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ABSTRACT

Autonomous mobile robots working in-proximity humans and objects is
becoming frequent and thus, avoiding collisions becomes important to
increase the safety of the working environment. This thesis develops a
mechanism to improve the reliability of sensor measurements in a mobile
robot network taking into the account of inter-robot communication and
costs of faulty sensor replacements. In this view, first, we develop a sensor
fault prediction method utilizing sensor characteristics. Then, network-wide
cost capturing sensor replacements and wireless communication is minimized
subject to a sensor measurement reliability constraint. Tools from convex
optimization are used to develop an algorithm that yields the optimal sensor
selection and wireless information communication policy for aforementioned
problem. Under the absence of prior knowledge on sensor characteristics,
we utilize observations of sensor failures to estimate their characteristics in
a distributed manner using federated learning. Finally, extensive simulations
are carried out to highlight the performance of the proposed mechanism
compared to several state-of-the-art methods.

Keywords: sensor reliability, autonomous mobile robots, wireless information,
network operating costs, federated learning.
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TIIVISTELMÄ

Autonomiset liikkuvat robotit, jotka työskentelevät läheisillä ihmisillä
ja esineitä on tulossa yleiseksi ja siten törmäysten välttäminen on
tärkeää työympäristön turvallisuuden lisäämiseksi. Opinnäytetyössä
kehitetään mekanismi, jolla parannetaan anturimittausten luotettavuutta
matkaviestinverkossa ottaen huomioon robottien välisen viestinnän ja
virheellisten anturivaihtoehtojen kustannukset. Tässä mielessä kehitämme
ensin anturin vian ennustamismenetelmän, jossa käytetään anturin
ominaisuuksia. Sitten verkon laajuiset kustannusten kaappausanturien vaihto
ja langaton viestintä minimoidaan anturin mittausturvallisuusrajoituksen
alaisena. Kupera optimoinnin työkaluja käytetään sellaisen algoritmin
kehittämiseen, joka tuottaa optimaalisen anturin valinnan ja langattoman
tietoliikennepolitiikan edellä mainittuun ongelmaan. Jos anturien
ominaisuuksista ei ole aikaisempaa tietoa, käytämme havaintoja
anturihäiriöistä niiden ominaisuuksien arvioimiseksi hajautetusti käyttämällä
federated learning. Lopuksi tehdään laajoja simulaatioita ehdotetun
mekanismin suorituskyvyn korostamiseksi verrattuna useisiin uusimpiin
menetelmiin. Avainsanat: anturin luotettavuus, autonomiset mobiilirobotit,

langatonta tietoa, verkon käyttökustannukset, yhdistetty oppiminen.
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1 INTRODUCTION

1.1 Background and Motivation

In the past decade, applications of wireless services have evolved from traditional voice
and message communications to advanced applications, such as wireless communications
in industrial automation, weather predictions, intelligent transportation, remote health
monitoring [1, 2, 3, 4]. When industrial automation is considered, industries focus
on automating industrial processes, such as navigation, transportation, environment
monitoring efficiently, where automated mobile robot wireless networks are getting
important in industry [5]. In addition, in the manufacturing sites, with the increased
density of robots in the working environment, there is a tendency for the collisions
among robots and humans and other nearby objects to increase. Unexpected collisions
between robots and nearby humans or objects result in damage to resources, poor worker
satisfaction, medical costs. Thus, reliability of the robots and their decisions in the
working environment is a major concern. In this regard, the need for improved reliability
in proper decision making by mobile robots in an industrial environment have become a
key role. Hence, in order to improve the safety of the environment, the sensory inputs
which are used in decision making must be closely evaluated to improve reliability in
decision making of the robots [6]. Nevertheless, maintenance of improved reliability
constitute a large portion of costs in many industries, and that the costs are likely to
increase due to rising competition in today’s global economy, customers are compelled
to explore new high reliable yet low cost strategies for their automated mobile robot
network [7]. In order to reduce the possibility of system failures which will increase
system operating costs and reduce system reliability, failures must be effectively diagnosed
beforehand using state of the art prediction, optimization, data driven model learning,
strategies. Hence, the motivation of this thesis is to address the challenge in enhancing
sensor reliability, while maintaining network operating costs at a minimum using various
strategies.

1.2 Scope of the thesis

Main objectives of this thesis are,
1. Proposing strategies of increasing reliability of sensor measurements.

Sensors fail or wear-out with time and thus, their performance deteriorate from
expected performance. Sensor failures affect sensor measurement reliability.
Strategies on enhancing sensor measurement reliability using mathematical
modelling of sensor failure prediction and sensor reliability optimization are
discussed.

2. Sensor failure prediction and optimization of resource allocation in a wireless
network.
Sensor failure prediction and enhancing sensor reliability results in replacement
of failed sensors, which results in increasing network operating costs. Thus,
optimization of network resources while maintaining sensor reliability under
satisfactory limits is one of the primary objectives.



10

3. Usage of wireless communication strategies to achieve sensor reliability.
Effective communication is a necessity in an automated mobile wireless network.
The possibility of utilizing wireless network strategies for sensor reliability
enhancement and sharing data of sensor failures during real time operation of the
system is a key objective of the thesis. Retrieving sensor failure data from neighbor
mobile robots using wireless communication aspects of the network and using that
data to enhance future sensor measurement reliability are discussed.

4. Usage of sensor failure model learning approaches to achieve sensor reliability
Using learning approaches to estimate sensor failure model, predict sensor failures
and enhance sensor reliability. Proposing the utilization of federated learning
approach, when previous knowledge on sensor failure of the system is not available,
to make sensor failure predictions in a distributed manner. Evaluating its
performance over the existing strategies of enhancing sensor reliability.
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2 RELATED WORK

In designing a resource management solution for an automated robot wireless network,
one must factor in a variety of constraints pertaining to the sensors of mobile
robots and wireless network such as the sensor reliability, effective communication and
communication resource allocation [8]. Little research work seems to have studied
how sensor reliability is enhanced while optimizing the network operating costs. Most
automated robot wireless networks assume perfect, reliable sensor functioning and perfect
reliability of sensory data. Thus, enhancing sensor reliability while maintaining optimal
network operating costs, is a novel research approach for the autonomous wireless
networks. In particular, federated learning plays a major role in designing a self
organizing mobile devices, that rely on local information, with small variance from
the centralized information [9]. In this section, work done so far on enhancing sensor
reliability, while optimizing network operating costs and usage of federated learning
approach to predict sensor failures are discussed.

