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ABSTRACT

This thesis details the design and implementation of a system that can find
relevant and latent semantic topics from textual documents. The design of this
system, named Topic Distiller, is inspired by research conducted on automatic
keyphrase extraction and automatic topic labeling, and it employs entity linking
and knowledge bases to reduce text documents to their semantic topics.

The Topic Distiller is evaluated using methods and datasets used in information
retrieval and automatic keyphrase extraction. On top of the common datasets
used in the literature three additional datasets are created to evaluate the system.

The evaluation reveals that the Topic Distiller is able to find relevant and latent
topics from textual documents, beating the state-of-the-art automatic keyphrase
methods in performance when used on news articles and social media posts.

Keywords: natural language processing, entity linking, automatic keyphrase
extraction, automatic topic labeling, graph theory, ontology, knowledge base,
information retrieval
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TIIVISTELMÄ

Tässä diplomityössä tarkastellaan järjestelmää, joka pystyy löytämään tekstistä
relevantteja ja piileviä semanttisia aihealueita, sekä kyseisen järjestelmän
suunnittelua ja implementaatiota. Tämän Topic Distiller -järjestelmän
suunnittelu ammentaa inspiraatiota automaattisen termintunnistamisen ja
automaattisen aiheiden nimeämisen tutkimuksesta sekä hyödyntää automaattista
semanttista annotointia ja tietämyskantoja tekstin aihealueiden löytämisessä.

Topic Distiller -järjestelmän suorituskykyä mitataan hyödyntämällä
kirjallisuudessa paljon käytettyjä automaattisen termintunnistamisen
evaluontimenetelmiä ja aineistoja. Näiden yleisten aineistojen lisäksi esittelemme
kolme uutta aineistoa, jotka on luotu Topic Distiller -järjestelmän arviointia
varten.

Evaluointi tuo ilmi, että Topic Distiller kykenee löytämään relevantteja
ja piileviä aiheita tekstistä. Se päihittää kirjallisuuden viimeisimmät
automaattisen termintunnistamisen menetelmät suorituskyvyssä, kun sitä
käytetään uutisartikkelien sekä sosiaalisen median julkaisujen analysointiin.

Avainsanat: luonnollisen kielen käsittely, semanttinen annotointi, automaattinen
termintunnistaminen, automaattinen aiheiden nimeäminen, verkkoteoria,
ontologia, tietämyskanta, tiedonhaku
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1. INTRODUCTION

Since the invention of the world wide web, the amount of freely accessible data has
exploded. News articles are published at an increasing rate along with blog posts, not to
mention the gargantuan amount of data produced by social media. To gain knowledge
of this vast quantity of data manually is beyond the capabilities of single humans or
even organizations, rendering the effort futile. To tackle the problem of making sense
of this vast amount of information, automation must be exploited.

Most of the data are text-based and unstructured rendering it difficult to process
them automatically. Computers are very good at processing well structured data but
are lacking the ability to process natural language. Natural language processing is
a discipline, closely entwined to artificial intelligence, that undertakes in the effort
of augmenting computers with the ability to process natural human language. Such
techniques as automatic topic modeling, summarization, and automatic keyphrase
extraction are ways of distilling information from large quantities of data represented
in natural human language. These techniques work as tools for humans to enhance
their ability to make sense of this fast-paced world with its never-ending torrent of
information.

A way to tackle the problem of making sense of the vast quantities of digital
information is to bring structure to the unstructured data. This can be achieved by
extracting semantic labels from the data and using these labels to index said data.
Indexing the data makes it more useful since it can then be more efficiently queried.
Three sub-disciplines of natural language processing have emerged to do just this:
automatic keyphrase extraction (AKE), automatic topic labeling (ATL), and entity
linking (EL). AKE focuses on extracting descriptive labels from single documents and
ATL for collections of documents. Both AKE and ATL have researched a multitude of
ways to extract essential information from textual data but the state-of-the-art suggests
that employing graph theory is the way to go. This means representing text as network
graphs and investigating the relationships of the nodes in those graphs. Representing
text as graphs has another advantage: graphs can be connected to other graphs, such as
knowledge bases. EL aims to do just this; connect documents to knowledge bases.

Semantic web [1] is a project that aims to bring structure to the world wide web.
This project has given birth to large structure knowledge bases such as DBpedia [2]
and Yago [3]. These knowledge bases, also known as ontologies, are reservoirs of
large quantities of connected data. Taking advantages of these ontologies has proven
to be highly beneficial [4], [5], [6].

This thesis details the design and implementation of a system for distilling
information from textual documents: the Topic Distiller. Namely, the Topic Distiller is
able to determine the topics discussed in a document and link those topics to DBpedia
knowledge base. The topics might be explicitly mentioned in the document or they
might be latent but implied. For example, consider the following piece of text:

Elon Musk is the CEO of Tesla.

The explicit topics in the text are Elon Musk, CEO, and Tesla. The latent topics
would be electric cars, organizations, and car manufacturing.

To find the latent topics, the Topic Distiller combines EL with graph-based methods
inspired by AKE and ATL. First, the EL process annotates the entities in a given text
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document. Second, more general topics are found by leveraging DBpedia. Third, all
the topics are combined into a network graph and graph-based measures are used to
determine which are the most relevant topics.

An application programming interface (API) to the Topic Distiller is provided so that
it can be deployed as a web service and used as a sub-component for larger systems.
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2. RELATED WORK

This chapter describes the technologies used in the design and implementation of Topic
Distiller. It also includes a literature review on the state-of-the-art of ATL and AKE to
rationalize the design choices detailed in Chapter 3.

2.1. Ontologies

In philosophy, ontology refers to the theory of the nature of existence; what exists and
how it exists. Artificial intelligence and web researchers have claimed the term using it
to refer to a document or a file that formally defines relations between terms [1]. These
ontologies serve as machine-readable sources of information, making them highly
usable for automatic information processing.

Ontologies for information processing originally arose from the growing need of
data integration in disciplines such as genomics, proteomics, and epidemology [7] and
they were domain specific. The vision of Berners-Lee et al. [1] is to combine these
ontologies into a one all-encompassing semantic web. There are several attempts
at creating general, domain independent ontologies which include DBpedia [2],
Freebase [8], OpenCyg [9], and Yago [3]. These general ontologies are convenient for
applications such as knowledge discovery and document annotation.

Section 2.1.1 will describe in detail the DBpedia ontology, which will be used in this
thesis.

2.1.1. DBpedia

DBpedia is a freely available database of structured data extracted from Wikipedia.
The creators of DBpedia, namely Auer et al. [2], define it as follows: “DBpedia is a
community effort to extract structured information from Wikipedia and to make this
information available on the Web”.

Structure

DBpedia takes data from Wikipedia and converts it to Resource Description
Framework (RDF) [10]. In RDF data are represented as triples that consist of subject,
predicate, and object, or resource, property type, and property value, as depicted
in parts a and b of Figure 1. The subject is always a resource, e.g. DBpedia entity.
The object can be a resource or just an atomic value like a birth date, as in part c of
Figure 1. The predicate or property type is the link between the predicate and object.
For example, Jay Z is the spouse of Beyoncé, as in part d of Figure 1.

A database, such as DBpedia, that is structured in RDF format can be thought
as a large network graph where all resources have properties and are connected to
other resources by these properties. This allows for sophisticated analyses of relations
between resources using tools such as graph theory, and social network theory.



10

Figure 1: Example RDF triples.

Querying

To query DBpedia, a querying language is needed. SPARQL, or SPARQL Protocol
and RDF Query Language, is recommended by the World Wide Web Consortium as
a candidate query language for RDF. In its essence, SPARQL is a graph-matching
query language that is used to define a pattern which is then matched against a data
source [11].

The following section describes a small subset of SPARQL syntax needed to
understand this thesis. A more exhaustive description of SPARQL can be read from
the work of Pérez et al. in [11].

Syntax

The syntax of SPARQL is very similar to Structured Query Language (SQL). The
structure of a SPARQL query is seen in Figure 2 and it consists of the following
components: prefix declarations, dataset definition, result clause, query pattern, and
query modifiers [12].

The prefix declarations part enables the usage of prefixes in the result clause making
it more readable, the dataset definition defines the RDF graph that is going to be
queried against (if left out, a default graph is used). The result clause specifies what
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1 # Prefix declarations
2 PREFIX foo: <http://example.com/resources/>
3 ...
4 # Dataset definition
5 FROM ...
6 # Result clause
7 SELECT ...
8 # Query pattern
9 WHERE {

10 ...
11 }
12 # Query modifiers
13 ORDER BY ...

Figure 2: Structure of a SPARQL query.

kind of data is to be returned, the query pattern is the pattern that the query compares
against the resources returning the ones that match, and query modifiers are used
to modify the query, for example changing the ordering of the returned resources.
Comments in SPARQL start with the symbol # and end at the end of the line.

An example query for the names of all the associated musical artists of Frank Zappa
can be seen in Figure 3. Note that lines 5 and 6 are actually one line but they are split
into two here with the separator \\ that is not part of SPARQL syntax. This is only for
presentation purposes since otherwise the line would be too long.

The example query in Figure 3 starts with prefix declarations (lines 1 and 2) followed
by the result clause (line 3) which starts with the command SELECT ?name which
declares what variables from the query are to be returned. Variables are indicated by
the question mark (?) at the beginning of their names. If one wants to return all the
variables a wildcard symbol (*) can be used instead of the variable names.

After the SELECT ?name command lies the WHERE block (lines 4-8), both of
them comprising the result clause. The WHERE block contains, arguably, the most
important information about the query: the triple patterns. These patterns are used
to match against the DBpedia query and all matches are returned. The first triple

1 PREFIX dbo: <http://dbpedia.org/ontology/>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 SELECT ?name
4 WHERE {
5 ?artist dbo:associatedMusicalArtist \\
6 <http://dbpedia.org/resource/Frank_Zappa> .
7 ?artist foaf:name ?name .
8 }
9 ORDER BY ASC(?name)

Figure 3: An example SPARQL query.
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is used to find all the DBpedia entities connected to the Frank Zappa entity via the
dbo:associatedMusicalArtist property type. The first triple pattern can be
translated to natural language by following the subject→ predicate→ object rule from
Section 2.1.1: “Find all the artists that are associated musical artists of Frank Zappa”.
The second triple pattern is for attaining the names of those artists found with the first
pattern. The ?artist variable in the query is only used to realize the second triple
pattern needed to get the names of the artists in question. Finally, triple patterns are
terminated with periods (.).

The query modifier ORDER BY ASC(?name) (line 9) finishes the query by
rearranging the results in ascending alphabetical order by the ?name variable.

Worth mentioning is the fact that the query is missing a dataset definition. When
dataset definition is omitted, the query is run against the default graph, in this case, the
whole DBpedia graph itself.

The result for query in Figure 3 returned from DBpedia, in XML format [13], can be
viewed in Figure 4. Note that the list is abbreviated. The resulting XML <sparql>
element contains three attributes that describe the schema of the results. It also has two
child elements, head, and results, in it. The head object, or the header, contains
a list of the query variables. In the SPARQL query of Figure 3 only one variable name
is specified and hence that is the sole object of the header.

The results object has two keys distinct and ordered. The former
specifies if there are duplicates in the results and the latter indicates if the list of
resources is ordered. The children of the results objects consist of result objects
that are the results of the query and these in turn have binding objects as their
children. The bindings indicate the attributes of the resources that are the variables
specified in the query.
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1 <sparql
2 xmlns="http://www.w3.org/2005/sparql-results#"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="
5 http://www.w3.org/2001/sw/DataAccess/rf1/result2.xsd">
6 <head>
7 <variable name="name"/>
8 </head>
9 <results distinct="false" ordered="true">

10 <result>
11 <binding name="name">
12 <literal xml:lang="en">Adrian Belew</literal>
13 </binding>
14 </result>
15 <result>
16 <binding name="name">
17 <literal xml:lang="en">Ant-Bee</literal>
18 </binding>
19 </result>
20 <result>
21 <binding name="name">
22 <literal xml:lang="en">Artis the Spoonman</literal>
23 </binding>
24 </result>
25 ...
26 <result>
27 <binding name="name">
28 <literal xml:lang="en">Vinnie Colaiuta</literal>
29 </binding>
30 </result>
31 <result>
32 <binding name="name">
33 <literal xml:lang="en">Warren Cuccurullo</literal>
34 </binding>
35 </result>
36 <result>
37 <binding name="name">
38 <literal xml:lang="en">Wild Man Fischer</literal>
39 </binding>
40 </result>
41 </results>
42 </sparql>

Figure 4: An example result XML from DBpedia.
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2.2. Entity Linking

Having large, queryable, knowledge bases is a good step forward in bringing structure
to the data residing within the world wide web. However, to use said knowledge to
make sense of the unstructured textual data a method of connecting the structured with
the unstructured is needed. This is where entity linking (EL), also known as named
entity linking, entity resolution, and record linkage, comes in.

