρ
ln(E[exp(ρTE2E

i )]), with a risk
sensitivity parameter ρ > 0. By taking the Maclaurin series expansion [19], we can get

1
ρ

ln(E[exp(ρTE2E
i )]) = E[TE2E

i ] + ρ

2Var(TE2E
i ) +O(ρ2), ρ ∈ (0, 1). (16)

Therefore, we formulate our problem as a risk minimization problem of VUE’s E2E
delay. Our approach focuses on not only minimizing the latency, but also reducing the
risk so that high reliability can be ensured. We define the channel state vector of VUE i
as

hi = [hji, hsi : j ∈ C] ∈ Hi, (17)

We simplify (16), making sure that simplification does not affect our objective and it is
solvable. Thus, each VUE’s optimization problem can be defined as follows:

minimize
Pr(αi|hi)

E[exp(ρTE2E
i )] (18a)

subject to
∑

αi∈{0,1}
Pr(αi|hi) = 1, ∀hi ∈ Hi, (18b)

Pr(αi = 0|hi) ≥ 0, ∀hi ∈ Hi, (18c)
Pr(αi = 1|hi) ≥ 0, ∀hi ∈ Hi. (18d)
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Our objective function can be expanded using Maclaurin series as follows:

E[exp(ρTE2E
i )] = 1 + ρE[TE2E

i ] + ρ2

2!E[(TE2E
i )2] + ρ3

3!E[(TE2E
i )3] + · · · . (19)

As per (19), while minimizing the objective function, all the higher-order statistics of
the VUE i’s E2E delay are taken into account along with the average delay. In the
above optimization problem, each VUE’s objective is to find the optimal decision policy
Pr(αi|hi), knowing the channel state hi.

3.3 Transmit Power Allocation at the MEC Server

Referring to the motivation of considering (18a), we formulate the MEC server’s power
allocation problem as

minimize
Pi

∑
i∈Vo

exp(ρTDL
i ) (20a)

subject to
∑
i∈Vo

Pi = Pmax and Pi ≥ 0, ∀ i ∈ Vo, (20b)

with the MEC server’s total transmit power budget Pmax. In the objective (20a), we
consider the DL transmission delay since the allocated transmit power only affects this
delay. Our objective function (20a) places emphasis on decreasing higher delays rather
than treating all the delays equally.
To find a closed-form solution for the (20), the convexity of the objective function

should be examined. To this end, we firstly simplify our problem as follows:

minimize
Pi

∑
i∈Vo

exp
(

θ

ln(1 + Piκi)

)
, (21a)

where

θ = ρB|Vo| ln 2
Ws

and κi = hsi|Vo|
WsN0

. (22)

Taking the first and second derivative subject to our optimization variable Pi, we have

f ′(Pi) = −κiθ
(1 + κiPi)

exp( θ
ln(1+κiPi))

[ln(1 + κiPi)]2
, (23)

f ′′(Pi) = κ2
i θ

(1 + κiPi)2

exp( θ
ln(1+κiPi))

[ln2(1 + κiPi)]2
(
Pi + θ

[ln(1 + κiPi)]2
+ 2

ln(1 + κiPi)

)
. (24)

Considering the second derivative, f ′′(Pi) > 0, our objective function satisfies the
convexity criteria [26]. Then, the Lagrangian and Karush–Kuhn–Tucker (KKT)
conditions can be used to find a closed-form solution to the problem (20). Given that
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λi and µ are the Lagrangian multipliers, the Lagrangian of the problem is written as
follows:

L(Pi, λi, µi) =
∑
i∈Vo

exp( θ

ln(1 + κiPi)
)−

∑
i∈Vo

λiPi + µ(
∑
i∈Vo

Pi − Pmax). (25)

The KKT conditions include
1) Primal feasibility,

−Pi 5 0,
∑
i∈Vo

Pi − Pmax = 0. (26)

2) Dual feasibility,

λi ≥ 0. (27)

3) Complementary slackness,
λi(−Pi) = 0. (28)