2.1 Automated robot wireless network

Industrial automation is a continuously progressing field. Industries focus on improving
their efficiency, worker conditions and reducing energy consumed, by utilizing automation
and effective communication. [10]. This increased the need for new ways of
communication inside the industrial environment, apart from wired communication [7].
Mobile robots are utilized for various tasks, in industry such as quality assurance, delivery
of goods, production, delay handling. Therein, automated wireless networks are becoming
highly effective in industries. Wireless techniques, enable device mobility, reduce costs
for wired communication, and reach remote and dangerous areas. In order to increase
adaptability of mobile robot usage, wireless solutions and distributed machine learning
strategies are incorporated for effective communication among other mobile devices and
the central or parent server.

2.2 Information exchange among robots

The main motivation for connecting the robots is to achieve a single goal by connecting
robots in a distributed and parallel way. In many practical applications this approach is
more efficient and economical than the approach with single intelligent robot. Recently,
many researches have focused on the importance of utilizing group behaviours that use
local interactions for effective coordination and progress at achieving specific tasks.
Real time wireless communication can help dynamic resource management and self-
organization for a team of cooperative devices. The multiple devices communicate with
each other, sharing the same mission. Hence, for cooperative behavior in an intelligent
robot system effective communication is essential [11].
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2.2.1 Constraints for effective communication among mobile robots

Machine-to-machine wireless communications will become more important than the
current trend that focuses on machine-to-human or human-to-human information
exchange. It will open new research challenges to wireless system designers. Data can
distort as a result of path loss which in turn creates problems for devices who attempt to
retrieve data from other remote locations. Path loss reduce the efficiency communication
between the transmitter and the receivers, thus in order to diminish or reduce effect of
path loss it is modelled and links having sufficient rates for communication are selected
optimally. Free space path loss of links can be modelled as log2(4l

λ
), where l, λ represent

the transmitter-receiver distance and wavelength of the wireless signal [12].
Water filling algorithm is considered the capacity achieving optimal power allocation

strategy for wireless networks [13]. Under water filling algorithm, the total amount of
water filled (power allocated) is proportional to the SNR of the channel. Generally,
the water filling algorithm allocates more power to the user with the best channel
and lower power to weak channels. The water filling algorithm is given as follows,
where Zk, H,K,N0, Pk are variance of noise plus interference per user k, channel matrix,
variance of white Gaussian noise, power allocated per user k [14].

Algorithm 1 Iterative waterfilling algorithm
Initialize : Input co-variance per user k, Kxk = 0
repeat

for k = 1,2,3,.....,K do
Zk = N0Inr + ∑

i 6=k
HiKxiH

H
i

Kxk = arg max
Tr(Kxk≤Pk)

ln | Zk + HiKxiH
H
i |

end
until sum rate converges;

2.3 Sensor measurement reliability

Sensors are very crucial feedback elements in critical systems for timely assessment of
system health and to take appropriate measures to prevent any catastrophic failure [15].
Sensor performance decreases due to deterioration resulting from age or usage. This
deterioration is affected by several factors, including environment, operating conditions
and maintenance.

2.3.1 Truncated Weibull distribution to generate a sensor failure model

In the past decades, many authors have shown interest in obtaining new probability
distributions with higher flexibility in applications [16]. Weibull models are widely used
for failure modelling of components and phenomena. They are one of the best known
and widely used distributions for reliability or survival analysis [17]. In addition to the
traditional two or three parameter Weibull distributions, many other Weibull related
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distributions are used to model failures. The two-parameter Weibull distribution with
parameters scale, λ, and shape, k, has the probability density function,

f(a) = k

λ

(
a− T
λ

)
e(a−T

λ
)k (1)

Truncated Weibull distribution basically has three forms, namely left truncated, right
truncated and doubly truncated. The right truncated two parameter Weibull distribution
is modelled as follows.

fr(a) =
λ
k
(λ
k
)(λ−1)e−( a

k
)λ

1− e−(T
k

)λ
(2)

.
Some properties of right truncated Weibull include, having lower failure rate initially

and higher failure rates at the maximum lifetime of a product.

2.3.2 Prediction of sensor failures

Prediction of sensor failures in the next time instant is related to the probability that
lifetime comes to an end within the next small time increment of length t0 given that
the lifetime has exceeded a so far, [18] given as follows, where t and F (·), represent the
lifetime of sensor and CDF of h(a, k, λ) respectively.

Pr
(
t ≤ a+ t0|t ≥ a

)
=

Pr
(
a ≤ t ≤ a+ t0

)
Pr
(
t ≥ a

)
= F (a+ t0)− F (a)

F (T )− F (a) . (3)

where CDF F (·) characterizes the cumulative distribution function of h(a, λ, k) defined
as,

F (a) = (1− e−(T−a
λ

)k))
(1− e−(T

λ
)k)

2.4 Estimation of model parameters using MLE

Estimation of model para maters using graphical and statistical methods are presented
in the literature. When the data size is small, graphical estimation methods are suitable,
however, the statistical methods are used when the large data sets are used. The
possible statistical estimation methods include Maximum Likelihood Estimation(MLE),
method of moment, method of percentile and the Bayesian method. When the location
parameter, T , is known, the Weibull distribution model becomes a two parameter Weibull
distribution. MLE can be used to estimate the two parameters. There are many ways
to estimate model parameters and stochastic gradient descent is the most used, adaptive
method used for MLE [19]. In general MLE algorithm formulation for a general problem



14

is as follows [20]. Suppose there exist N independent observations which follow a certain
model, let us assume it is a continuous model. Assume that the model is characterized
by parameter, θ. Since the observations are independent, the joint density is the product
of individual densities. given as

f(y1, y2, ......, yN |θ) =
N∏
n=1

{
f(y|θ)

}
(4)

