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ABSTRACT

One of the key usage scenarios of fifth generation (5G) and beyond networks is to provide
mission critical, ultra-reliable and low latency communications (URLLC) targeting
specific set of applications where low latency and highly reliable wireless links are of
utmost importance. 5G and beyond applications that require URLLC links include
industry automation, artificial intelligence based technological solutions, vehicle to
vehicle communication and robotics enabled medical solutions. URLLC applications
using wireless connectivity require that resource utilization, such as wireless channel
utilization, does not exceed the levels above which performance can degrade. Real-time
radio frequency (RF) data analytics at the wireless network edge can help to design
proactive resource allocation solutions that can allocate more radio resources when a
particular resource is forecasted to be under stress. Typically, real-time RF data analytics
can require processing of hundreds of millions of streaming samples per second and
hardware accelerated modules (such as FPGAs) are very well-suited for such processing
tasks. We propose FPGA-accelerated real-time data analytics based resource stress
forecasting method in this thesis. The proposed method is low in complexity and performs
forecasting in real-time. We show its implementation on an FPGA of Xilinx Zynq-7000
series System on Chip (SoC) board using Vivado, Vivado HLS, SDK and MATLAB tools.
The proposed method uses quantile estimation and can be used for forecasting a variety of
resource utilization scenarios. As an example, in our thesis, we focus on forecasting stress
in wireless channel utilization. We test the implemented algorithm with real wireless
channel utilization data representing block maxima series. We compare the results
from the implemented method against the results from a theoretical method where the
generalized extreme value (GEV) theory is used to make forecasts on the considered block
maxima data. We show that with high accuracy and low latency, the proposed algorithm
can perform the forecasting of channel utilization stress.



Keywords: URLLC, 5G, channel resource allocation, forecasting, generalized extreme
value theory (GEV), channel utilization stress, Xilinx, ZedBoard, high level synthesis,
FPGA.
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1 INTRODUCTION
1.1 Real time streaming analytics for 5G and beyond networks

One of the key usage scenarios of 5G networks is to provide mission critical, ultra-reliable and
low latency communications (URLLC) which are targeted for specific set of applications where
the latency is critical. For example, 5G targets to open new applications in industry automation,
robotics enabled medical solutions and intelligent autonomous transportation solutions where
ultra-reliability and low latency are of utmost importance [1]. New radio technologies like
5G new radio (5G NR) promises to provide an end to end latency of 1ms and a block error
rate (BLER) of 10 [2] to allow for URLLC applications where extreme reliability is required.
This kind of reliability and latency requirement in communication will enable new emerging
technologies like autonomous driving, tele surgery and industrial automation.

The challenge of providing ultra-reliability and low latency is complicated when wireless
communication network resource usage goes high. Imagine a situation where wireless
communication channels experience utilization stress due to many users accessing applications
at the same time that require high data rates and low latency. This channel utilization stress
can result in low reliability and increased latency in the network. Typically, until now, the
channel resource allocation has been done based on prediction and forecasting models that
have been developed on data collected over 3 to 6 months or no less than 24 [3] hours. Also,
such standard forecasting and prediction methods mostly rely on mean network usage statistics.
However, URLLC applications need real time resource utilization prediction methods. Channel
utilization under stressed scenarios may be modeled accurately by studying high quantiles and
extreme channel utilization values, these cannot typically very well be described by using mean
or average network usage statistics as these variations are not captured by them [4]. Therefore,
such forecasting methodologies may render almost useless in tackling with real-time channel
utilization under stress conditions. Some network controllers provide auto-scaling and load
balancing mechanisms on network resources which are made dynamically based on the past
data sets collected over time [S5]. But these controllers in general reside in a centralized server
and processing of large data sets in general can lead to slower response to the sudden needs
in the network resources. They may incur significant overhead due to collection of large data
sets required to perform reliable predictions. For example, a 20 MHz unlicensed wireless
channel data can generate 2 x 40 Million or more IQ samples per second. Thus, there may
be additional latency added which would result in not meeting the latency requirement of the
URLLC applications. Therefore, there should be some RF predictive analytics at the network
edge to characterize which can be used in effective resource allocation prediction and network
scaling.

By incorporating real time streaming RF analytics modules at the network edge with
workload characterization and prediction, more effective resource allocation can be made [6].
This would facilitate the network to take smart channel utilization decisions proactively in real-
time which would enable it to deliver the guaranteed quality of service and relevant end to end
performance metrics. Furthermore, this would help to take the decision in scaling the network
to fulfill service level agreements with respect to performance metrics. This way, it would
enhance network resource utilization, ensure the availability of the network, reduce overhead
and reduce the overall energy consumption in terms of processing huge 1Q data sets at the
controller server. Therefore, real time streaming analytics can be considered very important



for 5G and beyond networks to ensure meeting the tight network specification in latency and
BLER.

1.2 Use of FPGAs as RF analytic modules

5G and beyond wireless communication networks support huge data rates in excess of 100
Mbps. To make the network proactive in resource utilization and scaling, the channel utilization
data should be collected and processed, and the predictions should be made on the channel
utilization loads. To analyze this channel utilization data, it should be sent to a remote
server where some prediction and forecast algorithms are run to take respective decisions in
optimizing the network. Transmission of collected data to the server itself would impose a
huge overhead on the network. Assume, anyhow the data is sent to the server for processing.
Then again, it would constantly keep the server CPU busy consuming lots of CPU time to read
the data and to do the analysis to make the required decisions on the network. In reality, a
system like this is not practical as this applies a huge overhead on the network and the server
computing resources itself. Therefore, the IQ usage data should be pre-processed somehow
at the edge to extract the necessary statistical parameters which would help in analyzing the
network load stress.

Field Programmable Gate Arrays (FPGAs) contain reconfigurable matrix of logic circuitry
and interconnects. In the past, FPGAs were mainly used for application specific integrated
circuits (ASIC) verification. But present FPGAs offer digital signal processing blocks (DSPs),
integrated CPUs and huge amount of logic circuitry which are well suited for statistical signal
processing applications and other computing intensive design implementations. System on
Chip (SoC) devices containing FPGAs with processing systems can use the programmable
logic hardware for accelerating the CPU in tasks where parallelism can be exploited to enhance
the performance. Massive amount of parallel resources available in FPGAs can be used to
implement complex operations, parallelized functions and pipelined designs. Very complex
operations can be implemented to work within few clock cycles using the parallel resources
available in the FPGA. Comparative to a CPU which does the execution of instructions
sequentially, the performance of FPGA design is massive, though they tend to work with a
lower clock frequency than a CPU. Thus, FPGA implementations can be high performance
and energy efficient compared to a CPU when real-time RF data analytics are to be performed.
This nature of FPGAs is very well suited for pipelining and real time streaming kind of data
processing applications. Also, reconfigurability of FPGAs to taylor its processing for a specific
application makes them well suited to be applied across a wider range of applications.

In this thesis, an FPGA based RF data analytics solution is proposed for channel utilization
data processing and utilization load stress prediction. By using the parallel processing nature
and pipelining property of FPGAs, the analytics processing system is implemented to process
the channel utilization data which is required for real time analytics for load stress prediction.
The processing in FPGA allows very small amount of processed data to be sent to the server
for further processing. This way, the overhead on the network usage and the controller server
CPU is greatly reduced.



1.3 Challenges in using FPGAs
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Figure 1. System Model

While GPUs (Graphic Processing Unit) and CPUs are suitable for computation of complex
functions, one of the challenges in FPGAs is that complex and computationally intensive
functions are not suitable for hardware and hence one need to come up with a computation
method/model which is almost efficient at the same time involves simpler operations.
Therefore, to take the performance advantage of FPGAs, the complexity of algorithms to be
implemented should be reduced, and some algorithmic optimization should be done to take
the benefit from the parallelism available in the FPGA and such that it suits the underlying
architecture in the FPGA.