4) Equate the derivative of the Lagrangian with respect to Pi to 0, i.e.,

L′(Pi, λi, µi) = −κiθ
(1 + κiPi)

exp( θ
ln(1+κiPi))

[ln(1 + κiPi)]2
− λi + µ = 0. (29)

Our goal is to find the power allocation which satisfies (26)−(29). From (29), we can
find Pi 6= 0. Otherwise, there do not exist any finite solutions for λi and µ. Thus, the
only possibility is Pi > 0 with λi = 0 according to (27) and (28). Then, (29) is rewritten
as

µ = κiθ

(1 + κiPi)
exp( θ

ln(1+κiPi))
[ln(1 + κiPi)]2

. (30)

The power allocation is that the MEC server allocates the transmit power P ∗i > 0, ∀ i ∈
Vo, which satisfies

θκi exp
(

θ
ln(1+P ∗

i κi)

)
(1 + P ∗i κi)[ln(1 + P ∗i κi)]2

= µ. (31)

Here, µ is chosen such that ∑i∈Vo P
∗
i = Pmax.
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4 RISK MINIMIZATION FOR THE VUE’S END-TO-END
DELAY

4.1 Regret-Based Risk-Sensitive Approach for Task Fetching and Offloading

VUE’s optimization problem (18) can not be solved using conventional optimization
techniques since the objective function depends on the network circumstances that
particular VUE has no control. Therefore, we consider a regret minimization-based
learning approach assuming that each VUE has the perfect information of the network
such as other VUEs’ wireless channels and task-fetching and offloading decisions. Let
ωi denote all unobservable uncertainties of VUE i’s, including the other VUEs’ wireless
channels and task-fetching and offloading decisions, the value of hi belongs to a finite set
Hi, i.e.,

Hi = {h1
i , · · · ,hli, · · · ,h

|Hi|
i }. (32)

We assume that the communication timeline is slotted and indexed by t. In addition,
referring to the objective (18a), we denote ui(t) as VUE’s utility (ui) in time slot t, given
the specific values of αi(t), hi(t) and ωi(t) in slot t, which is defined as

ui(t) = ui(αi(t),hi(t),ωi(t)) = − exp(ρTE2E
i (t)). (33)

Let’s assume that a given VUE i compares the time average of its utility observations,
obtained by constantly changing its action following a particular decision policy Pr(αi|hi),
with the case where it would have taken the same decision (αmi ) in all previous time
instances, while other VUEs use their current decision policies. We assume that all
VUEs are interested in choosing the probability distribution β(rhli

(t);αmi ) that minimizes
its regret not having played action αmi from τ = 1 to time t which is calculated as

rhli
(t;αmi ) = 1∑t

τ=1 1{hi(τ)=hli}
×

t∑
τ=1

[
ui(αmi ,hi(τ),ωi(τ))− ui(τ)

]
× 1{hi(τ)=hli}

, (34)

denoting,

rhli
(t) = [rhli

(t; 0), rhli
(t; 1)]. (35)

As the time elapses, the empirical distribution β(rhli
(t);αmi ) provides a solution to the

risk minimization problem which is a solution of the following optimization problem:

β(rhli
(t);αi) = arg max

Pr(αi|hli)


1∑

αmi =0

[
Pr(αmi |hli)rhli

(t;αmi ) + 1
ξ

Pr(αmi |hli) ln
(

1
Pr(αmi |hli)

) ],
(36)

where, ξ > 0 is the temperature parameter which balances between exploitation (by
maximizing average regret) and exploration (by maximizing information entropy). The
resulting probability distribution for VUE i is given by [20],
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β(rhli
(t);αmi ) =

exp
(
ξr+

hli
(t;αmi )

)
∑1
αmi =0 exp

(
ξr+

hli
(t;αmi )

) , (37)

in which, r+
hli

(t;αmi ) = max{rhli
(t;αmi ), 0}.

