
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING
DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

MASTER’S THESIS

POTENTIAL DEEP LEARNING
APPROACHES FOR THE PHYSICAL

LAYER

Author Rajapakshage Nuwanthika Sandeepani Rajapaksha

Supervisor Prof. Nandana Rajatheva

Second Examiner Dr. Janaka V. Wijayakulasooriya

July 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344908447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rajapaksha R. (2019) Potential Deep Learning Approaches for the Physical
Layer. University of Oulu, Faculty of Information Technology and Electrical
Engineering, Degree Programme in Wireless Communications Engineering, 59 p.

ABSTRACT

Deep learning based end-to-end learning of a communications system tries
to optimize both transmitter and receiver blocks in a single process in an
end-to-end manner, eliminating the need for artificial block structure of
the conventional communications systems. Recently proposed concept of
autoencoder based end-to-end communications is investigated in this thesis
to validate its potential as an alternative to conventional block structured
communications systems. A single user scenario in the additive white
Gaussian noise (AWGN) channel is considered in this thesis. Autoencoder
based systems are implemented equivalent to conventional communications
systems and bit error rate (BER) performances of both systems are compared
in different system settings.
Simulations show that the autoencoder outperforms equivalent uncoded

binary phase shift keying (BPSK) system with a 2 dB margin to BPSK
for a BER of 10−5, and has comparable performance to uncoded quadrature
phase shift keying (QPSK) system. Autoencoder implementations equivalent
to coded BPSK have shown comparable BER performance to hard decision
convolutional coding (CC) with less than 1 dB gap over the 0-10 dB Eb/N0
range. Autoencoder is observed to have close performance to the conventional
systems for higher code rates. Newly proposed autoencoder model as an
alternative to coded systems with higher order modulations has shown that
autoencoder is capable of learning better transmission mechanisms compared
to the conventional systems adhering to the system parameters and resource
constraints provided. Autoencoder equivalent of half-rate 16-quadrature
amplitude modulation (16-QAM) system achieves a better performance with
respect to hard decision CC over the 0-10 dB Eb/N0 range, and a comparable
performance to soft decision CC with a better BER in 0-4 dB Eb/N0.
Comparable BER performance, lower processing complexity and low

latency processing due to inherent parallel processing architecture, flexible
structure and higher learning capacity are identified as advantages of the
autoencoder based systems which show their potential and feasibility as an
alternative to conventional communications systems.

Keywords: autoencoder, deep learning, end-to-end learning, neural networks,
communications, channel coding, modulation.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1 INTRODUCTION 7

1.1 Motivation and Thesis Objectives . 8
1.2 Thesis Structure . 9

2 BACKGROUND AND LITERATURE 10
2.1 Potential of Deep Learning for the Physical Layer . 10
2.2 Deep Learning Basics . 11
2.3 Deep Learning Libraries . 12
2.4 Literature Review. 13

2.4.1 Deep Learning based Block Structured Communications 13
2.4.2 Deep Learning based End-to-End Communications 15

3 END-TO-END LEARNING OF UNCODED SYSTEMS 18
3.1 End-to-End Learning of a Communications System. 18

3.1.1 System Model . 18
3.1.2 Autoencoder for End-to-End Learning . 19

3.2 Autoencoder Implementation for Uncoded Communications Systems 20
3.3 Results and Analysis . 21

4 END-TO-END LEARNING OF CODED SYSTEMS 26
4.1 System Model . 26

4.1.1 Baseline for Comparison . 27
4.2 Autoencoder Implementation for Coded Communications Systems with

BPSK Modulation for AWGN Channel . 27
4.2.1 Implementation . 27
4.2.2 Results and Analysis . 28

4.3 Autoencoder Implementation for Coded Communications Systems with
Higher Order Modulations . 35
4.3.1 Implementation . 35
4.3.2 Effect of Model Layout and Hyperparameter Tuning for the

Performance . 37
4.3.3 Results and Analysis . 38
4.3.4 Processing Complexity . 43
4.3.5 Comparison with 5G Channel Coding and Modulation Schemes 45

5 CONCLUSION AND FUTURE WORK 46
5.1 Summary and Conclusion . 46
5.2 Future Work . 48

6 REFERENCES 49
7 APPENDICES 52

FOREWORD

This thesis is focused on potential deep learning approaches for the physical layer as
a part of the High5 and MOSSAF projects at the Center for Wireless Communications
(CWC) of University of Oulu, Finland. I would like to express my sincere gratitude to my
supervisor and mentor Prof. Nandana Rajatheva for the guidance, support, inspiration
and encouragement given throughout the period of my master studies. I am also
grateful to Academy Prof. Matti Latva-aho for providing me the opportunity to join
and contribute to the High5 and MOSSAF projects. Also I would like to thank project
manager Dr. Pekka Pirinen and the other colleagues at CWC for their support in my
research. I would also like to express my gratitude to Matti Isohookana, the coordinator
of Double Degree Master’s Program, for his support and guidance throughout the past
year.
I am also thankful to Dr. Janaka V. Wijayakulasooriya, my supervisor from University

of Peradeniya, Sri Lanka, for the support given. Also I would like to thank all the
lecturers from University of Peradeniya for their contribution in making the inaugural
Double Degree Master’s Programme a success.
Finally I would like to express my sincere gratitude to my mother, father and brother

for their immense love, support and encouragement provided throughout my life.

Oulu, 30th July, 2019

Rajapakshage Nuwanthika Sandeepani Rajapaksha

LIST OF ABBREVIATIONS AND SYMBOLS

Acronyms

1D One-Dimensional
2D Two-Dimensional
3GPP 3rd Generation Partnership Project
4G Fourth Generation
5G Fifth Generation
ANN Artificial Neural Network
ASIC Application-Specific Integrated Circuit
AWGN Additive White Gaussian Noise
BAIR Berkeley Artificial Intelligence Research
BER Bit Error Rate
BLER Block Error Rate
BPSK Binary Phase-Shift Keying
CC Convolutional Coding
CNN Convolutional Neural Networks
CP Cyclic Prefix
CPU Central Processing Unit
CSI Channel State Information
DL Deep Learning
DNN Deep Neural Network
GAN Generative Adversarial Network
GD Gradient Descent
GPU Graphics Processing Units
LDPC Low Density Parity Check
LTE Long-Term Evolution
MASK M-ary Amplitude Shift-Keying
MER Message Error Rate
MFSK M-ary Frequency Shift-Keying
ML Machine Learning
MLP Multi Layer Perceptrons
MMSE Minimum Mean Square Error
MSE Mean Squared Error
NLP Natural Language Processing
NN Neural Network
NR New Radio
OFDM Orthogonal Frequency-Division Multiplexing
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
ReLU Rectified Linear Unit
RTN Radio Transformer Network
SDR Software-Defined Radio
SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio
SVM Support Vector Machine

TBCC Tail Biting Convolutional Codes
TPU Tensor Processing Unit
URLLC Ultra-Reliable Low-Latency Communication

Symbols

Cn Set of complex n-vectors
M Set of M messages
Eb/N0 Energy per bit to noise spectral density ratio
K Information block size
M Number of messages
Mmod Modulation order
N Size of the channel coded block
Pe Message error rate (MER)
R Rate (communication rate or code rate as applicable)
k Number of bits in in message s
kmod Number of bits per codeword when modulated with Mmod

order modulation
n Number of complex channel uses for transmitting message s
s Transmit message
ŝ Estimation of message s
x Transmitted signal vector
y Received signal vector

β Noise variance of the AWGN channel

1 INTRODUCTION

Wireless networks and related services have become critical and fundamental building
blocks in the modern digitized world which have changed the way we live, work
and communicate with each other. Emergence of many unprecedented services and
applications such as autonomous vehicles, remote medical diagnostics and surgeries,
smart cities and factories, artificial intelligence based personal assistants etc. are
challenging the traditional communication mechanisms and approaches in terms of
latency, reliability, energy efficiency, flexibility and connection density. Catering the
stringent requirements arising from those different verticals requires a greater need for
wireless system research with novel architectures, approaches and algorithms in almost all
the layers of a communications system. Newly initiated fifth generation (5G) of mobile
communication technology is expected to cater for these requirements revolutionizing
everything so far in wireless-enabled applications [1].
As said, 5G brings most stringent requirements when catering to the advanced

applications and services which will be supported by it. For example, ultra-reliable low-
latency communication (URLLC), one category out of the three service categories defined
in 5G, which perhaps may be the most challenging as it needs to meet two challenging
and contradicting requirements: low latency and ultra-high reliability, requires end-to-
end latency in range of 10 ms and very high reliability with 10−5 bit error rate (BER) in
1 ms period [2]. High reliability means that the channel estimation accuracy should
be improved since the channel coding gain is small for the short packet lengths so
that the loss, if any, caused by the channel estimation should be prevented as much as
possible. It is to be achieved by advanced channel estimation techniques and by adding
more resources to the pilots which again raises concerns with latency requirements as
more pilots result in control overhead which affect the throughput and hence latency
of the communications. Another concern is faster signal processing at the transmitter
and receiver to achieve low latency requirements of URLLC. Therefore, for successful
implementation of URLLC systems, all these factors need to be taken into consideration
which requires novel architectures, approaches and algorithms in almost all the layers of
the communication system.
Communications field is very rich of expert knowledge based on statistics, information

theory and solid mathematical modelling capable of modelling channels [3], optimal
signalling and detection schemes for reliable data transfer compensating for various
hardware imperfections etc. especially for the physical layer [4]. However, existing
conventional communication theories exhibit several inherent limitations in fulfilling the
large data and ultra high rate communication requirements in complex situations such
as channel modelling in complex scenarios, fast and effective signal processing in low
latency systems such as URLLC, limited and sub-optimal block structures due to the
fixed block structure of the communication systems etc. In recent history, there has been
an increasing interest in deep learning approaches for the physical layer implementations
due to certain advantages they possess which could be useful in overcoming the above
challenges.

1.1 Motivation and Thesis Objectives

Fundamental requirement of a communications system is to reliably transmit a message
from a source to a destination over a channel by the use of a transmitter and a
receiver. In order to achieve an optimal solution in practice, transmitter and receiver are
typically divided into chain of multiple independent blocks, each responsible for a specific
sub-task such as source/channel coding, modulation/demodulation, channel estimation
and equalization etc. [4]. Although this block structure enables individual analysis,
optimization and controlling of each block, it is not clear that individually optimized
processing blocks achieve the best possible end-to-end performance and that approach is
known to be sub-optimal in certain instances [5].
On the other hand, a deep learning based communications system follows the initial

definition of a communications system and tries to jointly optimize transmitter and
receiver in an end-to-end manner without having a defined block structure [6], [5]. Such
a simple and straightforward structure seems appealing to be implemented in practical
systems with less computing complexity and processing delays, and with less power
consumption, given that it can provide equal or better performance than the existing
systems.
Based on the above motivations, the objective of this thesis is to study and develop

deep neural network (DNN) based models for a communications system in an end-to-end
manner with the intention of achieving similar or better performance in terms of block
error rate (BLER)/ BER or reliability compared to the conventional communication
algorithms, at the same time reducing the processing complexity and latency. The
target is to see the potential of deep learning based approaches to replace or assist
the conventional communication algorithm implementations in the physical layer when
trying to achieving the 5G specifications.
Simple and flexible structure of autoencoder based communications system [5] and

its capability to learn adjusting to the given channel model and system parameters has
inspired us to study about the autoencoder based end-to-learning of communications
systems. In this thesis, we extend the previous research done in autoencoder based
end-to-end learning of communications systems comparing the performance of deep
learning models with their equivalent conventional implementations with different
modulation schemes and code rates to understand the potential of deep learning based
end-to-end communications as an alternative to conventional implementations. Scope
of research conducted for this thesis is limited to single user implementations over the
AWGN channel.

Main objectives of the thesis can be stated as follows.

• Perform a literature review about the 5G physical layer requirements and
specifications, get an understanding about the challenges faced by current
technologies and implementations.

• Conduct a thorough literature review on deep learning concepts for the physical
layer and identify appropriate deep learning approaches as alternatives for the
conventional communications systems.

• Study about the autoencoder based end-to-end learning of communications systems
and implement the basic system proposed by [5] for a simple transmitter-receiver
system.

• Study the performance of the autoencoder based system as an alternative to
uncoded communications systems comparing performance for different modulation
schemes.

• Study the performance of the autoencoder based systems in comparison to
equivalent conventional coded communications systems.

• Improve the existing autoencoder model or develop a new model to enable
implementing systems equivalent to coded systems with different higher order
modulation with comparable performance to the existing conventional systems.

• Analyse the processing complexity of autoencoder based systems and equivalent
conventional systems in order to get an overall understanding for comparing
the performance capability and computational complexity which are important
parameters when proposing deep learning based implementations as alternatives to
conventional communications systems.

1.2 Thesis Structure

The thesis is structured into five chapters. In this chapter we have given an
overview about requirements and challenges which are needed to be addressed by future
communications systems and have discussed our motivations to look into deep learning
based approaches for the physical layer communication blocks. In the second chapter we
present the background and literature related to the thesis work. There we discuss the
potential of deep learning for the physical layer in detail, along with deep learning basics
which are relevant in the context of studied literature and the thesis work. Then we
present the literature review, explaining the existing work on deep learning based block
structured communications and deep learning based end-to-end communications.
In the third chapter, we discuss the autoencoder concept for end-to-end learning of

communications systems and analyse the performance of the autoencoder based end-
to-end system proposed by [5] in comparison to conventional uncoded systems with
different modulation schemes. In the fourth chapter we analyse the performance of
the autoencoder based end-to-end learning system in comparison to conventional coded
systems with different modulation schemes. There, we also present a new autoencoder
model to cater for implementing equivalent autoencoder counterpart of coded systems
with higher order modulation schemes with a comparable BER performance to the
baseline systems compared. In the last chapter we present the conclusions of our research
findings along with future directions for improvements.