Although, FPGAs have huge performance advantage over CPUs and GPUs, they are not well
suited for some specific tasks. For example, due to the slow clock frequencies used in FPGAs
than in CPUs and GPUs, they are not well suited for sequential operations. Also, for complex
mathematical expressions where the evaluations are done sequentially with data dependencies
with previous steps, FPGA performs worse than a CPU or a GPU, in this kind of scenarios.
Therefore, one should be careful enough to avoid or limit such operations which degrade the
performance of FPGA implementations.

Basically, there are two approaches in implementing a design in an FPGA: Register Transfer
Level (RTL) design and using High Level Synthesis (HLS) tools. In register transfer level



design methodology, the circuit level description is given by using a High-Level Design
Language (HDL) like Verilog or VHDL. Today’s FPGAs are so complex with tremendous
amount of resources that, to implement an algorithm with moderate complexity would require
the hardware designer to have thorough understanding in the underlying hardware platform
and hardware design concepts. And, the designer should also have very strong HDL
skills (in Verilog or VHDL) to make the implementation to take the maximum performance
advantage out from the platform’s offerings. Usually, the development time for RTL design
are considerably higher due to requiring considerable time for architecture development and
debugging and verification.

On the other hand, implementation of designs using HLS is much faster than in RTL design,
that it takes less time to get from algorithm design phase to implementation phase in the design
flow. In HLS, the high-level algorithm is coded in a programming language like C or C++ and
then converted to HDL like Verilog or VHDL using HLS tools. To optimize the design to meet
the required specification, tool dependent macros are often needed to guide the tool to achieve
the required micro architecture. Some of the tools used for this purpose are Stratus, Catapult
and Vivado HLS. Recent advances in the availability of optimized HLS tools such as Xilinx’s
Vivado HLS have made them very attactive for researchers to use FPGAs with little knowledge
of Verilog and VHDL.

The designs resulting from RTL and HLS design methodologies differ very much in
performance, area, resource utilization and design time. RTL designs tend to have better
performance and lesser resource and area utilization than HLS designs. But designing in HLS
with hardware architecture in mind and using a programming style oriented for the hardware,
HLS designs may come closer to the properties of an RTL design. And with lesser development
and verification time in HLS design flow than in RTL design flow, the difference between the
area and resource usage could be justified.

Figure 1 gives an overview of the system model developed for the channel utilization
load stress forecasting using an FPGA. The system has been developed keeping in mind the
streaming nature of the network traffic usage data. Therefore, the system can be used for real
time load stress forecasting and can be readily deployed in the field for this reason.

1.4 Overview and contributions

In this thesis, a solution is presented for channel utilization load stress analysis of
communication networks using a Xilinx Zynq FPGA. As a proof of concept of this solution,
real channel utilization information from a Wi-Fi network is used. The system extracts the real
time streaming analytics from a Wi-Fi network’s channel utilization information and calculates
the load stress estimation using generalized extreme value (GEV) theory. As calculations
related to generalized extreme value theory requires complex mathematical expressions to be
solved, simpler version of the theory is derived which performs almost equal to the GEV,
which greatly eases the FPGA implementation. A block maxima time series data is obtained
from channel utilization time series which is collected by using a Xilinx Zynq system based
ZedBoard. The board is connected to Analog devices AD-FMCOMMS3 software defined
radio (SDR). A data window of 1 hour is selected, and empirical probability and cumulative
distribution functions are obtained by using histogram and cumulative sum. Based on this
information, the system computes the percentile estimation for a given probability of channel
utilization.



The presented system is well suited for extracting real time streaming analytics with reduced
complexity. The derived version of the GEV theory performs almost comparative to the original
GEV. This system is designed to be flexible such that it can be used in different networks and
applications where percentile estimates are utilized for different management purposes. Due to
the usage of FPGA, the system has very high performance which is analyzed and discussed in
a later chapter. Using this system, an accurate insight into the network resource utilization and
stress on the network can be obtained which could be used in proactive management of network
resources and scaling purposes. Thus, a system like this can be of utmost importance in 5G
and beyond networks in achieving the promised performance metrics for URLLC applications.



2 RELATED WORK

Various types of non real-time data for network planning and management has been in usage
[7, 8, 9]. However, for 5G and beyond networks usage of real time data analytics and mining
techniques have been given tremendous attention at present [10, 11]. It has been identified
that utilizing real time data analytics and data mining in wireless communication networks
would enable dynamic network management, traffic engineering, radio access selection and
network traffic steering [12] and improve overall network performance enabling a 5G and
beyond network to meet the required key performance indicators (KPIs). Towards this end,
the latest 3gpp specification [13] has introduced a dedicated function called Network Data
Analytics Function (NWDAF) which is responsible to provide network analysis information
upon request from other network functions. As an example, information on the load level of a
certain network instance could be provided upon a request by a certain other network function.
Policy Control Function (PCF) takes the input from NWDAF into consideration in deciding
policies on network resources and network traffic steering suggest the importance of having
data analytics in future communication networks.

Research community has given an immense focus on the application of data mining and
analytics in 5G & beyond networks. The work in [14] presents a brief survey of several models
proposed by the research community in this regard. It discusses the various types of data
which should be collected for data mining purposes. The author in [14] discusses the NWDAF
of 3GPP and its drawbacks. Context Extraction and Profiling Engine (CEPE) which can be
used to build a user profile to describe the future behavior of a subscriber are also described
in [14] and its integration to 5G architecture is also discussed. The author in [14] suggests
the use of behavioral profiles in network functions like access and mobility management,
session management and traffic steering to optimize the network for better performance. It
does not provide a detailed discussion on how the data is extracted and processed to obtain the
necessary information. In [15], a design of self organized network management in virtualized
and software defined networks (SELFNET) analyzer module is presented. According to
the paper, the objective of SELFNET is to facilitate proactive responses from network state
diagnosis and data inferred from various aggregated metrics related to SG mobile network
infrastructure. The paper discusses in depth the design of the SELFNET analyzer module and
its architecture. The authors claim that the SELFNET module is highly scalable that it can be
adapted to new use cases with minimal effort.

Extreme value theory is a statistical data analysis tool which has been used by several
research works to successfully forecast and predict time series data [16, 17, 18, 19]. The
work presented in [16] introduces an application of extreme value theory in predicting cyber
attacks using network data. It proposes a methodology for the prediction of attack rates in
the presence of extreme values in observed data. According to the authors, the cyber attacks
usually are assumed to exhibit extreme value phenomenon. Using an integration of time
series theory (TST) for short term predictions and extreme value theory (EVT) for long term
predictions, the authors have developed a model which can predict cyber attack rates 1 hour
ahead of time with practical prediction accuracy. In [17], a novel approach is presented to
detect outliers in high throughput numerical time series without assuming any distribution for
the input data and without manual thresholds setting. The authors introduce two methods,
SPOT for streaming data with stationary distribution and DSPOT for streaming data with



some drift. Peaks over threshold (POT) approach and maximum likelihood estimation have
been used by the authors in [17] to estimate the required parameters for generalized pareto
distribution (GPD). The authors show few example applications of their anomaly detection
algorithm in intrusion detection, magnetic field measurements and stock prices. In [20], a
method of thread assignment in multi-core/multi-threaded processors using extreme value
is presented. The authors use peak over threshold (POT) method to obtain the GPD for the
thread assignment problem. The parameter estimation for the GPD is done using maximum
likelihood estimation. The authors use a method called sample pruning, which reduces
the time for statistical analysis and introduces a methodology called sample pruning POT
(SP-POT) which is claimed to reduce the analysis time by 8 folds. The authors declare that the
introduced thread assignment performs close to optimal.