Regret learning relies on the assumption in each iteration t, VUE i is able to evaluate
its instantaneous utility and calculate the utility in which the same action is constantly
taken. However, to this end, VUE i should be aware of ωi, all the other VUEs’ wireless
channels and task-fetching and offloading decisions. In reality, these required information
is not available at VUEs, and it is very complex to gather in a practical wireless network
since there is no information exchange among VUEs. Due to lack of information, the
VUE is unable to find policy (37).

4.2 Distributed Risk-Sensitive Approach for Task Fetching and Offloading

Since regret learning approach is not practical, we must rely on an approach that only
depends on the information available at each VUE. Therefore, we propose a distributed
learning approach [20] which only relies on the utility observations and channel state
information available at the VUE. Note that VUEs do not need the information about
ωi.
As shown in Figure 4.1, at each time instant, each VUE autonomously selects an action

αi, knowing the channel state hi, and observes the E2E delay. The observed E2E delay
is used by each VUE to estimate its utility and the regret of constantly taking a specific
decision knowing the channel state.

Knowing the channel state
, VUEs autonomously

chose their own actions 

Then each VUE observes its Observed   is used to

estimate the utility

Estimated utility is used
compute the regret

Each VUE builds a
probability distribution over

actions knowing 
Decision policy

Thesisfigures.svg https://www.draw.io/#G1usRf1_0RGMUkE6wfGcpHSkkz8RN_0p4K

1 of 1 7/18/2019, 10:31 PM

Figure 4.1. Distributed learning flow diagram.

At each time instant, given the channel state and the decision taken by the VUE i at
time t, the estimation of utility, regrets, and probability distribution function carried out
by each VUE are updated for all αmi as follows:
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ûhli
(t;αmi ) = ûhli

(t− 1;αmi ) + ηu(t)× 1{hi(t)=hli}

×1{αi(t)=αmi } ×
[
u(t)− ûhli

(t− 1;αmi )
]
, (38a)

r̂hli
(t;αmi ) = r̂hli

(t− 1;αmi ) + ηr(t)× 1{hi(t)=hli}

×
[
ûhli

(t;αmi )− u(t)− r̂hli
(t− 1;αmi )

]
, (38b)

πhli
(t;αmi ) = πhli

(t− 1;αmi ) + ηπ(t)× 1{hi(t)=hli}

×
[
β(r̂hli

(t);αmi )− πhli
(t− 1;αmi )

]
. (38c)

For β(r̂hli
(t);αmi ) in (37) and (38c), we fix ξ(t) = D, where D is a constant. Thus,

this distributed non-regret learning algorithm puts the same emphasis on exploring the
utilities of different actions and leveraging the discovered information. Additionally, the
learning rates ηu(t), ηr(t), ηξ(t), and ηπ(t) should satisfy

lim
N→∞

N∑
t=1

ηu(t) =∞, lim
N→∞

N∑
t=1

ηr(t) =∞, (39)

lim
N→∞

t∑
t=1

ηπ(t) =∞, lim
N→∞

N∑
t=1

[ηu(t)]2 <∞, (40)

lim
N→∞

N∑
t=1

[ηr(t)]2 <∞, lim
N→∞

N∑
t=1

[ηπ(t)]2 <∞, (41)

lim
t→∞

ηr(t)
ηu(t)

= 0, lim
t→∞

ηπ(t)
ηr(t)

= 0, (42)

whose values can be chosen by referring to p-series. At the time slot t + 1 , VUE i
decides optimum decision policy as follows:

Pr(αi = αmi |hi = hli) = πhli
(t;αmi ). (43)

The converged distribution πhli
(∞;αmi ) provides a solution to our studied problem (18).