10

2 BACKGROUND AND LITERATURE

There have been attempts to apply machine learning (ML) for the physical layer for few
decades where researchers have proposed ML based algorithms for different sub tasks in
the physical layer such as modulation recognition [7], [8], encoding and decoding [9], [10],
channel modelling and identification [11], channel estimation and equalization [12], [13],
[14] etc. However, it is seen that ML has not been commercially used due to the fact
that ML algorithms do not have enough learning capability to cater for the complex task
of handling physical channels.
It is believed that introduction of deep learning (DL) to the physical layer could

bring further performance improvements to the existing ML approaches, eliminating the
limitations faced by conventional ML algorithms, due to the characteristics it has such
as deep modularization which enhances feature extraction and structural flexibility to a
great extent compared to ML algorithms [15]. Specifically, DL-based systems could be
used to automatically learn features from raw data instead of manual feature extraction
where flexible adjustment of model structures via hyperparameter tuning is possible in
order to optimize end-to-end performance of the system.
In this chapter we discuss the potential of applying DL for the physical layer which has

created a great interest among the research community to study DL-based approaches for
the physical layer. We then present a basic overview about the basic DL concepts where
a detailed description of different DL concepts is available in Appendix 1. An overview
of different DL libraries is also presented. Finally, we present a detailed overview of
selected literature which have proposed new DL-based approaches in the physical layer
of the communication systems.

2.1 Potential of Deep Learning for the Physical Layer

• Signal processing algorithms in communications are mostly based on statistics and
information theory and are often proved to be optimal for tractable mathematical
models. However, practical systems have many imperfections and non-linearities
which may be difficult to fully capture from mathematical models [5].
On the other hand, deep networks have been proven to be universal function
approximators [16] with a better learning ability and thus can be used to
model communications systems despite complex channel conditions and hardware
imperfections that are mathematically difficult to model. The “learned” algorithms
in DL-based communication systems are represented by the weights learned in DL
models which have been optimized for end-to-end performance through training,
instead of requiring well defined mathematical models or expert algorithms [15].

• DL approaches essentially require to cater for handling large amounts of data due
to their nature of distributed and parallel processing architectures, which enables
computational speed and processing capacity. DL systems have a great potential in
producing a considerable computational throughput through parallelized processing
architectures [15].

• Since the execution of neural networks (NNs) can be highly parallelized on
concurrent architectures and implemented with low-precision data types, it is

11

observed that these “learned” algorithms could be executed faster and at lower
energy cost than their manually “programmed” counterparts [5]. Parallel processing
architectures with distributed memory architectures such as graphics processing
units (GPUs) and specialized chips for NN inferences, are proved to be very energy
efficient and capable of providing considerable computational throughput when
fully utilized by parallel implementations [5].

• DL based communication systems do not require the conventional block structure
to achieve the global performance as they target optimizing the end-to-end
performance instead of explicitly optimizing the individual blocks. Thus, the
artificial block based structure will be not required if the whole communications
system is based on a DL approach, and there is potential to improve the overall
performance if such an end-to-end system is implemented.

• Recent development of dedicated DL libraries, tools and frameworks such as
TensorFlow [17], PyTorch [18], Caffe [19] etc. enable fast experimentation and
prototyping of DL models and quick and easy deployment of them enabling applying
DL-based approaches for a wide variety of application areas.

2.2 Deep Learning Basics

DL is a branch of ML which enables an algorithm to predict, classify or make decisions
based on data without being explicitly programmed. DL uses multiple layered structures
and nonlinear processing units to hierarchically extract higher level features from raw
input data in order to optimize a given target objective in contrast to the conventional
ML algorithms which depend on manually extracted features by domain experts, thus
has a wide learning capacity. DL expands in supervised, unsupervised and reinforcement
learning domains similar to the ML algorithms. While DNNs are the most known DL
models, other deep architectures such as deep Gaussian processes, neural processes, and
deep random forests can also be regarded as deep models which consist of multiple layered
structures [20].
The history of DL goes back to 1940s-1960s where the development of theories of

biological learning and implementations of the first models such as the perceptron which
allowed training of a single neuron were happened [21]. However, it was only in late
1980s where NNs gained interest after Rumelhart et al. [22] showed the possibility of
training NNs consisting of one or two hidden layers using back propagation [20]. DL
has gained a much wider interest and a rapid growth in the past 15-20 years due to the
technological advancements like GPUs, software libraries and due to big data etc. which
have eliminated computational limitations of training DL models, resulting in using DL-
based approaches in a wide variety of applications [20].
Feedforward neural networks, convolutional neural networks (CNNs), autoencoders

and generative adversarial networks (GANs) are some of the different types of DL models
which are mainly used in literature under the scope of this thesis. A detailed overview
about those DL concepts are presented in Appendix 1 along with an overview about the
deep network training process. There we have mainly referred [21] for the theoretical
parts related to DL concepts.

12

2.3 Deep Learning Libraries

Building a DL model from the scratch is a complex task and requires a great effort as it
requires definitions of forwarding behaviours and gradient propagation operations at each
layer and implementing efficient and fast optimization algorithms for model training, in
addition to CUDA coding for GPU parellelization. In recent years, DL has gained a
great momentum and popularity being used in quite many application areas such as
image and video recognition, speech recognition and natural language processing (NLP)
etc. This continuously-growing usage and popularity of DL has resulted in development
of numerous tools, algorithms and dedicated libraries which make it easy to build and
train large NNs. Most of these tools allow high level algorithm definition in various
programming languages or configuration files, automatic differentiation of training loss
functions through arbitrarily large networks, and compilation of the network’s forwards
and backwards passes into hardware optimized concurrent dense matrix algebra kernels
[5]. They are built with massively parallel GPU architectures enabling GPU acceleration
which makes faster processing of model training routines of large networks with huge
amounts of data. A brief summary of some of the widely used libraries is given below.
• TensorFlow

Created by the Google Brain team, TensorFlow is an open source library for
numerical computation and large-scale machine learning that operates at large
scale and in heterogenous environments [17]. TensorFlow uses dataflow graphs
to represent computation, shared state, and the operations that mutate that
state. It maps the nodes of a dataflow graph across many machines in a cluster,
and within a machine across multiple computational devices, including multicore
cetnral processing units (CPUs), general-purpose GPUs, and custom-designed
application-specific integrated circuits (ASICs) known as Tensor processing units
(TPUs) [17]. TensorFlow supports multiple languages to create DL models. Some
of the languages that it supports are Python, C++, Java, Go, R. Currently,
the best-supported client language is Python with detailed documentation and
tutorials. Keras [23], Luminoth and TensorLayer are some of the dedicated
DL toolboxes which are built upon TensorFlow, which provide higher-level
programming interfaces. Keras is the main tool which we have used to implement
the DL models we have proposed in this thesis, as it has a very user friendly
and highly customizable interface which enables quick and easy prototyping for
experimenting.

• PyTorch
PyTorch [18] is a Python based open source DL library inspired by Torch. It is
a framework built to be flexible and modular for research, with the stability and
support needed for production deployment. PyTorch has been primarily developed
by Facebook’s artificial intelligence research group. PyTorch is one of the preferred
DL research platforms built to provide maximum flexibility and speed. It is known
for providing two of the most high-level features; namely, tensor computations
with strong GPU acceleration support and building deep neural networks on a
tape-based autograd systems designed for immediate and python-like execution.
PyTorch has a growing popularity among the research community since building
NNs in PyTorch is straightforward.

13

• Caffe
Caffe is a dedicated DL framework made with expression, speed, and modularity
in mind. It is developed by Berkeley artificial intelligence research (BAIR) [19]
and by community contributors. It allows to train NNs on multiple GPUs
within distributed systems, and supports DL implementations on mobile operation
systems, such as iOS and Android [20].

2.4 Literature Review

Recent studies have proposed DL based approaches to improve the performance of
the communications systems, motivated by the potential of DL for the physical
layer applications (Section 2.1), which are based on and enabled by the concepts
and technologies as discussed in Appendix 1. In literature, two main approaches
are proposed, where DL is either used to enhance and optimize certain blocks of
the conventional communication system as an alternative to the existing processing
algorithms in each block (such as modulation recognition, channel encoding and decoding,
channel estimation and detection etc.) or to completely replace the total block based
communication system with a DL based architecture which optimizes the end-to-end
performance of the system without a specific block structure like in conventional systems.
In this section, we present an overview of selected literature which has DL based
applications that cover the aforementioned two approaches.

2.4.1 Deep Learning based Block Structured Communications

As noted earlier, the fundamental requirement of a communications system is reliable
transmission of a message from source to destination over a communications channel.
In practice, a conventional communications system is constructed as a block structure
in order to achieve an optimal solution for this task where different algorithms which
are based on expert knowledge have been developed over decades in order to optimize
each individual block of the communications system. The structure of a standard
communications system is shown in Figure 2.1 which consists of source/channel coding
and decoding, modulation and demodulation, channel estimation and signal detection.
Over the years, studies have proposed to use conventional machine learning approaches

such as support vector machines (SVMs) and small feedforward NNs as alternative
implementations to cater for those individual tasks [15]. With the development of
DL algorithms and architectures, in recent years DL based approaches have been
introduced into different processing blocks of the communications systems as alternatives
to conventional algorithms such as modulation recognition [5], channel encoding and
decoding [24], [25], [26], [27], [28], [29] and channel estimation and detection [30], [31],
[32], [33].

14

Source

Destination

Source
Coding

Source
Decoding

Channel Coding

Channel
Decoding

Modulation

Demodulation Detection

Channel
Estimation

RF Receiver

RF
Transmitter

Channel

Figure 2.1. Structure of a classical communications system.

These DL based algorithms are expected to be more effective in complex
communications scenarios where the learning capability of DL can be leveraged to adapt
to different complex channel conditions, complex operating environments etc. Also DL
based approaches would be more useful in instances where reduced the computational
complexity and processing overhead are preferred. In this section, we present some of
the examples which use DL applications for different processing blocks such as signal
detection and modulation recognition.

Deep Learning based Joint Channel Estimation and Signal Detection

In a conventional communications system, channel estimation and signal detection are
two separate procedures executed at the receiver. Channel state information (CSI) is
first estimated explicitly with the aid of the pilots prior to the detection of transmit
symbols, and the estimated CSI is then used to detect/recover the transmitted symbols
at the receiver. In [32], a DL based approach for joint channel estimation and signal
detection in orthogonal frequency-division multiplexing (OFDM) systems is presented
which uses DL to handle wireless OFDM channels in an end-to-end manner. In contrast
to the existing conventional approach of explicit CSI estimation and symbol detection,
the proposed DL based receiver implicitly estimates the CSI and recovers the transmitted
symbols directly which is implemented as a five-layer fully connected DNN. They have
initially trained an offline DNN model with generated data based on channel statistics
and the trained model is then used to recover the online transmitted data directly. Their
results have shown that the DL based approach performs in comparable to the minimum
mean square error (MMSE) estimator. Proposed method shown to be more robust when
a lesser number of pilots are used, cyclic prefix (CP) is omitted and when nonlinear
clipping noise exists.

Deep Learning based Modulation Recognition

Modulation recognition which has the goal of differentiating different modulation
schemes of received signals is an important task in the field of communications as it
facilitates communication among the different communications systems, or interfering and
monitoring enemies for military use. Modulation classification task has been studied over
decades through the approach of expert feature engineering and either analytic decision
trees or trained discrimination methods operating on a compact feature space, such as
support vector machines, random forests, or small feedforward NNs. These approaches

15

consist of several common procedures such as preprocessing, feature extraction, and
classification. Some researches have presented some advanced approaches using pattern
recognition on expert feature maps, such as the spectral coherence function or α-profile,
combined with NN-based classification.
In [34], an NN architecture is proposed as a modulation classifier to distinguish noise-

corrupted band-limited modulated signals from 13 types of digital and analog modulation
schemes. This approach manually extracts features from the signals including features
which characterize digital or analog modulations and the basic parameters of signals
such as amplitude, phase and frequency. Those features are fed to a four-layer NN to
discriminate the different modulation schemes and two more two-layer NNs are used to
estimate the levels of the M-ary amplitude shift-keying (MASK) and the M-ary frequency
shift-keying (MFSK) modulations. The performance of these kind of feature engineered
approaches strongly depends on the extracted features due to the limited learning ability
of conventional NNs [15]. In several recent studies, the well admired learning capacity of
DL is exploited to overcome the aforementioned limitations of feature based modulation
classification approaches.
In [5], authors highlight the possibility to replace the artificial feature extraction with

automatic learning of features from the raw data to optimize end-to-end performance, by
using the superior learning capability of DNNs. They have proposed a convolutional
neural network (CNN) based approach for modulation classification of single carrier
modulation schemes based on sampled radio frequency time-series data. The CNN
classifier is trained using a dataset of 1.2M sequences of 128 complex-valued baseband
in-phase and quadrature (I,Q) samples corresponding to 10 different digital and analog
single-carrier modulation schemes which have gone through a wireless channel with
multipath fading effects and clock and carrier rate offset. Their results have shown
that the CNN-based modulation classifier outperforms two other approaches: extreme
gradient boosting with 1000 estimators and a single scikit-learn tree working on the
extracted expert features, mainly in the low to medium signal-to-noise ratio (SNR) range
where as in the high SNR range, CNN and boosted tree performance are similar.