EL is defined by [14] as follows: “[EL] is the task to link entity mentions in text
with their corresponding entities in a knowledge base”. Entity linking is closely
intertwined with named entity recognition (NER), which is the method of identifying
named entities or the names of people, organizations, and geographic locations from
text [15]. These named entities can, for example, be entities in a knowledge base, such
as DBpedia. Here, we are going to look at the EL problem in the context of linking
named entities in a document to their corresponding DBpedia entities.

NER is the first of two steps in EL, the second being disambiguation, which is
the task of selecting the correct candidate of multiple entities sharing the same name.
Disambiguation has proven to be a formidable problem in NER. For example, consider
the following text:

After finishing her meal, she decided to visit Washington.

Even for a human reader, with general education, it is not self evident if the
Washington in the text refers to the capital city of the United States, the state in
the United States, or the former president of the United States. The Wikipedia
disambiguation page for Washington lists over 30 cities with that name, not to mention
all the persons with the same name.

The disambiguation process can be thought as a ranking problem: rank the
candidates and select the topic ranking one as the linked entity. One simple approach
is to rank the candidates by their popularity. For example, in case of linking entities to
DBpedia the Wikipedia article view counts corresponding to the DBpedia entity could
be used to rank the candidates. This method alone is able to reach 71% accuracy [16].

More sophisticated methods include context of the candidate entity into the ranking
process [17]. Context of a named entity is the document it appears in and context of a
DBpedia entity is its corresponding wikipedia article. Similarity between the contexts
can then be used rank the entities.

2.2.1. DBpedia Spotlight

DBpedia spotlight (DBPS) is a system that links DBpedia entities to documents [18].
Originally DBPS was only capable of annotating English documents but the new,
improved version [19] works with other languages, such as German, Dutch, French,
Russian, and Turkish, among others. DBPS divides the task of entity-linking into three
stages. The first is the spottig stage that recognizes phrases that may include a mention
to a DBpedia entity. Candidate selection stage links those mentions to the DBpedia
and disambiguation phase selects the most suitable entity among the candidates using
the context around the spotted phrases.
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A demo with a graphical user interface1 is provided to test the service along with
a public API2 that can be used to programmatically annotate textual documents. The
parameters for the public API for annotation can be seen in Table 1.

Table 1: DBpedia Spotlight web service API parameters for annotation

Parameter Description
text The text to be annotated
url URL to be annotated
confidence Confidence score for disambiguation
support Number of inlinks in Wikipedia
types Select which DBpedia types are included in the annotation
sparql SPARQL filtering
policy Whitelist or blacklist by type

The DBPS API comes with endpoints for spotting and candidate selection but they
are outside the scope of this thesis.

2.3. Automatic Keyphrase Extraction

Automatic keyphrase extraction (AKE) is defined by [20] “as the automatic selection
of important, topical phrases from within the body of a document”. In other words,
the purpose of automatic keyphrase extraction is to find a list of phrases that capture
the topics that are related to the document in question. The terms keyphrase and
keyword are sometimes used interchangeably but in this thesis the term keyphrase is
preferred because the phrases usually contain multiple words instead of just one since
many real world entities are named using multiple words, e.g. artificial intelligence
or Kim Kardashian. The extracted keyphrases are used further to improve other
natural language processing (NLP) and information retrieval (IR) tasks such as text
summarization [21], text categorization [22], opinion mining [23], and document
indexing [24].

Automatic keyphrase extraction usually contains two phases: keyphrase candidate
extraction and candidate ranking. Keyphrase candidates are usually extracted using
heuristic rules [25]. The rules are designed so that they extract only plausible
keyphrases. Among the most used heuristics are stop word removal – e.g. removing
all the most common words that have little semantic meaning – [26] and allowing
only certain parts of speech to be used in the keyphrases, such as nouns, verbs and
adjectives [27]. Other approaches include selecting keyphrases that have n-grams that
appear in Wikipedia article titles and extracting n-grams and noun phrases that follow
some lexico-syntactic pattern [4].

These heuristics usually work well for medium length documents, such as news
articles, but for longer documents, such as books chapters, they tend to produce long
candidate lists. This can be alleviated by pruning methods [28], [29], [30], [31]. For

1https://www.dbpedia-spotlight.org/demo/
2https://www.dbpedia-spotlight.org/api
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shorter texts, such as social media postings, keyphrase candidate list generation might
not be feasible at all since the texts themselves can be as short as a single keyphrase.

Social media postings like Facebook updates or tweets are also problematic since
the language they use is more relaxed and does not always follow syntactic rules
and correct spelling. Many methods like Part-of-Speech (POS) tagging and machine
translation suffer from such conditions since they require context around the words
for disambiguation. Automatic keyphrase extraction is no different in this regard.
Many methods used to extract keyphrases utilize POS tagging and methods similar to
machine translation. To overcome these difficulties methods such as topical keyphrase
extraction [32], where keyphrases are extracted from topics learned from a collection
of tweets, and clustering with supervised learning algorithm [33], have been proposed.

Different approaches to accomplish these tasks can be split into two main categories:
unsupervised and supervised approaches. A taxonomy of AKE methods can be seen
in Figure 5 and the blocks in that figure are described in Sections 2.3.1, and 2.3.2.

Figure 5: Tree of AKE methods.

2.3.1. Supervised Methods

Supervised methods of AKE can be divided into three categories: task reformulation,
feature design, and deep learning.

Task Reformulation

Earliest attempts at supervised AKE reformulated the task as a binary classification
problem. [25]. These methods include [34], and [35], where Naive Bayes learning
algorithm was used, [36] where decision trees were applied, and [37] where researchers
employed support vector machines. The general idea of using binary classification for
AKE is to first annotate a dataset of good and bad keyphrases which can be used to
train the algorithm to distinguish good keyphrases from bad.
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Binary classification as an approach to AKE has one main weakness: it cannot
distinguish which candidates are better than others. This makes ranking the extracted
keyphrases hard. To overcome this dilemma, researchers in [37] came up with the idea
of learning a ranker that can rank two candidates creating a competition between the
candidates. This approach has proven to significantly outperform the popular baseline
for traditional supervised AKE [35].

Feature Design

Features are designed to enhance the ability of learning algorithms to extract keywords
out of documents. There are two main categories of features: within-collection features
and external resource-based features [25].

Within-corpus features are embedded in the training documents themselves. They
do not consult any external resources. These features include statistical features,
structural features, and syntactic features. The most commonly used statistical
feature is tfidf or term frequency inverse document frequency [38]. This feature
captures the number of times a word appears in a document counteracted by the number
of times the word appears in the corpus. The intuition behind tfidf is that words most
used in a document are important words and that words that are common across the
corpus are not important since documents cannot be distinguished from each other with
those words. However, [39] reported no significant change in performance whether
tfidf was used or not if other features were present. Needles to say tfidf is useful only if
a corpus of documents is available, which is not the case in this thesis.

Other within-collection features include distance of a phrase and supervised
keyphraseness. The former is simply the distance of the first appearance of the
phrase from the start of the document [34]. The intuition behind distance is that most
important keyphrases appear early in the document. Supervised keyphraseness instead
is a measure of how often a keyphrase appears as a keyphrase in the training set [25].
The idea here stems from the assumption that keyphrases that are prevalent in a corpus
of documents are more likely to be keyphrases in unseen documents.

All three of these statistical features can be used to form a feature set for a learning
algorithm. Example of this is the keyphrase extractor algorithm KEA [35] that
performs well on a variety of datasets.

Structural features use document structure to encode how suitable a phrase is as a
keyphrase. For example, in scientific literature, the abstract and methods sections are
assumed to include more keyphrases than other sections [40]. Another such study [41]
used the title section and meta-tags of web pages to extract keyphrase candidates.

Syntactic features employ the notion that good keyphrases share a common
syntactic structure. For example [41] used only noun phrases without post
modification (simplex noun phrases) as keyphrase candidates. Similar methods were
also utilized by [42], [43]. However, syntactic features are revealed to be unuseful if
other feature types are present [41].

Outside-of-corpus features are formulated by consulting external resources, that
are not included in the training corpus, such as ontologies and knowledge bases. An
example of an external feature would be Wikipedia-based keyphraseness, which is
defined by [44] to be “the likelihood of a phrase being a link in the Wikipedia corpus”.
This metric is calculated by dividing the number of Wikipedia pages the phrase appears
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as the anchor text of a link by the total number of Wikipedia pages containing it and
multiplying the result by the number of times the phrase appears in the document.

In [41] researchers look for keyphrases in query logs of a search engine. The
intuition behind this approach is that users use search engines to query for keyphrases
they are interested in.

A different approach researched by [45] focuses on measuring how semantically
related each keyphrase is instead of measuring how relevant individual keyphrases are.
This leads to more coherent lists of keyphrases than approaches not employing this
metric.

Deep Learning

Zhang et al. [46] compared different recurrent neural network architectures with the
task of extracting keyphrases from tweets. They found out that a joint-layer recurrent
neural network [47] (joint-layer RNN) performs well on this task. The joint-layer
RNN has two outputs: The first one is either true or false. It predicts whether the
current word is part of a keyphrase. The second output classifies the word into one of
five values: Single, Begin, Middle, End, and Not. Single indicates that the word is a
single word keyphrase. Begin, Middle, and End denote the position of the word in a
keyphrase and Not indicates if the word is not a part of a keyphrase. These two outputs
of the neural network are used to extract keyphrases from a document.

A similar approach is adopted by Basadella et al. [48], where instead of a joint-layer
RNN they use a different kind of recurrent neural network, a bidirectional long
short-term memory (herein Bi-LSTM) network. Bi-LSTM network is able to take
into account the current word including its surrounding words, or put another way,
its context. The Bi-LSTM Basadella et al. reported is a classifier, but unlike the
joint-layer RNN of Zhang et al., the Bi-LSTM only classifies each word to one of three
classes: NOKP, BEGINKP, INSIDEKP, which correspond to the word not belonging
to a keyphrase, the word being a begin of a keyphrase or the word being inside of
a keyphrase, respectively. This method surpasses a state-of-the-art method, namely
TopicRank [49] (described in Section 2.3.2), in recall and F-score (see Section 2.3.3)
measured against the Inspec [43] dataset but falls behind in precision.

Meng et al. [50] take a different approach to AKE. Instead of labeling each word
of a document, they use an encoder-decoder RNN to generate keyphrases. Meng
et al. named the method deep keyphrase generation. This type of an RNN was first
developed by Cho et al. [51] and Sutskever et al. [52] to tackle the problem of machine
translation. An interesting improvement to previous models deep keyphrase generation
introduces is its ability to generate keyphrases that are not present in the document.
This is because the neural network can “memorize” information of the training data
giving the ability to incorporate knowledge outside of the document in question.

The problem with the deep learning techniques discussed above is that they need a
large corpus of annotated training data to work well. Unfortunately, the only freely
available, big datasets for AKE are based on scientific literature, making models
trained on these datasets work well on scientific articles but poorly on other types
of documents.
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2.3.2. Unsupervised Methods

Methods used for unsupervised AKE can be split into three main categories:
graph-based ranking, summarization, and language models.

Graph-based Ranking

Graph-based methods for AKE employ graph theory to rank keyphrases. The idea is to
form a graph where the nodes are represented by the keyphrase candidates and edges
represent the connections between those candidates. Weights of the edges encode
the strength of each connection. These edges between the nodes can be thought as
"votes" that rank the keyphrases by their importance. Then the top five to fifteen
candidates are selected as keyphrases for the document. For example, TextRank [27]
is an algorithm for AKE derived from Google’s PageRank [53] algorithm that is used
to rank web pages instead of keyphrases. Essentially TextRank employs the notion
of PageRank that an important node in the graph is connected to a large number of
other nodes and to nodes that are important themselves. [54] present PositionRank
algorithm which augments the TextRank by using a version of PageRank that takes
into account the position of each word in the document. Another version of TextRank,
called ExpandRank [55] encodes information of neighboring documents to employ
more information on the keyphrase extraction task. This method of using neighboring
documents is only viable if a corpus of related documents is available.

Researchers have used different methods to build a graph from text, for example by
connecting words that co-occur within a window of N words [27] or by connecting
all candidates to each other forming a complete graph and then weighing the edges
according to their semantic relatedness, like in the TopicRank method [49]. In [56],
researchers use a multipartite graph instead of a conventional graph.

According to [57] graph-based models suffer from two disadvantages:

1. Graph-based models rank high keyphrases that are strongly connected. This does
not ensure that they are relevant to the main topics of the document.

2. Ideally, a good set of keyphrases should contain all the main topics of the
document. Graph-based methods do not guarantee this.

The weaknesses of graph-based methods can be overcome with grouping the
candidate keyphrases into topics in a way that all the topics cover all and only those
keyphrase candidates that are related to that topic [25]. Topic-Based Clustering aims
is a way to achieve this.

KeyCluster [58] clusters semantically similar candidates using Wikipedia and
co-occurence based statistics. Wikipedia is employed by computing a metric called
Wikipedia-based term relatedness, which measures the similarity of tfidf vectors
of Wikipedia articles against the tfidf vectors of keyphrase candidates. The idea
is that each of these clusters represents all the topics present in the document and
thus guarantees that all topics are presented in the extracted set of keyphrases. The
most central nodes of the clusters are then extracted as keyphrases representing that
particular topic.
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Even though KeyCluster outperforms baseline methods [43] and [27], it suffers from
the problem that all topics are treated equally. Ideally, only important topics should be
represented as keyphrases.