In order to find observations that have maximum likelihood to the function considered,
it is appropriate to use joint density of the observations, given the observations,
y1, y2, y3, ...., yn:, where L(θ|y1, y2, ......, yN) is called the likelihood function,

L(θ|y1, y2, ......, yN) = f(y1, y2, ......, yN |θ) (5)

Since , θ is unknown the most likely value is approximated. This is done by maximizing
the function L(θ|y1, y2, ......, yN) with respect to θ.

max
θ∈×

L(θ|y1, y2, ......, yN)

where the search is limited to the parameter space, Θ and it is assumed that the initial
θ used for MLE belongs to Θ. In practice, due to numerical stability issues, it is more
convenient to use the log likelihood function, named the log likelihood function and
maximize it. Log likelihood function can be modelled as

lnL(y,θ) =
∑
m∈M

f(y,θ) (6)

Finally, maximum likelihood estimator can be defined using log-likelihood function as,
the estimator θ which maximizes the log-likelihood function,

θ̂ = arg max
θ∈×

LL(y,θ) (7)

2.5 Convex optimization

Casting a problem into convex optimization form offers the mean of finding the optimal
solution by applying Lagrangian multipliers/ KKT conditions. A convex optimization
problem is of the form [21].

minimize f0(x) (8a)

subject to fi(x) ≤ 0, i = 1, 2, ....,m (8b)

where functions f0, .....fm : Rn −→ R are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y)

with
α + β = 1, α ≥ 0, β ≥ 0 where α, β ∈ R and x, y ∈ Rn
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2.6 Data driven learning approaches for system failure prediction

Statistical and learning techniques are widely used for deducing data-driven model.
With the growing number of sensors in a real-world system, the possibility for
environmental and current state monitoring increases. Therefore, most approaches
in recent literature conduct predictive maintenance, failure prediction using data-
driven models [22]. Furthermore, there are three different learning techniques, namely
supervised, unsupervised and reinforcement learning [23]. In supervised learning, data
collected previously from observing actual behaviors is used. In the area of failure type
detection and predictive maintenance, the supervised learning is the most commonly used
learning type, when the real world system is monitored and the historic data is available.
This improves the accuracy prior to the decisions taken by the system. The reinforcement
learning has explore and exploit phases. It creates a result, depending on the actual data
in the real world. This implies that the accuracy in the estimate regarding the state of
a real-world system effects the output of the learning [24].

2.6.1 Centralized and federated learning approaches

Centralized and federated learning are two different approaches for learning data driven
models. Centralized learning approach is a traditional machine learning approach where
data is in the central server are utilized to find data driven models. Federated learning is
an approach where a global model is learned by averaging models that have been trained
locally on client devices that generate data. [25]. When the isolated data occupied by
each client fails to produce an ideal model, the mechanism of federated learning makes
it possible for clients to share a united model without data exchange.[26] Algorithms for
centralized and federated learning are generalized as follows [27].

Algorithm 2 MLE using centralized learning
input data : local dataMu∈U , step size δ
for Tf = 1, 2, 3, ....., do

Model f(M)
Compute∇d f

d(M)
∇d f

d(i) = ∇d f
d(M)

Update global estimations d(Tf )
d(i) = d(Tf )
for i = 1, 2, 3, ....., do
Compute d(i) =d(i) - δ ∇d f

d(i)
end
Download model to all clients U
for k = 1, 2, 3, .....,Ku do
Collect Mu

end
Upload Mu to C

end
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Algorithm 3 MLE using federated learning
input data : Gradients ∇d{fdu(0)}u∈U , local estimations {du(0)}u∈U and step size δ
for Tf = 1, 2, 3, ....., do

Update local estimations {du(Tf )}u∈U
Compute ∇d{fdu(Tf )}u∈U
Download model to all clients U
for k = 1, 2, 3, ....., Ku do
du(i) = du(Tf )
∇d f

d
u(i) = ∇d f

d
u(Tf )

for i = 1, 2, 3, ....., do
Compute du(i) =du(i) - δ ∇d f

d
u(i)

end
end
Upload ∇d{fdu(Tf )}u∈U , local estimations {du(Tf )}u∈U , Ku to C

end

The advantages and disadvantages of centralized and federated learning are
summarized in in Table. 1 and 2 [28].

Table 1. Advantages and disadvantages of centralized learning approach [29]

Advantages Disadvantages
Reduces data processing at the client Complex data processing at the

parent/central server
Large amount of data samples
increase accuracy of global parameter
estimation

Increases data traffic due to large
chunks of data transmitted by client to
server

Easier to manage small networks The scalability is low
Sufficient networking and processing
resources at central server

System is relatively expensive

Frequent sharing of model gradients
with the clients

System performance for each client
decreases when many try to connect
simultaneously
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Table 2. Advantages and disadvantages of federated learning approach

Advantages Disadvantages
Less expensive than centralized system Clients require higher data processing

resources or complex software
Scalability of the system is high Need scheduling for sharing of

gradients
When one client breaks down, the
system goes on operating

Accuracy of the global model averaging
depend on the size of shared model
gradients

Privacy of data Large size data samples collected at the
client

Share gradients with predetermined
time intervals

Takes time to update sufficient
gradients to the central server
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3 ENHANCING SENSOR MEASUREMENT RELIABILITY

The design of a mechanism for enhancing sensor measurement reliability of an automated
wireless network of mobile robots while maintaining operating costs of the network at
minimum is one of main challenges in emerging mobile wireless networks at present.