In applications where real time data analytics is required, hardware acceleration using
FPGAs has been the better choice [21]. FPGAs provide massive performance with its parallel
resources than CPUs and GPUs and consume a fraction of power of a CPU or a GPU [22]. Due
to this attractive property of FPGAs, they are often favored to be utilized for implementing
computationally intensive statistical signal processing algorithms. The author of [23]
presents a histogram based probability density function estimation using FPGAs. Cumulative
distribution function is computed in real time for the input data and important information like
centiles which are used in quality of service oriented decisions in communication systems, are
calculated from the probability density function. The estimator is built using access pattern
memory and priority encoders to reduce latency and increase the performance. The author
claims that the proposed architecture uses minimal amount of hardware resources and area
in the FPGA chip. In [24], FPGA based bandwidth selection for kernel density estimation is
presented. An algorithm called plug-in is used for the estimation of univariate kernel density
estimation. The authors have used different architectural optimizations using the parallelism
in FPGA to speed up the calculation. They have implemented a faster version of division
operation using multiplications and divisions. For exponent and logarithmic calculations,
CORDIC algorithm has been used. The authors claim an average speed up by about 32 than a
CPU can be achieved with huge power efficiency. The authors have used HLS for the FPGA
implementation and suggest more performance for their algorithm can be achieved if it is
implemented in HDL.

To the best of my knowledge, the problem of wireless communication channel load
stress analysis and forecasting using FPGAs hasn’t been investigated in the literature. The
methodology proposed in this thesis uses FPGAs at the edge of the wireless communication
network for this purpose. Necessary data processing and forecasting is done using extreme
value theory and centile estimates. The proposed architecture is highly suitable for streaming
type of data. To the best of my knowledge, this is the first time a study on network channel
load stress forecasting using FPGAs and extreme value theory has been done.



3 THEORY

3.1 Physical layer channel utilization: background

Wireless channel utilization is a measure of how much of the available air time is utilized by a
wireless network and is typically expressed as a percentage. Channel utilization is a key metric
as it can be used to assess the health of a wireless network at physical layer. For example, in
Wi-Fi networks, channel utilization can be used to assess the impact on the user experience
relating to various applications running on various mobile devices and laptop computers. If
the channel utilization measured is at a higher value ranging from 80% to 90%, the user
experience can be affected. While typically, mean values are used, in this thesis, we consider
block maxima approach based on extreme value theory. We utilize real channel utilization
data collected in [25] to obtain the block maxima series to forecast the channel load stress
using extreme value theory.

Collected channel utilization data was measured as per the Algorithm 3.1 which can be used
to calculate both the mean and maximum values of channel utilization data. In the algorithm,
for a moving average window size of IV, the authors in [25] compute the squared /() values.
Let the squared Q) values, I? + Q* at time instance ¢ be S, ;. They compare the squared 7Q)
values, S, with a threshold which is computed as a scaled value of the noise floor given by
Np x Cy where Ng denotes the noise floor estimation and C's; denotes the scaling factor. An
in-depth discussion on noise floor estimation is given in [25]. They count the number of times
the threshold is surpassed by .S, ; for all the samples in the moving average window. Let the
average value be S, ; which is the fraction of times, the threshold is surpassed by S,, ; for the
window, W. Then, for R, > 0 samples, the authors in [25] compute the average value and
the maximum value of S,; which are given out as the mean and max values of the channel
utilization data. The complete procedure for the computation of channel utilization is given in
Algorithm 3.1.

Algorithm 3.1 Channel Utilization Calculation [25]

1: Input: Moving average window size, W > 0, noise floor N, scaling factor Cy, IQ)
samples, comparison flag C,
For W, compute N and then Iy, < Np x Cj
for each /() sample in W do
Compute S, ; + I* + Q?
if S, > I, then
| Chie1
else
‘ Caﬂ‘ +— 0
end if
end for

R A o

,_
e

Zzzt—w Ca,i
w

—_—
—_

: Obtain moving average at every t: S, ; =

Ra S,
: For R, > 0 samples, compute C'U,,cq, = % and

12
13: CUpaz = maz{Cays,Casi1: - Cassnr,t
14: Output: CU,,,, and C'U,,can




3.2 Why only mean is not enough for the characterization of channel utilization data?

Examining collected data from [25] tells us about the behavior of wireless communication
channel utilization data. We identify that they have a noise like appearance with spikes which
occur occasionally. These spikes or bursts occur due to the aggregation of the utilization of the
wireless channel by users in a short time interval. Due to this nature of the channel utilization,
the distribution of CU data is no longer normal. They can result in heavily tailed distributions
with large deviations from the mean or the median of the CU data. Therefore, statistics like
mean and standard deviation can no longer be used to predict the probabilities of the channel
utilization. Due to this reason, a forecast method based on mean and standard deviation is not a
viable solution. As CU data behaves with extreme values due to the bursty nature, the theory of
extreme value can effectively be applied in the prediction and forecasting of wireless channel
utilization.

3.3 Extreme value theory

In this section, a review of the classical extreme value theory is given leading to a model that
can be used to study the behavior of the series of the maximum values of wireless channel
utilization data. Furthermore, application of the extreme value theory on the forecasting of
channel load stress and its implications are discussed.

Let X1, X5, ..., X, be a sequence of random variables which have a common distribution
function F'. In practice, measurements of a certain process on a regular time-scale are usually
represented by X;. Then, M, given in Equation (1) represents the maximum value of n
observations of the process over n time units. In extreme value theory terms, this is also known
as block maximum. For example, if n is the number of observations of channel utilization data
over 1 second, then M,, represents the maximum.

M, = max{Xy, Xo,..., X} (1)

The extremal types theorem in classical extreme value theory states that there exist sequences
of constants a,, > 0 and b,, such that [26]

PT{MSZ}—)G(2> as n — oo (2)

a?’l

where G is a non-degenerate distribution function. Then extreme value theory states that
G should belong to one of the families, Gumbel, Frechét or Weibull distributions which
are also called type I, type II and type III families of distributions respectively [25]. These
distributions model different forms of tail behavior for the distribution function /' of X;. For
example, in Gumbel distribution, the density of G decays exponentially while for Fréchet
distribution, it decays polynomially which correspond to different rates of decay in the tail
of F'relative to each other. These three families are reformulated to a single family of models
having the distribution functions of the form given by [26],

G(z) = exp{— 1+ (Z;“)}%} 3)

which is defined on the set {z : 1 + &(z — pu)/o > 0}. Parameters p, o and ¢ satisfy
—00 < < 00,0 > 0and —oo < £ < oo respectively. This is called generalized extreme




value family of distributions. pu, o and £ are called location parameter, scale parameter and
shape parameter respectively. Fréchet and Weibull families correspond to the cases £ > 0 and
¢ < 0and ¢ = 0 corresponds to Gumbel family.

Generalized extreme value distribution which is formed by the unification of the original
three distribution families greatly simplifies the statistical implementation. The tail behavior
can easily be determined by the inference on £ and so that there is no need to assume individual
extreme value family for a given set of data.

Estimation of the parameters y, o and £ can be done using different techniques. Graphical
techniques based on versions of probability plots, moment-based techniques, procedures based
on order statistics and likelihood-based techniques are generally used for this purpose [26].
Due to the all-round utility and adaptability to complex model-building, log likelihood method
is widely accepted in robust parameter estimation. Assuming independence in 21, Zs, ..., Z,
having GEV distribution, the log likelihood function for the estimation of GEV parameters for
the case & # 0 is given by [26],

V-l e

i=1

p,0,§) = —mlogo— (1+1/§) Zlog [1+§<

=1

provided that 1 + & (%) >0, fori=1,...,m hold.

For the case & = 0, the likelihood function in Equation (5) can be obtained using the Gumbel
family of distribution [26].

o) =-mima(20)Fn{- (50} o

=1

Maximization of the Equations (4) & (5) with respect to the parameters y, o and £ should be
done using standard numerical optimization algorithms as there are no analytical solutions for
the equations.

3.3.1 Quantile estimates based on extreme value theory

In general, the following approach is adopted for modeling a series of independent observations

X1, Xs ..., X, of aparticular process. First, the data are broken in to blocks of n observations

for some large values of n which generates a series of block maxima, M,, i, ..., M, . Then

the GEV is fitted to this block maxima series by estimating the parameters p, o and & using

some aforementioned technique. The estimates of the extreme quantiles for the maxima series

are obtained by the inversion of the Equation (3) which gives [26],
oy gl = A{-log(L=p)}=¢), for& #0, ©

" w0 log{—log(1—p)}, for { =0,

where G(z,) =1 —p.