2.4.2 Deep Learning based End-to-End Communications

In the previous section, we discussed several DL based approaches which are used
as alternatives for one or two processing blocks of the conventional block structured
communications system. However, when looking back to the original requirement of
a communications system of transmitting a message from source to destination over a
channel, even though the block structure enables individual analysis and controlling of
each block, it can not be guaranteed that optimization of each block will always result
in global optimization for the communication problem because end-to-end performance
improvements can be achieved by joint optimization of two or more blocks.
A novel DL based concept has been introduced in recent history based on this thought

process, which reformulates the communication task as an end-to-end reconstruction
optimization task where the artificial block structure of the conventional communications
system is no longer required. This novel concept is based on implementing the end-to-
end communications system by an autoencoder system and the initial studies have shown
that it has comparable performance to the conventional systems and also has shown that

16

the end-to-end method has great potential to be a universal solution for different channel
models. In this section we discuss about that newly introduced concept of autoencoder
based end-to-end communications and present details about some of very recent studies
based on that.

Autoencoder based End-to-End Communications

Using the autoencoder concept for the communications system was first introduced in
[6] and [5]. In [5], communications system is interpreted as an autoencoder and a new
way of communications system design as an end-to-end reconstruction task which jointly
optimizes the transmitter and receiver components in a single process is presented. They
have shown that it is possible to learn transmitter and receiver implementations for a
given channel model which are optimized for a desired loss function such as minimizing
the BLER, using a DL model. They have implemented the transmitter, channel and the
receiver as one DNN that can be trained as an autoencoder. The transmitter and receiver
are represented as fully connected feedforward NNs and the AWGN channel between them
is represented as a noise layer with the desired noise variance. Thus, the communications
system can be seen as an autoencoder which tries to learn from the message s out of M
possible messages s ∈M = {1, 2, ...,M}, to generate the representation of the transmitted
signal x which is robust against the communication channel. At the receiver, the original
message s is reconstructed as ŝ with the lowest possible error by learning from the received
signal y.
The whole network is trained end-to-end in order to achieve BLER performance.

Their results have shown that the autoencoder based communications system achieves
a comparable or better performance than standard BPSK with Hamming code, thus
indicating that the system has learnt a joint coding and modulation scheme to minimize
the BLER over the AWGN channel. Potential of application of the autoencoder based
approach for channel models and loss functions where optimal solutions are not known
is also noted in their study.
The potential of introducing communication expert knowledge to the autoencoder

model which improves its performance, enables adjusting the DL architecture to
accommodate different communication scenarios, and accelerates the DL model training
phase is also shown in [5] by introducing the concept of radio transformer networks
(RTNs). As noted by [5], RTNs enable carrying out predefined correction algorithms
or “transformers” at the receiver (such as multiplication by a complex-valued number,
convolution with a vector etc.) which can be used to reverse the channel effect occurred
during signal transmission over the imperfect channel. The transformation layer can be
fed with parameters learned by another NN and they can be integrated into the receiver
in order perform symbol detection in a more effective manner by enabling integration
of communication knowledge into the DL system. The authors have shown performance
improvements and fast convergence of the model training than the plain autoencoder
when RTN is used.
In [35], a more recent study carried out inspired by the initial findings of [5], the

concept of autoencoder based end-to-end communications system is extended to an
actual implementation showing the feasibility of over-the-air transmission. They have
modeled, trained and run a complete communications system consisting of NNs using
unsynchronized off-the-shelf software-defined radios (SDRs) and open source DL software

17

libraries. The limitation of short block lengths faced by the autoencoder models has
been overcome by implementing mechanisms for continuous data transmission and
receiver synchronization where a frame synchronization module based on another NN
is implemented at the receiver to cater for the receiver synchronization. A two step
training procedure based on transfer learning is used to overcome training the model
over actual channels by finetuning the receiver part of the autoencoder to capture the
effects of the actual channel including the hardware imperfections which are not initially
included in the model. Comparison of the BLER performance of the “learned” system
with that of a practical baseline have shown a comparable performance close to 1 dB. The
study has thus validated the potential of actual implementation of autoencoder based
communication systems.

Autoencoder for Multi-User

Extension of the autoencoder model to an adversarial network of multiple transmitter and
receiver pairs competing for capacity is also presented in [5]. Simple two-user scenario
is considered where the transmitter-receiver pair of each user attempt to communicate
simultaneously over the same channel which leads to the interference channel where
finding the best signalling scheme is known to be a well known long-standing research
problem. In the two-user scenario, the overall system is trained to achieve conflicting
goals at the receiver side, where each user tries to optimize the system to transmit their
own messages in best possible accuracy. The system is represented as a multiple input-
output NN and both transmitter-receiver pairs are jointly optimized with respect to a
common performance metric, minimizing the weighted sum of both losses denoted by
L = αL1 + (1− α)L2 for some α ∈ [0, 1]. The results show that the autoencoder system
obtains similar of better BLER performance at the same communication rate than the
uncoded quadrature amplitude modulation (QAM) schemes, thus validates the potential
of application of autoencoder model in multi-user cases as well.

Over-the-Air Communications based on Adversarial Networks

In [36], channel autoencoder model is extended to enable end-to-end learning of the
communications system when the channel response is unknown or cannot be easily
modelled in a closed-form analytical expression. Previously, over-the-air channel
autoencoders were implemented in two phases: initial pre-training based on a closed-
form channel model to match the expected deployment scenario and fine-tuning the
receiver part of the model to capture the actual channel effects [35]. In finetuning
stage, optimization of only the receiver side of the network is possible as it is unable
to back propagate through the black-box void of the radio channel. This limitation
has been overcome in [36] by introducing an adversarial approach for channel response
approximation where a learning based approach which does not require an analytic
model for channel impairments is implemented. It is based on generative adversarial
networks where the model tries to jointly optimize the two tasks of: 1) approximating
the channel response of any arbitrary communications system, 2) learning an optimal
encoding and decoding scheme that optimizes a given performance metric such as BLER.
Their results show that such a model can result in an effective communications system
which can achieve robust performance without the need of a close-form channel model
or implementation.

18

3 END-TO-END LEARNING OF UNCODED SYSTEMS

As discussed in Chapter 2, end-to-end learning of a communications system using DL
based autoencoder concept has drawn interest in recent research due to its simplicity,
flexibility and its potential of adapting to complex channel models and practical system
imperfections. In this thesis, we have extended the existing research on autoencoder based
end-to-end learning of communications system in order to investigate its performance in
different system configurations in order to understand the potential of autoencoder based
end-to-end learning of communications systems.
In this chapter, we investigate the performance of autoencoder based end-to-end

communications system in comparison with a conventional communications system when
there is no channel coding applied. Thus, in this chapter we compare the performance of
the autoencoder based system with conventional uncoded BPSK and QPSK performance
over the AWGN channel.
First we explain the autoencoder concept and its application for end-to-end learning

of communication systems as proposed by [5] formulating the system model and the
autoencoder model layout. Then the implementation details are presented in Section 3.2
followed by results obtained for various configurations which is presented in 3.3. We have
used the BER metric to compare the performance of the autoencoder and conventional
implementations.

3.1 End-to-End Learning of a Communications System

3.1.1 System Model

A basic communications system consists of a transmitter, a channel and a receiver as
shown in Figure 3.1. The transmitter wants to communicate a message s out of M
possible messages s ∈ M = {1, 2, ...,M} to the receiver using n uses of the channel. It
transmits a vector x of n complex symbols over the channel to send the message s to
the receiver. Physical implementation at the transmitter imposes power constraints on
x such as an energy constraint x2

2 ≤ n or an average power constraint E[x2
i] ≤ 1∀i.

Transmitter Channel Receiver
� ∈ ℂ

�

� ∈ � � ∈ ℂ
�

∈ �� ̂

Figure 3.1. Structure of a simple communications system.

Each message s can be represented in k = log2(M) number of bits. Thus, the
system operates in R = k/n [bits/channel use] communication rate. The channel causes
distortions to the transmitted symbols and at the receiver upon reception of signal
y ∈ Cn, the receiver produces the estimate ŝ of originally transmitted message s. The
message error rate (MER) Pe can be defined as

Pe = 1
M

∑
s

Pr(ŝ 6= s|s). (1)

19

3.1.2 Autoencoder for End-to-End Learning

The above-mentioned simple communications system was first proposed to be interpreted
as an autoencoder in [5]. As described in Appendix 1.C, an autoencoder is a type of ANN
that tries to reconstruct its input at the output in an unsupervised manner. Thus, the
communications system can be thought as an autoencoder which tries to reconstruct
the transmit message at the receiver with a best possible minimum error. The encoder
function and decoder function of the autoencoder model can be thought as the transmitter
and receiver blocks of the system respectively. An autoencoder architecture which can
be used to end-to-end learning of a communications system is shown in Figure 3.2.

ChannelTransmitter Receiver

M
u

lti
pl

e
 D

e
ns

e
L

a
ye

rs

N
or

m
al

iz
a

tio
n

L
a

ye
r

M
u

lti
pl

e
 D

e
ns

e
L

a
ye

rs

D
e

n
se

 L
a

ye
r

w
ith

 S
o

ft
m

a
x

A
ct

iv
a

tio
n

N
o

is
e

L
a

ye
r

0.01
0.008
0.001

.

.

.

.
0.89
0.02

.

.

.

.

.
0.002
0.03

0
0
0
.
.
.
.
1
0
.
.
.
.
.
0
0

thesis-Page-7.svg https://www.draw.io/#G1Y8pZQEF3xZJkl4KwZlq6pr_kUvlmhhB8

1 of 1 7/30/2019, 10:26 AM

Figure 3.2. A communications system represented as an autoencoder.

There, the transmitter is implemented as a feedforward NN with multiple dense layers
followed by a normalization layer to meet the physical constraints of transmit vector
x. Input s to the NN is an M -dimensional one-hot encoded vector 1s ∈ RM i.e., an
M -dimensional vector, the sth element of which is equal to one and zero otherwise.
Transmitter output is a 2n-dimensional vector which corresponds to n complex symbols
transmitted in n channel uses by considering one half as real part and the other as
the imaginary part. The channel is represented by an additive noise layer with a fixed
variance β = (2REb/N0)−1, where Eb/N0 denotes the energy per bit (Eb) to noise power
spectral density (N0) ratio. The receiver is also implemented as a feedforward NN with
a single or multiple dense layers followed by an output layer with softmax activation
whose output p ∈ (0, 1)M is a probability vector over all possible messages. The decoded
message ŝ corresponds to the element index of p which has the highest probability.
This autoencoder can be trained end-to-end using stochastic gradient descent (SGD)

or any other suitable optimization method on the set of all possible messages s ∈ M
using the categorical cross-entropy loss function.

20

3.2 Autoencoder Implementation for Uncoded Communications Systems

When investigating the potential of autoencoder implementation as an end-to-end
communications system, we have first compared its performance with a simple
transmitter-receiver structure without any channel coding applied. This section presents
the implementation and the results obtained for the autoencoder based transmitter
receiver system in comparison with the standard communications system with different
modulation schemes.
We have implemented the autoencoder architecture proposed by [5] with slight

modifications. The autoencoder models have been trained for different message alphabet
sizes (M) with different communication rates and are compared with baseline BPSK
and QPSK systems accordingly. The autoencoder was implemented as a fully connected
feedforward NN. Different autoencoder architectures with different number of hidden
layers and different activation functions were investigated. Table 3.1 lists out the
activation function types and output dimensions in each layer of the selected optimum
model layout where the autoencoder is constructed by sequentially combining the layers
in the order listed in the table.

Table 3.1. Layout of the autoencoder model

Layer Output dimensions
Input M

Dense-ReLU M
Dense-ReLU M
Dense-Linear 2n
Normalization 2n

Noise 2n
Dense-ReLU M
Dense-ReLU M

Dense-Softmax M

Layers 1-5 compose the transmitter side of the system where the energy constraint
of the transmit signals is guaranteed by the normalization layer at the end. Layers 7-9
compose the receiver side of the system where estimated message can be found from the
output of the softmax layer. Noise layer in-between the transmitter and receiver side of
the system acts as the AWGN channel.
Autoencoder is trained end-to-end over the stochastic channel model using SGD

method with the Adam optimizer with learning rate = 0.001. Following approaches
were taken to select Eb/N0 values for the AWGN channel during training:

• Training at a fixed Eb/N0 value (i.e., 5 dB or 8 dB etc.)

• Picking Eb/N0 values randomly from a predefined Eb/N0 range for each training
epoch

• Starting from a high Eb/N0 value and gradually decreasing it along training epochs
(i.e., starting from 8 dB and reduce by 2 dB after each 10 epochs)

21

Autoencoder model training and testing was implemented in Keras [23] with
TensorFlow [23] as its backend. We have trained the models over 50 epochs using
1,000,000 randomly generated messages with Eb/N0 values for AWGN channel in model
training in three settings mentioned earlier. Testing the trained models were done with
1,000,000 different random messages for 0 dB to 8 dB Eb/N0 range and their BER
performance have been compared with the corresponding baseline systems.
We have tried out several autoencoder configurations which result in BPSK equivalent

systems where communication rate R = 1 bit/channel use and QPSK equivalent systems
where R = 2 bits/channel use. The message alphabet size M and number of channel
uses n have been set accordingly in order to achieve the desired communication rate.
Table 3.2 shows the autoencoder configuration parameters and their baseline systems
which we have compared performance with. Total energy per message is kept same in
both autoencoder system and baseline system in each scenario.