3.1 System model and problem definition

Consider a local communication network consisting a set V of robots, that can
communicate with one another and a central server, u, over wireless links. One robot,
V , communicate with the neighbor robots, v′, that are located within the neighborhood
region of radius S0, defined for the network. It is assumed that robots are located
at random locations and the wireless link between v and v′ is assumed to be a line
of sight (LOS) channel with interference, with the channel gain parameter, hvv′ , The
neighborhood region of robot v is Nv = {v′|‖~bv − ~bv′‖ ≤ S0} where S0, ~bv, and ~bv′ are
the neighborhood range and location coordinates of v and v′, respectively. It is assumed
that the wireless signals are attenuated by free space path loss of, log2(4S0/λ), within
the region of radius, S0.
Next, it is assumed that the information sharing from v to neighbouring robot v′, is

possible only when the rate exceeds a threshhold rate, rth achievable under the effect
of path loss at the radius S0. The up-link rate of the communication links vary on the
signal to interference ratio, (SINR) of the link. SINR is deduced using power allocated to
the robots, Pv, the channel gain of the link, hvv′ , and interference added by neighboring
links.
The achievable rate between v and v′ is given as, considering the interference from

other neighbor robot links and Gaussian noise, N0 is given in (9) [30].

rv′ =
Pih

2
vj′∑

l∈P,v′∈V ′,l 6=i,v′ 6=j′
Plh2

vv′ +N0
(9)

The system model of the automated mobile robot wireless network is illustrated in
Figure. 1
Further, each robot v ∈ V is equipped with an array Sv sensors to obtain proximity

measurements for the purpose of collision avoidance. It is assumed that all sensors
are manufactured under similar conditions and thus, having identical failure rates, i.e.
likelihood of failure at a given age. Hence, the lifetimes of sensors (a) can be considered
as random variables (RVs) drawn from independent and identical distributions. In this
view, the sensor lifetime is modeled by a truncated Weibull distribution h(a, λ, k) with
scale parameter of λ, shape parameter of k, and maximum lifetime of T [31] that is given
by,

h(a, λ, k) =


f(a)
F (T ) if a ∈ [0, T ]
0 otherwise,

(10)

where f(a) and F (a) are the probability density function (PDF) and cumulative density
function (CDF) of the truncated Weibull distribution respectively, defined as follows:
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Figure 1. Simplified illustration of the system model containing the location of the local,
neighbor robots and nearby objects within the radius S0
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f(a) = k

λ

(
a

λ

)k−1
exp

(
−
(
a

λ

)k)
(11)

F (a) = 1− exp
(
−
(
a

λ

)k)
(12)

Hence,

f(a)
F (T ) =

k
λ

(
a
λ

)k−1
exp

(
−
(
a
λ

)k)
1− exp

(
−
(
T
λ

)k) (13)

Then, using (10), the probability that the sensor will be failed by (a + t0) can be
calculated as follows, where a, F (·) represent the lifetime of sensor and CDF of the
h(a, λ, k) respectively.

Pr
(
t ≤ a+ t0|t ≥ a

)
=

Pr
(
a ≤ t ≤ a+ t0

)
Pr
(
t ≥ a

)
=
∫ a+t0

0 h(a, λ, k)dt−
∫ a

0 h(a, λ, k)dt
1−

∫ a
0 h(a, λ, k)dt

= F (a+ t0)− F (a)
F (T )− F (a) . (14)

The above result is utilized for sensor failure predictions in the rest of the discussion.
It is assumed that each sensor measurement is degraded by a random measurement noise
that is modeled by a random variable with independent and identical uniform distribution
over [−L,L]. In this view, the measured distance dact

v,s from robot v to an object using
sensor s is modeled as,

dobs
v,s = dact

v,s + nv,s, (15)

where nv,s is the measurement noise, and dobs
v,s is the estimate of dact

v,s aggregated by a local
robot regarding B
Suppose the robot v utilizes a portion Kv ⊂ Sv of its sensors as active sensors for a

particular measurement. Hence, after a sensor reading, the robot v averages dobs
v,s from

all the active sensors in Kv to obtain an estimate of dact
v,s , i.e. d̂v = 1

Kv

∑
s∈Kv d

obs
v,s .

The illustration of dobs
v,s deviated from dact

v,s by nv,s is given in Figure. 3.
Figure. 4, depicts how Mean Square Error(MSE) of dobs

v,s collected by sensors in local
robot, varies with Kv. It can be seen that MSE reduces with the increment in Kv

The variance of sensor measurement noise/error, which follows a uniform distribution is
calculated as follows [34].

V ar(nv,s) = α
L2

3 (16)

Then, to reduce the variance, Kv, should be increased. where the maximum possible
measuring error is L, and the failed percentage of the sensor is α.

Reliability of dobs
v,s = (1− α)L

2

3 (17)
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Figure 2. Degradation of actual sensor measurement,best estimate, due to measurement
error [32]

Figure 3. Degradation of actual sensor measurement due to measurement errors
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Figure 4. Mean Square Error (MSE) of measurement noise, nv,s, against active number
of sensors [33]

3.2 Optimal network resource allocation using convex optimization

The optimization problem of minimizing the network operating costs while maintaining
reliability of sensor measurements above a threshhold, is categorized to two parts as
with and without communication and the effect of communication on the optimization is
observed. The basic flow of the optimization algorithms with and without communication
is illustrated in Figure. 5.
Further, it is formed into a convex optimization problem which is solved using

Lagrangian multipliers/Karush–Kuhn–Tucker (KKT) conditions. The optimization
algorithm implemented is given as follows, where φs, φc, αs, βv′ , Pm are cost vector for
faulty sensor replacements in the sensor array, cost vector for communication established
with neighbor robots, vector of sensor failure percentage of each senor in sensor array,
vector of sensor active percentage of sensor array in each neighbor robot, v′ and the
maximum power allocated for a single local robot for communication. Nth is the
amount of active sensors required in the sensor array to maintain the reliability of sensor
measurements at the reliability threshhold defined for the system.
Here, xv(t) = [xsv(t)]s∈Sv and yv′(t) = [yv′(t)]v∈V ′ are the control decision vector of

optimal sensor replacements and optimal communication required with neighbor robots,
derived from the optimization problem. xsv(t) = 1 if the sensor s ∈ Sv is replaced at
time t and yv′(t) = 1 if the sensor local robot retrieve data from v’∈ V at time t.

where xv(t) =

1, if sensors replaced
0, otherwise

(18)

and yv′(t) =

1, if communicate with v’
0, otherwise

(19)



23

Figure 5. Implementation of optimization algorithm

V (α, β) is the reliability achievable using optimal sensor replacements, (xv(t))∗, and
optimal communication with neighbor robots, (yv′(t))∗, derived using the optimization
algorithm.