For our problem of wireless channel load stress forecasting using GEV for fast processing
in real time, we need to implement the GEV and quantile estimates in the FPGA. Steps of the
implementation of GEV require that we estimate the GEV parameters, y, o and & using log
likelihood function for the given set of data using numerical optimization methods and then
obtaining the quantile estimates for the task of forecasting. Direct implementation of these
functions requires lots of arithmetic operations to be executed and would take a considerable
amount of CPU processing and time which is not suitable for the implementation of real time
forecasting. For fast processing in real time, direct implementation of these equations are not
appropriate and would incur a considerable latency in execution. Hence, it would result in
a performance degradation and the actual benefit of the implementation in FPGA would be
lost completely. Therefore, we need to find a simpler method for the implementation of GEV
with some compromise between the accuracy and performance. Next section discusses the
approach we adopted for the implementation of GEV with improved performance which suits
the underlying hardware architecture in the FPGA.

3.4 Derivation of a simpler version of the generalized extreme value theory

Due to the complexity in implementation in parameter estimation of GEV for wireless channel
utilization data, we utilize the histogram which can readily be computed easily. Histogram
is considered to be an accurate representation of the numerical data distribution. It is an
approximation to the probability density function (pdf), px(z) of a random variable X.
Probability density function is essentially a normalized version of the histogram with the
assumption of infinite number of data samples and the bin width chosen to be infinitesimally
small. Hence, histogram can be used for the estimation of the probability density function for
a given set of input data.

Let H denotes the histogram, /; denotes the it bin interval of the histogram, 7; denotes
the frequency of the data values which lie within the " interval I; and M be the number of
histogram bins. Then, the interval /; can be written as,

I; = [bin_edge;, bin_edge; 1) 7

and the histogram can be denoted as,

H:{([1,71'1),(]2,7'('2),...,(]M,WM)} (8)

Figure 2 shows the normalized histogram generated for the maximum values of the channel
utilization data and the overlay of the GEV distribution function computed from MATLAB on
the same graph. We can clearly see that the normalized histogram closely approximates the
GEV returned from MATLAB. Therefore, using histogram for the estimation of GEV can be
justified.
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Figure 2. Histogram vs the GEV for series maxima of channel utilization data

From histogram, we obtain the distribution of cumulative sum which is used for the quantile
estimation. Let C' denotes the distribution of the cumulative sum for the input data samples.
For #*" bin interval, we calculate,

Y=Y ™ (9)
k=1
and obtain the distribution of cumulative sum as,
C = {(I1,¥n), (I, ¥a), - ., (Ing, ne) } (10)

For the quantile estimation, we need to find the the estimate, p = P(X > z). As we are
dealing with cumulative sum values, we compute P = px N where N denotes the total number
of data samples in the histogram. We find the interval in the distribution of cumulative sum
where P resides. Let this interval be [}, I,, ), then we can write,

P e [thi, thiy1) (1n

Then, using the linear interpolation as illustrated in Figure 3, we find the quantile estimate
value, @ € [I;, I;11) which is given by,
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Figure 3. Linear interpolation for quantile estimation

Due to the reduced complexity of the proposed method, it is simpler and easy to implement.
Opposed to the direct implementation of GEV theory, there is less arithmetic operations
required and the method can readily be utilized in streaming type of data. Thus, the proposed
method is very well suited for the hardware architecture in the FPGA. Real-time histogram
generation and cumulative sum calculation for the streaming data can easily be implemented
in FPGA. The quantile estimation method which is used for the wireless channel load stress
forecasting can also be implemented with less latency. The downside of the proposed method
can be the loss of accuracy for implementation simplicity. However, we could see that the
degradation in the performance of the proposed method is not much compared to the direct
GEV implementation. In a later chapter, a thorough analysis of the performance of the both of
proposed method and the direct GEV implementation are given.



4 IMPLEMENTATION

This chapter describes the implementation of the proposed channel utilization load stress
analysis method. The chapter thoroughly explains the designed algorithms relating to
various processing modules. It also explains the steps involved in the implementation of
each processing module on a ZedBoard. 1t is important to note that the implementation is
challenging due to the streaming nature of the channel utilization data coming to the ZedBoard.
The final intention of this implementation is to deploy the developed modules at the edge of
wireless communication networks for channel load stress forecasting purposes. Due to this
reason, the design is implemented in a way that the implemented modules are divided between
the FPGA and the processor part of the ZedBoard. For example, modules which require low
latency are implemented on the FPGA part of the ZedBoard. Hence, our implementation suits
the streaming nature of the channel utilization data samples. Several key design techniques are
adopted in the hardware implementation to meet the required latency requirement.

4.1 System overview

Figure 4 depicts a high-level overview of the complete system architecture of our
implementation. The implementation is done using a Xilinx Zyng-7000 all programmable
SoC in ZedBoard [27]. The board contains FPGA fabric, embedded arm processor, and
most of the necessary interfaces/supporting functions for our requirement. Due to the
simplicity and flexibility of HLS, necessary functional modules are designed and developed and
corresponding IP cores are generated using the tool, Xilinx Vivado HLS [28]. Xilinx Vivado is
used for the complete system integration and bit stream generation for hardware programming.
Xilinx Vivado SDK is used for the bare-metal (standalone) [29] application development.
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Figure 4. System block diagram

ZedBoard with Xilinx Zyng-7000 SoC contains 1) processing system (PS) which features
a dual core ARM Cortex A9 processor and 2) programmable logic (PL). All the other
necessary peripherals like on-chip memory, external memory interfaces and I/O (Input/Output)



peripherals and interfaces are included in the SoC [30]. Zyng-7000 offers flexibility and
scalability of an FPGA while delivering performance, low power consumption and ease of use
typically associated with ASICs (application specific integrated circuit). Due to it’s flexibility
in customization, PL can be configured according to the design requirement. PS of the SoC
manages the PL part and the communication among them. The resulted outputs are obtained
on a laptop computer connected via UART interface to the ZedBoard.

Figure 4 shows all the important functional blocks in the implemented system. The forecast
system controller module resides in the PS and manages the data exchange between 1) the
computer and PS 2) the PS and the PL. Data exchange between the computer and PS is done
through universal asynchronous receiver-transmitter (UART). All the other functional blocks
related to the forecast system reside in the PL. The system uses Advanced eXtensible Interface
(AXI) bus specification [31] to exchange data among functional modules, and between the PS
and the PL. More detailed description of the whole system and inter communication is given
in a later section.

4.2 Steps involved in implementation

Key steps involved in the implementation of the proposed system are shown in Figure 5.
Design flow for the implementation task starts with the algorithm design. In this phase,
several approaches for the problem are discovered and each are modeled and simulated for
the required functionality using MATLAB mathematical computing software. MATLAB is
used in this phase due to its flexibility and easiness in programming and the availability of
a rich set of libraries which speeds up the initial prototyping of the algorithms. The selected
algorithms are evaluated based on their performance, accuracy and complexity. The algorithm
which gives a compromise between the performance and the complexity are selected for
the implementation. Next, the development of the C models starts. Initially, floating point
models are developed and simulated. Then, the associated fixed point models are developed
and simulated and the impact on the algorithms’ performance due to finite fixed point word
lengths are evaluated. Necessary optimizations are made for word lengths without degrading
the algorithm performance drastically. Once completed the development of fixed point models,
design of HLS modules take place and the corresponding IP cores are generated. One of the
key decision to be taken is on how the communication between the IPs should take place.
Due to the low latency requirement of our application, the communication method should have
a minimal effect on latency and it should be robust and accurate. HLS allows for different
kinds of interfacing on the developed HLS modules. Depending on the requirement of the
application, necessary interfacing methods are selected and added to the HLS modules in this
phase. Final integration of the modules and bit stream generation is done using Xilinx Vivado.
At last, the bare metal application development, which runs on the ARM processor in PS is
developed using Xilinx SDK. Then the bit stream is downloaded to the ZedBoard development
board and the bare-metal application is loaded in to the memory which marks the final step in
the design procedure. For the proposed system, three IPs, histogram IP, cuamulative sum IP and
interpolation IP are implemented in PL and the bare-metal application which run on the ARM
processor and manages the data exchange among the PS, PL and the computer is developed
accordingly.
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Figure 5. Steps involved in the implementation of the proposed system on a ZedBoard

4.3 Algorithm implementation

The PL contains three functional modules (IPs), namely, makehist 1P, cumsum 1P and invcum IP
(Interpolation IP). These IPs work in conjunction with the PS to evaluate the percentile estimate
for a given channel utilization probability. The IPs are arranged in a pipeline such that the
processed data from one IP travels to the next IP in succession. The algorithms implemented
in each IP and their detailed functionality are discussed in next sub sections.