Table 3.2. Different autoencoder configuration parameters and their baseline systems
used for performance comparison

Number of Complex Communication Equivalent
messages (M) channel uses rate (R) modulation

per message (n) scheme
2 1
4 2 1 bit/channel use BPSK
8 3
16 4
4 1
16 2 2 bits/channel use QPSK
64 3
256 4

3.3 Results and Analysis

BER performance

Figure 3.3 shows the BER performance of R = 1 systems compared with theoretical
AWGN BER performance of their baseline BPSK scheme. It seems that all four
autoencoder configurations have equal or better BER performance across almost full
Eb/N0 range except from 0 dB to 2 dB where some autoencoder systems have slightly
higher BER than BPSK system. It is interesting to see that the BER performance
improves when the message alphabet size and number of channel uses per message
increases even though communication rate is the same in all models. That is probably
because the transmitted messages get some sort of temporal encoding since multiple
channel uses are used to transmit a single message. When the number of channel uses
per message increases, more flexibility and degree of freedom is there to formulate the

22

transmit symbols adjusting to the channel distortions and hence transmit symbols are
more tolerant to errors and can be recovered at the receiver with less errors.

0 1 2 3 4 5 6 7 8

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

M=2, n=1 Autoencoder

M=4, n=2 Autoencoder

M=8, n=3 Autoencoder

M=16, n=4 Autoencoder

M=256, n=8 Autoencoder

BPSK

Figure 3.3. BER performance of the R = 1 bit/channel use systems compared with
theoretical AWGN BPSK performance.

However, it should be noted that this kind of a system has a certain delay when
detecting and decoding received symbols at the receiver. That is, for a system with
M = 16 and n = 4, even though the communication rate of 1 bit/channel use gives the
idea that we can decode 1 bit per each transmission at the receiver, we have to wait for
four signalling instances to receive the complete message which consists of four symbols
and then decode it so that it gives the 4 bits long message. While increasing M and n
enables to have a lower BER for a system with a given communication rate, this delay in
detection also needs to be taken into consideration when deciding M and n parameters.
Figure 3.4 shows the BER performance of R = 2 systems compared with theoretical

AWGN BER performance of their baseline QPSK scheme and there also we can observe
that autoencoder has better BER performance than QPSK in higher Eb/N0 values.
However, it is seen that QPSK is better when Eb/N0 is in the low range between 0-5
dB.

23

0 1 2 3 4 5 6 7 8

E
b
/N

0
 (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

M=4, n=1 Autoencoder

M=16, n=2 Autoencoder

M=64, n=3 Autoencoder

M=256, n=4 Autoencoder

QPSK

Figure 3.4. BER performance of the R = 2 bits/channel use systems compared with
theoretical AWGN QPSK performance.

Learned Constellations

The autoencoder can be split to two parts: encoder and decoder, after training the
model in end-to-end manner. Then the encoder part is implemented at the transmitter
side which generates encoded symbols for each message to be sent over the channel and
decoder part is implemented at the receiver which regenerates the messages from the
received symbols. After completion of model training, encoder can generate all possible
output signals for each message in the message alphabet. Figure 3.5 and Figure 3.6 show
learned constellations for different systems we tested. When mapping 2n-dimensional
output from the encoder model to the n-dimensional complex valued vector x, the odd
indexed elements of x are taken as in-phase (I) components and even elements of x are
taken as quadrature (Q) components. In the scatter plots, I and Q values are plotted in
x- and y- axes respectively.
From the scatter plots in Figure 3.5, it can be seen that for the systems with M = 1, 2

and 4 where n = 1, learned constellations are similar to BPSK, QPSK and 16-PSK
constellations respectively, with some arbitrary rotations. For the M = 4, n = 2 system
shown in Figure 3.6, we can observe that the model has learned unique constellation
points for four messages in two symbols in order to minimize the symbol estimation
error at the receiver. It can be seen that in the first symbol, points marked in “∗” have a
maximum amplitude contrast in their in-phase amplitude values having high positive and
negative values, and in the second symbol their signal points are closely located to each

24

other near zero. On the other hand, points marked in “4” have low amplitude values in
the first symbol and high amplitude values in the second symbol. This arrangement has
enabled the system to have a better a tolerance to channel distortions and has resulted
in less symbol estimation errors at the receiver.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure 3.5. Scatter plots of learned constellations of [M = 2, n = 1], [M = 4, n = 1] and
[M = 16, n = 1] systems respectively.

-2 -1 0 1 2

-2

-1

0

1

2
Symbol 1

-2 -1 0 1 2

-2

-1

0

1

2
Symbol 2

Figure 3.6. Scatter plots of learned constellations for M = 4, n = 2 system. 4 messages
are shown using 4 different markers in the plot.

Effect of Training Eb/N0 Values and Hyperparameter Tuning

During the model training it was observed that the deep model architecture and the
model training parameters such as batch size and learning rate are critical factors for
the performance of trained model. We have studied the BER performance of different
model architectures which have single, double and multiple hidden layers in encoder and
decoder parts of the autoencoder model, and it was observed that having multiple hidden
layers improves accuracy than having a single hidden layer. This increased dimension
parameter search space may help avoiding model convergence to sub-optimal minima
during optimization as also pointed out by [5].
As noted in the previous studies also, the Eb/N0 value in which the model training

should be done plays a critical role in determining the performance of the trained model.
We have tried different approaches to select training Eb/N0 values to see the impact of
them for the BER performance of the trained autoencoders. BER performance for those

25

approaches is shown in Figure 3.7. For this, we have used M = 16, n = 4, R = 1 system
configuration which is equivalent to BPSK.

0 1 2 3 4 5 6 7 8

Eb/No(dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

trained at EbN0=4 dB, batch size=2000

trained at EbN0=8 dB, batch size=2000

trained at EbN0=5 dB, batch size=2000

trained at EbN0=5 dB, batch size=100

trained reducing EbN0 from 8dB to 0dB, batch size=2000

trained reducing EbN0 from 8dB to 0dB, batch size=100

trained at random EbN0 in the range 8dB to 0 dB, batch size=2000

trained at random EbN0 in the range 8dB to 0dB, batch size=100

BPSK

Figure 3.7. BER performance for different training Eb/N0 values and different batch
sizes. M = 16, n = 4 (R = 1 bit/channel use) system used.

From the results, we could see that training at a fixed Eb/N0 value of 5 dB gave the
best BER performance. Increasing the training Eb/N0 seemed not that optimum as the
trained model was unable to perform well in low Eb/N0 values. When the training Eb/N0
was selected to be too low, BER performance again degraded as the model seemed unable
to capture the actual underlying patterns between inputs and outputs during training.
Different batch sizes were tried when training the models and it was observed that when

training at a fixed Eb/N0 = 5 dB, a larger batch size of 2000 resulted in improved BER
performance compared to smaller batch sizes, while when training was done decreasing
Eb/N0 values along the training epochs, a smaller batch size around 50 or 100 gave better
BER performance than higher batch sizes. Overall, training at a fixed Eb/N0 = 5 dB with
batch size = 2000 gave the best BER performance among the different configurations we
tried.

26

4 END-TO-END LEARNING OF CODED SYSTEMS

In this chapter, we investigate the performance of autoencoder based end-to-end
communications in comparison with conventional communications systems with channel
coding applied. A conventional communications system consists of different blocks for
channel coding/decoding and modulation/demodulation. Autoencoder based system
does not have such explicit blocks, instead it tries to optimize the system in an end-
to-end manner adhering to the configured system parameters such as input message
size, number of channel uses per message and transmit signal power constraints. We
use these system parameters to implement autoencoder models which are equivalent to
conventional channel coded communications systems and compare their performance over
the AWGN channel.
This chapter consists of two main sections. In Section 4.2, we use the same autoencoder

layout used in Chapter 3 to implement systems equivalent to channel coded systems
with BPSK modulation and compare the performance of autoencoder based systems and
their equivalent conventional implementations. In Section 4.3, we propose a different
autoencoder layout to enable implementing equivalent systems of channel coded systems
with higher order modulations such as QPSK, 16-QAM etc. and compare performance
of autoencoder based systems with their equivalent conventional implementations. We
have mainly used BER metric to compare the performances.

4.1 System Model

As shown in Figure 4.1, in a standard communications system, the information blocks
are divided to blocks for ease of processing through different stages of the system. At
the transmitter, information block of size K bits is fed to channel encoder where a block
of size N is output after channel encoding, and the coding rate is defined as R = K/N .

Channel coding

Rate � =

�

�

Demodulation
(Order)�mod

Channel decoding

Modulation
(Order)�mod

Channel

Input block length
 bits� bits�

 bits�
Output block length

 bits�

Transmitter

Receiver

Figure 4.1. System model of a conventional communications system consisting of coding
and modulation blocks.

27

Then the data block is fed to the modulator of order Mmod where the data bits are
divided into codewords of size kmod = log2(Mmod), and each codeword is mapped to
a point in the signal constellation with given amplitudes for the I,Q signals. At the
receiver, the reverse process of the above happens where incoming symbols are mapped
to codewords and the codewords are grouped serially to produce the block. It is then
fed to the channel decoder where the N bit sized block is converted to K bit sized block
after channel decoding which is the estimation of the transmitted information block.
In Section 4.2 and 4.3, the autoencoder model dimensions are selected in such a way

that the above described network structure is preserved so that baseline system and
autoencoder system can be compared.

4.1.1 Baseline for Comparison

For the channel encoding/decoding blocks in the standard communications system, we
have used convolutional codes (CC) with Viterbi decoder, with hard decision decoding
and soft decision decoding as the primary baseline comparison. CC with constrain length
7 is used when comparing the performance. For baseline systems, BER performance for
different input block lengths with K = {200, 400, 800, 1600, 2000, 4000} bits are evaluated
to understand the effect of different block sizes for the conventional algorithms and to
compare them with the autoencoder performance. Standard modulation schemes such
as BPSK, QPSK, 16-QAM etc. are used in the modulation block. Conventional system
was implemented in MATLAB [37] using the inbuilt functions and algorithms for coding,
modulation and decoding functions and results obtained for the autoencoder models were
compared with the obtained baseline results.

4.2 Autoencoder Implementation for Coded Communications Systems with
BPSK Modulation for AWGN Channel

The same autoencoder model developed in Section 3.2 is used to compare the autoencoder
model BER performance with the conventional coded system BER performance.
Different rates R were achieved by changing ratio of the number of input bits k
and number of n channel uses in the autoencoder models accordingly, so that the
models resulted in equivalent systems to conventional systems with code rates R =
{1/2, 1/3, 1/4}, and with BPSK modulation (Mmod = 2). The AWGN channel noise
variance is given by β = (2REb/N0)−1. This section presents the implementation and
the results obtained for the autoencoder based transmitter-receiver system in comparison
with the standard communications system with different code.

4.2.1 Implementation

Autoencoder model was implemented, trained and tested in Keras with TensorFlow as
backend similar to Section 3.2 and the model training was done in end-to-end over
stochastic channel model using SGD with Adam optimizer with learning rate = 0.001.
Same code rate values were achieved by implementing autoencoder models for different

28

messages sizesM = {2, 4, 16, 256} and setting the number of channel uses (n) accordingly.
Table 4.1 shows the model parameters for different simulations that were performed. For
each model, energy for transmitting a message were kept equal in the autoencoder model
and in the baseline system. Each model was trained over 50 epochs and mini-batch size
2000 using a training set of 1,000,000 randomly generated messages. For model training,
Eb/N0 = 5 dB was used. Testing the trained models were performed with 1,000,000
different messages over 0 dB to 10 dB Eb/N0 range comparing the BER performance
with their corresponding baseline system.

Table 4.1. System parameters for autoencoder models and baseline systems

Autoencoder configurations Baseline system parameters
Message size M k = log2(M) Channel uses n Code rate R Block size K

2 1 2 200
4 2 4 1/2
16 4 8 400
256 8 16
2 1 3 800
4 2 6 1/3
16 4 12 1600
256 8 24
2 1 4 2000
4 2 8 1/4
16 4 16 4000
256 8 32

4.2.2 Results and Analysis

BER Performance

Figures 4.2 - 4.4 show simulated BER performances of different autoencoder models with
R = {1/2, 1/3, 1/4} and their baseline systems with convolutional coding with respective
code rates and BPSK modulation scheme. Selected block length for baseline system is
K = 800 and the constraint length of the convolutional encoder/decoder is taken as 7.
It can be observed that the BER performance of the autoencoder improves when

message size is increasing. For a given code rate, M = 2 model has almost same
performance with uncoded BPSK whileM = 256 model has resulted in a much improved
BER performance closer to the baseline. This improvement is achieved since the model
has more degrees of freedom and more flexibility for a better end-to-end optimization
when the message size is high.

29

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

R=1/2, soft decoding, BPSK

R=1/2, hard decoding, BPSK

Autoencoder: M=2, R=1/2

Autoencoder: M=4, R=1/2

Autoencoder: M=16, R=1/2

Autoencoder: M=256, R=1/2

BPSK uncoded

Figure 4.2. R = 1/2 system BER performance comparison of different autoencoder
models with M = {2, 4, 16, 256}.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

R=1/3, soft decoding, BPSK

R=1/3, hard decoding, BPSK

Autoencoder: M=2, R=1/3

Autoencoder: M=4, R=1/3

Autoencoder: M=16, R=1/3

Autoencoder: M=256, R=1/3

BPSK uncoded

Figure 4.3. R = 1/3 system BER performance comparison of different autoencoder
models with M = {2, 4, 16, 256}.