Topical PageRank (TPR) [57] is a successful attempt to alleviate the problems
of KeyCluster. The approach employs topic modeling as a way to incorporate
out-of-corpus knowledge to enhance keyphrase extraction. First, a word topic
distribution is computed using the unsupervised learning method latent Dirichlet
allocation (LDA), which is a “generative probabilistic model for collections of discrete
data such as text corpora” [59]. The idea is to represent documents as “random
mixtures of over latent topics, where each topic is characterized as by a distribution of
over words”. The following generative process is performed for each document w in a
corpus D:

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose topic zn ∼Multinominal(θ)

(b) Choose word wn from p(wn|zn, β), a multinomial probability conditioned
on the topic zn.

The symbols in the preceding process are defined as follows:

• wn is the nth word in a sequence,

• zn is the nth topic in a set of topics,

• Dir(α) is the Dirichlet distribution [60], and

• β is a k × V matrix, where k is the dimensionality of the Dirichlet distribution,
and V is the number of words in the vocabulary.

After computing the LDA for TPR, a word graph is built using word co-occurences.
Then, a biased version of PageRank is run for each word with respect to each topic
to attain importance scores of the words. Finally, the topics of the document in
question and the topic-specific rankings of the words are used to get the ultimate
ranking of keyphrases. Top candidate keyphrases are then selected as the final extracted
keyphrases.

TPR outperforms both tfidf and TextRank significantly but the authors in [57] did
not compare it with KeyCluster.

The main disadvantage of TPR is that it is very computationally expensive. This is
because the PageRank itself is a costly algorithm to run and it has to be run for each
topic in the model. [57] report that best results were obtained with 500 topics, meaning
that PageRank should be run 500 times per document. This may become infeasible if
high throughput is required.

To mitigate the computational cost Sterckx et al. [61] propose a modification to
TPR that runs PageRank only once per document. Sterckx et al. are able to reproduce
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near equal performance compared to original TPR by using a single value to represent
topical word importance instead of using a value per topic in the model.

CommunityCluster [62] is another clustering method that like TPR assigns more
significance to important topics, but unlike TPR, extracts all keyphrses from an
important topic instead of one. This is based on the assumption that candidates that
receive only little focus are important to the document if they are associated with
important topics. CommunityCluster outperforms TextRank and tfidf in recall while
not sacrificing precision.

Summarization

Extracting keyphrases from a document is very similar to summarizing a document.
Mani and Inderjeet [63] define the goal of automatic text summarization as “to take an
information source, extract content from it, and present the most important content to
the user in a condensed form and in a manner sensitive to the user’s or application’s
needs”. A more practical definition is given by Das et al. [21]: “Summaries may be
produced from a single document or multiple documents, summaries should preserve
important information, and summaries should be short.”

Researchers have come up with approaches that combine AKE and automatic
summarization by learning a model that achieves both simultaneously. Zha and
Honguyan [64] use graph-based methods to compute saliency scores for words and
sentences. The intuition behind Zha’s and Honguyan’s work is that important words
appear in important sentences and vice versa.

Wan et al. [65] expand on Zha’s and Honguyan’s work by two additional
assumptions: An important sentence is connected to other important sentences,
and an important word is connected to other important words. Wan et al. use
these assumptions to build three weighted graphs, namely sentence-to-sentence
(S-S) graph, word-to-word (W-W) graph and a bipartite sentence-to-word (S-W)
graph. The weights of edges in S-S graph represent the similarity between the two
sentences. In W-W the weights correspond either to co-occurence of the words or to
knowledge-based similarity. S-W graphs edge weights stand for the importance of the
word in the sentence it appears in. In this manner, Wan et al. combine the strengths of
Zha’s work with the ideas of TextRank outperforming both of them [25].

Language Models

As mentioned in Section 2.3, conventional AKE approaches use a two-staged
approach: keyphrase candidate selection and keyphrase candidate ranking. Tomokiyo
and Hurst [66] have devised a method that combines these two stages. They achieve
this by scoring keyphrases for phraseness and informativeness based on statistical
language models. Phraseness denotes how likely a word sequence is a phrase and
informativeness describes how well a phrase encapsulates the important ideas of a
given document. These two features are combined to rank the keyphrases.

The language models used in denoting the phraseness and informativeness values
are trained on a foreground corpus and a background corpus. The foreground corpus
consists of the documents the keyphrases are to be extracted from, and the background
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corpus of documents that are not used for keyphrase extraction (e.g. a collection of
web pages) that encapsulate general information about the world.

Language models called word embeddings have become important workhorses in
NLP applications after word2vec was introduced by Mikolov et al. [67] in 2013.
Traditionally documents have been represented as bag-of-words (BoW) models. BoW
encodes the words of a document as a binary or frequency based vectors [68]. The
conventional BoW model represents words as one-hot-vectors wherein each word
corresponds to distinct vector component [69]. Let’s illustrate this with an example:

The quick brown fox jumped over the lazy dog.

Let’s split that into tokens, remove duplicates, and sort alphabetically

C = {brown, dog, fox, jumped, lazy, over, quick, the} (1)

C can be represented as a matrix of one-hot vectors like this:

C‘ =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, (2)

where each row represents a word, e.g.:

brown =
[
1 0 0 0 0 0 0 0

]
(3)

and

lazy =
[
0 0 0 0 1 0 0 0

]
(4)

There are some problems with representing words as one-hot vectors. First, this
representation creates a sparse vector space with a dimensionality that can get very
big. The small vocabulary in Expression 1 consists only of eight words, but consider
a larger vocabulary of 50 000 or 50 000 000 words. The dimensionalities would be
50 000 and 50 000 000 respectively. Second, representing words with one-hot vectors
does not capture their semantic meaning since there is no good way to compare words
with one another.

Word2vec alleviates the problems of BoW by both reducing the dimensionality and
capturing the semantic meaning of the words. It uses the latent space of a neural
network to encode semantic information about words in a multi-dimensional vector
space. Words are represented as dense vectors. Semantically similar words appear
close to each other in the vector space and the semantic difference between two
words can be computed with cosine similarity [67]. Other related approaches include
GloVe [70] and Fasttext [71].

A modification to word2vec by Le and Mikolov [72] encodes entire phrases or
documents into dense vectors. This allows for the comparison of entire documents
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with each other. A similar approach, key2vec, is adopted by Mahata et al. [73] to
tackle AKE. Mahata et al trained a multi-word phrase embedding model using Fasttext
to assign a theme vector to a document. This theme vector is constructed by first
extracting a theme excerpt from a given document. The theme excerpt consists of
the first few phrases of the document. The pre-trained Fasttext model is then used to
convert this excerpt to a theme vector. Keyphrases candidates are then scored by their
cosine similarity to the theme vector. key2vec surpasses Topical PageRank [57] and
TopicRank [49] in performance on the SemEval2010 dataset (see Section 4.1.1).

In a similar approach, called EmbedRank, Bennani-Smires et al. [74] embed both
the candidate keyphrases and the document itself into the same vector space. The
candidate keyphrases are scored by their cosine distance to the document embedding.
EmbedRank outperforms TextRank and TopicRank, among others, when using Inspec
[43] and DUC20013 datasets, but loses to TopicRank when measured with NUS [40]
dataset.

2.3.3. Evaluation of Automatic Keyphrase Extraction Techniques

Evaluation of AKE methods is hard. The conventional way is to use a dataset of
documents with manually extracted, gold standard, keyphrases and compare those
to automatically extracted ones. The prevalent method of comparison is using exact
matches, meaning that the automatically extracted keyphrases should be exactly the
same as the manually extracted ones. Usually, measurements focus on precision (p),
recall (r), and F-score (f), which are defined in the equations 5, 6, and 7 respectively:

p =
ccorrect
cextract

, (5)

r =
ccorrect
cstandard

, (6)

f =
2pr

p + r
, (7)

where ccorrect is the total number of correct keyphrases extracted by the system, cextract
is the total number of automatically extracted keyphrases, and cstandard is the total
number of human annotated keyphrases [57].

This way of evaluating the performance of an AKE system is not ideal. Consider
the following example keyphrase Neural network and compare it to Artifical neural
network [25]. Both keyphrases mean the same thing but the latter is a bit more precise.
Consider then that the former is a manually extracted, gold standard keyphrase and the
second is automatically extracted. Using exact matches, this pair would be considered
as a failure to extract a keyphrase successfully. Even though using p, r, and f is less
than ideal, these metrics are used widely in the literature to compare different AKE
methods. For this reason, these metrics are used in this thesis too.

Some studies have used human evaluation [74], [75], but it is time-consuming and
expensive making it unsuitable for parameter tuning.

3https://www-nlpir.nist.gov/projects/duc/data.html
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Multiple solutions to alleviate the problems of exact matching have been proposed.
Liu et al. [57] used binary preference measure (bpref) [76] to evaluate the ranking of
keyphrases. For a topic with R relevant documents where rd is a relevant document
and n is a member of the first R judged nonrelevant documents as retrieved by the
system [76],

bpref =
1

R

∑
rd

1− |n ranked higher than rd|
R

. (8)

Essentially, bpref measures what portion of the correctly matched keyphrases is ranked
higher than the non-correct ones.

Another measure Liu et al. used was mean reciprocal rank (MRR) [57]. MRR
measures how the first correctly extracted keyphrases by a system are ranked. For a
document d, rank rankd is denoted as the position of the of the first correct keyphrase
in the list of all extracted keyphrases,

MRR =
1

|D|
∑
d

∈ D
1

rankd
, (9)

where D is the set of documents for keyphrase extraction.
Datasets usually have a variable number of keyphrases extracted from documents.

This means that AKE systems that extract more, albeit correct, keyphrases that are
annotated in the gold standard will have poor performance measured with exact
matching. For example, if a system always extracts exactly 10 keyphrases and the gold
standard always has 8 keyphrases, two of the automatically extracted keyphrases will
be erroneous [77]. To tackle this problem Zesch and Gurevych [77] propose usage of
information retrieval metric R-precision (pR). Zesch and Gurevych define pR for AKE
as follows: pR “is the precision when the number of retrieved keyphrase matchings
equals the number of gold standard keyphrases assigned to the document”. Formally:

pR =
ccorrect
cstandard

, when cstandard = |Kgold|, (10)

where Kgold is the set of gold standard keyphrases. This ensures that the possible
mismatch between number of extracted and gold standard keyphrases does not affect
the measurement.

Zesch et al also introduce an approximate matching strategy, where morphological
variants of keyphrases are accepted as matches along with keyphrases that include a
gold standard keyphrase and keyphrases that are a part of a gold standard keyphrase.
This approximate matching strategy is further detailed in section 4.2

2.3.4. Shortcomings of Automatic Keyphrase Extraction

Hasen et al. [25] present an error analysis on most popular AKE techniques. The
problems are summarized here.

Overgeneration errors happen when a system correctly extracts a keyphrase
because it contains a common word in a document but then erroneously selects other
keyphrases with the same word. Infrequency errors happen when the system is
not recognizing a keyphrase due to its infrequent appearance in the document in
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question. Redundancy errors occur when a system predicts two or more semantically
equivalent keyphrases.

Another problem with AKE is that the conventional methods are unable to
extract keyphrases successfully on short texts such as tweets and other social media
postings. Some methods have been suggested to tackle this problem, such as
augmenting KEA [35] with Brown clustering and continuous word vectors and feature
engineering combined with gradient boosting machine [78]. These methods show
small improvements on baseline methods.

Lastly, none of the AKE methods discussed in Sections 2.3.1, and 2.3.2 are
guaranteed to produce keyphrases that represent real world phenomena. Instead,
by using lexical methods to combine words into keyhprase candidates they all can
potentially generate nonsensical keyphrases. This is unacceptable for the purposes
of this thesis, hence none of these methods can be used as is for building the Topic
Distiller.

2.4. Automatic Topic Labeling

Topic modeling is a way to identify the subject matter of a collection of documents
by determining its inherently addressed topics [6]. Simply put, a topic model is a
collection of terms explicitly appearing in a set of documents and their corresponding
marginal probabilities to appear in a given topic. Marginal probability is defined as the
probability of a term to appear in a topic. These topic models are used for various NLP
tasks, such as multi-document summarization [79], sentiment analysis [80], and word
sense induction [81], among others.

Most used techniques for topic modeling include LDA [59], latent semantic analysis
(LSA) [82], and probabilistic latent semantic analysis (PLSA) [83].

The problem with topic modeling is that the resulting topics are hardly interpretable
by humans. One standard way of making sense of a topic is to extract the top ten terms
with the highest probability. This results in term lists like the following:

stock, market, investor, fund, trading, investment, firm, exchange, companies, share.

With a little inspection, it is easy to see that the above list of terms belongs under a
topic of stock market trading [84]. Automatic topic labeling (ATL) is a research area
which focuses on finding terms such as stock market trading for a corresponding topic.
The idea is to alleviate the cognitive load for humans to interpret raw topic term listings
by explicitly identifying the semantics of the topic [84].