4.3.1 Histogram and cumulative sum IP modules

Algorithm (4.1) is used for the histogram calculation for the input channel utilization (CU)
data. As the CU data is streaming type, there is only single CU data value available at a
certain time instance, ¢. Let D; denote the CU data at time instance ¢, BIN_EDGE; &
BIN_EDGE;jy, be the left and right bin edges at 5 bin interval, HISTOGRAM_BIN;
be the histogram bin counter value at j and W be the CU data window for which the
histogram is computed. The CU data value D); is compared against the histogram bin
interval, [BIN _EDGE; , BIN _EDGEj+1). If D; is inside the considered bin interval,
HISTOGRAM_BIN; counter at location j is incremented by one and next CU data sample
is taken for comparison. If D; is not inside the 5" bin interval, it is compared with the next
bininterval [ BIN_EDGE; 1, BIN_EDGE;,). This comparison is carried out until the CU
data sample matches the corresponding bin interval in the histogram. This process is continued
for every CU data sample in the considered data window. Once all the CU data in the data
window is processed, the computed histogram is given at the output. The IP in which this
algorithm has been implemented is Makehist IP and the timing and latency information for the
IP are given in Table 1 and Table 2 respectively for a sample data window size of 64.
Algorithm (4.2) is used for the generation of cumulative sum. Let CU M SU M; represents
the cumulative value at i"* location of the corresponding bin in the histogram. Cumulative
value at i‘" location is given by the sum of all the past histogram values up to the i** bin. The



Algorithm 4.1 Histogram Algorithm

1: Input: Data samples size of window W
2: for each data sample D; in W do

3: for each j*" bin in HISTOGRAM do

4 if BIN_EDGE; < D; < BIN_EDGE;, then

5: HISTOGRAM_BIN; <+~ HISTOGRAM_BIN; + 1;
6: break;

7 end if

8: end for

9: end for

10: Output: HISTOGRAM

algorithm calculates the sum over all the past histogram bin values for the it value and this
process is repeated for all the histogram bins. Cumulative sum is given as output at the end of
this operation. This algorithm has been implemented in Cumsum IP and its timing and latency
information are given in Table 1 and Table 2 respectively.

Algorithm 4.2 Cumulative Sum Algorithm

Input: HISTOGRAM
CUMSUM «+ HISTOGRAM
1<+ 0;
for each i'" histogram bin do
| CUMSUM;,, < CUMSUM;y; + CUMSUM,;
end for
Output: CUMSUM

AR A A

4.3.2 Percentile estimation IP

Algorithm (4.3) shows the steps in estimating the percentile for a given probability. As the
cumulative sum is derived for the channel utilization data instead of the probability density, it
is required to compute corresponding value P which is in the range of cumulative sum values.
P is calculated by multiplying p with the data window size, DATA_WINDOW _SIZE for
which the histogram was calculated earlier. Then, P is compared against each cumulative value
to find the interval ¢ where P is residing. A line is fitted to the two cumulative sum data points,
CUMSUM; & CUM SU M, which are located to the left and right of P. The corresponding
value, X to P in the domain of the line is calculated by evaluating the inverse equation of the
fitted line. X value thus calculated is given out as the percentile estimate for the corresponding
probability value. The algorithm (4.3) is implemented in /nvcum IP and its timing and latency
information are summarized in Table 1 and Table 2 respectively.



Algorithm 4.3 Percentile Estimation Algorithm

AN AN I e

Input: CUMSU M, Probability p

P+ DATA WINDOW_SIZE xp

Find the interval, (CUMSUM,; < P < CUMSU M) where P resides in

Fit a line which goes through CUM SUM; & CUMSU M, 4

Find the value X corresponding to the value P in the domain of the fitted line

Output: Percentile estimate, X

Table 1. Timing summary of generated IPs

1P Estimated Clock (ns)
Makehist 4.806
Cumsum 4.321
Invcum 8.510

Table 2. Latency information of generated IPs

IP Latency (clock cycles)
Min Max
Makehist | 36 288
Cumsum | 35 35
Invcum 102 102




4.3.3 Usage of HLS for IP generation

Xilinx Vivado HLS tool was primarily used for the design and implementation. In HLS, C
language description of functionality is converted to hardware description language which is
used by the tool for hardware synthesis. Due to the simplicity of HLS, a designer doesn’t need
to have thorough knowledge neither in hardware description languages such as verilog, vhdl
nor hardware architecture design. But still the designer should pay some attention on how
the functionality is matched to the hardware and not to use un-synthesizeable C functions and
constructs when designing the IP cores. Appendix I shows an example HLS code developed
for an implemented IP using Vivado HLS.

Generally, Xilinx Vivado HLS tool’s default behavior is to synthesize the C codes to use
minimum amount of resources and area with increased latency. There are tool specific macros
and directives available in HLS which are applied in the form of #pragma macros or #directives.
These directives or pragmas are very important for guiding the tool in optimizing the micro
architecture of the design which is resulted by the tool synthesis process. For example, a for
loop with N iterations would be implemented with a latency of N cycles or more by default
by the tool. If we need to reduce the latency of the for loop, we need to use tool directive,
UNROLL [28] to implement the for loop with a single clock cycle by completely unrolling the
loop or reducing the latency with some factor by partially unrolling the loop. The variables
used in loops should also be partitioned completely or partially depending on the unrolling
factor of the loop. In this way, the designer should use the tool directives to optimize the micro
architecture to meet the required design specification.

4.4 IP integration and system generation

Figure 6 illustrates the complete system block diagram once the integration is done. It also
shows the communication protocols which are used between different subsystems. Mainly,
Advanced eXtensible Interface (AXI) protocol [32] is used for the control and configuration of
the IPs and other modules which are residing in the PL. Xilinx adopted AXI protocol is called
AXI Lite. AXI protocol is targeted for high performance, high frequency system designs and
provides a high bandwidth and a low latency.

4.4.1 AXI protocol

AXI is a burst based protocol. Nature of the data to be transferred are described by address
and control information on the address channel. Data transfer between the master and slave
happens through the write data channel to the slave or read data channel to the master [32].
Figure 7 shows the data read transaction which happens between a master and a slave.
Figure 8 shows the data write transaction which happens between a master and a slave.
In write transactions, the completion of the write transaction is signaled by the slave to the
master through an additional write response channel which can be identified in the same figure.
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AXI Lite protocol

AXI Lite protocol which is a derivation of AXI protocol adopted by Xilinx is used to control
the IPs in the hardware design. Basically, AXI Lite interface in an IP device is used for
device initialization, device status querying and controlling, reading and writing to the registers
available in the device and setting up, monitoring and controlling interrupts in the device [28].
ARM processor in the PS uses AXI Lite protocol to control the IPs in the proposed design.
Basically, IPs are initialized through AXI Lite protocol. Data window size which is required
for the histogram generation are written to the respective register in the Makehist IP through
the AXI Lite interface. Probability for the percentile estimation is also set in /nvcum IP and the
result is read back through the AXI Lite interface available in the IP.