4.3 Average Delay Minimization for the VUE’s End-to-End Delay

Since our main goal is to decrease the higher-order statistics while minimizing the average
delay, to emphasize the reliability improvement through our proposed approach, we
consider the average delay minimization approach for the VUE’s E2E delay. Analogously
to our proposed case, we define average delay minimization problem for the VUE’s E2E
delay. Then we use the distributed learning approach for task-fetching and offloading.
After that we formulate the transmit power allocation problem of the MEC server based
on the average delay. Finally we compare the results of proposed and baseline approaches
in Chapter 5.
We formulate our baseline problem as
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minimize
Pr(αi|hi)

E[TE2E
i ] (44a)

subject to
∑

αi∈{0,1}
Pr(αi|hi) = 1, ∀hi ∈ Hi, (44b)

Pr(αi = 0|hi) ≥ 0, ∀hi ∈ Hi, (44c)
Pr(αi = 1|hi) ≥ 0, ∀hi ∈ Hi. (44d)

To solve the above VUE’s optimization problem, we use the distributed average delay-
based approach for task fetching and offloading. We define the utility as follows:

ui(t) = ui(αi(t),hi(t),ωi(t)) = −TE2E
i (t). (45)

The same distributed learning procedure as described in Section 4.2 is carried out at
each VUE to find out the optimal decision policy Pr(αi|hi), knowing the channel state
hi. Then we define the MEC server optimization problem for the baseline as follows:

minimize
Pi

∑
i∈Vo

TDL
i (46a)

subject to
∑
i∈Vo

Pi = Pmax and Pi ≥ 0, ∀ i ∈ Vo. (46b)

To find a closed form solution for the (46), the convexity of the objective function should
be examined. We can simply the our problem as follows:

minimize
Pi

∑
i∈Vo

θ

log2(1 + Piκi)
, (47a)

where,

θ = B|Vo|
Ws

and κi = hsi|Vo|
WsN0

. (48)

Let’s take,

g(Pi) = log2(1 + kPi) and h(g(Pi)) = θ

log2(1 + κiPi)
. (49)

Here g(Pi) is a concave function of Pi and h(g(Pi)) is non-increasing and convex function
of g(Pi). Therefore, f(Pi) is also a convex function [26] which is given by

f(Pi) = h(g(Pi)) = θ

log2(1 + κiPi)
. (50)

Thus, Lagrangian and KKT conditions can be used to find a closed-form solution to the
problem. Given that λi and µ are the Lagrangian multipliers, the Lagrangian of the
problem is written as follows:

L(Pi, λi, µi) =
∑
i∈Vo

θ

log2(1 + κiPi)
−
∑
i∈Vo

λiPi + µ
∑
i∈Vo

(
Pi − Ps

)
. (51)
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The KKT conditions include
1) Primal feasibility,

−Pi 5 0,
∑
i∈Vo

Pi − Pmax = 0. (52)

2) Dual feasibility,

λi ≥ 0. (53)

3) Complementary slackness,
λi(−Pi) = 0. (54)

4) Equate the derivative of the Lagrangian with respect to Pi to 0, i.e.,

L′(Pi, λi, µi) = −κiθ
(1 + κiPi)[log2(1 + κiPi)]2

− λi + µ = 0. (55)

Our goal is to find the power allocation which satisfies (52)−(55).

−κiθ
(1 + κiPi)[log2(1 + κiPi)]2

− λi + µ = 0. (56)

From (55), we can find Pi 6= 0. Otherwise, there do not exist any finite solutions for λi
and µ. Thus, the only possibility is Pi > 0 with λi = 0 according to (53) and (54). Then,
(55) is rewritten as

µ = κiθ

(1 + κiPi)[log2(1 + κiPi)]2
. (57)

The power allocation is that the MEC server allocates the transmit power P ∗i > 0, ∀ i ∈
Vo, which satisfies

θκi
(1 + P ∗i κi)[log2(1 + P ∗i κi)]2

= µ. (58)

Here, µ is chosen such that ∑i∈Vo P
∗
i = Pmax.
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5 NUMERICAL RESULTS

In this chapter we compare the performance of the proposed approach and the other
baselines. All approaches are implemented and simulated in MATLAB [27]. At
the same time, the performance of the proposed approach is investigated varying
different parameters such as the network density, computational capability of the server,
computational capability of the VUE, server’s bandwidth and camera’s bandwidth.
Simulation parameters are listed in Table 5.1.