2.4.1. Non-graph-based Methods

Mei et al. [85] introduced the first method for ATL. The method involves extracting
bigram collocations from the document in question and then ranking them based on
Kullback-Leibler (KL) divergence. Since this method is fully extractive, the underlying
assumption is that all relevant labels for a topic can be found from the document being
topic modeled. Mei et al. report that their method performs better than the baseline
method of selecting high probability words as topic labels.
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Lau et al. [84] take a more abstractive approach by incorporating outside knowledge
from English Wikipedia. First, Lau et al. use the top-10 topic terms to query Wikipedia
using the native search API and Google’s site-restricted search and take the top-8
article titles from each source. Next, secondary labels are produced by chunking the
titles into words and generating all component n-grams while filtering out the n-grams
that are not themselves titles of Wikipedia articles. Then, secondary labels that are
stopwords or unigrams that are only marginally related to the document are removed
using RACO (Related Article Conceptual Overlap) lexical association method [86].
The primary and secondary labels are then ranked using supervised (support vector
regression) and unsupervised methods based on lexical association features. Lau et al.
report that their method performs better than the one proposed by Mei et al. [85].

Bhatia et al. [87] employ neural embeddings word2vec (see Section 2.3.2) and its
extension doc2vec [72], along with Wikipedia for ATL. The main idea is to map topic
terms, represented as neural embeddings, to Wikipedia article titles. Then the best
topic labels can be found simply using cosine similarity to compare embeddings. The
neural embeddings are trained using a downloaded version of Wikipedia, but after
the training is done, the system proposed by Bhatia et al. operates completely offline
cutting out the need for third-party services. Bhatia et al. report that their system beats
the system proposed by Lau et al. [84] both in performance and simplicity.

2.4.2. Graph-based Methods

Allahyari et al. [5] take a different approach. They, unlike Mei et al. and Lau et al.,
modify the underlying algorithm that produces the multinomial topics, namely LDA.
The method proposed by Allahyari et al. integrates ontological concepts with topic
models, by representing each topic as a multinomial distribution over concepts rather
than simple words. These concepts are then represented by a multinomial distribution
over words. Allahyari et al. call this method OntoLDA.

After generating the topics, with OntoLDA, a semantic graph is constructed. This
semantic graph is built by extracting the top ranking concepts of a document, as
vertices of the graph, based on their marginal probability then connecting these vertices
by edges if they are related in the DBpedia ontology. The semantic graph consists of
subcomponents called thematic graphs which are the connected components of the
semantic graph. Then the thematic graph with most connections is selected as the
dominant thematic graph and its nodes are ranked using the HITS (Hyperlink-Induced
Topic Search) algorithm [88], also known as the Hubs and Authorities algorithm.
These highest ranking nodes are the core concepts of the topic being labeled. Further,
a topic graph is extracted by traversing DBpedia at most three hops away from each
core concept and the union of these topic graphs is called the topic label graph.

The core concepts of a label are treated as the topic label candidates. Each of
these candidates is scored and ranked using three metrics: membership score, coverage
score, and semantic similarity explained in detail in [5].

The intuition behind the method proposed by Allahyari et al. is that ontology
concepts and entities occurring in the document better determine the document’s topics
than simple words. This makes sense since ontology concepts and entities carry more
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semantic meaning than simple, ambiguous words. Allahyari et al. report that their
measure surpasses the method proposed by Mei et al. [85] by a large margin.

Similar, albeit simpler, to the approach developed by Allahyari et al. is a method
devised by Hulpus et al. [6]. This method also incorporates the DBpedia ontology
in constructing a graph which is used to label topics. Instead of proposing their own
algorithm for topic extraction, Hulpus et al. use the conventional LDA to produce topic
terms that are then disambiguated using a word sense disambiguation (WSD) method
proposed by Hulpus et al. [89] in their previous work. Said WSD method determines
a set of DBpedia entities, which Hulpus et al. call concepts, where each concept is a
sense of one of the top terms provided by LDA. For each extracted concept a sense
graph is constructed by traversing the DBpedia ontology. Hulpus et al. report that
DBpedia entities at most two hops away from the concepts are used to build the graph
since taking more hops will produce very large graphs with a lot of noise. The union
of the produced sense graphs is called the topic graph and the concepts acquired with
WSD are called the seed concepts of that graph. The intuition behind this approach
is that concepts of a topic are related and thusly they should lie near each other in the
DBpedia graph forming one connected graph.

After the topic graph is attained, suitable topic labels are extracted using a network
centrality measure. The assumption is that the most important concepts in the topic
graph are the central ones. Hulpus et al. compare their method implemented with
two centrality measures focused information centrality, and focused random walk
betweennes centrality, with the one proposed by Mei et al. The results show that
Hulpus’ and Greene’s method performs better.

Aletras and Stevenson [90] propose yet another graph-based method for ATL.
Instead of relying in an ontology, like [5] and [6], they use information obtained from
web searches. The topic label candidate extraction Aletras and Stevenson use is the
one proposed by Lau et al. [84]. A web search is then leveraged in identification of
most salient labels by querying a search engine with the top terms produced by a topic
modeling algorithm. The metadata of the search results has a list of keywords that
are used to construct a graph following the TextRank method for automatic keyphrase
extraction [27]. Like with TextRank, PageRank is then utilized for ranking the topic
labels and top ranked ones are selected as the actual labels. Aletras and Stevenson
report their proposed method surpasses the one proposed by Lau et al. [84] measured
with the same metrics used by Lau et al. in their paper.

2.5. Discussion

Both AKE and ATL have similar objectives and methods to accomplish the said
objectives. AKE is conventionally used to find keyphrases from a single document
where topic modeling with ATL focuses on distilling information of document
collections into phrases that capture their core ideas. Both of these objectives, in
their core, aim to decrease the cognitive load of human beings trying to make sense
of vast quantities of textual data. To tackle the difficult problems faced by both of
these research fields, researchers have used methods, such as graph theory and word
embeddings, among others.
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The trend in both AKE and ATL is to move from simple extractive methods to more
abstractive methods. Just like human annotators, methods using external knowledge
are able to find the broader topics related to the documents they process.

Further strengthening the case for using knowledge bases, Hasan et al. [25] suggest
that incorporating background knowledge to AKE systems might be able to alleviate
overgeneration, infrequency, and redundancy errors dicussed in Section 2.3.4.

AKE methods are commonly divided into supervised and unsupervised methods.
Supervised methods perform well if they are fed a large quantity of good quality
data. This means that if no such data is available the results are suboptimal, making
supervised methods impractical for many use cases. No redemption is gained by
the fact that most freely available datasets for AKE contain only scientific articles.
Unsupervised methods do not need any training data by definition but they require
more human ingenuity to bring in good results. A lot of effort by researchers has
been aimed to making these unsupervised methods better and all of the state-of-the-art
methods, excluding methods employing deep learning, are unsupervised. Deep
learning would be a valid method to consider if building a large dataset was in the
scope of this thesis.

Most of the unsupervised methods for AKE in the literature are graph-based. This
attribute makes them a natural match for graph-based knowledge bases, such as
DBpedia. AKE methods use different lexical features to build graphs, as discussed
in Section 2.3.2. One problem with this approach is that sometimes the keyphrases
extracted from the document are nonsensical; they do not represent any real word
phenomena.

In this thesis, it is argued that instead of using lexical features to build these graphs
it is better to employ EL to find all the mentions of knowledge base entities from a
text document and build the graph using the predicates connecting those entities. In
other words, the knowledge base entities would be the nodes in the graphs and the
predicates connecting those entities would be the edges. Building the graph in this
manner is inspired by the ATL methods developed by Allahyari et al. [5] and Hulpus
et al. [6] discussed in Section 2.4.2. However, Allahyari et al. and Hulpus et al. do not
employ EL to get the nodes. Instead, they rely on topical analysis.

Using EL with knowledge bases ensures that all the keyphrases, or topics, found
in the document would be existing, real world topics, e.g. when using DBpedia as
the knowledge base the topics found would be Wikipedia article titles. EL has the
disadvantage over lexical methods in that it lacks the ability to extract new or obscure
keyphrases that can not be found from the knowledge base. On the other hand,
connecting documents to a knowledge base using EL enables finding latent topics by
traversing the entities in the knowledge base to generate a larger graph that comprises
of entities not present in the document, but closely related to it.
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3. DESIGN AND IMPLEMENTATION

The goal of this thesis is to alleviate the heavy load of analyzing vast quantities of
textual data. To reach said goal, a system able to extract both apparent and latent
semantic topics from textual documents ranging from news articles to social media
postings, is designed. This system, named the Topic Distiller, will enable application
developers to build applications such as text summarizers and semantic search engines
that further help professionals such as researchers, journalists, and marketeers in their
daily work.

The system architecture described in this section is for an application that provides
a programmable interface to enable communication with other services, such as
graphical user interfaces or document indexers. This chapter first identifies the
requirements for the system (see Section 3.1), followed by design principles (see
Section 3.2), and then moves on to describe the composition of said system (see
Section 3.3).

3.1. Requirements

The aim of this thesis is to design and implement a tool that can distill a list of topics
from text documents, hence the name Topic Distiller. The implemented application
also has to be able to detect topics that are latent in the document so it has to have
knowledge of a large database of different topics. On top of that, the Topic Distiller
has to provide an API for querying all available topics. These topics could then be
further used to index documents for semantic search. The indexing is outside of the
scope of this thesis.

An important use case for the our system is to identify the topics trending in social
media. Dealing with social media posts is hard since they are usually short and do
not follow the grammar rules strictly. The frequency at which new data are produced
by social media is quite high, posing another requirement for the Topic Distiller: high
throughput. This means that the system should be fast enough to be usable in real time
social media analysis.

The sets of topics discovered by the Topic Distiller must be usable as they are to
minimize manual work; no human work should be required for checking that the topics
are correct. This means that the topics must represent real world phenomena and can
not be nonsensical.

Ideally, the final system will have as little code as possible to be maintained, because
more code will result in higher maintenance overhead and error probability.

On top of all the above requirements, the system must provide an simple interface
for it to be easily integrated to other systems.

The requirements are summarized in the following list:

1. The Topic Distiller must be able to identify relevant and latent topics in a textual
document.

2. The Topic Distiller must be able to extract topics from short texts such as social
media postings.
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3. The topics discovered by the Topic Distiller must represent real world
phenomena.

4. The Topic Distiller must be able to process enough documents per minute.

5. The Topic Distiller should be easy to maintain.

6. The Topic Distiller must provide an simple interface for communicating with
other systems.

3.2. Design Principles

This section describes the design principles adopted to ensure that the requirement of
easy maintenance (see Section 3.1) is met.

To fulfill said requirement, a modular design is adopted. Each module is responsible
for doing just one job and doing it well. The modules consist of a set of functions
that implement the necessary functionality of the modules. To ensure encapsulation,
interfaces between these modules, and functions, should be built in such a manner that
swapping the internals of one module would not require changes in other modules.
This modularity will provide for easy testing and thus reduce the number of software
bugs. The system will also be stateless further diminishing the complexity of the
system.

Reinventing the wheel is a fool’s errand; free and open-source software will be used
extensively. This will reduce the amount of maintainable code in the system by a great
degree.

The design principles applied in the implementation of the Topic Distiller are
summarized in the following list:

1. Modularity

2. Statelessness

3. Use of open-source software

Python was chosen as the programming language since it provides good support for
the design principles listed above. Python makes it easy to organize software into
self-containing modules1, Python is fully open-source, and has a large community
providing quality libraries for scientific computation.

3.3. System Design

This section describes the design of the Topic Distiller, which consists of four internal
modules and two external modules. The block diagram of the designed system, seen in
Figure 6, contains the internal (squares inside of the dotted line) and external (squares
with round corners outside of the dotted line) modules along with the communication

1https://docs.python.org/3/tutorial/modules.html
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between said modules. Internal modules consist of software that is specially built for
the Topic Distiller. External modules are third-party services that exist independently
of the Topic Distiller.

Figure 6: Block diagram of the system with its internal and external modules.

The main flow of the Topic Distiller is as follows: First, the system is provided
a text document. Second, EL is used to find all the DBpedia entity mentions from
said document. Third, a graph is built. Fourth, a centrality measure is used along with
lexical analysis to rank the nodes, and fifth, the top ranked nodes are returned. It should
be noted here that no lexical methods are used to generate the list of topic candidates,
only pure EL. Lexical methods are only used to rank the already generated candidates.

Different parts of the application flow are delegated to different modules. The API
module is responsible for serving the functionality of the system to the outside-world,
satisfying the requirement number 6 (see Section 3.1). The ontology module employs
EL to connect the document to DBpedia. Employing EL guarantees that topics
represent real world phenomena, hence meeting the requirement number 3. The graph
is built by the graph-module connecting DBpedia entities found in the document to
more abstract DBpedia entities. This method of building the graph aims to satisfy the
requirements 1 and 2.

In a famous paper, Donald E. Knuth said that “premature optimization is the root of
all evil” [91]. To follow this advice no special emphasis was dedicated to designing
as computationally fast system as possible. The design decision applied here is to first
meet the other requirements and then evaluate if the Topic Distiller needs optimization.