30

When considering M = 2 and rate R = 1/2 system, number of bits per message
is k = log2(2) = 1 and, n = 2 number of channel uses are there to transmit the 1
bit message. For this setup, the best possible signal formulation in each channel use
would be to maximize the distance between two message constellation points which is
similar to BPSK modulation. Since the autoencoder model dimensions are determined
by the parameters M and R, low M values do not result in much coding gain as the
non-linearities added by the model during the learning process are limited by the layer
dimensions. Increasing the message size increases the layer dimensions and, for a same
rate R, the model has more degrees of freedom in terms of learnable parameters which can
be optimized to minimize the end-to-end message transmission error. For example, for
M = 256, R = 1/2 system, 16 channel uses are there to transmit 256 different messages
which has more flexibility than the earlier scenario where 2 messages are transmitted in
2 channel uses. Thus, when M = 256, R = 1/2, the model has been able to learn the
transmit symbols with a channel coding gain as expected, which can be observed from
the BER plots. Table 4.2 compares the number of learnable parameters in each layer
in above two scenarios which helps us understanding how the model learning capacity
increases with increasing message size.

Table 4.2. Learnable parameters R = 1/2 autoencoder models

Layer Number of parameters
(Output dimensions) (M, n) (M=2, n=2) (M=256, n=16)

Input (M) 0 0 0
Dense-ReLU (M) (M+1)*M 6 65792
Dense-ReLU (M) (M+1)*M 6 65792
Dense-Linear (2n) (M+1)*2n 12 8224
Normalization (2n) 0 0 0

Noise (2n) 0 0 0
Dense-ReLU (M) (2n+1)*M 10 8448
Dense-ReLU (M) (M+1)*M 6 65792

Dense-Softmax (M) (M+1)*M 6 65792

Even though the autoencoder BER performance is always worse than soft decision CC,
it can be observed that autoencoder has a comparable performance to the hard decision
CC, specially when the code rate is high. For R = 1/2, autoencoder with M = 256 is
better than hard decision CC in low Eb/N0 range from 0 dB to 5 dB and it is only around
1 dB worse than the hard decision CC at a BER of 10−5.

31

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

R=1/4, soft decoding, BPSK

R=1/4, hard decoding, BPSK

Autoencoder: M=2, R=1/4

Autoencoder: M=4, R=1/4

Autoencoder: M=16, R=1/4

Autoencoder: M=256, R=1/4

BPSK uncoded

Figure 4.4. R = 1/4 system BER performance comparison of different autoencoder
models with M = {2, 4, 16, 256}.

Figure 4.5 shows the message error rate performances of different autoencoder models
with R = {1/2, 1/3, 1/4} and M = 256. We can observe that for the same message size,
three models with different rates have resulted in almost same MER, and the models
have an acceptable MER performance with a 10−5 error at 7 dB.

0 1 2 3 4 5 6 7 8

E
b
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
e

s
s
a

g
e

 E
rr

o
r

R
a

te
 (

M
E

R
)

Autoencoder: M=256, R=1/2

Autoencoder: M=256, R=1/3

Autoencoder: M=256, R=1/4

Figure 4.5. MER performance of different autoencoder models with R = {1/2, 1/3, 1/4}
and M = 256.

32

Figures 4.6 and 4.7 compare the autoencoder BER performance for R = {1/2, 1/4}
when different block lengths are used in the baseline system with hard decision CC. It
can be observed that for R = 1/2 system, baseline BER performance is better for mid-
range block lengths where K is 400 - 800 bits. The performance degrades when block
size is very low as 200 bits or high as 2000 - 4000 bits, reducing the gap between the
autoencoder and baseline BER performance. For R = 1/4 hard decision CC, there is not
much effect on block size for the BER. On the other hand, autoencoder performance is
independent of block length K as for a given model with message size M , its input size
is k = log2(M) bits where the K bit long block is divided to k bit long sub-blocks and
fed to the system.
Thus, from the results we obtained, autoencoder models would be more effective to be

used in high or low input block length scenarios for systems with higher code rates where
they have comparable performance to the baseline.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

K=200, R=1/2 hard

K=400, R=1/2 hard

K=800, R=1/2 hard

K=1600, R=1/2 hard

K=2000, R=1/2 hard

K=4000, R=1/2 hard

Autoencoder: M=256, R=1/2

BPSK uncoded

Figure 4.6. R = 1/2 system BER performance comparison for different block lengths:
K = {200, 400, 800, 1600, 2000, 4000}.

33

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

K=200, R=1/4 hard

K=400, R=1/4 hard

K=800, R=1/4 hard

K=1600, R=1/4 hard

K=2000, R=1/4 hard

K=4000, R=1/4 hard

Autoencoder: M=256, R=1/4

BPSK uncoded

Figure 4.7. R = 1/4 system BER performance comparison for different block lengths:
K = {200, 400, 800, 1600, 2000, 4000}

Learned Constellations

Figures 4.8 and 4.9 show the learnt constellations for different systems we tested for a
same code rate of R = 1/2. Same as in Chapter 3, when mapping 2n-dimensional output
from the encoder model to the n-dimensional complex valued vector x, the odd indexed
elements and even indexed elements of x are taken as I and Q components respectively. In
the scatter plots, I and Q values are plotted in x- and y- axes respectively. M = 4, R = 1/2
system uses 4 symbols to transmit a single message and Figure 4.8 shows the signal points
in all 4 symbols. It can be observed that the model has learned unique constellation points
for 4 messages in four symbols in order to minimize the symbol estimation error at the
receiver. M = 16, R = 1/2 system uses 8 symbols to transmit a single message and the
learned signal points for each of the 8 symbols are shown in Figure 4.9.
From the constellation diagrams we can observe that the autoencoder system does not

have a fixed constellation as in equivalent BPSK modulation scheme. In a conventional
communications system, output from the channel coding block is binary valued and each
bit in the coded block is mapped to the BPSK constellation accordingly. Thus, the
signal transmission in each channel use is independent of others and each signal carries
independent bit information. In contrast, in the autoencoder, the transmit signals are
temporally correlated to each other as n signals in n channel uses transmit the message
s a whole. In the autoencoder implementation, the model uses the available number of
channel uses (or number of symbols) per transmit message and learns the optimum I, Q
signal values for each channel use to transmit the message with a minimum reconstruction
error at the receiver. This approach results in learning a joint coding and modulation
scheme utilizing the available channel uses to transmit a given message depending on the

34

system parameters (number of input bits per message and number of channel uses per
message) in order to achieve the maximum possible tolerance to the distortions caused
by the noise added in the channel. Thus, even for a same rate R (R = 1/2 in this case),
changing the message size results in different constellations as the model dimensions and
the learned parameters are different for different message sizes.

-2 -1 0 1 2

-2

-1

0

1

2
Symbol 1

-2 -1 0 1 2

-2

-1

0

1

2
Symbol 2

-2 -1 0 1 2

-2

-1

0

1

2
Symbol 3

-2 -1 0 1 2

-2

-1

0

1

2
Symbol 4

Figure 4.8. Scatter plots of learned constellations forM = 4, R = 1/2 system. 4 messages
are shown using 4 different markers in the plot.

-2 0 2

-2

-1

0

1

2
Symbol 1

-2 0 2

-2

-1

0

1

2
Symbol 2

-2 0 2

-2

-1

0

1

2
Symbol 3

-2 0 2

-2

-1

0

1

2
Symbol 4

-2 0 2

-2

-1

0

1

2
Symbol 5

-2 0 2

-2

-1

0

1

2
Symbol 6

-2 0 2

-2

-1

0

1

2
Symbol 7

-2 0 2

-2

-1

0

1

2
Symbol 8

Figure 4.9. Scatter plots of learned constellations for M = 16, R = 1/2 system. 3
different messages are shown using 3 different markers in the plot.

35

4.3 Autoencoder Implementation for Coded Communications Systems with
Higher Order Modulations

A new autoencoder architecture capable of implementing a channel coded
communications system configuration with different modulation schemes is introduced
in this section and its performance in comparison to conventional system is presented.
For that, we have improved the original autoencoder layout proposed by [5], changing
the dimensions of the layers of the model in order to absorb different parameter settings
in a conventional communications system.

4.3.1 Implementation

The general setup of a typical conventional communications system described in Section
4.1 was incorporated into an autoencoder layout as depicted in Table 4.3. The internal
layers of the proposed autoencoder architecture are designed with parameters relating
to the channel encoder, modulator functions at the transmitter side and demodulator,
channel decoder functions at the receiver side.
In contrast to the original autoencoder architecture where input was anM -dimensional

one-hot encoded vector to indicate a message s out of M possible messages, in this
autoencoder the input message s is given as a binary vector of k bits where k = log2(M).
Let ncoded = k/R where ncoded is the number of coded bits per each message of k bits.
Then, for a given modulation order Mmod with codeword size of kmod = log2(Mmod),
n = ncoded/kmod symbols are required to transmit the encoded ncoded bits. The dimensions
of each layer of the new autoencoder architecture are determined using these defined
parameters. When comparing with a conventional system, the N bit information block
is to be divided into k bit long messages when feeding into the autoencoder. The output
of the decoder is also k bits long, which gets mapped to the estimated message ŝ. Figure
4.10 illustrates the layout of the autoencoder model. Layer types, activation functions
and dimensions of each layer in the model are listed in Table 4.3.

Table 4.3. Layout of the autoencoder model equivalent to coded systems with higher
order modulations

Layer Output dimensions
Input k

Dense-ReLU ncoded

Dense-ReLU 2n
Dense-ReLU 2n
Dense-Linear 2n
Normalization 2n

Noise 2n
Dense-ReLU 2n
Dense-Linear ncoded

Dense-Sigmoid k

36

Channel

N
o

is
e

 L
a

ye
r

Comparator

if
else

for

0
1
1
0
1
0
.
.
1
0
.
.
.
0
1
0
0

Receiver

O
ut

p
u

t L
ay

e
r

w
ith

 S
ig

m
oi

d
 A

ct
iv

at
io

n
 (

)

D
e

ns
e

La
ye

r
(

)

D
e

n
se

 L
a

ye
r

(
)

0.0000011
0.99
1.00

0.00008
0.9995

0.000023
.
.

1.00
0.0000061

.

.

.
0.0001
0.9998

0.000012
0.000045

0
1
1
0
1
0
.
.
1
0
.
.
.
0
1
0
0

Transmitter
D

e
ns

e
La

ye
rs

 (
)

N
o

rm
al

iz
at

io
n

 L
ay

e
r

D
e

ns
e

La
ye

r
(

)

In
pu

t L
a

ye
r

(
)

Input

Output

(bits)

(bits)

thesis-Page-9.svg https://www.draw.io/#G1Mmq782Rk0qBDhdRcDJm_NwOEL8gS6z9R

1 of 2 7/17/2019, 11:50 PM

Figure 4.10. Autoencoder model implementation equivalent to coded systems with higher
order modulations.

Since the input to the model is a binary vector and we expect a reconstruction of the
input vector at the output of the autoencoder, it is essential to have an output layer
which gives values 0s and 1s as output. Thus, we have implemented a fully connected
layer with the Sigmoid activation function at the output layer (which has outputs in
the range (0, 1)) along with the binary cross-entropy loss function for model training
which results in each of the k bits of the output vector to be closer to either 1 or 0 after
end-to-end optimization of the model to minimize the loss. After the model training,
the autoencoder output can be applied to a simple comparator module to produce the
binary outputs as shown in Figure 4.10.
Autoencoder is trained end-to-end over the stochastic channel model using SGD

method with the Adam optimizer with learning rate = 0.001. Same as in the earlier
simulations, model training and testing was implemented in Keras with TensorFlow.
Different models were trained for different message sizes (M = 16, 64, 256, 4096 etc.),
code rates and modulation schemes such as QPSK, 16-QAM etc. The AWGN channel
noise variance is given by β = (2RkmodEb/N0)−1 and for model training, the channel is
represented by an additive noise layer with fixed variance β. Each model was trained
over 100 epochs and with batch size = 1000 with a training set of 1,000,000 randomly
generated messages. Eb/N0 = 5 dB was used for model training. Testing the trained
models were performed with 1,000,000 different random messages over 0 dB to 10 dB
Eb/N0 range and their BER performances have been compared with the corresponding

37

baseline systems. Table 4.4 below summarises the simulation parameters on which we
have tested the models.