V (α, β) =
(

N∑
s=1

(1 + αs(xv(t)− 1)) +
v′∑
i=1

(yv′(t)βv′)
)

minimize
xv(t),yv(t)

φsxv(t) + φcyv′(t) (20a)

subject to V (α, β)−Nth ≥ 0, (20b)
Pvv′ ≤ yv′(t)Pm, (20c)
yv′(t)(rv′ − rth) ≥ 0 (20d)

Here, objective function given in (20a) which is the summation of cost for faulty
replacements of sensors and communication, is minimized subjected to reliability
constraint of maintaining the active percentage of sensors of the total sensor array of
N sensors above active percentage threshold of Nth required to maintain the reliability
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threshhold, given in (20b), the transmit power constraint of allocation of power
considering the water filling algorithm to each neighbor robot is given in (20c) and
communication constraint of communicating only when rate of the channel exceeds a
threshhold rate determined by the rate achievable at the radius S0 under the effect of
path loss, given in (20d).

3.3 Learning of sensor failure model

In order to predict sensor failure, the knowledge of the sensor failure model is required.
Once the data of lifetime of sensors are available, the model parameters are estimated
using maximum lifetime estimation (MLE) algorithm. MLE is considered the most
suitable state of art method to estimate model parameters. Thus, MLE is used for
the estimation of model parameters in this study.

3.3.1 Sensor failure model parameter estimation using MLE algorithm

Maximum Likelihood Estimation (MLE) is used to find the best estimation of the sensor
failure prediction model, h(a, λ, k). Here, lifetime data of sensors are known and model
parameters The model parameters, scale k and shape λ which best fits the data is found.
Using maximum likelihood estimation, the product of samples which follow the PDF of
prediction model is maximized. Thus, MLE is formulated as follows, where K is the total
number of sensor lifetime data samples.

maximize
λ, k

∏
K

{
h(a, λ, k)

}
(21a)

subject to λ ∈ (0,Z+), (21b)
k ∈ (0, 1] (21c)

It can be reformulated as,

maximize
λ, k

∑
K

ln
{
h(a, λ, k)

}
(22a)

subject to λ ∈ (0,Z+), (22b)
k ∈ (0, 1] (22c)

SGD is used to maximize the log likelihood function of the sensor failure model,
parameterized by a model parameters scale and shape. SGD is an iterative method.
We start with some set of values for our model parameters and improve them slowly. To
improve a given set of parameters, we try to get a sense of the value of the likelihood
function by calculating the gradient. Then we move in the direction which maximizes
the likelihood function. By repeating this step many times, we’ll continually maximize
the log likelihood function. Here the shape, k, and scale parameters, λ, are updated
simultaneously [35].
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Gradient of h(t, λ, k) with respect to model parameters

Gradient with respect to k is formulated as,

∇kh = ∂h(a)
∂k

(23)

∂ ln h(a)
∂k

= 1
k

+ ln(t) − ln(λ) − ek
a
λ ln a

λ
−

e−
T
λ

k

ek ln T
λ ln T

λ

1− e−Tλ
k (24)

Gradient with respect to λ is formulated as,

∇λh = ∂h(a)
∂λ

(25)

∂ ln h(a)
∂λ

= −k
λ

+ k
a

λ

(k−1) a

λ2 +
ke−(T

λ
)k T
λ

(k−1) T
λ2

1− e−(T
λ

)k
(26)

Algorithm 4 MLE using SGD
input data : Failure rates of sensors(t), cutoff time(T)
estimate: shape, k, scale, λ select: learning rate, µ, number of iterations, j
while not converged do

for i ∈ shuffle(1,2,3,.......,n))do
for j ∈ 1,2,3,.....,K
update k and λ
k(j+1) = k(j) - µ ∇k hk
λ(j+1) = λ(j) - µ ∇λ hλ
end
end

end

3.3.2 Learning approaches

Learning approaches are useful when past data of sensor failures of the system are not
available and thus it is unable to find an estimate of the prediction model due to lack
of data. The data needed can be acquired by observing the sensor failures happening
actually in the system with time. However, when compared with the system with data
availability, this method takes time to collect sufficient amount of data and obtain the
estimate of model parameters which is possible with large amount of data.
In this research, two methods of learning approaches are proposed for this system

1. Centralized learning

2. Federated learning
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Figure 6. Centralized learning process

Centralized learning approach

Centralized approach is used when the processing power at the local robots in the network
is insufficient to conduct complex data processing. When centralized approach is used,
the sensor failure data collected at the robots are shared with the central server at each
time instant. The central server collects data from all the robots and the collected data
are processed at the central server and the model parameters are estimated using MLE.
The model parameters estimated, global estimate of the model parameters, are shared
with the local robots at each time instant. The flow chart depicting the centralized
approach is given in Figure. 6.

Federated learning approach

The main idea to use FL is that sharing training samples in a centralized approach
require more communication resources and imposes higher latency. In this approach
model parameters are updated to the central server in fixed time intervals and the model
parameters are collected from all the robots. The collected model parameters are averaged
which results in the global estimate of the model parameters. The global parameters are
shared with the robots at each fixed time instance, specified for the system [27]. The
flow chart depicting the federated approach is given in Figure. 7

Comparison between centralized and federated approaches

In both approaches the global estimate of the model parameters are shared with the local
robots by the central server. However, there are differences among the two approaches.
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Figure 7. Federated learning process

1. Centralized approach shares chunks of data samples of sensor failure data at each
time instant with the central server, while federated approach shares only local
estimates of the model parameters at specific time intervals. Thus, the data
traffic anticipated from centralized approach is higher than the federated learning
approach since sensor failure data collected at the robot can be large in size while
the locally estimated model parameters by each robot is smaller in size

2. Data processing at the central server is higher under centralized approach since
large chunks of data need to be processed in order to find the estimate of the model
parameters using MLE, while in federated approach only the local data collected are
used to derive the estimate of the model parameters and only the model parameters
need to be transferred via the communication link at fixed intervals
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4 RESULTS

4.1 Introduction

In this chapter the simulation of the scenario discussed in system model, simulation
configurations and comparison of results to compare the performance of the proposed
solution over the state of the art methods is presented. The steps followed to implement
the simulation results are given in the following sections.