The following sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 will describe the design of the
modules in more detail.

3.3.1. Application Programming Interface (API)

API provides a way of communication between the system and other systems. Users
of the Topic Distiller send a request to the API to extract topics with the document that
the topics are to be extracted from. The document is then sent to the Ontology module,
described in Section 3.3.2, for processing.
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1 {
2 "text": "Software is a gas; \\
3 it expands to fill its container.",
4 "num_topics": 3
5 }

Figure 7: Example request JSON.

1 {
2 "topics": [
3 "Software",
4 "Computer science",
5 "Nathan Myhrvold"
6 ],
7 "success": true
8 }

Figure 8: Example response JSON.

The request is sent to the API using the Hyper Text Transfer Protocol’s (HTTP) [92]
POST method. The payload of the POST method is a JavaScript Object Notation
(JSON) [93] object containing two keys: text and num_topics. The value of the
former is the text, from which the topics are to be extracted, and the latter is the number
of topics to be extracted. An example request JSON object is as seen in Figure 7.
Note that the lines 2 and 3 of the figure are actually one line split into to using the
separator \\. This is only for presentation purposes. Valid JSON does not permit such
formatting.

The response sent from the API is also in JSON format and contains two keys,
topics, whose value is a JSON array of text strings representing the extracted topics,
and success, whose value is boolean true or false, indicating the success or
failure of topic extraction respectively. An example response JSON can be seen in
Figure 8.

If the request is malformed, or an error occurs while processing the request, the
success key will have false as its value and an error message is provided along
with the corresponding HTTP error code. An example JSON of failed request can be
seen in Figure 9.

1 {
2 "success": false,
3 "error_message": "Malformed request.",
4 "error_code": 400
5 }

Figure 9: Example failure response JSON.
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1 {
2 "text": "You’re a wizard, Harry!",
3 "confidence": 0.5,
4 "support": 20
5 }

Figure 10: Example of a request JSON to DBpedia Spotlight with parameters.

1 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 PREFIX dct: <http://purl.org/dc/terms/>
4 SELECT *
5 WHERE {
6 OPTIONAL { <%s> skos:broader ?broader } .
7 OPTIONAL { <%s> skos:broaderOf ?broaderOf } .
8 OPTIONAL { <%s> rdf:subClassOf ?subClassOf } .
9 OPTIONAL { <%s> dct:subject ?subject } .

10 }

Figure 11: SPARQL query for finding related resources.

3.3.2. Ontology

The Ontology module provides the necessary functions needed to handle all actions
regarding DBpedia. The first step is to find all the mentions of DBpedia sources
in the document received from the API module. To accomplish this task, DBpedia
Spotlight, described in Section 2.2.1, is employed by simply sending a JSON request
to the service with the text that is to be annotated along with the desired confidence
and support values (see Section 2.2.1). An example query can be seen in Figure 10.
The confidence and support used in this thesis were 0.5 and 20 respectively. DBpedia
Spotlight will then answer the request by sending a list of the annotated DBpedia
resources. After receiving the requested annotations they are aggregated in a list
that contains each unique annotation along with the number of times it appears in
the document.

Following Hulpus et al.’s work [6] the n most frequent DBpedia resources are
selected as seed concepts. DBpedia is then queried using the SPARQL query in
Figure 11 to find related DBpedia resources:

In the SPARQL query of Figure 11 all properties of type skos:broader,
skos:broaderOf, rdf:subClassOf, and dct:subject are selected from a
given resource. The %s symbol in the query is Python syntax for text formatting. The
%s is replaced by a resource that is going to be queried against.

This query finds the related DBpedia resources that are connected to the
seed concepts with one of the following edge types: skos:broader,
skos:broaderOf, rdf:subClassOf, dct:subject. The same query
is then used to find the related resources of the related resources of the seed concepts.
One of these queries is called a hop. It was empirically discovered by Hulpus et al. [6]
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that two hops is ideal and thusly in this work, only two hops are used. The found
nodes and their relationships to other nodes form a list of edges, where nodes are the
DBpedia resources and edges are the connections between those resources. This list
of edges is passed to the Graph builder module for further processing.

3.3.3. Graph Builder

The simplest of the modules is the Graph Builder. It has only two tasks: creating
the graph from edges provided by the Ontology module, and ranking the nodes in the
graph using the degree centrality measure. The nodes represent the topic candidates
and the edges the connections between the topics.

The decision to use degree centrality instead of focused information centrality or
focused random walk centrality proposed by Hulpus and Greene in [6] stems from
research conducted by Boudin in [94]. Although, the Bouding does not compare degree
centrality to the measures proposed by Hulpus and Greene, the Bouding concludes that
“degree centrality, despite being conceptually the simplest measure, achieves results
comparable to the widely used TextRank algorithm”.

After the graph is created and the nodes ranked, the nodes are passed to the Ranker
module for final ranking.

3.3.4. Ranker

The Ranker module devises the final ranking of the topic candidates. It does it by
calculating a topic overlap score (tos) for each topic and combining them with the
degree centrality scores of each topic given by the Graph builder module. Topic overlap
score is calculated with tokenizing the topic and calculating how many times each
token in the topic appears in the document and dividing the calculated number by the
length of the topic effectively normalizing the length of the topic. The formula of the
topic overlap score is as seen in Equation 11:

tos =
tf

|t|
, (11)

where tf is the token frequency, or the number of times the token appears in the
document, and |t| is the length of the topic in tokens.

The final topic score (fts) is then combined with the degree centrality score using
the following formula:

fts = αdcs + βtos, (12)

where α and β are coefficients for adjusting the weight of the degree centrality score
(dcs) and tos respectively. Following the intuition that topics directly mentioned in the
document are more important than latent ones, the coefficient β is given a value of 1.5
and α 1.0.

After the final score is calculated the topic candidates are ranked and n highest
scoring candidates are selected as the topics of the document.
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3.4. Implementation

This section describes how the system was implemented to match the requirements in
Section 3.1 and the system design presented in Section 3.3.

3.4.1. Tools and Libraries

The programming language chosen for this project was Python (version 3.6). As noted
in Section 3.2, Python is a highly modular language with a large collection of standard
libraries. Scientific computing community has been using Python for a long time
building a large quantity of libraries suitable for NLP. Python is also very expressive
and rather easy to learn, enabling easy collaboration with other programmers in the
future of a project.

The libraries used in this work can be found in Table 2.

Table 2: Project libraries

Library Usage Description
spaCy [95] NLP Provides a large set of functions for NLP
aiosparql [96] SPARQL Provides an easy way to integrate SPARQL queries in

python
NetworkX [97] Graphs Provides functions for building and analysing

network graphs
Flask [98] API Provides a set of utilities for building Web APIs

• spaCy is an “Industrial-Strength Natural Language Processing library” [95].
The authors of the library claim it is the fastest NLP library in the world, in terms
of computing time. spaCy provides a simple and unified API for its functions
making it very easy to use. These attributes make up for a strong case for using
spaCy rather than the more conventional NLTK library. In this thesis, spaCy is
used for text tokenization.

• aiosparql is an asynchronous SPARQL wrapper for Python [96]. It provides an
easy way to integrate SPARQL queries to Python code. There are other SPARQL
wrappers for Python but aiosparql is the only one providing asynchronous
network calls making network call optimization effortless.

• NetworkX is a “Python package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks” [97]. It is used in this
project for building the graphs and analyzing the centrality of the nodes in the
graphs.

• Flask is a micro-framework for Python for building web APIs [98]. This
minimalist framework is very modular enabling the use of only those functions
needed thus making APIs build with Flask light and simple.
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3.4.2. Internal Modules

The Python code in this work is split into modules, each providing a set of functions
that belong to a block seen in Figure 6. The design of the modules can be found in
Section 3.3 and a data flow diagram for the same modules can be seen in Figure 12.
The colored blocks of Figure 12 are the internal modules of the Topic Distiller. The
white circles represent the main functions of the said modules and the arrows represent
the data flow between the functions. The sizes and colors of the blocks and circles do
not carry any specific meaning.

Figure 12: Internal modules data flow diagram.

API

This module (the yellow box top-left in Figure 12) simply exposes the
extract_topics function to outside world with HTTP protocol using the
Flask micro-framework. The extract_topics function takes only two arguments:
the text to be analyzed and the number of topics to be returned. Detailed explanation
of the design of the API can be found in Section 3.3.1.

Ontology

This module (the red box top-right in Figure 12) connects the rest of the system
to DBpedia. It provides the SPARQL commands needed to traverse DBpedia
along with the logic to do so. The main functions in the Ontology module are
extract_dbpedia_ents, which queries DBpedia Spotlight for annotating
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mentions of DBpedia entities in the text, and get_edges, which creates a list of
linked DBPedia entities by recursively querying DBpedia given the entities annotated
by extract_dbpedia_ents. The implementation of the Ontology module relies
on the aiosparql library.

Graph Builder

The Graph Builder module (the green box bottom in Figure 12) comprises of functions
that are used to build and analyse the network graph from the list of connected edges
provided by the get_edges function of the Ontology module. The main functions
of the Graph Module are create_graph, which takes in a list of edges and builds a
graph from them, and sort_nodes which sorts the nodes by their degree centrality.
The implementation of the Graph Builder module utilises the NetworkX module.

Ranker

The Ranker module (the blue box left-middle in Figure 12) takes the sorted graph
from Graph Builder and scores and ranks the nodes according to the topic overlap
score (tos) defined in Equation 12. The Ranking module consists of two main
functions: get_topic_overlap_score, and rank_topics. The former is
used to calculate tos for each node or topic and latter for ranking the topics using the
Final Topic Score (fts) defined in Equation 12. The tokenization needed for computing
tos is provided by the spaCy library.
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4. EVALUATION

The scope of this evaluation was to check whether the implemented described in
Chapter 3 satisfies the requirements listed in Section 3.1. The evaluation described
in this chapter provides answers to the questions listed further below.

The first and most important question: Is the Topic Distiller able to identify relevant
and latent topics in a textual document? To answer this, the Topic Distiller is evaluated
using the conventional methods discussed in Section 2.3.3. These methods include
precision (p), recall (r), F-score (f), and R-precision (pR). The aforementioned metrics
are used to compare the performance of Topic Distiller against a set of state-of-the-art
AKE-algorithms listed in Section 4.1.

The second question to arise is: Is the Topic Distiller able to extract topics from
social media postings? This question is more problematic since no available dataset
for social media postings with human annotated keyphrases were found. In order to
evaluate the performance of the Topic Distiller on social media postings a dataset of
70 human annotated tweets was created (see Section: 4.1.1).

The third question is: Do the topics discovered by the Topic Distiller represent real
world phenomena? Fortunately, the usage of EL guarantees this and no evaluation of
this requirement is needed.

Performance testing was conducted to answer the question number 4: Is the Topic
Distiller able to process documents fast enough? The only performance metric of
interest was the throughput of the system, or how many documents the system is able
to process in a time period.

The fifth question would be: Is the Topic Distiller easy to maintain? This question
is hard to answer by evaluation. Instead, a number of design principles, described in
Section 3.2, were adopted to make the system as maintainable as possible.

The question number six is: Does the Topic Distiller provide a simple interface for
communicating with other systems? No evaluation was conducted on the simplicity
of the API provided by the Topic Distiller, but it is easy to see that the API is simple
enough by looking at its design in Section 3.3.1.

Additionally, a seventh question is added to the evaluation: Does machine
translation affect the performance of the Topic Distiller? This is an important question
since the Topic Distiller, in its current form, is only able to process documents written
in English. This clearly poses a problem to processing documents written in other
languages. One possible way to handle non-English documents is to first translate
them to English and them feed them to the Topic Distiller. While machine translation
keeps improving from year to year it still is not perfect, making the machine translated
document somewhat different from a human translated one.

To evaluate the effects of machine translation on the performance of the Topic
Distiller a special dataset, described in Section 4.1.1, is collected. This dataset includes
articles written both in Portugese and English. The Portuguese articles are then
translated to English using Google Translate service1. Then the performance of the
Topic Distiller is measured using original (English) and the translated versions of the
articles and the results compared.

To summarize, here are the questions to be addressed in this evaluation:

1https://translate.google.com/
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1. Is the Topic Distiller able to identify relevant and latent topics in a textual
document?

2. Is the Topic Distiller able to extract topics from short texts such as social media
postings?

3. Is the Topic Distiller able to process enough documents fast enough?

4. Does machine translation have an effect to the output of the Topic Distiller?

4.1. Test Setup

This section describes the evaluation setup including the methods and data used.

4.1.1. Datasets

Five datasets were used to evaluate the Topic Distiller. Two of the datasets (hulth2003
and semeval2010) are from the literature. The other three datasets (guardian, tweets,
wikinews) are composed for the purposes of this thesis. More information on the
composition of these three datasets can be found in the appendix (see Section 8).
A summary of datasets can be found in table 3 and descriptions of said datasets are
presented further in this section.