Table 5.1. Simulation parameters

Parameter Description Value
V Number of VUEs 60
C Number of cameras 4
A Camera’s image size 20kbits
Wc Camera’s bandwidth 100kHz
Ws Server’s bandwidth 20MHz
fi VUE’s CUP cycle frequency 1GHz
fs Server’s CUP cycle frequency 200GHz
B Synthesized image size 60kbits
N0 Thermal noise -174dBm
ρ Risk sensitivity parameter 10
ξ Temperature parameter 10

In the first baseline which is described in Section 4.3, each VUE’s intention is to
minimize its average E2E delay, while in the proposed approach, the VUE’s intention is
to minimize its average exponential E2E delay (i.e., risk).
Figure 5.1 shows the complementary cumulative distribution function (CCDF) of the

E2E delay of the network for both proposed and baseline approaches. As shown in the
figure, the tail of the delay distribution in the proposed approach decays faster. That
means its occurrence probability of very high delay is lower compared to the baseline
approach. In addition, we can straightforwardly find that the proposed approach has a
lower standard deviation but a higher average performance. To further elaborate this,
the standard deviation of the E2E delay and average E2E delay are plotted separately
with respect to the VUE index in Figure 5.2.
In the proposed approach, all the statistics of the E2E delay distribution are taken into

account in the risk minimization problem as per (19). Thus, the effect of minimization
on the average E2E delay is less compared to baseline approach in which the only focus
is on minimizing average E2E delay.
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Figure 5.1. CCDF of both proposed and baseline approaches.
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Figure 5.2. Standard deviation of E2E delay and average E2E delay over vehicle index.

The risk-sensitive parameter ρ has a influence on the proposed approach as per (19).
When ρ increases, the emphasis on standard deviation is higher. Therefore, standard
deviation is a decreasing function of ρ. In contrast, when ρ is small, the average
performance is lower since the emphasis on the higher-order statistics vanishes. Figure
5.3 shows how the standard deviation of the E2E delay and the average E2E delay vary
with ρ.
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Figure 5.3. Variation of standard deviation and average E2E delay over ρ.

Now we analyze the system performance of the proposed approach varying the system
settings. Moreover, we investigate how the VUE’s geographic location affects the system
performance.
Figure 5.4 shows the convergence of the decision of offloading (αi = 1) for particular

VUE and for a particular state (hli) for given parameters in Table 5.1. The VUE has
a higher probability of offloading, since the sever computational capability is higher
compared to the VUE’s computational capability. Therefore, the VUE can achieve low
latency and high reliability by offloading rather than computing locally.
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Figure 5.4. Convergence of the learning process.

Now we fix the distances of four VUEs to the server and the cameras as in Table 5.2
while letting VUEs be randomly located.
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Table 5.2. A, B, C, D vehilces’ locations

VUE Distance to the cameras (m) Distance to the server (m)
A 5 5
B 5 90
C 90 5
D 90 90

Firstly, we vary the number of VUEs in the network and observe how average E2E
delay varies. As shown in Figure 5.5, average E2E delay of all four VUEs increase with
the number of VUEs in the network. This is because when the number of VUEs in
the network increases, the number of VUEs which access the server also increase. Then
the server’s computational and spectrum resources are shared among VUEs, resulting in
higher computational and transmission delay. VUE A and C has the lowest average E2E
delay among all four, when number of VUEs increases. This is because they are closer to
the server than other two, and the path loss affects on the server-to-VUE transmission
delay.
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Figure 5.5. Variation of average E2E delay over VUE density