AXI Stream protocol

We use AXI Stream protocol for high speed streaming data transfers. AXI Stream protocol
is used in applications where the focus is on a data-centric and data-flow paradigm where the
concept of address is not important [31]. AXI Stream behaves as a single unidirectional channel
with a handshaking data flow. Due to this property, the mechanism to move data between
IPs are efficient and fast. AXI Stream protocol is optimized for high performance data flow
applications. Therefore, to fulfill low latency of our implementation design, the data transfer
from the memory (DDR memory) to the respective IP (makehist IP) is implemented using the
AXI Stream protocol. Direct memory access controller (DMA controller) takes care of the
data movement from the system memory (DDR memory) to the makehist IP independently



Mater Interface

with negligible amount of intervention from the ARM processor [33]. Due to this reason, the
overhead on the processor on data transfer process is kept at minimal. Same protocol is used
for the data transfers between the IPs also. Figure 6 depicts the locations where AXI Stream
protocol is used for data transfer operations. Once the data is streamed to the makehist IP, the
data flows through all the three IPs sequentially as a stream. Each IP processes the data as per
the algorithms described in section 4.3 and the processed data is forwarded to the next IP for
further processing.

Mater Interface

Read address channel

Address
and control
Information

—

Read data channel

Read data

Read data

Read data

<—

<—

(—

Figure 7. AXI protocol read architecture
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4.4.2 Overall design flow of the implemented system

Figure 9 shows block design implemented in Xilinx Vivado by integrating IPs. It shows all the
IPs with system interconnects and other peripheral IPs which are needed for the integration
purposes. Interrupts of DMA controller are used to detect the completion of write data
transaction between the system memory and the makehist IP. DMA controller is connected
to accelerator coherency port (ACP port) of the ARM processor. Data streaming from system
memory to the streaming device (makehist IP) takes place through the memory mapped to
streaming (MM25) channel. Data streaming from streaming device to the system memory
takes place through the streaming to memory mapped (S2MM) channel. At the end of each
transaction, DMA asserts an interrupt to notify the ARM processor, the completion of the data
transaction. Therefore, the DMA interrupts are connected to the interrupt controller in the ARM
processor. This interrupt information facilitates the ARM processor in reading the results and
scheduling the next data transaction.
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Figure 9. Integrated system in Xilinx Vivado

The system is synthesized and implemented in Xilinx Vivado after the block design. Then
programming bitstream is generated for FPGA configuration. For the firmware development
for ARM processor, we need the implemented hardware in Xilinx Vivado. It is exported to
Xilinx SDK where bare-metal (standalone) application development takes place. ZYNQ SoC
is configured through Xilinx SDK and the developed bare-metal application is executed in
the ARM processor. Xilinx SDK can be used in conjunction with Xilinx Vivade for signal
tracing and debugging, through integrated logic analyzer (ILA) if needed to ease the debugging
process. This concludes the hardware implementation phase of the proposed system.



S RESULTS AND DISCUSSION

In this chapter, we present the results relating to performance evaluation of the proposed
algorithm which is based on extreme value theory and is implemented on a ZedBoard. We
evaluate the performance of the implemented algorithm by comparing the results with MATLAB
based simulations. Evaluation was done based on the algorithmic design. In our testing,
ZedBoard was connected to a computer with MATLAB using serial port and the results were
obtained by sending channel utilization data to the ZedBoard and reading back the computed
output data from ZedBoard. Channel utilization data used for the evaluation purpose was
actual data collected from the university’s Wi-Fi network. The details regarding how the data
was collected can be found in [].

5.1 Behavior of channel utilization data

In statistical analysis of data, one of the preliminary steps is to get a sense of how the data
is distributed. Generally in statistics based forecasting methods, a certain probability density
function is assumed for the input data set and then respective parameters in the probability
density function are estimated using the input data. This estimated probability density function
is used in statistical methods like inferencing and forecasting. Without having any information
on the data distribution, prior assumption of a probability distribution for the data often leads
to strange and erroneous results. To avoid this problem, techniques like data visualization
should be adopted. One of the best tools in data visualization is histogram which gives a coarse
estimation for the probability distribution function of underlying data. Therefore, for our data
set of maximum values (block maxima series) of wireless channel utilization, we constructed
the histogram to visualize the behavior of the data set which is shown in Figure 10. From
Figure 10, it is clear that the data doesn’t behave according to a normal distribution. The data
distribution is skewed to the left (negative skewness) closely mimicking a GEV distribution.

When approximating a probability distribution function for a set of data, the other important
aspect is the granularity of the data. If the histogram is built using a lesser number of
data, the approximation to the pdf also becomes less accurate and some of the important
features in the data distribution which we are interested in might get averaged out. If the
histogram is built using a greater number of data, the approximation to the pdf becomes more
accurate, but then the resulting distribution might not be smooth due to the outliers in the data.
Therefore, selection of the granularity of the data is a key aspect for better performance of
our proposed algorithm. To select the best granularity, we visually inspect the histograms of
random contiguous blocks of samples from the data set to arrive on the decision on the correct
block size. Figures 11 and 12 show the distribution of the max values of CU data for a period
of 20min and 1 hour respectively. Corresponding GEV pdf are also fitted for the same data set
using MATLAB. 1t is clear from the figures that the best approximation to the GEV pdf is given
by the data set collected for 1 hour. Therefore, we selected the time period of 1 hour for the
proposed percentile estimation algorithm.
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5.2 Evaluation of the proposed algorithm

In this section, the performance of the proposed algorithm is evaluated against the GEV
of MATLAB implementation. The block maxima series of channel utilization data used for
the testing has been collected with a rate of 3 samples per minute for a period of 9 hours
from university’s Wi-Fi network. As described in Section 3.1, max values of CU data for
the evaluation were partitioned to 1 hour data blocks on which the percentile estimates are
made using the proposed algorithm and compared against the results from the MATLAB
implementation of GEV.

Table 3. Error Statistics for 1 hour of CU data

Mean | Standard Deviation
-0.469 0.801

For a data set of 1 hour, Figure 13 shows the percentile estimates given by the proposed
method and the GEV implementation of MATLAR for probabilities from 0.01 to 0.99. It is



clear from the figure that through out the probability range from 0.01 — 0.99, the estimated
percentiles from the proposed method closely follow the percentile estimates calculated using
GEV implementation of MATLAB. There are some deviations visible which are due to the
approximation errors of histogram for the exact pdf. Generally, errors are significant around
the probability values in the region close to 0 and close to 1. This is mostly due to the effect
of finite bin width of the histogram. Figure 14 shows the error plot between the MATLAB
GEV and the proposed method. We can observe that through out the probability range, the
variation of the error approximately resides in the interval [—2,2.5]. Table 3 shows some of
the important statistics related to the error between the two methods.
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Figure 13. Estimated percentiles from the proposed method and MATLAB GEV method
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Figure 14. Error in the percentile estimates between the proposed method and MATLAB GEV
method

To evaluate the accuracy of percentile estimation of the proposed method, we plotted the
estimated percentiles of the proposed method against the percentile estimation of MATLAB
GEV. Figure 15 shows resulted correlation plot between the two methods. We also fitted a
regression model to the data set and the respective 95% confidence interval on the same figure.
It is visible from the figure that most of the data points fall inside the 95% confidence interval.
Therefore, we can be 95% confident that the mean of the future observations would fall
inside the confidence interval. This implies that the estimation performance of the proposed
method would stay almost invariant through out random samples of the data set. Table 4
shows the correlation coefficient between the estimated percentiles from the proposed method
and MATLAB GEV. Assuming a significance level (denoted as «) of 0.005, we receive a
P — value equal to 0.000 which tells us whether the correlation coefficient is significantly
different from 0. With P — value < «, we can presume that the calculated correlation
coefficient is significant. Therefore, we can conclude that the performance of the proposed
method is closely related to the original GEV method.