The Type column of Table 3a describes what sort of document the dataset consists
of and the # of documents indicates how many documents each datasets has. The Avg
KPD column tells the average number of keyphrases per document and the Max KPD
and Min KPD columns of 3b indicate what are the maximum and minimum number of
keyphrases per document respectively. Similarly the Avg length, Max length, and Min
length columns of Table 3c express the average, maximum, and minimum length of
documents, measured by characters, found in a dataset. The % in Wikipedia column of
Table 3b depicts the number of keyphrases that are also Wikipedia article titles2. This
information is relevant since the Topic Distiller is only able to find topics that are also
Wikipedia article titles. The % of latent column of Table 3c shows which percentage
of keyphrases in the dataset are latent in their respective documents.

1. Hulth2003
The Hulth2003 (hulth2003) [43] is a dataset of 2000 scientific article abstracts
in English. The abstracts were collected from journal papers during the
years 1998-2002 and the disciplines include Computers and Control, and
Information Technology. The 2000 articles are randomly split into three sets:
training, testing, and validation, each consisting of 1000, 500, and 500 abstracts
respectively. We used the 500 abstracts from validation dataset. The maximum
number of keyphrases per document in the validation set is 28 and minimum 1.
The longest document is 1843 characters long, while the shortest is only 105
characters. Latent keyphrases are at 23.1% of all the keyphrases in this dataset.

2The set of Wikipedia article titles was downloaded from
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-all-titles.gz on 22nd of January 2019
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Table 3: Dataset descriptions

(a)

Name Type # of documents
hulth2003 Abstracts 500
semeval2010 Scientific articles 144
guardian News articles 190
tweets Social media postings 60
wikinews News articles 135

(b)

Name Avg KPD Max KPD Min KPD % in Wikipedia
hulth2003 9.15 28 1 13.3
semeval2010 3.88 13 2 26.7
guardian 5.75 19 2 48.4
tweets 4.33 9 1 46.5
wikinews 9.13 26 3 38.9

(c)

Name Avg length Max length Min length % of latent
hulth2003 805 1843 105 23.1
semeval2010 48100 86483 16707 25.9
guardian 4070 39334 964 52.8
tweets 137 288 43 44.6
wikinews 4740 18163 2110 42.4

2. SemEval-2010 Task 5
The SemEval-2010 Task 5 (semeval2010) [99] dataset consists of conference and
workshop papers totaling 284 documents. The documents fall into the following
disciplines: Distributed Systems, Information Search and Retrieval, Distributed
Artificial Intelligence – Multiagent Systems, and Social and Behavioral Sciences
– Economics.

In contrast to hulth2003 dataset, this datasets contains the whole articles,
including the abstract. The data is split into trial, train, and test sets with 40,
144, and 100 articles. The trial data is a subset of the training data which
decreases the amount of unique documents to 244 documents. In this work,
the train dataset is used. Most keyphrases per document in the train set is 13
and the least keyphrases per document is 2. 86483 is the length of the longest
document, measured in characters, the shortest being 16707. Latent keyphrases
make 25.9% of the total keyphrases.

3. Guardian
The Guardian (guardian) dataset is the first of the three datasets created
specifically for this work. The dataset consists of 200 news articles collected
from The Guardian3 web news site during August of 2018. All of the articles
include annotations for topics present in the article as can be seen from Figure

3https://theguardian.com
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13. 19 is the maximum number of keyphrases per document and 2 is the
minimum. The longest document is 39334 characters long and the shortest lies
only at 964 characters. The percentage of latent keyphrases of total keyhprases
is 52.8.

In addition to consisting of news articles instead of scientific articles or abstracts,
the keyphrases in the guardian dataset are often absent from the documents
themselves. This fact makes the guardian dataset a good candidate for evaluating
the performance of AKE algorithms on latent keyphrases.

Unfortunately, due to copyright issues, this dataset cannot be distributed.

Figure 13: The Guardian article topics source: https://www.theguardian.
com/world/2018/oct/01/japan-us-military-base-critic-
voted-in-as-okinawa-governor.

4. Tweets
The Tweets (tweets) dataset is also created for this evaluation. It consists of 60
randomly selected tweets collected on 20th of September of 2018. The tweets
were annotated by the author of this work. The annotations include keyphrases
that are present in the tweets themselves and some keyphrases that cannot be
found in the documents. Most keyphrases per document resides at 9 and least at
1. The longest tweet is 288 characters in length while the shortest is 43 characters
long. 44.6% of all keyphrases in this dataset are latent.

The distribution of this dataset is also prohibited by the copyright issued by
Twitter.

5. Wikinews
Like the guardian and tweets datasets, the wikinews dataset is also composed for
the purpose of evaluating the Topic Distiller. It consists of 135 articles collected
from wikinews4. What sets this particular dataset apart from the others, is the
fact that this dataset consists of sets of news articles both in Portuguese and

4https://en.wikinews.org/
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English. The purpose of this dataset is to enable evaluation of the effect of
machine translation on different metrics of evaluation. The test setup, which
employs this dataset, is detailed in Section 4.4. Maximum number of human
annotated keyphrases in a document lies at 26 and minimum at 3, while lengths
of the document reside between the minimum of 2110 characters and maximum
of 18163 characters. The percentage of latent keyphrases of all keyphrases is
42.4.

4.1.2. Data Preparation

The only preprocessing done to the documents and their keyphrases is lowercasing.
No further preprocessing is done to emulate the messy reality where it is difficult to
know what kind of textual data might be fed to the system.

4.1.3. Latent Keyphrases

Evaluating the ability of AKE methods to discover latent keyphrases, or keyphrases
that are not to be found in the documents themselves, needs special consideration.
For example, should a keyphrase be labeled as present if parts of it are present in the
document? Or should the keyphrase be thought as latent if it is constructed from words
all found within the document but the keyphrase itself is not in the document?

In this work, a keyphrase is classified as present if all of its component words
are found within the document and latent if one ore more words are missing in the
document. Non alphanumerics are removed from the keyphrases before evaluating if
they are latent or not.

To evaluate the performance of AKE methods on discovering latent keyphrases a
modified versions of the datasets, of section 4.1.1, are created. In these modified
datasets the present keyphrases are removed leaving only the latent ones.

4.2. Metrics

This section details the metrics used to evaluate the Topic Distiller.

4.2.1. Precision, Recall, F-score, and R-precision

To evaluate the performance of Topic Distiller versus state-of-the-art models we used
the metrics p, r, f, and pR, defined in Section 2.3.3 by equations 5, 6, 7, 10 respectively.

The metrics, p, r, and f, are computed first with 5 extracted keyphrases and then
with 10 and 15 extracted keyphrases.

The metric pR is computed three times per dataset using the three different
strategies, Exact, Includes, and PartOf, proposed by [77]. The Exact strategy
compares keyphrases as they are; only exact matches are counted as correct ones. The
Includes method also considers extracted keyphrases that include a standard one as a
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substring as correct. For example, an extracted keyphrase neural machine translation
would be considered as correct if the corresponding standard keyphrase is machine
translation. Conversely, the PartOf method considers an extracted keyphrase as correct
if it is a part of an standard keyphrase. For example, an extacted keyphrase artifical
intelligence is considered correct if the standard is general artifical intelligence. For
each strategy, lemmatization is used to reduce the words in the keyphrases into their
base forms. For precision, recall, and f-score no such lemmatization is used. To
make the lengths of the lists of extracted and standard keyphrases equal in length
15 keyphrases are extracted using each method and the length of the longer list of
keyphrases is truncated to match the length of the shorter list. For example, if the
length of standard keyphrases is 12 then three keyphrases from the end of the extracted
keyphrases are cut off.

In addition to the aforementioned metrics, a modified version of each method, where
the ranking is not taken into account, is introduced. Instead correct keyphrases are
computed as the intersection of sets of standard and extracted keyphrases. These
modified metrics are used to evaluate how much of the latent keyphrases the systems
are able to identify.

4.2.2. Processing Time

Two tests are composed for evaluating the processing time of the algorithms. The
first test evaluates the effect of document length on the processing time. The test is
devised so that a document is truncated to be only 1000 characters of length. Then,
1000 characters are added at each step and the processing time is recorded. At each
step the measurement is performed ten times to average out possible fluctuations of
time caused by the underlying operating system. The document used in this test is the
longest of the documents in the guardian dataset.

The second test evaluates how the number of keyphrases extracted affects the
processing time. This is done by incrementing the number of keyphrases from one
to 20. Again, at each step the measurement is repeated ten times and the final value is
the average of those ten times.

All processing time tests were conducted on an Apple MacBook Pro (15-inch, 2018)
laptop with 2,6 GHz Intel Core i7 processor and 16 GB 2400 MHz DDR4 memory. The
operating system used was macOS Mojave version 10.14.3.

4.3. State-of-the-art AKE methods

To compare the performance of state-of-the-art AKE methods to the Topic Distiller,
we employ the pke – python keyphrase extraction [100] toolkit which contains
implementations for multiple state-of-the-art AKE methods. We use the methods
described in Table 4.

These methods include only unsupervised graph-based AKE methods. This makes
sense since the method proposed in this work is also an unsupervised graph-based
method.
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Table 4: AKE algorithms used in evaluation

Name Author(s) Method
Topical PageRank Sterckx et al. [61] Topical information with PageRank
PositionRank Florescu et al. [54] Word position with PageRank
TopicRank Bougouin et al. [49] Topic clusters with PageRank
MultipartiteRank Boudin [56] Multipartite Graphs with PageRank

The author of the pke toolkit, Boudin, evaluates the performance of the algorithms
implemented in the toolkit with the semeval2010 test dataset using F-score and 10
top keyphrases without taking ranking of the keyphrases into account. The version
of the standard keyphrases Boudin uses in the evaluation are the combined author-
and reader-assigned keyphrases. Stemming is also used in both standard and extracted
keyphrases. The results of this evaluation can be seen in Table 5.

Table 5: Evaluation of pke algorithms by Boudin fetched from: https://github.
com/boudinfl/pke in November 2018

Name F-score
Topical PageRank 0.031
PositionRank 0.067
TopicRank 0.119
MultipartiteRank 0.142

Table 6: Reproduced evaluation of pke algorithms

Name F-score
Topical PageRank 0.029
PositionRank 0.065
TopicRank 0.118
MultipartiteRank 0.138

A reproduction of Boudin’s evaluation was conducted to make sure that the results
Boudin reports are valid and that the pke toolkit is safe to use in the evaluation of the
Topic Distiller. Results of this reproduction are found in Table 6. By comparing the
F-scores, reported by Boudin (see Table 5), to the reproduced F-scores (see Table 6),
it can be noted that the use of pke is safe, since the scores differ only marginally.

4.4. Effect of Machine Translation

The effect of machine translation on the performance of the Topic Distiller was also
evaluated. This was done by measuring precision, recall, F-score, and R-score with
two different sets of documents. The first set are English news articles and the second
set are the same articles written in Portuguese and then translated to English using the
Google Translate5 machine translation service. Then the aforementioned metrics are

5https://translate.google.com/
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computed using both the original English version and the translated English version in
order to see the impact of machine translation on this system.

This evaluation is carried out because, as it is described in this thesis, the Topic
Distiller is only able to extract keyphrases from documents written in English. Machine
translation is one possible solution to extract keyphrases from documents written in
other languages.

4.5. Results

This section lists the results of the evaluation described in Section 4.1.

4.5.1. Precision, Recall, and F-score

This section lists the results of p, r, and f measurements. The results are grouped so
that each dataset has its own page where the evaluation results are presented along with
a short explanation. The highest score in each column is in bold and the method that
has the highest mean score is in bold also. Note that the results of measurements with
10 keyphrases are omitted from the tables for brevity but are still visible on the plot
figures.
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hulth2003

The results depicted in Table 7 and Figure 14 show that the Topic Distiller is not
optimal for extracting keyphrases from abstracts of scientific articles. Far better
results can be achieved using conventional methods from which TopicRank has the
top performance. The poor performance of Topic Distiller could be attributed to two
factors: 1. Many of the keyphrases in the hulth2003 dataset (86.7%, see Table 3b) can
not be found in the wikipedia as article titles. 2. The keyphrases in the hulth2003
dataset are very specific and the Topic Distiller is biased towards more general
concepts.

Table 7: p, r, and f evaluated on hulth2003 dataset with 5 and 15 keyphrases

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0048 0.0016 0.0047 0.0047 0.0046 0.0023
TPR [61] 0.0224 0.014 0.0152 0.0221 0.0172 0.0166
PR [54] 0.0214 0.0135 0.0155 0.0217 0.0171 0.0161
TR [49] 0.0293 0.0188 0.0217 0.0281 0.0236 0.0219
MR [56] 0.0281 0.0157 0.0204 0.0252 0.0223 0.0187

(a) Precision (b) Recall

(c) F-score (d) Legend

Figure 14: Precision, recall, and F-score on hulth2003 dataset.
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semeval2010

The evaluation results on the semeval2010 dataset seen in Table 8 and Figure 15
show that none of the algorithms compared perform very well on this dataset. Only
TopicRank and MultipartiteRank are able to extract any matches and even their
performance is an order of magnitude worse than with the hulth2003 dataset. This
is due to the fact that, unlike the hulth2003 dataset, semeval2010 dataset consists
of whole scientific articles with non-human language, like mathematical notation,
included, making the extraction process much harder.