Table 4.4. System parameters for autoencoder models and baseline systems

Autoencoder configurations Baseline system parameters
M k = log2(M) ncoded n R Mmod

16 4 8 4 1/2 4
64 6 12 6 (QPSK)
256 8 16 8
256 8 16 4 1/2 16
4096 12 24 6 (16-QAM)

4.3.2 Effect of Model Layout and Hyperparameter Tuning for the
Performance

Determining the autoencoder architecture including the number of layers, layer
dimensions, activation functions for the layers and the cost function plays a critical role
in achieving a better performance. The autoencoder structure proposed in Section 4.3.1
was selected considering all those aspects. It was observed from the results in Chapter
3 that having multiple hidden layers improves accuracy than having a single hidden
layer, due to the increased dimension parameter search space which results in a better
optimization avoiding the model convergence to sub-optimal minima. Based on that
observation, and also considering the conventional communications system parameters
at each block of the communications system, the above mentioned autoencoder model
was selected to optimally incorporate those system parameters into a multi-layered
autoencoder architecture having the layer dimensions accordingly.
In terms of determining suitable activation functions for the layers, Linear and Sigmoid

activation functions were selected for the last layer of the encoder block and the last
layer of the decoder block respectively, so that they are equivalent to the conventional
communication system settings as explained in Section 4.3.1. For the hidden layers,
different types of activation functions such as Linear and ReLU were tried out during
preliminary simulations for model selection, and the activation functions which resulted
in better BER performance are listed in Table 4.3 for each layer of the autoencoder.
Furthermore, during the preliminary simulations, the autoencoder performance when

using binary cross-entropy loss function and mean square error loss function were both
evaluated as they were suitable candidates for the proposed model structure and the
model input-output configuration. For a given autoencoder configuration, binary cross-
entropy and mean squared error (MSE) loss functions resulted in different model training
loss and model accuracy values as expected. The reason for this is that they have different
cost surfaces which result in different optimizations during the model training process.
The initial results showed that binary cross-entropy loss function resulted in better model
training accuracy and a better BER performance for the testing set. Therefore, it was
selected as the loss function for the proposed autoencoder model.

38

Even though an extensive search for determining optimum batch size and number
of epochs for model training was not done, batch size = 1000 and epochs = 100 were
observed to give better results after performing some initial simulations with different
configuration settings and hence those values were used when training the models. As
results from Chapter 3 showed a better BER performance when model training was done
at Eb/N0 = 5 dB, same Eb/N0 value was used for training the new autoencoder models
as well.

4.3.3 Results and Analysis

BER Performance

Figure 4.11 shows BER performance comparison between the autoencoder and baseline
system for R = 1/2 with 16-QAM modulation. Selected block length for baseline system
is K = 800 and the constraint length of the convolutional encoder/decoder is taken as 7.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

R=1/2 hard decoding CC, 16-QAM

R=1/2 soft decoding CC, 16-QAM

Autoencoder: M=256, R=1/2, Mmod16

16-QAM uncoded

Figure 4.11. BER performance for baseline and autoencoder for R = 1/2, 16-QAM
system.

Autoencoder BER performance is better than baseline convolutional coded system with
hard decision decoding over the full Eb/N0 considered. However, it can be noticed that
the difference between BER decreases along with increasing Eb/N0, having almost equal
performance at Eb/N0 = 10 dB. Baseline CC implementation with soft decision decoding
is better than autoencoder for higher Eb/N0 values. However, it can be observed that
while the coded soft decision CC BER performance is worse than uncoded 16-QAM at

39

lower Eb/N0 values, autoencoder has a better BER performance than soft decision CC
and uncoded 16-QAM in 0 dB to 4 dB Eb/N0 range.
BLER comparison between the autoencoder and baseline systems is shown in Figure

4.12. It can be observed that autoencoder BLER performance is worse compared to
the baseline. This can be explained since the optimization criteria for the autoencoder
was not the BLER, but the message error rate (MER) or the BER of each message
transmitted. Figure 4.13 shows the MER performance along the considered Eb/N0 range
and we can observe that it has an acceptable MER, having less than 10−4 error at 10 dB.
The autoencoder based system does not require larger input block sizes to operate as

the input size to the model is k bits at a time. Thus, it can achieve an acceptable BER
and MER performances as shown, with only k bits (k = 8 in this case) which is a very
low block size compared to conventional systems which typically operate with 100s or
1000s bits long block sizes. Such a system would be advantageous for low latency and
low throughput communications as short message transmission can be achieved with an
acceptable error performance, and with less processing complexity and processing delay
than in the conventional systems.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10-3

10-2

10-1

100

B
lo

c
k
 E

rr
o

r
R

a
te

 (
B

E
R

)

R=1/2 hard, 16-QAM

R=1/2 soft, 16-QAM

Autoencoder: M=256, R=1/2, Mmod=16

Figure 4.12. BLER performance for baseline and autoencoder for R = 1/2, 16-QAM
system.

40

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10-5

10-4

10-3

10-2

10-1

100

M
e
s
s
a
g
e
 E

rr
o
r

R
a
te

 (
M

E
R

)

Autoencoder: M=256, R=1/2, Mmod=16

Figure 4.13. MER performance for M = 256, R = 1/2, Mmod = 16 autoencoder model.

Figures 4.14 and 4.15 compare the hard decision CC and soft decision CC performances
for different block lengths respectively along with the autoencoder performance.
Autoencoder performance is independent of block length K as its input size is k bits
where K bit long block is divided to k bit sub-blocks and fed to the system. Autoencoder
is better than hard decision CC over the full Eb/N0 range for all the block sizes checked
and is around 3 dB worse than soft decision CC at a BER of 10−5.

41

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

K=200, R=1/2 hard

K=400, R=1/2 hard

K=800, R=1/2 hard

K=1600, R=1/2 hard

K=2000, R=1/2 hard

K=4000, R=1/2 hard

Autoencoder: M=256, R=1/2, Mmod=16

16-QAM uncoded

Figure 4.14. BER performance for baseline and autoencoder for R = 1/2, 16-QAM
system with different block lengths: K = {200, 400, 800, 1600, 2000, 4000}.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

K=200, R=1/2 soft

K=400, R=1/2 soft

K=800, R=1/2 soft

K=1600, R=1/2 soft

K=2000, R=1/2 soft

K=4000, R=1/2 soft

Autoencoder: M=256, R=1/2, Mmod16

16-QAM uncoded

Figure 4.15. BER performance for baseline and autoencoder for R = 1/2, 16-QAM
system with different block lengths: K = {200, 400, 800, 1600, 2000, 4000}.

42

Different autoencoder models were trained in order to investigate the performance of
equivalent DL based systems to the conventional R = 1/2 QPSK system and it was
observed that most of the models didn’t provide the expected BER improvement. Figure
4.16 shows the achieved BER performances of several different autoencoder models with
M = {16, 64, 256} trained at Eb/N0 = 5 dB. Despite having an accuracy over 99% for the
trained models, testing them over the full Eb/N0 range resulted in a BER performance
similar to the uncoded QPSK, which is a somewhat disappointing observation since the
autoencoder is unable to achieve the coding gain.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

R=1/2 hard, QPSK

R=1/2 soft, QPSK

Autoencoder: M=256, R=1/2, Mmod=4

Autoencoder: M=64, R=1/2, Mmod=4

Autoencoder: M=16, R=1/2, Mmod=4

QPSK uncoded

Figure 4.16. BER performance for baseline and autoencoder for R = 1/2, QPSK system.
Autoencoder models are implemented with different message sizes M = {16, 64, 256}.

We tried training theM = 256, R = 1/2,Mmod = 4 model at different Eb/N0 values and
Figure 4.17 illustrates the BER performances of the models trained at Eb/N0 = {0, 5, 8}
dB. It was observed that the model trained at Eb/N0 = 2 dB is having much improved
BER performance at low Eb/N0 range. It is around 1.5 dB better than hard decision CC
in the 0 to 4 dB Eb/N0 range and it is only about 1 dB worse than soft decision CC in
the said Eb/N0 range. It is interesting to see that training the model at a very low Eb/N0
value has resulted in learning optimum an transmission mechanism to overcome the high
distortions caused by the channel in low Eb/N0 range. That is, the learnt signalling
strategy is more robust for low Eb/N0 range. However, it can be seen that the learned
transmission mechanism is not suitable for higher Eb/N0 values as the performance is
worse even than the uncoded case. This result shows the possibility of training a deep
learning model to be optimum for a specific Eb/N0 range. Thus, instead of having a single
model with a fixed transmitter-receiver mechanism to suit the full Eb/N0 range, it might
be possible to develop multiple models with different transmitter-receiver arrangements

43

to suit different operating environments according to the Eb/N0. Having the flexibility
to design such multiple systems which operate under the same system parameters (i.e.
same R and same modulation orderMmod) can be noted as an advantage of deep learning
based communications systems since conventional systems generally have fixed setups.

0 1 2 3 4 5 6 7 8 9 10

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

R=1/2 hard, QPSK

R=1/2 soft, QPSK

Autoencoder: R=1/2, Mmod=4, EbNo=2dB

Autoencoder: R=1/2, Mmod=4, EbNo=5dB

Autoencoder: R=1/2, Mmod=4, EbNo=8dB

QPSK uncoded

Figure 4.17. BER performance for baseline and autoencoder models for R = 1/2, QPSK
system.

4.3.4 Processing Complexity

Processing complexity is often considered as an important parameter to determine
suitable algorithms in each of the processing blocks in a conventional communications
system since it is directly associated with several factors such as communications
latency, power and resource requirement for implementation etc. Generally, channel
coding algorithms have higher algorithmic complexity resulting in higher computational
complexities associated with both encoding and decoding blocks [38]. For example,
in polar codes, there can be additional complexities in the encoding and puncturing
schemes. For decoding algorithms which involve iterative decoding, decoder has a higher
complexity compared to the encoder. In this section we do a rough comparison of the
autoencoder processing complexity with the channel coding algorithms. However, it
should be noted that this is not an exact comparison since autoencoder complexity is
analysed as an end-to-end system consisting of transmitter and receiver components
where as in the conventional system we mainly discuss decoder complexity, but a
conventional system has other blocks such as modulation/demodulation, signal detection
which possess a considerable processing overhead as well.

44

In [38], the authors have compared the decoder complexities of different candidate
channel coding algorithms for URLLC, and the Viterbi algorithm which is used in the
decoder of the convolutional codes have a computational complexity of 4.R.N.2m where
R,N and m denote code rate, code block length and memory order respectively.
For a neural network, if there are M neurons in a hidden layer and N inputs to

that layer, there are N.M multiplications and M separate additions over N + 1 terms,
and M applications of the transfer function f(). Thus, the number of mathematical
operations depend on the number of layers in the neural network and the dimensions
of each layer. Table 4.5 below summarises the number of additions, multiplications and
transfer function applications in each layer in the autoencoder model we implemented in
Section 4.3. However, in implementation, neural networks are generally implemented with
parallel processing architectures as each neuron in a layer only depends on the inputs from
the previous layer, the learned parameters (or weights), and the application of the transfer
function. Thus, when considering the parallel processing implementation, processing
complexity in each layer for a single parallel path would be just N multiplications and
N + 1 additions and a single application of the transfer function. Viterbi decoder and
autoencoder has the same range of processing complexity without considering the parallel
implementation of the autoencoder. Therefore, when considering a parallel processing
implementation, the autoencoder has a very low processing complexity compared to
conventional system given that autoencoder caters for end-to-end processing including
both transmitter and receiver side processing. Thus, the autoencoder based systems
can be implemented with very low processing complexity and hence lower processing
delays than the conventional systems can be achieved, which is another advantage when
considering implementation of low latency systems.

Table 4.5. Number of mathematical operations in the autoencoder model

Layer Output dimensions Multiplications Additions Transfer function
Input k - - -

Dense-ReLU ncoded k.ncoded ncoded(k + 1) ncoded

Dense-ReLU 2n ncoded.2n 2n(ncoded + 1) 2n
Dense-ReLU 2n 2n.2n 2n(2n+ 1) 2n
Dense-Linear 2n 2n.2n 2n(2n+ 1) 2n

Noise 2n - - -
Dense-ReLU 2n 2n.2n 2n(2n+ 1) 2n
Dense-Linear ncoded 2n.ncoded ncoded(2n+ 1) ncoded

Dense-Sigmoid k ncoded.k k(ncoded + 1) k

45

4.3.5 Comparison with 5G Channel Coding and Modulation Schemes

The latest release (release 15) of the cellular standard in the 3rd Generation Partnership
Project (3GPP) has announced the specifications for the 5G new radio (NR) air interface
[39]. Compared to fourth generation (4G) long-term evolution (LTE), in 5G NR, two
new channel coding techniques have been adopted, for data channels and control channels
respectively. Specifically, low density parity check (LDPC) codes are to replace turbo
codes used in 4G LTE for data channels and polar codes are to replace tail biting
convolutional codes (TBCCs) for control channels [39]. When considering the modulation
schemes, BPSK, QPSK, 16-QAM, 64-QAM and 256-QAM are adopted for 5G NR [40].
Performance of different channel coding schemes for 5G with modulation schemes such

as QPSK and 16-QAM have been investigated in [41] and [42]. When comparing their
results with the results we have obtained, we can observe that the LDPC and polar codes
have a better BER and BLER performance than the autoencoder based systems which
we have implemented, and the autoencoder models need improvements if they are to
be considered to be suitable alternatives to the proposed 5G implementations. When
selecting physical layer implementations, processing complexity is also to be considered
in order to understand advantages and disadvantages of autoencoder based systems and
conventional systems.