4.2 Numerical results

First the numerical results obtained to initiate the system model is presented and
explained. A suitable sensor lifetime data distribution which models the actual sensor
lifetimes for the system is determined. Further, when lifetime data are available the
model parameters are estimated using MLE algorithm. Thus, using MLE to estimate
the model parameters in the simulation is explained in the proceeding sections.

4.3 Initiating the system model

4.3.1 Lifetimes and ages of sensors

Lifetimes of the sensors used in the system were generated choosing random lifetime
samples which follow the cdf of actual sensor failure model, described in (12) in the
system model. The ages of sensors were designed assuming that the starting age of a
sensor in the system is a random and has not reached its lifetime. It is assumed that all
s ∈ Sv which are failed at the beginning are replaced with new sensors. Thus, when the
system model is initiated, all s ∈ Sv are active. The simulation parameters of the system
model are defined as given in Table 3.

Table 3. Simulation parameters of the system model

Parameter Value
Scale, λ 10
Shape, k 2

Maximum lifetime,T 10 sec
Variance of measurement error 1
Threshhold of variance of dobs

v,s 0.125
Maximum power for communication per v 10 W

Channel type Rayleigh fading
Gaussian Noise variance,N0 1

Network area 100m2
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4.3.2 Choosing suitable sensor failure model parameters

First, numerical results were obtained for suitable sensor failure model parameters which
can be used for sensor failure prediction.The validity of the model parameters for sensor
failure prediction in the system we considered is evaluated as follows. The Figure. 8
represents how the failure rate of sensors sensors vary with the age of sensors. Since
there is a specific gap between the failure rate curves of the sensor with the increment in
of the age of a sensor, it is possible to clearly determine whether active or inactive status
of the sensor with each age of sensor. Thus, the actual sensor failure model parameters
chosen, given in Table. 3 are suitable to implement the system scenario and predict the
sensor failures accurately with time.
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Figure 8. Variation of failure rate of sensor with the increment in the age of sensor

The curves of Figure. 8 has the a low slope at the beginning and and a high slope
near the maximum lifetime of sensors, which means that the sensors have lesser failure
probability when their age is low and higher failure rate when the age of sensor reach the
maximum lifetime of sensors.

4.3.3 Actual and estimated model parameters

Next MLE algorithm was used to estimate the actual model parameters and obtain
numerical results for estimated model parameters. The MLE algorithm uses the sensor
failure data to estimate the actual model parameters. Since the total number of data
samples effects in the final estimated model parameters, variation of model parameters
with the total number of data samples is given in Table. 4.
and the comparison of actual model with the estimated sensor failure model which

varies with the number of data samples is given in Figure. 9
Since there exists an estimation error between actual and estimated model parameters,

the prediction based on the estimated model has been deviated from the actual model.
Therefore, the optimal decisions taken using the actual and estimated models vary. It can
be observed that the highest deviation between the estimated and actual model occurs
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Table 4. Simulation parameters of the system model

Number of data samples Estimated shape Estimated scale
1 1.0433e+10 2.2053
10 1.9999 5.5630

1000 1.0804 8.1973
100000 1.3433 1.5433
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Figure 9. Variation of estimated sensor failure prediction model with number of data
samples

when the number of data samples equals 1. However, when the data samples increase
the shape of the estimated model start following the actual model.
When a prior knowledge on sensor life time distribution is unavailable, it has to be

estimated using MLE, by collecting data of sensor failures in real time. This strategy
is used when implementing centralized and federated approaches and learn the sensor
failure model parameters.

4.3.4 Robot deployment

The network area of the system is assumed as 100m2 and robots are assumed to be at
random locations throughout a single simulation. Thus, the amount of neighbor robots
of each local robot varies, since the amount of robots in the neighborhood region of a
local robot is random.
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4.3.5 Effect of communication

First, the system model was simulated without using communication aspects to inspect he
functioning of the proposed solution. Next, effect of communication on the performance
of the proposed solution is evaluated. Next, communication is utilized to implement the
system under centralized and federated learning approaches, where the robots share data
with the central server and the central server shares global estimate of the sensor failure
prediction model parameters.

4.4 Simulation scenarios

To validate the performance of the proposed solution, different scenarios of proposed
algorithms are designed to compare the proposed solution with benchmark algorithms.

• Benchmark algorithms: The sensor replacement decisions in the benchmark
algorithms depends on the predefined rules and they do not use failure predictions
techniques.The benchmark algorithms detailed as follows and simply illustrated in
Figure. 10.

1. Myopic-C:
Replace failed sensors until the reliability target is met. In this view, after
every measurement, all robots observe their malfunctioning sensors. If the
number of failed sensors, Nf , exceeds Nth, then (N −Nth) number of failed
sensors are replaced by new sensors.

2. Myopic-R:
Replacing failed sensors until reliability target is met.The difference between
Myopic - C and Myopic - R is that in Myopic - R, failed sensors are replaced
with new sensors, according to the descending order of the ages of sensors

3. Fixed age:
Replace sensors which reach a predefined age. Additionally, Fixed age
enforces robots to replace even functioning sensors those exceed a certain age
limit, e.g. 50% of T as they are likely to fail in near future.

• Proposed algorithms: The proposed algorithms utilize both the sensor failure
prediction and optimization algorithm.The proposed algorithms detailed as follows
and simply illustrated in Figure. 11.

1. Full knowledge:
Full knowledge means the system posses the knowledge of the lifetime of
sensors, Thus, the system is able to predict sensor failures accurately. Thus,
here the performance of the optimization algorithm, without the effect of errors
in sensor failure prediction, can be evaluated.

2. Using a known sensor failure prediction model(Known h):
Here, sensors are replaced to achieve the target reliability assuming, the
exact sensor failure prediction model is known. The difference between full
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Figure 10. Implementation of benchmark algorithms

knowledge and this algorithm is that this scenario predicts sensor failures using
a known model, which is modelled using limited number of known lifetime
data of sensors. Thus, it does not posses the full knowledge of failures of
sensors. Thus, the sensor failure prediction is not as accurate as full knowledge.
Thus, the effect of error between full knowledge scenario and this scenario ,
is evaluated using simulations. Hence, the effect of prediction using a known
sensor failure model and optimization algorithm is observed in this scenario.
This scenario is further evaluated, under with and without communication.
The effect of communication to improve the performance of this scenario is
observed.