Table 8: p, r, and f evaluated on semeval2010 dataset with 5 and 15 keyphrases

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0 0.0 0.0 0.0 0.0 0.0
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0069 0.0023 0.0091 0.0091 0.0078 0.0037
MR [56] 0.0056 0.0019 0.0087 0.0087 0.0068 0.003

(a) Precision (b) Recall

(c) F-score (d) Legend

Figure 15: Precision, recall, and F-score on semeval2010 dataset.



48

guardian

As it can be noted from looking at Table 9 and Figure 16, Topic Distiller is the only
algorithm that scores above zero in precision, recall and F-score when evaluated on
the guardian dataset. The reason for this stems from the facts that the guardian dataset
contains the highest percentage of latent keyphrases (52.8%, see Table 3c) and that
almost half (48.4%, see Table 3b) of the keyphrases are also Wikipedia article titles.

The keyhprases in the guardian dataset are also more general, opposed to being
specific, than in the hulth2003 and semeval2010 datasets making Topic Distiller more
suitable for finding these keyphrases.

Table 9: p, r, and f evaluated on guardian dataset with 5 and 15 keyphrases

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0958 0.0331 0.0952 0.0964 0.0922 0.048
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0 0.0 0.0 0.0 0.0 0.0
MR [56] 0.0 0.0 0.0 0.0 0.0 0.0

(a) Precision (b) Recall

(c) F-score (d) Legend

Figure 16: Precision, recall, and F-score on guardian dataset.
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tweets

Looking at Table 10 and Figure 17 it is clear that Topic Distiller dominates in
performance when tweets are in question. This can be attributed to the fact that
tweets are very short texts. Also the tweets dataset contains high percentage of
latent keyphrases (44.6%, see Table 3c) and a large portion of the keyphrases are also
Wikipedia article titles (46.5%, see Table 3b).

Table 10: p, r, and f evaluated on tweets dataset with 5 and 15 keyphrases

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0625 0.0208 0.0803 0.0803 0.0676 0.0322
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0 0.0 0.0 0.0 0.0 0.0
MR [56] 0.0 0.0 0.0 0.0 0.0 0.0

(a) precision (b) recall

(c) f-score (d) Legend

Figure 17: precision, recall, and f-score on tweets dataset.
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4.5.2. R-precision

This section contains the results of pR measurements described in Section:4.2.1. The
Tables 11, 12, 13, and 14 presenting the pR measurements clearly show that pR is
more forgiving metric than p, r, f (see Tables 7, 8, 9, 10) are. This was expected since
pR allows for more leeway when the automatically discovered keyphrases are matched
against the gold standard ones, as detailed in Section 4.2.

hulth2003

As it was the case with p, r, and f, the TopicRank (TR) performs the best on scientific
abstracts when measured with R-precision as seen in Table 11. MultipartiteRank
(MR) comes as close second scoring best when measured with PartOf strategy. The
Topic Distiller (TD) has the worst performance of the methods but achieves scores
comparable to the top methods when measured with the PartOf strategy.

Table 11: R-precision evaluated on hulth2003 dataset

Method Exact PartOf Includes
TD [*] 0.0183 0.0543 0.0231
TPR [61] 0.0262 0.0532 0.0392
PR [54] 0.0256 0.0549 0.0343
TR [49] 0.0342 0.0561 0.0411
MR [56] 0.0301 0.0574 0.0357

semeval2010

R-precision measured on the semeval2010 dataset, seen in Table 12, shows interesting
results as the top performer is not TopicRank (TR) as usual. Here, the Topic Distiller
(TD) scores highest points when measured with the Exact strategy, MultipartiteRank
(MR) achieves best performance with the PartOf strategy, and PositionRank (PR) with
the Includes strategy.

Table 12: R-precision evaluated on semeval2010 dataset

Method Exact PartOf Includes
TD [*] 0.0149 0.025 0.0206
TPR [61] 0.0 0.0014 0.0406
PR [54] 0.0051 0.0086 0.0471
TR [49] 0.0105 0.0417 0.0156
MR [56] 0.0122 0.0538 0.0235

guardian

By looking at the Table 13, it is evident that the Topic Distiller achieves by far the best
scores in the guardian dataset. Worth mentioning is the fact that all the other methods
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scored zero points on this dataset when measured with the conventional precision,
recall, and F-score. This combined with the fact that relative change in performance
measured with the three different strategies – especially the difference between the
Exact strategy and the other two strategies – is not very large indicates that the list of
keyphrases extracted and the list of standard keyphrases in the dataset are of different
lengths.

Table 13: R-precision evaluated on guardian dataset

Method Exact PartOf Includes
TD [*] 0.0964 0.1031 0.1199
TPR [61] 0.009 0.0134 0.0282
PR [54] 0.0092 0.0184 0.0305
TR [49] 0.0147 0.0188 0.0202
MR [56] 0.0118 0.0154 0.0168

tweets

The Table 14 shows that, again, the Topic Distiller dominates when tweets are in
question, but the gap between performance of Topic Distiller to other methods is not
as large as in the guardian dataset.

Table 14: R-precision evaluated on tweets dataset

Method Exact PartOf Includes
TD [*] 0.0881 0.0946 0.1245
TPR [61] 0.0413 0.0484 0.0849
PR [54] 0.0543 0.0575 0.0865
TR [49] 0.0621 0.0673 0.0972
MR [56] 0.0601 0.0653 0.0953

4.5.3. Latent Keyphrases

The Table 15 clearly shows that the Topic Distiller (TR) is the only method present in
the comparison able to find latent keyphrases. The semeval2010 dataset is evidently
the hardest dataset to extract keyhprases from. None of the methods was able to find
any of the latent keyphrases from it. The Topic Distiller performs best on the tweets
dataset by a large margin. Worth noting is that the keyphrases of the tweets dataset
were annotated by the author of this thesis, so there might be a bias present skewing
the results.
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Table 15: Precision (p), recall (r), and F-score (f) evaluated on latent keyphrases with
5 and 15 keyphrases

(a) hulth2003

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0124 0.0193 0.0082 0.0056 0.0073 0.0034
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0 0.0 0.0 0.0 0.0 0.0
MR [56] 0.0 0.0 0.0 0.0 0.0 0.0

(b) semeval2010

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0 0.0 0.0 0.0 0.0 0.0
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0 0.0 0.0 0.0 0.0 0.0
MR [56] 0.0 0.0 0.0 0.0 0.0 0.0

(c) guardian

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.0066 0.0151 0.0059 0.0055 0.0053 0.0035
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0 0.0 0.0 0.0 0.0 0.0
MR [56] 0.0 0.0 0.0 0.0 0.0 0.0

(d) tweets

Method p@5 p@15 r@5 r@15 f@5 f@15
TD [*] 0.2 0.2203 0.1275 0.0596 0.1037 0.0358
TPR [61] 0.0 0.0 0.0 0.0 0.0 0.0
PR [54] 0.0 0.0 0.0 0.0 0.0 0.0
TR [49] 0.0 0.0 0.0 0.0 0.0 0.0
MR [56] 0.0 0.0 0.0 0.0 0.0 0.0
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4.5.4. Processing Time Performance

This section covers the evaluation results on the processing time performance.

(a) Processing time (b) Documents processed per minute

(c) Processing time (d) Documents processed per minute

Figure 18: Extraction time and documents processed per minute as functions of
number of extracted keyphrases and document length in characters.

As it can be seen from Figure 18 and Tables 16, 17, 18, and 19, TopicRank (TR)
and PositionRank (PR) are the fastest of the methods in this comparison. Slowest are
the Topic Distiller (TD) and TopicalPagerank (TPR). That said, all algorithms are able
to extract keyphrases in a reasonably short amount of time, that is, they work at a
throughput that can not be reasonably expected from any individual human being.

It is also evident that the number of extracted keyphrases does not have an impact
on the processing time in any of the methods. This is due to the fact that the number
of keyphrases extracted is set by taking the top n keyphrases from a set of keyphrase
candidates. Selecting the top 5 candidates takes no longer than choosing 15 or 20 of
the top candidates.

Document length, on the other hand, is inversely proportional to the processing time.
This is expected, since more text means more data to analyze. MultipartiteRank (MR)
is most affected by the length of the documents while TD does not take a big hit on the
processing time when the length of the document increases.

It should be noted that very fluctuating behavior of TR, MR, and PR seen in
Figure: 18b is due to the fact that these algorithms are so fast that slight changes
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in processing speeds, caused by the underlying operating system, result in drastic
difference in the amount of documents processed, even when the results are an average
of multiple measurements.

Table 16: Processing time in seconds with extracted keyphrases

Num of keyphrases TD [*] TPR [61] PR [54] TR [49] MR [56]
1 1.2030 7.1724 0.1879 0.1180 0.1432
2 1.4323 7.0978 0.2332 0.0876 0.1121
3 1.1736 7.2587 0.1881 0.1254 0.1467
4 1.1896 7.2197 0.2243 0.0899 0.1088
5 1.1618 7.1299 0.2016 0.1073 0.1394
6 1.2874 7.1423 0.2063 0.0930 0.1097
7 1.4561 7.0473 0.2235 0.0966 0.1337
8 1.2373 7.0408 0.1947 0.1020 0.1315
9 1.2705 6.9800 0.2302 0.0902 0.1412
10 1.2821 7.0352 0.1979 0.1097 0.1112
11 1.4904 7.0497 0.2149 0.0872 0.1282
12 1.2925 6.9375 0.2109 0.1136 0.1126
13 1.2740 6.9614 0.2031 0.0796 0.1309
14 1.3134 6.9572 0.2226 0.1125 0.1227
15 1.4151 6.9232 0.1893 0.0887 0.1256
16 1.4029 6.9182 0.2335 0.0990 0.1184
17 1.4851 6.9498 0.2183 0.1047 0.1249
18 1.3288 7.0306 0.2312 0.1015 0.1232
19 1.3654 6.9722 0.2339 0.1101 0.1245
20 1.6553 7.0326 0.2051 0.1114 0.1195
mean 1.3358 7.0428 0.2125 0.1014 0.1254
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Table 17: Documents processed per minute with extracted keyphrases

Num of keyphrases TD [*] TPR [61] PR [54] TR [49] MR [56]
1 49.8753 8.3654 319.3188 508.4746 418.9944
2 41.8907 8.4533 257.2899 684.9315 535.2364
3 51.1247 8.2659 318.9793 478.4689 408.9980
4 50.4371 8.3106 267.4989 667.4082 551.4706
5 51.6440 8.4153 297.6190 559.1799 430.4161
6 46.6056 8.4007 290.8386 645.1613 546.9462
7 41.2060 8.5139 268.4564 621.1180 448.7659
8 48.4927 8.5218 308.1664 588.2353 456.2738
9 47.2255 8.5960 260.6429 665.1885 424.9292
10 46.7982 8.5285 303.1834 546.9462 539.5683
11 40.2576 8.5110 279.1996 688.0734 468.0187
12 46.4217 8.6486 284.4950 528.1690 532.8597
13 47.0958 8.6190 295.4210 753.7688 458.3652
14 45.6830 8.6242 269.5418 533.3333 488.9976
15 42.3998 8.6665 316.9572 676.4374 477.7070
16 42.7686 8.6728 256.9593 606.0606 506.7568
17 40.4013 8.6333 274.8511 573.0659 480.3843
18 45.1535 8.5341 259.5156 591.1330 487.0130
19 43.9432 8.6056 256.5199 544.9591 481.9277
20 36.2472 8.5317 292.5402 538.5996 502.0921
mean 45.2836 8.5209 283.8997 599.9356 482.2860

Table 18: Processing time in seconds with document length measured in characters

Document length TD [*] TPR [61] PR [54] TR [49] MR [56]
100 1.1434 6.9130 0.0505 0.0192 0.0227
200 1.3920 6.9871 0.1105 0.0399 0.0418
300 1.4132 7.0379 0.1485 0.0720 0.0835
400 1.7153 7.1155 0.1847 0.1104 0.1134
500 1.2846 7.1482 0.2216 0.1409 0.1678
600 1.3257 7.2345 0.3141 0.1870 0.2104
700 1.4027 7.2623 0.3035 0.2341 0.2614
800 1.8234 7.2903 0.3567 0.2515 0.3200
900 1.8196 7.3307 0.4364 0.2848 0.3734
1000 2.0734 7.3674 0.4264 0.3393 0.4433
2000 2.9537 7.7866 0.8365 0.9179 1.2767
3000 3.4089 8.0927 1.1825 1.6830 2.5987
4000 3.8271 8.2494 1.6362 2.5484 4.1863
5000 4.3499 8.5118 1.8523 3.7777 6.0764
mean 1.7630 7.2350 0.3655 0.4675 0.7100
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Table 19: Documents processed per minute with document length measured in
characters

Document length TD [*] TPR [61] PR [54] TR [49] MR [56]
100 52.4751 8.6793 1188.1188 3125.0000 2643.1718
200 43.1034 8.5873 542.9864 1503.7594 1435.4067
300 42.4568 8.5253 404.0404 833.3333 718.5629
400 34.9793 8.4323 324.8511 543.4783 529.1005
500 46.7071 8.3937 270.7581 425.8339 357.5685
600 45.2591 8.2936 191.0220 320.8556 285.1711
700 42.7746 8.2618 197.6936 256.3007 229.5333
800 32.9056 8.2301 168.2086 238.5686 187.5000
900 32.9743 8.1848 137.4885 210.6742 160.6856
1000 28.9380 8.1440 140.7129 176.8347 135.3485
2000 20.3135 7.7055 71.7274 65.3666 46.9962
3000 17.6010 7.4141 50.7400 35.6506 23.0885
4000 15.6777 7.2733 36.6703 23.5442 14.3325
5000 13.7934 7.0490 32.3922 15.8827 9.8743
mean 40.9898 8.3249 930.4084 1911.8406 1769.8992
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4.5.5. The Effect of Translation

This section lists the results of the evaluation of the effect of translation on the different
evaluation metrics.