46

5 CONCLUSION AND FUTURE WORK

5.1 Summary and Conclusion

Newly initiated 5G communications technology is expected to cater for the increasing
communications and networking requirements of the modern society, performing
significantly better than the existing 4G systems in terms of data rate, capacity, reliability,
latency, energy consumption etc. Despite being very rich of expert knowledge based
on statistics, information theory and mathematical modelling, existing conventional
communications concepts and theories exhibit several inherent limitations in fulfilling
the large data and ultra high rate communication requirements in complex scenarios.
Providing fast and effective signal processing in low latency systems with reliable data
transmission, having reliable data transmission in complex channels, and limited, sub-
optimal performance due to the fixed block structure of the existing communications
systems are some of the challenges faced. In recent years, there has been an increasing
interest in applying DL concepts for the physical layer due to their flexibility, learning
capability, low processing complexity and low energy consumption etc.
DL based end-to-end learning of communications systems is an emerging concept which

tries to optimize both transmitter and receiver blocks in a single process in an end-
to-end manner, eliminating the need for artificial block structure of the conventional
communications systems. The main focus of this thesis was to investigate the performance
of such DL based end-to-end communications models for single user communications
scenario for the AWGN channel. Autoencoder based DL models were implemented as
an equivalent to conventional communications system model and BER performances of
both were compared in different system settings.
Comparing the BER performance of the uncoded communications systems with

equivalent autoencoder models showed that autoencoder based systems have a
comparable BER performance to the conventional uncoded BPSK or QPSK systems.
Autoencoder model trained at Eb/N0 = 5 dB was capable of giving comparable BER
performance over the full 0-10 dB Eb/N0 range considered, thus showing the learning
capacity and capability of DL based approaches. From the simulations, BPSK equivalent
autoencoder (i.e. R = 1 bit/channel use) was observed to have an equal or better BER
performance over the 0-10 dB Eb/N0 range while it is around 2dB better than BPSK
for a BER of 10−5. QPSK equivalent autoencoder (i.e. R = 2 bits/channel use) is
better than QPSK in high Eb/N0 range while QPSK was observed to be better in 0-5 dB
Eb/N0 range. In contrast to the conventional BPSK or QPSK communications, in the
autoencoder system, transmitted signals are correlated in time, since one single message
is transmitted using the allocated number of channel uses, using the optimum learnt
transmission strategy. Improved BER suggests that autoencoder has learnt some joint
coding and modulation utilizing the given resources which has resulted in a coding gain.
BER performance comparison of the coded communications systems with equivalent

autoencoder models were then performed considering two scenarios: for BPSK
communications and for higher order modulations. Same autoencoder model used for
uncoded systems was used to compare the coded BPSK performance with relevant
configurations. CC with both hard decision decoding and soft decision decoding using
Viterbi algorithm was used as channel coding in the baseline system. BER performance
was evaluated for systems with different code rates R = {1/2, 1/3, 1/4}. Autoencoder

47

models were observed to have comparable performance to hard decision decoding with
BPSK with less than 1 dB difference. Autoencoder models were implemented with
different message sizes and it was observed increasing the message size resulted in better
BER performance, due to the increased degrees of freedom and flexibility for learning
introduced to the model by increased message size. In contrast to the conventional system
with separate coding and modulation blocks, autoencoder system learns a joint coding
and modulation scheme which fits best to the channel. Here also, the learning capacity
of the model is to be admired, as a single model trained at Eb/N0 = 5 dB resulted in
learning optimum transmission mechanisms to suit the full 0-10 dB Eb/N0 range.
To design an equivalent system to conventional coded systems with higher order

modulation schemes, a new autoencoder model was proposed which incorporated
the conventional system parameters such as coding rate and modulation order etc.
Simulations showed that the proposed autoencoder model is capable of achieving
comparable performance to the baseline system in several instances. For R = 1/2 and
16-QAM scenario, equivalent autoencoder model resulted in better BER than the hard
decision CC over the full 0-10 dB Eb/N0 range while it was better than the soft decision
CC in low Eb/N0 range between 0-4 dB. For R = 1/2 and QPSK scenario, training the
model at 5 dB did not give the expected performance. However, it was observed that
training the model at 2 dB resulted in a model achieving BER performance even better
than soft decision CC for low Eb/N0 range between 0-4 dB. It shows the possibility of
implementing different flexible transmission strategies based on the operating conditions
(channel condition, Eb/N0 etc.) without having a single fixed model. This flexibility
of the DL based approach which can be achieved by exploiting its learning capability
can be stated as an advantage over the existing conventional systems which use a fixed
communication mechanism in all instances.
Processing complexity of the autoencoder based systems were also analysed in

comparison to decoder complexity of the conventional systems which is considered a
computationally intensive task among the other blocks. Parallel architecture of the
DL models enable fast processing of information compared to the conventional systems.
Also, having short block length transmission with acceptable error performance shows
the potential of having DL based systems specially for low latency and low throughput
applications.
Conclusively, comparable BER performance, lower processing complexity and low

latency processing due to inherent parallel processing architecture, flexible structure
and higher learning capacity are identified as advantages of the autoencoder based
systems which show their potential and feasibility as an alternative to conventional
communications systems.

48

5.2 Future Work

AWGN channel performance is compared under the current scope of the thesis and
the autoencoder model should be extended for other fading channels to analyse its
performance in fading scenarios as well. In this study we have assumed an ideal
communications system with perfect timing and both carrier-phase and frequency
synchronization. Generally, conventional systems are well proven to have acceptable
performance in ideal system settings (with perfect timing, carrier-phase and frequency
synchronization etc.), since the underlying mathematical models can be well explained in
such systems compared to practical non-ideal system settings. Being able to implement
DL based systems having comparable performance with respect to conventional
approaches in such perfect settings show the potential of DL, whereas the real strength
of DL could be exploited more in a non-ideal scenario, since DL is generally known to
be well performing in situations where it is difficult to capture the underlying structures
and patterns of input-output data using exact mathematical models. Thus, it is expected
that DL based approaches will give better results when considering non-linear, non-
ideal channel conditions and practical systems with imperfections such as timing offsets,
carrier-phase and frequency synchronization issues. Therefore, further research can be
carried out evaluating the performance of DL based systems in such scenarios.
Also it would be important to investigate how the autoencoder model can be extended

to implement DL based systems equivalent to conventional coded systems with large block
sizes and very high level modulations with comparable BLER and BER performances.
In the models which we have studied, block size is not taken into consideration as
the autoencoder model is formulated based on short length messages. We can find
mechanisms to incorporate the block structure into the autoencoder model. We can
also consider comparing the performance of the autoencoder based systems with 5G
channel coding implementations like polar and LDPC codes.

49

6 REFERENCES

[1] Ericsson (2017) 5G systems - Enabling the transformation of industry and society.
White Paper UEN 284 23-3251 rev B, Ericsson.

[2] 3GPP (2018) Study on scenarios and requirements for next generation access
technologies. TR 38.913, v15.0.0, 3rd Generation Partnership Project (3GPP).

[3] Rappaport T.S. (2002) Wireless Communications: Principles and Practice. USA:
Prentice-Hall; 2nd edition.

[4] Proakis J. & Salehi M. (2007) Digital Communications. McGraw-Hill Education;
5th edition.

[5] O’Shea T. & Hoydis J. (2017) An introduction to deep learning for the physical layer.
IEEE Transactions on Cognitive Communications and Networking 3, pp. 563–575.

[6] O’Shea T.J., Karra K. & Clancy T.C. (2016) Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention. In: 2016
IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), pp. 223–228.

[7] Fehske A., Gaeddert J. & Reed J.H. (2005) A new approach to signal classification
using spectral correlation and neural networks. In: First IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005.
DySPAN 2005., pp. 144–150.

[8] Nandi A. & Azzouz E. (1997) Modulation recognition using artificial neural
networks. Signal Processing 56, pp. 165 – 175.

[9] Bruck J. & Blaum M. (1989) Neural networks, error-correcting codes, and
polynomials over the binary n-cube. IEEE Transactions on Information Theory 35,
pp. 976–987.

[10] Ortuno I., Ortuno M. & Delgado J.A. (1992) Error correcting neural networks for
channels with gaussian noise. In: [Proceedings 1992] IJCNN International Joint
Conference on Neural Networks, vol. 4, vol. 4, pp. 295–300 vol.4.

[11] Ibukahla M., Sombria J., Castanie F. & Bershad N.J. (1997) Neural networks for
modeling nonlinear memoryless communication channels. IEEE Transactions on
Communications 45, pp. 768–771.

[12] Wen C., Jin S., Wong K., Chen J. & Ting P. (2015) Channel estimation for massive
mimo using gaussian-mixture bayesian learning. IEEE Transactions on Wireless
Communications 14, pp. 1356–1368.

[13] Chen S., Gibson G., Cowan C. & Grant P. (1990) Adaptive equalization of finite
non-linear channels using multilayer perceptrons. Signal Processing 20, pp. 107 –
119.

[14] Ibnkahla M. (2000) Applications of neural networks to digital communications – a
survey. Signal Processing 80, pp. 1185 – 1215.

50

[15] Wang T., Wen C., Wang H., Gao F., Jiang T. & Jin S. (2017) Deep learning for
wireless physical layer: Opportunities and challenges. China Communications 14,
pp. 92–111.

[16] Hornik K., Stinchcombe M. & White H. (1989) Multilayer feedforward networks are
universal approximators. Neural Networks 2, pp. 359 – 366.

[17] Abadi M. et al. (2015), TensorFlow: Large-scale machine learning on
heterogeneous systems. URL: https://www.tensorflow.org/, software available
from tensorflow.org.

[18] Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Desmaison
A., Antiga L. & Lerer A. (2017) Automatic differentiation in PyTorch. In: NIPS
Autodiff Workshop.

[19] Jia Y., Shelhamer E., Donahue J., Karayev S., Long J., Girshick R.B., Guadarrama
S. & Darrell T. (2014) Caffe: Convolutional architecture for fast feature embedding.
In: ACM Multimedia.

[20] Zhang C., Patras P. & Haddadi H. (2019) Deep learning in mobile and wireless
networking: A survey. IEEE Communications Surveys Tutorials , pp. 1–1.

[21] Goodfellow I., Bengio Y. & Courville A. (2016) Deep Learning. The MIT Press.

[22] Rumelhart D., Hinton G. & Williams R. (1989) Learning representations by back-
propagating errors. Nature 323, pp. 533, 536.

[23] Chollet F. et al. (2015), Keras. https://keras.io.

[24] Nachmani E., Be’ery Y. & Burshtein D. (2016) Learning to decode linear codes
using deep learning. In: 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 341–346.

[25] Nachmani E., Marciano E., Burshtein D. & Be’ery Y. (2017) RNN decoding of linear
block codes. CoRR abs/1702.07560. URL: http://arxiv.org/abs/1702.07560.

[26] Gruber T., Cammerer S., Hoydis J. & t. Brink S. (2017) On deep learning-based
channel decoding. In: 2017 51st Annual Conference on Information Sciences and
Systems (CISS), pp. 1–6.

[27] Cammerer S., Gruber T., Hoydis J. & ten Brink S. (2017) Scaling deep learning-
based decoding of polar codes via partitioning. CoRR abs/1702.06901. URL: http:
//arxiv.org/abs/1702.06901.

[28] Nachmani E., Marciano E., Lugosch L., Gross W.J., Burshtein D. & Be’ery Y.
(2018) Deep learning methods for improved decoding of linear codes. IEEE Journal
of Selected Topics in Signal Processing 12, pp. 119–131.

[29] Liang F., Shen C. & Wu F. (2018) An iterative BP-CNN architecture for channel
decoding. IEEE Journal of Selected Topics in Signal Processing 12, pp. 144–159.

51

[30] Samuel N., Diskin T. & Wiesel A. (2017) Deep mimo detection. In: 2017 IEEE 18th
International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), pp. 1–5.

[31] Farsad N. & Goldsmith A.J. (2017) Detection algorithms for communication systems
using deep learning. CoRR abs/1705.08044. URL: http://arxiv.org/abs/1705.
08044.

[32] Ye H., Li G.Y. & Juang B. (2018) Power of deep learning for channel estimation
and signal detection in ofdm systems. IEEE Wireless Communications Letters 7, pp.
114–117.

[33] Neumann D., Wiese T. & Utschick W. (2018) Learning the mmse channel estimator.
IEEE Transactions on Signal Processing 66, pp. 2905–2917.

[34] Nandi A.K. & Azzouz E.E. (1998) Algorithms for automatic modulation recognition
of communication signals. IEEE Transactions on Communications 46, pp. 431–436.

[35] Dörner S., Cammerer S., Hoydis J. & t. Brink S. (2018) Deep learning based
communication over the air. IEEE Journal of Selected Topics in Signal Processing
12, pp. 132–143.

[36] O’Shea T.J., Roy T., West N. & Hilburn B.C. (2018) Physical layer communications
system design over-the-air using adversarial networks. In: 2018 26th European Signal
Processing Conference (EUSIPCO), pp. 529–532.

[37] MATLAB (2019) version 9.6.0 (R2019a). The MathWorks Inc., Natick,
Massachusetts.

[38] Sybis M., Wesolowski K., Jayasinghe K., Venkatasubramanian V. & Vukadinovic V.
(2016) Channel coding for ultra-reliable low-latency communication in 5g systems.
In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1–5.

[39] 3GPP (2018) Multiplexing and channel coding. TS 38.212, v15.2.0, 3rd Generation
Partnership Project (3GPP).

[40] 3GPP (2018) Physical channels and modulation. TS 38.211, v15.2.0, 3rd Generation
Partnership Project (3GPP).

[41] Hui D., Sandberg S., Blankenship Y., Andersson M. & Grosjean L. (2018) Channel
coding in 5G New Radio: A tutorial overview and performance comparison with 4G
LTE. IEEE Vehicular Technology Magazine 13, pp. 60–69.

[42] Gamage H., Rajatheva N. & Latva-aho M. (2017) Channel coding for enhanced
mobile broadband communication in 5G systems. In: 2017 European Conference on
Networks and Communications (EuCNC), pp. 1–6.