Table 4. Correlation coefficient for 1 hour of CU data

Correlation Coefficient | P-value
0.995 0.000
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Figure 15. Correlation between the proposed method and MATLAB GEV method

To study the behavior of error in percentile estimation, we calculated the difference between
the results from the proposed method and MATLAB GEV method. Using the statistical
software Minitab, we obtained the tolerance interval plot. Tolerance interval is an important
measure which gives the range that is likely to accommodate a specified proportion of the
population. Confidence level for the tolerance interval gives the likelihood that the interval
would cover the specified proportion. Therefore, we can use the tolerance interval for the error
to predict the future values of error with a specified confidence level.

Figure 16 depicts the tolerance interval plot for the calculated error between the proposed
method and MATLAB GEV method. It also shows the normality test for the error. The
calculated p_value for the normality test is lower than 0.005. Therefore, we should reject the
null hypothesis and come to the conclusion that the error doesn’t follow a normal distribution.
Consequently, we can use the non parametric tolerance interval for the error. The lower and



upper bounds of the tolerance interval for the error are given as —2.425 and 1.852 respectively.
Therefore, with a confidence level of 95%, we can expect that future errors which would be
generated from the proposed method would fall inside this tolerance interval.
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Figure 16. Tolerance interval plot for the error between the MATLAB GEV and the proposed
method

Figure 17 shows the estimated percentiles of the proposed method and MATLAB GEV over
time for a probability of 0.8. It is clear from the figure that the proposed method closely
follows the behavior of MATLAB GEV in different samples. There are some deviations in
the estimated values of the proposed method from MATLAB GEV. But, according to earlier
observations in the behavior of the error, we know with a confidence level of 95% that the
error would reside in the tolerance interval, [—2.425,1.852]. Therefore, it can be concluded
that the accuracy of the results of the proposed method is higher at an acceptable level.

Despite the simplicity, our evaluation of the performance of the proposed algorithm
gives positive results. The percentile estimates given by the proposed algorithm have very
high accuracy and have very little deviations from the estimates of actual GEV. With the



performance gain and reduced implementation complexity, small deviations from the expected
results are tolerable. Therefore, with a considerable confidence, we can rely on the percentile
estimates generated by the proposed method to apply for the load stress analysis of wireless
communication channels.
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Figure 17. Percentile estimation for p = (.8 across time for proposed method and MATLAB
GEV method



6 CONCLUSION

One of the key usage scenarios of fifth generation (5G) and beyond networks is to
provide mission critical, ultra-reliable and low latency communications (URLLC) targeting
applications where latency and reliability of wireless links are extremely important. Some
of the applications where URLLC links with extreme reliability and low latency required
are industry automation, robotics enabled medical solutions and intelligent autonomous
transportation. With incredible growth of connectivity and traffic volume, provisioning of
the latency and reliability requirements for URLLC services is becoming challenging. Due to
simultaneous access of applications by users requiring low latency and high data rates, wireless
communication channels can experience increased resource utilization, such as increased
wireless channel utilization when increased beyond certain point can degrade the performance
of URLLC applications. These kind of problems can be avoided by carrying out real-time radio
frequency data analytics at the edge of the wireless network to allow for proactive resource
allocation combined with some forecasting method which can assign more radio resources
when a particular resource is forecasted to be under stress. There are some network controllers
providing auto-scaling and load balancing mechanisms on network resources based on some
forecasting and prediction methods. But, until now, most of the forecasting and prediction
methods have relied on the data collected over 3 to 6 months or no less than 24 hours.

Real-time RF data analytics require that hundreds of millions of streaming samples can be
processed within a second and therefore, hardware acceleration using FPGAs can be considered
more appropriate. In this thesis, we proposed a real-time data analytics based resource stress
forecasting method using an FPGA. The proposed method has less complexity and can perform
the data analytics in real time. The proposed method is based on quantile estimation and
can be used on different probability distributions related to a variety of resource utilization
scenarios. As the interest of this research is on optimizing the resource allocation for URLLC
applications, we focused on forecasting the stress in wireless channel utilization. Due to the
bursty nature of channel utilization data in stressed conditions, we used the block maxima series
of channel utilization data which can be modeled using the generalized extreme value theory.
The proposed method is implemented using Xilinx Zyng-7000 series SoC board using Vivado,
Vivado HLS and Xilinx SDK along with MATLAB. We thoroughly evaluated the performance of
the proposed method against the results obtained from the theoretical method using generalized
extreme value theory tool in MATLAB. The comparison of the results against each other reveals
that the proposed algorithm performs almost equal to the theoretical implementation of GEV
and the results are within a very small margin of error. The proposed method can be used in
streaming channel utilization data and can be used with high throughput applications requiring
very low latency. Therefore, the implemented device can easily be utilized at the edge of
wireless communication networks to perform forecasting of wireless channel load stress in
real-time with high accuracy.

One of the extensions of this work we envision for, is to implement forecasting for wireless
channel utilization based on the direct implementation of the generalized extreme value theory
in the ARM processor of the Xilinx Zyng-7000 SoC. The possibility of implementing the
direct GEV should be carefully analyzed and the respective mathematical operations need to
be optimized to perform the computation with minimal latency. The performance should be
evaluated to comprehend whether the direct implementation of GEV can be used for real-time
applications. If so, further gain in the accuracy should be possible in the results.



7 ACKNOWLEDGMENT

We gratefully acknowledge Xilinx University Program (XUP) for providing us a donation of
Zedboard product which was used in this work for implementing the wireless channel load
stress analytic module.



8 REFERENCES

[1] 5G Americas (2018), 5G Americas spectrum recommendations for the U.S.
URL: http://www.5gamericas.org/files/5815/2364/7029/
5G_Americas_Spectrum_Recommendations_for the_U.S_Final.pdf,
[Online] Accessed : 06/07/2019.

[2] 3GPP (2017), 5G: Study on scenarios and requirements for next generation
access technologies (3GPP TR 38.913 version 14.2.0 Release 14). URL:
https://www.etsi.org/deliver/etsi_tr/138900_138999/138913/
14.02.00_60/tr_138913v140200p.pdf, [Online] Accessed : 06/08/2019.

[3] Francesco P.D., Malandrino F. & DaSilva L.A. (2018) Assembling and using a cellular

dataset for mobile network analysis and planning. IEEE Transactions on Big Data vol. 4,
pp- 614-620.

[4] Rodrigues F. & Pereira F.C. (2018), Beyond expectation: Deep joint mean and quantile
regression for spatio-temporal problems. URL: https://arxiv.org/pdf/1808.
08798 .pdf, [Online] Accessed : 06/07/2019.

[5] Oracle (2015) Improving Communications Service Provider Performance with Big Data:
Architect’s Guide and Reference Architecture Introduction. Oracle Corporation. URL:
http://www.oracle.com/us/technologies/big-data/big-data-
communications—-2528130.pdf, [Online] Accessed : 06/07/2019.

[6] Restuccia F. & Melodia T. (2019), Big data goes small: Real-time spectrum-driven
embedded wireless networking through deep learning in the RF loop. URL: https:
//arxiv.org/pdf/1903.05460.pdf, [Online] Accessed : 06/07/2019.

[7] Riverbed (2019), Riverbed® OPNET NetOne . URL: https://www.riverbed.
com/document/fpo/media-cms/Riverbed_OPNET_NetOne.pdf,
Datasheet, Accesed : 06/04/2019.

[8] Cisco (2015), MATE Design User Guide. URL: https://www.cisco.
com/c/dam/en/us/td/docs/net_mgmt/wae/6-1/design/user
/guide/MATE_Design_User_Guide.pdf, Chapter 7 : Forecasting Traffic,
Accessed : 06/04/2019.

[9] Mariio P.P. (2018), Net2Plan 0.6.0 User’s Manual. URL: http://www.net2plan.
com/documentation/current/help/usersGuide.pdf, Chapter 2,
Accessed: 06/05/2019.