The Tables 20, 21, and 22 clearly show that the translation has a negative effect on
the evaluation metrics. Precision takes the worst hit, while R-precision with the PartOf
strategy is least affected by the translation.

Table 20: Original vs. translated with 5 keyphrases

Metric Original Translated Relative change [%]
Precision 0.0222 0.0133 -40.0
Recall 0.0117 0.0081 -30.5
F-score 0.015 0.01 -33.5
R-precision Exact 0.013 0.0105 -18.8
R-precision Includes 0.0335 0.0282 -15.9
R-precision PartOf 0.0139 0.0121 -12.6

Table 21: Original vs. translated with 10 keyphrases

Metric Original Translated Relative change [%]
Precision 0.0126 0.0089 -29.4
Recall 0.013 0.0105 -18.8
F-score 0.0124 0.0095 -23.4
R-precision Exact 0.013 0.0105 -18.8
R-precision Includes 0.0335 0.0282 -15.9
R-precision PartOf 0.0139 0.0121 -12.6

Table 22: Original vs. translated with 15 keyphrases

Metric Original Translated Relative change [%]
Precision 0.0094 0.0066 -29.6
Recall 0.013 0.0105 -18.8
F-score 0.0106 0.008 -24.6
R-precision Exact 0.013 0.0105 -18.8
R-precision Includes 0.0335 0.0282 -15.9
R-precision PartOf 0.0139 0.0121 -12.6
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5. DISCUSSION

The goal of the evaluation, detailed in Chapter 4, was to check that the requirements,
set in Section 3.1, were fulfilled by the Topic Distiller. Additionally, the effect of
machine translation to the performance of the Topic Distiller was evaluated.

This chapter discusses the results of that evaluation recalling the design and
implementation details of Chapter 3.

5.1. General Discussion

Tables 7 and 8, along with Figures 14 and 15 reveal that the Topic Distiller is not the
best candidate for extracting topics from scientific articles. The TopicRank algorithm
dominates on performance in this domain with MultipartiteRank as close second. In
terms of precision, recall and F-score, the Topic Distillers performs worst of all the
candidates but achieves comparable results with R-precision with PartOf method.

Topic Distiller redeems itself by achieving best performance on the semeval2010
dataset when measured with R-precision using the Exact and PartOf strategies, as
can be seen from Table 12. However, the Topic Distiller looses to PositionRank
when measured with R-precision using the Includes strategy and to TopicRank when
precision, recall and F-score are in question, as is evident from Table 8.

By far the best performance of Topic Distiller is achieved with the guardian and
tweet datasets, as shown in Tables 9, 10, 13, and 14. Here, the Topic Distillers
performance far surpasses any of the comparison algorithms by all metrics, except for
R-precision with strategy Includes measured on the tweets dataset, where TopicRank
is the best performing method. The ability to find topics from news articles and,
especially, from social media postings is very important in the modern world, because
of the overwhelming quantity of this type of data freely available on the internet.

As a summary, the evaluation test results of Section 4.5 show that the Topic Distiller
is able to identify both relevant and latent topics in textual content. It works best on
news articles and social media postings compared to the state-of-the-art methods but
it is unable to reach the preformance of those methods when evaluated on abstracts of
scientific articles.

5.2. Satisfying the Requirements

This section takes apart the requirements listed in Section 3.1 and checks that the Topic
Distiller fulfills them one by one.

5.2.1. Is the Topic Distiller Able to Identify Relevant and Latent Topics in Textual
Content?

None of the compared state-of-the-art methods were able to find any of the latent
keyphrases from the datasets. Only Topic Distiller was able to do so. This stems
from the fact that these methods only extract keyphrases from documents. They may
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be able to combine the words of the document in novel ways but the vocabulary is
strictly restricted to the document processed.

The poor performance of all algorithms on the semeval2010 dataset is most likely
do to the fact that large portions of the documents in the datasets are not natural human
language.

5.2.2. Is the Topic Distiller Able Extract Topics From Short Texts Such as Social
Media Postings?

The evaluation results on tweets dataset, seen in Tables 10, and 14, make it clear that
the Topic Distiller is not only able to identify topics in tweets, but that it exceeds the
performance of state-of-the-art methods by a significant degree. Though the system
was not evaluated on Facebook data, it is reasonable to assume that the Topic Distiller
would be able to process Facebook status posts, along with other short social media
postings, as well.

5.2.3. Is the Topic Distiller Able to Process Enough Documents Per Minute?

Figure 18 shows that all algorithms show significant increase in processing time when
document length is increased and as the result, the number of documents processed
per minute decreases. Conversely, the number of extracted keyphrases does not seem
to affect the processing time immensly in any of the algorithms. Though not the
swiftest algorithm available, Topic Distiller is able to process a reasonable amount
of documents per minute.

5.2.4. Does Machine Translation Have an Effect on the Output of the Topic
Distiller?

Tables 20, 21, and 22 show that using machine translation significantly decreases the
performance of the Topic Distiller. This is evident from decrease of all performance
metrics when machine translated documents are compared to the original ones. That
being said, the Topic Distiller was still able to identify some of the original keyphrases
using the translated documents making it at least a reasonable fall-back if no other
methods are found for non-English texts.

5.3. Future Work

The current version of the Topic Distiller has three tunable parameters: the number of
hops used to traverse the DBpedia graph (see Section: 3.3.2), and the coefficients α
and β (see Section: 3.3.4), former of which is used to weight the importance of degree
centrality in ranking and latter for the importance of topic overlap score. However, the
effect of tuning these parameters was not evaluated. This calls for further analysis in
later work.
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The current version of the Topic Distiller is only able to process data in English
language. The authors of DBpedia provide the ability to compile DBpedia with
all languages available in Wikipedia. The performance of the Topic Extracor using
different language datasets should be researched. The integration of ontologies apart
from DBpedia, such as Wikidata and Yago, should also be investigated.

An interesting research problem would be to combine the power of neural networks
with the vast knowledge of ontologies for AKE. The combination of neural networks
to knowledge graphs have already been researched and systems such as Graves
et al.’s Differentiable Neural Computer [101] and Pham et al.’s Graph Memory
Networks [102] show very promising results. These neural networks are able to reason
by learning how to traverse konwledge graphs. This reasoning ability would most
likely be beneficial for AKE as well. Using deep learning to connect deep neural
networks to knowledge bases should not be confused with the deep learning metrics
discussed in Section 2.3.1, which focus only on extracting or generating keyphrases
from text instead of using knowledge bases as basis for logical reasoning. Alas,
the lack of large datasets also prohibit these methods to reach their potential. Deep
learning has been very successful in the area of machine vision where huge datasets of
labeled data, such as ImageNet1, are freely available. Future work should be directed
towards building such datasets for natural language processing tasks, such as AKE, as
well.

1http://www.image-net.org/
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6. CONCLUSION

The goal of this thesis was to build a system able to extract and identify semantic
keyphrases, or topics, from textual documents. The developed system was named
Topic Distiller, for its ability to reduce documents to their topics.

To develop such as system, research on modern AKE methods was conducted. It
soon become evident, that unsupervised AKE methods are the best suited for the
system developed in this thesis. This is due to the fact that there are no big datasets
of documents with annotated keyphrases. The only freely available datasets are
quite small in modern standards and they only contain articles of scientific literature.
Training supervised models on scientific articles would bias the model towards the
style of scientific writing, hence making the model less robust for other types of text.

Graph-based methods are the state-of-the-art in unsupervised AKE, but they lack
the ability to identify topics not present in the documents fed to them. To tackle this
problem, inspiration was drawn from the discipline of ATL. This resulted in employing
external knowledge in the form of ontologies, such as DBpedia in this case, to give the
system the ability to use information not present in the document being processed.
Though far from perfect, this ability sets the Topic Distiller apart from conventional
AKE methods. This enhancement was not without cost; the system implemented now
has to rely on third party software.

Modern AKE methods also suffer from the issue of sometimes producing
nonsensical keyphrases, since they use lexical methods to manipulate the words and
sentences in the documents to generate the keyphrase candidates. For this reason we
argue in this thesis that it is better to use EL to create the list of candidates. Employing
EL to this task ensures that all keyphrase candidates represent real world phenomena,
since all entities linked can be found from the knowledge base. Using lexical methods
for keyphrase candidate generation has the advantage over EL of being able produce
keyphrases that are novel or obscure. For some applications this could mean that using
EL is insufficient and should be supplemented with lexical methods. However, for the
purposes of this thesis using EL alone is satisfactory.

Special interest was given to the ability of the system to analyze social media
postings as they are an overwhelmingly plentiful source of information. Social media
posting, such as tweets, are infamous for being difficult to extract knowledge from and
many of the current AKE methods fail to do so. This thesis shows that the Topic
Distiller is not only able to discover topics discussed in tweets, but does so with
unparalleled efficacy.

To implement the design (see Section 3), the Python programming language was
adopted. This decision was easy since Python is free and open-source with a large
community of scientific computing behind it. This community contributes good
libraries providing functionality required in the making of the Topic Distiller. Using
open-source software minimized the amount of code that needed to be developed for
the Topic Distiller making future maintenance a lesser task.

To ensure that the Topic Distiller satisfies the requirements set for it in Section 3.1,
an evaluation was conducted (see Section 4). The results of the evaluation (see
Section 4.5) show that the system is able to perform comparably to state-of-the-art
AKE methods when scientific text is in question and outperforms them when evaluated
with news articles and social media postings. The processing time evaluation indicates
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that the Topic Distiller, while not the fastest available method, is able to process data
with reasonable velocity.

The current version of the Topic Distiller can only process text written in English,
thus limiting its usage in other languages. An evaluation was carried out to investigate
the effect of machine translation on the performance of the Topic Distiller (see
Sections 4.4 and 4.5.5) revealing that machine translation negatively affects said
performance. Luckily, most of the content residing in the world wide web is written
in English making the Topic Distiller usable for a wide range of natural language
applications.

The Topic Distiller provides the simple service of finding semantic topics from text
documents. A HTTP API was developed to present this service to other systems. Use
cases of the Topic Distiller include the analysis of trending topics in social media,
summarization, document indexing, and semantic search.
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8. APPENDIX

8.1. Composing Datasets

To compose the guardian and wikinews (see Section: 4.1.1) datasets their respective
web sites12 were crawled using a web crawling robot. Both sites have robots.txt
files34 for providing rules for web crawling robots. The rules are divided to different
user agents. We used the rules for user agent when crawling the sites. Neither the
Guardian or Wikinews require a minimum interval between downloads (Crawl-delay),
but Wikinews had the following section in their robots.txt:

Friendly, low-speed bots are welcome viewing article pages, but not
dynamically-generated pages please.

We used the Crawl delay of 1000 milliseconds to ensure ethical use of these free
resources.

Creating the tweets dataset (see Section: 4.1.1) did not require web scraping since
the official Twitter API5 was used.

The following sections contain more detailed descriptions of how the raw data for
the datasets was gathered.

8.1.1. Guardian

The guardian dataset was built by scraping articles from URLs starting with
https://www.theguardian.com/world/2018/aug/. These URLs
contain world news published by the Guardian in August of 2018. From these articles
190 were selected randomly to be included in the dataset. None of the scraped URLs
are included in the list of disallowed pages to scraper according to the robots.txt
provided by the Guardian news web site.

8.1.2. Tweets

The tweets dataset was built using the Filter realtime Tweets (FRT) API6 provided by
Twitter. This API allows the streaming of real-time twitter statuses or tweets using
keywords. The keywords are used to filter the incoming tweets so that only the tweets
that include one ore more of those keywords are included in the stream. The FRT API
also allows language to be used in the filtering of the tweet stream. To collect the
tweets composing the tweets dataset we used the keywords trump, brexit, business, ai,
music, and emmys, and filtered the tweets using the language English.

1https://www.theguardian.com/
2https://en.wikinews.org/
3https://www.theguardian.com/robots.txt
4https://en.wikinews.org/robots.txt
5https://developer.twitter.com/
6https://developer.twitter.com/en/docs/tweets/filter-realtime/api-reference/post-statuses-filter.html
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8.1.3. Wikinews

To build the Wikinews dataset the articles in the Wikinews archive7 were crawled and
news containing versions both in English and Portuguese were used.

7https://en.wikinews.org/wiki/Wikinews:Archives/Date/2018