Subsequently, we break down average E2E delay into average computational delay and
average transmission delay for both αi = 1 and αi = 0 cases and observe how these
delays vary with the number of VUEs in the network. Figure 5.6 shows the variation of
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average transmission and computational delay for both cases for the VUEs A, B, C, and
D. Average transmission delay given αi = 1 increases with the number of VUEs because
transmission bandwidth is shared among the VUEs. Intuitively, when the distance to
the server is higher, delay is higher. Average computational delay given αi = 1 linearly
increases with the number of VUEs in the network but does not depend on the VUE’s
location. Average transmission delay given αi = 0 does not vary with number of VUEs
because it only depends on the minimum channel gain among all the links between
the cameras to VUEs. Since path loss is also taken into account when calculating the
minimum channel gain, average transmission delay remains identical for all VUEs despite
of the number of VUEs in the network.Average computational delay given αi = 0 does
not depend on other network parameters, since VUE’s computational capability is the
same for all VUEs.
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Figure 5.6. Variation of delay components over VUE density.

Next we fix the four VUEs A, B , C, and D at the same location and observe how
converged probability of offloading Pr(αi = 1) changing over the network density. Figure
5.7 shows how the converged probability varies with the VUE density. When the number
of VUEs in the network is low, server resources are under utilized, and VUEs have a
higher probability of offloading. When the number of VUEs increases server resources
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are over-utilized. Thus, the probability of offloading decreases. In the figure, we can find
that VUEs A and C, in general, have higher probabilities, since they are close to the
server than others.
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Figure 5.7. Variation of converged probability over VUE density

Now we see how converged probability Pr(αi = 1) changes with the computational
power of the server. When computational power of the server is increased, VUEs have a
higher probability of offloading than local computation. As shown in Figure 5.8, VUEs
A and C have a logarithmic variation with computational power while VUEs B and D
have a linear variation at low computational power region. When server’s computational
power is high, all VUEs’ offloading probabilities converge to the same value.
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Figure 5.8. Variation of converged probability over server’s computation power

Then we vary the server’s bandwidth and observe how the converged probability of
offloading changes. Figure 5.9 shows that when server bandwidth increases, VUEs have
probabilities close to one despite of their locations. But when server’s bandwidth is small,
VUEs that are not close to the server (B and D) are interested in local computation rather
than offloading.
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Figure 5.9. Variation of converged probability over server’s bandwidth
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Figure 5.10 shows the variation of the converged probability of offloading for the VUEs
A, B, C, and D with the VUE’s computational capability. When local computational
power of the VUE is low, the probability of offloading is high. The probability of
offloading decreases with the local computational capability as expected despite of VUEs’
location.
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Figure 5.10. Variation of converged probability over VUE’s computation power

Figure 5.11 shows the variation of the converged of probability of offloading for the
VUEs A, B, C, and D with camera’s bandwidth. Camera’s bandwidth does not affect
much on converged probability since transmission delay from camera to VUE is low
compered to computational delay. However, the VUEs that are close to the cameras (B
and D) have comparatively low probability for offloading since local computation is more
beneficial for them.
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Figure 5.11. Variation of converged probability over camera’s bandwidth

Furthermore, we compare our proposed approach with the other three baselines, in
which probabilities of local computation and offloading are fixed with predetermined
value. The three cases are shown as follows.

• All VUEs offload i.e., Pr(αi = 1) = 1.

• All VUEs compute locally i.e., Pr(αi = 0) = 0.