3. Using an estimated sensor failure prediction model(Estimated h):
Since, the actual sensor failure prediction model is unknown, estimated sensor
failure prediction is used for prediction, when previous knowledge of sensor
failures in the system is known. Thus, the effect of prediction using an
estimated sensor failure model and optimization algorithm is observed in this
scenario. This scenario is also further evaluated, under with and without
communication. The effect of communication to improve the performance
of this scenario is observed. When previous knowledge of sensor failures in
the system is unknown, this scenario is implemented using centralized and
federated learning approaches, where sensor failure model parameters are
learnt by collecting data of sensor lifetimes by observing real time sensor
failures of the sensor array, Sv, of the robot.
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Figure 11. Implementation of proposed algorithms

4.5 Simulation Results

4.5.1 Outage probability

The variance of sensor measurements must be kept below the threshold variance to keep
the reliability of the sensor measurements above the threshold of the reliability of sensor
measurements. Hence, variance of sensor measurements is inversely proportional to
reliability of sensor measurements. For simulations, the incident of sensor measurement
variance exceeding threshhold variance is named as a reliability outage. Thus, in order
to maintain higher reliability in the system, the probability of reliability outage must be
kept low. The probability that reliability outages occur is named as outage probability
through all the simulation results. Thus, it should be noted that this is not the outage
defined in communication, as the incident where information rate is less than the required
threshold information rate.

4.5.2 Variation of reliability outage probability against cost ratio, φc
φs
.

First, the impact of costs of sensor replacements and communication with neighbor robots
on the reliability outages of the system is analyzed in Figure 12. Therein, it can be seen
that the reliability fluctuations/outages increases with the increase in the cost ratio of
φc
φs
. The reason behind the increase in outages, is that when the cost ratio increases, φc

increases, and in order to minimize the total network operating cost, the local robot tends
towards more sensor replacements compared to communication with neighbor robots.
Here, prediction of sensor failures, effect the optimal sensor replacements decision taken
by the optimization algorithm. The prediction of sensor failures are done using the
sensor failure prediction model. Thus, the accuracy of prediction effect the final sensor
replacement decision taken and cost incurred for sensor replacements.
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Figure 12. Outages/Reliability fluctuations against sensor replacement and
communication cost ratio

When communication of sensor failure data from neighbor robots are taken into
account, when the density of robots in the network increase, the amount of information
that the local robot achieve from the neighbor robots increase, which increases reliability
of the sensor measurement and reduce reliability outages. Thus, from the trends in
Figure.12, it can be concluded that more communication among neighbor robots and
lesser sensor replacements, reduces reliability outages.

4.5.3 Variation of reliability outage probability against density of robots

The Figure. 13 illustrates the reliability outages/fluctuations against density of robots
in the robot network under the benchmark algorithms vs proposed algorithms. Here, it
is assumed that the network operating costs of sensor replacements and communication
with a neighbor robot are same.
From Figure.13, the outages of the benchmark algorithm, increase with the density of

robots in the network. The outage probability of the benchmark algorithm, Myopic -
R, is high because it does not use any prediction or optimization strategies to prevent
future reliability outages. It observes the real time failures of sensors and replace after
the amount of sensor failures exceeds the threshold amount of sensor failures required to
maintain the reliability threshold of sensor measurements. The outages of the algorithms,
without communication/no cooperation (NC) have fixed outage probabilitywith the
density of robots in the network. The reason is that since those algorithms are not
communicating, the density of robots in the network do not affect the sensor replacement
decision taken by those algorithms. Thus, the outages do not change with the increment
of robots in the network. The full knowledge scenario, has the lowest outage probability,
however it still has a certain outage probability, due to the existence of initial sensor
failures, that may occur randomly. Thus, even though failures are predicted accurately,
there is a chance that the new sensor which is replaced has already failed at that time
instant. Here, it is clear that with the increment in density of robots, the proposed
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Figure 13. Outages/Reliability fluctuations against density of robots in robot network
area for proposed algorithms without sensor failure learning approaches

algorithms which uses the known and estimated sensor failure prediction model displays
a reduction in the probability of reliability outages with the increase in the density of
robots when compared with other algorithms.

4.5.4 Variation of cumulative average network cost against density of
robots

In addition to reliability outage probability, the variation of cumulative average network
operating cost against density of robots of the network is evaluated in Figure. 14. From
the figure, it is clear that the average cost of all the algorithms increase with the increment
in the density of robots in the network. Here, it is assumed that the costs for faulty sensor
replacements and communication is same. Although, the proposed algorithm which uses
the estimated sensor failure model, h(a, λ, k), for prediction, has the highest cumulative
costs, the gap between other algorithms is considerably less. Furthermore, since the
proposed algorithm with estimated h(a, λ, k) has the lowest outage probability variation
against the density of robots, the costs incurred to attain such reliability is not as high
as expected when compared with the higher outage probabilities of other algorithms.
The algorithm, Myopic - R shows the lowest average network operating costs due to the
fact of replacing faulty sensors only after fault occur in the sensors and not predicting
sensor failures. The rest of algorithms, which use prediction and optimization algorithms
to predict sensor failures and optimize network operating costs, spend more due to the
probability of replacing sensors even if they actually do not fail and communicating more
with the neighbor robots seeking higher sensor measurement reliability.
When compared with the Figure. 13 the proposed algorithm with estimated h(a, λ, k)

shows reduction in reliability outage probability with the density of robots. and here
the average network operating cost incurred is nearly equal as the other algorithms.
Hence, the proposed algorithm with estimated h(a, λ, k), is the optimal strategy that the
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Figure 14. Outages/Reliability fluctuations against density of robots in robot network
area for proposed algorithms without sensor failure learning approaches

optimizes the network operating average cost and reduces reliability outages of the sensor
measurements which is the objective of this research.