[10] Baldo N., Giupponi L. & Mangues-Bafalluy J. (2014) Big data empowered self organized
networks. In: European Wireless 2014; 20th European Wireless Conference, pp. 1-8.

[11] Hadi M.S., Lawey A.Q., El-Gorashi T.E. & Elmirghani J.M. (2018) Big data analytics for
wireless and wired network design: A survey. Computer Networks vol. 132, pp. 180

— 199. URL: http://www.sciencedirect.com/science/article/pii/
$13891286183002309.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Barmpounakis S., Kaloxylos A., Spapis P., Magdalinos P., Alonistioti N. & Zhou
C. (2018) Data analytics for 5G networks: A complete framework for network
access selection and traffic steering URL: http://www.iariajournals.org/
telecommunications/tele_v11_n34_2018_paged.pdf, international
Journal on Advances in Telecommunications, issn 1942-2601 vol. 11, no. 3 & 4, year
2018.

3GPP (2018), 5G; system architecture for the 5G system (3GPP TS 23.501 version
15.2.0 Release 15). URL: https://www.etsi.org/deliver/etsi_ts/
123500_123599/123501/15.02.00_60/ts_123501v150200p.pdf,
[Online] Accessed : 06/08/2019.

Kaloxylos A. (2018) Application of data mining in the 5G network architecture. In: ICDT
2018: The Thirteenth International Conference on Digital Telecommunications, ISBN:
978-1-61208-623-1.

Lopez L.I.B., Vidal J.M. & Villalba L.J.G. (2017) An approach to data analysis in
5G networks. Entropy 2017 vol. 19(2):74. URL: https://doi.org/10.3390/
19020074, [Online] Accessed : 06/08/2019.

Zhan Z., Xu M. & Xu S. (2015) Predicting cyber attack rates with extreme values. IEEE
Transactions on Information Forensics and Security vol. 10, pp. 1666—-1677.

Siffer A., Fouque P.A., Termier A. & Largouet C. (2017) Anomaly detection in streams
with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 17, ACM, New York,
NY, USA, pp. 1067-1075. URL: http://doi.acm.org/10.1145/3097983.
3098144.

Deane J.H.B., Johnstone G.G., Ledford A.W. & Underhill M.J. (1997) Extreme value
theory applied to multichannel communication systems. Electronics Letters vol. 33, pp.
832-833.

Shuangqing Wei, Goeckel D.L. & Kelly P.E. (2002) A modern extreme value theory
approach to calculating the distribution of the peak-to-average power ratio in ofdm
systems. In: 2002 IEEE International Conference on Communications. Conference
Proceedings. ICC 2002 (Cat. No.02CH37333), vol. 3, vol. 3, pp. 1686-1690.

Radojkovi¢ P., Carpenter P.M., Moret6é M., Cakarevié V., Verdd J., Pajuelo A., Cazorla
FEJ., Nemirovsky M. & Valero M. (2016) Thread assignment in multicore/multithreaded

processors: A statistical approach. IEEE Transactions on Computers vol. 65, pp. 256—
269.

Intel (2019), FPGA inline acceleration for streaming analytics. URL: https:
//www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp—-01278-fpga—-inline—acceleration—-for-
streaming-analytics.pdf, Whitepaper [Online] Accessed : 06/11/2019.

Berten (2016), GPU vs FPGA performance comparison. URL: http:
//www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA__



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Performance_Comparison_vl.0.pdf, BERTEN Digital Signal Processing,
Whitepaper [Online] Accessed : 06/15/2019.

Fahmy S.A. (2010) Histogram-based probability density function estimation on FPGAs.
In: 2010 International Conference on Field-Programmable Technology, pp. 449-453.

Gramacki A., Sawerwain M. & Gramacki J. (2016) FPGA-based bandwidth selection
for kernel density estimation using high level synthesis approach. Bulletin of the Polish
Academy of Sciences Technical Sciences vol. 64, pp. 821-829.

Khan Z., Lehtomiki J.J., Hossain E., Latva-Aho M. & Marshall A. (2018) An FPGA-
based implementation of a multifunction environment sensing device for shared access

with rotating radars. IEEE Transactions on Instrumentation and Measurement vol. 67, pp.
2561-2578.

Coles S. An Introduction to Statistical Modeling of Extreme Values. Springer Series
in Statistics, Springer-Verlag London, 1% ed., 45-73 p. URL: https://www.
springer.com/gp/book/9781852334598.

AVNET (2014), ZedBoard: (Zynq evaluation and development) hardware user’s guide.
URL: http://zedboard.org/sites/default/files/documentations/
ZedBoard_HW_UG_v2_2.pdf, [Online] Accessed : 06/08/2019.

Xilinx (2018), UG902 (v2018.3): Vivado design suite user guide: High-level
synthesis. URL: https://www.xilinx.com/support/documentation/sw_

manuals/xilinx2018_3/ug902-vivado—high-level-synthesis.pdf,
[Online] Accessed : 06/08/2019.

Xilinx (2015), UG821 (v12.0): Zyng-7000 all programmable SoC software developers
guide. URL: https://www.xilinx.com/support/documentation/user_
guides/ug821-zyng-7000-swdev.pdf, [Online] Accessed : 06/08/2019.

Xilinx (2018), DS190 (v1.11.1): Zyng-7000 SoC data sheet: Overview. URL: https:
//www.xilinx.com/support/documentation/data_sheets/ds190-
Zyng—-7000-0Overview.pdf, [Online] Accessed : 06/08/2019.

[31] Xilinx (2011), UG761 (v13.1): AXI reference guide. URL: https://www.

xilinx.com/support/documentation/ip_documentation/ug761_
axi_reference_guide.pdf, [Online] Accessed : 06/08/2019.

[32] ARM (2018), AMBA AXI protocol v1.0. URL: http://infocenter.arm.

com/help/index. jsp?topic=/com.arm.doc.1hi0022b/index.html,
[Online] Accessed : 06/08/2019.

[33] Xilinx (2018), PG021: LogiCORE IP product guide. URL: https://www.xilinx.

com/support/documentation/ip_documentation/axi_dma/v7_1/
pg021_axi_dma.pdf, [Online] Accessed : 06/08/2019.



9 APPENDICES

Appendix I Example HLS code for an implemented IP

i #include "makehist.h"

s void makehist(Taxistream &A, Taxistream &B, Tint xDataArraySize)

4+ {
5 Tint 1=0;

7 static Tint hist_local [HISTOGRAM_ARRAY_SIZE]

{0};

9 assert(xDataArraySize < 64);

10 INDEX_LOOP: for(i = 0; i < xDataArraySize; i = i + 1)
1 {
12 Taxi dataln = A.read () ;

13 compare_out(dataln.data.to_uint(), hist_local);
1

4}
15
16 COPY_OUTPUT: for(i = 0; i < HISTOGRAM_ARRAY_SIZE —1 ; i++)
17 {
18 Taxi dataOut;
19 dataOut.data = hist_local[i];
20 dataOut.keep = Obl111; // all high
21 dataOut.strb = 0Obl111;
2 dataOut.last = 0;
24 B. write (dataOut); // Write to axi stream output
25 hist_local[i] = 0; // Reset to zero
26 }
28 SET_TLAST: {
29 Taxi dataOut;
30 dataOut.data = O;
31 dataOut.keep = Obl111; // all high
32 dataOut.strb = 0Obl111;
33 dataQOut.last = 1;
34 hist_local[i] = O;
35 B. write (dataOut) ; // Write to axi stream output
36 }
37 }
38
» void compare_out(Tint value, Tint hist [HISTOGRAM_SIZE])
40
{

41 Tint 1 = 0;

3 COMPARE_LOOP: for(i = 0; i < HISTOGRAM_ SIZE; i++)

14 {

45 if (value >= i1 x BIN_SIZE && value < (i+1) x* BIN_SIZE)
46 {

47 hist[i] = hist[i] + 1;

48 break ;

19 }

0 }

Listing 9.1. C++ file for Makehist IP