• All VUEs have the equal probabilities of offloading and local computation i.e.,
Pr(αi = 1) = Pr(αi = 0) = 0.5.
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Figure 5.12 shows the performance of the proposed approach compared to three
baselines for the VUEs A, B, C, and D by varying the VUE density of the network.
When the number of vehicles in the network is lower than 40, fully-offloading in all
VUEs can achieve the minimal E2E delay. The fully-fetching scheme in all VUEs has
the maximal E2E delay. When the VUE density is high offloading E2E delay exceeds the
delay for local computation for B and D VUEs which is far from the server, this is due
to path loss. E2E delay of offloading linearly increases with number of VUEs, because
computational delay when αi = 1, linearly depends on the number of VUEs. When
VUE density is high, having the same probability of offloading and local computation
i.e., Pr(αi = 1) = Pr(αi = 0) = 0.5 is also good. Our proposed approach performs well
in all the VUE densities and despite of VUE’s location.
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Figure 5.12. Variation of E2E delay of the VUEs A, B, C, and D with number of VUEs
in the network.
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Figure 5.13 shows performance of the proposed approach compared to the three
baselines for the VUEs A, B, C, and D with different computational capabilities of
the server. When server computational capability is weaker, fully-fetching scheme in
all VUEs has the minimal average E2E delay. Server computational capability is high,
all VUEs A, B, C, and D can achieve the minimum E2E delay by offloading. Most of the
time following proposed approach, all the VUEs can archive the minimal E2E latency
despite of its location in the network.
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Figure 5.13. Variation of E2E delay of the VUEs A, B, C, and D with server’s
computational capability.
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Figure 5.14 shows performance of the proposed approach compared to three baselines
for the VUEs A, B, C, and D with the server’s bandwidth. There is no significant effect
from server bandwidth since computational delay is more dominant than the transmission
delay. Minimum average E2E delay can be achieved when all the VUEs have the equal
probabilities of offloading and local computation, i.e., Pr(αi = 1) = Pr(αi = 0) = 0.5.
However, when the server bandwidth is low the proposed approach performs better.
Server bandwidth increases, following the proposed approach, all four VUEs A, B, C,
and D can archive a comparatively low E2E delay.
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Figure 5.14. Variation of E2E delay of the VUEs A, B, C, and D with server’s bandwidth.
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Figure 5.15 shows performance of the proposed approach compared to three baselines
for the VUEs A, B, C, and D with VUE’s computational capability. If a VUE has a high
computational power, there is no use of offloading. Minimum E2E delay can be achieved
by fully-fetching scheme in all VUEs. In addition, the proposed approach also give the
same performance that means the proposed approach suggests VUEs to compute locally.
VUEs B and D have a higher E2E delay for offloading since they are far from the server.
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Figure 5.15. Variation of E2E delay of the VUEs A, B, C, and D with VUE’s
computational capability.
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Figure 5.16 shows performance of the proposed approach compared to three baselines
for the VUEs A, B, C, and D with VUE’s bandwidth. Minimum average E2E delay can
be achieved by the partially-offloading and fetching scheme. The proposed algorithm also
has a comparatively less average E2E delay. The performance of the proposed approach
is better when the VUE is close to the server.
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Figure 5.16. Variation of E2E delay of the VUEs A, B, C, and D with camera’s
Bandwidth.
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6 CONCLUSION

In this thesis we have proposed a novel approach to ensure low latency and high-
reliability requirements of a vehicular edge computing network which consists of V2I
communications and MEC considering an urban environment scenario. Our objective
was to minimize the higher-order statistics of the E2E delay while jointly allocating the
communication and computation resources in the considered vehicular edge computing
scenario. A novel risk-sensitive distributed learning algorithm is proposed with minimum
knowledge and no information exchange among VUEs, where each VUE learns the best
decision policy to achieve low latency and high reliability.
We have compared the performance of the proposed method with the average-based

baseline method and the simulation results show that the proposed approach improves
the reliability while minimizing the end to end latency, so that stricter QoS requirements
in V2I communication can be satisfied. The proposed approach is observed to have a
better network-wide standard deviation of E2E delay and a comparable average E2E
delay performance.
Simulations also investigate the performance of the proposed method when different

system parameters such as the number of VUEs in the system, computational capability
of the server, computational capability of the VUEs, server’s bandwidth and camera’s
bandwidth etc. are changed. Simulation results shows the solidity of our proposed
learning algorithm in different system parameters. VUE’s location also has a effect on
the decision taken by the VUE.
It can be seen that systems which has either local computation or offloading are

very inefficient and can’t satisfy the strict QoS requirements. Therefore, the proposed
approach which has incorporated MEC with V2I is the best approach, and it has
succeeded in allocating the communication and computation resources in an optimize way
while VUEs are able to learn the best decision policy subject to latency and reliability
constraints with minimum information and no information exchange among VUEs.
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