52

7 APPENDICES

Appendix 1 Deep Learning Basics

1.A Feedforward Neural Networks
1.B Convolutional Neural Networks
1.C Autoencoders
1.D Generative Adversarial Networks
1.E Network Training

53

APPENDIX 1 DEEP LEARNING BASICS

Appendix 1.A Feedforward Neural Networks

Deep feedforward networks, also called feedforward neural networks (feedforward NNs),
or multi layer perceptrons (MLPs), are the basic type of DL models. The objective of a
feedforward network is to approximate some function f ∗. For example, for a classifier,
y = f ∗(x) maps an input x to a category y. A feedforward network defines a mapping
y = f(x; θ) and learns the value of the parameters θ that result in the best function
approximation [21].
These are called feedforward networks since the information flows from input to the

output through the intermediate computations used to define f . In feedforward NNs
there are no feedback connections in which outputs of the model are fed back into itself.
When feedforward NNs are extended to include feedback connections, they are called
recurrent neural networks.
Feedforward NNs are given the name networks because they are typically made of

composing many different functions together. That is, the function f which maps the
input x to the output y may consists of one or more functions which connect as a
chain forming the chained network structure to make the input-output mapping. For
an example, there may be three functions f1, f2, and f3 connected into a chain to form
f(x) = f3(f2(f1(x))). Here, f1 is called the first layer, f2 is called the second layer and
so on.
The overall length of the chain gives the depth of the model, which has given the rise

to the terminology “deep learning”. The first layer of the feedforward network is called
the input layer, and the final layer is called the output layer. Inside layers which
are in-between the input and the output layers are called hidden layers since their
behaviour is hidden to outside and the input training data does not show the desired
output for these layers. Structure of a typical fully connected feedforward NN is shown
in Figure Appendix 1.1.

Hidden Layers

Input Layer Output Layer

Figure Appendix 1.1. Layout of a fully connected feedforward neural network.

54

During the network training process, the learning algorithm decides best
implementation of these hidden layers in order to approximate the function f ∗ in the
optimum manner. An MLP consists of at least three layers which is the input layer,
hidden layer and the output layer. Usually MLPs with more than one hidden layer are
regarded as DL structures. Thus, following the above definition, a feedforward NN with
L layers describes a mapping f(x0; θ) : RN0 7→ RNL of an input vector x0 ∈ RN0 to an
output vector xl ∈ RNL through L iterative processing steps as follows:

xl = fl(xl−1; θl), l = 1, ..., L, (2)

where fl(xl−1; θl) : RNl−1 7→ RNl is the mapping performed by the lth layer. This
mapping depends on the output vector xl−1 from the previous layer which is fed as
the input to the lth layer and also the set of parameters θl. Furthermore, fl can also
be a function of some random variables which makes the mapping stochastic. θ =
{θ1, θ2, .., θL} denotes the set of all parameters of the network. The lth layer of the
network is called dense or fully-connected if fl(xl−1; θl) has the form

fl(xl−1; θl) = σ(Wlxl−1 + bl), (3)

where Wl ∈ RNl×Nl−1 , bl ∈ RNl and σ(·) is a called an activation function. The set of
parameters for this lth layer is θl = {Wl,bl}. Other than the dense layers, there are also
several other types of layers which are used in feedforward NNs which cater for different
requirements. Table Appendix 1.1 lists some of them along with their mapping functions
and parameters [5]. The Noise layer has a stochastic mapping which generates a new
random mapping each time it is called. That is, it adds a Gaussian noise vector with
zero mean and covariance matrix βINl−1 to the input, generating a different output for
the same input each time it executed.

Table Appendix 1.1. Different types of layers used in neural networks

Layer Name fl(xl−1; θl) θl

Dense σ(Wlxl−1 + bl) Wl,bl

Noise xl−1 + n,n ∼ N (0, βINl−1) none

Dropout d · xl−1, di ∼ Bern(α) none

Normalization e.g.
√

Nl−1xl−1
‖xl−1‖2

none

The activation function σ(·) in (3) is applied individually to each element of its input
vector, i.e., [σ(u)]i = σ(ui). Activation function adds non-linearity to the network to
make the network more powerful and adds ability to it to learn something complex and
complicated form data and represent non-linear complex arbitrary functional mappings
between inputs and outputs. Without this non-linearity, there would not be much of
an advantage of having a stacked multiple layer structure as explained earlier. Hence,
using a non-linear activation it is possible to generate non-linear mappings from inputs

55

to outputs. Commonly used activation functions are listed in Table Appendix 1.2 [5].
Typically in classification problems, the SoftMax layer is used the output layer of a
network.

Table Appendix 1.2. Different types of activation functions used in neural networks

Activation Function Name [σ(u)]i Output Range

Linear ui (−∞,∞)

ReLU max(0, ui) [0,∞)

tanh tanh(ui) (−1, 1)

sigmoid 1
1 + e−ui

(0, 1)

softmax eui∑
j

euj
(0, 1)

In the model training process, the labelled data, i.e., a set of input and output vector
pairs, (x0,i,x?

L,i), i = 1, ..., S, is used to minimize the loss by adjusting the parameter set,
θ. Here x?

L,i is the expected output of the NN when x0,i is used as the input. Following
equation gives the loss of the network which is tried to be minimized during the training
process.

L(θ) = 1
S

S∑
i=1

l(x?
L,i,xL,i). (4)

Here, l(u,v) : RNL × RNL 7→ R is the loss function and xL,i is the actual output from
the NN when x0,i is given as the input. Commonly used loss functions include mean
squared error (MSE), binary cross-entropy and categorical cross-entropy. Different loss
functions are listed out in the Table Appendix 1.3. Furthermore, to train a model for
a specific scenario, the loss function can be revised by adding different norms (e.g. L1,
L2) of parameters or activations to the loss function. Stochastic gradient descent (SGD)
algorithm is one of the most widely applied algorithms to obtain optimum sets of θ.
Creating and training of deep NNs changing any of the above described parameters can
be done using currently available DL libraries which are discussed in the Section 2.3.

Table Appendix 1.3. Different types of loss functions used in neural networks

Loss Function Name l(u,v)

Mean squared error (MSE) ‖u− v‖2
2

Categorical cross-entropy −∑
j ujlog(vj)

Binary cross-entropy − 1
N

∑N
j (ujlog(vj) + (1− uj)log(1− vj))

56

Appendix 1.B Convolutional Neural Networks

Convolutional neural networks (CNNs), also known as convolutional networks, are a
specialized kind of neural networks to process data which has a known grid-like structure
such as image data which has two-dimensional (2D) grid of pixels or time series data
which has a form of one-dimensional (1D) grid. CNN is another DNN architecture
developed from a fully connected feedforward network to avoid huge amounts of learnable
parameters when a fully connected NN is applied for image recognition etc. A CNN
consists of a set of locally connected kernals or filters to capture correlations between
different data regions, instead of having full connections between layers. As the name
implies, a CNN employs a mathematical operation called convolution which is a special
kind of linear operation. Thus, CNNs are simply NNs which use convolution instead of
general matrix multiplication in at least a single layer of the network. The convolution
operation can be denoted by the following equation for each location py of the output y
[20],

y(py) =
∑
pG∈G

w(pG) · x(py + pG), (5)

where pG denotes all positions in the receptive field G of the convolutional filter w
and the weights w are shared across different locations of the input map. Convolution
leverages three main ideas which improves a traditional DL system: sparse interactions,
parameter sharing and equivarient representations which enables CNNs to be more
effective. And also they provide ways of working with variable sized inputs [21].
A typical CNN consists of single or multiple convolution layers, pooling layers and then

one or two fully connected layers at the end of the network. In the pooling layer, the
neurons in the feature maps are grouped together to obtain a single representation of
each feature map such as computing the mean value (average pooling) or maximum value
(max pooling) of each feature map. Thus pooling layers enable reducing the number of
parameters substantially before using the fully connected network. A basic structure of
a CNN is shown in the Figure Appendix 1.2. The network is trained end-to-end with
labelled training data similar to training of a normal feedforward NN.

Convoluiton Layer

Pooling Layer

Convoluiton Layer
Pooling Layer

Input

Output Layer

Multiple Dense Layers

Output

Figure Appendix 1.2. An example layout of a convolutional neural network (CNN).

57

Appendix 1.C Autoencoders

An autoencoder is a type of artificial neural network (ANN) which tries to reconstruct
its input at the output in an unsupervised manner. Thus, it falls into the category
of unsupervised machine learning algorithms. Internally, it has a hidden layer h that
describes a code used to represent the input x. Since the network is trained to reconstruct
its inputs, the hidden layer is forced to try to learn good representations of the inputs.
The network can be viewed as consisting of two parts: an encoder function h = f(x) and
a decoder that produces a reconstruction x̂ = g(h).
The learning process of the autoencoder can be described as minimizing the

reconstruction loss as follows:
L(x, g(f(x))), (6)

where L is a loss function such as MSE which penalizes g(f(x)) for being different to
the input x.
Traditionally, autoencoders were used for dimensionality reduction or feature learning.

Autoencoders are closely related to principal component analysis (PCA) since PCA also
tries to reduce dimensionality of input data in an unsupervised manner by minimizing
the reconstruction error. However, autoencoders can represent both linear and non-
linear transformation in encoding and decoding, thus has more flexibility, while PCA
generally performs linear transformation. Autoencoders can be layered to form DL
network due to its network representation. There can be multiple hidden layers where a
deep NN is formed. Layout of an autoencoder NN is shown in the Figure Appendix 1.3.
Autoencoders thus can be thought as a special case of feedforward networks, and may be
trained with all of the same techniques, typically mini-batch gradient descent following
gradients computed by back-propagation.

Encoder Decoder

Input Output

Code

Hidden Layer

Figure Appendix 1.3. Layout of an autoencoder.

58

Depending on the application the autoencoder is used, there are different types
of autoencoders such as undercomplete autoencoders, sparse autoencoders, denoising
autoencoders, contractive autoencoders etc.

Appendix 1.D Generative Adversarial Networks

Generative adversarial network (GAN) is a type of generative modelling approach based
on differentiable generator networks, which can produce data that follows certain target
distribution, pdata. Generative adversarial networks are based on a game theoretic
scenario where the generator network competes against its adversary, and thus a GAN
consist of a generator g(·) and a discriminator d(·). Structure of a GAN is shown in the
Figure Appendix 1.4. The discriminator attempts to differentiate between real data and
fake data generated by the generator, while the generator tries to generate credible data
to mislead the discriminator into making mistakes.

Real Dataset

Generator

Discriminator Loss

Predictions

Real

Fake

Real Sample

Generated Sample

Input Noise

Figure Appendix 1.4. Structure of a generative adversarial network (GAN).

The generator directly produces samples x = g(z; θ(g)) and the discriminator outputs
a probability value given by d(x; θ(d)), which indicates the probability that x is a real
training sample instead of a fake sample generated by the generator model. Therefore, a
min-max two players game is introduced between the generator g and the discriminator
d, and the min-max optimization objective can be given as

arg min
g

max
d
ν(θ(g), θ(d)) = Ex∼pdata

log d(x) + Ex∼pmodel
log(1− d(x)). (7)

A Conditional GAN extends the above formulation by providing some extra
conditioning information m, where the conditioning information is fed to both the
generator g and the discriminator d as an additional input. Then the min-max
optimization objective changes to the form

arg min
g

max
d
ν(θ(g), θ(d)) = Ex∼pdata

log d(x|m) + Ex∼pmodel
log(1− d(x|m)). (8)

59

Appendix 1.E Network Training

Training of NNs involves finding the optimum parameters for each of the layers in the
network which minimizes a desired loss function such as the loss function given in 4 for
a simple feedforward NN. The differentiable architecture of DNNs allows learning the
optimum model parameters which minimizes the loss function using gradient descent
(GD) methods through back-propagation, following the fundamental chain rule [22].
Having a large number of hidden layers and neurons result in having several other
parameters to be determined and thereby makes the network implementation difficult.
Vanishing gradients, slow convergence of the network, getting stuck in a local minimum
are some of the problems which are faced during network training process [15]. Vanishing
gradient problem where the gradients of the loss function approaches zero, which makes
the network training difficult is solved by introducing new activation functions such as
rectified linear units (ReLU) [15].
A modified version of the classic GD algorithm is used to achieve faster convergence

and to reduce the computation complexity, which is known as the stochastic gradient
descent algorithm which is widely used in network training. SGD starts with a random
initialization of the parameters θ = θ0 and then updates them iteratively as

θt+1 = θt − η∇L̃(θt), (9)

where η > 0 is the learning rate and L̃(θt) is an approximation of the loss function
computed for a randomly selected mini-batch of training samples St ⊂ {1, 2, .., S} of size
St at each iteration, given as

L̃(θt) = 1
St

∑
i∈St

l(x?
L,i,xL,i). (10)

It is noted that gradient complexity can be significantly reduced by selecting St small
compared to S, while still reducing the weight update variance [5]. In order to avoid
converging the model to local optimal solutions and to further increase training speed,
different adaptive learning rate algorithms such as Adagrad, RMSProp, Momentum, and
Adam have been proposed [15].
Another challenge of network training is that even though the network gets trained

well and performs well for the training data, it may give poor performance for testing
data due to overfitting for the training data. To avoid overfitting, different approaches
like early stopping, regularization and dropout schemes have been proposed which
results in getting acceptable performance in both training and testing data [15].