4.5.5 Variation of reliability outage probability against density of robots
using learning approaches

The effect of using sensor failure model parameters learning approaches on the reliability
fluctuations in the network, when the density of robots increase, is evaluated in Figure.
15. These learning are useful when the previous knowledge of sensor failure data of the
system is not available and the sensor failure model needs to be estimated.
It is observed that the count of reliability fluctuations increase with the increment in

the density of robots, when learning approaches are used. Thus, the proposed algorithm
works efficiently, when the density of robots in the network are high and when learning
approaches are used. Both federated learning and centralized approaches show a similar
trend. The amount of outages are high, when the number of robots are low, because
the amount of data of either lifetime of sensors or of model parameters, collected at the
central server are very low. Thus, the global estimate of the model parameters generated
at the central server which is shared with the local robots, is not sufficient to give a
good estimate of the sensor failure prediction model. Thus, at the initial instance , the
estimated model from small amount of data, result in increasing reliability fluctuations.
However, when the density of robots is high, more data are collected at each of the robot
and shared with the central server. Here, the central server is able provide a better
estimate of the model parameters, due to the availability of larger amount of data in the
robots.
From, Figure .15, it was shown that the values of the estimated model parameters effect

the estimated sensor failure prediction model, which impacts the reliability fluctuations
in the the system. Figure.16 illustrates how the estimated model parameters effect the
reliability fluctuations of the system.
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Figure 15. Outages/Reliability fluctuations against density of robots with sensor failure
learning approaches

Figure 16. Variation of reliability fluctuations with estimated model parameters

4.5.6 Variation of reliability outage probability against communication
range

The system model is designed for the local robot to communicate with neighbor robots
within a communication radius defined. The effect of communication radius on the
number of reliability fluctuations under the scenarios of proposed algorithms using actual
and estimated sensor failure prediction models is shown in Figure. 17.
From the Figure.17, the reliability fluctuations of the proposed system declines with

the increment of the communication radius/range of the local robot, implying that the
reliability outage decrease with the increase in the number of neighbor robots providing
information. The estimated model parameters effect the sensor failure prediction which
effects the final optimal decisions for sensor replacement and communication with
neighbor robots.
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Figure 17. Outages/Reliability fluctuations against the communication range of the local
robot

4.5.7 Variation of network operating costs with estimated model
parameters, scale, λ and shape, k

The Figure.18 illustrates how the estimated model parameters effect the average sensor
replacement cost of the system. The Figure.19 illustrates how the estimated model

Figure 18. Variation of average sensor replacement cost of the model with estimated
parameters

parameters effect the average neighbor communication cost of the system. If the
model parameters are within the region which results in lower sensor replacement and
communication costs, then the network operating costs can be maintained low as much
as possible.
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Figure 19. Variation of average communication cost of the model with estimated
parameters

4.5.8 Variation of log likelihood estimation of (a, λ, k) with estimated
model parameters, scale, λ and shape, k

The Figure.20 illustrates how the estimated model parameters effect the log likelihood
estimation of the sensor failure prediction model. From these simulations, the range
of model parameters that will increase the inference accuracy of the system model is
determined.

Figure 20. Variation of log likelihood estimation of h(a, λ, k) with estimated parameters
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4.5.9 Variation of reliability outage probability against sensor lifetime
data samples in federated learning

The effect of sensor lifetime data on the performance of the FL algorithm is discussed
herewith where the system model was simulated for a robot network consisting ten robots.
From Figure. 21 it is observed that at the beginning when the number of sensor lifetime
data are low, the reliability outage probability shows higher fluctuation. Furthermore,
it is observed that the with the increase in the number of sensor lifetime data, the
reliability outage probability of the FL method converges perfectly to the reliability
outage probability of the proposed algorithm with estimated h(a, λ, k) implemented
without FL.
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Figure 21. Variation of reliability outage probability with number of sensor lifetime data
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5 CONCLUSION

With the increase in usage of mobile robots for automation in tasks such as
manufacturing, navigation, environment monitoring, the interaction with humans and
objects nearby is becoming frequent. Hence, the need to increase safety of the
environment becomes important. This thesis develops a mechanism to improve the
reliability of sensor measurements in a mobile robot network taking into the account
of inter-robot communication and costs of faulty sensor replacements.
In order to provide a solution, first a sensor fault prediction method is developed

utilizing sensor characteristics. Then, network-wide cost of sensor replacements and
wireless communication is minimized subject to a sensor measurement reliability
constraint. Tools from convex optimization are used to develop an algorithm that derives
the optimal sensor selection and wireless information communication decision for the
problem. Under the absence of prior knowledge on sensor characteristics, we utilize
observations of sensor failures to estimate their characteristics in a distributed manner
using federated learning. Finally, extensive simulations were carried out to highlight the
performance of the proposed mechanism compared to several state-of-the-art methods.
Novelty, of the research can be seen where both the network operating costs and sensor

reliability thresholds are optimally maintained for the mobile robot network considering
the proposed algorithms which utilize prediction and optimization principles. Further,
information exchange among neighbor robots using wireless communication is used to
enhance sensor reliability, that is local sensor reliability can be enhanced additionally
with communication with external robots or devices. Further, it was shown that sensor
failure prediction can be done using federated learning approach, using data available at
the robots which is useful when previous knowledge about the system sensor failures are
not available.
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6 FUTURE WORK

The main focus of this thesis is to propose an algorithm for network resource
cost minimization and sensor measurement reliability enhancement above a threshold
reliability level assuming robots are located randomly. However, the possibility of
connecting robots in specific network topologies and observing its effect needs to be
evaluated. In addition, the proposed system worked under a low interference level
system. Thus, the effect of higher levels of interference on the proposed algorithm needs
to discussed. Furthermore, sensor failures of only the next time instant was predicted
for sensor replacements. However since in practical scenarios, it is difficult to conduct
instantaneous sensor replacements, sensor failures must be predicted well before the
failure happens, which gives sufficient time for the system to prepare and update its
sensors beforehand.
Hence, as future work for this thesis, attention will be drawn to evaluating

the performance of the proposed strategy when robots in the automated mobile
network are connected in specified network topologies having different communication
protocols. Further, strategies for interference management for robot networks with
higher interference levels will be focused, which will be beneficial when implementing
the proposed solution in a practical scenario. In addition, the possibility of improving
the prediction horizon, the range ahead by which the prediction is done, for sensor failure
prediction will be evaluated.
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